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Abstract: The reptile search algorithm is a newly developed optimization technique that can effi-
ciently solve various optimization problems. However, while solving high-dimensional nonconvex
optimization problems, the reptile search algorithm retains some drawbacks, such as slow conver-
gence speed, high computational complexity, and local minima trapping. Therefore, an improved
reptile search algorithm (IRSA) based on a sine cosine algorithm and Levy flight is proposed in
this work. The modified sine cosine algorithm with enhanced global search capabilities avoids
local minima trapping by conducting a full-scale search of the solution space, and the Levy flight
operator with a jump size control factor increases the exploitation capabilities of the search agents.
The enhanced algorithm was applied to a set of 23 well-known test functions. Additionally, statistical
analysis was performed by considering 30 runs for various performance measures like best, worse,
average values, and standard deviation. The statistical results showed that the improved reptile
search algorithm gives a fast convergence speed, low time complexity, and efficient global search.
For further verification, improved reptile search algorithm results were compared with the RSA and
various state-of-the-art metaheuristic techniques. In the second phase of the paper, we used the IRSA
to train hyperparameters such as weight and biases for a multi-layer perceptron neural network and
a smoothing parameter (σ) for a radial basis function neural network. To validate the effectiveness
of training, the improved reptile search algorithm trained multi-layer perceptron neural network
classifier was tested on various challenging, real-world classification problems. Furthermore, as a
second application, the IRSA-trained RBFNN regression model was used for day-ahead wind and
solar power forecasting. Experimental results clearly demonstrated the superior classification and
prediction capabilities of the proposed hybrid model. Qualitative, quantitative, comparative, statisti-
cal, and complexity analysis revealed improved global exploration, high efficiency, high convergence
speed, high prediction accuracy, and low time complexity in the proposed technique.

Keywords: metaheuristic optimization; neural network; improved reptile search algorithm;
multi-layer perceptron; radial basis function network

1. Introduction

Metaheuristics are stochastic search algorithms inspired by the natural phenomenon
of biological evolution and human behaviors. Metaheuristics (MH) are simple, flexible,
and derivative-free techniques that can efficiently solve various challenging, non-convex
optimization problems. The meta-heuristic algorithm solves the optimization problem
by considering only the input and output of the base system defined as an optimization
problem and does not require a strict mathematical model. Therefore, metaheuristic
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algorithms are very successful in solving real-world optimization problems with complex
information [1–3].

The meta-heuristic techniques can be divided into two main classes: evolutionary
algorithms (EA) and swarm intelligence (SI) algorithms. EAs are based on the theory of
evolution and natural selection, which is a way of explaining how species change over
time. Examples of classical evolutionary computing techniques are genetic algorithm
(GA), evolution strategy (ES), simulated annealing (SA), differential evolution (DE), and
genetic programming (GP) [4,5]. SI algorithms mimic social interactions in nature (such
as animals, birds, and insects) [6]. Some of the well-known SI methods include particle
swarm optimization (PSO), salp swarm optimization (SSA) [7], ant colony optimization
(ACO) [8], firefly algorithm (FA), and whale optimization algorithm (WOA) [9].

There has been a sudden rise in the popularity of machine learning-based techniques
within the past few decades. The performance of many areas, such as self-driving vehicles,
medical, industrial manufacturing, image recognition, etc., has been greatly improved
because of machine learning [10]. Machine learning is a computational process, and its
main objective is to recognize different patterns in a relatively random set of data. Several
machine learning methods like logical regression, naïve Bayes (NB), k-nearest neighbors
(k-NN), decision trees, artificial neural network (ANN), and support vector machines
(SVM) [11–13] are available in the literature for solving various classification and regression
problems.

ANNs are one of the most famous and practical machine learning methods developed
to solve complex classification and regression problems. An ANN is a computational
model which is biologically inspired. It consists of neurons, which are the processing ele-
ments, and the connections between them, which have some values known as weights [14].
Neurons are usually connected by these weighted links over which information can be
processed. The main characteristics of a neural network are learning and adaptation, ro-
bustness, storage of information, and information processing [15]. ANNs are widely used
in areas where traditional analytical models fail because either the data is not precise or
the relationship between different elements is very complex. ANNs are used in pattern
recognition [16–18], signal processing [19], intelligent control [20], and fault detection in
electrical power systems [21–23]. Therefore, by applying ANNs to different fields, we can
optimize the performance, and this has been a major research focus for the last few years.

The performance of a neural network depends upon the construction of the network,
the algorithms used for training, and the choice of the parameters involved. Usually,
gradient-based methods like backpropagation, gradient descent, Levenberg Marquardt
back propagation (LM), and scaled conjugate gradient (SCG) are used to train neural
networks. However, these classical methods are highly dependent on initial solutions and
may trap in the local minima resulting in performance degradation [24]. Therefore, to
enhance performance, evolutionary computing techniques can be applied to train neural
networks. These networks are known as Evolutionary Neural Networks.

With the rapid development in computing techniques, a variety of metaheuristic
search methods have been used for the optimal training of neural networks [24–26]. The
basic inspiration for these metaheuristic search methods is the natural phenomenon of
biological evolution and human behaviors. Metaheuristic algorithms consider different
parameters of ANN as an optimization model and then make an effort to find a near-
optimal solution [27]. Due to the added benefit of the powerful global and local searching
capabilities of metaheuristic algorithms, the hybrid ANN is becoming a great tool for
solving different classification and regression problems.

1.1. Contributions and Organization

According to the no free lunch theorem (NFL) [28], no metaheuristic algorithm can
efficiently solve all optimization problems. An algorithm that gives excellent results for one
optimization problem may perform poorly when applied to another optimization problem.
This inequality was the motivation for this research. The main work of this paper was
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based on the refinement of the biologically inspired reptile search algorithm (RSA) [29].
In an extensive application, we applied this algorithm to solving various regression and
classification problems.

RSA is a newly developed optimization technique that can efficiently solve various
optimization problems. However, when applied to highly multidimensional noncon-
vex optimization problems like neural network training, the algorithm shows prominent
shortcomings, such as stagnation at local minima, slow convergence speed, and high com-
putational complexity. Therefore, in this paper, some improvements are proposed to make
up for the above-mentioned drawbacks.

The reason for local minima stagnation is the lack of exploration in the high-walking
stage of the RSA algorithm. Local minima trapping can be avoided if the solution candidates
explore the search space as widely as possible. Therefore, to enhance exploration, a sine
operator was included in the high walking stage of the RSA algorithm. The modified
sine operator with enhanced global search capabilities avoids local minima trapping by
conducting a full-scale search of the solution space.

The second innovation was designed to enhance the convergence capabilities in the
hunting phase of the RSA algorithm. The Levy flight operator with jump size control factor
ζ was used to increase the exploitation capabilities of the search agents. The lower value
of ζ results in small random steps in the hunting phase of IRSA. This enables the solution
candidates to search the area nearest to the obtained solution, which greatly improves the
convergence capabilities of the algorithm.

As compared to the other state-of-the-art optimization algorithms, the computational
complexity of RSA is very high. This time complexity limits the application of the algorithm
in solving high-dimensional complex optimization algorithms. In the original RSA, the
major causes of the complexity are the hunting operator µ(j,k) and the reduce function
R(j,k). Especially while computing R(j,k), division by a small value, ε, greatly increases
the computational time of the algorithm. However, in the proposed algorithm with the
above-mentioned improvisation, there was no need to calculate these complex operators,
and they were excluded from the algorithm. This results in an almost 3-to-4-fold reduction
in time complexity.

Thus, the proposed novel IRSA algorithm gives two benefits. First, there was a 10 to
15% improved performance as compared to the original RSA (experimentally verified in
Section 3.2). Second, there was a 3-to-4-fold reduction in time complexity as compared to
the original RSA (experimentally verified in Section 3.3). The major contributions of the
research are:

• An improved reptile search algorithm (IRSA) based on a sine operator and Levy flight
was proposed to enhance the performance of the original RSA.

