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Abstract: Medication recommendation based on electronic health records (EHRs) is a significant
research direction in the biomedical field, which aims to provide a reasonable prescription for patients
according to their historical and current health conditions. However, the existing recommended
methods have many limitations in dealing with the structural and temporal characteristics of EHRs.
These methods either only consider the current state while ignoring the historical situation, or
fail to adequately assess the structural correlations among various medical events. These factors
result in poor recommendation quality. To solve this problem, we propose an augmented graph
structural–temporal convolutional network (A-GSTCN). Firstly, an augmented graph attention net-
work is used to model the structural features among medical events of patients’ EHRs. Next, the
dilated convolution combined with residual connection is applied in the proposed model, which can
improve the temporal prediction capability and further reduce the complexity. Moreover, the cache
memory module further enhances the model’s learning of the history of EHRs. Finally, the A-GSTCN
model is compared with the baselines through experiments, and the efficiency of the A-GSTCN
model is verified by Jaccard, F1 and PRAUC. Not only that, the proposed model also reduces the
training parameters by an order of magnitude.

Keywords: electronic health records; medication recommendation; graph structural-temporal
convolutional network; dilated convolution

1. Introduction

Electronic health records (EHRs) are the primary data carrier for personalized med-
ical research and help accelerate the care process and ensure medical quality. With the
increasing potential of EHRs for medical applications, a great deal of research has been
applied in this field, which includes diagnosis prediction and medication recommenda-
tion [1–4]. As shown in Figure 1, medication recommendation is of great importance
because it can simplify the medical process and assist doctors in making accurate pre-
scriptions. The target of medication recommendation is to recommend personalized and
precise drugs for patients based on their current diagnosis and their historical health condi-
tion, whereas previous medication recommendation research was based on the rules and
facts derived from specialists with abundant clinic experience [5–8]. With the deepening
of medical informatization, deep learning models significantly improve the accuracy of
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medication recommendation tasks and the feasibility for practical application [9–11]. Nev-
ertheless, because of the following characteristics, EHRs bring difficulties to medication
recommendation tasks:

1. Structural correlation: A patient’s EHRs can be seen as a combination of a set of
diagnoses, procedures and medications, where the diagnoses, procedures and med-
ications can be collectively referred to the medical events. Therefore, the EHRs
can be expressed as a combination of multiple medical events, and the occurrences
of medical events simultaneously in a medical record are referred to as structural
correlations. For example, chemical ulcers are often accompanied by gastric perfora-
tion, and chickenpox can cause erysipelas. These phenomena can be considered as
structural correlations between diagnostic events and diagnostic events themselves.
Similarly, the combination of statins with cardiovascular drugs is more beneficial
for recovery from coronary heart disease, and this phenomenon is thought to be
structurally correlated with diagnostic events and medication combinations.

2. Temporal dependency: Chronic diseases, such as stroke, diabetes and high blood
pressure, do not recover as quickly as common diseases. On the contrary, chronic
diseases are often incurable and require multiple visits. Meanwhile, during the
patient’s medical treatment process, different treatments and drugs can be used at
different times. The connection of these medical events on a temporal level is referred
to as temporal dependency. For the same patient, the EHRs at multiple admissions
can be regarded as multiple continuous medical processes, which may have rich
temporal characteristics. In addition, different medical events (diagnoses, procedures
and medications) may show different temporal dependencies in different patients.

Figure 1. The application of medication recommendation system in a medical scenario. The medi-
cation recommendation system learns the collected EHRs in advance and establishes the model to
facilitate follow-up patients’ medical treatment and discharge with drugs.

To capture the structural correlation and temporal dependency of the EHRs, a lot
of work has been performed in the early research [12–15]. However, these methods are
rule-based or based on simple classifications, resulting in poor learning ability of EHRs.
With the gradual popularization of neural-network-based methods, the graph structure is
introduced to capture the structural correlation. Some studies [16–18] introduce the graph
convolutional network (GCN) for structural modeling, which learns the internal correlation
between medical events adequately. However, they ignore the temporal dependency of
patients’ records, so that the change of EHRs is not restricted and the models cannot
recommend medications accurately. Moreover, some models [19–21] consider the temporal
change of EHRs, but they cannot cope with the medical events with a complex topological
structure, which leads to their inability to describe the structural correlation of EHRs.
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Therefore, to simultaneously learn the structural correlation and temporal dependency
of EHRs, we propose a novel medication recommendation model called augmented graph
structural-temporal convolutional network (A-GSTCN). As shown in Figure 2, we use
ICD-9 encoding and ATC encoding to standardize the datasets. Moreover, we use an
augmented graph attention network (GAT) to learn the structural correlations of EHRs
and further utilize dilated convolution combined with residual connection to capture the
temporal features.

Our contributions can be summarized as follows:

1. We treat EHRs as time-series records with structural correlation and use ICD-9 en-
coding and ATC encoding to standardize the records in pretraining. Meanwhile,
the A-GSTCN model is proposed to realize personalized medication recommendation
based on the standardized records, and the model has excellent performance and can
be used in specific medical environments.

2. In the A-GSTCN model, we construct global structural correlation diagrams for
diagnoses and procedures, capturing the structural correlation of EHRs based on
these diagrams and augmented GAT. In addition, we learn the temporal dependency
of EHRs by dilated convolution combined with residual connection. Furthermore, we
employ a cache mechanism to enhance the medication recommendation accuracy of
the proposed model.

3. The proposed model outperforms the baselines in all evaluation metrics (Jaccard, F1,
PRAUC) for the MIMIC-III datasets and ZJ-CVD datasets. Compared to the baselines,
the A-GSTCN model has more accurate drug recommendation ability and requires far
fewer parameters, which greatly reduces the training time and significantly improves
the inference speed.

Figure 2. A standardized sample of EHRs. ICD-9 encoding and ATC encoding are used to standardize
the EHRs.

