
On the Theory and Applications of
Hierarchical Learning Automata and
Object Migration Automata

Rebekka Olsson Omslandseter

Doctoral Dissertations at
the University of Agder 444

On the Theory and Applications of
Hierarchical Learning Automata and

Object Migration Automata

Dissertation for the degree philosophiae doctor (ph.d.)
at the Faculty of Engineering and Science, Specialization in Artificial Intelligence

University of Agder
Faculty of Engineering and Science

2023

Rebekka Olsson Omslandseter

Doctoral Dissertations at the University of Agder 444

ISSN: 1504-9272
ISBN: 978-82-8427-161-3

© Rebekka Olsson Omslandseter, 2023

Printed by Make!Graphics
Kristiansand

Preface

This dissertation is a result of the research work carried out at the Department of
Information and Communication Technology (ICT), University of Agder (UiA) in
Grimstad, Norway, from January 2019 to September 2023. I started my Ph. D. as an
integrated Ph. D. student, working 50% with the Master’s Education, and 50% with
the Ph. D. until June 2020. My main supervisor has been Dr. Lei Jiao, University of
Agder, and my co-supervisor has been Chancellor’s Professor Dr. B. John Oommen,
Carleton University, in Ottawa, Canada. B. John Oommen is also an Adjunct
Professor with the University of Agder.

Production note: This dissertation, as well as my papers produced during my
Ph. D. study, have been written using LaTeX. The mathematical calculations and
simulation results are obtained using MATLAB, and the Pycharm/Spyder IDE for
Python scripts. To make the visualizations in this dissertation, we mainly utilized
the visualization tool Lucid and the online math editor Mathcha.

v

Acknowledgments

I want to express my gratitude to my two supervisors, Dr. Lei Jiao and Dr. B.
John Oommen, for their guidance, support, and their mentorship throughout my
Ph.D. journey. Our collaboration has been highly valuable, and made it possible
for the Ph.D. work to maintain the expected quality during the whole process. My
sincere gratitude goes out to them for providing me with direction and helping me to
improve my research and scientific contributions. Their assistance and guidance have
not only been academic and scientific. Indeed, they have taught me the invaluable
art of doing research in new domains, exploring the state of the art, determining new
solutions, implementing and testing them, and then, taking these results through the
difficult process of being refereed and published in acclaimed venues. I am grateful
to them for my whole life.

I would also like to express my heartfelt appreciation to my absolutely wonderful
family and friends, who have been a steady source of encouragement and inspiration
to me. I am incredibly grateful for their understanding, love, and unwavering support
during this Ph.D. journey. I am immensely grateful for your strong belief in me and
the dedicated support you have provided me throughout the challenges I faced during
this process. You are the best!

Additionally, I want to express my sincere gratitude to the incredible individ-
uals at UiA and in CAIR who have played a very important role in this journey.
Their eagerness to share their knowledge, guidance, and encouragement have been
invaluable.

Finally, I would like to express my genuine gratitude to the companies Bouvet and
Glitre Nett for providing me with the opportunity to work part-time on extremely
interesting projects during my Ph.D. studies. The practical insights and experiences
gained through these engagements have enhanced my technical skills, expanded my
interests, and offered invaluable insights into real-world challenges and applications.

Last, but not least, I am humbled and truly grateful for all of the support and
contributions of all those mentioned above, as well as all those who I have not
explicitly acknowledged here but that have played a part in my academic journey in
any way. Your encouragement has been invaluable, and I sincerely appreciate every
one of you.

Rebekka Olsson Omslandseter
Grimstad

August 8, 2023

vi

Abstract

The paradigm of Artificial Intelligence (AI) and the sub-group of Machine Learn-
ing (ML) have attracted exponential interest in our society in recent years. The
domain of ML contains numerous methods, and it is desirable (and in one sense,
mandatory) that these methods are applicable and valuable to real-life challenges.
Learning Automata (LA) is an intriguing and classical direction within ML. In
LA, non-human agents can find optimal solutions to various problems through the
concept of learning. The LA instances learn through Agent-Environment interac-
tions, where advantageous behavior is rewarded, and disadvantageous behavior is
penalized. Consequently, the agent eventually, and hopefully, learns the optimal
action from a set of actions. LA has served as a foundation for Reinforcement
Learning (RL), and the field of LA has been studied for decades. However, many
improvements can still be made to render these algorithms to be even more conve-
nient and effective. In this dissertation, we record our research contributions to the
design and applications within the field of LA.

Our research includes novel improvements to the domain of hierarchical LA, ma-
jor advancements to the family of Object Migration Automata (OMA) algorithms,
and a novel application of LA, where it was utilized to solve challenges in a mobile
radio communication system. More specifically, we introduced the novel Hierarchi-
cal Discrete Pursuit Automaton (HDPA), which significantly improved the state of
the art in terms of effectiveness for problems with high accuracy requirements, and
we mathematically proved its ϵ-optimality. In addition, we proposed the Action Dis-
tribution Enhanced (ADE) approach to hierarchical LA schemes which significantly
reduced the number of iterations required before the machines reached convergence.

The existing schemes in the OMA paradigm, which are able to solve partitioning
problems, could only solve problems with equally-sized partitions. Therefore, we
proposed two novel methods that could handle unequally-sized partitions. In addi-
tion, we rigorously summarized the OMA domain, outlined its potential benefits to
society, and listed further development cases for future researchers in the field.

With regard to applications, we proposed an OMA-based approach to the group-
ing and power allocation in Non-orthogonal Multiple Access (NOMA) systems,
demonstrating the applicability of the OMA and its advantage in solving fairly
complicated stochastic problems. The details of these contributions and their pub-
lished scientific impacts will be summarized in this dissertation, before we present
some of the research contributions in their entirety.

vii

Sammendrag

Feltet kunstig intelligens og undergruppa maskinlæring har oppnådd en eksponen-
tiell interesse i samfunnet vårt over de seneste årene. Innenfor feltet maskinlæring
finner vi en mengde ulike metoder, og det blir stadig viktigere at disse meto-
dene er brukbare og verdifulle i de utfordringene vi mennesker møter og i opp-
gaver vi ønsker løst av datamaskiner. Feltet som omhandler læringsmaskiner, er
et fascinerende og klassisk felt innen maskinlæring. En læringsmaskin er en ikke-
menneskelig agent som kan finne optimale løsninger på forskjellige problemer ved
hjelp av konseptet læring. Læringsmaskinene lærer via agent-miljø interaksjoner, der
fordelaktig oppførsel belønnes og ufordelaktig oppførsel straffes. På denne måten vil
læringsmaskinene etter hvert, og forhåpentligvis, klare å finne den optimale handlin-
gen fra et sett av potensielle handlinger den kan utføre. Læringsmaskin-feltet har
figurert som selve fundamentet for forsterkningslæring, og feltet har blitt studert i
årtier. Likevel er det mange forbedringer som kan gjøre disse algoritmene enda mer
nyttige og effektive. I denne avhandlingen oppsummerer vi våre forskningsbidrag på
læringsmaskins-feltet.

Vår forskning inkluderer banebrytende forbedringer på hierarkisk læringsmaskins-
feltet, store forbedringer på Object Migration Automata (OMA)-algoritmene, og en
helt ny måte å løse utfordringer innen et mobilradiokommunikasjonssystem ved hjelp
av læringsmaskins-metoder. Mer spesifikt så introduserte vi Hierarchical Discrete
Pursuit Automaton (HDPA) og denne læringsmaskinen var betraktelig bedre enn
de eksisterende sammenliknbare algoritmene for problemer der det er høye krav til
nøyaktighet. Vi beviste også matematisk at HDPA-algoritmen var ϵ-optimal. I
tillegg foreslo vi Action Distribution Enhanced (ADE)-tilnærmingen til hierarkiske
læringsmaskiner, som betydelig reduserte antall iterasjoner som krevdes før mask-
inene nådde konvergens. De eksisterende algoritmene i OMA-paradigmet, som er i
stand til å løse grupperingsproblemer, kunne bare løse problemer med like store grup-
per. Derfor foreslo vi to nye metoder som kunne håndtere gruppe-konstellasjoner
med ulik størrelse. I tillegg oppsummerte vi OMA-domenet grundig, skisserte dets
mulige fordeler for samfunnet og listet opp lovende nye retninger for fremtidige
forskere på feltet. Videre foreslo vi en OMA-basert tilnærming til gruppering og
ressursallokering i Non-ortogonal Multiple Access (NOMA) systemer, og demonstr-
erte på denne måten anvendeligheten til OMA og dens fordel i å løse stokastiske
problemer. Detaljene i disse forskningsbidragene vil bli oppsummert i denne avhan-
dlingen, før vi presenterer noen av forskningsbidragene i sin helhet.

viii

Publications

The author of this dissertation is the primary contributor and is responsible for
all the papers listed below. The papers from A-J, in the first set, are selected to
represent the main contributions of the research and are reproduced in Part 2 of
the dissertation. Paper 11 in the second set is complementary to the main research
contributions. The reader should note that the level in the Norwegian system is
indicated in brackets after the paper id.

Papers Included in the Dissertation1

Paper A (1) Conference Paper: R. O. Omslandseter, L. Jiao, and J. B. Oommen, “A
Learning-Automata Based Solution for Non-equal Partitioning: Partitions
with Common GCD Sizes,” Advances and Trends in Artificial Intelligence,
From Theory to Practice, IEA/AIE 2021, vol 12799, pp. 227–239, Springer
International Publishing, July 2021.
https://doi.org/10.1007/978-3-030-79463-7_19

Paper B (1) Conference Paper: R. O. Omslandseter, L. Jiao, and J. B. Oommen, “Object
Migration Automata for Non-Equal Partitioning Problems with Known Par-
tition Sizes,” Artificial Intelligence Applications and Innovations, AIAI 2021,
vol 627, pp. 129–142, Springer International Publishing, June 2021.
https://doi.org/10.1007/978-3-030-79150-6_11

Paper C (1) Journal Paper: J. B. Oommen, R. O. Omslandseter, and L. Jiao, “Learning
Automata-Based Partitioning Algorithms for Stochastic Grouping Problems
with Non-Equal Partition Sizes,” Pattern Analysis and Applications, vol 26,
pp. 751–772, Springer London, May 2023.
https://doi.org/10.1007/s10044-023-01131-5

Paper D (1) Journal Paper: J. B. Oommen, R. O. Omslandseter, and L. Jiao, “The Ob-
ject Migration Automata: Its Field, Scope, Applications, and Future Re-
search Challenges,” Pattern Analysis and Applications, Special Issue, pp. 1–12,
Springer London, April 2023.
https://doi.org/10.1007/s10044-023-01163-x

1The papers are not listed chronologically, but in the same order as they are presented in the
Table of Contents.

