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This paper presents a novel methodology that utilizes gesture recognition data, which are collected with
a Leap Motion Controller (LMC), in tandem with the Spotted Hyena-based Chimp Optimization Algorithm
(SSC) for feature selection and training of deep neural networks (DNNs). An expansive tabular database
was created using the LMC for eight distinct gestures and the SSC algorithm was used for discerning and
selecting salient features. This refined feature subset is then utilized in the subsequent training of a DNN
model. A comprehensive comparative analysis is conducted to evaluate the performance of the SSC algorithm
in comparison with established optimization techniques, such as Particle Swarm Optimization(PSO), Grey
Wolf Optimizer(GWO), and Sine Cosine Algorithm(SCA), specifically in the context of feature selection. The
empirical findings decisively establish the efficacy of the SSC algorithm, consistently achieving a high accuracy
rate of 98% in the domain of gesture recognition tasks. The feature selection approach proposed emphasizes
its intrinsic capacity to enhance not only the accuracy of gesture recognition systems and its wider suitability
across diverse domains that require sophisticated feature extraction techniques.

1. Introduction

Big data analytics is one of the key areas where the next generation
of parallel and distributed systems will be used. Nowadays, exabyte-
sized data repositories for these applications exist and are growing
quickly. These datasets, in addition to their sheer size, provide major
obstacles to techniques and software development. The volume and
security concerns of datasets, which are frequently dispersed, call for
distributed methods using platforms used to store data frequently have
a wide range of computing and networking capabilities. Many appli-
cations require careful consideration to fault-tolerance, security, and
access control [1]. Analysis tasks often come with tight deadlines, and
in certain cases, ensuring high-quality data is a significant challenge.
Data-driven models and techniques that can function at scale are yet
unknown for most developing applications.

The term “Big Data” encompasses not only the immense volume
of data but also its intricate complexity and diverse variety [2], and
velocity [3]. The advent of big data has revolutionized organizational
operations and decision-making processes [4]. Through the utilization
of advanced big data analytical tools and technologies, organizations

can harness valuable insights into customer behavior, market trends,
and operational performance. These insights enable informed decision-
making, drive efficiency enhancements, and foster innovation within
the organization [4]. But the sheer volume of data alone cannot better
systems, it is not just the quantity of data but also its quality that affects
the output of a system [5]. The presence of poor-quality data can have
detrimental effects on decision-making and business operations, as it
may result in inaccurate and unreliable outcomes. Such consequences
can significantly impact the organization’s effectiveness and success.
Therefore, ensuring data quality is of utmost importance to mitigate
risks and make sound decisions based on trustworthy information [6].
Therefore, good quality data is an empirical part of modern technology
and it is being used everywhere from using machine learning (ML) al-
gorithms to redefine healthcare and make more accurate diagnoses [7]
to its use in reshaping our modern-day financial decisions [8].
Human action recognition is also an area that has become increas-
ingly popular in the pattern recognition and computer vision areas as
a consequence of the expansion of numerous interactive applications
in human-computer interaction. Hand gesture detection (HGD) is used
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in a variety of applications gaming, virtual reality, and healthcare to
perform critical operational procedures. Using gestures to control a
computer or a smart device, or enable a virtual character to mimic the
movements of a user in a virtual reality environment would remove
the requirement for an intermediate input device between humans
and computers and users will be able to control machines with mere
gestures [9]. Two main methods are being used for HGD, namely
Static HGD and Dynamic HGD. Static HGD means the detection of
still gestures whereas Dynamic HGD covers motion-based gestures.
Over the years, researchers have developed a variety of ways for HGD
including wearable technology-based, depth-based [10], and vision-
based detection [11]. While wearable gloves can accelerate the process,
it is important to note that the underlying technology can be costly
and does not always ensure reliable outcomes. On the other hand, the
availability of cheap but efficient sensors has played its part in the
evolution of this field. Sensors like the Microsoft Kinect, Intel Realsense,
and Sensz3D provide depth and color information, while the Leap
Motion Sensor (LMC), employed in this study, captures short IR images
and provides data regarding the skeletal information of the hand. The
data can either is captured visually or it can be tabulated from the
sensor data [12-14].

Another method, found in literature, is to use raw data directly and
apply ML algorithms to identify gestures. This method has been dis-
cussed in [15] using the Deep Learning technique on more than 30000
features and in [16] using the k-nearest neighbors algorithm (KNN),
Decision Trees, and support vector machines (SVM). The advantage of
using raw data is that it is faster than the conventional algorithms used
for image detection and with large enough data the efficiency could be
improved greatly. However, not all features extracted from the sensor
are useful and it is hard to go through each feature and find those that
give the best results. In this regard, using feature selection techniques
can narrow down the data set to the specific features which give the
best results [17].