The subsequent contents are arranged as follows: Section 2 introduces some related
work used in the paper, and Section 3 reviews the framework of the A-GSTCN. In Section 4,
the A-GSTCN model and the baselines are compared for the MIMIC-III datasets and ZJ-
CVD datasets from several angles, and meanwhile, the high efficiency of the proposed
model is proved by experiments. Finally, the conclusion and future work are described in
Section 5.

2. Related Work

Medication recommendation is a significant research direction in the field of medicine,
and it can assist doctors to formulate safe and effective prescriptions quickly. Moreover,
the existing medication recommendation approaches can be divided into two categories,
i.e., model-driven approaches and data-driven approaches.

Early medication recommendation approaches are mainly based on the model-driven
approach, which focuses on the rules and the causal relationship among diagnoses, proce-
dures and medication combinations. These model-driven methods require experts in the
field of medicine to model medical events in detail based on prior knowledge. Specifically,
Chen et al. [22] developed the reasoning templates based on the knowledge patterns to
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encode the clinical guidelines for chronic heart failure (CHF) management. Ajmi et al. [23]
proposed a backward rule-based expert system, which could be used for a headache diag-
nosis and medication recommendation system. In addition, a backward rule-based expert
system [24] is presented, which can be used for a headache diagnosis and medication
recommendation system. In addition, medication recommendation can be influenced by
many factors, such as different areas of the hospital, different medical habits of doctors and
different disease characteristics of patients [12]. Furthermore, medication recommendation
rules that rely on experts’ prior knowledge produce a huge amount of work and affect the
efficiency of the recommendations [14,15].

With the continuous accumulation of medical records, the data-driven approach has
gradually become an important application for medication recommendation. Specifically,
Choi et al. [20,21] employed a traditional recursive neural network (RNN) and an attention-
based RNN to learn the multiple admission sequence of patients, thereby obtaining the
temporal characteristic of EHRs. Pang et al. [25] added medical records to the pretraining
module of BERT by using artificial time tokens. In fact, these approaches learn the temporal
characteristics of EHRs and further improve the accuracy of medication recommendation.
Nevertheless, early data-driven approaches ignore the structural correlation between
medical events.

With the continuous deepening of research on medication recommendation, many
comprehensive approaches to learn EHR characteristics have appeared. To be specific,
Wang et al. [26] proposed an adversarially regularized model for medication recommen-
dation, which could model the temporal information of EHRs and built a key value
memory network based on information from historical admissions. Shang et al. [27] pro-
posed a graph augmented memory network named GAMENet, which could integrate the
drug–drug interactions and model longitudinal patient records as a query. Methods [28,29]
could model the correlation between medical events and learn the structural correlation
of EHRs by constructing medical ontology trees. Mao et al. [16] proposed an intelligent
medical system that can accurately estimate the lab values and automatically recommend
medication combinations based on patients’ incomplete lab tests. Furthermore, the COGNet
model [30] introduces a novel copy-or-predict mechanism to generate the set of medicines.
While these models have improved the accuracy of medication recommendation compared
to previous models, they also have certain limitations, such as difficulty in applying to real
environments, high complexity and so on.

For the above reasons, we propose a novel model named A-GSTCN, which can simul-
taneously model the structural and temporal characteristics of EHRs. Meanwhile, the pro-
posed model can be also used for medication recommendation tasks in practical applications.

3. The A-GSTCN Model

The A-GSTCN model is described in three parts. Firstly, the structure of the pro-
posed model and the goal of the medication recommendation tasks are described. Next,
the A-GSTCN’ framework is presented. Last but not least, the optimizer and the training
algorithm of the proposed model are introduced. For ease of description, the notations
used in the A-GSTCN model are shown in Table 1.

3.1. Problem Formulation

An efficient medication recommendation model requires high precision of datasets.
To improve the availability of the datasets, the EHRs need to be cleaned and standard-
ized. To be specific, the definition of standardized EHRs, the medical event correlation
diagram constructed in pretraining and the goal of the medication recommendation tasks
are presented as follows.
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Table 1. Notations used in the A-GSTCN model.

Notation Description

Xn the representation of the pretrained EHRs
X1:t−1 the historical visit representation of tth visit
xt the representation of tth visit
ct

d, ct
p, ct

m the diagnosis codes, procedure codes and medication codes of tth visit
Gd, Gp the global structural correlation diagrams for diagnoses and procedures
G∗ the representation of Gd and Gp
Nd, Np, Nm the total number of diagnoses, procedures and medications
et

d, et
p the representations for diagnoses and procedures through medical entity embedding module

et
∗ the representation of et

d and et
p

x̂t the outputs through medical entity embedding module
ht

d, ht
p the representations for diagnoses and procedures through structural correlation enhancement module

ht
∗ the representation of ht

d and ht
p

x̂
′
t the outputs through structural correlation enhancement module

Hd, H p the representation of [h1
d, h2

d, ..., ht
d] and [h1

p, h2
p, ..., ht

p]
H∗ the representation of Hd and H p

Hd′
∗ the representation of hidden-layer results obtained through dilated convolution

qt
d, qt

p the representations for diagnoses and procedures through temporal dependency progressive module
Qd, Qp the representation of [q1

d, q2
d, ..., qt

d] and [q1
p, q2

p, ..., qt
p]

Q∗ the representation of Qd and Qp

x̂
′′
t the outputs through temporal dependency progressive module

qt the query vector of the cache memory
Mt

k, Mt
v the tth visit of key vector and the tth visit of value vector in cache memory

Mt the cache records before the tth visit in the form of key-value pairs
ot the memory outputs through the cache memory enhancement module
ŷt the multi-label medication recommendation of tth visit
Ŷ the recommended medication set
Y the ground truth of the medication set

3.1.1. Standardized EHRs

The pretrained EHRs can be represented as a collection of temporal records as follows:
Xn={x1

1, x1
2, x1

3, x2
1, ..., xn

t }, where n ∈ [1, N], t ∈ [1, T], N represent the total number of
patients and T represents the maximum number of one’s visits. To describe the algorithm
more clearly, we omit the superscript n and introduce the proposed model only by unit
patient. Each visit xt={ct

d, ct
p, ct

m} of a patient contains diagnosis codes, ct
d, procedure codes,

ct
p, and medication codes, ct

m.