• The proposed IRSA was evaluated using 23 benchmark test functions. Various qualita-
tive, quantitative, comparative, statistical, and complexity analyses were performed to
validate the positive effects of the improvisations.

• This research also proposed a hybrid methodology that integrates Multi-Layer Per-
ceptron Neural Network with the improvised RSA for solving various classification
problems.

• Finally, the IRSA was applied to train a radial basis function neural network (RBFNN)
for short-term wind and solar power predictions.

The remaining article is assembled into seven sections. The proposed methodology is
explained in Section 3. Section 4 delineates the effectiveness of the proposed IRSA through
the performance of various experimental and statistical studies, along with comparisons.
Section 4 also gives a brief rundown on the theoretical basis of the multi-layer perceptron
neural network (MLPNN), radial basis function neural network (RBFNN), and proposed
improved reptile search algorithm based neural network (IRSANN). Sections 5 and 6
describe applications of the proposed technique in solving real-world classification and
regression problems. Finally, Section 7 concludes the research.
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1.2. Literature Survey

In the literature, various metaheuristic optimization techniques have been proposed
and investigated for the training of the artificial neural network. The research in [30] used a
hybrid AI model to predict the speed of wind at different coastal locations where PSO was
applied to train an ANN. A comparison was made between the support vector machine,
ANN, and hybrid ANN based wind speed prediction models, and it was observed that the
root mean square error (RMSE) was the minimum for the hybrid PSOANN model. In [31], a
hybrid ANN-PSO model was used to extract maximum power from PV systems. Different
test scenarios were considered, and it was observed that the maximum power was tracked
by the ANN-PSO technique. The research in [32] explored a hybridized ANN-BPSO (binary
PSO) model to control renewable energy resources in a virtual power plant. Simulation
results clearly showed that the best energy management schedule was obtained by the
hybrid ANN-BPSO algorithm. The work in [33] developed a hybrid model of an ANN and
ant lion optimization (ALO) algorithm for the prediction of suspended sediment load (SSL).
In [34], a new hybrid intelligent artificial neural network (NHIANN) with a cuckoo search
algorithm (CS) was proposed to develop a forecasting model of criminal-related factors.
Based on different performance parameters like mean absolute percentage error (MAPE), it
was observed that not only did CS-NIHANN train the model faster but also obtained the
optimal global solution.

In recent years, the trend of combining various metaheuristic techniques for improved
performance has risen, and many cooperative metaheuristics techniques have been pro-
posed in the literature [35]. To predict energy demand, the genetic algorithm and particle
swarm optimization were combined in [36]. Different parameters, like electricity consump-
tion per capita, income growth rate, etc., were used as input for the hybrid prediction model.
It was concluded that the performance of the ANN-GA-PSO based model was better than
the ANN-GA or ANN-PSO models. In [37], a modified butterfly optimization (MBO)
position updating mechanism was improved by utilizing the exploitation capabilities of
the multi-verse optimizer (MVO). The work in [38] combined the exploration capabilities
of a sine cosine algorithm (SCA) with a dynamic group-based cooperative optimization
algorithm (DGCO) for efficient training of a radial basis function neural network. In [39],
the performance of a salp swarm algorithm was greatly improved by integrating Levy
flight and sine cosine operators. In [40], an improved Jaya algorithm was proposed, which
used Levy flight to provide a perfect balance between exploration and exploitation.

2. Proposed Methodology
2.1. Reptile Search Algorithm

The reptile search algorithm is a metaheuristic technique inspired by the hunting
behaviors of crocodiles in nature [29]. The working of the RSA depends upon two phases:
the encircling phase and the hunting phase. The RSA switches between the encircling phase
and the hunting search phase, and the shifting between different phases is performed by
dividing the number of iterations into four parts.

2.1.1. Initialization

The reptile search algorithm starts by generating a set of initial solution candidates
stochastically using the following equation:

xjk = rand× (Ub − Lb) + Lb k = 1, 2, . . . n (1)

where xjk = initialization matrix, j = 1,2 . . . . P. P represents population size (rows of the
initialization matrix), and n represents dimensions (columns of the initialization matrix) of
the given optimization problem. Lb, Ub, and rand represent the lower bound limit, upper
bound limit, and randomly generated values.
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2.1.2. Encircling Phase (Exploration)

The encircling phase is essentially an exploration of a high-density area. In the course
of the encircling phase, high walking and belly walking, which are based on crocodile
movements, play a very important role. These movements do not help in catching prey but
help in discovering a wide search space.

xjk(τ + 1) = Bestk(τ)×
(
−µ(jk)(τ)

)
× β−

(
R(jk)(τ) × rand

)
, τ ≤ T

4
(2)

xjk(τ + 1) = Bestk(τ)× x(r1 ,k) × ES(τ) × rand, τ ≤ 2
T
4

and τ >
T
4

(3)

where Bestk(τ) is the optimal solution obtained at the kth position, rand represents a
random number, τ shows the present iteration number, and the maximum number of
iterations is represented by T. µ(j,k) is the value of the hunting operator of the jth solution
at the kth position. The value of µ(j,k) is determined as shown below:

µ(j,k)= Bestk(τ)× P(j,k) (4)

where β is a sensitivity parameter, and it explains the exploration accuracy. Another
function named R(j,k), whose purpose is to reduce the search space area, can be calculated
as follows:

R(j,k)=
Bestk(τ)− P(r2,k)

Bestk(τ) + ε
(5)

where r1 is the value of the random number that lies between 1 and N. Here, N represents
the total number of candidate solutions. z(r1,l) represents a random position for the kth
solution. r2 is also an arbitrary (random) number ranging between 1 and N, while ε
represents a value of a small magnitude. ES (τ), known as Evolutionary Sense, is a
probability-based ratio. The Evolutionary Sense can be mathematically represented as
follows:

ES(τ) = 2 × r3 ×
(

1− 1
T

)
(6)

where r3 represents a random number. P(j,k) can be computed as:

P(j,k) = α +
x(j,k)−M(xj)

Bestk(τ) x (Ub(k) −
(

Lb(k)

)
+ ε

(7)

where α is a sensitivity limit that controls the exploration accuracy. M
(
xj
)

is the average
position of the jth solution and can be calculated as:

M
(
xj
)
=

1
n ∑n

k=1 x(j,k) (8)

2.1.3. Hunting Phase (Exploitation)

The hunting phase, like the encircling phase, has two strategies, namely hunting
coordination and cooperation. Both these strategies are used to traverse the search space
locally and help target the prey (find an optimum solution). The hunting phase is also
divided into two portions based on the iteration. The hunting coordination strategy is
conducted for iterations ranging from τ ≤ 3 T

4 and > 2 T
4 , while the hunting cooperation

is conducted from τ ≤ T and τ > 3 T
4 . Stochastic coefficients are used to traverse the

local search space to generate optimal solutions. Equations (9) and (10) are used for the
exploitation phase:

x(j, k)(τ + 1) = Bestk(τ)× (P(j,k)(τ)) × rand, τ ≤ 3
T
4

and τ > 2
T
4

(9)
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x(j, k)(τ + 1) = Bestk(τ)− µ(j,k)(τ)× ε− R(j,k)(τ)× rand, τ ≤ T and τ > 3
T
4

(10)

where Bestk(τ) is the k position in the best-obtained solution in the current iteration.
Similarly, µ(j,k) represents the hunting operator, which is calculated by Equation (4).

2.2. Proposed Improved Reptile Search Algorithm (IRSA)

The RSA is a newly developed optimization technique that can efficiently solve various
optimization problems. However, while solving high dimensional nonconvex optimization
problems, the RSA poses some drawbacks, such as slow convergence speed, high computa-
tional complexity, and local minima trapping [41,42]. Therefore, to overcome these issues,
some adjustments are proposed to the original RSA algorithm.

