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Abstract: Computed tomography (CT) is used in a wide range of medical imaging diagnoses.
However, the reconstruction of CT images from raw projection data is inherently complex and is
subject to artifacts and noise, which compromises image quality and accuracy. In order to address
these challenges, deep learning developments have the potential to improve the reconstruction of
computed tomography images. In this regard, our research aim is to determine the techniques that
are used for 3D deep learning in CT reconstruction and to identify the training and validation datasets
that are accessible. This research was performed on five databases. After a careful assessment of
each record based on the objective and scope of the study, we selected 60 research articles for this
review. This systematic literature review revealed that convolutional neural networks (CNNs), 3D
convolutional neural networks (3D CNNs), and deep learning reconstruction (DLR) were the most
suitable deep learning algorithms for CT reconstruction. Additionally, two major datasets appropriate
for training and developing deep learning systems were identified: 2016 NIH-AAPM-Mayo and
MSCT. These datasets are important resources for the creation and assessment of CT reconstruction
models. According to the results, 3D deep learning may increase the effectiveness of CT image
reconstruction, boost image quality, and lower radiation exposure. By using these deep learning
approaches, CT image reconstruction may be made more precise and effective, improving patient
outcomes, diagnostic accuracy, and healthcare system productivity.

Keywords: 3D deep learning (3DDL); computed tomography (CT) reconstruction; systematic
literature review

1. Introduction

Computed tomography (CT) is a medical imaging method that offers cross-sectional
images of the body of a person, which allows for the visualization of organs and tissues
aiding in the diagnosis and management of a wide range of medical conditions, including
cancer [1,2], heart disease [3], and neurological disorders [4]. CT refers to a computerized
X-ray imaging procedure. In this method, a patient is swiftly rotated around a narrow beam,
creating signals processed by the machine’s computer to produce cross-sectional pictures
or slices. Once the scanner has gathered a number of these slices, which are known as
tomography pictures, they are stacked together to create three-dimensional representations
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of the patient [5–9]. These three-dimensional representations are created by applying an
algorithm to the raw data, resulting in image slices that are then reconstructed into a 3D
volume [10,11]. This process is called CT reconstruction (Figure 1). Figure 1 is attributed to
the work by Liyue Shen in his paper titled ’Patient-specific reconstruction of volumetric
computed tomography images from a single projection view via deep learning’ [12].

Figure 1. 3D Reconstruction and enhanced visualization: CT scan data transformed into a detailed
3D image using deep learning techniques.

Computed tomography (CT) initially relied on traditional computationally intensive
analytical techniques used in image reconstruction, such as filtered back-projection (FBP).
However, these methods often had limitations, including image noise and other artifacts
that compromised the quality and efficiency of the reconstructed images. To address these
challenges deep learning emerged as a powerful tool in CT image reconstruction. By
leveraging deep neural networks, deep learning algorithms have significantly improved
the quality and efficiency of CT image reconstruction.

In addition to 2D image reconstruction, deep learning has also been extended to
3D image reconstruction in CT. By incorporating volumetric information, deep learning
algorithms can generate more precise and detailed 3D images, further enhancing the
diagnostic capabilities of CT scans [13–15].

What exactly is 3D deep learning? It is a sort of machine learning that examines and
interprets 3D data using AI neural networks. It requires preparing neural networks to
discover intricate correlations and characteristics in 3D datasets. We know that machine
learning algorithms [16,17] typically operate on 2D data, but deep learning allows for the
analysis of 3D data more intuitively and efficiently. 3D deep learning algorithms [18–23]
can extract features such as shapes, textures, and volumes from 3D data and can be used for
a wide range of applications, such as medical imaging, robotics, and virtual reality. Even
though computed tomography reconstruction is a well-established technique for generating
high-quality 3D images of the body, there are still several gaps in knowledge and research
that require filling. Past research studies have explored aspects of CT reconstruction, but
the emergence of 3D deep learning algorithms is a novel approach to enhancing image
quality and efficiency.

This planned literature review aims to show the problems and opportunities in CT
reconstruction that arise when 3D deep learning is used in CT reconstruction, especially
when CT images are rebuilt from raw projection data into 3D data. This paper also addresses
the requirement of collecting and integrating existing research, which helped the authors
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highlight the potential applications, challenges, and advancements of 3D deep learning
in CT reconstruction. This study involved a review of the most advanced methods for
3D deep learning for CT reconstruction, its effectiveness, and its efficiency in producing
high-quality 3D images. The review follows the guidelines of PRISMA [24–27] (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) and also incorporates the
Kitchenhand and Charters [28,29] methodology, which is specifically adapted to investigate
3D deep learning in CT reconstruction.

This SLR seeks to add to the existing literature by giving a clear picture of how 3D deep
learning techniques can be used to improve and make CT image reconstruction work better.
These discoveries have enhanced medical imaging research and the use of 3D deep learning
algorithms for CT reconstruction. Exploring these insights may lead to improved image
quality, reduced radiation exposure, and enhanced diagnostic accuracy by reconstructing
CT images more precisely and effectively. This organized literature review looks into the
most up-to-date and effective training and validation datasets and methods for 3D deep
learning in computed tomography reconstruction. It intends to highlight the challenges
faced in 3D deep learning for CT image reconstruction and to identify potential applications,
improvements, and limitations. The use of 3D deep learning methods improves the quality
and efficiency of CT image reconstruction by utilizing deep neural networks, resulting in
exact 3D representations. By offering vital insights into their efficacy, 3D deep learning
algorithms help to improve diagnostic accuracy, advance medical imaging research, and
improve patient care.

2. Methods
2.1. Research Objective

The objective of this work is to examine the use of 3D deep learning in computed
tomography reconstruction through an extensive survey of the literature. A systematic
literature review was utilized as the research technique in this study, which is a structured
and thorough method of discovering, evaluating, and analyzing published information to
look into certain research concerns. We follow the well-organized recommendations pro-
vided by PRISMA [25] in this study. We also incorporate the Kitchenham and Charters [28]
methodology, as well as an extension for 3D deep learning in computed tomography re-
construction investigations. In this systematic literature review, our aim is to address the
following questions:

RQ1 What are the current state-of-the-art methods in 3D deep learning in computed tomog-
raphy reconstruction?

RQ2 What datasets are available for training and validating 3D deep learning in computed
tomography reconstruction?

This review of the literature is meant to find the best 3D deep learning methods for
reconstructing computed tomography images and to find datasets that can be used to train
and test these models. The purpose of the first study question is to examine the most cutting-
edge techniques for 3D deep learning in CT reconstruction. The creation of deep learning
algorithms is a revolutionary strategy for improving picture efficiency and quality, even
though CT reconstruction is a well-established method for creating high-quality 3D images
of the human body. Both scholars and practitioners may obtain insight into the most recent
possibilities and breakthroughs in applications in the area by knowing the most cutting-
edge approaches and techniques in 3D deep learning for CT reconstruction. Our objective
was to compile current and pertinent knowledge on techniques and datasets related to 3D
deep learning in computed tomography reconstruction using these eligibility criteria.

2.2. Data Sources and Searches
2.2.1. Search String

We created a search method to find all published materials that were related to 3D deep
learning in computed tomography reconstruction. By defining the population, intervention,
and results in the first place, we were able to identify the keywords. As previously stated,
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we addressed the following study questions: “What are the state-of-the-art methods in 3D
deep learning?” and “What datasets are available for 3D deep learning in computed to-
mography reconstruction?” Next, we determined other ways to spell the primary concepts
as well as synonyms (keywords), such as “3D deep learning” and “computed tomography”
for “3D reconstruction”. We checked the keywords in pertinent publications and combined
the search phrases using Boolean operators like AND, OR, and NOT. (“3D deep learning”
OR “deep learning”) AND (“computed tomography” OR “CT” OR “tomography recon-
struction” OR “reconstruction”) AND (“3D reconstruction” OR “image reconstruction”)
were the keywords we used to conduct our search as outlined in Table 1.

Table 1. Database search strings.