3.1.2. Medical Events Correlation Diagrams

To obtain the structural correlation between the medical events, we construct a diag-
nosis graph matrix Gd ∈ RNd×Nd and a procedure graph matrix Gp ∈ RNp×Np for all the
diagnosis events and procedure events, where Nd and Np respectively represent the total
number of diagnosis events and procedure events in the data set. Moreover, since Gd and
Gp are built in the same way, we use G∗ to express them. Finally, the positive point-wise
mutual information (PPMI) [31] is used to calculate the correlation between medical event i
and medical event j of G∗. The formula of G∗ is defined as follows:

G∗(i, j) = PPMI(i, j) = max(log2
p(i, j)

p(i)p(j)
, 0), (1)

where p(i, j) represents the probability of simultaneous occurrence of the event i and event
j, and p(i) and p(j) represent the probability of event i and event j, respectively.
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3.1.3. Medication Recommendation Tasks

Given a patient’s historical visits X1:t−1=[x1, x2, ..., xt−1], diagnosis events ct
d and pro-

cedure events ct
p at the tth visit, the goal of medication recommendation tasks is to generate

a personalized medication combination ŷt={0, 1}Nm at the tth visit based on the patient’s
current clinical events ct

d, ct
p and historical visits X1:t−1, where Nm represents the total

number of the medications.

3.2. The Framework of A-GSTCN

The A-GSTCN model includes four components: medical entity embedding module,
structural correlation enhancement module, temporal dependency progressive module
and cache memory enhancement module. Next, the modules presented in Figure 3 and the
algorithm processes of the A-GSTCN model will be described as follows.

Figure 3. The training process of A-GSTCN model. Each visit xt={ct
d, ct

p, ct
m} of a patient contains

diagnosis codes, ct
d, procedure codes, ct

p, and medication codes, ct
m. Among them, ct

d, ct
p are used in

the medical entity embedding module to output the hidden embedding et
d, et

p with Equation (1). Then,
structural correlation enhancement module generates ht

d, ht
p by accepting et

d, et
p, Gd and Gd described

in Equations (1) and (3)–(6). Next, ht
d, ht

p are input into the temporal dependency progressive
module to output [q1, q2, ..., qt] using the dilated convolution combined with residual connection
by Equations (7) and (8). After that, the output ot is generated by integrating the key-value pairs
stored in cache memory using Equations (9)–(11). In the end, query qt and output ot are activated by
Equation (12) for medication recommendation.

3.2.1. Medical Entity Embedding Module

The patient’s tth visit xt consists of {ct
d, ct

p, ct
m}, where both ct

d, ct
p, ct

m are multi-hot
vectors, so ct

∗ is used to indicate the unified definition. The medical embeddings for ct
d, ct

p

are derived separately, and the embedding matrixes et
d ∈ R|c

t
d |×l and et

p ∈ R|c
t
p |×l are

obtained by embedding entities, where |ct
d| and |ct

p| represent the total number of diagnosis
events and procedure events at the tth visit, and l represents the characteristic dimensions.
Specifically, the embedding formula of et

∗ (et
∗ is used for et

d and et
p) is shown as follows:

et
∗ = W∗,ect

∗. (2)
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Here, W∗,e ∈ RN∗×l presents the embedding matrix, and N∗ is the total number of
medical events. Through the medical entity embedded module, the input xt={ct

d, ct
p, ct

m} is
transformed into x̂t={et

d, et
p, ct

m}.

3.2.2. Structural Correlation Enhancement Module

The function of the structural correlation enhancement module is to make the em-
bedding matrix et

∗ contain information about other related medical events and obtain a
more comprehensive matrix representation. For this reason, we propose an enhanced
multi-head graph attention network. Specifically, the medical events correlation dia-
gram G∗ constructed in pretraining is used as the global weight matrix. For the value
et
∗={et

∗,1, et
∗,2, ...et

∗,|ct∗ |
}, graph transformation is performed for each of its sub-events et

∗,i
and the hidden layer ht

∗={ht
∗,1, ht

∗,2, ...ht
∗,|ct∗ |
} is obtained with more structural information.

The specific calculation formula [32] of ht
∗,i can be written as follows:

ht
∗,i =‖K

k=1 σ( ∑
j∈Ni

α∗,t,kij W ket
∗,i + bk), (3)

where ‖ is the concatenation operation; ht
∗,i represents the sub-event graph transformation;

K is interpreted as the number of multiple attention; σ represents a nonlinear function; Ni
can be interpreted as the collection of other sub-events related to the event i; W k and bk

represent the weight matrix and bias, respectively; α∗,t,kij represents the weight coefficient of

attention at the tth visit. To be specific, the calculation formula of α∗,t,kij [33] is illustrated
as follows:

α∗,t,kij =
exp(LeakReLU(~aT [W~hi||W~hj]))

∑k∈Ni
exp(LeakReLU(~aT [W~hi||W~hk]))

, (4)

where~aTis the feedforward neural network training vector; W represents the weight matrix;
~h∗ can be interpreted as the corresponding eigenvector for events ∗. Inspired by previous
research [34], instead of complex pretraining, the medical events correlation diagram G∗ is
applied to calculate the weight of medical events in each visit. Therefore, there is no need
to train the specific training parameters, such as~aTand W , and the calculation of α∗,t,kij can
be simplified as:

α∗,t,kij =
exp(G∗,t(i, j))

∑k∈Ni
exp(G∗,t(i, k)))

. (5)

Here, G∗,t(i, j) and G∗,t(i, k) are the correlation between event i and event j, event i
and event k in the graph matrix G∗,t, respectively. The graph matrix G∗,t is derived from
the medical events correlation diagram G∗ as follows:

G∗,t(i, j) =

{
G∗(i, j), i f i, j ∈ ct

∗;
0, else.