Avoiding local minima trapping requires the solution candidates to explore the search
space as widely as possible. Therefore, to enhance exploration, a sine operator was included
in the high walking stage of the RSA algorithm. This adjustment was inspired by the
dynamic exploration mechanism in the sine cosine algorithm (SCA) [43]. The sine operator
provides a global exploration capability. Therefore, the inclusion of a sine operator in the
IRSA can avoid local minima trapping by conducting a full-scale search of the solution
space. Using the sine operator, in IRSA Equation (2) was replaced with the following
equation.

xjk(τ + 1) = Bestk(τ) + (r1 × sin(rand)× |r2 × Bestk(τ)− xjk|, f or τ ≤ T
3

(11)

where r1, r2, and rand are randomly chosen numbers between 0 and 1. xjk is the current
position, and Bestk is the best solution. The Levy flight [44] is a random process that
follows the Levy distribution function. As suggested by yang [45]:

levy = 0.01× u

v
1
ζ

(12)

where u and v obey normal distribution.

u ∼
(

0, σ2
u

)
, v ∼

(
0, σ2

v

)
(13)

σu =

 δ(1 + ζ)sin πζ
2

δ
[

1+ζ
2

]
ζ ∗ 2ζ− 1

2

1/ζ

(14)

σv = 1 (15)

where δ is the standard gamma function. ζ is an important parameter in Levy fight that
determines jump size. The lower value of ζ results in small random steps. This enables
the solution candidates to search the area nearest to the obtained solution, which improves
exploitation capabilities. This improved exploitation guarantees global convergence. There-
fore, instead of Equation (10) the Levy operator is used to update the position in the final
stages of IRSA

xjk(τ + 1) = Bestk(τ) + randn× levy ⊕
(

xjk − Bestk(τ)
)

, for τ ≤ T and τ > 3
T
4

(16)

where⊕ designates entry-wise multiplication, and randn is a uniformly distributed random
number. The Levy random walk is represented in Figure 1.
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These improvisations greatly reduce the complexity of the algorithm. In the original
RSA, Equations (4) and (5) are highly complex and increase the time complexity of the algo-
rithm. However, with the above-mentioned adaptations, we can exclude these equations
from the algorithm. This means that the proposed IRSA algorithms do not have to compute
these equations, which results in an almost 3-to-4-fold reduction in time complexity.

Improved global exploration, high efficiency, high convergence speed, and low time
complexity are the improvements observed in the proposed technique. Taken together, the
pseudocode and flowchart of the IRSA are shown in Algorithm 1 and Figure 2.

Algorithm 1 Pseudocode of IRSA

Initialize random population x
Initialize iteration counter τ = 0, maximum iteration T, alpha, beta
while τ < T
Evaluate fitness of potential candidates
Determines the best solution
Update Es, P(j,k) using Equations (6) and (7)
for j = 1: p

for k = 1: n
If τ ≤ T

3
Solve using Equation (11)

else if τ ≤ 2 T
4 and τ > T

3
Solve using Equation (3)

else if τ ≤ 3 T
4 and τ > 2 T

4
Solve using Equation (9)

else
Solve using Equation (16)

end if
end for

end for
t = t + 1
end while
Return best solution
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3. Experimental Verification Using Benchmark Test Functions

In this section, the improved reptile search algorithm (IRSA) was tested using 23
standard benchmark functions [46]. These functions were unimodal, multimodal, and
fixed-dimension minimization problems. The specifications of the test functions are pro-
vided in Tables A1–A3. For further verification, the IRSA results were compared with the
RSA algorithm and also with other classical and state-of-the-art metaheuristic techniques,
like barnacle mating optimizer (BMO) [47], particle swarm optimization (PSO) [48], grey
wolf optimizer (GWO) [49], arithmetic optimization algorithm (AOA) [50], and dynamic
group-based cooperative optimization algorithm (DGCO) [51]. The numbers of iterations
taken were 500 and 350, with a fixed population size of 50. For IRSA, α and β were set to
0.1. Furthermore, statistical analysis was performed by considering 30 runs for various
performance measures like best, worse, and average values and standard deviation (STD).
Lastly, time complexity analysis was performed on CEC-2019 test functions. The simula-
tions were performed using a desktop computer Core i5 with 12 GB RAM. The software
used for the simulation was MATLAB (R2018a).

3.1. Qualitative Analysis

Figure 3 gives an indication of different qualitative measures used to evaluate the
convergence of the RSA. The first column of each figure indicates the shape of the test
functions in two dimensions to depict the topographic anatomy. The second column
shows the search history, which depicts the exploration and exploitation behavior of
the algorithm. The convergence curve of unimodal functions was fluid and continuous,
while for multimodal functions, the curve improved in steps as they were more complex
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functions. It is clearly visible that the performance of the IRSA in finding an optimum
solution improved significantly with an increase in the number of iterations.
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3.2. Comparative Analysis

Tables 1 and 2 show the comparative analysis between the IRSA and other MH
algorithms for unimodal, multimodal, and fixed-dimension functions. For unimodal and
multimodal functions, each algorithm was evaluated considering population size and
iterations of 50 and 500, respectively. For statistical analysis, each algorithm ran 30 times
to compute the best value, average value, worst value, and standard deviations [52]. The
IRSA showed a great ability to find the optimum value on 16 out of 23 test functions,
which represented nearly 70%, and it ranked second among five other test functions. The
convergence curves are depicted in Figure 4. These results demonstrate the positive effects
of the improvisations in the form of improved global convergence, enhanced optimization
accuracy, and increased stability.

Table 1. Results for unimodal and multimodal functions for 50 dimensions, 500 iterations.

Fun Measure IRSA RSA BMO PSO GWO AOA DGCO

F1 Best 0 0 6.030e-129 32.4203 4.7922e-35 6.706e-284 1.238e-21

Worst 0 0 1.961e-121 63.6854 8.0427e-33 1.2838e-114 2.1218e-19

Average 0 0 2.712e-122 43.2608 1.4545e-33 1.2838e-115 4.7446e-20

STD 0 0 6.153e-122 9.48589 2.4625e-33 4.0598e-115 7.9075e-20

F2 Best 0 0 1.393e-67 2.35817 1.7406e-20 0 3.7704e-14

Worst 0 0 7.383e-65 5.32663 9.4593e-20 0 4.68526e-13

Average 0 0 1.841e-65 3.31147 4.5301e-20 0 1.10333e-13

STD 0 0 2.663e-65 0.89717 2.2708e-20 0 1.29549e-13

F3 Best 0 0 4.0313e-92 5.5826e+03 4.5340e-04 0.0286 0.0025

Worst 0 0 2.9026e-76 9.1971e+03 0.0201 0.5838 25.4054

Average 0 0 1.1183e-76 7.8891e+03 0.0074 0.1907 5.7823

STD 0 0 1.5330e-76 1.3842e+03 0.0074 0.2277 10.9998

F4 Best 0 0 7.3742e-58 5.43665 7.5397e-09 4.6289e-88 4.97610e-06

Worst 0 0 2.5295e-52 14.1279 4.4114e-08 0.05287 0.000247

Average 0 0 4.1512e-53 8.305702 1.8813e-08 0.024560 5.9520e-05

STD 0 0 8.765e-53 2.59027 1.274e-08 0.02222 7.3133e-05

F5 Best 45.4705 48.9824 48.9417 5.7675e+03 46.1950 48.6070 46.1974

Worst 47.7889 48.9903 48.9984 1.0132e+04 47.8430 48.9439 47.8660

Average 46.4656 48.9883 48.9721 8.1573e+03 47.0300 48.7869 47.0569

STD 0.6506 0.0032 0.0173 2.0349e+03 0.8086 0.1402 0.5917

F6 Best 1.58 11.97 11.39 150.00 2.25 6.43 3.48

Worst 2.67 12.25 12.44 284.60 2.89 7.44 5.78

Average 2.37 12.22 11.935 214.76 2.5 6.90 4.67

STD 0.25 0.0878 0.4067 47.02 0.27 0.34 0.66

F7 Best 7.6084e-06 2.6639e-05 1.5133e-04 0.1347 4.8839e-04 1.6821e-07 0.0014

Worst 2.8963e-05 6.7811e-05 3.8440e-04 0.2985 0.0037 5.2418e-05 0.0154

Average 8.7740e-05 9.0710e-05 4.1659e-04 0.2155 0.0022 2.3443e-05 0.0071

STD 9.3116e-05 5.2933e-05 2.3023e-04 0.0592 0.0012 2.0923e-05 0.0055
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Table 1. Cont.