Database Search String

Elsevier 3D + deep learning + computed tomography + reconstruction

MDPI 3D deep learning AND computed tomography AND reconstruction

Nature 3D deep learning AND computed tomography AND reconstruction

IEEE (“All Metadata”: deep learning) AND (“All Metadata”: computed tomography) AND (“All Metadata”: reconstruction)

Springer 3D deep learning + computed tomography + reconstruction

2.2.2. Resources to Be Searched

With our current keyword list, we worked to compile all the literature that is relevant to
the 3D deep learning research issues for CT reconstruction. Our selection process involved
picking five databases to ensure a comprehensive search: Elsevier, Springer, MDPI, IEEE
Xplore, and the Nature Publishing Group. These databases were picked because they are
known for having the most representative sources for research in the fields of medicine
and artificial intelligence. They are also often used in other systematic literature reviews
because they have large collections of literature that are relevant to the research questions,
such as journals, articles, conferences, and books. By choosing these sources, we sought to
compile as many articles as we could to guarantee a thorough evaluation of the literature.

2.2.3. Overview of the Search Process

We performed four basic stages to compile all the pertinent research on 3D deep
learning for computed tomography reconstruction. First, we gathered primary research
from the online libraries listed in the section utilizing the search phrases there. Search
results were produced by the digital libraries. There were 774 publications found that
were published between 2013 and 2023. In the first instance, we included every article
that was cited in the original papers we picked. The second step was to remove papers
that were unnecessary based on exclusion criteria. We picked the articles that satisfied the
inclusion criteria from those that did not. In the second instance, we included every paper
that cited the initial papers we chose. As a result of the fourth exclusion/inclusion criterion,
a final selection either included or excluded the candidate. The title was the first thing we
considered. The paper was skipped if it was clear that it was off-limits. As an alternative,
we checked the abstract, introduction, and conclusion of each article that was thought to be
possibly helpful to see if it was relevant to our study. Third, we conducted a snowballing
search for any possibly misplaced papers. Given the set of sources that were eventually
located using a search string and supplemented with those obtained by snowballing and
manual search, for a set made up of 60 sources, 54 papers were determined to pass all
phases as outlined in Table 2. After selecting the final articles for the systematic literature
review, we utilized the last filtering phase, the quality assessment, to ensure that each
publication provided the necessary information to answer our study questions.
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Table 2. Search results and information sources.

Resource Name Total Results Found Final Selection

IEEE Xplore Digital Library 30 14
Springer 31 22
Elsevier 27 10
MDPI 25 5

Nature Publishing Group 22 4
Snowball 6 6

Total 141 60

2.3. Eligibility Criteria
2.3.1. Inclusion Criteria

The reliability of 3D deep learning in CT reconstruction was considered in this review.
It included both supervised and unsupervised techniques. We were looking for research
that detailed 3D deep learning’s accuracy, precision, or effectiveness in computed tomog-
raphy reconstruction. Additionally, we sought to include research that offered unique
data, including modeling studies, observational studies, or clinical trials. We were also
interested in papers that summarized the state-of-the-art methods in 3D deep learning in
computed tomography reconstruction. We only took into account research that was printed
in English-language journals to guarantee uniformity.

2.3.2. Exclusion Criteria

Studies that primarily examined conventional image-processing methods were not
included in this review, however. Additionally, we did not include studies that used imag-
ing techniques other than deep learning. Studies that had not undergone peer review or
were not available in English were also excluded from this review. Additionally, editorials,
letters, or conference presentations were not taken into consideration for inclusion.

2.4. Quality of Evidence

In a systematic evaluation of 3D deep learning in computed tomography reconstruc-
tion, the quality of evidence is defined as the robustness and reliability of the conclusions
drawn from the reviewed research. Some of the factors used to assess the quality of the
evidence include the study design, bias risk, consistency of results, accuracy of estima-
tions, and relevance and applicability of the included studies to the research topic. We
evaluated the quality of the 3D deep learning in computed tomography reconstructions
using inquiries:

1. Is the concept of 3D deep learning clearly defined?
2. Is the method for 3D deep learning clearly defined?
3. Are the state-of-the-art metrics explicitly reported?

When discussing the strength and reliability of the results drawn from the reviewed
research on 3D deep learning in computed tomography reconstruction, the term “quality of
evidence” is used. It reflects how confident we are in the veracity and applicability of the
research to various contexts. Several factors are considered when judging the quality of the
evidence. These include the research design, any possible biases, how consistent the results
are, how accurate the estimates are, and how relevant and useful the studies included are.

For this, we had to address the above specific questions, such as the clarity of the
definitions for 3D deep learning and computed tomography reconstruction, the explicit de-
scription of the method for 3D deep learning, and the reporting of cutting-edge techniques
and metrics. The quality of the evidence for 3D deep learning in computed tomography
reconstructions was assessed in this evaluation. The research utilized data from 18 pa-
pers on CT imaging. Additionally, we included one paper each from the HRCT and MRI
modalities, along with two papers from the X-rays modality, which allowed us to explore
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the effectiveness of 3D deep learning techniques in medical imaging by analyzing various
imaging modalities.

2.5. Data Extraction

The information required to address the research questions was eventually retrieved
from the chosen papers. The type of 3D deep learning technique utilized for computed
tomography reconstruction, the unique application domain, the dataset details, and the
performance measures were all taken into account when creating the data extraction form.
A further field was included to allow for the reporting of any study limitations. We started
by extracting the appropriate features and evaluating the research’s shortcomings. The
constraints of the investigations could be accurately and thoroughly evaluated using this
cooperative method. Additionally, adding a section for restrictions made it easier to spot
possible research gaps and topics for additional study. Overall, this part emphasizes
the authors’ meticulous and stringent data extraction methodology, which is crucial for
guaranteeing the validity and trustworthiness of a systematic literature review [30].

3. Background

Computed tomography (CT) is a vital medical imaging technology that revolutionizes
healthcare by providing high-resolution images of internal body structures, making it
an essential tool in fields like radiology, oncology, and surgery. CT imaging uses X-ray
technology to scan a patient. During the CT imaging process, the patient is positioned
on a motorized examination table that passes through a CT scanner. The scanner emits
narrow X-ray beams, which are measured by detectors on the opposite side of the patient.
The data collected are X-ray projections or profiles. CT reconstruction involves various
techniques and methods to generate cross-sectional images from X-ray projection data,
including the following:

3.1. Tomography Reconstruction

To understand 3D deep learning for computed tomography reconstruction, it is es-
sential to understand the basic tomography reconstruction principles. Tomography is a
medical imaging technique that captures cross-sectional images of the human body using
X-rays or other imaging modalities. The reconstruction process transforms this data into
detailed, two-dimensional (2D) or three-dimensional (3D) images representing the object’s
internal structures. For turning raw projection data into useful images, it is important to
use traditional tomography reconstruction methods, such as filtered back projection (FBP)
and iterative reconstruction (IR) algorithms. FBP filters and back-projects data, but has
limitations in sparse or irregularly sampled scenarios. Iterative reconstruction methods,
on the other hand, involve an iterative optimization process to refine the image, offering
advantages in handling noisy data and irregular sampling but often requiring increased
computational demands. Artifacts, noise, and the requirement for a substantial amount of
data can compromise the accuracy of traditional tomography reconstruction methods, lead-
ing to a reduction in image quality. This effect is particularly pronounced when employing
low-dose CT or sparse-view CT, as discussed in [31].

3.2. Filtered Back Projection (FBP)

Filtered back projection (FBP) [32,33] plays a pivotal role in CT image reconstruction,
and has revolutionized the field of medical imaging. CT imaging aims to create precise and
informative images reflecting internal anatomical structures and pathological conditions.
X-ray projection data is collected and then put through mathematical operations such as
filtering and back projection to create cross-sectional images in two dimensions. These
images are crucial for clinical interpretation, allowing physicians to visualize and analyze
anatomical structures, detect abnormalities, and guide medical interventions. FBP’s [34]
computational efficiency and straightforward mathematical foundation make it ideal for
real-time diagnostic applications. Despite its historical importance, FBP has limitations,
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especially in addressing complex data corrections like scatter and beam-hardening artifacts.
These limitations have spurred ongoing research and innovation in CT imaging, leading
to the development of advanced reconstruction methods like iterative algorithms and
deep-learning-based techniques. Filtered back projection (FBP) assumes consistent X-ray
attenuation within the scanned object, which may not be consistent in some cases. It may
not fully utilize raw data information, leading to potential image artifacts, and is less
suitable for complex data corrections.