Feature selection (FS) is being used in a variety of applications
for the process of reducing data sets without compromising on the
efficiency of the system and in most cases even enhancing the perfor-
mance as well by removing redundant features [9,18]. Dimensionality
reduction using feature selection methods can be achieved in a va-
riety of ways including selection based on statistical properties and
correlations (Filter based methods) [19], using conventional techniques
such as PCA [20] or LDA [21] and using Wrapper based methods.
However, there is a new range of algorithms which, over the years
have proven to be more effective in solving this problem for complex
data sets, these are called metaheuristic algorithms. Metaheuristic al-
gorithms have been widely used in feature selection to derive optimal
feature subsets. These algorithms are renowned for their capability to
discover the optimal solution within expansive feature spaces. They
are commonly employed in optimization problems characterized by
intricate search spaces and non-linear objective functions. Their ef-
fectiveness in navigating complex landscapes makes them valuable
tools for tackling challenging optimization tasks. These are inspired by
natural processes, such as evolution, hunting, movement, or foraging
behavior of different organisms. Several bio-inspired meta-heuristic
algorithms are commonly used in various optimization problems. Some
of the most well-known bio-inspired meta-heuristic algorithms include
Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Artificial
Bee Colony (ABC) Optimization, Firefly Algorithm (FA), Grey Wolf
Optimization (GWO), and Whale Optimization Algorithm (WOA). Each
of these algorithms is inspired by different biological phenomena, such
as swarming behavior, evolution, migration, hunting, and foraging.

The LMC from Ultraleap is an optical hand-tracking device. It is
primarily intended for use in interactive software applications for hand
gesture and finger position recognition [22]. It records the motion of
the user’s hands and fingers to enable natural interaction with the
digital content and has been widely used for gesture detection in
various applications, including:
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1. Human-Computer Interaction (HCI): the LMC can be used to pro-
vide a new form of interaction between humans and computers.
With gesture recognition, users can control their computers and
applications with hand and finger movements [23,24].

2. Virtual/Augmented/Mixed Reality (VR/AR/MR): the LMC can
be integrated into VR/AR/MR systems to provide a more im-
mersive and natural experience [25,26]. Users can use hand and
finger gestures to control and interact with virtual environments.

3. Gaming: the LMC can find applications in gaming to provide a
new interactive environment for users in the game. Players can
control games with hand and finger gestures, providing a more
immersive and intuitive gaming experience

The LMC uses IR (Infrared) imaging to quickly ascertain the locations
of preset objects within a constrained area. The controller follows hand
movement in 3D interaction region that spans to more than 60 cm (24")
and has a nominal viewing field of 140° x 120°. The software provided
by the manufacturer can capture 27 different hand features, such as
bones and joints, and follow them even when they are hidden by other
parts of the hands. Fig. 1(a) shows the reference hand model used by
the LMC and a reference output image extracted using the visualizer
provided by UltraLeap shown in Fig. 1(b).

The LMC employs two 640 x 240 pixel near IR cameras and three IR
LEDs which are spaced equally. The LMC device structure is shown in
Fig. 2. The sensor is integrated with the system using LeapMotion SDK
provided by the manufacturer supported to use with Python. Data from
LMC can be extracted both in image form and as spatial coordinates
in tabular form. A total of 208 features are provided which consist of
rotational and spatial features of the palm, fingers, and bones of each
hand.

Datasets employing pictorial or moving frame information have
been used extensively for HGD, however, in this paper we consider
the possible use of spatial and spatiotemporal data for the purpose of
gesture detection. As discussed earlier the LMC outputs 208 feature
vectors and all features are not of equal quality, some may be redundant
or carry no substantial information thereby degrading the performance
of the model [28]. Employing intelligent algorithms for the process
of feature reduction can greatly increase model efficiency and reduce
computational expenses, thereby making the algorithm faster [29]. In
order to determine the optimum subset for feature selection issues, such
techniques as greedy, exhaustive, and random search have been used.
The majority of algorithms, in literature, suffer problems like premature
convergence, excessive complexity, and high computational expenses.

Over the last few decades, metaheuristic algorithms have emerged
as promising approaches for addressing complex optimization prob-
lems. These algorithms provide effective solutions by leveraging in-
telligent search strategies and adaptive techniques, enabling them to
navigate intricate search spaces and tackle non-linear objective func-
tions. Their widespread application has shown great potential in solving
diverse real-world problems and advancing optimization methodolo-
gies [30].

Metaheuristic algorithms are a new category of search and opti-
mization algorithms that are inspired by different naturally occurring
phenomena, a basic classification of these algorithms is shown in
Fig. 3 [31]. Metaheuristic algorithms are more flexible and adapt-
able and can handle large amounts of data. Population-based search
algorithms span wide search space efficiently and random search-
based algorithms provide an efficient solution against local maxima
problems. Moreover, bio-inspired algorithms are based on naturally
occurring phenomena like hunting, foraging, and breeding behaviors
of several animals [32]. PSO, GWO, and ABC are some of the most
common nature-based bio-inspired metaheuristic algorithms. These
algorithms use a population of organisms to scout a wide search
space(exploration), then each population is evaluated against a cost
function(exploitation) and finally, the populations converge on a so-
lution [33,34]. During each iteration, randomness is introduced in
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(b) Image extracted from the LMC.