ix

https://doi.org/10.1007/978-3-030-79463-7_19
https://doi.org/10.1007/978-3-030-79150-6_11
https://doi.org/10.1007/s10044-023-01131-5
https://doi.org/10.1007/s10044-023-01163-x

Paper E (1) Conference Paper: R. O. Omslandseter, L. Jiao, X. Zhang, A. Yazidi, and
J. B. Oommen, “The Hierarchical Discrete Learning Automaton Suitable for
Environments with Many Actions and High Accuracy Requirements,” AI 2021:
Advances in Artificial Intelligence, AI 2022 (AJCAI 2021), vol 13151, pp. 507–
518, Springer International Publishing, February 2022.
https://doi.org/10.1007/978-3-030-97546-3_41

Paper F (2) Journal Paper: R. O. Omslandseter, L. Jiao, X. Zhang, A. Yazidi, and J. B. Oom-
men, “The Hierarchical Discrete Pursuit Learning Automaton: A Novel Scheme
With Fast Convergence and Epsilon-Optimality,” IEEE Transactions on Neu-
ral Networks and Learning Systems, Early Access, pp. 1–15, IEEE, December
2022.
https://doi.org/10.1109/TNNLS.2022.3226538

Paper G (1) Conference Paper: R. O. Omslandseter, L. Jiao, and J. B. Oommen, “Enhanc-
ing the Speed of Hierarchical Learning Automata by Ordering the Actions – A
Pioneering Approach,” AI 2022: Advances in Artificial Intelligence, AI 2022
(AJCAI 2022), Lecture Notes in Computer Science, vol 13728, pp. 775–788,
Springer International Publishing, December 2022.
https://doi.org/10.1007/978-3-031-22695-3_54

Paper H (2) Journal Paper: R. O. Omslandseter, L. Jiao, and J. B. Oommen, “Pioneering
Approaches for Enhancing the Speed of Hierarchical LA by Ordering the Ac-
tions,” Information Sciences, vol 647, pp. 119487, Elsevier, November 2023.
https://doi.org/10.1016/j.ins.2023.119487

Paper I (1) Conference Paper: R. O. Omslandseter, L. Jiao, Y. Liu, and J. B. Oommen,
“User Grouping and Power Allocation in NOMA Systems: A Reinforcement
Learning-Based Solution,” Trends in Artificial Intelligence Theory and Ap-
plications. Artificial Intelligence Practices, IEA/AIE 2020, vol 12144, pp.
299–311, Springer International Publishing, September 2020.
https://doi.org/10.1007/978-3-030-55789-8_27

Paper J (1) Journal Paper: R. O. Omslandseter, L. Jiao, Y. Liu, and J. B. Oommen, “User
Grouping and Power Allocation in NOMA Systems: A Novel Semi-Supervised
Reinforcement Learning-Based Solution,” Pattern Analysis and Applications,
vol 26, pp.1–17, Springer London, July 2022.
https://doi.org/10.1007/s10044-022-01091-2

Papers Not Included in the Dissertation

Paper 11 (1) Conference Paper: R. O. Omslandseter, L. Jiao, and M. A. Haglund, “Field
Measurements and Parameter Calibrations of Propagation Model for Digital
Audio Broadcasting in Norway,” 2018 IEEE 88th Vehicular Technology Con-
ference (VTC-Fall), pp. 1–6, IEEE, August 2018.
https://doi.org/10.1109/VTCFall.2018.8690746

x

https://doi.org/10.1007/978-3-030-97546-3_41
https://doi.org/10.1109/TNNLS.2022.3226538
https://doi.org/10.1007/978-3-031-22695-3_54
https://doi.org/10.1016/j.ins.2023.119487
https://doi.org/10.1007/978-3-030-55789-8_27
https://doi.org/10.1007/s10044-022-01091-2
https://doi.org/10.1109/VTCFall.2018.8690746

Contents

I Summary of Contributions 1

1 Introduction 3
1.1 Families of LA . 5

1.1.1 FSSA . 6
1.1.2 VSSA . 6
1.1.3 Estimator LA . 6
1.1.4 Hierarchical LA . 7
1.1.5 Brief Overview of Applications 7

1.2 Research Challenges within LA . 8
1.2.1 Non-Equal Partition Sizes . 9
1.2.2 Problems with Large Number of Actions 9
1.2.3 Incorporating Ordering in the Actions 10
1.2.4 Practical Applications . 11

1.3 Research Objectives and Methodology 11
1.4 Organization of the Dissertation . 15

2 Fixed Structure Stochastic Automata (FSSA) 17
2.1 The Family of FSSA . 18

2.1.1 The FSSA Characteristics . 19
2.1.2 Examples of FSSA . 21

2.1.2.1 The Tsetlin Automaton 21
2.1.2.2 The Krylov Automaton 22

2.2 Assessment of LA Behavior . 24
2.2.1 FSSA and Convergence . 25

2.3 FSSA for Partitioning Problems . 26
2.3.1 Previous LA Solutions for Partitioning Problems 27

2.3.1.1 The Tsetlin Automaton for Solving OPPs 28
2.3.1.2 The Krinsky Automaton for Solving OPPs 30

2.3.2 Existing OMA Solutions for Partitioning Problems 31
2.3.2.1 Vanilla OMA . 33
2.3.2.2 Enhanced OMA (EOMA) 36
2.3.2.3 Pursuit EOMA (PEOMA) 39
2.3.2.4 Transitivity Pursuit EOMA (TPEOMA) 40

2.4 Chapter Summary . 41

xi

CONTENTS

3 Variable Structure Stochastic Automata (VSSA) 43
3.1 The Concept of VSSA . 44

3.1.1 Continuous Algorithms . 45
3.1.2 Discretized Algorithms . 46
3.1.3 Estimator/Pursuit Algorithms 50
3.1.4 Hierarchical Algorithms . 52

3.2 VSSA and Convergence . 55
3.3 Chapter Summary . 56

4 Novel FSSA Solutions 57
4.1 Proposed OMA Algorithms . 58

4.1.1 The Greatest Common Divisor (GCD) OMA 60
4.1.2 The Partition Size Required (PSR) OMA 65

4.2 Chapter Summary . 71

5 Novel VSSA Solutions 73
5.1 The HDPA . 75

5.1.1 Motivation for this Study . 76
5.1.2 Principles for the HDPA . 76
5.1.3 Summary of the Overall HDPA Algorithm 78
5.1.4 Overview of the HDPA Results 80

5.2 The ADE HDPA . 82
5.2.1 Motivation for this Study . 83
5.2.2 Principles for the ADE HDPA 85
5.2.3 Summary of the Overall ADE Algorithm 85
5.2.4 Overview of the ADE HDPA Results 87

5.3 Chapter Summary . 88

6 Communication-Based Novel Applications 89
6.1 Motivation for this Study . 90
6.2 Principles for NOMA and the OMA 91
6.3 Algorithm Summary . 95

6.3.1 OMA for User Grouping . 95
6.3.2 Heuristics for Power Allocation 96

6.4 Overview of the NOMA-based Results 97
6.5 Chapter Summary . 99

7 Conclusion 101

Bibliography 103

xii

CONTENTS

xiii

II Appended Paper Contributions 113

A The GCD and PSR OMA Papers 115
A.1 A Learning-Automata Based Solution for Non-equal Partitioning:

Partitions with Common GCD Sizes 115
A.2 Object Migration Automata for Non-Equal Partitioning Problems

with Known Partition Sizes . 129
A.3 Learning Automata-based Partitioning Algorithms for Stochastic Group-

ing Problems with Non-equal Partition Sizes 143
A.4 The Object Migration Automata: Its Field, Scope, Applications, and

Future Research Challenges . 173

B The HDPA Papers 193
B.1 The Hierarchical Discrete Learning Automaton Suitable for Environ-

ments with Many Actions and High Accuracy Requirements 193
B.2 The Hierarchical Discrete Pursuit Learning Automaton: A Novel

Scheme With Fast Convergence and Epsilon-Optimality 207

C The ADE HDPA Papers 225
C.1 Enhancing the Speed of Hierarchical Learning Automata by Ordering

the Actions – A Pioneering Approach 225
C.2 Pioneering Approaches for Enhancing the Speed of Hierarchical LA

by Ordering the Actions . 241

D The NOMA Papers 261
D.1 User Grouping and Power Allocation in NOMA Systems: A Rein-

forcement Learning-Based Solution 261
D.2 User Grouping and Power Allocation in NOMA Systems: A Novel

Semi-supervised Reinforcement Learning-based Solution 275

List of Figures

1.1 Paper Overview . 13

2.1 A visualization of the LA-Environment model. 18
2.2 A generalized FSSA machine and its components. 21
2.3 The Tsetlin automaton’s operation upon a Reward. 22
2.4 The Tsetlin automaton’s operation upon a Penalty. 23
2.5 The Tsetlin automaton’s operation upon a Penalty for three actions. . 23
2.6 The Krylov automaton’s behavior upon a Penalty. 23
2.7 Difference between an EPP and NEPP. 28
2.8 Example of the Tsetlin automaton’s operation upon a Reward. 29
2.9 Example of the Tsetlin automaton’s operation upon a Penalty. 30
2.10 The Krinsky operation upon a Reward for an OPP. 30
2.11 Schematic of the overall OMA concept. 34
2.12 The Penalty operation of the EOMA. 38
2.13 The frequency matrix for query occurrences in the PEOMA. 39

3.1 An example of the probability development for a continuous LA. . . . 47
3.2 An example of the change in probability for a continuous LA. 47
3.3 A visualization of a discretized DLR−I concept. 49
3.4 A step-vise visualization of HDPA paths 54

4.1 Example structure for the GCD OMA 61
4.2 An example of a Standstill Situation 66

5.1 An HDPA example structure for eighth actions 77
5.2 A visualization of the HDPA principle 80
5.3 A visualization of the HDPA principle with estimates 81
5.4 Example of a random action distribution 84
5.5 Example of an ordered action distribution 84
5.6 Examples of different action distributions 86
5.7 A visualization of the ADE processes 86

6.1 Difference between orthogonal multiple access and NOMA 92
6.2 A visualization of the NOMA concept 93
6.3 A single-carrier down-link system with two users and one BS. 94
6.4 A visualization of the OMA-based NOMA operation. 96

xiv

List of Tables

5.1 Simplified simulation results for the HCPA/HDPA, example 1 81
5.2 Simplified simulation results for the HCPA/HDPA, example 2 81
5.3 Simplified simulation results for the HDPA/ADE HDPA, example 1 . 88
5.4 Simplified simulation results for the HDPA/ADE HDPA, example 2 . 88

xv

Part I

Summary of Contributions

1

Chapter 1

Introduction

We live in a century when computers, digital communication, and digital signal
processing are becoming increasingly important in our daily lives. As more and
more digital devices interact with each other, the requirements for rapid information
exchange become more stringent, and increasingly more data, in various application
domains, are collected in ever-increasing quantities. In this context, one of the
fundamental questions encountered is that of knowing how we can better arrange
and store the data in the increasingly-digitized world, and how we can obtain useful
insights based on the enormous amounts of data collected. Understandably, due to
the stochastic nature of the real world, changes may occur rapidly, and it is prudent
to model and study the systems as being stochastic rather than static. To handle
the stochastic nature, we utilize the field of Learning Automata (LA)1, although not
a new phenomenon in itself, as a vital component to aid us in these challenging tasks
due to their extraordinary learning ability in dynamic environments. To efficiently
utilize the algorithms within this intriguing domain, modifications and improvements
are desirable so as to obtain, possibly, superior suitability and performance.