3.3. Iterative Reconstruction (IR)

Iterative reconstruction (IR) [35,36] techniques represent a revolutionary approach
to reconstructing CT images, utilizing computational algorithms and iterative processes
to improve image quality and reduce artifacts. IR is a paradigm shift in CT image recon-
struction, focusing on a one-pass process rather than a one-pass reconstruction process.
It employs an iterative approach, repeatedly refining the image based on a mathematical
model that simulates the acquisition process. This process gradually converges towards
a more accurate representation of the patient’s anatomy, reducing artifacts and improv-
ing image quality. IR [37] is particularly useful in scenarios with reduced radiation dose,
limited projections, and prevalent noise or artifacts. It can produce high-quality images
even with lower X-ray doses, mitigating health risks associated with ionizing radiation.
IR’s advantages and limitations are discussed, along with its potential impact on clinical
practice and its role in enhancing CT imaging. Recent advancements in computational
techniques and hardware have rendered IR more accessible and effective for healthcare
professionals, fundamentally reshaping the landscape of medical imaging and diagnosis.

3.4. Deep Learning Iterative Reconstruction (DLIR)

Deep learning iterative reconstruction (DLIR) is a revolutionary approach in medical
imaging that combines deep learning with iterative reconstruction methods to produce
high-quality, informative images with reduced radiation exposure. DLIR is a transformative
approach that leverages deep neural networks to learn complex patterns and features from
data, integrating them into the iterative reconstruction process. During each iteration, the
deep learning model refines the reconstructed image, reducing artifacts and noise, and
enhancing image quality. This iterative refinement process gradually converges towards a
more precise representation of the patient’s anatomy, even in cases with limited data or low-
dose scans. DLIR offers several advantages, including the potential to significantly reduce
radiation exposure to patients without compromising image quality, making it particularly
well-suited for pediatric imaging. It also excels in scenarios with challenging data, such
as metal artifacts or limited projections, where traditional reconstruction methods may
fall short. DLIR’s fundamental principles and mechanics will be explored, along with its
advantages and limitations, its potential impact on clinical practice and healthcare, and
its ongoing evolution. How DLIR is becoming increasingly accessible and efficient due to
advancements in computational technology, reshaping the landscape of medical imaging
and diagnosis, will also be examined.

3.5. Deep Learning Reconstruction (DLR)

Deep learning reconstruction (DLR) [38] is a revolutionary approach in medical imag-
ing that improves the quality and speed of image reconstruction. It uses deep neural
networks, a subset of artificial intelligence, to enhance the reconstruction of medical images,
such as those obtained from CT scans or MRIs. Traditional methods, like filtered back
projection (FBP) and iterative reconstruction (IR), have limitations, especially when dealing
with noisy data or rapid reconstruction. DLR introduces a transformative approach by
integrating deep neural networks into the image reconstruction process, which learns
complex patterns and features from the acquired data. DLR can adapt and optimize the
reconstruction process based on the specific data it processes, enhancing image quality
by reducing artifacts, noise, and imperfections. This is particularly useful in real-time or
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near-real-time image-generation scenarios, such as interventional radiology or emergency
medical situations. DLR’s [39] fundamental principles and mechanics are explored, along
with its potential impact on clinical practice and healthcare. Advancements in computa-
tional technology have made DLR more accessible and efficient, ultimately reshaping the
landscape of medical imaging and diagnosis.

4. Results
4.1. Search and Study Selection

We initiated our search by exploring five databases to ensure a systematic literature
review, resulting in the identification of 774 documents. A total of 66 duplicate entries
were eliminated, leaving 696 unique records for further analysis. We carefully examined
the titles of the 696 records during the screening phase and eliminated 442 items that did
not fit our predetermined inclusion criteria. Subsequently, we thoroughly evaluated the
abstracts of the remaining 254 records. Among these, 113 papers were disqualified for a
variety of reasons, including not fitting the qualifying requirements or being deficient in
pertinent data.

We collected and thoroughly read the complete texts of 141 articles to make sure they
were eligible. Based on our predefined criteria, 87 reports were eliminated from this group.
As a result, the 54 papers that met the inclusion requirements were incorporated into
our systematic literature review, providing the information necessary for sensitivity and
specificity assessments. We used a snowball strategy [40] in addition to our original search
to find more connected publications. Utilizing this method, we identified an additional
six publications, increasing the total number of included studies to 60. A thorough overview
of the results is provided in Figure 2. The study also explores the relationship between CT
image reconstruction and diagnostic accuracy, highlighting the impact of 3D deep learning
techniques on image quality and diagnostic performance.

Figure 2. Flowchart: The study involved a comprehensive search of over 60,000 abstracts and
ultimately selected 10 studies for meta-analysis and 2 studies for qualitative synthesis, with a focus
on the application of 3D deep learning in computed tomography reconstruction, and presents the
findings in tables summarizing diagnostic accuracy metrics for imaging and several specialties.
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4.2. RQ1 What Are the Current State-of-the-Art Methods in 3D Deep Learning in Computed
Tomography Reconstruction?

Understanding the current state-of-the-art methodologies in 3D deep learning in
computed tomography reconstruction is essential for researchers and practitioners alike.
The primary aim of this systematic literature review is to provide a review of the current
state-of-the-art methods in 3D deep learning in computed tomography reconstruction. The
review was carried out by searching through relevant journals and choosing studies based
on predefined inclusion criteria. This ensured that all of the most recent developments
were covered.

The presented Table 3 provides an overview of 3D deep learning methods for
computed tomography reconstruction, encompassing various methodologies and their
outcomes in medical image analysis, serving as a valuable resource for researchers, clini-
cians, and anyone interested in the intersection of deep learning and medical imaging. It
showcases the diverse range of state-of-the-art methods and their potential to impact
various medical applications, while offering a global perspective on their development
and adoption.

Table 3 presents a comprehensive overview of recent advancements in medical imag-
ing, particularly in the field of computed tomography (CT) reconstruction. Researchers
worldwide have contributed to this field, showcasing diverse methodologies and their
respective population performance metrics. Some notable studies include those by Setio,
Li, Meng, Wang, Gruetzema, Gu, Yu, Ren, and Xuhua. These studies have achieved impres-
sive accuracy rates, sensitivity, and specificity in CT detection, improved reconstruction
metrics, and enhanced segmentation accuracy. In other research, CNN has been used in
CT scans to identify pneumothorax with high sensitivity and specificity and to improve
reconstruction metrics. Annarumma achieved 100% sensitivity and 96% specificity for lung
nodule classification, while Lee H in the UK focused on CNN for radiograph triaging. The
diversification extends beyond CT, with studies exploring DNN-MPRAGE in MRI and
comparing DLIR-H in CT. These studies contribute to the evolving landscape of medical
imaging, pushing the boundaries in accuracy, speed, and radiation reduction.
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Table 3. Overview of state-of-the-art 3D deep learning methods in computed tomography reconstruction.

Author Method Population Performance Country Year Database Ref.

