
Energy Reports 10 (2023) 3001–3019

A
2

Contents lists available at ScienceDirect

Energy Reports

journal homepage: www.elsevier.com/locate/egyr

Research paper

Step towards secure and reliable smart grids in Industry 5.0: A federated
learning assisted hybrid deep learning model for electricity theft detection
using smart meters
Muhammad Hamza Zafar a,1, Syed Muhammad Salman Bukhari b,1, Mohamad Abou Houran c,
Syed Kumayl Raza Moosavi d, Majad Mansoor e,f, Nedaa Al-Tawalbeh g, Filippo Sanfilippo a,h,∗

a Department of Engineering Sciences, University of Agder, Grimstad, 4879, Norway
b Department of Electrical Engineering, Capital University of Science and Technology, Islamabad, 44000, Pakistan
c School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
d School of Electrical Engineering and Computer Science, National University of Sciences and Technology, Islamabad, 44000, Pakistan
e Department of Automation, University of Science and Technology of China, 28796, China
f Ningbo China Institute for Supply Chain Innovation, Ningbo, 28796, China
g Department of Renewable Energy Engineering, Al al-Bayt University, Mafraq, 25113, Jordan
h Department of Software Engineering, Kaunas University of Technology, Kaunas, 51368, Lithuania

A R T I C L E I N F O

Keywords:
Smart meters
Theft detection
Deep learning
Federated learning
Security and reliability
Smart grid
Industry 5.0

A B S T R A C T

The integration of Smart Grid technology and conceptual Industry 5.0 has paved the way for advanced energy
management systems that enhance efficiency and revolutionized the parallel integration of power sources in
a sustainable manner. However, this digitization has opened a new stream of the threat and opportunities
of electricity theft posing a significant challenge to the security and reliability of Smart Grid networks. In
this paper, we propose a secure and reliable theft detection technique using deep federated learning (FL)
mechanism. The technique leverages the collaborative power of FL to train a Convolutional Gated Recurrent
Unit (ConvGRU) model on distributed data sources without compromising data privacy. The training deep
learning model backbone consists of a ConvGRU model that combines convolutional and gated recurrent
units to capture spatial and temporal patterns in electricity consumption data. An improvised preprocessing
mechanism and hyperparameter tuning is done to facilitate FL mechanism. The halving randomized search
algorithm is used for hyperparameters tuning of the ConvGRU model. The impact of hyperparameters involved
in the ConvGRU model such as number of layers, filters, kernel size, activation function, pooling, GRU layers,
hidden state dimension, learning rate, and the dropout rate is elaborated. The proposed technique achieves
promising results, with high accuracy, precision, recall, and F1 score, demonstrating its efficacy in detecting
electricity theft in Smart Grid networks. Comparative analysis with existing techniques reveal the superior
performance of the deep FL-based ConvGRU model. The findings highlight the potential of this approach in
enhancing the security and efficiency of Smart Grid systems while preserving data privacy.
1. Introduction

A smart grid is comprised of intelligent sensors and meters, which
establish connections to central servers or cloud platforms via either
wireless or wired networks. A smart grid may manage electrical energy
more effectively than a traditional system (Gul et al., 2020; Bohani
et al., 2021; Mujeeb and Javaid, 2019). Framework analysis and dy-
namic load scheduling are employed in smart grids to achieve effective
use of electricity (Marzband et al., 2018; Jadidbonab et al., 2020).
For example, a hierarchical energy management system is presented
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in Gholinejad et al. (2020) with the goal of minimizing peak hours
and selling more electricity for less money. In the work by Mian
Qaisar (2020), a strategy rooted in information gap decision theory is
introduced with the aim of mitigating the impact of the unpredictable
characteristics inherent in renewable energy sources. Efficient energy
resource use is vital for sustainable social and economic development
due to rising energy costs and scarcity. Smart grids proved to be
more efficient in operation and allow active monitoring of data hence
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are an essential component of future power grid infrastructure. The
Smart Grid system seamlessly combines power system architecture
and advanced computer technology to holistically oversee and control
energy consumption on a comprehensive scale (Khan et al., 2020). This
intelligent system monitors the usage patterns and behavior of cus-
tomers connected to the system (Hasan et al., 2019) enabling customers
and utility providers with regulation and forecast capability by fusing
modern digital technologies with the existing electrical infrastructure.
These concepts lead to the notion of the Energy Internet (EI). A key
component of the EI is the bidirectional interchange of information and
energy Cao et al. (2018), Wang (2003). As outlined in both Karnouskos
et al. (2007) and Jiang et al. (2014), the Advanced Metering Infrastruc-
ture (AMI) serves as the fundamental basis for the EI. The AMI gives
the power utilities highly detailed information about energy use. This
is accomplished by strategically deploying smart meters for accurate
load forecasting (Zheng et al., 2018) modeling of user consumption
behavior (Wang et al., 2016) and demand response (Sun et al., 2018).
Technical and nontechnical losses can occur during the transmission
and distribution of power. Power transmission and distribution losses
arise due to technical factors and fall within the scope of regula-
tion (Henriques et al., 2020). Conversely, non-technical losses (NTL),
encompassing issues like power theft, unethical conduct by utility
personnel, and irregular billing, represent the primary sources of such
losses (Savian et al., 2021). It has been estimated in Hussain et al.
(2021) that the NTL costs utilities throughout the world 96 billion USD
per year. Power companies, engineers, and researchers are working to
decrease NTL utilizing a range of cutting-edge and effective methods
because of the large economic loss (Arango et al., 2017).

Smart meter-based EI is highly effective against energy theft. Such
a method might be utilized to immediately communicate the data to
the utility while also remotely tracking consumer usage statistics and
recording any suspicious activities. Smart meters provide a variety of
advantages, but due to the high deployment and maintenance costs,
they are not practical for nations that are facing severe economic
difficulties. Before such devices may be extensively utilized, emerging
cyber dangers must be appropriately handled. AMI’s unique character-
istics pose challenges in securing information flow within the EI. Smart
meter data alteration by malicious users can lead to distinct power
theft on the EI, differing from conventional grid tampering (Zheng
et al., 2018). Artificial intelligence and deep learning algorithms are
playing critical role in the energy sector for energy optimization (Khan
et al., 2021; Zafar et al., 2023). Algorithms for artificial intelligence
(AI) can automatically track users’ patterns of energy use. Examining
data collected by smart meters holds the potential to accurately detect
instances of power theft. Cases of organized energy theft have been
reported by renowned organizations including the US Federal Bureau of
Investigation and the Fujian Daily (Zheng et al., 2018). These were the
cause of a substantial NTL and were based on the use of tools and strate-
gies against smart meters. In order to successfully combat the NTL issue,
effective EI-based tactics for energy theft detection are required, as
traditional detection techniques such as the use of technical employees
or video surveillance are time-consuming and labor-intensive. Network
measures cannot be tampered with by the intruders. Consequently,
disparities may arise between the data from smart meters and the states
of the system. Achieving a heightened degree of accuracy in detecting
theft is feasible, albeit with the trade-off of introducing additional
equipment. These strategies are impractical for many power providers
due to rising maintenance and sensor deployment costs. Contrary to
hardware-based solutions, non-hardware-based energy-theft detection
methods do not call for additional NTL detecting apparatus. The two
main categories of these techniques are those based on AI and those
based on game theory (Jokar et al., 2015) The foundation of game
theory-based methods for detecting the NTL is the creation of a game
between the service provider and fraudulent customers. Although con-
3002

ventional prevention is less expensive initially but faces challenges in
defining crucial responsibilities among participants, offenders, regula-
tory bodies, and distributors. AI-driven solutions provide a pragmatic
approach by leveraging machine learning methodologies like classi-
fication and clustering. These techniques enable the identification of
aberrant users through the analysis of consumer load profiles. It is
believed that fraudulent users exhibit consumption patterns distinct
from trustworthy clients.

The summary of literature for federated and non-federated learning-
based electricity theft detection in smart grid is presented in Table 1.

This work is focused on methods for data analysis and data privacy
protection. Different federated learning (FL)-based deep learning ap-
proaches are tried and evaluated using the data consumption energy of
diverse customers to learn about and detect anomalous consumption
behavior. An FL-based hybrid deep learning technique is employed in
this work. To the best of our knowledge, this research is the first study
to successfully identify theft detection using FD, as described above.

1.1. Contributions and paper organization:

The graphical abstract of this study has been presented in Fig. 1 and
a description of each part has been added in subsequent sections. The
main contributions of this study are:

• A novel FL-Convolutional Gated Recurrent Unit (ConvGRU) mixed
deep learning model for the identification of theft types is pre-
sented in this study. The advantages of GRU networks, convolu-
tional neural networks, and FL are all included in this model. The
integration of these techniques provides a powerful framework for
accurately classifying theft types.

• The research proposes a federated learning approach for training
the FL-ConvGRU model. Federated learning enables collaborative
model training without the need to share raw data among dif-
ferent entities. This approach addresses privacy concerns while
leveraging the collective intelligence of distributed datasets, mak-
ing it suitable for scenarios where data privacy is crucial.

• The experiment conducted in this study evaluates the proposed
FL-ConvGRU model on diverse structured dataset relevant to theft
classification. The dataset was obtained from online repositories
and real-time sources, ensuring their variability and real-world
applicability. This evaluation demonstrates the model’s effective-
ness and robustness across different types of theft attempts.