The research in this Ph. D. study was within LA, and is two-pronged. The
first prong concerned the Fixed Structure Stochastic Automata (FSSA) type of LA.
More specifically, it is concerned with solving partitioning problems in stochastic
Environments via LA, demonstrated in an application. The second prong is con-
cerned with improving the performance of the state-of-the-art algorithms within the
Variable Structure Stochastic Automata (VSSA) type of LA. Moreover, for the first
prong, we used the LA-based Object Migration Automata (OMA) algorithms for
solving stochastic partitioning problems. In addition, we proposed the use of OMA
in a mobile radio communications application. Furthermore, we presented inven-
tions and discoveries within the field of OMA, and proposed new approaches for
the OMA algorithms to solve problems that could not be handled previously. For
the second prong, we proposed a new algorithm for a very recently-introduced type
of LA, proved its performance mathematically, and made subsequent advancements
concerning how we could enhance the algorithm’s performance. In the following
paragraphs, we will first briefly discuss the field of LA. Then, we will present our

1The term LA is used interchangeably to denote both the field of Learning Automata and the
Learning Automaton itself, depending on the context it appears in.

3

novel OMA-based algorithms for solving partitioning problems. After that, we con-
tinue with our novel algorithms proposed in the VSSA domain. Lastly, we discuss
our proposed LA-based solutions to the mobile radio communication application.

A fundamental problem in large amounts of data is one of discovering connec-
tions and patterns between the data points. However, finding such patterns can be
complex and difficult, especially in high-dimensional spaces, with manual inspection.
A pertinent issue in pattern discovery involves finding groups of data points that
belong together, and is referred to as a partitioning problem. Partitioning problems
involve splitting abstract data points into sub-sets based on underlying or known
criteria2. In the Literature, we refer to the data points as objects, and a parti-
tioning problem is often referred to as an Object Partitioning Problem (OPP) [1].
Within FSSA, we concentrate on the paradigm of OMA, which has been legendary in
solving and monitoring partitioning problems. The LA-based OMA algorithm and
its variants represent effective solutions to stochastic grouping problems. However,
some of these algorithms’ peculiarities have rendered them to be less applicable to
real-life situations because they have been only able to handle equally-sized groups,
i.e., Equi-Partitioning Problems (EPPs). This particular problem was investigated
in this work, and several new OMA algorithms have been studied and proposed.

In the next major field of study, we visit the domain of fundamental LA algo-
rithms themselves. In the Literature, we have two main categories of LA, namely
FSSA and VSSA, respectively. As mentioned above, the OMA is an FSSA type of
machine. Many advancements over the years have increased the algorithms’ effi-
ciency and accuracy, as further elaborated later in this dissertation. However, one
problem that VSSA experiences is the diminishing increase/decrease in probability
when the number of actions becomes large. Consequently, to mitigate this issue,
the Hierarchical Continuous Pursuit Automaton (HCPA) was proposed by the au-
thors of [2]. However, because it had an impediment when the accuracy requirement
became stringent, in this Ph. D. thesis, we investigated how we could improve the
state of the art in this field, and proposed the Hierarchical Discrete Pursuit Automa-
ton (HDPA). In addition, in a completely different research direction, we discovered
that when the LA is organized hierarchically, the ordering of actions within the algo-
rithm greatly influences the machine’s performance. For this reason, we studied and
proposed methods that improved the algorithm’s speed even further. We believe
that this enhancement represents the state of the art.

The applications of the OMA algorithms are numerous. In this thesis, we studied
one concrete application domain, i.e., in wireless communication. In the case of
wireless communications, we observe a highly-relevant partitioning problem. In
particular, in the case of Non-Orthogonal Multiple Access (NOMA) systems, the
grouping of the users in the system greatly influences its performance. A well-known
issue in mobile radio communication is that the available frequencies is a sparse
commodity. With NOMA, it is possible to group the users into the same Resource
Block (RB), thereby utilizing the frequency space in a superior manner. To efficiently

2This could also involve dividing the set of attributes in a database, or the set of cities where
the data resides, etc. The term partitioning should thus be considered as an abstract concept.

4

make the method work, the users that are grouped together need to match in terms
of their signal characteristics. However, the users in a mobile communication system
possess highly stochastic behaviors, “moving” around in the corresponding space and
thus, making their signal characteristics subject to substantial and rapid changes.
Therefore, we need an adaptive method for finding and monitoring the groups. The
OMA algorithms are potential solutions to the grouping problem in NOMA systems
and were investigated and proposed as part of this dissertation.

With this brief introduction, the reader should have a basic understanding of
the context and the different problems involved with this Ph. D. study. But before
we proceed, in order for the reader to better understand the fundamentals of LA,
we submit below a brief introduction of the families of LA and briefly present their
characteristics.

1.1 Families of LA

Michael Lvovitch Tsetlin initiated the field of LA in the 1960’s [3]. Although Tsetlin
did not use the term LA, he introduced the concept of “automaton theory” and
modeled the automata using matrices. In subsequent years, the term “Learning Au-
tomaton” was used to describe different schemes, both deterministic and stochastic.
The principles of LA have become tightly intertwined with the field of Reinforcement
Learning (RL), and today, the phenomenon of “Learning Automata” has become a
standard description in both the concept of learning in itself, and in the field of
Machine Learning (ML).

The field of LA is based on the theory of learning, realized in artificial units
using complex computer programs. In LA, we have a learning unit (often referred
to as the Learning Agent or LA) and a teaching unit (traditionally referred to as
the Environment). The field of LA is rooted in psychology. Just as a child learns
the correct actions from its parent through communication and corrections, the LA
learns through interactions with the Environment. We can explain the LA operation
by an action-feedback loop, where the agent selects an action from within its set
of possible actions. Thereafter, the action is proposed to the Environment, which
gives a response back to the LA. The feedback to the LA can be of different types,
but generally, the agent will, based on the input from the Environment, update its
behavior and subsequently, hopefully, learn the optimal action within its paradigm.

There are many variants of LA, and generally, they are sorted into two categories:
FSSA and VSSA [4]. The first LA, introduced by Tsetlin, is an FSSA scheme. In the
FSSA schemes, the learning is achieved through the LA by maintaining a “memory”.
The memory is realized through the use of states, and the machine’s current state
determines the current action. Learning is achieved by the LA by traversing its state
space based on the feedback provided by the Environment. For the VSSA type,
learning is achieved by the machine by maintaining an action probability vector,
where the current action of the machine is determined by sampling this vector.
Learning in VSSA is achieved through updating the action selection probabilities

5

based on the feedback of the Environment. Within both FSSA and VSSA, there have
been advancements over the years. One of these advancements was the Estimator
LA [5], and another introduced structure and a hierarchical operation in the LA [2,
6]. For the reader to obtain a basic fundamental understanding of the material
in this dissertation, the aforementioned concepts are further elaborated on in the
following subsections.

1.1.1 FSSA

In the family of FSSA, the functionality and the memory of the machine are main-
tained in states, identical to those possessed by Finite State Machines (FSMs) and
flip flops [4]. The LA has a set of states, and the current state of the machine decides
the action that the LA outputs at present. The LA traverses its states according to
interactions with the Environment. There are often many states representing each
of the actions. Thus, if the machine selects an action, and that action leads to a
positive feedback from the Environment, the LA might reinforce the behavior of
choosing that action by going deeper into the state space of that action.

The FSSA schemes are time-invariant and have a fixed policy for inter-state
transitions and their behavior upon feedback from the Environment, and the ac-
tion selection [4]. The FSSA schemes can be modeled as ergodic Marcov chains.
Examples of FSSA machines are the Tsetlin, Krinsky, and Krylov LA [3]. Each of
these machines has its own strategy of traversing the states and interacting with the
Environment. Correspondingly, different FSSA types have distinctive convergence
characteristics.

1.1.2 VSSA

VSSA represent another family of LA, and in this type of LA, the machine is charac-
terized by its functionality and memory being maintained and connected to an action
probability vector [4]. More specifically, in VSSA, the action that the LA selects is
based on the action probability vector, P (n), at time instant n, and the vector can
be updated so that it has different action selection probabilities for P (n+1). While
transitions in FSSA are constant, they can change with n for VSSA. The action that
is chosen is submitted as the input to the Environment, and based on the feedback
from the Environment, the action probability vector will be updated. The updating
algorithm can be varied and includes, among others, the Linear Reward-Penalty
(LR−P) scheme, the Linear Reward-Inaction (LR−I) scheme, the Linear Inaction-
Penalty (LI−P) scheme, and the Linear Reward-ϵPenalty (LR−ϵP) [4, 7]. In these
different schemes, the probability vector is updated linearly. The updating can also
be done in a non-linear manner [4, 7, 8].

1.1.3 Estimator LA

Pioneered by Thathachar and Sastry are the Estimator-based Algorithms (EAs) [9].
These machines have the fastest convergence to date, when they are considered as

6

a single entity, but they can also be part of a hierarchical structure, as addressed
later [5]. EAs have a noticeably different paradigm, because they maintain running
estimates of the reward probabilities, which they also utilize in the learning process.
Such machines are characterized by phases of “exploration” and “exploitation”, and
the machine switches between these continuously. While updating the action prob-
ability vector, an “estimator” vector is also updated and maintained. This leads to
faster convergence, because these estimates can be utilized in the learning of the
machine so as to choose the superior actions more often.

Within EAs, we also include the concept of Pursuit Algorithms (PAs), where the
learning algorithm increases the probability of the currently-recorded best action,
and not of the action that is chosen. More specifically, the currently-best estimated
action is pursued. The pioneering PA, followed an LR−I continuous scheme, the Con-
tinuous PA (CPA) [9]. In [10], the authors introduced the Discrete PA (DPA), and
in [11], the functionality of PAs was extended to Reward–Penalty (RP) paradigms as
well. The pursuit-based LA methods, have been shown to be faster than traditional
VSSA schemes [12, 13, 14, 15]. Also, the OMA-based Pursuit OMA (POMA) [16]
and Pursuit Enhanced OMA (PEOMA) [17, 18] have incorporated the concept of
pursuit into the OMA family.