Setio [41] ConvNet CT 85.4% and 90.1% at 1 and 4 false positives per scan Germany 2016 IEEE P01
Li, Meng [42] 3D ECNN CT PSNR = 29.3087, SSIM = 0.8529 USA 2018 Springer P02
Wang [43] 3D CNN HRCT 84.0% accuracy, 88.5% sensitivity, 80.1% specificity, AUC 89.2% China 2018 pubmed P03

Gruetzema [44] DNN CT 89.29% detection rate, 94.21% sensitivity, 1.789 false positives/scan USA 2018
https://
academic.oup.
com/

P04

Gu, Yu [45] 3D CNN CT 87.94% sensitivity, 92.93% at 4 FPs/scan China 2018 Elsevier P05

Ren, Xuhua [46] 3D CNN CT Higher segmentation accuracy (DC: 0.58–0.71, 95HD: 2.23–2.81 mm) China 2018 Wiley Online
Library P06

Gupta H [47] CNN CT High sensitivity (100%), specificity (82.5%) for pneumothorax detection USA 2018 IEEE P07

Li, Xiang [48] CNN CT Slightly increased reconstruction (27.02 dB) with reduced training time
(50%) Switzerland 2019 Elsevier P08

Uthoff [49] CNN CT High sensitivity (100%) and specificity (82.5%) for pneumothorax
detection USA 2019 Wiley Online

Library P09

Annarumma [50] CNN CT 100% sensitivity, 96% specificity for lung nodule classification USA 2019 RSNA P10
Lee H [51] CNN CT Sensitivity 71%, specificity 95% for normal radiographs triaging UK 2019 IEEE P11

Jung, Woojin [52] DNN-MPRAGE MRI DNN-MPRAGE reduced acquisition time by 38% Republic of
Korea 2019 Springer P12

Jiang, Chenyu [53] DLIR-H CT
DLIR-H significantly improved image quality, noise, and texture
compared to ASIR-V. DLIR-L and DLIR-M showed comparable
denoising.

China 2019 Springer P13

Sato, Mineka [54] DLIR CT DLIR significantly reduced image noise, improved CNR, vessel
conspicuity, overall image quality Japan 2019 Springer P14

Park, Sungeun [55] LDCT CT LDCT using DLD with 67% dose reduction showed non-inferior overall
image quality and lesion detectability compared to SDCT. 2019 Springer P15

Higaki, Toru [38] DLR CT 33.3% dose non-inferior to MBIR at 100% for liver lesion detection using
LDCT

Republic of
Korea 2020 Elsevier P16

Singh, Satya P [20] 3D CNN MRI Discussing the challenges and future trends of 3D CNNs and deep
learning models in medical imaging. Japan 2020 MDPI P17

Lenfant, Marc [25] DLR CT DLR significantly improved image quality and reduced radiation dose
compared to hybrid-IR in CTPA examination Singapore 2020 MDPI P18

Zhang J [56] EDLF-CGAN
algorithm CT Compared to traditional algorithms, EDLF-CGAN showed superior SR

reconstruction effects China 2020 IEEE P19

Liang, C-H [57] CNN X-rays 76.6% sensitivity, 88.68% specificity Taiwan 2020 Elsevier P20

https://
academic.oup.com/
academic.oup.com/
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Table 3. Cont.

Author Method Population Performance Country Year Database Ref.

Wang, Ge [58] cycleGAN CT Deep learning algorithms for tomographic imaging are data-driven and
must continually evolve to accommodate new data sources. 2020

Nature
Publishing Group
UK London

P21

Fu J [59] DLFBP DPC-CT The proposed framework achieves improved imaging quality, faster
processing 2020 IEEE P22

Jiao F [60] CNN(iBP-Net) CT The experimental validation demonstrates the efficacy of iBP-Net in CT
reconstruction. China 2020 IEEE P23

Ichikawa [61] CNN-based CT The proposed deep-learning method showed clinically acceptable
accuracy for estimating body weights from CT scout images. Japan 2020 Springer P24

Oostveen [62] DLR CT DLR showed superior image quality, and shorter reconstruction times
(27 s DLR, 44 s Hybrid-IR, 176 s MBIR). Netherlands 2020 Springer P25

McLeavy [39] DLR CT DLR uses AI and supercomputer technology for high image quality, low
radiation dose UK 2021 Elsevier P26

Zeng [63] CNN CT LDCTDL showed 73.5% sensitivity and 82.4% specificity. China 2021 Elsevier P27
Verhelst [64] CNN CT AI and RAI scored an IoU of 94.6% and 94.4%, respectively. Belgium 2021 Elsevier P28

Aggarwal [65] DL algorithm CT DL algorithms demonstrated high diagnostic accuracy in identifying
various diseases. UK 2021

Nature
Publishing Group
UK London

P29

Han XF [66] CNN CT The 2.5D method outperformed other 2D, 2.5D, and 3D methods in
drowning diagnosis. China 2021 IEEE P30

Zeng [63] LDCTDL CT LDCTDL showed lower noise, higher SNR and CNR compared to
SDCTHIR and LDCTHIR, maintaining image quality. China 2021 Elsevier P31

Jiang, Hao [67] CycleGAN CT Deep learning models show excellent accuracy, precision, recall, and F1
score in COVID-19 classification using synthesized and real CT images. China 2021 Elsevier P32

Hsu, Ko-Tsung [68] GAN CT Model-based learning outperforms other methods despite longer
reconstruction times. USA 2021 Elsevier P33

Leuschner [69] CNN CT Deep-learning-based methods consistently improved reconstruction
quality metrics in both low-dose and sparse-angle CT applications. Germany 2021 MDPI P34

Matsuura M [70] DLR CT The feature-aware DLR method outperforms conventional FBP and
standard MBIR techniques in improving CT image quality. Japan 2021 IEEE P35

Capps M [71] D-bar reconstruction CT The proposed approach is evaluated on simulated and experimental
data representing the heart and lungs. USA 2021 IEEE P36

He J [72] DSigNet CT Clinical patient data is used to demonstrate the effectiveness of DSigNet
in achieving accurate CT image reconstruction. China 2021 IEEE P37

Ding Q [73] CNN CT The effectiveness of the proposed method is evaluated using both
simulated and real data. Singapore 2021 IEEE P38
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Table 3. Cont.

Author Method Population Performance Country Year Database Ref.

Benz [74] DLIR CT DLIR lowers CCTA radiation dose by 43% with minimal impact on
accuracy. Switzerland 2021 Springer P39

Hammernik [75] variational network CT The approach achieves superior destreaking results compared to existing
non-linear filtering methods. Austria 2021 Springer P40

Noda [76] DLIR CT DLIR improved image quality and reduced IC variability, suggesting its
potential benefits for pancreatic dual-energy CT. Japan 2021 Springer P41

De Santis [77] DLIR CT DLIR_M yields similar objective quality to ASiR-V 80% and 90%,
excelling. Italy 2021 Springer P42

Kim [78] DLIR CT DLIR at higher strength levels demonstrated reduced noise, and
improved contrast-to-noise ratio compared to ASIR-V.

Republic of
Korea 2021 Springer P43

Thapaliya [79] DLR CT All DLR algorithms showed substantial to almost perfect agreement on
the presence of urinary tract calculi. USA 2021 Springer P44

Greffier [80] AI-DLR CT The study found that using the Smooth and Smoother levels of the
AI-DLR algorithm reduced image noise. France 2021 Springer P45

Kuo, C [81] CNN CT Dice coefficient of 91.57%, a MioU of 89.43%, and a pixel accuracy of
99.75%. Taiwan 2022 MDPI P46

Lenfant [82] DLR CT The effective dose decreased as the tube voltage decreased (1.5 mSv for
120 kVp, 1.1 mSv for 100 kVp, and 0.68 mSv for 80 kVp). France 2022 MDPI P47

Hu D [14] DEER CT The DEER network’s performance is evaluated using a cone-beam breast
CT dataset acquired from a commercial scanner. USA 2022 IEEE P48

Xie H [83] PWLS CT The proposed method’s effectiveness is demonstrated using clinical
SDCT and simulated LDCT scans from ten patients. USA 2022 IEEE P49

Park HS [84] wGAN CT Machine learning approaches (wGAN and CNN) outperform FBP in
image quality. Austria 2022 Springer P50

Thaler [85] DDCNN, DnCNN,
Win5RB CT U-Net best performance, with the lowest MAE, highest PSNR, and

highest SSIM. Japan 2022 Springer P51

Koike [86] DLIR, IR CT The use of DLIR significantly reduced image noise and improved image
quality in pancreatic LDCT images compared to hybrid-IR. Japan 2022 Springer P52

Noda [87] DLR, Hybrid-IR,
MBIR CT In terms of image noise, LD DLR and LD MBIR images were superior to

SD hybrid-IR images in the hepatic arterial and equilibrium phase. Japan 2022 Springer P53

Nakamura [88] DLIR CT DLIR achieved comparable image quality in upper abdomen chest CT
with <50% of the radiation dose.