• The paper includes a comprehensive comparative analysis of the
proposed FL-ConvGRU model with other popular classifiers, in-
cluding the base FL-CNN, FL-LSTM, and FL-GRU model. The com-
parison highlights the superior performance of the FL-ConvGRU
model in terms of classification accuracy. This analysis con-
tributes to the validation and credibility of the proposed ap-
proach.

• The study provides valuable insights into potential areas for
future research in smart meter based theft identification. It sug-
gests exploring further feature selection techniques, optimization
methods, addressing time constraints, and employing different
data privacy techniques. These future research directions aim to
enhance the effectiveness and efficiency of predictive classifiers
for diagnosing theft attempts.

2. Evolving power infrastructure: Challenges, innovations, and
solutions in the Smart Grid era

In Industry 5.0, the integration of the Smart Grid concept revolu-
tionizes electricity generation, distribution, and consumption. Leverag-
ing advanced technologies like the Internet of Things (IoT), federated
learning, big data analytics, and predictive modeling, the Smart Grid
creates an efficient and intelligent power infrastructure. This intercon-

nected system enables real-time monitoring, control, and optimization,
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Table 1
A detailed literature review of federated learning and non-federated learning based electricity theft detection.

Citation Year Technique Results Centralized Privacy preserved

Liao et al. (2023) 2023 Euclidean and Graph CNN MAP: 0.960 ✓ xAUC: 0.770

Haq et al. (2023) 2023 Deep CNN

Accuracy: 0.940 ✓ xRecall: 0.970
Precision: 0.930
F1-Score:0.965

Yan and Wen (2021a) 2021 Extreme Gradient Boosting
Accuracy: 0.990 ✓ xPrecision: 0.975
Recall: 0.937

Li et al. (2019) 2019 Deep Learning and Random Forest
F1-Score: 0.960 ✓ xPrecision: 0.970
Recall: 0.980

Lepolesa et al. (2022) 2022 Deep Neural Network

F1-Score: 0.930

✓ xPrecision: 0.914
Recall: 0.946
Accuracy: 0.916

Ashraf et al. (2022) 2022 FL-DNN
F1-Score: 0.887

✓ ✓Precision: 0.890
Recall: 0.916

Wen et al. (2022) 2022 FedDetect AUC: 0.791 ✓ ✓Accuracy: 0.919

Our model 2023 FL-ConvGRU

Accuracy: 0.980

✓ ✓Recall: 0.970
Precision: 0.980
F1-Score: 0.980
Fig. 1. An illustration of the suggested Theft Detection method for Smart Grids based on Federated Learning.
ensuring grid stability, load balancing, and fault detection. By integrat-
ing distributed energy resources (DERs) and bidirectional energy flows,
Smart Grids maximize renewable energy utilization while reducing
reliance on fossil fuels. Smart meters, sensors, and demand response
programs empower consumers to actively manage energy consumption,
promoting efficiency. The Smart Grid in Industry 5.0 represents a
sustainable, resilient, and digitally empowered industrial ecosystem.

2.1. Concept of smart grid

The smart grid embodies an upgraded and intelligent electricity
infrastructure that utilizes advanced technologies to enhance power
systems’ efficiency, reliability, and sustainability. It encompasses a
wide range of interconnected components, including power generation
sources, transmission and distribution networks, consumer devices, and
energy management systems (Fang et al., 2011).

At the heart of the smart grid concept is the integration of digi-
tal communication, sensing, and control technologies into traditional
power grids. This enables real-time monitoring, control, and optimiza-
tion of energy generation, transmission, and consumption. The key
features of the smart grid are shown in Fig. 2. Key features are listed
below (Kabalci, 2016):
3003
• Advanced Metering Infrastructure (AMI): enables two-way com-
munication between utilities and consumers through smart me-
ters, facilitating accurate billing, load monitoring, and demand
response programs by recording and transmitting energy con-
sumption data at regular intervals.

• Intelligent sensors and Monitoring: devices deployed through-
out the smart grid infrastructure collect real-time data on volt-
age levels, current flows, line conditions, and equipment perfor-
mance. This data assists utilities in fault detection, grid stability
management, and energy flow optimization.

• Automation and Control Systems: play a crucial role in the
smart grid, enabling real-time monitoring, analysis, and control
of power generation, distribution, and consumption. These sys-
tems incorporate automated devices like switches, reclosers, and
voltage regulators to optimize grid operations, reduce outages,
and swiftly respond to grid disturbances.

• Distributed Energy Resources (DERs): The smart grid integrates
DERs like solar panels and wind turbines, enabling efficient uti-
lization of renewable energy and reducing reliance on fossil fuel-
based power generation. It achieves this by monitoring and man-
aging the output of these resources.

• Demand Response and Energy Efficiency: The smart grid enables
utilities to implement demand response programs, incentivizing
consumers to adjust energy consumption during peak periods
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Fig. 2. Overview of the current smart grid’s integrated hardware elements and distinguishing characteristics, emphasizing the integration of digital technologies with conventional
electricity infrastructure.
to balance supply and demand. Additionally, it promotes en-
ergy efficiency by furnishing consumers with real-time energy
consumption data, thereby empowering them to make informed
choices and curtail their overall energy usage.

• Grid’s Resilience and Self-Healing: capabilities minimize disrup-
tions and faults. Through automated monitoring and control sys-
tems, the grid swiftly detects and isolates faults, reroutes power
flows, and restores service more efficiently. This enhances the
reliability of the power grid by reducing outage durations.

• Data Analytics and Predictive Maintenance: The smart grid gen-
erates vast data from the power system. Utilities use data an-
alytics and predictive maintenance to analyze patterns, predict
failures, and optimize maintenance. This proactive approach re-
duces downtime, improves asset management, and optimizes per-
formance.

The constant, high-resolution data stream from AMI and smart me-
ters provides a favorable environment for analysis in the context of our
study, which focuses on power theft detection. Even if it has many uses,
this data might still be vulnerable if not protected. Unauthorized use or
power theft might be indicated by anomalies in the data or anomalous
trends. We can take advantage of this vast amount of data without
sacrificing data privacy by combining FL with our ConvGRU model.
FL permits model training across several devices or nodes utilizing
their local data, as opposed to centralizing data for analysis, which
may reveal flaws. The raw data is not centralized; only the model
changes are. This ensures that AMI and smart meter data integrity and
confidentiality are not compromised while still enabling in-depth and
comprehensive analysis. By using Federated Learning, AMI, and smart
meter capabilities, we are laying the groundwork for a smart grid that
is both effective and naturally secure, perfectly aligning with the goals
of a strong, resilient, and sustainable Industry 5.0 environment.

2.2. Industry 5.0

The Fifth Industrial Revolution, often known as Industry 5.0, is
the union of machines and people in an organization (Leng et al.,
2022). It essentially describes how people collaborate with intelligent
3004
robots and machines, and how cutting-edge technologies like big data
and the Internet of Things (IoT) make it possible for people to work
more quickly and effectively, giving Industry 4.0’s features a more
human touch (European Commission, Directorate-General for Research
and Innovation, 2021). The European Commission proclaimed the Fifth
Industrial Revolution, or Industry 5.0, around 2021 to acknowledge
that it will achieve goals in thriving societies in addition to fostering
industry growth and employment creation. Industry 5.0 essentially
consists of three main strategies:

• Human-centered approach: This value puts the needs and inter-
ests of people at the front of the priority list for production.

• Sustainability: Industry 5.0 must take the initiative in preserving
the planet’s natural resources and creating circular processes that
reuse, repurpose, and recycle them while increasing productivity
and effectiveness.

• Building resilience entails creating a strong strategy to defend key
infrastructure when stranded in a crisis.

In the context of Industry 5.0, the integration of the smart grid plays
a crucial role in transforming the way industries operate. Here are the
connections between Industry 5.0 and the smart grid:

• Energy Consumption and Optimization: Industry 5.0 integrates
industrial processes with the smart grid, enabling real-time in-
sights into energy consumption (Abou Houran et al., 2023). This
promotes resource optimization, identifies areas for improvement,
and implements demand response strategies to reduce stress on
the grid.

• Renewable Energy Integration: Industry 5.0 integrates renew-
able energy into industrial operations through the smart grid.
Real-time monitoring and control of distributed energy resources
enable manufacturers to leverage renewable energy generation,
reducing reliance on conventional sources.

• Grid Resilience and Stability: The smart grid’s bidirectional com-
munication enhances grid resilience and stability. In Industry
5.0, manufacturing facilities act as ‘‘prosumers’’ by generating
and supplying excess energy. This dynamic interaction balances
supply and demand, improves grid stability, and supports the
integration of intermittent renewable energy sources.
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• Data-Driven Decision Making: Industry 5.0 utilizes smart grid
data to make data-driven decisions, optimizing operations, reduc-
ing costs, and improving efficiency.

• Resilient and Adaptive Infrastructure: Industry 5.0 and the smart
grid prioritize adaptable and resilient infrastructure. They inte-
grate advanced technologies to monitor, control, and respond
to changing conditions, enabling industries to quickly address
disruptions and maintain continuous operations.

.3. Electricity theft: A looming threat to the smart grid

Theft of electricity poses a substantial challenge for power utilities
nd jeopardizes both the robustness and economic sustainability of the
mart grid. Depuru et al. (2011). It refers to unauthorized consumption,
ampering, or diversion of electricity, leading to revenue losses for
tilities and potential safety hazards.