1.1.4 Hierarchical LA

For the above-mentioned VSSA, the convergence becomes challenging when the
number of possible actions is large. Understandably, for VSSA, the action probabil-
ity vector has a dimension of R (for R actions), and its elements sum up to unity.
When R is large, many of the action probabilities can have very small values and
may not even be chosen, thus rendering the principle behind VSSA to be void. Al-
ready in 1981, the authors in [4] discussed the possibility of hierarchical structures
in LA. Thathachar and Ramakrishnan followed up with the paper [6], where they
demonstrated by a complexity analysis that the highest gain in computational sav-
ings happened when the number of actions in each LA in their hierarchical example
system had two or three actions. Similar hierarchies were studied in [19] and [20].
A newer discovery was the more recent HCPA, and it constitutes the state of the
art [2], where with a hierarchically structured binary tree consisting of PAs, the
HCPA beat the earlier variants when the number of actions was high.

1.1.5 Brief Overview of Applications

The applications of LA and stochastic learning are manifold, and many examples
are listed in the following books [4, 7, 21], including game-like problems and pattern
classification. In [22], LA were used for network call admission. In relation to
network communications, they were also used in [23] for traffic control and Quality of
Service (QoS) routing [24]. LA have been used to adapt back-propagation algorithm
parameters in feed-forward neural networks [25]. In [26, 27], LA-based methodologies
were used for intelligent vehicle control. Additionally, they have been used for

7

determining roads in aerial images [28]. LA also represent a powerful solution for
analyzing the stochastic model in wireless communications [29]. Understandably, LA
are intertwined into a variety of different domains. The above-mentioned catalog of
applications is only a brief summary of the many examples of applications in which
LA represent compelling solutions.

Within the paradigm of OMA, we also find numerous applications. In [30], the
OMA was used for cryptanalysis, where a substitution cipher was solved using only
the plaintext and its analogous ciphertext. In image analysis, for finding conceptu-
ally similar images, the OMA demonstrated promising results in [31]. For finding the
trustworthiness of a reputation system, the OMA was employed in [32]. The OMA
has also shown that it was a highly effective solution for the problem of distributing
traffic across multiple virtual computing instances in [33] and [34], demonstrating
a 90 % cost reduction compared with other existing state-of-the-art approaches at
that time. Additionally, the OMA was used for resolving queries in a distributed
database with graph connections in [35]. The OMA has also been used to secure
statistical databases in [36] and [37], beating the state-of-the-art algorithms for a
Micro-Aggregation Problem. In [38], the OMA was used for outlier detection in the
issue of noisy sensors in sensor networks, and in [39], it was used in an adaptive
data structure solution to the paradigm of Singly-Linked Lists (SSLs) on SSLs, with
outer and sub-list contexts.

In addition to all the applications mentioned above, more complex “constella-
tions” of LA have also been introduced. The LA can be organized in complex coop-
erative learning schemes such as the newly introduced Tsetlin machine (TM) [40].
The TM is based on teams of LA working together in conjunctive clauses with rule
schemes of propositional logic. The TM has shown competitive results compared
with deep neural networks for various applications. As an example, the TM has been
used for text classification in [41], novelty detection [42], semantic relation analy-
sis [43], sentiment analysis in [44], and word sense disambiguation [45]. A formal
mathematical analysis of the TM has been reported in [46] and [47], respectively.

1.2 Research Challenges within LA

Within the large field of LA, there are many research challenges and phenomena
that can be investigated further to enhance the state-of-the-art algorithms and to
improve the performance metrics of the current machines. In this regard, within this
Ph. D. study, the research has been divided into one part concerning FSSA schemes
and another part relating to VSSA schemes.

Within the FSSA schemes, the main research challenge has involved solving parti-
tioning problems using LA. In addition, we have investigated a practical application
for the FSSA algorithms in solving partitioning problems so as to demonstrate their
power in solving and monitoring highly stochastic systems.

Regarding the VSSA schemes, within this Ph. D. study, we have mainly focused
on two aspects concerning developing new algorithms, and in beating the state-of-
the-art machines. The first aspect involves the problems that arise in VSSA when

8

we have a large number of actions, and the other aspect concerns incorporating the
concept of ordering in the actions. In Figure 1.1, the research challenges are linked
with the different papers that constitute the building blocks of this thesis.

1.2.1 Non-Equal Partition Sizes

Partitioning problems concern dividing a set of objects into specified (or unspecified)
sub-sets based on specific known/unknown criteria. As mentioned earlier, in the
Literature, such issues are often referred to as OPPs [1]. The splitting criterion
for such problems can have various complexities, and render the problems to be
NP-hard. The OPPs are similar to clustering problems but deal with a broader
range of situations. OPPs do not necessarily group objects based on a measurable
difference and can, for example, be based on abstract criteria such as the accessibility
of objects together. An example of an OPP can be that of distributing different files
in a geographically distributed database based on the accessibility of the users,
or dividing users into positive and negative contributors based on their individual
feedback, and also that of distributing power budgets among a set of users.

The LA-based FSSA, namely the OMA algorithms, can solve OPPs, and their
great strength is that they can handle such problems in highly stochastic Environ-
ments [38]. However, the current OMA algorithms can only solve EPPs. More
specifically, the existing OMA types can only handle grouping problems where the
partitions are of equal size. Understandably, only being able to handle partitioning
problems with equally-sized partitions is a limitation to the algorithms’ applicability
to real-life situations. The first OMA variant was introduced more than 35 years ago,
and until now, enabling the OMA algorithms to handle Non-Equi-Partitioning Prob-
lems (NEPPs), where the partitioning problem can have non-equal partition sizes,
has remained unresolved. Therefore, one of the main research challenges within the
OMA paradigm involves expanding the range of problems that the algorithms can
be applied to by making them able to handle both EPPs and NEPPs. We shall deal
with these problems quite comprehensively.

1.2.2 Problems with Large Number of Actions

In VSSA, as explained before, the action selection probability is maintained in a
vector, and the learning mechanism operates in a multiplicative manner for the
continuous-type VSSA and with specific increase/decrease strategies for the discrete-
type VSSA. The corresponding action selection probability is normally initialized as
1
R

per action, where R is the number of actions in the LA. Consequently, when R be-
comes larger, the probability of a particular action initially being chosen decreases.
Likewise, for the updating mechanisms, whether for the continuous or discrete type
VSSA, the LA requires a smaller learning parameter to guarantee actual learning.
Thus, the LA should not just instantly increase one of the action’s probability so
much that it immediately becomes the only action that the machine selects. Al-
though we can tune the learning parameter, the problem can still be that the LA

9

does not sufficiently explore all the actions, and we might even have the case that
the LA does not choose some of the actions at all!

The ϵ-optimality of absorbing CPA was presented in [48]. Similarly, the ϵ-
optimality of DPA was presented in [49], and its finite-time behavior was formally
proven in [50]. Generally, in all of these proofs, the analysis involves dealing with a
small-enough learning parameter, to ensure that the algorithms ϵ-optimally converge
to the optimal action. However, the smaller the learning parameter is, the longer
it will take for the algorithm to converge. Thus, in a practical system, we might
not want to wait for such a long duration, and certainly not for an “infinite” time.
Therefore, the problem of handling a large number of actions in LA is a complicated
one, and a prominent research challenge.

As earlier mentioned, the hierarchical LA constitute efficient solutions to prob-
lems where the number of actions is large. The recent discovery of the HCPA
presented in [2], utilizing “pursuit”-based LA in the hierarchy (PAs), represents a
quantum step in rendering the LA to be able to solve problems with a large num-
ber of actions very efficiently. The HCPA is the state-of-the-art machine in VSSA.
However, there are still challenges that remain unresolved with the HCPA. In more
detail, the HCPA demonstrates a more sluggish convergence as any action selection
probability approaches unity, especially for high accuracy requirements. Therefore,
one important research challenge is that of solving these issues, and possibly further
enhancing the state of the art within this field.

1.2.3 Incorporating Ordering in the Actions

Over the decades, ever since Tsetlin’s introduction, researchers have proposed new
concepts and fundamental principles to advance the LA’s accuracy and speed. The
advancements include utilizing probability updating functions, discretizing the prob-
ability space, and using the “Pursuit” concept. Recently, the HCPA phenomenon
that incorporates structure and a hierarchical ordering of the actions, has signifi-
cantly improved both the accuracy and speed when the number of actions is large [2].
Consequently, passing on the legacy so that constant improvements see the light of
day is essential for LA’s development and applicability to real-life problems.

Although the advancements leading up to the field of LA that we have today
are manifold, there are still problems that remain. With the HCPA, the actions are
located at the leaf of a tree consisting of LAs. These actions sit at the terminal
nodes of different paths through the tree, and one might start to wonder whether
the ordering of the actions at the leaf level influences the machine’s performance.
As addressed in 1984 [51], such structures can have impediments because the paths
through the tree are not always optimal. However, the solution proposed in the
paper does not consider the more recent discoveries and will, likewise, not work
with them. Linked to the concept of Random Races [52], an interesting field of
study is whether the ordering of the actions can be incorporated with the current
machines. This is one avenue where we have done some of our research.

10

1.2.4 Practical Applications

As the field of ML increases, so do the requirements for the algorithms’ applicability
to real-life scenarios. Numerous areas and domains are crucial and interesting, and
it would be beneficial if they can be tackled using the various tools for analysis that
ML provide. One of these fields is mobile radio communications, which is within
the focus of this thesis.

Mobile radio communication is a well-established field of research, and a promis-
ing technique is NOMA [53, 54]. In NOMA systems, users can be multiplexed into
the same RB, which utilizes the frequency bands more efficiently. In these systems,
the users that are grouped need to be carefully selected, and their power levels need
to be adjusted accordingly. In terms of finding grouping solutions, the study is still
in its infancy. In [55], a dynamic method was investigated, where the channels were
sorted from high to low and grouped on this basis. In [56], a K-Means clustering
scheme was employed to group users based on geolocation in, e.g., school halls.
Maximum weight matching was used in [57] to build groups and allocate power.
Proportional Fairness (PF) was applied through an exhaustive search in [58], and
also such an approach was applied in [59]. In [54], they analyzed NOMA uplink
systems, looking at the performance improvement if the users were paired optimally
given sub-optimal power allocation schemes. Here they showed that the optimal user
pairing can be found by utilizing the Hungarian algorithm in the configuration of a
multi-antenna Base Station (BS) with single-antenna users. However, the methods
proposed commonly assume, e.g., a particular channel fading. In previous solutions,
although channel fading was assumed to be following a certain random distribu-
tion, user grouping and power allocation were traditionally carried out based on a
known instantaneous sample from the distribution. However, due to the stochastic
nature in mobile communications, e.g., the mobility, the channel conditions, may be
changed significantly over time even for slow fading. Therefore, the practical uti-
lization and solutions to the problem remain an unresearched area. Consequently,
by investigating more practical approaches, considering the actual channel is an in-
teresting research topic that could enhance the field of NOMA. This is one avenue
where we have utilized LA in an applied manner.