Republic of
Korea 2022 Springer P54

Nam [89] 3D DPI CT Successful visualization of 3D alveolar units of intact mouse lungs at
expiration and measurement of alveolar diameter.

Republic of
Korea 2023

Nature
Publishing Group
UK London

P55



Tomography 2023, 9 2170

Table 3. Cont.

Author Method Population Performance Country Year Database Ref.

Shin [90] DCNN CT The proposed method outperformed other 2D, 2.5D, and 3D methods in
diagnosing drowning. Japan 2023 IEEE P56

Zeng Y [91] VAE CT The model achieved a sensitivity of 79.2%, specificity of 72.7%, accuracy
of 77.1%, F1-score of 0.667, and AUROC of 0.801.

Republic of
Korea 2023

Nature
Publishing Group
UK London

P57

Chung [66] CNN CT The developed deep learning network enabled high-accuracy estimation
of 3D bone models. Japan 2023 Springer P58

Shiode [92] DLR CT DLR showed finer image texture compared to one of the traditional
methods and was closer to another in terms of texture. France 2023 Springer P59

Bornet [93] DLR CT DLR led to significantly lower image noise and higher CNR compared to
hybrid-IR and MBIR images. Japan 2023 Springer P60
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4.2.1. Low-Dose CT Reconstruction

The popularity of low-dose CT imaging has grown significantly owing to its effective-
ness in reducing radiation exposure. Studies by Li, Meng [42] and Uthoff [49] illustrate
the effectiveness of 3D CNNs in achieving high sensitivity and specificity, ensuring accu-
rate diagnostic outcomes. These advancements not only improve patient safety but also
demonstrate deep learning’s potential to maintain diagnostic accuracy even with reduced
radiation doses.

4.2.2. Sparse-View CT Reconstruction

Researchers such as Park, Sungeun [55] and Higaki, Toru [38] have explored novel
techniques, including deep learning algorithms and cycleGAN, to address challenges in
sparse-view CT reconstruction. These methods effectively reconstruct images from limited
data views, providing a potential solution to the problem.

4.2.3. Country-Based Analysis

Figure 3 provides a country-based analysis of the state-of-the-art 3D deep learning
methods applied to computed tomography reconstruction. A review of the “Country”
column reveals a global view of innovation in this field.

Figure 3. Global contribution to 3D deep learning research in computed tomography reconstruction
over the years.

Several countries have emerged as significant contributors to the advancement of 3D
deep learning in computed tomography reconstruction. Notably, the United States and
Japan have multiple entries, reflecting their foundational role in developing deep learning
methods for CT reconstruction, particularly in lung nodule classification and pneumothorax
detection. China and Republic of Korea also appear strongly, with numerous submissions
indicating significant contributions in areas such as CT segmentation and image denoising.
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4.2.4. Database-Driven

The state-of-the-art methods for 3D deep learning in computed tomography (CT)
reconstruction have significantly improved patient care and diagnosis, as evidenced by the
comprehensive database analysis presented in Figure 4.

Figure 4. Evolution of databases utilized in 3D deep learning for computed tomography reconstruc-
tion over the years.

The database analysis reveals numerous research articles on 3D deep learning for
CT reconstruction, with Springer being a key platform with 22 papers for showcasing
advancements. IEEE and Elsevier have also contributed significantly to the field, with
numerous articles highlighting the impressive performance of deep learning models in
CT reconstruction.

The database analysis emphasizes the crucial role played by prominent publishers in
advancing research on 3D deep learning methods in CT reconstruction, thereby shaping
the future landscape of medical imaging.

4.2.5. Methodology Review

The included papers’ analyses showed a variety of models and methods used in 3D
deep learning in computed tomography reconstruction. An examination of Figure 5 reveals
methodologies employed in the field of 3D deep learning in CT reconstruction. Among
these methodologies, convolutional neural networks (CNNs) emerge as an important
method for research and are also prominently featured in numerous entries.

We include 3D CNNs in the category of CNNs, which are designed to operate on
volumetric data and offer improved spatial awareness and accuracy compared to their
2D counterparts. Their three-dimensional convolutional layers allow for more in-depth
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understanding of anatomical components, making them appropriate for tasks such as
segmentation. CNNs are widely accepted in medical imaging due to their consistent usage
and effectiveness. They consistently achieve high sensitivity, specificity, and accuracy in
tasks like lung nodule classification and pneumothorax detection, demonstrating their
enduring relevance and relevance.

Figure 5. Evolution of 3D deep learning methods in computed tomography reconstruction over
the years.

Another noteworthy methodology is deep learning reconstruction (DLR) [94], a widely
used method that significantly improves image quality and reduces radiation dose. It offers
enhanced performance and shorter reconstruction times compared to traditional methods,
like filtered back projection (FBP).

Additionally, Figure 5 presents various methods, like deep learning iterative recon-
struction (DLIR), variational autoencoders (VAEs), and generative adversarial networks
(GANs) [95,96], to tackle medical imaging challenges, enhancing the accuracy, efficiency, and
quality of medical image analysis, showcasing the field’s dynamic and innovative nature.

Deep learning reconstruction (DLR) serves as a versatile approach that integrates
various methods, including convolutional neural networks (CNNs), generative adversarial
networks (GANs), variational autoencoders (VAEs), and recurrent neural networks (RNNs).
Many of the reviewed papers utilize DLR as a comprehensive framework for 3D deep
learning in computed tomography reconstruction, unifying multiple methods to enhance
image quality, reduce radiation dose, and improve overall performance. It is worth noting
that some papers mention DLR without specifying individual methods.
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4.2.6. Convolutional Neural Networks (CNN)

For a wide range of computer vision applications [97], convolutional neural networks
(CNNs) [98–100] have become a dominant deep learning model. Given their efficiency
in learning hierarchical features from CT images, CNNs play a crucial role in computed
tomography reconstruction. CNNs [101] analyze the input data in the context of computed
tomography reconstruction by applying several trainable filters that convolve across the
input’s structural dimensions. Local patterns and characteristics may be extracted from the
computed tomography data using this convolution procedure [102,103]. CNNs may learn
representations that are especially suited to added tomography reconstruction tasks by
stacking many convolutional layers, which allows them to capture increasingly complicated
and abstract aspects from the input data. The hierarchical structure of CNNs enables them
to learn features at various abstraction levels. Higher layers of the network learn more
sophisticated and meaningful representations, whereas lower levels tend to capture simpler
elements, like edges and textures. Due to their capacity to extract hierarchical features,
CNNs are highly suited for computed tomography reconstruction [104–106] because they
can identify important structures and patterns in volumetric CT images.

In this research article on 3D deep learning in computed tomography reconstruction,
the use of CNNs is constantly emphasized as a critical strategy. These studies demonstrate
how CNNs are widely used for computed tomography reconstruction tasks in a variety
of variants and topologies. The extensive use of CNNs underscores their effectiveness
in enhancing reconstruction accuracy [107] by leveraging learned characteristics from
CT images.

These models may learn to recognize common patterns and structures present in the
data by training CNNs on massive datasets of CT images. By assuming missing informa-
tion from the input scans, CNNs can produce high-quality reconstructions [108–111]. In
comparison to conventional techniques, CNN-based computed tomography reconstruction
models have demonstrated significant advancements [112], yielding reconstructions that
exhibit higher precision and aesthetic appeal. Furthermore, enhancements in regulariza-
tion methods can prove beneficial for the application of CNNs in computed tomography
reconstruction. Computed tomography reconstruction has been made more effective and
efficient by using deep learning regularization (DLR), which typically refers to the use of
regularization in machine learning or neural network models to prevent overfitting and en-
hance model generalization [113,114] using techniques such as the efficient dense learning
framework (EDLF). These regularization techniques make use of techniques to improve
deep learning models, producing better reconstruction outcomes. Their incorporation also
enhances the effectiveness of regularization-based computed tomography reconstruction
models. The use of CNNs in computed tomography reconstruction has a lot of potential to
advance the science and to advance medical imaging applications.