Fig. 1. Human Hand visualization using the LMC.
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Fig. 2. LMC Schematic Diagram [27].
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Fig. 3. Brief Classification of Meta-Heuristic Algorithms.

the population so the solution(mutation) does not get stuck on local
minima. The ability of these algorithms to deal with large dataset and
complex real-world problems make them an ideal candidate for the
purpose of dimensionality reduction.

In this paper, a dataset is developed containing eight static fea-
tures using the LMC. The dataset is then pre-processed and passed
through a metaheuristic algorithm. The first step is to use a hybrid

metaheuristic algorithm for dimensionality reduction. Then the results
are compared with conventional algorithms and it is empirically shown
that the selected algorithm performs better than its conventional coun-
terparts. The reduced dataset is then passed through a deep neural
network(DNN)which is further trained by employing the same hybrid
metaheuristic algorithm for the gesture classification purpose. At this
stage, neural networks are trained for both reduced and complete
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Fig. 4. Proposed scheme of study for the proposed technique.

datasets. The results compiled show that reducing the dataset reduces
the number of parameters to be trained and the complexity of the DNN
without compromising the overall efficiency of the system. A detailed
figure of the scheme developed during the course of this paper is shown
in Fig. 4.

1.1. Contribution and paper organization

The contributions of this work are:

Creation of a new hand gesture dataset that can potentially be
used for future research in hand gesture recognition.
Development of a novel metaheuristic algorithm (SSA) for feature
extraction from a hand gesture dataset collected using the LMC.
Comparison of the performance of the proposed metaheuristic al-
gorithm with other state-of-the-art algorithms i.e. PSO, GWO and
SCA for feature extraction from hand gesture data is evaluated.
Development of a hybrid deep learning model (SSA-DNN) that
integrates the proposed metaheuristic algorithm for feature ex-
traction is formulated. The model can achieve better performance
with selected and full features.

The proposed methodology and experimental setup can poten-
tially serve as a framework for other researchers interested in
developing hand gesture recognition models.

The remainder of the paper is composed as follows. Section 2
discusses recent related work. In Section 3 details about the dataset
generation and pre-processing is described. Section 4 highlights the
details of the proposed technique for feature selection. Section 5
discusses the proposed technique for classification and Section 6 covers
results and discussion of the experiment.

2. Related work

Metaheuristics have been the center for research in computing and
optimization problems for the past few decades. GWO, ABC, PSO, and
WOA are among some of the most widely used nature-inspired algo-
rithms for solving complex real-world problems. PSO is a population-
based algorithm derived from the collective movement of a flock of
birds or a school of fish. It employs a swarm of particles to search
for the best solution by adjusting their speed and position relative to

their own experience and the experience of their neighbors [35]. GWO
is a population-based optimization algorithm inspired by the hunting
behavior of grey wolves. It mimics a wolf pack’s leadership hierarchy
and hunting mechanism to search for optimal solutions [36]. ABC
is a population-based optimization algorithm inspired by the foraging
behavior of honey bees. It uses a population of artificial bees to cover
the search space and determine the best global solution [37]. WOA is a
meta-heuristic algorithm inspired by the hunting behavior of humpback
whales. It mimics the bubble-net hunting technique used by humpback
whales to find optimal solutions [38]. More recent hybrid algorithms
have also been developed that use multiple meta-heuristic techniques
or a combination of meta-heuristic and optimization algorithms to solve
the problems more effectively [39]. Azzougui et al. [40] used GWO to
find the optimal placement of phasor measurement units in a wide area
network and applied the technique on the Algerian 63 bus system.
Researchers have developed a significant interest in the field of
human-computer interaction (HCI) in recent years, and one of the key
areas within this field is gesture detection. Researchers have studied
multiple gesture detection methods including wearable technology,
vision-based and depth-based detection. In [41], the use of accelerom-
eters and gyros have been discussed whereas [42,43] discuss the use of
multi-touch sensors to capture hand and finger movements. Depth sen-
sors, a fairly new technology as compared to other HGD techniques [44,
45], show image-based feature extraction and gesture detection using
LMC. Yao et al. [46] discussed the application of Microsoft’s Kinect for
the purpose of HGR. Zeng et al. [47] proposed a new technique for HGR
using LMC via deterministic learning. The method extracts features
from LMC and models hand motion dynamics using constant radial
basis function neural networks. Using different cross-validation styles,
the method achieves good accuracy for the classification of English
alphabets and Arabic numerals. Lu et al. [48] presented a method for
dynamic HGR using LMC and a novel feature vector. The method uses a
Hidden Conditional Neural Field classifier to determine gestures based
on their depth information. Xu et al. [49] presented a HGR system using
feature extraction and NN. The system consisted of four stages: image
acquisition, data pre-processing, feature extraction, and classification.
The system was able to recognize 10 hand gestures from the American
Sign Language (ASL) alphabet. The study compared different feature
extraction methods and different neural network architectures and
evaluated the performance of the system using accuracy, precision,
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Table 1