1.3 Research Objectives and Methodology

As highlighted above, substantial research effort has been made in the paradigm
of LA, both in terms of the development and analysis of the algorithms, and their
practical applications. In spite of this, there are still aspects and issues that have
not yet been considered in the Literature. For instance, in the case of OMA, the al-
gorithms are not able to handle NEPPs. Additionally, within partitioning, detecting
patterns and monitoring them over time is a complex issue, and many interesting
and prominent applications have yet not been investigated. For example, the group-
ing and monitoring of the users in mobile radio communications systems is one field
where LA can provide advantageous solutions that can handle stochastic behavior

11

within the domains. Further advancements within VSSA are also crucial to continue
the application of these methods, increasing their accuracy and efficiency so that
they can be utilized to a greater extent in real-world applications, and trying to
beat state-of-the-art algorithms within the field. The open research questions and
behaviors in the field of LA that can be investigated further are manifold. Thus, in
this Ph. D. study, we attempted to answer the following research questions:

• Question 1: The algorithms within the OMA paradigm can reveal hidden
and unknown objects belonging together based on information about their
joint accessibility, i.e., the so-called queries. The basis of these queries can be
modeled in numerous ways. Suppose we wanted to find the optimal placement
of files in a geographically distributed database. In that case, the OMA could
monitor the queries of the different users accessing the files in the system,
and would thereafter be able to find an optimal placement of these files. In
such a system, we might have no prior information on which to base the
groupings. Thus, we only have information about the files being accessed over
time. The OMA algorithms can solve such problems and even handle them
when there are high degrees of uncertainty and stochastic behaviors. However,
the existing OMA algorithms can only handle grouping problems where the
partitions have equal sizes. Since we do not always have equally-sized groups,
the first research question was as follows: Can we develop OMA algorithms
that can handle non-equally sized groups?

• Question 2: In VSSA, the convergence rate and accuracy definitely degrade
as the number of actions increases. The HCPA was introduced so that LA
could handle a higher number of actions efficiently, and this method consti-
tutes the state of the art. Although the authors of [2] demonstrated and
mathematically proved the superior performance of this machine compared to
earlier existing variants, the HCPA still has an impediment when the accuracy
requirement of the algorithm becomes high (e.g. above 0.99). Consequently,
the second research question of this study became: Can we improve the state
of the art in LA so that the performance is not degraded even if the accuracy
requirement of the algorithm is high and is closer to unity?

• Question 3: In the hierarchical structures of LA, the actual actions selected
depend on the specific path through the tree structure. There can be multiple
actions per LA in the tree, and the policies within the tree can be different
depending on the LA type and the organization of the tree. The actions
selected by the machine are traditionally located at the leaf level of the tree.
Consequently, for a specific action to be chosen, all of the branches leading to
that action must be activated. When the actions depend on a hierarchy, like
in the case of a hierarchical tree structure of LAs, we can experience problems
that are not present within traditional LA, where all of the actions possess
an equal play. Indeed, the placement of the actions within the tree structure
seems to impact the algorithm’s performance. Therefore, the research question

12

becomes: Can we find out why the placement of the actions in hierarchical LA
structures has an impact on the algorithms’ performance, and can we propose
a solution to mitigate this issue in practical situations?

• Question 4: In mobile radio communications, the available frequency bands
are a sparse resource. Consequently, developing methods that utilize the fre-
quencies more effectively, are crucial. The NOMA system is a promising
technique in mobile radio communications because it allows multiple users
to utilize the same frequency bands efficiently. However, we must favorably
group the users for this technique to function adequately. Additionally, mobile
users are extremely stochastic in their behavior, complicating the issue. Cur-
rent solutions to the grouping in NOMA systems are mathematically bounded
and restricted, making them difficult to be implemented in practice. The
research question here, therefore, was: Can OMA algorithms find user group-
ings in NOMA systems in an improved manner and still handle the problem’s
stochastic nature?

The research questions listed above are organized in a logical order. However,
although the research questions are related to some extent, they are rather stan-
dalone in terms of the order in which they have to be solved. The first question
is related to the field of FSSA and relates to the algorithms within the OMA fam-
ily. The second and third research questions are associated with the development
of VSSA schemes and relate to enhancing the state of the art and improving hier-
archical structures within LA. The fourth research question is related to practical
applications, and concern using the OMA for solving grouping-related problems in
wireless communications.

Figure 1.1: The connections between the research topics and the papers included in
this dissertation.

13

In Figure 1.1, we depict the research work and connection between the research
areas. The figure also shows the different papers included in the dissertation and
specifies the topics they belong to. As depicted in the figure, we explore our research
in two main directions, i.e., the FSSA and VSSA direction. In the FSSA case, we
investigated the OMA paradigm, with the goal of developing algorithms that extend
the OMA’s functionality so that it can handle both EPPs and NEPPs. Additionally,
we demonstrated the applicability of the OMA to a practical application, namely the
field of NOMA in communication system. Thus, to address the research questions
listed above, we identify the following six research goals, and they are achieved
through the scientific contributions of the thesis highlighted in Papers A-J:

• Goal 1: Propose a novel OMA-based scheme that relaxes the equi-partition
size group constraint that the algorithms currently demand. The aim of the
first goal was not to entirely remove the partitioning size constraint, but to
improve the algorithms so that they could offer more flexibility in group size
configurations in the current partitioning problems (Paper A, C, and D).

• Goal 2: Propose a novel OMA-based method that allows the OMA to be able
to solve EPPs and NEPPs efficiently. Additionally, we should be able to use
the approach for all the existing algorithms (Paper B, C and D).

• Goal 3: Propose a novel scheme within the field of VSSA that beats the state
of the art and, additionally, addresses the issue of rather sluggish convergence
for high accuracy requirements in hierarchical LA (Paper E).

• Goal 4: Formally prove, the ϵ-optimality related to the convergence of the
proposed scheme addressed in the goal listed above (Paper F).

• Goal 5: Investigate and propose a solution to the problem of improving the
performance in hierarchical schemes by optimally determining the the place-
ment of the actions within such structures (Paper G).

• Goal 6: Formally prove the reason for the varying convergence speeds based
on the placement of the actions in hierarchical LA structures (Paper H).

• Goal 7: Demonstrate the use of OMA for grouping and monitoring the
stochastic moving mobile users in a NOMA system (Paper I).

• Goal 8: In the context of Goal 7, we additionally propose detailed solutions
for power allocation in such systems (Paper J).

The approach for addressing the research questions and achieving the goals of
this Ph. D. study includes mathematical modeling and computer simulations. In the
papers presented, in some cases, we demonstrate the performance and convergence
of some of the methods by formal mathematical analyses. In all of these contri-
butions, we demonstrated the performance of different proposed schemes through
computer simulations. The simulations were mainly conducted using Python pro-
gramming and related IDEs (like Spyder and Pycharm). For simulating mobile radio
communication channels, MATLAB became a crucial tool.

14

1.4 Organization of the Dissertation

This dissertation is composed of two parts. Part I summarizes the main discoveries
and research contributions of this Ph. D. study. Part II contains a collection of
papers that represent and highlight the main research contributions. The organi-
zation of the papers are presented in Figure 1.1, and the overview is connected to
the outline of the research challenges presented in Section 1.2. The papers that are
marked in bold are journal papers.

The remaining chapters of Part I is summarized as follows:

Chapter 2: Chapter 2 will briefly survey the theory of FSSA, and introduce
the reader to this fascinating field. Additionally, the estimator, pursuit, and transi-
tivity concepts of the different historical enhancements to the OMA will be detailed
concerning partitioning problems. In this way, the reader will have a concise intro-
duction to the field. Specifically, we first present the existing algorithms and their
related aspects before we present the algorithms proposed in this dissertation in
Chapter 4. We will summarize Chapter 2 before the VSSA part of LA is presented
in Chapter 3.

Chapter 3: Chapter 3 will consider the VSSA part of LA. First, we will present
the concept of the VSSA, the Estimator schemes, the Hierarchical LA, and their
applications in more detail. This brief introduction will equip the reader with the
background theory needed for comprehending the contributions within the field of
VSSA given here. After that, we will examine the motivation for developing faster
and better algorithms, and present the state-of-the-art algorithms and approaches.
This chapter is also summarized, before we continue with Chapter 4.

Chapter 4: Chapter 4 will consider our novel contributions to the FSSA field of
LA. More specifically, we explain the motivation for developing new OMA schemes,
and we subsequently explain these innovations in more detail. We close the chapter
with an overall summary, before we proceed with the next chapter about our novel
contributions to the VSSA field in Chapter 5.

Chapter 5: Chapter 5 presents our proposed algorithms in the VSSA field of
LA. Thus, we first present a summary of the HDPA, before we explain the concept
of ordering of the actions in hierarchical LA structures, and our ordering solution.
We briefly summarize the chapter in an overall manner, before we proceed with the
application study of this Ph. D. work in Chapter 6.

Chapter 6: Chapter 6 presents the application-based contribution of this Ph. D.
research. The application is related to grouping issues, and we utilized the FSSA-
based OMA methods to solve it. We first explain the central concepts of the ap-
plication, followed by the proposed solutions separately and systematically. The
chapter is briefly summarized, before we proceed with a more detailed and overall
conclusion of the dissertation in Chapter 7.

15

Chapter 7: Chapter 7 presents the conclusion of the dissertation, and we dis-
cuss some modifications and behaviors that can be considered in future work. The
dissertation has two main parts regarding the research contributions, but they are
considered collectively in this overall closure of the dissertation. After that, we
proceed with Part II, where we systematically present the various research papers.

16

Chapter 2

Fixed Structure Stochastic
Automata (FSSA)

The study of behavior, statistical decision-making based on prior experiences, the
solution to the two-armed bandit problem, and the theory of rational decision-
making in stochastic Environments, are all components of LA [4]. LA has its origins
in the field of psychology and can be viewed as a combination of these aspects.
Intriguingly, we can use human behavior as a source of inspiration for creating and
guiding LA entities, and in some cases, it can also help us understand and explain
their behavior better. This is a fascinating feature of LA, as it allows us to draw
connections between human decision-making processes and the ways in which LA
agents operate and learn. Thus, the research area is both interesting in terms of
making ML algorithms that are better and more versatile, and in the fundamental
aspect of enhancing the AI algorithms’ human-ness in decisions and behavior.