4.2.7. 3D Convolutional Neural Networks (3DCNN)

Operating on volumetric data like 3D computed tomography scans [115], 3D convolu-
tional neural networks (3D CNNs) [116] have become a potent extension of conventional
CNNs. 3D CNNs expand convolutional procedures to capture spatial relationships and
complicated patterns throughout the entire volume, in contrast to typical CNNs that
analyze 2D pictures individually. A significant advantage of 3D CNNs in computed tomog-
raphy reconstruction lies in extending convolutional processes to the third dimension. 3D
CNNs [117–119] can efficiently capture the spatial interdependence and connections that
exist within computed tomography scans by taking into account the entire 3D environment
of the volumetric data. The precision and robustness of reconstruction approaches are
increased as a result of 3D CNNs’ enhanced ability to grasp the complex interactions
between various areas and structures.

Research papers on 3D deep learning in computed tomography reconstruction fre-
quently examine the usage of 3D CNNs as a cutting-edge model architecture. These studies
show the benefits of employing 3D CNNs for reconstruction as well as their ability to
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recognize complex patterns and features in CT images. 3D CNNs improve the accuracy of
reconstruction by using the volumetric part of the data to include contextual connections
and spatial information. Both of these are needed for correct reconstruction. An ongoing
project is to apply cutting-edge architectural designs to improve reconstruction results
using 3D CNNs in computed tomography reconstruction. By augmenting CNNs’ ability to
analyze volumetric data, researchers have overcome the limitations of traditional 2D-based
methods. Computed tomography reconstruction using 3D CNNs can capture the intricate
anatomical details visible in volumetric CT images. Due to the data’s multidimensionality,
3D CNNs can recognize and comprehend the connections between neighboring slices,
which improves the quality of the complete volume reconstruction. This capacity is es-
pecially important when the structures of interest span several slices or have complex
spatial arrangements.

3D CNNs gain from improvements in regularization methods in addition to their
capacity to capture spatial relationships. To further improve the accuracy and robust-
ness of reconstruction approaches, deep neural networks (DNNs) with more complicated
architectural designs have been used.

The extensive adoption of 3D CNNs in academic publications attests to their effective-
ness in enhancing reconstruction accuracy and their role in advancing the field of computed
tomography reconstruction. By using the whole 3D context of computed tomography scans,
3D CNNs offer insights about the intricate structures seen in medical imaging, enabling
higher-quality reconstructions and more accurate medical diagnosis and treatment.

4.3. RQ2 What Datasets Are Available for Training and Validating 3D Deep Learning in
Computed Tomography Reconstruction?

Understanding the available datasets for training and validating 3D deep learning
in computed tomography reconstruction is essential for researchers and practitioners
alike. The primary aim of this systematic literature review is to provide a review of
available datasets for training and validation in 3D deep learning in computed
tomography reconstruction.

The review was conducted through a systematic search of relevant journals and
selected studies based on predefined inclusion criteria, ensuring comprehensive coverage
of recent developments.

The presented table 4 provides an overview of 3D deep learning methods for computed
tomography reconstruction, encompassing various methodologies and their outcomes in
CT images, serving as a valuable resource for researchers, clinicians, and anyone interested
in the intersection of 3D deep learning and medical imaging. It showcases the diverse
range of available datasets and their potential to impact various CT reconstructions.



Tomography 2023, 9 2176

Table 4. Overview of datasets available for training and validation in 3D deep learning for computed tomography reconstruction.

Author Dataset TEST SET Population Year Database Country Ref.

Setio [41] LIDC 118,650,898 CT 2016 IEEE Germany P01
Li, Meng [42] LIDC 20,672 CT 2018 Springer USA P02
Wang [43] Fudan University Shanghai Cancer Centre 200 HRCT 2018 pubmed China P03
Gruetze [44] LUNA16 1186 CT 2018 https://academic.oup.com/ USA P04
Gu, Yu [45] LUNA16 1186 CT 2018 Elsevier China P05
Ren, Xuhua [46] LUNA16 1186 CT 2018 Wiley Online Library China P06

Gupta H [47] 2016 NIH-AAPM-Mayo 500 CT images (1493 pixels in the
view direction) (720 views) CT 2018 IEEE USA P07

Li, Xiang [48] Massachusetts General Hospital 200 CT 2019 Elsevier Switzerland P08
Uthoff [49] INHALE study 100 CT 2019 Wiley Online Library USA P09
Annarumma [50] Kings College London 15,887 X-rays 2019 RSNA USA P10

Lee H [51] Evaluation utilized lung CT data from
8 distinct patients 662 slices CT 2019 IEEE UK P11

Jung, Woojin [52] k-space data 240 scans MRI 2019 Springer Republic of
Korea P12

Jiang, Chenyu [53] carotid DECTA datasets 28 consecutive patients CT 2019 Springer China P13
Sato, Mineka [54] contrast-enhanced DECT images 40 patients CT 2019 Springer Japan P14
Park, Sungeun [55] not mentioned CT images from 80 patients CT 2019 Springer - P15

Higaki, Toru [38] CMSC CT images reconstructed with MBIR CT 2020 Elsevier Republic of
Korea P16

Singh, Satya P [20] ADNI dataset 345 AD, NC, 605,991 MCI MRI 2020 MDPI Japan P17
Zhang J [56] HR (high-resolution) medical CT images not mentioned CT 2020 IEEE China P19

Liang, C-H [57] Kaohsiung Veterans General Hospital,
Taiwan 100 X-rays 2020 Elsevier Taiwan P20

Ichikawa [61] Patients who underwent medical checkups 1831 chest and 519 abdominal CT
scout images CT 2020 Springer Japan P24

Oostveen [62] not mentioned 50 consecutive patients CT 2020 Springer Netherlands P25

Zeng [63] Reconstructing raw data with FBP to obtain
(SDCTTrain) 100,000 images CT 2021 Elsevier China P27

Verhelst [64] CBCT images 160 scans CT 2021 Elsevier Belgium P28

Aggarwal [65] not mentioned not mentioned CT 2021 Nature Publishing Group
UK London UK P29

Han XF [120] MSCT not mentioned CT 2021 IEEE China P30
Zeng [63] DELTA 100,000 images CT 2021 Elsevier China P31
Jiang, Hao [67] not mentioned 888 lung cancer CT scans CT 2021 Elsevier China P32
Hsu, [68] not mentioned (500) training, (500) testing CT 2021 Elsevier USA P33

https://academic.oup.com/
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Table 4. Cont.

Author Dataset TEST SET Population Year Database Country Ref.

Leuschner [69] LoDoPaB-CT dataset 40,000 scan slices from around
800 patients CT 2021 MDPI Germany P34

Matsuura M [70] not mentioned 5000 images CT 2021 IEEE Japan P35

Capps M [71] ACE1 EIT system at Colorado State
University 100,000 scattering CT 2021 IEEE USA P36

He J [72] 2016 NIH-AAPM-Mayo 4791 slices CT 2021 IEEE China P37
Ding Q [73] 2016 NIH-AAPM-Mayo 2000 training epochs CT 2021 IEEE Singapore P38
Benz [74] TrueFidelity, GE Health-care 50 patients CT 2021 Springer Switzerland P39

Hammernik [75] not mentioned 450 fan-beam projections of
size 512 × 512 CT 2021 Springer Austria P40

De Santis [77] not mentioned 51 patients CT 2021 Springer Italy P42

Kim [78] not mentioned 62 patients underwent noncontrast
brain CT scans CT 2021 Springer Republic of

Korea P43

Thapaliya [79] not mentioned 14 patients, with a mean age of
17.3 years CT 2021 Springer USA P44

Kuo, C [81] not mentioned 75 datasets obtained from 111 men
and 64 women CT 2022 MDPI Taiwan P46

Hu D [121] Koning Corporation 19,575 breast CT images from
42 patients CT 2022 IEEE USA P48

Xie H [83] 2016 NIH-AAPM-Mayo LDCT and SDCT images of size
512 × 512. CT 2022 IEEE USA P49

Thaler [85] not mentioned 13,650 slices CT 2022 Springer Japan P51
Koike [86] pancreatic ductal adenocarcinoma (PDAC) 28 consecutive patients CT 2022 Springer Japan P52
Noda [87] not mentioned 72 patients CT 2022 Springer Japan P53

Nakamura [88] not mentioned 100 patients CT 2022 Springer Republic of
Korea P54

Shin [90] MSCT not mentioned CT 2023 IEEE Japan P56

Zeng Y [91] not mentioned 334 CT images of normal orbits CT 2023 Nature Publishing Group
UK London

Republic of
Korea P57

Chung [66] not mentioned 173 CT images, 105 X-ray images CT 2023 Springer Japan P58

Bornet [93] not mentioned 46 patients (December 2017 and
April 2018) CT 2023 Springer Japan P60
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4.3.1. Country-Based Analysis

Figure 6 provides a country-based analysis of available datasets for training and
validation in 3D deep learning methods applied to computed tomography reconstruction.