Data extracted from the LMC.
Gesture Hand PalmX H_Roll H_Yaw Arm_DirX Wrst_Pos_Z EL_Pos_X EL_PosY
1 R 10.92 -8.24 -0.31 -0.27 123.45 93.59 224.07
2 R 132.8 145.16 44.97 0.86 99.03 -157.31 43.55
3 R 20.00 -9.68 -58.91 —-0.92 57.37 338.81 152.56
4 L —4.63 -9.20 4.75 0.015 134.67 -20.77 319.30
5 R 2.24 -0.97 —5.88 —0.58 97.34 182.98 171.45
6 R -1.27 8.35 -17.75 0.67 108.03 —-166.58 30.61
7 L 7.21 66.96 -11.15 —-0.44 96.33 141.36 250.18
8 R -33.41 81.07 4.21 0.16 68.42 —87.66 233.00

recall, and F-measure metrics. In [15], the authors presented a HGR
system using LMC and DNN. The system reconstructed the palm model
and extracted the feature data from LMC. The system trains the DNN
model with the normalized data to achieve good gesture recognition
accuracy. For the dataset, 30 features were captured from the LMC
mainly focusing on the spatial positioning of the palm and bones. The
paper focused on the classification of three gestures by employing static
feature selection and classification using a DNN model.

3. Experimental setup

For this experiment the LMC was mounted on a jig to keep the posi-
tion static. The data was collected under controlled lighting conditions
throughout the experiment as IR sensors are sensitive to light. During
the course of the experiment, data was collected with varying distances
ranging from 100 mm to 300 mm to add variation in scale. The LMC
was integrated with the system using LEAPSDK v2.0 and python 2.7
on a Hp core i3-10th generation Intel micro-processor and no GPU.
The data set was collected and stored as .csv file. This data was then
imported to Python 3 and pre-processed using a variance-based method
for initial scrutiny of the feature set. After the first pre-processing the
data was normalized and passed through the feature selection and
classification algorithms.

3.1. Dataset generation

Data for eight static hand gestures was recorded for both left and
right hands with 16 participants. A mixed variety of participants was
included from different age groups and genders to introduce variation
in scale. Data was recorded at different heights for both Left and Right
hands and some gestures were skewed intentionally to introduce vari-
ation in orientation to cater to different real-world scenarios. Previous
datasets available online use pictorial representation however, for the
purpose of this paper tabular data is collected to train the proposed
model. The LMC gives 210 feature points for each sample point. A
sample of entry for each class is shown in Table 1. Out of these only 19
features were dropped due to negligible variance. The dataset contains
positional and rotational data for the wrist and palm. The sensor also
gives the position of four bones(meta-carpel, proximal, intermediate,
and distal) of each finger. A total of 264 sample points were collected
for five labels. Some of the feature points are shown in Fig. 5. To
further improve model performance data was normalized to create a
uniform distribution. It was observed that the model gave good and
consistent results when using normalized data. Table 1 displays several
data points. Fig. 6 shows the correlation of data points plotted between
different features against gesture classes. It is evident that simply
choosing random features will not help in designing a good model for
gesture detection as the data points are not distributed distinctly.

3.2. Dataset pre-processing
Data pre-processing in this case mainly comprises data normaliza-

tion. The minima and maxima of each feature are extracted and data is
normalized as per (1). The raw data from the LMC includes information

about the position and rotational features of hands, fingers, and bones.
This data is pre-processed and transformed into a set of features that
represent the gesture. Using a standard deviation depended algorithm
features with less information are removed. Data is normalized dur-
ing the pre-processing phase as this can improve model performance,
prevent data biases, and increase its convergence speed.

g=g - ——At &

max , — miny

where &, shows the current value, min, and max , are the minimum and
maximum value of Ath column.

4. Proposed technique for feature selection

The scientific community is growing keen on feature selection sig-
nificantly, the best traits from a preliminary dataset are selected to
enhance the quality of features in numerous ML tasks, including clas-
sification, regression, clustering, and time-series activity prediction
[50,51]. Dimensionality reduction techniques are a key area of research
in data mining and machine learning. They are intended to select the
best subset of relevant features from an original dataset using specific
evaluation criteria, which results in better learning performance, better
model interpretability, lower computational costs, and greater learning
accuracy. The objective function is typically defined in terms of the
accuracy, efficiency, or other performance measures of a machine
learning model that is trained on the selected features.

In a context where time and computing resources are restricted,
achieving optimal solutions for complex optimization problems be-
comes challenging. This is where metaheuristic algorithms come into
action. Metaheuristic algorithms are high-level problem solvers de-
signed to generate satisfactory solutions for difficult optimization prob-
lems that are hard to solve optimally. These methods excel in situations
where data may be incomplete or imperfect. Instead of relying on
exhaustive search or exact algorithms, they employ heuristics and
iterative processes to explore the solution space and converge towards
promising solutions. By leveraging their flexibility and adaptability,
Metaheuristic algorithms offer a practical approach to finding good
solutions within reasonable time constraints. They are particularly
useful in situations where traditional optimization techniques may
struggle due to the complexity and computational demands of the
problem at hand. Feature selection is one of the most tedious optimiza-
tion problems, several metaheuristic techniques such as PSO, WOA,
GWO and BChOA, have been employed to find the optimal solution
with accuracy and efficiency [52]. In [53], the authors have used
Binary Chimp Optimization Algorithm to reduce the feature map of
the biomedical dataset for classification. In [54], Dragonfly Algorithm
has been used for the dimensionality reduction of a Drug Bank dataset.
This study utilizes a new class of hybrid metaheuristic algorithms that
has been developed by combining other basic metaheuristic algorithms
and has been proven to be more effective as compared to the parent
algorithms. This study discusses the use of a Spotted hyena-based Sine-
cosine Chimp optimization (SSC) algorithm for the purpose of feature
selection.
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Fig. 5. Gestures used for detection.
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Fig. 6. Correlation sample between different features on the x and y axis vs. Gesture classes on the z-axis.