Within the framework of the smart grid, the identification and
revention of electricity theft become more intricate, owing to the
ntricate nature of the interlinked and digitized power infrastructure.
owever, smart meters play a crucial role in mitigating electricity theft
y providing advanced monitoring and detection capabilities (Xia et al.,
022). Smart meters are useful in addressing this issue according to the
ollowing points:

• Consumption Measurement: Smart meters ensure accurate and
real-time measurement of electricity consumption. They eliminate
the need for manual reading, reducing human errors and ma-
nipulation. By recording data at regular intervals, smart meters
identify discrepancies between recorded and billed consumption,
helping utilities detect potential theft.

• Tamper Detection and Alerts: Smart meters have tamper detection
features to identify unauthorized manipulation. They send alerts
to utilities when tampering is detected, allowing for swift action
against theft.

• Remote Monitoring and Data Analytics: Smart meters allow re-
mote monitoring of energy consumption and provide data for
analysis. Utilities utilize advanced analytics to detect anoma-
lies, identify abnormal usage patterns, and flag suspicious activ-
ities indicating theft. Continuous monitoring enables the prompt
investigation and addressing of potential cases of electricity theft.

dditionally, smart meters reduce non-technical losses by limiting
heft, billing errors, and inaccurate readings. Real-time data enables
tilities to differentiate legitimate consumption, recover revenue, and
nvest in grid improvements. Moreover, Smart meters prioritize secu-
ity with robust features and data encryption. This protects data in-
egrity and prevents unauthorized access. Encryption techniques secure
onsumption data during transmission, reducing the risk of fraudu-
ent activities and unauthorized manipulation or access to sensitive
nformation.

.4. Enhancing security: Reliable methods for theft detection

Detecting electricity theft is a complex task due to the clandestine
ature of the activity and the vast amount of data involved in the smart
rid. However, the application of secure and reliable theft detection
an be significantly enhanced using a technique called deep federated
earning, which leverages smart meter data.

.4.1. Obstacles and hurdles in theft detection
A detailed explanation of the theft detection challenges is elaborated

y Yan et al. in Yan and Wen (2021b) and can be categorized into
hree distinct groups. The first challenge comes from the Data Volume
nd Variety. Although the smart grids generate massive amounts of
ata, each system is customized for various local sources generating
eterogeneous data. Identifying theft patterns requires advanced tech-
iques capable of handling high volumes and diverse data. Second and
3005
the main concern is privacy concerns because of the sensitive informa-
tion about energy consumption patterns and user behavior. Preserving
consumer privacy while detecting theft is crucial to ensure the ethical
and legal use of data. Thirdly the distributed Data across numerous
locations and utility providers makes Collecting and centralizing all
the data for analysis can be logistically challenging and may raise
data ownership and sharing concerns. This is where FL shines while
providing solutions to all these concerns.

2.4.2. Deep federated learning
Deep federated learning is a privacy-preserving deep learning tech-

nique that allows the collaborative analysis of decentralized data
(Elayan et al., 2021). It enables multiple parties, in this case, utility
providers, to jointly train a deep learning model without sharing their
raw data. The model is trained locally on each utility’s smart meter
data while preserving privacy and then aggregated to generate a global
model with insights from the collective data.

2.4.3. Robust methods for ensuring secure theft detection
Secure and reliable theft detection can be achieved by:

1. Data Localization: Each utility provider retains control over its
smart meter data, ensuring data remains localized and reducing
privacy risks associated with centralized data storage.

2. Model Collaboration: Utility providers collaborate by sharing
only model updates, gradients, or summary statistics instead of
raw data. This preserves the privacy of individual consumption
patterns while enabling knowledge sharing and model improve-
ments.

3. Privacy-Preserving Techniques: Deep federated learning incor-
porates privacy-preserving techniques like differential privacy,
which adds noise to individual data points, protecting consumer
privacy while maintaining the overall accuracy of the model.

4. Robust Model Training: By training on diverse datasets from
multiple utilities, the deep federated learning model gains a
broader understanding of theft patterns and can detect anoma-
lies more accurately. It can identify common theft indicators,
such as abnormal consumption patterns, tampering signatures,
or meter bypasses, while accounting for local variations.

5. Real-Time Analysis: Deep federated learning models can con-
tinuously update and refine their theft detection capabilities by
incorporating new data as it becomes available. This real-time
analysis enables prompt identification and response to potential
theft incidents.

Deep federated learning from smart meter data provides a secure
and reliable approach to theft detection in the smart grid. It addresses
challenges related to data volume, privacy concerns, and distributed
data sources. By leveraging the collective knowledge embedded in de-
centralized smart meter data, deep federated learning enables accurate
and timely identification of theft patterns while preserving consumer
privacy and ensuring the integrity and efficiency of the smart grid.

2.5. Smart Grid, Industry 5.0 and federated learning

The integration of multiple power sources, efficiency in energy use,
real-time monitoring capabilities, and creating two-way communica-
tion between customers and energy suppliers are characteristics of the
growth of the Smart Grid, which focuses on multidimensional energy
management. Our method, which is based on federated learning (FL),
emerges as a crucial tool inside this complex framework. By using FL,
we have made sure that intelligence-building on the grid continues to
be collaborative while ensuring that data stays decentralized. This fits
in nicely with the philosophy of the Smart Grid: decentralized energy
sources cooperating to power a single system. We increase the grid’s

resilience by utilizing FL for theft detection to make sure it is strong
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Table 2
General information of theft dataset.

Items Values

Total no. of data instances 560,655

No. of columns
Numerical columns: 10
Categorical columns: 2 (Including target column)
Total columns: 12

Coding technique for categorical column Label encoder
No. of consumer types 16
(Data column: Class)
i
a

despite the obstacles of the digital era. This successfully underscores
the crucial significance of federated mechanisms in contemporary en-
ergy solutions. The digitalization of the Smart Grid is consistent with
Industry 5.0’s advocacy of the fusion of technology power with human
intuition. The grid is now undergoing a transformation, moving from
being merely a conduit for electrical current to being an environment-
responsive, sentient system. Our suggested theft detection technique,
which depends on Federated Learning’s capabilities, precisely embodies
this Industry 5.0 vision. A successful human-machine symbiosis is en-
sured by FL, which makes sure that although individual data points stay
localized, the collective intelligence of the grid is constantly improved.
The federated approach also emphasizes the protection of personal data
privacy, a pillar of Industry 5.0, reiterating that even as we develop
toward sophisticated technical integrations, the sacredness of human
privacy remains inviolable.

3. Dataset description and processing

The data utilized for this project was sourced from the Open Energy
Data Initiative (OEDI) portal. It is a centralized repository for high-
value energy research datasets gathered from the Programs, Offices,
and National Laboratories of the U.S. Department of Energy (Leite and
Mantovani, 2016). It comprises of numerous datasets that have been
carefully selected in order to speed up accessibility and cooperation.
This data lake contains data from a variety of sources, including the
corporate sector, academic organizations, and research facilities. En-
ergy use for 16 distinct consumer categories is included in the dataset.
The original dataset encompasses energy consumption measurements
for diverse consumers spanning a year. Every hour, for a total of 24 h,
measurements are taken. About the created dataset, more details are
provided in Table 1. The key points of the dataset’s description are
condensed into summarized elements for clarity and easier reading.
The dataset has two categorical columns and ten numerical columns.
The dataset included no null values, thus in order to incorporate the
category columns and make it usable for training, we used Label
Encoder to convert the columns into numerical features that are easier
to implement for DL. The Standard-Scalar library, which is accessible
in Python, is then used to normalize numerical columns. Utilizing the
data values, 4 different scenarios are available:

1. All theft types (target variable) are taken into consideration for
classification.

2. The theft 3 type is dropped and the theft classification is changed
to six types.

3. The theft 6 type is then removed from the dataset and the
classification problem is changed to five theft types.

4. Finally, the Class column in the dataset, which contains data in-
stances from 16 different silos (organizations, research institutes,
etc.) and a variety of data instances across each silo.

The procedures for gathering, processing, and potential uses of the
ata are described. The use of this data seems to hold promise for
he development of data-driven algorithms for categorizing different
orts of theft. The general and statistical descriptions of the theft type
atasets are depicted in Table 2 and Table 3 respectively. These include
o. of data instances, no. of columns, mean, standard deviation and
aximum and minimum values.
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In multivariate analysis and statistics, a correlation matrix is typi-
cally used to explore the relationships between several variables. As can
be seen in correlation matrix for this dataset in Fig. 3, all data features
have a negative relation with the target column. The distribution of the
class instances is shown in Fig. 4.

The two category columns in the dataset are Class and Theft (the
target variable). It is essential to be aware of the data examples that are
accessible for each type of theft in order to completely comprehend how
to build a system for categorizing different types of theft. Additionally,
the dataset has a class column that divides the data into various
buildings (such as hospitals, schools, and others) and may be used
in FL’s cross-silo strategy. Therefore, it is crucial to understand the
number of data instances present in each building (silo), as well as the
availability of theft-related data in each silo.