A complete review of the “Country” column reveals a global view of innovation in
this field. Several countries stand out as significant contributors to the advancement of
3D deep learning in computed tomography reconstruction. Based on the review, Japan,
the United States, China, and Republic of Korea have made substantial contributions to
this field, providing datasets from various medical imaging modalities. These datasets
vary in size, content, and application, catering to different aspects of CT reconstruction
research. Researchers worldwide have the opportunity to access and utilize these datasets
to advance 3D deep learning in CT reconstruction.

Figure 6. Global contribution available datasets for training and validation in 3D deep learning
research in computed tomography reconstruction over the years.

4.3.2. Database-Driven Evaluation

Available datasets for training and validating 3D deep learning in computed tomogra-
phy reconstruction have significantly improved patient care and diagnosis, as evidenced
by the comprehensive database analysis presented in Figure 7.

These databases are sourced from various reputable publishers, such as IEEE, Springer,
and Elsevier, encompassing datasets primarily focused on CT imaging. Springer serves as
a key platform with 18 papers showcasing advancements. Additionally, IEEE and Elsevier
have significantly contributed to the field, featuring numerous articles that underscore the
impressive performance of available datasets for training and validating 3D deep learning
in computed tomography reconstruction.
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Figure 7. Evolution of databases utilized for available datasets for training and validation in 3D deep
learning for computed tomography reconstruction over the years.

4.3.3. Dataset Review

Several datasets have been employed in 3D deep learning for computed tomography
(CT) reconstruction, as indicated by the analysis of the included papers. An examination
of Figure 8 reveals the available datasets for training and validating 3D deep learning in
computed tomography reconstruction. Some studies utilized the LIDC-IDRI dataset [122],
which offers an extensive collection of lung nodule CT scans, providing crucial data for
the development and evaluation of CT reconstruction models. However, this dataset has
not been used in research after 2017. Similarly, LUNA16 [123], employed in three different
studies, is a frequently cited dataset but was primarily used in 2018 for testing nodule
detection algorithms and has seen limited usage since then.

In the past few years, the 2016 NIH-AAPM-Mayo and MSCT datasets have become
advanced and useful tools for 3D deep learning in CT reconstruction. Notably, several
papers use only patient datasets which do not explicitly define the dataset source due to
the use of patient data.

The study of datasets used in computed tomography reconstruction with 3D deep
learning shows how varied and specific the data used in this field is. For training and
evaluating computed tomography reconstruction models in a variety of settings, from
lung nodule identification to HRCT and X-ray-based reconstruction, datasets like 2016
NIH-AAPM-Mayo and MSCT are accessible and offer helpful resources. Researchers
should carefully consider the characteristics, size, and clinical value of the datasets when
selecting the most suitable data for their specific applications. By using a range of datasets,
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researchers may enhance the robustness, generalizability, and clinical usefulness of 3D deep
learning models in computed tomography reconstruction.

Figure 8. Evolution of 3D deep learning datasets in computed tomography reconstruction over
the years.

4.3.4. Lung Nodule Analysis 2016 (LUNA16)

The study and development of 3D deep learning for computed tomography reconstruc-
tion has greatly benefited from the dataset LUNA1651 [124,125] (Lung Nodule Analysis
2016). Since LUNA16 was developed primarily for evaluating nodule detection algorithms,
it has gained recognition as a useful tool for creating and validating computed tomography
reconstruction models. One of LUNA16’s key benefits is the vast array of lung nodule
pictures it offers. A total of 1186 CT pictures make up the collection, which offers a wide
range of examples and annotations pertaining to lung nodules. Due to this variability,
deep learning models may be created and tested on a large range of instances, accurately
representing the heterogeneity and complexity of lung nodules seen in actual computed
tomography scans.

Due to the significance of LUNA16 as a benchmark dataset, researchers frequently use
it. The performance and generalizability of deep learning models in the context of lung
nodule recognition and CT reconstruction are evaluated using this standardized assessment
approach. Researchers may evaluate various strategies, algorithms, and methods using
LUNA16, making it easier to pinpoint the benefits and drawbacks of computed tomography
reconstruction models as well as potential areas for development.

For researchers, the annotations offered by LUNA16 are of great use. These anno-
tations contain ground truth labels and nodule delineations, providing deep learning
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algorithms with trustworthy benchmarks for training and assessment. The presence of
such annotations greatly improves the efficacy and accuracy of the created models.

Many research papers talk about LUNA16 and how important it is for testing and
measuring how accurate and useful computed tomography reconstruction models are.
The dataset has evolved into a benchmark for comparing and assessing the effectiveness
of various algorithms, giving academics a uniform yardstick for judging their strategies.
The frequent use of LUNA16 in academic works emphasizes how important it is as a
trustworthy and extensively used dataset in the area.

Furthermore, improvements in lung nodule identification and computed tomography
reconstruction have been made because of the use of LUNA16. Researchers have im-
proved the detection and reconstruction of lung nodules by using the dataset to build novel
deep-learning architectures, feature extraction methods, and post-processing approaches.
Researchers can improve the precision and effectiveness of computed tomography re-
construction and, hence, aid in the early identification and diagnosis of lung illnesses by
training and evaluating their models using LUNA16.

The fact that LUNA16 is used so often in research papers shows how useful this
framework is as a standard evaluation tool and a reliable source for checking the accuracy
and usefulness of CT reconstruction models.

4.3.5. Lung Image Database Consortium–Image Database Resource Initiative (LIDC-IDRI)

The study of 3D deep learning in computed tomography reconstruction has greatly
benefited from the dataset LIDC-IDRI [126] (Lung Image Database Consortium–Image
Database Resource Initiative). It is commonly used and extensively cited in research
works in this field. An important resource for the creation and assessment of computed
tomography reconstruction models, LIDC-IDRI has a comprehensive collection of about
1186 CT images.

The extensive and varied collection of lung nodule scans that LIDC-IDRI includes
is one of its main advantages. Researchers may use real-world computed tomography
scans to train and test deep learning algorithms since the dataset provides a wide variety
of examples and annotations pertaining to lung nodules.

Deep learning methods for computed tomography reconstruction have advanced and
have been improved greatly as a result of the use of LIDC-IDRI. The use of this dataset
has allowed researchers to refine their models and explore new avenues for increasing
the precision, robustness, and generalizability of computed tomography reconstruction
methods. Due to the availability of LIDC-IDRI, it is now easier to evaluate the efficiency
and performance of various algorithms, allowing academics to compare and verify their
models against industry standards.

The prominence of LIDC-IDRI in the area is demonstrated by the volume of references
to and citations of its work in various research articles. Researchers frequently use LIDC-
IDRI to confirm the effectiveness of their suggested methods, highlighting the significance
and dependability of this dataset.