(6)

Thus, the correlation between medical events are learned from the structure corre-
lation enhancement module, and the more comprehensive diagnosis representation ht

d
and procedure representation ht

p are obtained by Equations (3), (5) and (6). To be specific,
x̂t={et

d, et
p, ct

m} is transformed to x̂′t={ht
d, ht

p, ct
m}.

3.2.3. Temporal Dependency Progressive Module

GRU and LSTM are firstly considered to capture the temporal dynamic changes of
EHRs, but these models have high memory usage. Thanks to the prior research [35], it
is more appropriate to use the method of dilated convolution combined with residual
connection to learn the temporal characteristics of EHRs. Specifically, simple convolutional
networks can only deal with sequential tasks with relatively small sequence length and per-
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form poorly in long sequential tasks, so they cannot be applied to EHRs with an uncertain
number of visits. Therefore, the method of combining dilated convolution with residual con-
nection is considered, and we propose a new approach to capture medical events’ temporal
dependency for medication recommendation inspired by references [36,37]. As shown in
Figure 4, the dilated convolution contains two more significant parameters: filter and factor.
The size of filter is set to 7 and the factor is set to 1. As the hidden layer deepens, the re-
ceptive field can cover all values from the length of patients’ visits, and the output results
are obtained through the residual connection layer. Specifically, ht

d and ht
p are trained sep-

arately, and the specific inputs of the network are Hd:[h1
d, h2

d, ..., ht
d] and H p:[h1

p, h2
p, ..., ht

p],
which could be expressed by H∗. After the dilated convolution and residual connection,
the output Q∗:[q

1
∗, q2
∗, ..., qt

∗] contained temporal characteristics can be obtained as follows:

Q∗ = F (H∗, {W i}) + Hd′
∗ , (7)

where F (H∗, {W i}) is a residual mapping and W i represents the set of parameter matrix.
Hd′
∗ represents the hidden layer results obtained through dilated convolution, and it can be

expressed as Hd′
∗ :[F∗(1), F∗(2), ..., F∗(t)]. The F∗(t) in Hd′

∗ can be derived as follows:

F∗(t) = (H∗Xd′ f )(t) =
k−1

∑
i=0

f (i) · ht−d′ ·i
∗ , (8)

where Xd′ is the dilation factor and k represents the filter size; t − d′·i accounts for the
direction of the past; f (∗) represents the filter function in the dilated convolution process.

In the temporal dependency progressive module, diagnosis representations Qd:
[q1

d, q2
d, ..., qt

d] and procedure representations Qp:[q1
p, q2

p, ..., qt
p] are obtained, and they cap-

ture rich temporal features by the method of combining dilated convolution with the
residual connection. Therefore, x̂′t={ht

d, ht
p, ct

m} is transformed into x̂′′t ={qt
d, qt

p, ct
m}.

Figure 4. The structure of the temporal dependency progressive module. Both residual and parame-
terized skip connections are used throughout this module.

3.2.4. Cache Memory Enhancement Module

The cache memory enhancement module pre-stores the historical records of patients
in a dynamic bank with key-value pairs, and it can optimize the current recommenda-
tion by comparing the similarity between the current recommendation and the historical
records. In addition, the conclusions can be drawn from the research [38] that an effective
cache memory enhancement module can improve the model’s learning rate of historical
conditions, so the cache memory enhancement module is applied and further divided into
four steps:
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1. Create a query vector of the tth visit. To be specific, qt
d, qt

p from the set x̂′′t can be
generated a query qt as follows:

qt = f (qt
d, qt

p), (9)

where f (∗) represents a transformation function, and this function can connect the
diagnosis representation qt

d and the procedure representation qt
p.

2. Use the qt and medication representation ct
m as dependent variables, and generate the

cache records before the tth visit in the form of key-value pairs as follows:

Mt = {qt′ : ct′
m}t−1

1 , (10)

where Mt is empty when t = 1, and t′ ∈ (1, t− 1) represents the historical visit before
the tth visit. Mt

k:[q1, q2, ..., qt−1] is denoted as the key vector, and Mt
v:[c1

m, c2
m, ..., ct−1

m ]
is denoted as the value vector to represent the history cache of the tth visit.

3. Based on the similarity between the representation vector qt and its historical cache,
the attention strategy is applied as follows:

ot = (Mt
v)

TSoftmax(Mt
k, qt), (11)

where the similarity between the key vector matrix Mt
k and the representation vector

qt is first considered. Furthermore, the similarity relationship is obtained by ma-
trix multiplication and activation, and the transposed vector matrix Mt

v is further
multiplied to obtain ot.

4. Activate qt and ot, obtain the multi-label recommended medication combination ŷt.
The formula can be expressed as follows:

ŷt = σ(qt, ot), (12)

where σ is the activation function.

3.3. Optimization

The quality of the medication recommendation model can be explained by the gap
between the drug recommendation combination ŷt generated by the model and the real
drug recommendation combination yt. Meanwhile, whether a single drug is recommended
can be likened to binary classification, so the task of drug combination recommendation
can be further classified into multiple classification problems. In this case, the multi-label
margin loss Lmulti and the binary cross-entropy loss Lbce are applied as optimizations,
which are combined as model’ optimizer Lloss as follows:

Lloss = α ∗ Lbce + (1− α) ∗ Lmulti, (13)

Lbce = −∑T
t ∑iy

t
i logσ(ŷt

i) + (1− yt
i)log(1− σ(ŷt

i)), (14)

Lmulti = ∑T
t ∑|cm |

i ∑Ŷ t

j

max(0, 1− (ŷt[Ŷ
t
j ]− ŷt[i]))

L
. (15)

Here, α is the mixture weights; ŷt
i and ŷt[i] represent the medication i in the tth visit;

ŷt[Ŷ t
j ] is the jth label indexed by predicted label set Ŷ t.
In summary, Algorithm 1 describes the training algorithm of the A-GSTCN.
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Algorithm 1: Training algorithm of the A-GSTCN
Input: Training dataset R, training epochs N;
Output: Optimal parameters θ∗;
Pre-trained: Use Equation (1) to construct the global diagnosis graph matrix Gd
and the global procedure graph matrix Gp;