4.1. SSC metaheuristic algorithm

As discussed in Section 1.1, the dataset developed for gesture de-
tection contains 191 features. Solving a classification problem for such
a dataset using conventional methods will not yield useful results.
The hybrid algorithm, SSC [55], used is based on the Sine-Cosine
Algorithm (SCA) [56], Spotted Hyena Optimizer (SHO) [57] and Chimp
Optimization Algorithm (ChOA) [58]. The algorithm is inspired by the
sexual attraction of chimps and the exploration of spotted hyenas. The
sine-cosine algorithm has been used to introduce randomness in order
to solve the local minima problem. The initialization process of ChOA
along with the attacking strategy of SHO and update rule as per SCA
has shown good results as compared to the individual algorithms. The
use of SCA helps to avoid local minima while the ChOA widens the
search space for better global minima tracking.

4.1.1. Sine-cosine algorithm
SCA was originally presented by Mirjalili in [59], the algorithm
utilizes the mathematical model of sine-cosine functions to fluctuate

the population towards or away from the optimal solution. By intro-
ducing the randomness based on these oscillatory functions this system
has shown promising results to tackle the local optima problem. The
solution update mechanism for the algorithm is depicted as:

= ok 4 (R) # sin(Ry) + |Ry.LF = &) @)

G =L+ (Ry * cos(Ry) * | Ry = &) ©)

where ¢* is the current position in ith dimension at kth iteration and
R|, R,, R; are random numbers and ftf is the solution for ith iteration
and kth population. A graphical representation of SCA is given in Fig. 7.

4.1.2. Spotted hyena algorithm

The spotted hyena algorithm is based on social activity and the
relation between hyenas. It mainly focuses on the attacking, encircling,
hunting, and searching behavior of hyenas. SHO mimics the activity
of spotted hyenas to achieve an optimum solution. Encircling can be
depicted by the following two equations.

G = 1A (x0) - &) @
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where ¢, show the optimum feature vector (FV), &(x) is the current FV
and ¢, shows the distance that the corresponding hyena would have to
travel to catch its prey. The coefficients A and B are calculated using
the following equations

A=2.d, ®

B=2hdy,—h )
th

h=s5_K'*x5 (8)
max,;

here, the value kth is the value of current iteration and max, is the
maximum number of iterations. The vector h is reduced from 5 to 0, as
shown in (8), and d, and d, are random numbers within the range of
[0, 1]. Following equations map the hunting regions of spotted hyenas:

G=1Ax& -&l ©
& =8 -Bx¢, 10)
0y =G+ 81+ +lun an

where Z, shows the search space of the corresponding hyenas and O,,
shows the cluster of optimal solutions and N is the number of iterations
which can be calculated as.

N :count,,(?h,m,m,...,gh“w) 12)
Zx+1)= % 13)

where, n is the number of solutions that are in a region close to the
optimal solution. The vector M shows a randomly initialized vector
between [0.5,1]. The best solution ¢(x + 1) helps in updating the
remaining solutions at the end of each iteration. The exploration of
the hyenas is ensured using the random coefficients A and B where
the exploration starts when —1 < B < | and A ranges between [0, 5]
and serves as a weight for the corresponding hyena. The optimization
process begins with the initialization of a random population, each
hyena marks its territory and with each iteration, the coefficients & are
decreased linearly. The best agents are then fetched after each iteration.

4.1.3. Chimp optimization algorithm

The Chimp Optimizer algorithm is a metaheuristic optimization
algorithm inspired by the behavior of chimpanzees in their natural
habitat. It mimics the social behavior of chimpanzees in a group, where
each member of the group interacts with its peers to find the best
solutions to a problem, as illustrated in Fig. 8. This technique was first
developed by Khishe et al. in [58].

The mathematical model of ChoA is defined as follows

By = 17X proy(i) = m.X oy (D) 14)
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Fig. 8. Working mechanism of ChoA Algorithm.

xchimp(i +1)= xprcy(i) —ap (15)

where i is the number of current iterations, x
prey and xchimp
calculated as:

prey 18 the position of
is the chimp position. The vectors a, m, and y can be

a=2.fr —f (16)

y =20, a7

During the iterative process the coefficient f is reduced form 2.5 to O,
r,. and r, are random values in the range [0,1]. The attacking model
of chimps can be described by the following equations.