Fun Measure IRSA RSA BMO PSO GWO AOA DGCO

F8 Best −1.0646e+4 −8.845e+3 −5.358e+3 −1.0646e+4 −9.14e+3 −8.0208e+03 −1.0548e+04

Worst −6.8637e+3 −4.57e+3 −2.928e+03 −6.8637e+3 −6.13e+3 −6.8298e+03 −7.3571e+03

Average −8.7577e+3 −6.04e+3 −3.867e+03 −8.7577e+3 −7.32e+3 −7.2473e+03 −8.5385e+03

STD 1.0697e+3 1.2009e+3 863.4437 1.0697e+3 902.38 427.9226 849.1905

F9 Best 0 0 0 114.0457 5.6843e-13 0 4.4338e-12

Worst 0 0 0 140.5094 5.42412 0 1.4080e-09

Average 0 0 0 131.6173 3.0390 0 4.7419e-10

STD 0 0 0 15.2178 2.7705 0 8.0872e-10

F10 Best 8.8817e-16 8.8817e-16 8.8817e-16 2.98933 3.9968e-14 8.8817e-16 2.0863e-12

Worst 8.8817e-16 8.8817e-16 8.8817e-16 4.25557 5.0626e-14 8.8817e-16 20.2605

Average 8.8817e-16 8.8817e-16 8.881e-16 3.62755 4.3520e-14 8.8817e-16 4.04392

STD 0 0 0 0.38752 3.3495e-15 0 8.52536

F11 Best 0 0 0 1.18496 0 0.009543 0

Worst 0 0 0 1.75459 0.014698 0.428251 0.019779

Average 0 0 0 1.39448 0.00368 0.159273 0.001977

STD 0 0 0 0.177805 0.006091 0.138820 0.006254

F12 Best 0.0868 1.1349 0.7756 0.1567 0.0373 1.0089 0.1162

Worst 0.1513 1.4160 1.1959 0.2635 0.0583 1.0286 0.2057

Average 0.1534 1.3680 1.1688 0.2182 0.0459 1.0395 0.2604

STD 0.0373 0.1246 0.2121 0.0552 0.0110 0.0316 0.1348

F13 Best 4.5760e-08 1.8359 0.1800 0.1624 0.8989 4.7901 2.8443

Worst 2.9444 3.8301 0.2521 0.3925 1.6895 4.9737 3.4369

Average 1.9711 3.0760 0.2071 0.2657 1.1783 4.9183 3.0976

STD 1.6991 0.7882 0.0293 0.0835 0.3008 0.0811 0.2333

Table 2. Results for fixed-dimension functions considering 500 iterations.

Fun Measure IRSA RSA BMO PSO GWO AOA DGCO

F14 Best 0.9980 2.9821 2.0481 1.913 0.9980 7.8740 0.9980

Worst 2.9834 3.0006 11.7187 2.981 10.7632 12.6705 2.9821

Average 2.1313 2.9901 6.4665 2.523 5.1025 10.7579 2.1964

STD 0.8325 0.0139 3.0067 0.7341 4.9092 1.7957 0.6274

F15 Best 0.00030 0.00068 0.00033 0.00038 0.00030 0.00036 0.00035

Worst 0.01550 0.00896 0.00654 0.00142 0.02036 0.05758 0.001224

Average 0.00406 0.00180 0.001710 0.000813 0.004417 0.009030 0.000709

STD 0.00548 0.00253 0.00223 0.00043 0.008408 0.018280 0.000237

F16 Best −1.03162 −1.03159 −1.03162 −1.03162 −1.03162 −1.03162 −1.03162

Worst −1.03162 −0.99552 −0.91896 −1.03162 −1.03162 −1.03162 −1.03162

Average −1.03162 −1.02159 −1.01681 −1.03162 −1.03162 −1.03162 −1.03162

STD 2.8338e-08 0.01150 0.03493 5.4218e-08 1.6501e-08 4.1202e-09 3.1308e-09
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Table 2. Cont.

Fun Measure IRSA RSA BMO PSO GWO AOA DGCO

F17 Best 0.39788 0.40742 0.39788 0.39788 0.39788 0.39788 0.39788

Worst 0.397897 1.27099 0.42696 0.39788 0.39788 0.39788 0.39788

Average 0.397891 0.64371 0.40330 0.39788 0.39788 0.39788 0.39788

STD 3.8146e-06 0.25782 0.01085 7.2909e-07 4.2567e-07 4.3534e-08 3.6445e-07

F18 Best 3.00000 3.00000 2.99999 3.00000 3.00000 3.00000 3.000000

Worst 3.000001 3.39511 42.1054 3.00011 3.00002 95.1885 3.000000

Average 3.000000 3.04555 10.1188 3.00002 3.00001 23.1248 3.00000

STD 5.1797e-07 0.12303 13.0276 3.477e-05 7.920e-06 28.7189 6.458e-10

F19 Best −3.86277 −3.85920 −3.85436 −3.86276 −3.86277 −3.86277 −3.86278

Worst −3.85374 −3.57053 −1.28898 −3.86201 −3.85315 −1.00081 −3.86277

Average −3.86101 −3.75028 −3.44530 −3.86263 −3.86034 −1.85933 −3.86277

STD 0.00367 0.09664 0.81662 0.00024 0.00403 1.38235 3.6601e-06

F20 Best −3.32086 −2.89690 −2.45549 −3.32121 −3.20304 −3.32194 −3.32189

Worst −3.20101 −0.17365 −0.54213 −3.19851 −3.08259 −3.15098 −3.13200

Average −3.27287 −1.54187 −1.24769 −3.22497 −3.17957 −3.27776 −3.21025

STD 0.06116 1.03850 0.75791 0.05061 0.04241 0.071964 0.06482

F21 Best −10.1206 −5.0552 −4.9619 −10.2512 −10.0712 −10.1531 −10.1494

Worst −5.0552 −5.0552 −1.8717 −5.0552 −5.0552 −5.0552 −5.0549

Average −9.0840 −5.0552 −3.8482 −6.0943 −6.0745 −6.0747 −7.0926

STD 2.2573 3.8458e-07 1.3134 2.7922 2.2793 2.2798 2.7900

F22 Best −10.3586 −5.08767 −5.05414 −10.4029 −10.4024 −10.4029 −10.3960

Worst −3.72361 −5.08766 −2.32919 −3.72365 −5.08765 −3.72429 −3.72380

Average −8.44500 −5.08766 −3.83632 −5.87780 −9.33904 −7.60893 −6.66468

STD 2.83980 1.0352e-06 0.98429 2.449069 2.24067 2.97300 3.25225

F23 Best −10.52251 −5.128480 −4.99447 −10.53637 −10.5361 −10.5363 −10.5309

Worst −3.83461 −5.12847 −2.49710 −3.83472 −5.12845 −2.29603 −3.83496

Average −8.48605 −5.12847 −3.77437 −6.62130 −8.91314 −7.34602 −6.50874

STD 2.94732 2.3686e-06 0.76135 2.73097 2.61167 3.32172 3.45155

Table 3 delineates the performance of the IRSA and other MH techniques at varying
dimensions of 30, 100, and 500, considering 300 iterations. From the table, it can be observed
that the IRSA provides the best results on 33 out of a total of 39 test evaluations, which
represented nearly 84%, and it ranks second of five other evaluations. These results clearly
demonstrate the effectiveness of the proposed algorithm in solving high-dimensional
complex optimization problems.
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Table 3. Results for unimodal and multimodal functions for 30, 100, and 500 dimensions, 300
iterations.