Initialize: Use ICD-9 encoding and ATC encoding to standardize the EHRs;
for i = 0 to N do

for j = 0 to |R| do
extract EHR X j={x1, x2, ..., xTj} from R;
for t = 0 to Tj do

Generate the medical embeddings et
d and et

p by Equation (2) ;
Get Gd,t and Gp,t by Equations (1) and (6) ;
Get ht

d and ht
p by Equations (3)–(5) in the structure correlation

enhancement module;
Obtain qt

d and qt
p by Equations (7) and (8) through temporal

dependency progressive module;
Obtain qt and ot by Equations (9)–(11) through cache memory
enhancement module;

Caculate the medication prediction ŷt←σ(qt, ot) by Equation (12);
end
Update the parameters θ∗ by Equations (13)–(15);

end
end
Return θ∗;

4. Experiments

The experiments are divided into three parts. Firstly, preparations of the experimental
environment are presented, such as the datasets and the baselines. Secondly, the perfor-
mance of the A-GSTCN model and baselines is compared in four experiments. Next, a case
study is applied for proving the feasibility of the A-GSTCN model in specific medical
environments. Finally, through the engineering applications, the A-GSTCN is well applied
in the medication recommendation process of a digital hospital.

4.1. Experimental Setup
4.1.1. Datasets

The proposed model and the baselines are performed on MIMIC-III and ZJ-CVD
datasets, and the relevances of the two datasets are presented as follows:

• MIMIC-III is a sizable single-center database, which includes more than 50,000 cases
admitted to intensive care units from 2001 to 2012 and 7870 newborns admitted
from 2001 to 2008. To be specific, the MIMIC-III dataset includes medical orders,
medications, procedures, diagnoses, and so on. Meanwhile, to improve the dataset
availability, the records are generated into a temporal list of diagnosis, procedure and
medication codes.

• ZJ-CVD is a Chinese medical dataset collected by our laboratory, which contains the
medical records of more than 8000 patients with cerebrovascular disease from the
First Hospital of Zhejiang Province, the Fourth Affiliated Hospital Zhejiang University
of Medicine and Taizhou Municipal Hospital. Each patient may have multiple hospi-
talizations, so the number of EHRs in ZJ-CVD datasets exceeds 10,000. To be specific,
ZJ-CVD datasets are cleaned and augmented in pretraining and consist of admission
diagnosis, hospitalization, discharge medication and some other medical information.
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Furthermore, the medical events of the datasets are converted into vector represen-
tations according to the ATC and the ICD-9 medical standards. The characteristics of
MIMIC-III datasets and ZJ-CVD datasets can be seen in Table 2.

Table 2. The characteristics of MIMIC-III and ZJ-CVD datasets.

MIMIC-III ZJ-CVD

patients 35,886 8315
- single-visit 28,936 6835
- multiple-visit 6950 1480

clinical events 3529 1237
- diagnosis 1958 552
- procedure 1426 232
- medication 145 453

max visits 29 4
average visits 2.36 1.32
average number of diagnosis 10.51 4.15
average number of procedure 3.84 1.20
average number of medication 8.80 6.20

4.1.2. Baselines

The baselines are introduced as follows:

• Leap [39] can predict target event through an attention mechanism by establishing
mappings between medical events and tensors.

• RETAIN [21] generates a medication recommendation through building a two-layer
RNN with attention model, and this model can consider the influence of tempo-
ral factors.

• DMNC [38] strengthens the capturing of temporal characteristics for medical events
by establishing a memory enhancement networks.

• GAMENet [27] integrates the drug–drug interactions and model longitudinal patient
records as the query, which can capture the temporal dependency of EHRs.

• G-Bert [28] uses the BERT to pretrain the correlations between medical events in EHRs
and constructs an ontological tree for medication recommendation.

4.1.3. Metrics

Jaccard Similarity Score (Jaccard), Precision–Recall AUC (PRAUC) and Average F1
(F1) are used as the scoring functions in the experiments. Next, the scoring functions are
explained separately.

The caculation formula of Jaccard can be described as follows:

Jaccard =
1

∑N
k ∑Tk

t 1

N

∑
k

Tk

∑
t

|Y (k)
t

⋂
Ŷ (k)

t |

|Y (k)
t

⋃
Ŷ (k)

t |
, (16)

where N is the total number of patients, and Tk represents the max visits of the kth patient.
PRAUC is calculated by the trapezoidal integral for the area under the PR curve,

and this scoring function is used for the datasets with imbalanced positive and negative
sample numbers.

The F1 score can transform the multi classification problem into n bipartitions. Mean-
while, it calculates the average score of the bipartition to obtain the final evaluation index,
whose caculation formula can be written below:

Avg(P(k)
t ) =

|Y (k)
t

⋂
Ŷ (k)

t |
|Y (k)

t |
, Avg(R(k)

t ) =
|Y (k)

t
⋂

Ŷ (k)
t |

|Ŷ (k)
t |

, (17)



Bioengineering 2023, 10, 1241 12 of 20

F1 =
1

∑N
k ∑Tk

t 1

N

∑
k

Tk

∑
t

2× Avg(P(k)
t )× Avg(R(k)

t )

Avg(P(k)
t ) + Avg(R(k)

t )
, (18)

where t represents tth visit, and k can be interpreted as the kth patient in the test set.

4.2. Experimental Results

The effectiveness of the A-GSTCN model is demonstrated by four comparative experi-
ments. Specifically, the A-GSTCN model is compared with the baselines on Jaccard, F1 and
PRAUC in the first experiment. In the second part, the validity of each module of A-GSTCN
is verified. Next, the third part compares the drug recommendation performance of the
model on different recommended frequency drugs. Finally, the last experiment compares
the drug recommendation performance of the model for patients with different visits.