6attacker = |c1'aan‘acker —m .Xl (18)
Sparrier = 1C2-Qparrier — My-X| (19)
ﬁchaxer = |c3'acha.ver - m3'x| (20)
Bgiver = 1€4-Cgiper — My-x| (21)

The initial chimps position is determined by the value of random
vectors. The chimp’s next position will be between its current position
and prey when the value is between the range [-1,1]. The update
strategy follows the following set of equations.

Xn = Qarracker — an'5attacker (22)
Xy = Cparrier — 42-Cparrier (23)
X3 = QAchgser — a3'6chaser 24
X4 = Agiper — a4’5diuer (25)
ryy = IR 26

The following equation is applied to update each chimps position where
the value m is the chaotic value obtained randomly for each chimp and
the distribution of m can be chosen based on the optimization problem.

a,.,.,(n)—x,4, if $ <0.5
i + 1) = prey 27)
ehimp (7t + 1) {m, if ¢> 0.5
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4.2. Mathematical model of the SSC hybrid algorithm

Due to the complex nature of the gesture detection optimization
problem, the hybrid algorithm is selected for this study. The SSC
algorithm combines the attacking strategy of SHO along with the
ChoA and optimizes the update rule with the SCA. This new strategy
allows the algorithm to cover more search space and the randomness,
introduced by the SCA, tackles the local minima problem thus making
the algorithm more efficient as compared to the individual algorithms.
The complete algorithm can be mathematically expressed as

X1 = Qarpacker — COS(I‘Z) *a) 'dartacker (28)
X2 = Qparrier — Sin(rZ) * a2‘dbarrier (29)
X3 = Aepgser — cos(rz) * a}'dchaxer (30)
X4 = Agjper — Sin(rZ) * a4'ddiuer 31

Here r, = (27) * rand and lies in the range [0,2x]. The following
equation is used to update the location of chimps during searching.

X|+ Xy + X3+ X
x= AT XX (32)
4

The variable x;(i = 1,2,3...n) shows the chimp population.
4.3. SSC for feature selection

The Feature Selection using the SSC algorithm operates as follows.

1. Initialize population of x; for (i = 1,2..., N)

2. Evaluate each individual using the fitness function.

3. Update the feature subsets of the individuals based on the
Egs. (28)-(31)

4. Repeat steps 2 and 3 until a stopping criterion is met.

5. Select the feature subset with the best fitness value as the final
result.

A set of random features is initially selected and evaluated using a
fitness function given by Eq. (33). The fitness function J is defined as:

J(S) = # w X [y(0) # g(x(D), S)] (33)

where S is the feature subset, g(x;, S) is the prediction of the machine
learning model for instances x(i) using the feature subset S, y(i) is
the total number of classes, and y; # g(x;,S) is an indicator function
that is equal to 1 if the prediction is incorrect and 0 otherwise. The
overall flow of the procedure for feature selection is illustrated in
Fig. 9. Multiple population sizes were tested and it was found that a
population size of N = 20 gives the best results in terms of efficiency
and time. The experiment was run for 60 iterations for each 20/80 train-
test split. Overall, 30 iterations were run for each algorithm i.e. SSC,
GWO, PSO, and SCA, to compare the results.

5. Proposed technique for classification
5.1. Deep learning model (DNN)

A three-layer DNN model is employed in this study which consists of
an input layer, three hidden layers, and an output layer. The entire DNN
is densely connected and the output of each neuron in the hidden layers
is calculated using the weighted sum of the inputs from the previous
layer, followed by the application of a non-linear activation function.
The output of the final layer is the predicted output of the model.

Let x be the input to the network, wg.‘) be the weight between the
ith neuron in the (k — 1)th layer and the jth neuron in the kth layer,
b;k) be the bias of the jth neuron in the kth layer, z;k) be the weighted

sum of inputs to the jth neuron in the kth layer, and ai.k) be the output
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of the jth neuron in the kth layer. Then, the equations for computing
the output of the three-layer perceptron are:

A0 = 3w+ b0 34
aﬁl) _ f(zﬁ'l)) (35)
(2) Z w(2) (1) + b5_2) (36)
<2) f(za)) 37)
(3) 2 w(?) a(2) (3) (38)
(%) f(z@) (39)
y= 71" “0

where f is the activation function, and y is the output of the network.
In the above equations, z" represents the weighted sum of the

inputs in the flrst hidden layer, a, represents the output of the first

hidden layer, z ) represents the weighted sum of the inputs in the

(2)

second hldden layer a;” represents the output of the second hidden

layer, z ) represents the weighted sum of the inputs in the third hldden

layer, a( represents the output of the third hidden layer, and z

represents the weighted sum of the inputs in the output layer.

The input data is forward propagated through the DNN network
to generate error which is used to optimize the weights and biases of
the network using the SSC algorithm. As shown in Fig. 10, the back-
propagation algorithm is replaced with the proposed SSC technique.