A LA can be defined as an Agent that makes decisions while operating in an En-
vironment that is random or uncertain. These non-human agents are implemented
through artificial, complex computer programs, where they are able to make deci-
sions and adapt to the world they operate in through interactions with a so-called
Environment. They learn the behaviors that, traditionally, ensure they have the
highest probability of being rewarded for their actions. Thus, the LA operation can
be modeled as an action-feedback loop, where the LA selects an action (makes a
decision), and the Environment that it operates in gives feedback that makes the
agent change its behavior over time.

As mentioned earlier, we have two main variants of LA, FSSA and VSSA, re-
spectively. In this chapter, we will focus on the FSSA variants. The original LA,
introduced by Michael Lvovitch Tsetlin in the 1960s, was an FSSA. These LA have
structures that do not change with time, and their current state determines their
current behavior. An FSSA can be modeled as a finite state machine, with a set of
states, input events, and transitions between the states [4]. Consequently, the be-
havior of an FSSA is determined by the number of states that it has, what the states
correspond to, and how the machine traverses these states. In the first part of this
chapter, we will explain the main characteristics of FSSA, including a detailed exam-
ple of their operation. The OMA algorithms are FSSA schemes. Consequently, the

17

Figure 2.1: A visualization of the LA-Environment model.

second part of this chapter concerns how such techniques can be used for grouping
problems, with a detailed explanation of the different OMA schemes.

2.1 The Family of FSSA

The automaton approach to achieve learning involves determining the optimal action
from among a set of actions [4], which is done by the LA acting as a learner and
the Environment acting as a teacher. As briefly mentioned above, we can model the
operation of the LA and the interaction with the Environment as a feedback loop
between them, as depicted in Figure 2.1. The LA selects an action (αi) from its R

possible actions. The selected action is presented as the input to the Environment,
and the Environment responds with a feedback. The feedback can be either discrete
or continuous, but it is commonly (as in this thesis), binary, where the Environment
either responds in a positive manner with a Reward or in a negative manner with a
Penalty, according to the input action.

In order to better understand the characteristics of LA, we need some mathe-
matical precision. To do this, we follow notations similar to the ones established
in [4]1. In mathematical terms, the Environment is composed of three components:
A, C and B, where A = {α1, α2, ..., αR} is the set of R possible actions that the LA
can choose from. Unknown in real life, but possibly known in simulation Environ-
ments, are the probabilities of the Environment responding with a Penalty for the
possible actions, denoted by C, where we have a single probability for each action.
Therefore, C = {c1, c2, ..., cR}, where each element, ci, is the probability of the En-
vironment’s response being a Penalty for the given action, αi. The output from the
Environment (which depends on C), i.e., the Environment’s response to a certain
action, is denoted by B. As mentioned earlier, the most common feedback is from a

1In the interest of brevity, we merely present here the minimal knowledge required for the reader
to understand the concepts presented within this dissertation. A more thorough explanation can
be found in [4].

18

binary output set, where B ∈ {β1, β2}, and β1 = 0 might correspond to a Reward,
and β2 = 1 might correspond to a Penalty.

The reader should remember that in a LA system, the interactions of the LA
with the Environment are often considered in a temporal space that is discrete.
These discrete intervals can have a relation to time, e.g., an action is performed
every minute. However, in order to generalize this phenomenon, we denote the
discretized steps by an index “n”. As a result, the LA selects an action for each n,
and consequently receives an input (feedback) from the Environment. It is important
to keep in mind that the probabilities in C could change throughout the operation
depending on the system that is being represented, in which case it is referred to as
a “non-stationary” Environment. On the other hand, the Environment is said to be
“stationary” when the penalty probabilities do not vary with time.

The LA, on the other hand, can be formalized by the following five parameters:

Θ = {S,A,B,F(., .),H(., .)}, (2.1)

where S is the set of states and S = {1, 2, ..., RS}. Thus, there are RS states
in total, with S states per action. As mentioned earlier, A is the set of possible
actions of the automaton, and B represents the feedback that the automaton can
receive from the Environment. Consequently, the selected action corresponds to
the output of the machine, and the Environment’s feedback corresponds to the
input to the machine. Furthermore, F(., .) maps the machine’s current state and
input from the Environment into its next state, which can be formally described as
F(., .) : S ×B → S. Depending on the LA’s configuration, the machine’s transition
from one state to another, might change its next chosen output action, which can be
the case in FSSA (or the probability of choosing the different actions, as in the case of
VSSA, detailed later in this dissertation). To represent the change of the LA’s chosen
output action, we use the function H(., .), as in [4]. Consequently, H(., .) maps the
current state and current input to the machine into its current output, expressed
formally as H(., .) : S × B → A. However, if the chosen output action depends
only on the machine’s current state, referred to as a state-output automaton, its
operation is better represented by the output function G(., .), expressed formally as
G : S → A. The FSSA machines are state-output automatons, and they also have
other distinct characteristics, discussed, in more detail, below.

2.1.1 The FSSA Characteristics

As mentioned above, the FSSA machines are state-output automata. In addition,
S, B, and A are finite sets. More specifically, the concepts can be summarized as
follows [4]:

• The states maintain the memory of the automaton, and at any time instant
n, its state can be represented as ϕ(n), where ϕ(n) ∈ {1, 2, ..., RS}. Thus, the
current state of the machine is from a finite set of states.

19

• The output, i.e., the selected action, of the machine at any time instant n,
is represented as α(n), and A = {α1, α2, ..., αR}. Consequently, the action
selected by the automaton is from a finite set of actions (and depends on the
output function, as elaborated below).

• The input, i.e., the feedback from the Environment to the automaton is tradi-
tionally also from a finite set (note that it can also come from an infinite
set [4]), where the feedback at any time instant is denoted as β(n), and
B = {β1, β2, ..., βm}, or B = {a, b} (where a and b are real numbers).

• The transition function is the operation that ultimately changes the behavior
of the machine. This mapping considers the machine’s current state and the
input feedback to decide on the machine’s state at the next time instant.
Thus, ϕ(n + 1) = F [ϕ(n), β(n)]. This function can be either deterministic or
stochastic.

• The output function is the operation that determines the action selected by the
automaton at any time instant, n, as α(n) = G[ϕ(n)]. This function can also
be either deterministic or stochastic, and as also mentioned earlier, for FSSA,
these automata are state-output machines. Thus, the actions determined as
the outputs are based on the current state that the machine is in.

The information presented in the above list may be represented graphically as
seen in Figure 2.2 [4]. As we can observe from the figure, the automaton has a state,
which can be changed by the transition function, and this depends on the machine’s
current state and the input from the Environment. Because FSSAs are state-output
automatons, the machine’s current state determines the result of the output function,
i.e., the chosen output action. Informally, the transition function handles what
happens upon an unfavorable or favorable response from the Environment, and is
responsible for the automaton eventually adjusting its behavior and learning the
optimal action. The output function decides which action is chosen as the output
based on the machine’s current state.

Before we proceed, it is important to mention that if we have an automaton that
for a given state and input, the next state and action are completely predetermined
with no uncertainty, the automaton is said to be “deterministic” [4]. A determin-
istic automaton has both a deterministic transition and output function. However,
if either of these functions are stochastic, meaning that they have some degree of
uncertainty, the automaton is said to be “stochastic”. An FSSA, can be either deter-
ministic or stochastic. However, in most cases, the LA has some type of uncertainty,
e.g., in the case when we have more than two actions, and/or the transition from
one action to another is done in a probabilistic manner, or when it incorporates the
Pursuit concept (explained in more detail later). In addition to the characteristics
above, FSSA2 are known by their independence from n and the input, in itself, in

2In this dissertation, as in most of the Literature, we generalize the fixed structure automata,
and refer to them as FSSA, although some schemes might, in reality, only exhibit deterministic
behavior.

20

Transition function:

β(n) ∈ {β1, β2, ..., βm}
Output function:

Input:
The state:

ϕ(n+ 1) = F [ϕ(n), β(n)]

ϕ(n) ∈ {1, 2, ... , RS}

α(n) = G[ϕ(n)]

α(n) ∈ {α1, α2, ..., αR}

Output:

Figure 2.2: A generalized FSSA machine and its components.

terms of the transition function and the output function, respectively.
Another essential feature of stochastic automata is that they can be made de-

terministic by increasing the number of states inside the automaton. In this way,
a stochastic automaton can be viewed as being deterministic, even if its transition
or output function is stochastic. Because of this characterization of S, it is possible
to conduct an analysis of the input-output behavior shown by the machine. This is
due to the fact that the output function can be rendered deterministic. The formal
evidence of this behavior has been excluded from this section, but it can be found
in [4].

2.1.2 Examples of FSSA

Several distinct families of FSSA machines are characterized in the LA paradigm.
The behavior of these automata can be altered in a wide variety of ways. In this part,
we will cover two instances of such LA so that the reader may better understand
the general idea behind these LA. More specifically, we will consider the Tsetlin
Automaton and the Krylov Automaton.

2.1.2.1 The Tsetlin Automaton

The Tsetlin automaton is one of the simplest FSSA schemes. As for a state-output
automaton, the current state that the automaton resides in determines the action
it chooses as its output, i.e., the state determines the action that the automaton
selects. The Tsetlin automaton has a pre-determined set of states that corresponds
to each of the actions. As long as the automaton is in the set corresponding to an
action, e.g., α1, it will select α1 for each n. These states are ordered such that upon
a favorable response from the Environment (a Reward), the machine moves deeper
into the state space of its current action. Upon receiving an unfavorable response
from the Environment (a Penalty), the automaton moves shallower in the state
space of its current action. More specifically, the Tsetlin automaton has S states
per action. These states corresponds to the memory of the machine. Thus, S is the
number of memory locations of the machine. Consequently, it requires a maximum
of S consecutive unfavorable feedbacks from the Environment for the automaton to
change to another action if it is currently inside an unfavorable action.

21

... ...

α1 α2

1 2 S 2S S + 2 S + 1

β1 β1

β1 β1

β1

β1

Figure 2.3: The Tsetlin automaton’s operation upon a Reward.

In Figure 2.3, we visualize the functionality of the Tsetlin automaton upon re-
ceiving a Reward. As we can observe from the figure, we have two actions, α1 and
α2, respectively. The states from 1 to S belongs to α1, and the states from S +1 to
2S belongs to α2. For example, if the automaton is currently in state 2, it chooses
α1. In this case, if the Environment responds with a Reward (β1), the next state of
the automaton is state 1. In other words, upon receiving a Reward, the behavior
of selecting that action is reinforced. In this way, the automaton will remember
this action longer, and it will require one additional Penalty to unlearn the current
behavior. For a favorable response, the automaton will only move deeper into the
state space, and it does not have the possibility of changing to another action.