Radiology as a whole and computed tomography reconstruction methods have ad-
vanced as a result of the use of LIDC-IDRI in research. Researchers have utilized the
LIDC-IDRI dataset to develop deep learning architectures, feature extraction strategies,
and post-processing approaches for CT scan reconstruction. This has led to more accurate
and effective models, and evaluation of their effectiveness, robustness, and generalizability.
The dataset’s extensive use in academic publications highlights its crucial role in advancing
3D deep learning in computed tomography reconstruction.

4.3.6. 2016 NIH-AAPM-Mayo

The 2016 NIH-AAPM-Mayo [127] dataset is a collection of CT images used in the
“2016 Low-Dose CT Grand Challenge [128]”, sponsored by the National Institutes of Health,
the American Association of Physicists in Medicine, and the Mayo Clinic. The dataset
focused on CT reconstruction and denoising techniques and was made publicly available
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to the scientific community. Researchers worldwide have used this dataset to improve
CT image reconstruction and noise reduction techniques, facilitating further research and
development in the field of medical imaging.

The 2016 NIH-AAPM-Mayo dataset [129], used in research papers P07, P37, P38,
and P49, has significantly aided in the development of deep learning techniques for CT
reconstruction. The dataset, which comprises 500 CT images with 1493 pixels in the view
direction and 720 views, has been instrumental in improving image quality and enhancing
CT reconstruction methods. In P37 and P38, the dataset was used to train deep learning
models, allowing for the exploration of advanced CT reconstruction techniques.

The dataset’s large number of slices and epochs has facilitated robust model training,
leading to improved CT reconstruction outcomes. In P49, the dataset was used to obtain
LDCT and SDCT images with a size of 512 × 512. This made it possible to test different
CT image reconstruction methods, especially those used in low-dose CT imaging. This
allowed researchers to assess and compare the performance of other reconstruction meth-
ods, leading to improvements in image quality and dose-reduction strategies. The 2016
NIH-AAPM-Mayo dataset has proven to be a valuable resource for researchers, resulting
in advancements in CT reconstruction techniques and enhanced deep learning approaches
in CT imaging.

4.3.7. MSCT

Multi-slice computed tomography (MSCT) [130] is a non-invasive medical imaging
technique that uses X-ray beams and liquid dye to create 3D images of the heart and blood
vessels. Unlike traditional coronary angiography, which injects dye into a vein, MSCT
injects the dye into a superficial vein. The dye travels through the bloodstream to the
coronary arteries, where a CT scanner scans it. The procedure is quick, safe, and requires
minimal radiation exposure, making it a safer option for cardiac health assessment.

MSCT datasets [131] have significantly improved CT reconstruction techniques, re-
sulting in sharper and more detailed images as reported in research papers P30 and P56.
They have also enhanced the capabilities of deep learning models for CT image reconstruc-
tion, and their widespread application across various clinical scenarios highlights their
significance in medical imaging.

5. Discussion

In this systematic literature review, we explored and analyzed contemporary state-of-
the-art methods for 3D deep learning in CT reconstruction. In addition, we also worked on
the availability of datasets to train and validate these methods. By conducting this review,
the authors aimed to identify the techniques and approaches used in CT reconstruction
and to assess the datasets available for training and validating these models. This paper
chiefly focuses on the challenges associated with conventional computed tomography
image reconstruction techniques, such as filtered back-projection (FBP), which often results
in artifacts and noise that affect the image quality and diagnostic accuracy. The study of
deep learning algorithms offered an auspicious solution for the improvement of the quality
and competence of CT image reconstruction.

The authors recognized the ability of 3D deep learning to produce more accurate and
detailed 3D pictures, hence boosting the diagnostic capabilities of CT scans. The purpose
of this study was to enhance the knowledge and uptake of these novel techniques in the
field of medical imaging by examining the state of research and developments in 3D deep
learning for CT reconstruction.

This systematic literature review has accomplished all its goals. The researchers con-
ducted a comprehensive search on five major databases, identified 60 relevant research arti-
cles, and followed the Preferred Reporting Items for Systematic Review and Meta-Analysis
(PRISMA) statement to ensure the quality and rigor of the review process. Convolutional
neural networks and 3D convolutional neural networks were shown to be the most utilized
3D deep learning approaches for CT reconstruction through this investigation.
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In addition, two significant datasets, the 2016 NIH-AAPM-Mayo and MSCT, were
recognized as acceptable sources for training and evaluating 3D deep learning systems
in CT reconstruction. The primary conclusions of the systematic analysis of the literature
underlined the widespread use of CNNs and 3D CNNs in the field of deep-learning-based
CT image reconstruction. These cutting-edge algorithms have the potential to increase
CT image reconstruction’s efficacy and efficiency, resulting in better picture quality and
perhaps even less radiation exposure for patients.

Consideration of the 2016 NIH-AAPM-Mayo and MSCT datasets revealed important
information on the availability of pertinent data for developing and analyzing deep learning
models in the context of CT reconstruction. The study has important ramifications for
diagnostic radiology and the field of medical imaging. The research illustrates the use of 3D
deep learning in CT reconstruction, highlighting the potential to improve patient outcomes
and diagnostic precision. Adoption of these deep learning techniques has the potential
to transform CT reconstruction, making it more accurate and effective, which would be
advantageous to patients and healthcare systems alike.

The article concludes that 3D deep learning, especially when using CNNs and 3D
CNNs, has enhanced CT reconstruction. These methods may be able to overcome the limi-
tations of traditional imaging techniques, improving image quality, improving diagnostic
accuracy, and possibly reducing radiation exposure. In addition, the identification of the
datasets that the 2016 NIH-AAPM-Mayo and MSCT approaches provide offers valuable
resources for researchers and practitioners interested in developing and validating deep
learning models in CT reconstruction.

6. Limitaion of the Literature

There are several limitations to the literature on 3D deep learning in computed to-
mography reconstruction. Firstly, there is a lack of variety in the test datasets, with an
emphasis on particular datasets, which cannot accurately reflect the larger difficulties in
computed tomography reconstruction across different bodily systems and disorders. Small
sample sizes may limit the generalizability of the results in some research, necessitating
larger and more varied datasets for validation. Furthermore, the ability to compare the
effectiveness of 3D deep learning models across various populations and imaging tech-
niques is hampered by the lack of external validation. Additionally, it is not easy to fully
comprehend the relative performance of multiple methodologies or procedures without
comparative analysis. Furthermore, there has been little investigation into imaging tech-
niques outside of computed tomography. Finally, there is a need to close the gap between
research results and clinical application in the real world, taking into account elements like
clinical workflow integration and validation in sizable clinical trials. By overcoming these
restrictions, 3D deep learning in computed tomography reconstruction will become more
reliable, generalizable, and clinically applicable, opening the door for its effective use in
clinical settings.

7. Conclusions

The systematic literature review explores the current state-of-the-art methods and
datasets for training and validation in 3D deep learning for computed tomography (CT)
reconstruction. To achieve our goals, we searched major databases and identified relevant
research papers. The study has revealed that convolutional neural networks (CNNs), 3D
convolutional neural networks (3D CNNs), and deep learning reconstruction (DLR) are
the most frequently utilized approaches in this specific field. Moreover, the paper also
focuses on the accessibility of datasets for training and validating 3D deep learning models
in CT reconstruction. The 2016 NIH-AAPM-Mayo and MSCT datasets were recognized
as valuable sources suitable for the purpose of research, highlighting the transformative
impact of adopting 3D deep learning techniques in medical imaging, offering the promise
of improved patient outcomes and diagnostic precision. By providing a perspicuous insight
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into both research questions, the paper offers a comprehensive understanding of the current
advancements and resources in 3D deep learning in CT reconstruction.

3D deep learning in CT reconstruction faces challenges due to limited test datasets,
small sample sizes, and limited external validation. Comparative analysis and real-world
application are needed to improve reliability, generalizability, and clinical applicability.
Future studies should focus on real-time reconstruction techniques, integrating imaging
modalities, and enhancing interpretability. Collaborations between scientists, doctors, and
data scientists can create standardized datasets, assessment measures, and benchmarking
frameworks for improved precision and effectiveness in medical imaging applications.
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