4.2.1. Recommendation Performance

Table 3 indicates the comparisons of Jaccard, PRAUC and F1 between the proposed
model and the baselines on MIMIC-III and ZJ-CVD datasets. Among them, it is obviously
observed that the A-GSTCN model obtains the best recommendation performance under all
evaluation metrics, which can prove the effectiveness of the A-GSTCN in medication recom-
mendation. To be specific, compared with the previous best method (G-Bert), the A-GSTCN
model improves 1.78%, 1.24% and 1.86% in Jaccard, PRAUC and F1 score, respectively, for
the MIMIC-III dataset. In a similar way, the A-GSTCN model increases 2.76%, 8.37% and
2.67% in Jaccard, PRAUC and F1 score, respectively, for the ZJ-CVD dataset. Moreover,
the average recommended number of medications for A-GSTCN for the MIMIC-III datasets
and ZJ-CVD datasets are 15.34 and 13.22, which have the smallest gap with the real value of
14.61 and 12.89. Futhermore, compared with the baseline methods, the most significant fea-
ture of the A-GSTCN model is the correlation diagrams for pretrained medical events and
the dilated convolution applied in the temporal dependency progressive module. These
features lead to fewer parameters in the A-GSTCN model, which effectively decreases the
memory occupancy rate and cache training pressure.

Table 3. Medication recommendation performance between the A-GSTCN model and baselines on
MIMIC-III and ZJ-CVD datasets. In addition, the gold average number of medicines on the test set is
14.61 and 12.89 for the MIMIC-III datasets and ZJ-CVD datasets, respectively.

MIMIC-III ZJ-CVD

Methods Jaccard PRAUC F1 Avg #
of Med Parameters Jaccard PRAUC F1 Avg #

of Med Parameters

Leap [39] 0.3844 0.5501 0.5410 13.42 436,884 0.3738 0.5223 0.5187 11.47 303,286
RETAIN [21] 0.4168 0.6620 0.5781 16.68 289,490 0.3769 0.5261 0.5211 12.08 230,254
DMNC [38] 0.4343 0.6856 0.5934 20.00 527,979 0.3803 0.5399 0.5291 16.12 444,143
GAMENet [27] 0.4489 0.6911 0.6053 13.89 452,434 0.3811 0.5418 0.5369 10.71 323,147
G-Bert [28] 0.4511 0.6989 0.6121 16.11 2,411,138 0.3941 0.5935 0.5573 14.41 1,616,783
A-GSTCN 0.4689 0.7113 0.6307 15.34 97,626 0.4217 0.6772 0.5840 13.22 73,424

4.2.2. Module Validity

To further prove the effectiveness of the structure correlation enhancement module,
the temporal dependency progressive module and the cache memory enhancement module,
the A-GSTCN model is compared with its variants.

Variant types of the A-GSTCN model in Figure 5a,b are shown below:

• A-GSTCN: the proposed model.
• A-GSTCN (w/o GAT): removes the structure correlation enhancement module of the

A-GSTCN model.



Bioengineering 2023, 10, 1241 13 of 20

• GAT + GRU: changes the temporal dependency progressive module into the GRU
model for the A-GSTCN model.

• A-GSTCN (w/o ME): removes the cache memory enhancement module of the A-
GSTCN model.

(a) (b)

Figure 5. (a,b) are the performance comparisons (Jaccard, PRAUC and F1 score) between different
variants of proposed methods on MIMIC-III and ZJ-CVD datasets.

By comparing the performance of the A-GSTCN and the A-GSTCN (w/o GAT) in
Figure 5a,b, it indicates that the performance of each metric has a significant decrease
when the structural correlation enhancement module is removed. Specifically, Jaccard
and F1 score decrease by nearly 8% and 6%, and PRAUC decreases by nearly 16% for
the ZJ-CVD datasets. The reductions in Jaccard, F1 score and PRAUC for the MIMIC-III
datasets are more prominent. Therefore, it can be concluded that the structural correlation
enhancement module behaves excellently in structural modeling and can adequately
capture the structural characteristics of medical entities of EHRs.

Through the comparative experiments of the A-GSTCN and the GAT+GRU in
Figure 5a,b, it apparently shows that Jaccard, F1 Score and PRAUC for the GAT + GRU
decrease by nearly 2% compared with the A-GSTCN for the MIMIC-III datasets, and these
metrics decline by nearly 2%, 2% , 6.16% for the GAT+GRU compared with the A-GSTCN
model for the ZJ-CVD datasets. Therefore, the conclusions can be drawn from the signifi-
cant reduction in metrics: use dilated convolution instead of GRU can reduce the amount
of parameters used while maintaining model performance in A-GSTCN.

Compared with the proposed model, the Jaccard, PRAUC and F1 score for the A-
GSTCN (w/o ME) decline by 1.17%, 1.5% and 1.08%, respectively, for the MIMIC-III
datasets. These metrics decline by nearly 4.86%, 15.79% and 7.59% for the ZJ-CVD datasets
also. Meanwhile, it is obviously observed that the performance gap between the A-GSTCN
and the A-GSTCN (w/o ME) for the ZJ-CVD datasets is larger than that for the MIMIC-III
datasets because of the relatively short number of patient visits in the ZJ-CVD datasets.
In summary, the cache memory enhancement module can cooperate with the temporal
dependency progressive module to fully preserve the temporal features of EHRs, thus
improving the accuracy of medication recommendation.

4.2.3. Comparison for Different Recommended Frequency Drugs

Some drugs have a high recommended frequency, and others may be used less often.
The A-GSTCN model can decrease the impact of data imbalance by applying the global
structural correlation diagrams for diagnoses and procedures and adding a caching mecha-
nism. Specifically, Figure 6a,b count the number of medications in different recommended
frequencies in the MIMIC-III and ZJ-CVD datasets, and it can be seen that 58 of the 145 med-
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ication types appear less than 100 times, while nearly 40 types are recommended more
than 1000 times in the MIMIC-III datasets. In the ZJ-CVD datasets, 133 of the 453 med-
ication types are recommended less than 100 times, while nearly 40 types occur more
than 1000 times. Figure 6c,d calculate the average F1 score of medication recommendation
results in different recommended frequencies, and it indicate that the A-GSTCN model
significantly improves the recommended accuracy of less frequent medications based on
its global structural correlation diagrams and caching mechanism.