5.2. Hyper-parameters of DNN

Hyper-parameters are parameters in a NN that are set prior to train-
ing and remain fixed during training. In a DNN, the hyper-parameters
include the number of neurons in each hidden layer, the learning
rate, the activation function, and the regularization strength. Tuning
these hyper-parameters is crucial for achieving optimal performance of
the neural network. For example, increasing the number of neurons
in a layer may improve the network’s ability to model the complex
combinations in the data, but may also increase the risk of over-fitting.
Similarly, choosing an appropriate activation function is crucial as it
can impact the performance of the network. Therefore, careful tuning
of hyper-parameters is necessary to optimize the performance of a DNN.

In a DNN with three hidden layers, the weights and biases are
important parameters that are learned during training to optimize the
network’s performance. The weights represent the strength of the con-
nections between neurons in adjacent layers, while the biases represent
the threshold at which a neuron is activated.

Effective training of the weights and biases is essential for achieving
optimal performance of the neural network. If the weights and biases
are not properly trained, the network may suffer from over-fitting or
under-fitting, which can lead to poor performance on unseen data.
Overfitting happens when a neural network is overly complex and
perfectly fits the training data, resulting in poor performance on new
data. Under-fitting, on the other hand, occurs when the network is too
simple and fails to capture the underlying patterns in the data.

Proper regularization techniques such as L1/L2 regularization,
dropout, and early stopping are essential to combat over-fitting and
under-fitting. They add penalties, promote model simplicity, prevent
over-reliance, and halt training when necessary, ensuring optimal
performance and generalization. Dropout randomly drops out some
neurons during training, which helps to prevent over-fitting by forcing
the network to learn more robust representations. Early stopping halts
the training process before the NN overfits the data by tracking the
outcome of the network on validation data and when there is no further
improvement in the results.
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5.3. SSC-based DNN model

Metaheuristic algorithms have been used in recent years for the
training of weights and biases in neural networks. Compared to tra-
ditional optimization algorithms such as stochastic gradient descent,
metaheuristic algorithms offer several advantages. Firstly, they are less
sensitive to initialization and are able to escape local optima more
easily, allowing them to explore a larger search space. Secondly, they
can handle non-convex and non-smooth optimization problems, which

are common in deep learning. Moreover, they can be used in parallel
and distributed computing environments, enabling the optimization of
large-scale NNs. Fig. 11 represents the flowchart for the program used
to determine the trainable parameters of the DNN.

Presently, there are no specific research papers that have utilized
the SSC for the training of weights and biases in NNs. However, given
the promising performance of SSC and its variants in optimization
problems, it is possible that the SSC could be used for optimizing the
weights and biases of neural networks. The proposed algorithm offers
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improved performance compared to traditional optimization algorithms
for neural network training. Therefore in this work, SSC is used for
effective tuning of weights and biases of the DNN.

6. Results

Results for this paper are recorded for both feature selection and
classification algorithms. The feature selection method is compared
with conventional metaheuristic algorithms over multiple iterations
and different metrics are recorded for each algorithm. Section 6.1 dis-
cusses the results of feature selection. In addition, The selected features
are then passed through a DNN trained with different metaheuristic
algorithms, and the results of the DNN classification are discussed in
6.2.

6.1. Evaluation of feature selection

During the experimentation, 30 iterations were performed. The
train-test split ratio was set at 0.2 for test set. In each iteration, different
train-test data was used. Accuracy, Precision, F1-score, execution time,
and total reduced features were recorded for each iteration. Final data
was tabulated and average values were tabulated to check the final
results. Each algorithm is trained using Random Forest (RF) and SVM
optimizer and all metrics are compared for PSO, GWO, SCA, and SSC
algorithms. Fig. 12 shows a comparison of average scores for accuracy,
precision, Fl-score, and no. of features extracted using the feature
selection algorithm. Fig. 13 shows the average train time for each tech-
nique over 30 different iterations. It is evident that the proposed SSC
algorithm has the highest scores among the metaheuristic algorithms
whilst recording the lowest average among the features selected. Fig. 14
shows the best results achieved during the 30 iterations, showing a
similar pattern, with SSC achieving the highest accuracy, precision,
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Table 2

Classification results evaluation with full features.
Technique Accuracy (%) F1 score (%) Precision (%) Recall (%)
SSC-DNN 96.15 94.72 96.11 94.44
AOA-DNN 92.31 92.76 91.87 94.44
GWO-DNN 90.38 89.93 90.58 90.36

Table 3

Classification results evaluation with selected features.

Technique Accuracy (%) F1 score (%) Precision (%) Recall (%)
SSC-DNN 98.08 96.76 98.61 95.83
AOA-DNN 96.15 96.56 96.53 97.05
GWO-DNN 94.23 94.08 94.44 94.27

and F1-score and lowest no. of features among the selected algorithms.
These bar charts show a comparison of the selected techniques with the
proposed algorithm for RF and SVM optimizers.

Fig. 15 shows the correlation among the selected features extracted
using the SSC algorithm. Here we can see that some features possess
strong correlations with each other however, the majority of the fea-
tures do not have strong co-linearity. This shows that each feature is
independent and does not cause a drift in the subsequent feature to
drift. This weak correlation is often helpful in avoiding over-fitting
when training DNN as the features remain distinct and introduce strong
generalization.

6.2. Evaluation of SSC-DNN for classification

The features selected by the SSC algorithm in Section 4.3 are passed
through a DNN trained with the SSC algorithm. The results from the
reduced dataset are compared with DNN trained with full features.
Figs. 16 and 17 show the confusion matrix for selected and full features.
It is evident from the recorded data that the efficiency of DNN trained
with selected features is comparable with the results from full features.
Table 2 shows different metrics recorded during the experiment with
the DNN trained using PSO, GWO, and SSC for full features and Table 3
shows the recorded data for selected features. It is evident from the data
that the SSC outperforms other techniques for the purpose of feature
selection and classification from the data collected from the LMC.

6.3. Comparative study

Table 4 shows a comprehensive comparative analysis of different
techniques for gesture detection using feature selection and metaheuris-
tic algorithms highlighting their respective strengths and weaknesses.
The discussed techniques include traditional feature selection methods
such as wrapper, filter, PCA and embedded approaches, as well as
metaheuristic algorithms such as GA, PSO, and the SSC algorithm
proposed in this study. The comparative analysis provides valuable
insights into the performance and applicability of these techniques for
accurate and efficient gesture detection.

Notably, our proposed model, combining Meta-heuristic SSC-based
feature selection with DNN training, achieves exceptional accuracy of
0.98. This outcome highlights the model’s efficacy in optimizing feature
selection to enhance gesture detection accuracy, particularly valuable
in resource-constrained scenarios. The integration of SSC across both
feature selection and DNN training showcases the model’s synergistic
approach, ultimately outperforming other techniques and demonstrat-
ing its potential as a superior solution in this domain.
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Table 4

Comparative analysis of feature selection and meta-heuristic algorithms for gesture detection.

Title Data-set Technique used Accuracy
[60] Indian Sign Language(Pictorial 6 static colored images) Feature selection + NN for classification (trained using 0.97
hybrid meta-heuristic deer hunting + gwo)
[61] Image Data-set from Kaggle (36 columns) PCA + BPSO for NN training 0.98
[62] Spatial Data-set (Arabic Sign Language Numerals 1-9) Radial basis function 0.94
[63] Image Data-set (Arabic Sign Language, 14 images) KNN/SVM + Ada Boost 0.91
[64] Ten Static Images Collected Using LMC FS(using GA) + KNN/RF/NB 0.74
[65] ASL (26 Letters Static) SVM + DNN 0.94
[64] ISL (26 Letters) NB 0.95
[49] Static Nine gestures FS(static; based on Orientation) + SVM classification 0.91
[66] Six Static images HOG + SVM (multi-class) 0.92
[15] Three static gestures (Rock, paper, scissors) FS (static 11 points) + DNN Classification 0.98
Our model Eight static gestures Meta-heuristic (SSC) FS + DNN Trained with SSC 0.98
7. Conclusion
Average Train Time
I I I In this research paper, we presented the development and evalu-
SCA } ation of a novel technique for feature selection using a hybrid meta-
| | heuristic algorithm called SSC (Spotted hyena-based Chimp optimiza-
SSC —j—l_| tion algorithm). Our algorithm aimed to address the challenges of
—l—l_I dimensional reduction in gesture recognition using the Leap Motion
GWO w Controller (LMC) device. Through extensive experimentation and com-
parison with existing algorithms, we have demonstrated the superior
PSO w performance of SSC across multiple metrics.
The results obtained from our experiments clearly indicate that
2.50 2.55 2.60 2.65 370 2.75 2.80 2.85 SSC outperforms other algorithms, namely GWO, PSO, and SCA in
TRAIN TIME (S) terms of accuracy, precision, Fl-score, time to select features, and

Fig. 13. Feature Selection Results: Average Train times over 20 iterations.
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the number of features. This significant improvement in performance
showecases the effectiveness of SSC as a robust solution for dimensional
reduction in gesture recognition tasks. The proposed algorithm not only
achieved superior results but also exhibited consistency and stability
across various datasets.
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Furthermore, we extended our research by applying the SSC al-
gorithm to train a DNN for gesture classification. The results of our
experiments with the DNN trained using SSC surpassed those obtained
with other algorithms, achieving an impressive 98.7% accuracy rate.
This outstanding performance further reinforces the effectiveness of
the SSC algorithm for optimizing the training process of complex
machine-learning models.

The findings of this research have important implications for the
field of gesture recognition and related applications, such as virtual

12

reality, augmented reality, gaming, and computer-assisted interac-
tions. By leveraging the SSC algorithm, developers and researchers
can achieve improved accuracy and efficiency in gesture recogni-
tion systems, leading to enhanced user experiences and more reliable
human—-computer interactions.

Exploring the adaptability of the SSC algorithm across various
datasets and domains, as well as its integration with advanced machine
learning architectures, could yield further insights and refinements.
Scaling up the algorithm for real-time implementation and testing in
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dynamic environments could bridge the gap between research and
practical application. These directions hold the potential to elevate
gesture recognition technology’s accuracy and usability
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