4. Proposed technique

4.1. Federated learning

Federated learning (FL) is a decentralized method of machine learn-
ing (ML) in which training takes place throughout a network of servers
or devices rather than in a single location. In this paradigm, the
model training happens locally, and the data is kept on local servers
or individual devices rather than being collected in a single loca-
tion (Li et al., 2020). To create a universal model, solely the revised
model parameters are aggregated and transmitted across the devices. A
cutting-edge method of ML that tackles the issues of data privacy and
centralization is federated learning. All of the data is normally gathered
in a single server or data repository, where the model is developed, in
traditional ML. However, centralizing data frequently leads to worries
about security, privacy, and adherence to data protection laws. By
allowing ML models to be trained on dispersed devices or local servers,
federated learning adopts a decentralized strategy. The data is stored on
individual devices, such as smartphones, IoT devices, or edge servers,
rather than being sent to a central server. This method has a number of
benefits, including more privacy, cheaper communication, and better
scalability. Due to the abundance of data available recently, ML and
DL-based techniques have experienced enormous growth. The visual
overview of the step by step flow and key components of proposed
method is shown in Fig. 5. The adopted approach uses the following
steps:

• Each participating client receives an initial model from the coor-
dinator first.

• Using their own local datasets, each client independently devel-
ops a unique learning model, sending the updated model back to
the coordinator for aggregation.

• The aggregated model updates are then provided back to the local
participating client after aggregation.

• Until the model converges or the predetermined number of iter-
ations has been reached, this process is repeated. Less communi-
cation overhead results from the client–server design.

To minimize the aggregated local loss function 𝑓𝑎(𝜃𝑎), FL seeks to
dentify the best global model 𝑡ℎ𝑒𝑡𝑎 in Eq. (2), where 𝑥𝑖 is the data-
ttributes, 𝑦 represents data-labels, 𝑛 points out the local-data size,
𝑖 𝑎
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Fig. 3. Correlation matrix of data attributes with inclusion of target variable.
Table 3
Numerical data features information.

Data feature Mean Std. Min Max

Electricity:Facility [kW](Hourly) 161.77 287.32 0.0 1726.43
Fans:Electricity [kW](Hourly) 13.79 24.08 0.0 240.01
Cooling:Electricity [kW](Hourly) 43.77 117.10 0.0 890.62
Heating:Electricity [kW](Hourly) 0.84 6.12 0.0 277.99
InteriorLights:Electricity [kW](Hourly) 32.98 65.17 0.0 448.56
InteriorEquipment:Electricity [kW](Hourly) 42.63 73.49 0.0 448.56
Gas:Facility [kW](Hourly) 77.31 178.68 0.0 4491.65
Heating:Gas [kW](Hourly) 53.91 157.72 0.0 4480.73
InteriorEquipment:Gas [kW](Hourly) 8.16 15.95 0.0 91.79
Water Heater:WaterSystems:Gas [kW](Hourly) 15.23 52.63 0.0 783.87
and 𝑛 =
∑𝐶×𝐴

𝑘=1 𝑛𝑎 all local clients do not contribute in consecutive
iterations.

𝑓𝑎(𝜃𝑎) =
1
𝑛𝑎

𝑛𝑎
∑

𝑖=1
𝑙(𝑥𝑖, 𝑦𝑖; 𝜃𝑎) (1)

where 𝑘 represents the index of the client among 𝑛𝑎 sample pairings,
and 𝑙 denotes the loss function.

min
𝜃

𝐶×𝐴
∑

𝑘=1

𝑛𝑎
𝑛
𝑓𝑎(𝜃𝑎) (2)

According to the features of data distribution among the linked
customers, as initially specified in the study (Zhang et al., 2021), FL
may be broadly divided into three categories: horizontal, vertical, and
transfer FL. In this paper, HFL is used largely, also including the concept
from both Cross-Silo and Cross device approaches of FL.
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4.1.1. Horizontal FL (HFL)
Homogeneous FL (Yang et al., 2019), Also referred to as horizontal

federated learning (FL), this approach pertains to situations where
participating customers’ training data share the same feature space but
possess distinct sample spaces. To illustrate, consider a simple example:
Clients 1 and 2 each have unique rows of data with identical personal
attributes, where each row represents details for an individual. The Fe-
dAvg method (McMahan et al., 2017) is a representative HFL algorithm
(Algori 1) that represents pseudo code for this process, As illustrated
by Zhu et al. (2020) performance varies with low participation rate
𝐶 where 𝑚 = 𝐶 × 𝐴 is clients number. The same model architecture
featuring distinct parameter values can be observed within both the
global model 𝜃𝑡 (where 𝑡 represents the communication round) and all
local models 𝜃𝑎. In is scenario aggregated model improves with each
local model 𝑡ℎ𝑒𝑡𝑎𝑎 training performance according to the ratio 𝑛𝑎∕𝑛
proportional to the client data in global model 𝑡ℎ𝑒𝑡𝑎𝑡. This is done using
a batch size of 𝐵 and a learning rate of 𝜂.
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Fig. 4. Distribution of Class Instances in the dataset.

Fig. 5. Visual overview of the step-by-step flow and key components of the proposed model.
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Fig. 6. Architecture of the Cross-Silo Federated Learning (FL) setup.
Algorithm 1 : FedAvg
Initialize A to denote the total number of clients, B for the mini-batch
size, T to represent the total number of communication rounds, E as
the total number of training epochs, and 𝜂 as the learning rate.
Server:
Initialize 𝜃0 as the global model
while t ≤ T do

Select 𝑚 = 𝐶 × 𝐴 clients, given that 𝐶 ∈ (0, 1)
for Client: 𝑎 = 1, 2,… , 𝑚 in parallel do

Transfer 𝜃𝑡 to Client 𝑎
Update Client 𝑎 using Algorithm 2 and receive 𝜃𝑎.
Update global model 𝜃 = 1

𝑛
∑𝐶×𝐴

𝑘=1 𝑛𝑎𝜃𝑎
t = t + 1

end while
return Global Model

Algorithm 2 : Client 𝑎 Update
Replace local model 𝜃𝑎 with 𝜃𝑡
for Local epoch ∈ 1 ∶ 𝐸 do
for Batch 𝑏 ∈ 1 ∶ 𝐵 do

𝜃𝑎 ← 𝜃𝑎 − 𝜂∇𝐿𝑎(𝜃𝑎, 𝑏)
end for
return 𝜃𝑎

end for

The FL system’s performance may typically be improved to some
extent by adjusting 𝐸, 𝐵, and 𝑒𝑡𝑎 appropriately for the job. This can
be found through sensitivity analysis or optimized using metaheuristic
search techniques (Zeng et al., 2021).

Horizontal FL offers a straightforward and effective solution to
prevent private local data leakage. Communication between the server
and clients is limited to the global model parameters (𝜃𝑡) and local
model parameters (𝜃𝑎), ensuring that the training data remains solely
on the client devices and inaccessible to other parties.

4.1.2. Cross-Silo FL
When a smaller number of participating devices are available and

remain accessible throughout all rounds, Cross-Silo Federated Learning
is utilized. The training data may be in FL format, either horizontally
or vertically. Cross-silo is mostly utilized for instances involving orga-
nizations. Cross-silo FL is used by works like (Zhang et al., 2020) to
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create their model. In this paper, using the categorical column (Class)
in the theft dataset, which comprises various organization names, a
cross-silo technique for theft detection is created. We construct multiple
data silos, each representing a different data source, by considering
each organization as a separate client. Similar to HFL, where training
data from participating consumers have the same feature space but a
distinct sample space, each organization has its own subset of theft data
with the same personal qualities. Local models are separately taught
inside each organization utilizing the horizontal federated learning
strategy. These regional models accurately depict the theft patterns
and traits that are unique to each organization. The local models from
each organization are then combined to build the global theft detection
model, using the information provided across the silos. This strategy
protects the security and privacy of the data that each organization has
while enabling joint training of an extensive theft detection model. The
proposed cross-silo structure of FL is shown in Fig. 6.

4.1.3. Cross-device FL
Cross-device Federated Learning is implemented in scenarios involv-

ing diverse devices. To facilitate this form of FL, it becomes crucial
to adopt sustainable approaches such as client selection and incentive
schemes (Yu et al., 2020). Additionally in this study, we have created
a cross-device strategy utilizing theft dataset with cross-silo approach.
We allow the training of local models on each device by randomly
partitioning the dataset into 10 clients representing various devices,
such as smartphones, IoT sensors, and security cameras. The devices
in question employ horizontal federated learning and share a feature
space, but they each retain different samples of theft data. Using
its unique dataset, each device separately trains a local model. The
device-specific theft patterns and features are captured by these local
models. The local models from each device are then combined to build
the global theft detection model, which incorporates the knowledge
gleaned from the variety of devices. This method ensures the privacy
and security of the data stored on individual devices while enabling
a thorough knowledge of theft detection that takes into account the
specifics of each device’s data.

In cross-silo and cross-device scenarios, we use horizontal federated
learning to handle privacy and data security challenges related to theft
detection. Each organization functions as a separate client in the cross-
silo environment, supplying its distinct theft-related data to identify
silo-specific trends. Each device functions as a client in the cross-
device configuration to collect device-specific patterns. A strong theft
detection model that takes use of the collective knowledge across or-
ganizations and devices is produced by the federated learning process,
which enables the aggregation of local models from both cross-silo and
cross-device settings. By using an integrated strategy, theft detection is
more accurate and efficient while protecting the privacy and security

of sensitive information stored by each organization and device.
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Fig. 7. Architecture of the Convolutional Neural Network (CNN).

4.2. CNN model

Convolutional Neural Networks (CNNs) have demonstrated remark-
able efficacy in a range of computer vision assignments, including
image classification and object detection. Nevertheless, adapting them
for sequential data like time series or 1D signals necessitates certain
adjustments. The 1D CNN model is a variant of CNNs specifically
designed to process 1D input data (Ozcanli and Baysal, 2022).

The 1DCNN model consists of several key components: input layer,
convolutional layers, pooling layers, fully connected layers, and output
layer.

4.2.1. Input layer
The input layer of the 1DCNN model receives the 1D input signal,

which can be represented as a sequence of values 𝐱 = [𝑥1, 𝑥2,… , 𝑥𝑛],
where 𝑥𝑖 is the value at position 𝑖. The input signal is typically repre-
sented as a 1D array or a time series.

4.2.2. Convolutional layers
The convolutional layers perform feature extraction by applying a

set of filters or kernels to the input signal as shown in Fig. 7. Each filter
is a small window of size 𝑘, which slides across the input signal with a
specified stride, performing element-wise multiplications and additions.
The output of the convolution operation is computed as:

𝐜𝑖 = 𝑓 (𝐖 ⋅ 𝐱𝑖∶𝑖+𝑘−1 + 𝑏), (3)

where 𝐖 is the weight matrix, 𝐱𝑖∶𝑖+𝑘−1 is the input subsequence from
position 𝑖 to 𝑖+𝑘−1, 𝑏 is the bias term, and 𝑓 (⋅) is the activation function,
such as ReLU (Rectified Linear Unit).

4.2.3. Pooling layers
Pooling layers are employed to diminish the dimensionality of

feature maps generated by convolutional layers. Among these, max
pooling is the most common, involving the selection of the maximum
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value within a predetermined window. Max pooling helps in captur-
ing the most salient features and provides translation invariance. The
pooling operation can be defined as:

𝐩𝑖 = max(𝐜𝑖∶𝑖+𝑠−1), (4)

where 𝐩𝑖 is the pooled value at position 𝑖 and 𝑠 is the pooling window
size.

4.2.4. Fully connected layers
The fully connected layers collect the learnt features and carry out

the final classification or regression after extraction of features and
reduction of dimensionality. Each neuron in the layer with complete
connectivity is linked to every neuron in the layer below. The output
of the fully connected layer can be calculated as:

𝐡 = 𝑓 (𝐖 ⋅ 𝐩 + 𝑏), (5)

where 𝐖 is the weight matrix, 𝐩 is the input vector from the previous
layer, 𝑏 is the bias term, and 𝑓 (⋅) is the activation function.

4.2.5. Output layer
The ultimate predictions or estimates are generated by the output

layer of the 1DCNN model, relying on the acquired features from
preceding layers. The quantity of neurons within the output layer is
contingent upon the number output parameters for the problem at
hand.

4.3. GRU model

RNNs find extensive application in tasks involving sequential data
processing, like natural language processing and time series analysis.
Nonetheless, conventional RNNs encounter the vanishing gradient chal-
lenge, limiting their capacity to capture long-range dependencies. The
GRU model, an extension of RNNs, tackles this concern through the
utilization of gating mechanisms (Subramanian et al., 2022).

Comprising a series of interconnected recurrent units, the GRU
model adjusts its hidden state by considering input data and the prior
hidden state. This model incorporates two gating mechanisms as shown
in Fig. 8, namely the update gate and the reset gate, which manage
information flow and alleviate the challenge posed by the vanishing
gradient issue.

4.3.1. Update gate
Designated as 𝑧𝑡, the update gate assesses the fraction of the pre-

vious hidden state to retain and merge with the present input. Its
calculation employs the sigmoid activation function:

𝑧𝑡 = 𝜎(𝐖𝑧 ⋅ 𝐱𝑡 + 𝐔𝑧 ⋅ 𝐡𝑡−1 + 𝐛𝑧), (6)

where 𝐱𝑡 is the input at time step 𝑡, 𝐡𝑡−1 is the previous hidden state, 𝐖𝑧
and 𝐔𝑧 are weight matrices, 𝐛𝑧 is the bias term, and 𝜎(⋅) is the sigmoid
function.

4.3.2. Reset gate
When computing the new hidden state, the reset gate, indicated as

𝑟𝑡, decides how much of the old hidden state should be ignored. It is
also computed using the sigmoid activation function:

𝑟𝑡 = 𝜎(𝐖𝑟 ⋅ 𝐱𝑡 + 𝐔𝑟 ⋅ 𝐡𝑡−1 + 𝐛𝑟). (7)

where 𝐱𝑡 is the input at time step 𝑡, 𝐡𝑡−1 is the previous hidden state, 𝐖𝑟
and 𝐔𝑟 are weight matrices, 𝐛𝑟 is the bias term, and 𝜎(⋅) is the sigmoid
function.
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Fig. 8. Architecture of the Gated Recurrent Unit (GRU).

4.3.3. Candidate hidden state
The candidate hidden state, denoted as �̃�𝑡, is a proposed update to

the hidden state. It is computed using the hyperbolic tangent activation
function:

𝐡𝑡 = tanh(𝐖ℎ ⋅ 𝐱𝑡 + 𝐔ℎ ⋅ (𝐫𝑡 ⊙ 𝐡𝑡−1) + 𝐛ℎ), (8)

where 𝐱𝑡 is the input at time step 𝑡, 𝐡𝑡−1 is the previous hidden state, 𝐫𝑡
is the reset gate, 𝐖ℎ and 𝐔ℎ are weight matrices.

4.4. ConvGRU

The ConvGRU model is a hybrid architecture that combines the
strengths of CNN in capturing local features and GRU in modeling
temporal dependencies. The architecture of the ConvGRU is shown in
Fig. 9. This model is particularly effective for sequential data processing
tasks, such as speech recognition and video analysis. Comprising of two
primary elements, the ConvGRU model integrates convolutional layers
for feature extraction from input data and GRU layers for capturing
temporal dependencies.

4.4.1. Convolutional layers
The convolutional layers in the ConvGRU model extract local fea-

tures from the input sequence. Each convolutional layer applies a set of
filters to the input, which slide across the input sequence and perform
convolutions. The output feature maps capture different aspects of the
input sequence.

Let 𝐱𝑡 denote the input at time step 𝑡, and 𝐖, 𝐛 be the weight matrix
and bias term of a convolutional filter, respectively. The output feature
map 𝐜𝑡,𝑖 at time step 𝑡 and filter index 𝑖 is computed as follows:

𝐜𝑡,𝑖 = 𝑓 (𝐖𝑖 ∗ 𝐱𝑡 + 𝐛𝑖), (9)

where ∗ denotes the convolution operation, 𝑓 (⋅) is the activation func-
tion, and 𝐖𝑖 and 𝐛𝑖 are the weight matrix and bias term specific to filter
𝑖.

4.4.2. GRU layers
The GRU layers in the ConvGRU model capture the temporal de-

pendencies in the input sequence using gated units. Each GRU unit
updates its hidden state based on the previous hidden state and the
current input.

Let 𝐡𝑡−1 denote the hidden state at time step 𝑡−1, and 𝐖𝑧,𝐔𝑧,𝐛𝑧,𝐖𝑟,
𝐔𝑟,𝐛𝑟,𝐖ℎ,𝐔ℎ,𝐛ℎ be the weight matrices and bias terms of the GRU unit.

The update gate 𝑧𝑡, reset gate 𝑟𝑡, and candidate hidden state �̃�𝑡 are
calculated as follows:

𝑧 = 𝜎(𝐖 ⋅ 𝐜 + 𝐔 ⋅ 𝐡 + 𝐛 ) (10)
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𝑡 𝑧 𝑡 𝑧 𝑡−1 𝑧
𝑟𝑡 = 𝜎(𝐖𝑟 ⋅ 𝐜𝑡 + 𝐔𝑟 ⋅ 𝐡𝑡−1 + 𝐛𝑟) (11)

𝐡𝑡 = tanh(𝐖ℎ ⋅ 𝐜𝑡 + 𝐔ℎ ⋅ (𝐫𝑡 ⊙ 𝐡𝑡−1) + 𝐛ℎ) (12)

In these equations, 𝐜𝑡 represents the input feature map at time step
𝑡, 𝐔ℎ is the weight matrix associated with the reset gate, 𝐫𝑡 denotes the
reset gate, and ⊙ denotes element-wise multiplication.

4.5. Hyperparameters of ConvGRU model

The hyperparameters of the ConvGRU model are essential settings
that determine its architecture and behavior. In this section, we elab-
orate on the hyperparameters and provide typical ranges for each
parameter.

4.5.1. Number of convolutional layers
The depth of the feature extraction process is dictated by the

quantity of convolutional layers.
Range: Typically, 1 to 5 convolutional layers are used, depending

on the complexity of the task and the dataset.

4.5.2. Number of filters
The depth of the feature extraction process is dictated by the

quantity of convolutional layers.
Range: The number of filters can vary widely, usually ranging from

16 to 512 or even higher, depending on the complexity of the task and
the input data.

4.5.3. Convolutional kernel size
The size of the convolutional kernels specifies the receptive field or

the local context captured by each filter.
Range: Common kernel sizes include 3, 5, or 7, representing a

window of 3 × 1, 5 × 1, or 7 × 1 over the input sequence.

4.5.4. Pooling
Pooling layers decrease the spatial dimensions of feature maps while

capturing the most significant information.
Range: Max pooling is commonly used with pooling window sizes

ranging from 2 to 4.

4.5.5. Number of GRU layers
The number of GRU layers determines the depth of the temporal

modeling process.
Range: Usually, 1 to 3 GRU layers are used, depending on the

complexity of the task and the dataset.

4.5.6. Hidden state dimension
The hidden state dimension defines the number of memory cells or

units in the GRU layers.
Range: The hidden state dimension can vary widely, typically rang-

ing from 32 to 1024 or higher, depending on the complexity of the task
and the dataset.

4.5.7. Learning rate
The learning rate controls the step size during the optimization

process, influencing how quickly the model learns and ranges from
0.001 to 0.1. The optimal learning rate depends on the specific task
and dataset and is chosen in the ablation study of the architecture an
is 0.001 in our study.
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Fig. 9. Architecture of the ConvGRU (Convolutional Gated Recurrent Unit).
Table 4
Hyperparameters and initialization ranges.

Optimized component Hyperparameters Range (To initialize)

Convolutional layers
No. of units in 3 layers [20–29]
Filter size in each layer [1–7]
Activation [‘LeakyReLU’, ‘ReLU’, ‘Tanh’]

GRU layers No. of hidden nodes/neurons [10–500]

Dense layer Nodes [10–500]

Learning configuration Learning rate [10-5–10-1]
Dropout rate [0, 0.7]
4.5.8. Dropout rate
Dropout serves as a regularization technique that combats over-

fitting by randomly deactivating a portion of units during training.
Dropout rates typically vary between 0.1 and 0.5, reflecting the pro-
portion of units excluded during training. A higher dropout rate (0.5)
in our case helps to adapt the system to long-term and short-term
feature learning. It is important to note that the optimal values of these
hyperparameters can vary depending on the specific task, dataset, and
available computational resources. Hyperparameter tuning techniques,
such as grid search or random search, can be employed to find the best
hyperparameter values for a particular task. Table 4 provides the details
of hyperparameters utilized in this study.

4.6. Deep FL based ConvGRU model

A ConvGRU model for deep horizontal federated learning is used
in our research study. CNN and GRU, two common deep learning ar-
chitectures, are combined in the ConvGRU model. The model’s 1DConv
layer is in charge of removing regional patterns and characteristics from
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the input data. It employs a collection of trainable filters to the input
data to capture spatial and local interdependence. Local patterns in
sequential data, such as time series or text data, can be found with
remarkable success using this layer. Recurrent connections introduced
by the GRU layer, on the other hand, allow the model to recognize
temporal relationships and enduring patterns in the input. GRU units
feature gating mechanisms that regulate the information flow, enabling
the model to gradually forget certain information while updating other
information. The GRU layer is hence ideal for problems involving long-
term dependent sequential data. The ConvGRU model can detect local
and temporal trends in the theft dataset by merging the 1DConv and
GRU layers. Local characteristics are extracted from the data by the
1DConv layer, and temporal dependencies and sequential correlations
are recorded by the GRU layer. Each participating client in the deep
horizontal federated learning process trains its own ConvGRU model
using a local dataset. The local models acquire the ability to identify
pertinent characteristics and patterns unique to each client’s data.
Following local training, a new global ConvGRU model is produced
by combining the updated model parameters from each client. This
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Table 5
Optimized hyperparameters.

Optimized component Hyperparameters Optimized values

Convolutional layers

No. of units in 1st layer 200
No. of units in 2nd layer 1
No. of units in 3rd layer 3
Activation ‘ReLU’

GRU layers
No. of hidden nodes/neurons in 1st layer 100
No. of hidden nodes/neurons in 2nd layer 50
No. of hidden nodes/neurons in 3rd layer 25

Dense layer Nodes 50

Learning Configuration Learning Rate 10−2

Dropout Rate 0.5
worldwide model is an amalgamation of theft trends that have been
identified by all involved clients. In deep horizontal federated learning,
the ConvGRU paradigm has several benefits. Sequential data, which
is frequently used in theft detection activities, may be handled well.
The model can learn complicated stealing patterns and linkages since
it can collect local and temporal trends. Additionally, because federated
learning is dispersed and the training data is stored locally on servers or
devices, privacy and security are guaranteed. A potent architecture for
deep horizontal federated learning in theft detection is the ConvGRU
model. Using a federated learning method, it combines the advantages
of 1DConv for local feature extraction and GRU for capturing temporal
correlations, allowing the model to learn complex stealing patterns
while protecting data privacy.

4.6.1. Halving randomized search
To select the hyperparameter several techniques have been intro-

duced in the literature. The Grid Search method (Ogunsanya et al.,
2023) exhaustively searches all possible combinations of hyperparam-
eter values. This process can be time-intensive and computationally
demanding, particularly when dealing with an extensive array of hy-
perparameters and potential values. Alternatively, the Random Search
method (Villalobos-Arias and Quesada-López, 2021) randomly selects
combinations of hyperparameter values to evaluate. It is less compu-
tationally expensive than grid search and can often find good hyper-
parameter values with fewer evaluations. Most recently the Bayesian
Optimization (Eggensperger et al., 2013). This method uses a prob-
abilistic approach for best hyperparameter configurations. It can be
more efficient than random search and grid search, especially with a
limited budget of evaluations (Bergstra and Bengio, 2012). To tune the
hyperparameters of a ConvGRU, we adopt these steps which are also
shown in Fig. 10, and define the hyperparameters to tune as follows:

• Learning rate: The rate at which the model adjusts its weights
during training.

• Batch size: The number of samples processed in each training
iteration.

• Number of layers: The depth of the convolutional GRU network.
• Number of filters: The number of filters used in each convolu-

tional layer.
• Dropout rate: The proportion of inputs randomly set to 0 during

training to prevent overfitting.
• Activation function: The non-linear function is applied to the

output of each neuron.
• Implement the hyperparameter tuning process:
• Split the dataset into training and validation sets.
• Define the search space for each hyperparameter. For example,

specify a range of values for the learning rate or a set of possible
values for the number of layers.

• Use a hyperparameter tuning library or framework to perform the
search.

• Define a function that builds and trains the Convolutional GRU
model with the specified hyperparameters.
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• Set up the hyperparameter search algorithm, specifying the search
space, the number of iterations, and the evaluation metric to
optimize (e.g., accuracy or loss).

• Run the hyperparameter search process, which will evaluate dif-
ferent combinations of hyperparameters and select the best ones
based on the specified evaluation metric.

• Retrieve the best hyperparameters found during the search and
use them to train a final Convolutional GRU model on the full
training set.

Tuning a ConvGRU involves adjusting various hyperparameters re-
lated to both the GRU and the convolutional layers. Key hyperparam-
eters include the number of filters, kernel size, stride, padding, and
activation function for the convolutional layers, and the number of
hidden units, activation function, dropout rate, and recurrent dropout
rate for the GRU layers. Learning hyperparameters such as the learning
rate, batch size, and number of epochs also need to be tuned. To tune
these hyperparameters, you can use techniques like grid search, ran-
dom search, or more advanced methods like Bayesian optimization or
evolutionary algorithms. The goal is to find the optimal combination of
hyperparameters that results in improved performance on a validation
set or using cross-validation techniques. When tuning the hyperparam-
eters of a ConvGRU, we start by defining the hyperparameters to tune.
These include the learning rate, batch size, number of layers, number
of filters, dropout rate, and activation function. Next, we incorporate a
hyperparameter tuning method. Classical methods such as grid search
perform exhaustively searches for all possible combinations of hyper-
parameter values. The random search methods eliminate the brute
force by randomly selecting combinations of hyperparameter values
to evaluate. More advanced methods such as Bayesian optimization,
use a probabilistic model to estimate the performance of different hy-
perparameter configurations and select the most accurate to evaluate.
After defining the hyperparameters and choosing a tuning method, we
implement the hyperparameter tuning process. This involves splitting
dataset into training and validation sets, defining the search space for
each hyperparameter, using a hyperparameter tuning library or frame-
work to perform the search, defining a function that builds and trains
the ConvGRU model with the specified hyperparameters, setting up the
hyperparameter search algorithm, running the hyperparameter search
process, retrieving the best hyperparameters found during the search,
and using them to train a final ConvGRU model on the full training set.
Finally, we evaluate the final model on a separate test set to assess its
performance (Nagaraj and Malagi, 2023). Halving randomized search
leverages both traditional and probabilistic techniques to achieve time
and computational efficiency, facilitating swift hyperparameter opti-
mization. In successive halving, the reduction in candidate models and
the expansion of training cases between iterations are governed by
exponential functions. These exponential functions are influenced by
the number of successive halving iterations (Soper, 2022). To elaborate,
in each iteration of successive halving, a subset of the most promising
candidate models is selected based on their performance. The number
of candidate models to be carried forward to the next iteration is

typically a fraction of the total number of models evaluated in the
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Fig. 10. Proposed halving randomized search algorithm-based hyperparameter tuning of ConvGRU Model.
current iteration. This fraction is often referred to as the ‘‘reduction
factor’’. Calculating the exponential factor entails establishing the req-
uisite number of iterations for the successive halving procedure. For
each iteration of successive halving, the minimum number of iterations
(𝑁iter), the maximum number of cases, and the halving factor (h) are
determined by selecting approximately 1/h relative to the preceding
iterative run, as expressed in Eq. (13).

In order to compute the parameters of the exponential function, it is
essential to ascertain the necessary iterations for the halving protocol.
With each iteration, a fraction of 1∕ℎ of the models is retained from the
preceding one. The overall number of iterations (𝑁iter) is contingent
upon the minimum and maximum instances per iteration, as well as
the halving factor (ℎ), and this relationship is depicted in Eq. (13):

𝑁iter =
⌊

logℎ

(

𝑁max
𝑁min

)⌋

+ 1 (13)

As an important factor among hyperparameters after iteration num-
ber is the number of Learning models and is calculated by Eq. (14):

𝑦 = 𝑎 ⋅ 𝑒𝑥⋅𝑏, (14)

where each iteration 𝑖 (𝑖 = 0) (𝑁models) ML models required for the next
iteration are obtained by Eq. (15) (𝑁cases) number of training cases for
ongoing iteration as given by Eq. (17):

𝑁models = 𝑛(𝑀) ⋅ 𝑒−(𝑖+1)⋅𝑏models (15)

𝑏models =
ln
(

2
𝑛(𝑀)

)

−𝑁iter + 1
(16)

𝑁cases = 𝑁min ⋅ 𝑒𝑖⋅𝑏cases (17)

𝑏cases =
ln
(

𝑁max
𝑁min

)

𝑁iter − 1
(18)

where 𝑛(𝑀) is the cardinality of 𝑀 (selected candidate models). Once
the training cases in (𝑁cases) are drawn from the data using Eq. (17).
The random sample of 𝑁cases are subdivided into 𝑘 folds. Eq. (15) deter-
mines the count of candidate machine learning models (𝑁models) which
serve as the input for the subsequent iteration. I the final and current
iteration are the same, then 𝑁models is equal to 1, which indicates only
one best-performing model 𝑁models is returned. The standard successive
halving algorithm is distinguished on this point With the standard suc-
cessive halving (SHA) cross-validation is performed to counter-verify.
For identified hyperparameters, SHA generates 𝑁models best-performing
model that propagates in the next iteration. The optimized parameters
have been listed in Table 5.

5. Results and discussion

5.1. Evaluation metrics

When addressing electricity theft detection through deep learning
models, it becomes imperative to gauge the classification outcomes’
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performance. Various evaluation metrics can be employed to appraise
the precision and efficacy of these models. The commonly used metrics
include Accuracy, Precision, Recall, and F1 score. The summary of these
results is given in Fig. 11 and Fig. 12.

5.1.1. Accuracy (ACC)
By measuring the proportion of cases that are properly categorized

to all instances, accuracy assesses the classification model’s overall
correctness. It provides a general overview of the model’s performance:

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

, (19)

where TP (True Positive) denotes instances correctly classified as elec-
tricity theft, TN (True Negative) signifies instances correctly classified
as non-electricity theft, FP (False Positive) refers to instances incor-
rectly classified as electricity theft, and FN (False Negative) indicates
instances incorrectly classified as non-electricity theft.

5.1.2. Precision (P)
Precision measures the proportion of instances correctly classified as

electricity theft out of the total instances classified as electricity theft.
It focuses on the accuracy of positive predictions:

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (20)

5.1.3. Recall (R)
Recall, often referred to as sensitivity or true positive rate, quantifies

the percentage of cases that are accurately identified as power theft
out of all instances where electricity theft really occurred. It focuses on
capturing the positive instances effectively:

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (21)

5.1.4. F1 score
The F1 score represents the harmonic average of precision and

recall, offering a well-rounded assessment of the model’s effectiveness
by taking into account both precision and recall:

𝐹1 = 2 ⋅ 𝑃 ⋅ 𝑅
𝑃 + 𝑅

(22)

5.2. Detection comparison for known users

As shown in Table 6, it is evident that the DFL-ConvGRU model
outperforms the other theft detection technologies, namely DFL-GRU,
DFL-LSTM, and DFL-CNN. The DFL-ConvGRU model achieves an accu-
racy of 0.9778, surpassing the other models’ accuracies, which range
from 0.7194 to 0.8951. This indicates that DFL-ConvGRU can more
accurately classify theft incidents, making it a highly reliable choice
for theft detection applications.

Furthermore, the precision of DFL-ConvGRU is reported as 0.9804,
significantly higher than the precision values of the other models,
which range from 0.6907 to 0.9081. This suggests that DFL-ConvGRU
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Fig. 11. Confusion matrix of competing techniques for known users (a) DFL-ConvGRU (b) DFL-GRU (c) DFL-LSTM (d) DFL-CNN.
Table 6
Comparison of theft detection for known users.

Tech. Accuracy Precision Recall F1Score

DFL-ConvGRU 0.9778 0.9804 0.9733 0.9758
DFL-GRU 0.8949 0.9081 0.8990 0.8962
DFL-LSTM 0.8951 0.9077 0.8953 0.8917
DFL-CNN 0.7194 0.6907 0.6934 0.6906

minimizes false positive predictions, providing a higher level of confi-
dence in identifying actual theft cases. The recall value of 0.9733 for
DFL-ConvGRU also demonstrates its ability to capture a large propor-
tion of true positive theft instances.

Additionally, the F1 score of DFL-ConvGRU is 0.9758, which is
consistently higher than the F1 scores of the other models. The F1 score
considers both precision and recall, providing a balanced evaluation of
a model’s performance. The higher F1 score of DFL-ConvGRU implies a
better trade-off between precision and recall, indicating a more robust
and accurate theft detection capability.

5.3. Detection comparison for unknown users

In Table 7, DFL-ConvGRU achieves an accuracy of 97.84%, which
is 9.98% higher than the lowest-performing model, DFL-CNN, with an
accuracy of 87.86%. This indicates a substantial improvement in accu-
rately classifying theft incidents. Moreover, DFL-ConvGRU achieves a
precision of 96.79%, which is 7.66% higher than DFL-CNN, and a recall
of 97.00%, surpassing the other models by at least 7.43%. The F1 score
of DFL-ConvGRU, at 97.17%, demonstrates a 28.11% improvement
over DFL-CNN. These percentages highlight the significant performance
advantage of DFL-ConvGRU in theft detection.

Moving to Table 8, DFL-ConvGRU maintains its superior perfor-
mance. With an accuracy of 94.38%, it outperforms the least accurate
model, DFL-CNN, by 6.24%. DFL-ConvGRU achieves a precision of
89.90%, surpassing the other models by 11.78% or more. Similarly,
DFL-ConvGRU’s recall of 88.92% and F1 score of 89.30% exhibit
improvements of at least 13.75% and 15.84% respectively compared
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Table 7
Comparison of theft detection for unknown users across five theft types.

Tech. Accuracy Precision Recall F1Score

DFL-ConvGRU 0.9784 0.9679 0.9700 0.9717
DFL-GRU 0.9493 0.9203 0.8959 0.9066
DFL-LSTM 0.9517 0.9181 0.9058 0.9114
DFL-CNN 0.8786 0.8113 0.7517 0.7716

Table 8
Unknown users theft detection comparison with 6 theft types.

Tech. Accuracy Precision Recall F1Score

DFL-ConvGRU 0.9438 0.8990 0.8892 0.8930
DFL-GRU 0.8737 0.7697 0.7617 0.7641
DFL-LSTM 0.8707 0.7474 0.7585 0.7433
DFL-CNN 0.8122 0.7812 0.7401 0.7346

to the lowest-performing model, DFL-CNN. These percentages illustrate
the significant performance gap in favor of DFL-ConvGRU.

Finally, in Table 9, DFL-ConvGRU remains the top-performing
model. It achieves an accuracy of 88.46%, outperforming DFL-CNN
by 12.60%. DFL-ConvGRU’s precision of 84.10% surpasses the other
models by at least 20.06%, while its recall of 83.18% exceeds the
lowest-performing model, DFL-CNN, by 24.95%. The F1 score of DFL-
ConvGRU, at 84.34%, represents a 30.33% improvement over DFL-
CNN. These percentages highlight the substantial performance advan-
tage of DFL-ConvGRU in accurately identifying theft incidents.

A comprehensive examination unequivocally illustrates the
enhanced efficacy of DFL-ConvGRU in detecting theft. Consistently
outperforming other models, DFL-ConvGRU consistently attains no-
tably elevated percentages in accuracy, precision, recall, and F1 score,
accentuating its proficiency in precisely pinpointing theft occurrences.
These findings underscore DFL-ConvGRU’s supremacy and underscore
its viability as a dependable solution for theft detection.
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Fig. 12. Comparison of techniques for (a) Known Users (b) Un-Known Users with 5 Thefts (c) Un-Known Users with 6 Thefts (d) Un-Known Users with 7 Thefts.
Table 9
Comparison of theft detection for unknown users across seven theft types.

Tech. Accuracy Precision Recall F1Score

DFL-ConvGRU 0.8846 0.8410 0.8318 0.8434
DFL-GRU 0.8290 0.7803 0.7767 0.7738
DFL-LSTM 0.8192 0.6350 0.6539 0.6377
DFL-CNN 0.7620 0.5804 0.5423 0.5401

5.4. Comparative analysis

The comparative analysis presents a detailed evaluation of theft
detection techniques, including state-of-the-art (SOTA) models. Our
model, DFL-ConvGRU, achieves a remarkable accuracy of 97.84%, out-
performing the other SOTA models listed in Table 10. For instance, the
Feed Forward DNN achieves an accuracy of 91.8%, while the AlexNet-
AdaBoost-ABC model achieves 88% accuracy. The ETD-ConvLSTM
model achieves 96.3% accuracy, and the DAL-CNN model achieves
95.1% accuracy. Furthermore, the HRS-WSVDD model achieves an
accuracy of 96.8%. Our model’s exceptional accuracy of 97.84% clearly
demonstrates its superiority over existing techniques. These results
highlight the significant advancements offered by DFL-ConvGRU in the
field of theft detection, solidifying its position as a highly effective and
reliable solution for accurately identifying theft incidents.
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5.5. Discussion

The comprehensive analysis of the results from the provided tables
showcases the superior performance of DFL-ConvGRU in theft detec-
tion. In diverse scenarios encompassing both familiar and unfamiliar
users, alongside varying counts of theft types, DFL-ConvGRU consis-
tently exhibited superior performance compared to alternative models,
as evidenced by its consistently higher accuracy, precision, recall, and
F1 score. This indicates that DFL-ConvGRU is a robust and reliable
solution for accurately identifying theft incidents.

The success of DFL-ConvGRU can be attributed to its unique ar-
chitecture, which combines the strengths of CNN and gated GRU. The
CNN component enables the model to effectively extract spatial features
from the input data, capturing intricate patterns associated with theft.
The GRU component, on the other hand, captures temporal dependen-
cies and long-term relationships within the sequence, enhancing the
model’s ability to understand the sequential nature of theft incidents.
By leveraging both spatial and temporal information, DFL-ConvGRU
achieves a more comprehensive understanding of theft patterns, leading
to its superior performance.

The comparative analysis also highlighted the limitations of other
models, such as DFL-GRU, DFL-LSTM, and DFL-CNN, in accurately
detecting theft incidents. These models exhibited lower accuracy and
other performance metrics compared to DFL-ConvGRU. The results
underline the importance of incorporating both spatial and temporal
information, as achieved by DFL-ConvGRU, for effective theft detection.
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Table 10
Comparative analysis with State-of-the-Art (SOTA) techniques.

Ref. Year Tech. Accuracy

Lepolesa et al. (2022) 2022 Feed Forward DNN 0.918
Ullah et al. (2022) 2022 AlexNet-AdaBoost-ABC 0.880
Xia et al. (2023) 2023 ETD-ConvLSTM 0.963
Zhu et al. (2023) 2023 DAL-CNN 0.951
Cai et al. (2023) 2023 HRS-WSVDD 0.968
Our Model 2023 DFL-ConvGRU 0.9784
Therefore, the analysis of the results firmly establishes DFL-
onvGRU as the top-performing model in theft detection, surpassing
ther state-of-the-art techniques. Its robust performance, driven by the
ntegration of CNN and GRU, provides a valuable contribution to the
ield of theft detection. The findings from this study have implications
or researchers and practitioners, emphasizing the significance of con-
idering both spatial and temporal aspects in developing accurate and
eliable theft detection systems.

.5.1. Alignment with unified Smart Grid and industry 5.0 concepts
Smart grid in recent decades has been equipped with digital sensing,

ontrol and connectivity across the board. The monitoring specially is
one via IP that is a basic part of industry 5.0 where the artificial intel-
igence plays a significant role in diagnostics of control accuracy and
nomaly detection. These properties of modern smart grid allow for the
ederated learning to be effective. The band width of communication
hannels allows for the throughput capable enough for the Federated
earning to be effective in this scenario. Smart Grid in industrial
pplications confines to these standards. IEEE standards often play a
ignificant role in shaping communication protocols for the Smart Grid
.e. IEC 61850. This is a widely adopted international standard for
he design of substation automation and communication systems. It
efines a set of communication profiles for electric substations and is
ssential for the integration of intelligent electronic devices (IEDs) in
ubstations. Similarly, IEC 62056 combination of DLMS (Device Lan-
uage Message Specification) and COSEM (Companion Specification
or Energy Metering) are used for meter reading and data exchange
etween various devices in the grid, including smart meters and data
oncentrators. From the security point of view IEC 62351 is regarded
ell in smart grids. This series of standards addresses the security of

ndustrial automation and control systems, including those used in the
mart Grid. It provides guidelines for securing communication and
ata exchange. The models generated by the FL technique are well
andled by the smart grid constraints. Authors estimate the Smart grid
onnected VIA WIFI 6802.11n operating at 2.4 GHz delivers 450 Mbps
hich is adequate for real time theft detection. The additional benefits
f alignment of proposed technique with Smart grid in Industry 5.0 can
e listed as:

• Enhanced Energy Management: The newly proposed Convolu-
tional Gated Recurrent Unit (ConvGRU) model aligns with the
unified Smart Grid and Industry 5.0 concept by significantly
improving energy management. In Industry 5.0, systems are ex-
pected to be highly responsive and adaptable. The ConvGRU
model captures not only temporal patterns but also spatial pat-
terns in electricity consumption data, enabling real-time adjust-
ments in energy distribution. This enhances the Smart Grid’s
ability to respond dynamically to changes in energy demand and
supply.

• Data-Driven Decision Making: Both Industry 5.0 and the uni-
fied Smart Grid emphasize data-driven decision making. The
ConvGRU model leverages deep federated learning to analyze
distributed data sources. By doing so, it facilitates data-driven
insights into electricity consumption patterns and identifies po-
tential anomalies, such as theft. This aligns perfectly with Indus-
try 5.0’s focus on intelligent data analysis for making informed
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decisions.
• Privacy-Preserving Collaboration: Industry 5.0 promotes collab-
orative ecosystems where various stakeholders work together
efficiently. The federated learning aspect of the proposed model
allows data sharing and model training while maintaining data
privacy. This aligns with the Smart Grid’s need for utilities, con-
sumers, and regulators to collaborate securely and transparently,
fostering a trusted energy ecosystem.

• Resilience and Security: Industry 5.0 seeks to enhance the re-
silience of industrial systems. The theft detection technique im-
proves the security of Smart Grid networks by detecting unau-
thorized activities, thus contributing to the resilience of the grid
against external threats. In a unified Smart Grid, where various in-
terconnected components interact, security becomes paramount.

• Consumer-Centric Approach: Industry 5.0 emphasizes a more
customer-centric approach to industry. The proposed technique
indirectly benefits consumers by helping to reduce electricity
theft, which can lead to lower energy costs and more reliable
service. Smart Grids, when secure and efficient, can provide
consumers with greater control and options in managing their
energy consumption.

5.5.2. Application-oriented benefits
The application-oriented benefits for the proposed model can be

from real time fraud detection, load balancing by adjusting to the
demand of the consumers, optimization of physical infrastructure re-
sources instead of standardizing the equipment saving costs of imple-
mentation and engaging the customers by minimizing the transmission
losses. Since it ultimately impacts the cost of electricity hence min-
imizing the costs and theft will improvise cost/watt saving for the
customers. These application-oriented benefits can be listed as follow:

• Real-Time Fraud Detection: The ConvGRU model’s ability to de-
tect electricity theft in real-time aligns with Industry 5.0’s require-
ment for immediate responses to anomalies. This has direct appli-
cations in minimizing revenue losses for utilities and ensuring fair
billing for consumers.

• Dynamic Load Balancing: By analyzing consumption patterns, the
proposed model enables dynamic load balancing. Utilities can
optimize energy distribution, reduce peak loads, and prevent out-
ages. In Industry 5.0, such capabilities are crucial for maintaining
uninterrupted operations.

• Infrastructure Optimization: With accurate theft detection and
insights into consumption, utilities can optimize infrastructure
investments. They can prioritize upgrades and maintenance based
on actual usage patterns, thus reducing unnecessary spending.

• Regulatory Compliance: Smart Grids must adhere to various reg-
ulations. The proposed model aids in compliance by ensuring fair
and transparent operations, which is essential in the context of
Industry 5.0’s focus on regulatory alignment.

• Customer Engagement: The theft detection technique can be part
of customer engagement strategies. By demonstrating a commit-
ment to security and fair billing, utilities can improve customer

satisfaction and loyalty.
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6. Conclusion

The integration of Smart Grid technology and Industry 5.0 concepts
has driven the need for advanced energy management systems, but
the threat of electricity theft poses a significant challenge to their
security and reliability. This paper presented a secure and reliable
theft detection technique for Smart Grid networks using deep federated
learning (FL) and a Convolutional Gated Recurrent Unit (ConvGRU)
model. The proposed technique leverages FL to train a ConvGRU model
on distributed data sources while preserving data privacy.

The results of the study demonstrate the efficacy of the deep FL-
based ConvGRU model in accurately detecting electricity theft. The
comparative analysis showcases the superior performance of the pro-
posed technique, as reflected in the high accuracy, precision, recall, and
F1 score achieved. These results validate the effectiveness of combining
convolutional and gated recurrent units to capture both spatial and
temporal patterns in electricity consumption data.

The research contributes to the enhancement of security and effi-
ciency in Smart Grid systems. By utilizing FL, the technique ensures that
data remains distributed and private, addressing concerns regarding
data privacy. The findings highlight the potential of the proposed
approach in combating electricity theft, thus bolstering the security and
reliability of Smart Grid networks.

To further advance theft detection in the Smart Grid, future research
can focus on hyperparameter optimization and explore alternative
deep-learning architectures. These avenues of investigation aim to im-
prove the technique’s performance and refine its ability to accurately
identify theft incidents. Ultimately, the proposed technique and its
promising results pave the way for the development of robust and
secure systems in the Smart Grid domain.
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