(a) (b)

(c) (d)

Figure 6. (a,b) are the total number of medications in different frequency ranges in MIMIC-III and
ZJ-CVD datasets; (c,d) are the comparisons of average F1 score between the A-GSTCN model and
baselines in different frequency ranges in MIMIC-III and ZJ-CVD datasets.

4.2.4. Comparison for Patients with Different Visits

As shown in Table 2, the max visits of patients in the MIMIC-III and ZJ-CVD datasets
are 29 and 4, respectively. Logically speaking, different numbers of admissions of patients
also affect the accuracy of medication recommendation. To be specific, Figure 7a,b indicate
the comparisons of average F1 score between the A-GSTCN model and baselines with dif-
ferent temporal lengths of EHRs in the MIMIC-III and ZJ-CVD datasets, and it can be found
that the A-GSTCN model is superior to the baselines over most of the temporal horizon,
especially for long sequences. Meanwhile, it can be apparently observed that the A-GSTCN
model also has a significant learning ability in short visit sequences and recommends more
precise medication combination for patients than the baseline models. These results prove
that the A-GSTCN model has efficient modeling ability for long temporal dependency.
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(a) (b)

Figure 7. (a,b) are the comparisons of average F1 score between the A-GSTCN model and baselines
with different temporal length of EHRs in MIMIC-III and ZJ-CVD datasets.

4.3. Case Study

To clearly clarify the effectiveness of the A-GSTCN model in the task of drug recom-
mendation, we further compare the drug recommendation results of the model through
two specific cases.

The first special case is tested for the MIMIC-III dataset. This case selects a patient’s
EHRs of four temporal admissions in the test set, and the patient has various symptoms,
such as gout, depression and heart disease. As can be seen in Table 4, the correct rec-
ommended combination of drugs for the patient is 15 drugs, and the A-GSTCN model
performed best in this case, recommending the right 14 drugs. In contrast, the model with
the best recommendations in the baselines is G-Bert, which recommends 13 drugs correctly
and misses 2. Other models in baselines are less effective. Moreover, it can be seen that
none of the models successfully hit the drug “Anxiolytics”, and this is where subsequent
models need to improve.

Similar to Table 4, Table 5 represents a recommended result of a patient who accesses
a total of three visits from the ZJ-CVD datasets, and this patient suffered from stroke,
diabetes and high blood pressure. In addition, compared with the MIMIC-III datasets,
this typical case evidently reflects the recommendation ability of the A-GSTCN model
in medication recommendation. Specifically, it obviously shows that the actual number
of recommended drugs in the patient’s last visit is eight. Meanwhile, the DMNC model,
GAMENet model and G-Bert model perform best among all baselines, but they only
recommend five drugs correctly. In contrast, the A-GSTCN model correctly recommends
seven drugs and misses only one drug. Furthermore, the missed drug “Rabeprazole
Sodium Enteric-coated Capsules” from the A-GSTCN model is also lost in all baseline
models due to the low utilization rate of this drug.

Table 4. A specific case selects a patient’s EHRs of four temporal admissions from the MIMIC-
III datasets; “unseen” indicates the drugs that do not appear in the actual recommendation re-
sults, and “missed” refers to the drugs that should be recommended in the actual situation but are
not recommended.

Methods Recommended Medication Combination (the Last Visit)

Leap 8 correct + 2 unseen + 7 missed (Antigout, Anxiolytics, Cardiac glycosides, ...)

RETAIN 10 correct + 4 unseen + 5 missed (Antigout, Anxiolytics, Potassium, ...)

DMNC 11 correct + 6 unseen + 4 missed (Anxiolytics, Cardiac glycosides, Potassium, ...)

GAMENet 12 correct + 2 unseen + 3 missed (Antigout, Anxiolytics, Dopaminergic agents)

G-Bert 13 correct + 4unseen + 2 missed (Anxiolytics, Potassium)

A-GSTCN 14 correct + 3 unseen + 1 missed (Anxiolytics)
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Table 5. A specific case of a patient who accesses a total of three visits from ZJ-CVD datasets, and this
patient suffered from stroke, diabetes and high blood pressure. Missing drugs include Rabeprazole
Sodium Enteric-coated Capsules (RSEC), Betahistine mesilate Tablets (BMT), Trimetazidine Hy-
drochloride Tablets (THT), Perindopril And Indapamide Tablets (PAIT) and Aspirin Enteric-Coated
Sustained Release Tablets (AESRT). For convenience, corresponding abbreviations are used below.

Methods Recommended Medication Combination (the Last Visit)

Leap 4 correct + 4 unseen + 4 missed (RSEC, BMT, THT, PAIT)

RETAIN 4 correct + 2 unseen + 4 missed (RSEC, BMT, AESRT, PAIT)

DMNC 5 correct + 2 unseen + 3 missed (RSEC, BMT, AESRT)

GAMENet 5 correct + 3 unseen + 3 missed (RSEC, THT, PAIT)

G-Bert 5 correct + 2 unseen + 3 missed (RSEC, BMT, THT)

A-GSTCN 7 correct + 1 unseen + 1 missed (RSEC)

Compared with other baseline models, the A-GSTCN model achieves the best medica-
tion recommendation effect in both cases, which fully proves that A-GSTCN model can
better learn the structural correlation and temporal dependency of EHRs.

4.4. Engineering Applications

Medical service informatization is the development trend of Internet medical treatment
in the digital age. With the rapid development of information technology, more and more
hospitals are accelerating the overall construction of hospital information systems (HISs) to
improve the service level and core competitiveness of hospitals. As a new application of the
Internet in the medical industry, the digital hospital is an important form of medical service
informatization [40]. Since the requirements to ensure the universality and accuracy of
medical services, most of the current research focuses on applying deep learning models to
learn the structural–temporal characteristics of medical data and then apply these models
to medical services, such as medication recommendation, diagnostic prediction, treatment
guidance, etc. [41]. Among them, medication recommendation is one of the key issues in the
research on the digital hospital. Figure 8 presents the link of medication recommendation
in Internet medical treatment.

Figure 8. Medication recommendation process in Internet medical treatment.
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However, the structural–temporal characteristics of medical records have a great
influence on the accuracy of medication recommendation, which directly affects the appli-
cability of the final recommended prescriptions. In this regard, the priority is to produce
more accurate deep learning models that can intelligently generate recommended medi-
cations. Therefore, as shown in Figure 9, the data-driven approach can be used to collect
medical data from patients in cooperative hospitals and clinics for integration into the A-
GSTCN model. To be specific, firstly, real medical records are imported into the A-GSTCN
model. Then, the structural correlation enhancement module and the temporal dependency
progressive module are employed to learn the structural–temporal characteristics of the
data, respectively, so as to optimize the recommendation performance of the model and
recommend more accurate prescriptions.

Figure 9. An application diagram of the A-GSTCN in medication recommendation.

5. Conclusions and Future Work

In this article, we propose a novel medication recommendation model that can effec-
tively learn the structural correlation and temporal dependency of EHRs. To be specific,
we establish the global correlation diagrams for medical events and apply an augmented
GAT to capture the structural correlation. Next, dilated convolution combined with resid-
ual connection are used to capture temporal features on the premise of greatly reducing
training parameters. Meanwhile, the caching mechanism is introduced to improve the med-
ication recommendation accuracy. Finally, through comparative experiments, case studies
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and engineering applications, it proves that the proposed model has higher medication
recommendation accuracy and better landing possibility compared to the previous models.

In light of the current situation, the EHRs introduce a significant amount of uncertainty
into medication recommendations due to the lack of information, imprecise information
and contradictory nature. Therefore, it is essential to explore the characteristics of other
important influencing factors in EHRs, such as inspection indicators and operation status.
Meanwhile, as we continuously collect and integrate the EHRs, it is important to consider
the introduction of pretrained models like BERT, GPT and other large language models
to enhance the performance of the recommendation model. Furthermore, the application
of EHRs needs to be expanded; in addition to medication recommendation, it also can be
further applied to disease prediction, disease prevention and other issues. Finally, in the
process of medication recommendation, it is significant to consider the safety of medication
recommendation, and we need to further consider adding drug–drug interactions (DDIs)
to ensure the safety of recommended drugs.
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33. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
34. Su, C.; Gao, S.; Li, S. GATE: Graph-attention augmented temporal neural network for medication recommendation. IEEE Access

2020, 8, 125447–125458. [CrossRef]
35. Hewage, P.; Behera, A.; Trovati, M.; Pereira, E.; Ghahremani, M.; Palmieri, F.; Liu, Y. Temporal convolutional neural (TCN) network

for an effective weather forecasting using time-series data from the local weather station. Soft Comput. 2020, 24, 16453–16482.
[CrossRef]

36. Oord, A.v.d.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. Wavenet:
A generative model for raw audio. arXiv 2016, arXiv:1609.03499.

http://dx.doi.org/10.1109/JBHI.2017.2767063
http://www.ncbi.nlm.nih.gov/pubmed/29989977
http://dx.doi.org/10.1177/1460458217747112
http://dx.doi.org/10.1007/s11036-014-0537-4
http://dx.doi.org/10.1016/j.cmpb.2014.06.019
http://www.ncbi.nlm.nih.gov/pubmed/23920845
http://dx.doi.org/10.1016/j.jbi.2022.104000
http://www.ncbi.nlm.nih.gov/pubmed/35104644
http://dx.doi.org/10.1038/s41598-018-24783-4
http://www.ncbi.nlm.nih.gov/pubmed/29740058
http://dx.doi.org/10.1093/jamia/ocz021
http://dx.doi.org/10.1017/S1471068416000429
http://dx.doi.org/10.48129/kjs.v48i1.8687
http://dx.doi.org/10.1007/s10115-020-01513-9
http://dx.doi.org/10.1016/j.asoc.2015.11.016
http://dx.doi.org/10.1109/ACCESS.2020.3007835
http://dx.doi.org/10.1007/s00500-020-04954-0


Bioengineering 2023, 10, 1241 20 of 20

37. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

38. Le, H.; Tran, T.; Venkatesh, S. Dual memory neural computer for asynchronous two-view sequential learning. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018;
pp. 1637–1645.

39. Esteban, C.; Tresp, V.; Yang, Y.; Baier, S.; Krompaß, D. Predicting the co-evolution of event and knowledge graphs. In
Proceedings of the 2016 19th International Conference on Information Fusion (FUSION), Sun City, South Africa, 1–4 November
2016; pp. 98–105.

40. Kwon, H.; An, S.; Lee, H.Y.; Cha, W.C.; Kim, S.; Cho, M.; Kong, H.J. Review of smart hospital services in real healthcare
environments. Healthc. Inform. Res. 2022, 28, 3–15. [CrossRef]

41. Duncan, R.; Eden, R.; Woods, L.; Wong, I.; Sullivan, C. Synthesizing dimensions of digital maturity in hospitals: Systematic
review. J. Med. Internet Res. 2022, 24, e32994. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.4258/hir.2022.28.1.3
http://dx.doi.org/10.2196/32994

	Introduction
	Related Work
	The A-GSTCN Model
	Problem Formulation
	Standardized EHRs
	Medical Events Correlation Diagrams
	Medication Recommendation Tasks

	The Framework of A-GSTCN
	Medical Entity Embedding Module
	Structural Correlation Enhancement Module
	Temporal Dependency Progressive Module
	Cache Memory Enhancement Module

	Optimization

	Experiments
	Experimental Setup
	Datasets
	Baselines
	Metrics

	Experimental Results
	Recommendation Performance
	Module Validity
	Comparison for Different Recommended Frequency Drugs
	Comparison for Patients with Different Visits

	Case Study
	Engineering Applications

	Conclusions and Future WorkConclusion
	References