Fun Dim IRSA RSA BMO PSO GWO AOA DGCO

F1
30 0 0 2.9729e-75 100.429274 5.806e-20 1.74296e-76 5.93134e-10

100 0 0 7.502e-46 2951.7571 0.0012668 0.023492033 47.4212010

500 0 0 5.948e-41 91703.5649 109.12381 0.5862142 113.8580

F2
30 0 0 1.0065e-39 4.59976602 7.467e-11 0 2.10414e-07

100 0 0 4.6351e-25 53.7327530 0.0134880 4.19883e-60 0.268447521

500 0 0 3.3724e-23 487.76760 10.64367 0.00161 2.519646

F3
30 0 0 1.1399e-52 1321.79087 0.0001101 6.9638e-104 7.97466788

100 0 0 3.164e-28 50712.1407 14820.47 1.531983171 80032.5400

500 0 0 6.6866e-19 1303817.56 513880.05 36.035904 104.83

F4
30 0 0 5.6171e-32 8.65232085 4.478e-05 3.51206e-13 0.04110228

100 0 0 3.1527e-20 31.480699 5.7402399 0.100756622 82.157639

500 0 0 5.7108e-18 43.134284 65.76152 0.17991607 0.09866121

F5
30 25.72424 28.99171 28.995762 1300.12057 27.136822 28.59270148 26.21687570

100 96.8983 98.9901048 98.9698060 226496.089 98.343648 98.90012672 97.5081886

500 498.3830 499.6902 499.0781 27910234.5 9445.0271 499.1341156 4392.7

F6
30 0.576633 7.0346180 6.97472880 111.668505 0.7535595 3.03144018 1.25053679

100 11.05309 24.7513018 24.5099804 2069.85282 9.4928888 18.4072873 13.8718994

500 111.5654 124.751626 123.355451 64419.3854 268.90391 117.2773220 145.94373

F7
30 9.50e-05 1.9397e-05 0.00050276 0.05970424 0.0019118 3.78351e-05 0.00390436

100 3.97e-05 2.2064e-05 0.0004319 1.2096514 0.0097439 5.96465e-06 0.0300833

500 8.21e-05 0.00046135 0.00080821 235.665342 0.7073979 0.000119979 0.292147

F8
30 −5214.04 −3431.1934 −2834.3518 −6549.69516 −6277.543 −4918.30201 −5573.32119

100 −64809.8 −36018.762 −18000.185 −56587.461 −16611.13 −47550.1316 −34933.7702

500 −80242.2 −44205.61 −12898.155 −36269.793 −58117.96 −22872.6112 −24663.3214

F9
30 0 0 0 103.812346 1.9054417 0 5.86970e-09

100 0 0 0 587.205492 58.233470 0 20.62413137

500 0 0 0 4309.97279 902.54104 0 466.7469966

F10
30 8.881e-16 8.8817e-16 8.8817e-16 5.2518904 1.724e-10 8.88178e-16 1.63626e-06

100 8.881e-16 8.881e-16 8.8817e-16 7.8262077 5.792e-05 8.88178e-16 20.523618

500 8.881e-16 8.881e-16 4.440e-15 12.927665 2.140639 0.0083857 20.881255

F11
30 0 0 0 1.8485067 0.0298839 0.23855046 1.26669e-10

100 0 0 0 28.3884325 0.0349668 897.847451 0.04874511

500 0 0 0 867.60304 3.1100432 13134.6129 162.849911

F12
30 0.048112 1.59700365 0.93494039 0.01698208 0.0712204 0.81438277 0.045133459

100 0.374642 1.28994163 1.19529976 0.64770498 0.1179354 1.20962184 0.389415151

500 0.9743 1.2075 1.1980 2.0190 0.5999 1.1800 1.2411

F13
30 1.280496 1.970635 2.6705939 0.15916980 0.1018868 2.9785990 1.600784929

100 7.876407 9.878585 9.993848 4.57433449 5.5499672 9.963623491 8.44409492

500 49.99682 49.99734 49.99725 82.318 46.351 49.998 54.177
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3.3. Time Complexity Analysis

Time complexity usually depends on the initialization process, the number of iterations,
and the solution update mechanism. In this section, we performed a time complexity
analysis of the IRSA to determine the effect of improvisations on the computational time
of the algorithm. For this purpose, we used standard benchmark test functions called
CEC-2019. Table A4 delineates the specifications of these functions. The following equation
is used to determine the complexity of the algorithm [53,54].

T =
T̃ − T1

T◦
(17)

where T◦ is the computational time of a specific mathematical algorithm. T◦ was calculated
to be 0.09 s; T1 is the computational time of a CEC-2019 test function for 15,000 iterations; T̃
is the mean computational time of the MH technique used to solve CEC-2019 test functions
for 10 runs considering 15,000 iterations

These computations were performed using a desktop computer Core i5 with 12 GB
RAM considering a population size of 10. Tables 4 and 5 describe the result of the analysis.
The tabular results clearly show that the improvisations greatly reduce the complexity of
the RSA algorithm.

Table 4. T̃ (sec) calculation for various metaheuristic algorithms.

Fun T IRSA T RSA T FDO T BMO T AOA T PSO T GWO T DGCO T FPA T DFA

CEC01 440.04 498.64 9569.9 512.80 468.96 472.38 472.49 472.884 702.73 901.60

CEC02 51.562 158.97 303.77 26.603 9.7899 10.097 11.746 14.144 420.60 858.17

CEC03 66.843 192.89 491.69 35.672 17.950 18.158 19.011 22.222 481.66 1018.4

CEC04 33.761 99.078 514.31 26.605 9.1060 10.075 11.035 12.389 266.56 627.08

CEC05 34.373 99.519 744.31 27.667 9.4832 10.545 11.180 12.966 267.42 491.911

CEC06 175.14 240.27 5176.0 189.23 165.30 169.64 168.52 170.18 423.23 641.59

CEC07 34.831 99.440 384.83 24.768 9.7759 10.604 11.566 12.993 266.66 483.13

CEC08 34.733 99.406 369.56 25.428 9.7797 10.683 11.522 12.848 267.13 481.31

CEC09 33.670 98.69 383.27 23.551 8.3110 9.1362 10.298 11.728 266.52 492.78

Table 5. T (sec) calculation for various metaheuristic algorithms.

Fun T1
~
T IRSA

~
T RSA

~
T FDO

~
T BMO

~
T AOA

~
T PSO

~
T GWO

~
T DGCO

~
T FPA

~
T DFA

CEC01 0.0105 43.017 48.736 934.10 50.118 45.839 46.173 46.184 46.222 68.655 88.065

CEC02 0.0042 5.101 15.584 29.717 2.665 1.024 1.054 1.215 1.449 41.120 83.826

CEC03 0.0044 6.5924 18.895 48.058 3.5501 1.8205 1.84077 1.9240 2.2374 47.079 99.466

CEC04 0.0031 3.3636 9.7386 50.266 2.6652 0.9572 1.05189 1.1456 1.2777 26.085 61.272

CEC05 0.0035 3.4234 9.7816 72.714 2.7688 0.9940 1.09774 1.1597 1.3340 26.169 48.079

CEC06 0.0068 17.163 23.519 505.25 18.538 16.202 16.6257 16.517 16.679 41.376 62.688

CEC07 0.0044 3.4681 9.7739 37.628 2.4859 1.0226 1.10349 1.1974 1.3367 26.095 47.222

CEC08 0.0045 3.4585 9.7706 36.138 2.5503 1.0230 1.1112 1.1931 1.3225 26.141 47.044

CEC09 0.0036 3.3547 9.7015 37.476 2.3671 0.8796 0.9602 1.0736 1.2132 26.081 48.164
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4. IRSA for Neural Network Training
4.1. Multi-Layer Perceptron Neural Network (MLPNN)

Multi-Layer Perceptron Neural Network (MLPNN) implementing backpropagation
is one of the most widely used neural network models. In MLPNN, the input layer acts
as a receiver and provides the received information to the first hidden layer by passing
through weights and bias, as shown in Figure 5. The information is then processed by one
or multiple hidden layers and is provided to the output layer. The job of the output layers
is to provide results by combining all the processed information. The activation signal for
each neuron present in the hidden layer is:

aj =
m

∑
i=1

wji.xi + bj (18)

where wji = weight coefficient matrix between m input, and n hidden layer neurons and
can be written as:

wji =


w11 w12 · · · w1m
w21 w22 · · · w2m

...
...