In Figure 2.4, we see an example of the automaton’s behavior upon receiving an
unfavorable response from the Environment. In this figure, we can observe that the
automaton will move shallower inside the state space of a certain action upon an
unfavorable response, and change its action if it is currently in a so-called boundary
state. The boundary states in Figure 2.4 are S and 2S, respectively. Consequently,
for R actions, we find the boundary states in rS, where r ∈ {1, 2, ..., R}. When the
automaton is in a boundary state and receives an unfavorable response (a Penalty),
it will switch to another action, as discussed below. If we consider the case that
the automaton is in state 1, it outputs α1, and receives a Penalty (β2) from the
Environment, the next state of the automaton is state 2. In this way, the automaton
will eventually change to another action if its current action is unfavorable.

When the Tsetlin automaton has more than two actions, the number of actions
that the automaton can switch to upon an unfavorable response is one less than
the total number of actions, which is denoted by R − 1. In the traditional Tsetlin
automaton proposed by Tsetlin, this is done in a sequence, as depicted in Figure 2.5.
As visualized in the figure, the automaton moves to the boundary state of α2 when
it is in the boundary state of α1. Furthermore, by a simple extension, we have
α2 → α3, α3 → α1, respectively at the boundary states. On the other hand, these
transitions can also be done in a stochastic fashion, which is a more typical technique
nowadays [4], making the Tsetlin automaton stochastic.

2.1.2.2 The Krylov Automaton

The behavior of the Krylov automaton is similar to the Tsetlin automaton upon
receiving a favorable response from the Environment. Thus, the Krylov automaton
follows the same operation, as depicted in Figure 2.3, upon a Reward [4]. Also

22

... ...

α1 α2

1 2 S 2S S + 2 S + 1

β2 β2 β2

β2 β2 β2

Figure 2.4: The Tsetlin automaton’s operation upon a Penalty.

... ...

α1 α2

1 2 S 2S S + 2 S + 1

β2 β2

β2 β2

...

3S

β2

β2

2S + 1

2S + 2

α3

β2

β2 β2

Figure 2.5: The Tsetlin automaton’s operation upon a Penalty for three actions.

... ...

α1 α2

1 2 S 2S S + 2 S + 1

p = 1
2

p = 1
2

p = 1
2

p = 1
2

p = 1
2

p = 1
2p = 1

2

p = 1
2 p = 1

2

p = 1
2

Figure 2.6: The Krylov automaton’s behavior upon a Penalty.

23

similar to the Tsetlin Automaton, the Krylov automaton has a set of states per
action, and the current state of the machine determines its output. The automaton
traverses the states in accordance with the feedback from the Environment. The dif-
ference between the Tsetlin automaton and the Krylov automaton is in terms of the
machines’s operation upon receiving an unfavorable response from the Environment.
The Krylov automaton has a sequential handling of switching between actions, like
the Tsetlin automaton. However, as for the Tsetlin automaton, the switch of action
can also be done in a stochastic manner.

In Figure 2.6, we visualize the operation of the Krylov automaton upon receiving
a Penalty from the Environment. Upon a Penalty, the Krylov automaton has a
stochastic behavior. Thus, the automaton either goes shallower (or switches action)
or deeper in the state space of the action that it currently is in. More specifically,
when the automaton is neither in the innermost or a boundary state, it will go
deeper with probability 1

2
, or shallower with a probability 1

2
. If the automaton is

in an innermost state, it will stay in its current state with probability 1
2
, or to the

next shallower state with probability 1
2
. In a sense, the automaton randomly chooses

to treat the Penalty as a Reward (as per Tsetlin’s perspective) in all cases. This
behavior can aid the automaton to remain more stable, even in highly stochastic
Environments.

2.2 Assessment of LA Behavior

The optimal action for an automaton is the action that results in the minimum prob-
ability of receiving a Penalty from the Environment when it chooses that action [4].
In order to consider whether an automaton is able to learn, it needs to perform
better than a “pure-chance automaton”. Similar to the notation in [4], we denote
the average penalty for a given action probability vector as M(n) =

∑R
i=1 cipi(n),

where pi is the probability of the automaton selecting action αi at time n. For a
“pure-chance automaton”, M(n) is a constant M0 and M0 =

1
R

∑R
i=1 ci.

Within the paradigm of LA, a machine that is better than a “pure-chance au-
tomaton” is said to be “expedient”. The expedient behavior can be mathematically
represented as:

lim
n→∞

E[M(n)] < M0. (2.2)

Another characterization for assessing the learning behavior is “optimality” [4].
More specifically, the automaton is said to be optimal if the following statement is
true:

lim
n→∞

E[M(n)] = cl, (2.3)

where cl = min{ci}. Thus, if an automaton is optimal, it will choose αl asymp-
totically, with probability one. However, it is impossible for any LA to satisfy this
criterion. We thus have the concept of ϵ-optimality. More specifically, an automaton
is said to be ϵ-optimal if:

lim
n→∞

E[M(n)] < cl + ϵ, (2.4)

24

where ϵ is an arbitrarily small value, and 0 < ϵ. In simpler terms, an ϵ-optimal
automaton will, within an infinite timeframe, eventually converge to the optimal
action with a probability that is arbitrarily close to unity. The reader should note
that these assessment criteria relate to the FSSA and the VSSA types of LA in
different manners, as highlighted below, and in the subsequent chapters.

Additionally, we also have the absolutely expedient behavior [4], which is an al-
ternative condition to ϵ-optimality. An automaton is said to be absolutely expedient
if:

lim
n→∞

E[M(n+ 1)|p(n)] < M(n), (2.5)

and that this inequality is true for all n and C, where pi(n) ∈ (0, 1). More specifically,
this means that the average penalty strictly decreases with n. In practical terms,
it means that in the expected sense, the automaton learns monotonically at every
time instant, eventually abandoning the unfavorable actions, and converging to the
optimal action with an arbitrarily high probability.

Above, we have discussed the assessment criteria for the LA’s behavior in a
general manner. However, unlike the VSSA schemes, an FSSA scheme has a memory
that is realized through the automaton’s states. Let us, therefore, consider the
asymptotic ϵ-optimality as the number of states goes to infinity [4]. More specifically,
a deterministic automaton is said to be ϵ-optimal if there exist an S1 such that S > S1

and:
M ≤ min

i
{ci}+ ϵ, (2.6)

where ϵ is an arbitrarily small value and 0 < ϵ, and the values for ci is in the closed
interval [0, 1]. For example, a two-action automaton, is said to be ϵ-optimal if:

lim
S→∞

M(c1, c2, S) = min(c1, c2), (2.7)

where M(c1, c2, S) is the expected penalty when we have a memory depth of S. In
practical terms, it means that the automaton converges to the optimal action with
a probability that is arbitrarily close to unity as the memory depth S → ∞. As
an example, it can be shown that Krylov automaton is ϵ-optimal in all stationary
Environments, i.e., when S tends to infinity [4]. As another example, the Tsetlin
automaton is only ϵ-optimal when the largest reward probability in the system is
greater than 0.5, due to its equal policy treatment of penalties and rewards [48].

2.2.1 FSSA and Convergence

Convergence is an established concept in mathematics and concerns the principle of
a function approaching a limit more closely as an associated parameter or variable
decreases or increases. In the LA paradigm, the concept of convergence is an impor-
tant indicator or characterization. For FSSA, we generally define the convergence as
having been achieved once the automaton has reached the innermost state of any of
the actions in its solution space. The innermost states are normally given by iS+1,
where i ∈ {0, 1, 2, .., R−1}. However, the convergence criterion can be adjusted and

25

defined in various ways, but for FSSA schemes, it is always based on the state of
the machine.

The convergence of an FSSA is related to the concept of certainty of the automa-
ton. For example, once the automaton is in the innermost state, we can assume that
it is quite certain that the current action that it is in, is the preferred action. How-
ever, the likelihood that the action to which the machine has converged to increases
with the parameter, S. We can adjust the number of states to influence the con-
vergence behavior and the likelihood of the automaton converging to the optimal
action. The number of states in an FSSA is a trade-off between the certainty of the
automaton and the efficiency of the automaton. The more states we have, the more
certain the automaton will be in its final decision. However, the more states that
the LA has, the more iterations it will take before the convergence is achieved.

2.3 FSSA for Partitioning Problems

In the past, solving partitioning problems included splitting a collection of numbers
into subsets with the goal of reducing the difference between the subgroups’ maxi-
mum and lowest sums as much as possible [60]. An example is the NP-hard, “Two-
way Number Partitioning Problem”, where the problem is to divide integers into two
sub-sets and where the sum of the integers in all of the sub-sets should be as close to
one another as possible. Using a variety of heuristic approaches in [61], the “Two-way
Number Partitioning Problem” was addressed. Subsequently, the Karmarkar-Karp
(KK) heuristic [62], the Complete Greedy Heuristic Algorithm [63], and the Com-
plete Karmarkar-Karp Heuristic Algorithm [64] used a variety of strategies based on
binary trees in order to resolve the issue. In recent years, the issue has been expanded
to deal with vectors rather than numbers. One example of this is the “Multidimen-
sional Two Way Number Partitioning Problem”, which has been addressed by using
a genetic algorithm [65] and with a metaheuristic strategy in [66].

In a more generalized manner, we can say that partitioning problems concern
dividing a set of objects into groups based on some known (or unknown) criteria.
Such problems have been referred to as OPPs [67, 68], as mentioned earlier in the
Introduction. In this dissertation, we invoke this distinct and broader definition
of partitioning. Although OPPs may seem similar to clustering, the OPPs have
distinct characteristics. Clustering methods like, e.g., K-Means, usually group the
objects directly based on distance metrics that are presented without any uncer-
tainty. However, in the case of OPPs, there might be no up-front information to
base the grouping on, as the information might only be obtainable over time. In ad-
dition, for an OPP, there might be no available distance metric that can be used as
a foundation for the grouping. The conditions might be based on accessibility, i.e.,
the issue of queries of objects being accessed together. Consequently, for an OPP,
we might have a stochastic underlying sequential presentation of objects accessed
together, where their accessibility has an inherent meaning that they should be
grouped. Another aspect is the uncertainty that often complicates the grouping in

26

OPPs, where the information contains stochastic or misleading leads. Consequently,
the solution needs to handle the stochastics of the presented queries3.

In what follows, we will refer to partitioning in terms of OPPs. Additionally,
we divide OPPs into two different scenarios. Thus, when the problem concerns
dividing objects into equally sized groups, we refer to the problem as an EPP, as
already alluded to in the Introduction. For example, an EPP can concern dividing
six objects into three groups, where each group has room for two objects. In contrast
to EPPs, we have NEPPs, where the grouping problems concern dividing the objects
into unequally-sized groups. Thus, an example of a NEPP is that of dividing six
objects into two groups, where one group has room for four objects, and the other
has room for two objects. In Figure 2.7, we visualize the difference between an EPP
and a NEPP. The reader should also notice the terminology, where ∆∗ refers to the
optimal (and unknown) partitioning. Furthermore, ∆+ refers to the partitioning
found or determined by an arbitrary algorithm, and when ∆+ = ∆∗, the solution
found is said to be the optimal partitioning. The distinction between EPPs and
NEPPs is essential in this dissertation, because the research is related to novel
contributions for solving NEPPs, since the prior existing algorithms were only able
to solve EPPs.

We define an OPP as a problem where we have O objects to be divided into K

disjoint groups. The objects in the grouping problem are referred to by oi, where
i ∈ {1, 2, ..., O}. Further, we denote a certain group as ϱk, where k ∈ {1, 2, ..., K}.
Consequently, as an example, ϱ1 = {o1, o2, o3}, means that o1, o2, and o3 are all
elements of partition ϱ1. Consequently, when O

K
is an integer and there are an equal

number of objects in each group, we are dealing with an EPP.
It is possible to employ LA to solve OPPs. As we proceed with the presentation

of the FSSA solutions to partitioning, the reader will notice that the ways in which
we might model FSSA to tackle such situations are considerably different from, for
example, clustering approaches and other classic grouping techniques. As already
emphasized about LA, they are able to handle stochastic Environments. Conse-
quently, these solutions represent powerful solutions where the grouping problems
are hard to determine using, e.g., merely statistical strategies.

2.3.1 Previous LA Solutions for Partitioning Problems

Two of the earliest non-LA solutions to the OPP were the Hill-Climbing method
proposed in [69] and the Basic Adaptive Method (BAM) detailed in [70]. The Hill-
Climbing method was based on pairing, scoring, and replacing with two different
processes until no further improvements to the groupings could be obtained. Thus,
the Hill-Climbing method was tedious, and it was even claimed that no real-life
simulations of the method could be made in [71]. The BAM partitioned objects
without having the need to specify the number of partitions. This method was

3We emphasize that an OPP and the criterion for objects being accessed together can be
modeled and configured in numerous ways, and that even distances can be considered in this
configuration as exemplified later in the dissertation.

27

Figure 2.7: Visualization of an EPP and a NEPPn and the different terminologies
used in this dissertation.

based on queries, where a query consisted of objects that should be grouped. In this
dissertation, we denote a query by Q, where Q = {oi, oj} indicates that oi and oj
are accessed together. The BAM aimed at grouping the queried objects by bringing
them closer together on a real line. Each object was initially assigned a real number,
and their respective numbers were changed upon receiving a query. Ultimately, the
partitions were determined after a certain number of queries had been considered,
and this was based on the objects’ nearness to one another. The BAM suffered
from slow convergence, and it also required a mechanism for preventing all the
objects from moving to the same group. This phenomenon negatively influenced
the other objects and could block the algorithm from finding the correct or optimal
partitioning.

It was later demonstrated that LA-based methods, like the Tsetlin automaton
and the Krinsky automaton, could solve OPPs better than the Hill-Climbing method
and the BAM, respectively. However, as demonstrated in [67], the Tsetlin and Krin-
sky became impractical as the number of partitions and partition sizes increased.
Rather, when solving OPPs by LA, the problem needs to be modeled quite differ-
ently. Thus, in these solutions, the objects are represented as abstract objects that
themselves traverse the LA’s states, and the current state of such an object deter-
mines the group to which it belongs. More details about the Tsetlin and Krinsky
methods are presented below.

2.3.1.1 The Tsetlin Automaton for Solving OPPs

The Tsetlin automaton was described in detail above with examples of its operation
upon a Reward and Penalty as in Figure 2.3 and Figure 2.4, respectively. The
reader should remember that such a machine has RS states. Thus, we have eight
states in total, if we have two actions and four states per action. For a Tsetlin
automaton to solve an OPP, we need to arrange the same number of actions as we

28

... ...
α1 α2oi oj

(a)

... ...
α1 α2

oi

oj

(b)

... ...
α1 α2oi oj

(c)

op oq

op oq

op oq

1 2 S 2S S + 2 S + 1

1 2 S 2S S + 2 S + 1

1 2 S 2S S + 2 S + 1

Figure 2.8: Example of the Tsetlin automaton’s operation upon a Reward.

have groups in our partitioning problem, i.e., R = K. A Tsetlin automaton needs to
be configured differently from traditional LA in order for it to solve a partitioning
problem. Traditionally, the automaton itself is in a state and traverses through
the states in its state space. However, to solve OPPs, the objects themselves are
configured to traverse the state space of the automaton. Consequently, the objects
each have a state, which determines their partition.

Let us consider an example where we have four objects that should be partitioned
into two partitions. In case (a) in Figure 2.8, we can observe that oi and oj are in
the same action. When presented with Q = {oi, oj}, the objects are rewarded as
visualized in (b). The overall distribution of objects after the LA receiving this
query, and getting a feedback from the Environment is visualized in (c). In general,
for LA and partitioning problems, we use the terminology that the automaton has
converged once all the objects are in the innermost states. The innermost states
are the states furthest away from the boundary states, where an object is able to
change action. In (c), we see that the machine has converged.

In Figure 2.9, we can observe the Tsetlin automaton’s operation upon receiving
a Penalty. In this case, the queried objects are not currently inside the same action
(group). Consequently, the objects are penalized. One of the objects switches to
α1 because it is currently in the boundary state of α2, while the other action is
moved one step shallower. If we imagine the next time instant, the objects might be
rewarded if we receive another query consisting of the same objects. In this way, we
see that the objects that are queried manage to get together inside the same action
(group) and might eventually converge.

29

... ...
α1 α2oi oj

(a)

... ...
α1 α2oi

oj

(b)

... ...
α1 α2

1 2 S 2S S + 2 S + 1

oi

(c)

op oq

op oq

op oqoj

1 2 S 2S S + 2 S + 1

1 2 S 2S S + 2 S + 1

Figure 2.9: Example of the Tsetlin automaton’s operation upon a Penalty.

α1

1 2 4

oi

3 5

α2

10 9 78 6

oj

Figure 2.10: The Krinsky operation upon a Reward for an OPP.

2.3.1.2 The Krinsky Automaton for Solving OPPs

The Krinsky automaton operates similarly to the Tsetlin automaton when it comes
to solving partitioning problems, as outlined above. However, the Krinsky automa-
ton has a different transition function that is activated upon receiving a Reward.
Specifically, if the queried objects are currently in one of the intermediate actions,
the automaton will “jump” directly to the innermost state of the current action as
visualized in Figure 2.10. This behavior allows the machine to converge faster, but
the machine is also more vulnerable to obtaining an incorrect partitioning, if the
presented query is noisy (as explained in more detail later), and does not represent
objects that should be together.

The reader should note that there is no configuration in the Krinsky automaton
(or in the Tsetlin automaton) that prevents all objects from residing and converging
to the same action. This drawback prevents the optimality of these LA for solving
partitioning problems, as no mechanism is available to divide the groups correctly.

30

Another drawback is the operation upon a Penalty, where no mechanism ensures
that the queried objects are moved favorably. If two objects are queried and are in
different groups, they will be penalized (because we want them to be in the same
group). Thus, upon a Penalty with many groups, one object might switch to one
action and the other to a completely different action. Consequently, it might require
many queries before they are fortunate enough to switch to the same action if they
are really meant to be together. If the automaton is completely deterministic in its
switching between the states, they may even experience situations where they do
not co-exist in the same group/action. In this case, the machine will, therefore, be
prevented from converging, i.e., the objects reaching the innermost states.

2.3.2 Existing OMA Solutions for Partitioning Problems

The original OMA, further referred to as the Vanilla OMA, was introduced in [72]
and provided a novel strategy for resolving partitioning issues using LA4. The OMA
solutions to OPPs (specifically EPPs) are the most efficient LA solutions to such
problems [38, 39]. The OMA can solve EPPs based on the concept that there are
as many actions as there are groups in the grouping problem. Thus, if a grouping
problem has three groups, the OMA will have three actions. In OMA, the entities
to be grouped are referred to as abstract objects. The essential idea of OMA is that
the abstract objects themselves traverse the actions in the LA, where each object’s
present group correlates to its current state within the action to which it belongs.
The OMA assumes that, based on an underlying and unknown criterion only known
to an Oracle, abstract objects queried together should be together. The rule that
certain objects are queried is limited only by inventiveness, resulting in a vast array
of potential applications for these algorithms.

The OMA algorithms have been applied to numerous domains. Already in the
1990s, it was used in the sphere of cryptoanalysis by Oommen and others in [30].
In this research, the OMA was employed to solve a substitution cipher by utilizing
examples of the plaintext and its analogous ciphertext. In the research field of image
analysis, the OMA was utilized to extract information about which images were
similar in [31]. Another security-related problem was addressed in [36] and [37],
respectively, where the OMA was utilized for securing statistical databases. For
securing statistical databases, the OMA beat state-of-the-art algorithms for solving
the Micro-Aggregation Problem (MAP).

One of the applications that is often used as an example of demonstrating the
strength of the OMA algorithms is in cloud computing, and involves the prob-
lem of determining where to distribute files optimally across multiple databases or
storage units based on their user’s accessibility. Resolving data fragmentation in
a distributed database system was solved using the OMA in [35]. The problem
was NP-hard, and the database system had a graph-like structure. Another cloud

4The reader should note that throughout this dissertation, the term OMA refers to its paradigm
itself and to algorithms, in general. The specific variants are stated when it is significant to the
context.

31

computing-related issue was addressed in [33] and [34], where the authors utilized
OMA for dividing traffic in the cloud across several machines. The OMA solution
for traffic distribution achieved a 90% cost reduction compared with the existing so-
lutions for such traffic distribution problems. Another domain where the OMA has
been applied to is the domain of reputation systems. In [32], the OMA was employed
to enhance the trustworthiness of reputation systems. More recently, the OMA was
utilized for outlier detection in noisy sensor networks [38], and for organizing and
grouping in SSLs in an adaptive manner [39].

The OMA algorithms learn in a semi-supervised manner. The algorithms are
semi-supervised, because they are presented with a certain amount of information
along time, but they are not shown, e.g., examples of optimal partitions (train-
ing data from which partition information about the groups for the objects can
be gleaned). More specifically, the OMA algorithms require input information in
terms of queries, similar to the BAM. Each query consists of pairs of objects5, and
the assumption is that these have an underlying inherent property that means they
should be grouped. Similar to the Tsetlin and Krinsky automata, the objects them-
selves traverse the states within the OMA, and if the queried objects are currently
inside the same action, they are rewarded, and penalized if they reside in different
actions. In this way, the OMA are able to group the objects that are mostly queried
together [38], and attain to a hopefully-optimal grouping.

One of the OMA’s strengths is its ability to operate in stochastic Environments.
Thus, even if it receives misleading queries, it can attain an optimal partitioning
with a very high probability [38]. