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Producing compact voltage-controlled frequency generators and sensors operating in the tera-
hertz (THz) regime represents a major technological challenge. Here, we show that noncollinear
antiferromagnets (NCAFM) with kagome structure host gapless self-oscillations whose frequencies
are tunable from 0 Hz to the THz regime via electrically induced spin-orbit torques (SOTs). The
auto-oscillations’ initiation, bandwidth, and amplitude are investigated by deriving an effective the-
ory, which captures the reactive and dissipative SOTs. We find that the dynamics strongly depends
on the ground state’s chirality, with one chirality having gapped excitations, whereas the oppo-
site chirality provides gapless self-oscillations. Our results reveal that NCAFMs offer unique THz
functional components, which could play a significant role in filling the THz technology gap.

The terahertz (THz) technology gap refers to a fre-
quency range of electromagnetic radiation in the THz
regime where current technologies are inefficient for gen-
erating and detecting radiation [1–3]. While traditional
electronics work well for producing and sensing mi-
crowaves and optics typically operate in the infrared re-
gion, few devices can utilize the THz range. THz devices
are expected to have widespread applications ranging
from improving the sensibility of biological and medical
imaging techniques [4] to enhancing the functionality of
information and communication technologies [5]. There-
fore, developing compact and reliable THz components
is one of the main challenges of today’s electronics.

In this context, antiferromagnetic spintronics has po-
sitioned itself as a promising future technology due to
the intrinsic THz spin dynamics of antiferromagnets
(AFMs) [6–11]. Notably, several works have demon-
strated that the antiferromagnetic order couples to elec-
tric fields [12–27] – either indirectly via electrically gen-
erated spin currents or directly via spin-orbit torques
(SOTs). This implies that it is possible to manipulate
AFMs by electric fields and that AFMs can be used to
modulate electric currents. Specifically, the latter ef-
fect has been proposed as a possible mechanism for de-
veloping nano-scale THz generators [28–36]. The nano-
oscillators use DC electric fields to create self-oscillations
in the AFM, which are sustainable cyclic modulations of
the spin order driven without the stimulus of an external
periodic force. The self-oscillations act back on the elec-
tronic system, producing a THz electric output signal.
Generally, there exists a frequency window in which both
the amplitude and frequency of the AC output signal are
tunable via the electric field. This frequency window rep-
resents the bandwidth of the nano-oscillators. The ability
to maintain and control the self-oscillations over a broad
range of frequencies is critical for the applicability of the
nano-oscillators [37, 38].

FIG. 1. (color online). a. A kagome AFM with broken mirror
symmetry sandwiched between two metals. An electric field
combined with spin-orbit coupling (SOC) generates an out-
of-equilibrium spin density s collinear with the electric field,
which can drive self-sustained oscillations in the AFM. b. (c.)
A spin configuration with (+)-chirality ((−)-chirality). The
phase hosts gapped (gapless) self-oscillations corresponding
to a rotation θ(t) of the sublattice spins about z.

Previous works on AFM nano-oscillators have been
theoretical and concentrated on so-called collinear
AFMs [28–34], i.e., spin systems characterized by an an-
tiparallel arrangement of the neighboring magnetic mo-
ments. However, in several AFMs, the spin sublat-
tices are noncollinearly ordered. These spin systems are
known as noncollinear AFMs (NCAFMs). In contrast to
the collinear AFMs, where a staggered field parametrizes
the spin order [39], a rotation matrix describes the spin
order of NCAFMs [40]. Consequently, the NCAFMs ex-
hibit more complex and intriguing spin physics than most
ferromagnets and collinear AFMs. For example, recent
works have revealed novel topological phenomena [41]
and a significant spin Hall effect [42, 43]. However, de-
spite the great interest in NCAFMs, their current-driven
self-oscillations remain largely unexplored [35].
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Here, we investigate the SOT-driven self-oscillations
in a trilayer system consisting of a thin-film NCAFM
with a kagome structure sandwiched between two met-
als. The external electric field is applied perpendicu-
lar to the thin-film plane (see Fig. 1a). Surprisingly, we
find that the dynamics of the self-oscillations strongly de-
pend on the chirality set by the relativistic Dzyaloshin-
skii–Moriya interaction (DMI) of the system. Despite the
large in-plane and out-of-plane magnetic anisotropies, we
show that one of the two chiral structures hosts gap-
less self-oscillations that are highly tunable via intrinsic
SOTs. In contrast, the structure of opposite chirality
has gapped oscillations. Notably, the gapless oscillations
enable voltage-controlled NCAFM nano-oscillators with
exceptional bandwidths, where the frequency is tunable
from 0 Hz to the THz regime via the applied DC electric
field. Our results thus demonstrate that the NCAFMs
offer distinct chiral magnetic properties that are particu-
larly attractive for bridging the gap between technologies
operating in the microwave and infrared regions.

The material systems we consider are thin-film kagome
AFMs, where the mirror symmetry of the kagome lattice
plane is broken. These systems are described by the point
group D6 [44]. Important candidate materials include
Mn3X (X= Ga, Ge, Sn), which in isolation are charac-
terized by the point group D6h [45], sandwiched between
two different metals. The broken spatial inversion sym-
metry of the system has two significant consequences: 1)
it leads to a magnetoelectric effect, and 2) it induces a
DMI. The main effect of the DMI is that it determines the
chirality of the ground state (see Fig 1b-c). The magneto-
electric effect refers to the out-of-equilibrium spin density
produced by electric fields [46], which in magnetic sys-
tems yields an SOT [47–50]. Below, we start by deriving
the magnetoelectric effect of NCAFMs with D6 symme-
try from symmetry arguments [51]. Then, based on the
symmetry analysis, we phenomenologically add the cou-
pling terms between the spin system and electric field in
a microscopic model, which is used as starting point for
deriving an effective action and dissipation functional of a
uniform NCAFM. Further, the effective theory is applied
to investigate the voltage-controlled self-oscillations.

In linear response, the out-of-equilibrium spin density
s produced by the electric field E is given by [46]

si = ηijEj . (1)

Here, ηij is a second-rank axial tensor, which satisfies the
following symmetry relationships [48, 49]

ηij = |G|Gii′Gjj′ ηi′ j′ , (2)

dictated by the generatorsG of the system’s point group.
|G| represents the determinant of the symmetry oper-
ation G. Throughout, we apply Einstein’s summation
convention for repeated indices. For kagome AFMs de-
scribed by the point group D6, the symmetry relations in

Eq. (2) imply that ηij is diagonal and parameterized by
two independent parameters [52]: ηxx = ηyy ≡ η⊥ and
ηzz ≡ ηz. Here, the x and y axes span the kagome plane,
whereas the z-axis is perpendicular to the lattice plane
(Fig. 1a). Consequently, the out-of-equilibrium spin den-
sity produced by the electric field can be written assxsy

sz

 =

η⊥ 0 0
0 η⊥ 0
0 0 ηz

ExEy
Ez

 . (3)

Interestingly, we see that the electric field in kagome
AFMs can polarize the spin density along any axis (also
the out-of-plane axis z). This is different from most thin-
film systems, which usually are characterized by Dressel-
haus or Rashba SOC where the electric field only gener-
ates spin densities polarized along an in-plane axis of the
thin-film magnet [47–49]. In what follows, we investigate
how the spin density (3) couples to the NCAFM.

The kagome AFM is modeled by the spin Hamiltonian

H = He +Ha +HD +HE . (4)

Here, He = J
∑
〈ιι̃〉 Sι · S ι̃ describes the isotropic

exchange interaction (J > 0) between the neighbor-

ing lattice sites 〈ιι̃〉, whereas Ha =
∑
ι[Kz (Sι · ẑ)

2 −
K (Sι · n̂ι)2

] represents the easy axes (K > 0) and easy
plane (Kz > 0) anisotropy energies. The unit vector
n̂ι denotes the in-plane easy axis at lattice site ι. The
kagome AFM consists of three spin sublattices with in-
plane easy axes n̂1 = [0, 1, 0], n̂2 = [

√
3/2,−1/2, 0], and

n̂3 = [−
√

3/2,−1/2, 0], respectively (Fig. 1b-c). HD =∑
〈ιι̃〉Dιι̃ · (Sι × S ι̃) is the DMI where Dιι̃ = Dzẑ [53].

HE = −
∑
ι grSι · ηE expresses the reactive coupling to

the electric field, where gr is the coupling strength.
The ground state of the spin Hamiltonian (4) depends

on the ratio Dz/K. If Dz/K < 1/4
√

3, the spins are
aligned parallel or anti-parallel to the in-plane easy axes,
i.e., Sι = ±n̂ι (see Fig. 1b). We will refer to these
two ground states as (+)-chiral. On the other hand,
if Dz/K > 1/4

√
3, the spins attain a configuration of

opposite chirality, which we will refer to as having (−)-
chirality (Fig. 1c). The (−)-chiral configuration is related
to (+)-chiral structure by a reflection about the xz-plane.

The dynamics of the spin system is described by the ac-
tion S =

∑
ι ~
∫

dtA(Sι) · Ṡι−
∫

dtH and the dissipation

functional G =
∑
ι ~
∫

dt[(αG/2)Ṡ
2

ι+gdṠι·(ηE×Sι)] [54–

58]. Here, Ṡι ≡ ∂tSι, A is defined via ∇ × A(Sι) =
Sι/S, αG is the Gilbert damping parameter, and the
term proportional to gd characterizes the dissipative cou-
pling to the current-induced spin density. To derive an
effective description of the dynamics, it is convenient to
express the three sublattice spins as [54]

Sι(t) =
SR(t) [n̂ι + aL(t)]

‖n̂ι + aL(t)‖
, ι ∈ {1, 2, 3}. (5)
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In Eq. (5), the rotation matrix R(t) ∈ SO(3) is the
NCAFM’s order parameter, whereas the vector aL(t)
represents a spatial uniform small tilting (i.e., ‖aL‖ � 1)
of the spins. The parameter a is the lattice constant.

The effective action Seff for the order parameter R
is obtained by substituting Eq. (5) into the action and
expanding it to second order in the time variation Ṙ
and aL [54–58, 60]. Minimizing the resulting action with
respect to L yields an expression for the tilting field [60]

aL = ΛRT (γ0ω + γrηE) , (6)

where γ0 = ~/6SJ , γr = gr/6SJ , and Λ is a diagonal
matrix with the elements Λxx = Λyy = 2 and Λzz =
1. The vector ω represents the angular velocity of the
NCAFM and is governed by the time variation of R:

ωi = −1

2
εijk[ṘRT ]jk. (7)

The symbol εijk denotes the Levi-Civita tensor. Because
L is fully determined by R and E, it is possible to elim-
inate the tilting field from Seff by substituting Eq. (6)
back into the action, which leads to the following expres-
sion in the continuum limit [60]

Seff =

∫
dtdA

(m
2
ω2 + ω · η0E − κklpnRklRpn

)
. (8)

Here, m = 2~2/
√

3Ja2 is proportional to the mo-
ment of inertia of the AFM, η0 = ~grη/2acJ , and the
anisotropy tensor is κklpn = νklpn + dklpn where νklpn =∑
ι=1,2,3[K̃znιlnιnδzpδzk−K̃nιpnιnnιknιl] (δij is the Kro-

necker delta) and dklpn = (2/3
√

3)D̃zεzkp[n1ln3n +

n2ln1n + n3ln2n]. The anisotropy constants are K̃z =
KzS

2/ac, K̃ = KS2/ac, and D̃z = 3
√

3S2Dz/ac where
ac = a2

√
3/4 is the area of the 2D unit cell. In Eq. (8),

we integrate over the area of the thin-film AFM.
Using Eq. (5), a similar expansion of G to second order

in Ṙ and aL yields the effective dissipation functional [60]

Geff =

∫
dtdA

(α
2
ω2 + βω · η0E

)
, (9)

where α = 3~S2αG/ac is the effective damping coefficient
and the parameter β = 6S2Jgd/gr expresses the ratio
between the dissipative and reactive torques.

Eqs. (6)-(9) represent the first central result of this
Letter and provide an effective theory of a kagome AFM
coupled to an electric field via the intrinsic SOC. The
equations of motion follow from varying the action and
dissipation with respect to R. In the following, we pa-
rameterize the rotation matrix by nautical angles [61]

R = Rz(θ)Ry(φ)Rx(ψ). (10)

Here, ψ(t), φ(t) and θ(t) determine the rotation angles
about the x, y, and z axis, respectively. In this represen-
tation, the equations of motion of the AFM becomes

δSeff

δϑ
=
δGeff

δϑ̇
, ϑ ∈ {ψ, φ, θ}. (11)

Next, we investigate how a DC electric field along z,
i.e. E = E ẑ, can be applied to drive sustainable self-
oscillations. To this end, we first establish the electric
threshold value Ec for initiating the self-oscillations be-
fore we determine how the electric field can be used to
control the frequency and amplitude of the oscillations.

To derive Ec, we consider small deviations away from
the ground state and expand the action and dissipation
to second order in the nautical angles. In this approx-
imation, the anisotropy in Eq. (8) can be written as
κklpnRklRpn = (1/2)Ω ·K(±)Ω, whereas the angular ve-

locity in Eq. (7) becomes ω = Ω̇ + (1/2)Ω × Ω̇. Here,
Ω = [ψ, φ, θ] and the tensor K(±) is diagonal with the el-

ements K
(+)
xx = K

(+)
yy = 3(K̃ + K̃z)− D̃z and K

(+)
zz = 6K̃

for the expansion around the state with (+)-chirality, and

K
(−)
xx = K

(−)
yy = 3(K̃ + 2K̃z)/2 + D̃z and K

(−)
zz = 0 for

the state with (−)-chirality. Varying the resulting action
and dissipation functionals yields the linear equation:

mΩ̈ = −K(±)Ω−αΩ̇+Ω̇×η0E−β[1− 1

2
Ω×]η0E. (12)

We notice from Eq. (12) that the ground state with

(−)-chirality hosts gapless excitations because K
(−)
zz = 0.

The anisotropy constant K
(−)
zz is zero because the Hamil-

tonian (4) is invariant under rotation of the (−)-chiral
state in the kagome plane [59]. Thus, the excitations
correspond to rotations of the spins by an angle θ about
the z-axis (Fig. 1b-c). Importantly, the gapless excita-

tions imply a zero threshold value E(−)
c = 0 for initiating

self-oscillations in the (−)-chiral state. This is surprising
as the system is highly anisotropic with three in-plane
easy axes as well as out-of-plane anisotropy.

In the (+)-chiral state, all excitations are gapped by

the magnetic anisotropy. To find E(+)
c , we substitute the

ansatz Ω(t) ∼ Ω0 exp(iωt) into Eq. (12) and solve the

equation Im[ω(E(+)
c )] = 0 [60]. Summarized, we find the

following threshold values for the (±)-chiralities

E(±)
c =

2ασ(±)

η0,zz

√
mK

(+)
xx

(mβ − α)2 − α2
, (13)

where σ(+) = 1 and σ(−) = 0. For the (+)-chiral state,
Eq. (13) is supplied by the additional constraint mβ/α /∈
[0, 2]. In the interval mβ/α ∈ [0, 2], the dissipative torque
is incapable of destabilizing the ground state configura-
tion and producing self-oscillations. Below the thresh-

old value E(+)
c , the only effect of the electric field is to

slightly rotate the ground state configuration by an angle

Ω∗ = −βA−1η0E. Here, Aij = K
(+)
ij + βεikjη0,kkEk/2.

There also exists an upper critical value E(±)
f where

the electric field destroys the oscillations and drives the
NCAFM into a ferromagnetic phase [60, 62]:

E(±)
f =

S(6J + 2Kz +K ∓ 2
√

3Dz)

ηzz(gr + ~gd/αG)
. (14)
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FIG. 2. (color online). a. (b.) Auto-oscillation in a (+)-
chiral ((−)-chiral) state. Obtained by solving the nonlinear
equations of motion (11) based on Eqs. (8)-(9) with the pa-
rameter values: J = 10 meV, K = 0.03 meV, Kz = 0.09 meV,
Dz = K/8

√
3 (Dz = K/2

√
3), S = 2.0, αG = 0.01,

t0 = ~/S
√
J(K +Kz), βt0 = 10, E = 2E(+)

c . The red line

is the approximate solution θ(t) = 〈θ̇〉(±)t based on Eq. (16).
c. The self-oscillations are characterized by an electrically
controllable out-of-plane tilting aL of the sublattice spins.

Further, we examine how the electric field can con-
trol the frequency and amplitude of the self-oscillations.
A numerical solution of the full nonlinear equation of
motion (11) based on Eqs. (8)-(9), shows that both
ground states with (±)-chirality, respectively, evolve into
a steady state oscillation θ(t) around the z-axis with

ψ = φ = 0 when E > E(±)
c (Fig. 2a-b). Consequently,

both chiralities are above the threshold characterized by
the single nautical angle θ(t) and the dynamics of the
auto-oscillations are captured by the ansatz θ = θ(t) and
ψ = φ = 0. Upon substitution into Eqs. (8)-(9), the
ansatz yields the following equation of motion (11)

mθ̈ = −3σ(±)K̃ sin(2θ)− αθ̇ − βη0,zzE . (15)

Eq. (15) is identical to the equation of a point mass
m experiencing the periodic potential −(3K̃/2) cos(2θ),
friction −αθ̇, and dissipative force −βη0,zzE . Because

σ(−) = 0, the steady-state frequency θ̇ of the (−)-chiral
state is easily extracted from Eq. (15) as the termi-
nal velocity where the friction balances the dissipative
force. This terminal velocity also corresponds to the
time-averaged frequency of the (+)-chiral state, which
can be calculated by averaging Eq. (15) over one cycle.
Hence, for both chiralities, the relationship between the
average frequency and the driving electric field becomes

〈θ̇〉(±) = −βη0,zzE
α

. (16)

Note that the self-oscillations of the (+)-chiral state can
be maintained by a lower electric field strength E0 than

the field E(+)
c required for initiating the oscillations. A

similar phenomenon also appears in collinear AFMs [29].
At the sub-threshold field E0, the work done by the dissi-
pative force −βη0,zzE equals the energy loss due to fric-
tion for the slowest possible oscillation (i.e., the oscilla-
tory motion where θ̇ = 0 at the energy maxima of the po-
tential −(3K̃/2) cos(2θ)). This requirement leads to the

sub-threshold field |E0| = 2α
√

6K̃/π
√
m|βη0,zz|. Thus,

we find the following bandwidths of the auto-oscillations:

〈θ̇〉(±) ∈ −βη0,zz

α
[σ(±)E0, E(±)

f ]. (17)

In the frequency intervals (17), the oscillation gradually
changes from a full in-plane rotation of the spins into a
conical motion where the base radius of the circular cone
depends on E (Fig. 2c). The tilting out of the xy-plane
(and thus the amplitude of the oscillation) is determined
by the vector aL, which in linear response becomes:

〈aL〉 =

(
αγrηzz − γ0βη0,zz

α

)
E ẑ. (18)

Eqs. (16)-(18) are the second central result of this Let-
ter and provide a novel theory of electrically tunable
nano-oscillators based on kagome AFMs.

The current-driven auto-oscillations, described by
Eqs. (16)-(18), hold great potential for generating THz
voltage signals. These oscillations stem from the
anisotropic magnetoresistance (AMR) effect, which oc-
curs when time variations in the spin system modulate
the longitudinal resistance. In our study, we anticipate
that the longitudinal resistance of the NCAFM is influ-
enced by the nautical angle θ and the tilting vector aL.
This relationship can be expressed as R(t) = R0 +δR(t),
where R0 represents the constant component of the lon-
gitudinal resistance, and δR(t) = δR[θ(t), aL(t)] varies
with time via θ and aL. The time-varying term, δR,
generates an AC voltage signal Uac given by

Uac(t) = δR(t)Idc, (19)

where Idc represents the applied direct electric current.
Note that in ferromagnets and collinear AFMs, the AMR
effect only depends on the relative angle between the cur-
rent and the order parameter vector, thus, implying a
vanishing AC output signal for precessional modes hav-
ing a constant angle with respect to the applied cur-
rent (such as the auto-oscillation mode for the (−)-
chirality). In collinear AFMs, theoretical works have
shown that an AC signal can be achieved via interfacial
spin-filtering [28], in-plane anisotropy [29], and domain
wall structures [36]. However, NCAFMs have, in general,
a much more complex spin structure than ferromagnets
and collinear AFMs, parametrized by an SO(3)-valued
order parameter field. The AMR of NCAFMs is therefore
anticipated to have a highly nontrivial and anisotropic
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dependence on the orientation of the underlying spin-
lattice. This has recently been experimentally demon-
strated for Mn3Ge [63]. Consequently, we expect that
even highly symmetrical auto-oscillation modes (such as
the (−)-chirality mode) could potentially lead to modu-
lations of the longitudinal resistance in Eq. (19).

The frequency and bandwidth of the generated voltage
signal (19) are determined by the angular velocity (16)
and the frequency window (17), respectively. To estimate
the characteristic frequency range of our nano-oscillator,
we assume that the NCAFM’s SOT is comparable to
that of (Ga,Mn)As [64], which yields the following val-
ues for the reactive and dissipative torque parameters:
grηzz/~ = 879.3 m/Vs and gdηzz = 367.2 m/Vs. By
utilizing these values, along with the material parame-
ters provided in Fig. 2, we find the bandwidths to be
〈θ̇〉(−) ∈ [0, 1.8×1014] rad/s and 〈θ̇〉(+) ∈ [3.7×1012, 1.8×
1014] rad/s, respectively, and an initiation frequency of
∼ 1.6× 1013 rad/s for the (+)-mode [60]. These estima-
tions demonstrate that NCAFM-based nano-oscillators
offer a unique frequency tunability, which is challenging
to achieve in other magnetic systems. It is noteworthy
that NCAFMs exhibiting D4 and D3 symmetry possess
the same spin density (3) and SOT as kagome AFMs.
Consequently, we anticipate that these material classes
will show similar current-driven auto-oscillations.
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Ricerca, D.M. 10/08/2021 n. 1062 (PON Ricerca e Inno-
vazione) and Project PRIN: “The Italian Factory of Mi-
cromagnetic Modeling and Spintronics” (Prot. 2020LW-
PKH7).

[1] A.Borak, Science 308, 638 (2005).
[2] Tonouchi, Nat. Photon. 1, 97 (2007).
[3] M. Lee and M. C. Wanke, Science 316, 64 (2007).
[4] D. Arnone, C. Ciesla, and M. Pepper, Phys. World 13

(4) 35 (2000).
[5] X. Pang et al., Journal of Lightwave Technology 40 (10),

3149 (2022).
[6] T. Jungwirth, J. Sinova, A. Manchon, X. Marti, J. Wun-

derlich and C. Felser, Nat. Phys. 14, 200 (2018).
[7] R. A. Duine, Kyung-Jin Lee, S. P. Parkin and M. D.

Stiles, Nat. Phys. 14, 217 (2018).
[8] O. Gomonay, V. Baltz, A. Brataas and Y. Tserkovnyak,

Nat. Phys. 14, 213 (2018).
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