. . .
...

wj1 wj2 · · · wnm

 (19)

Assuming the input layer has m neurons, the input vector xi can be written as:

xi = [x1, x2, . . . . . . ., xm]T (20)

If the hidden layer has n neurons, then the activation signal vector A can be written as:

A =
[
a1, a2, . . . , aj, . . . . . . an

]T (21)

These activation signals are applied to the neuron of the hidden layer. Based on the
type of activation function, the active neuron will generate a decision signal dj:

dj = ϕ
(
aj
)

(22)

For the sigmoid function, the decision signal can be calculated as:

dj =
1

1 + e−aj
(23)

Once decision signals for each neuron in the hidden layers are determined, these
signals are multiplied with the output weight coefficient matrix vkj to generate an estimated
output as represented by the equation:

yk =
n

∑
j=1

vkj.dj + bk (24)

The purpose of training the MLP neural network is to find the best weight and biases
to maximize classification accuracy.
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4.2. Radial Basis Function Neural Network (RBFNN)

Radial Basis Function Neural Network is a three-layered universal approximator.
The input layer serves as a means to connect with the environment. No computation is
performed at this layer. The hidden layer consists of neurons and performs a non-linear
transformation using a radial basis function. Essentially, the hidden layer transforms the
pattern into higher dimensional space to make it linearly separable. The value of the ith
hidden layer neuron can be written as follows:

Φi = e
(− (||X−ui ||

2)
2.σi

2 )
(25)

where X is the input vector, ui is the ith neuron’s prototype vector, σi is the ith neuron’s
bandwidth, and Φi is the ith neuron’s output.

The output layer performs different linear computations, which is a combination of
the input and weight vector. These computations can be represented mathematically as:

y =
n

∑
i

wiΦi (26)

where wi is the weight connection, Φi is the ith neuron’s output from the hidden layer, and
y is the prediction result. The structure of the RBFNN is shown in Figure 6.
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4.3. Training of MLPNN and RBFNN Using the Proposed IRSA

The training of parameters, such as weight and biases for MLPNN and the smoothing
parameter (σ) for RBFNN, is a highly complex optimization problem. Inefficient training of
these parameters results in low classification and prediction accuracy. Usually, gradient-based
methods are used to train neural networks. However, these classical methods are highly
dependent on initial solutions and may trap in the local minima resulting in performance
degradation. Therefore, to minimize the prediction errors, the IRSA was used to determine
weight, biases, and σ. Figure 7 shows the flowchart for the proposed IRSANN algorithm.
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5. IRSA for Solving Classification Problems

In order to evaluate the performance of the IRSA, eight datasets obtained from [55,56]
were used. Table 6 gives a brief description of the datasets. Each dataset was divided into a
training set and a testing set. Almost 67% of the data was used for training the ANN, and
the remaining 33% was used for testing. Sigmoid was used as an activation function for the
hidden layers. Normalized mean squared error, as described by Equation (27), was used as
a cost function.

NRMSE =
1
T̃

√√√√ 1
N

N

∑
i=1

(Ti − Pi)
2 (27)

where Ti and pi are the true and predicted values. T̃ represents the mean of true value. N
represents the total number of data samples. As there is no fixed rule to select the number
of neurons, we selected neurons based on the formula [37]:

h = 2× f + 1 (28)

where f represents the number of input features, and h shows the number of selected
neurons.

Table 6. Description of used dataset.

Data Set # Classes # Features No. of Training
Samples

No. of Testing
Samples

Iris 3 4 100 50
Heart 2 13 203 100

Stress-Lysis 3 3 1340 661
Banknote-authentication 2 4 919 453

Blood-transfusion 2 4 501 247
Cryotherapy 2 6 60 30

Diabetes 2 8 514 254

After training the MLP network, different convergence curves for IRSA, RSA, BMO,
AOA, and PSO are displayed in Figure 8. The convergence of IRSA is at par with all the
other metaheuristic algorithms. On the other hand, the convergence of the classical RSA
was average. The accuracy while using the IRSA algorithm was better than the accuracy of
other algorithms. The IRSA provided the best results for most of the datasets. Additionally,
the low standard deviation of the IRSA was an indication of its strength and stability. The
results in Table 7 clearly show that the accuracy of the proposed method is higher than
the other four classifiers. Table 8 shows the performance of the comparative techniques in
testing the dataset, and Table 9 shows the cost function comparison of all the techniques
with best, average, and STD values.

Table 7. Training accuracy.

Dataset
Training Accuracy (%)

PSONN BMOANN AOANN RSANN IRSANN

Iris 97 94 93 88.02 97
Heart 72.60726 66.9967 59.73597 42.24422 88

Stress-Lysis 91.75412 95.8021 70.16492 59.37031 99.42171
Banknote-authentication 94.42623 97.9235 85.68306 84.48087 99.45355

Blood-transfusion 79.95992 78.15631 77.35471 75.1503 77.55511
Cryotherapy 90 92 71.66667 81.66667 96.66667

Diabetes 74.80469 75 72.07031 66.79688 78.10156
Haberman 75 75 78.43137 79.41176 78.43137
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Table 8. Testing accuracy.

Dataset
Testing Accuracy (%)

PSONN BMOANN AOANN RSANN IRSANN

Iris 94 98.66 92 91 98.23
Heart 70.9571 75.90759 58.08581 46.53465 85

Stress-Lysis 91.90405 97.0015 70.01499 57.12144 99.7121
Banknote-authentication 93.43545 96.49891 83.3698 85.33917 99.56236

Blood-transfusion 77.51004 77.91165 74.6988 79.11647 80.72289
Cryotherapy 93.33333 86.66667 80 76.66667 93.33333

Diabetes 67.57813 75.78125 76.1718867 69.92188 77.26563
Haberman 67.47059 76.47059 76.64706 70.09804 80.54902
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Table 9. Cost evaluation of classification dataset.

Dataset
Cost Function Comparison

PSONN BMOANN AOANN RSANN IRSANN

Iris
Best 0.078788 0.082034 0.342085 0.143403 0.072572

Avg 0.137949 0.087161 0.742686 0.327073 0.115797

Std 0.083667 0.00569 0.484778 0.159949 0.108159

Heart
Best 0.56952 0.545925 0.995477 0.808033 0.472722

Avg 0.640322 0.581627 1.372587 0.853887 0.517036

Std 0.062089 0.030938 0.53151 0.076074 0.038613

Stress-Lysis
Best 0.156856 0.136333 0.321634 0.248556 0.0911631

Avg 0.159272 0.142592 0.353229 0.627416 0.268016

Std 0.003418 0.007051 0.027562 0.328421 0.055127

Banknote-
authentication

Best 0.318751 0.154256 0.556654 0.503623 0.085457

Avg 0.331262 0.170783 0.764328 0.836328 0.145555

Std 0.017693 0.016899 0.207149 0.288424 0.054529

Blood-transfusion
Best 0.823567 0.882403 0.960614 0.958203 0.887161

Avg 0.830233 0.888582 1.260426 0.976322 0.895859

Std 0.009426 0.008437 0.259695 0.015692 0.009459

Cryotherapy
Best 0.357101 0.756437 0.234832 0.542086 0.28827

Avg 0.362329 0.888982 0.292911 0.764291 0.305118

Std 0.007394 0.129127 0.050999 0.192532 0.127465

Diabetes
Best 1.048615 0.725924 0.730482 0.947266 0.646058

Avg 1.076385 0.743759 0.7562 0.982109 0.724891

Std 0.042824 0.019733 0.036372 0.040968 0.07128

Haberman
Best 0.892895 0.906456 0.977251 0.994621 0.881229

Avg 0.936445 0.931774 1.269601 0.998591 0.925252

Std 0.061589 0.00719 0.14037 0.003469 0.038883

Statistical Indicators for Classification

Precision, recall, and F1 score are the parameters used to evaluate the performance of
the different techniques used in this paper. Precision and recall are defined in (29) and (30)
respectively:

Precision =
TP

TP + FP
(29)

Recall =
TP

TP + FN
(30)

where TP (true positive), FP (False Positive), and FN (False Negative) are determined by
computing the confusion matrix. The ideal value for precision and recall is one. The F1
score can be defined as:

F1 = 2× Precision× Recall
Precision + Recall

(31)

Table 10 represents the statistical results for the eight selected datasets. The precision,
Recall, and F1 of the proposed method were higher for six out of the eight datasets.
Considering all the parameters mentioned above, we can conclude that the proposed
IRSANN method provides optimum results and outperforms all other comparable MH
techniques.
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Table 10. Statistical measures for classification.

Data Set Technique Training Testing

Precision Recall F1 Score Precision Recall F1 Score

Iris

IRSA 0.979142 0.979923 0.979533 0.962222 0.967178 0.969693

RSA 0.891866 0.875316 0.883513 0.832602 0.796296 0.814045

BMO 0.944356 0.943915 0.944136 0.977778 0.977778 0.977778

AOA 0.680918 0.647619 0.663851 0.695926 0.655556 0.675138

PSO 0.972973 0.969697 0.971332 0.964912 0.958333 0.961612

Heart

IRSA 0.888428 0.884587 0.88503 0.848726 0.851251 0.854971

RSA 0.462116 0.462022 0.462069 0.60397 0.603725 0.603848

BMO 0.73858 0.636917 0.683992 0.740629 0.660205 0.698108

AOA 0.480976 0.481498 0.481237 0.482877 0.486242 0.484554

PSO 0.657688 0.651564 0.654612 0.602002 0.577957 0.589735

Stress-Lysis

IRSA 0.862953 0.869583 0.866255 0.831595 0.842565 0.837044

RSA 0.551258 0.515412 0.514234 0.55435 0.508844 0.61734

BMO 0.959656 0.951436 0.955528 0.975669 0.96373 0.969663

AOA 0.768447 0.674813 0.718593 0.784879 0.673437 0.7249

PSO 0.879358 0.895391 0.887302 0.889297 0.905763 0.897455

Banknote-
authentication

IRSA 0.995792 0.994563 0.995225 0.995902 0.995349 0.995625

RSA 0.844413 0.838669 0.841531 0.85288 0.852147 0.852513

BMO 0.97761 0.98115 0.979377 0.963706 0.967257 0.965478

AOA 0.57296 0.57642 0.694746 0.809533 0.812795 0.811161

PSO 0.942964 0.944103 0.943533 0.933375 0.934613 0.933994

Blood-
transfusion

IRSA 0.729753 0.595356 0.655739 0.691121 0.570559 0.62508

RSA 0.627282 0.508097 0.561434 0.730453 0.531909 0.615567

BMO 0.683964 0.579004 0.627122 0.652637 0.552494 0.598405

AOA 0.761869 0.511741 0.612243 0.624494 0.505248 0.558578

PSO 0.739583 0.621758 0.675572 0.686359 0.564815 0.619683

Cryotherapy

IRSA 0.950774 0.943611 0.957148 0.95 0.916667 0.933036

RSA 0.818449 0.806561 0.812462 0.766667 0.767857 0.767261

BMO 0.915882 0.928276 0.912064 0.819444 0.830144 0.824759

AOA 0.699177 0.690236 0.694678 0.638889 0.633333 0.636099

PSO 0.897321 0.902715 0.90001 0.944444 0.928571 0.936441

Diabetes

IRSA 0.772165 0.7483 0.760045 0.683296 0.676977 0.690122

RSA 0.626005 0.601743 0.613634 0.66266 0.610454 0.635487

BMO 0.724919 0.726392 0.725655 0.699808 0.722159 0.710808

AOA 0.651455 0.614956 0.632679 0.670297 0.643082 0.656407

PSO 0.704908 0.676813 0.734665 0.765362 0.699496 0.730948

Haberman

IRSA 0.714555 0.561729 0.638992 0.677083 0.54118 0.623362

RSA 0.519912 0.501389 0.510477 0.650000 0.517637 0.576316

BMO 0.700376 0.56504 0.625471 0.632979 0.550607 0.588927

AOA 0.655914 0.574148 0.612313 0.662338 0.58316 0.620232

PSO 0.674919 0.605186 0.638153 0.662837 0.58249 0.620072
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6. IRSA for Solving the Regression Problems

Wind and solar energy are amongst the most promising renewable energy sources.
However, wind and solar energy production are highly dependent on stochastic weather
conditions. This uncertainty makes it challenging to integrate these renewable energy
resources with the grid. Accurate energy prediction results in economical market operations,
reliable operation planning, and efficient generation scheduling [57]. This demands highly
efficient forecasting of wind and solar energy. Therefore, the IRSA is proposed to train
a radial basis neural network (RBFNN) for short-term wind and solar power prediction.
Normalized mean squared error, as described by equation (27), was used as a cost function.
Almost 67% of the data was used for training the ANN, and the remaining 33% was used
for testing.

6.1. Wind Power Prediction

For wind power prediction, SCADA systems were used to record the wind speed, wind
direction, and power generated by the wind turbine [58,59]. The measurements were taken
at 10-min intervals. Figures 8 and 9 show examples of the 48 h-ahead power predictions
obtained by the proposed IRSA for both winter and summer seasons. A comparison
between true wind power and predicted wind power by all five techniques for the winter
and summer seasons is also depicted in Figures 9 and 10. Simulation results clearly indicate
the superior prediction capabilities of the proposed technique for both winter and the
highly uncertain summer season.
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6.2. Solar Power Prediction

The data set used for solar power prediction is available at [60]. The data consisted
of two files. The first file contained dc and ac power generation data, and the second file
contained sensor readings of ambient temperature, module temperature, and irradiance [61].
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For this work, both files were combined using MATLAB code to create a dataset for solar
power prediction. The readings were taken at a time interval of 15 min. The input features
included ambient temperature, module temperature, and irradiance, while the output
feature was the ac power. Figure 11 shows an example of the 48 h-ahead power predictions
obtained by using various MH techniques. Simulation results clearly indicate the superior
prediction capabilities of the proposed technique.
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6.3. Statistical Indicators for Regression

In order to compare the predictive capabilities of the selected models, we used several
statistical measures, such as root mean square error (RMSE), relative error (RE), and the
coefficient of determination (R2) [38]. These indicators are described by the following
equations:

RMSE =

√
∑n

j=1
(
yj − Pj

)2

n
(32)

RE =
n

∑
j=1

∣∣∣∣∣yj − Pj

yj

∣∣∣∣∣ (33)

R2 = 1−
∑n

j=1
(
yj − Pj

)2

∑n
j=1
(
yj − yj

)2 (34)

where yj and pj are the true and predicted values, respectively. yj is the mean of the value,
and n represents the total number of data samples.

The small values of RMSE and RE and the higher values of R2 give clear indications
of the improved accuracy of the proposed model. These values are represented in Table 11.
According to this table, the IRSA-RBFNN provides the highest values of R2 and lowest
values of RMSE for both wind and solar prediction, proving that the performance of IRSA
is best when compared to other prediction models. The PSO-RBFNN model provides a
slightly lower prediction efficiency. BMO-RBFN and RSA-RBFN are ranked third and
fourth in terms of prediction performance [62,63].



Appl. Sci. 2023, 13, 945 25 of 29

Table 11. Statistical evaluation for wind and solar prediction.

Data Set Technique Training Testing
Cost

RE RMSE R2 RE RMSE R2

Wind power
prediction(winter)

PSO 0.0157 11.8303 0.9835 0.0886 55.6747 0.9081 0.0121

RSA 0.0170 16.6071 0.9657 0.1065 61.2748 0.8890 0.0326

BMO 0.0959 32.5220 0.8278 0.2318 107.9345 0.5259 0.0444

AOA 0.0356 26.9534 0.8961 0.1135 59.1465 0.8749 0.0373

IRSA 0.0049 8.3396 0.9918 0.0642 32.7880 0.9665 0.0105

Wind power pre-
diction(summer)

PSO 0.0049 2.8918 0.9907 0.0772 9.5937 0.9780 0.0193

RSA 0.0055 4.4855 0.9778 0.6042 38.7233 0.6423 0.0251

BMO 0.0808 5.8582 0.9460 0.2983 22.3706 0.8291 0.0428

AOA 0.0339 4.0871 0.9779 0.4688 30.6282 0.7565 0.0208

IRSA 0.0015 2.8416 0.9912 0.0632 9.3401 0.9801 0.0184

PV power
prediction

PSO 0.0235 94.9000 0.9649 0.0762 298.7930 0.9420 0.0535

RSA 0.0144 119.6847 0.9626 0.0440 223.8701 0.9656 0.0410

BMO 0.0359 148.5061 0.9150 0.1148 232.2480 0.9545 0.0827

AOA 0.0429 183.5005 0.8987 0.1111 383.4890 0.8913 0.0963

IRSA 0.0146 90 0.9761 0.1285 260.8531 0.9611 0.0234

7. Conclusions

The main work of this paper was based on the refinement of the biologically inspired
reptile search algorithm (RSA). The main objective was to enhance the exploration phase
so that local minima convergence could be avoided. This was achieved by including a
sine operator, which avoids local minima trapping by conducting a full-scale search of the
solution space. Furthermore, the Levy flight with small steps was introduced to enhance
exploitations. These improvisations enhanced not only the performance but also the re-
sults via a 3 to 4-fold reduction in the time complexity of the algorithm. The proposed
improved reptile search algorithm (IRSA) was tested using various unimodal, multimodal,
and fixed-dimension test functions. Finally, as an extensive application, we applied this
algorithm to solving real-world classification and regression problems. The model success-
fully tackled the classification and regression tasks. Statistical, qualitative, quantitative,
and computational complexity tests were performed to validate the effectiveness of the pro-
posed improvisations. Based on the results, we can positively conclude that the proposed
improvisations are effective in enhancing the performance of the RSA algorithm.

In the future, the IRSA could be explored to train various types of neural networks.
Furthermore, applying the IRSA to solve various optimization problems in different do-
mains (i.e., feature selection, maximum power point tracking (MPPT), smart grids, image
processing, power control, robotics, etc.) would be a valuable contribution.
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Appendix A

Table A1. Utilized Unimodal Test Functions.

Function Description Dim Range fmin

f1(x) = ∑n
i=1 xi

2 500, 100, 50, 30 [−100, 100] 0
f2(x) = ∑n

i=0|xi |+ ∏n
i=0|xi | 500, 100, 50, 30 [−10, 10] 0

f3(x) = ∑d
i=1

(
∑i

j=1 xj

)2 500, 100, 50, 30 [−100, 100] 0

f4(x) = maxi {|xi |, 1 ≤ i ≤ n} 500, 100, 50, 30 [−100, 100] 0
f5(x) = ∑n−1

i=1

[
100
(

xi
2 − xi+1

)2
+ (1− xi)

2
]

500, 100, 50, 30 [−30, 30] 0

f6(x) = ∑n
i=1(xi + 0.5)2 500, 100, 50, 30 [−100, 100] 0

f7(x) = ∑n
i=0 ixi

4 + rand[0, 1] 500, 100, 50, 30 [−1.28, 1.28] 0

Table A2. Utilized Multimodal Test Functions.

Function Description Dim Range fmin

f8(x) = ∑n
i=1

(
−xisin

(√
bxic

))
500, 100, 50, 30 [−100, 100] −418.980 × Dim

f9(x) = ∑n
i=1
[
xi

2 − 10cos(2πxi) + 10
]

500, 100, 50, 30 [−10, 10] 0

f10(x) = −20e(−0.2
√

1
n ∑n

i=1 xi
2)) − e(

1
n ∑n

i=1 cos(2πxi))

+20 + e 500, 100, 50, 30 [−100, 100] 0
f11(x) = 1 + 1

4000 ∑n
i=1 xi

2 −∏n
i=1 cos

(
xi√

i

)
500, 100, 50, 30 [−100, 100] 0

f12(x) = π
n {10sin(πyi)}+

∑n−1
i=1 (yi − 1)2

 1 + 10sin2(πyi + 1)
+

∑n−1
i=1 u(xi , 10, 100, 4)


here,
yi = 1 + xi+1

4 ,

u(xi , a, k, m)

 K(xi − a)m i f xi > a
0 − a ≤ xi ≥ a

K(−xi − a)mi f − a ≤ xi


500, 100, 50, 30 [−30, 30] 0

f13(x) = 0.1(sin2(3πxi)

+ ∑n
i=1 (xi − 1)2

[
1 + sin2

(
3πxi
+1

)]
+ (xn − 1)2(1 + sin2(2πxn)

)
) + ∑n

i=1 u(xi , 5, 100, 4) 500, 100, 50, 30 [−100, 100] 0

Table A3. Utilized Fixed Dimension Test Functions.

Function Description Dim Range fmin

f14(x) =
(

1
500 + ∑25

j=1

(
1

j+∑2
i=1(xi−aij)

))−1
2 [−65, 65] 0.998

f15(x) = ∑n
i=1

[
ai −

x1(bi
2+bi x2)

bi
2+bi x3+x4

]2
4 [−1, 1] 0

f16(x) = 4x1
2 − 2.1x1

4 + 1
3 x1

6 + x1x2 − 4x2
2

+ 4x2
4 2 [−5, 5] −1.0316

f17(x) =
(

x2 − 5.1
4π2 x1

6 + 5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10 2 [−4, 4] 0.398

f18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x1

2 − 14x2 + 6x1x2 + 3x2
2)][30

+ (2x1 − 3x2)
2(18− 32x1 + 12x1

2 + 48x2 − 36x1x2 + 27x2
2)] 2 [−5, 5] 3

f19(x) = −∑4
i=1 cie

(−∑3
i=1 aij(xj−pij)

2) 3 [−5, 5] −3.86

f20(x) = −∑4
i=1 cie

(−∑6
i=1 aij(xj−pij)

2) 6 [−5, 5] −1.170

f21(x) = −∑5
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [−5, 5] −10.153

f22(x) = −∑7
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [−5, 5] −10.4028

f23(x) = −∑10
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [−1, 1] −10.536
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Table A4. Utilized CEC 2019 Test Functions.

Function Description fmin Range Dim

CEC-1 Storn’s Chebyshev polynomial fitting problem 1 [−8192, 8192] 9
CEC-2 Inverse Hilbert matrix problem 1 [−16,384, 16,384] 16
CEC-3 Lennard–Jones minimum energy cluster 1 [−4, 4] 18
CEC-4 Rastrigin function 1 [−100, 100] 10
CEC-5 Grienwank function 1 [−100, 100] 10
CEC-6 Weierstrass function 1 [−100, 100] 10
CEC-7 Modified Schwefel function 1 [−100, 100] 10
CEC-8 Expanded Schaffer function 1 [−100, 100] 10
CEC-9 Happy CAT function 1 [−100, 100] 10
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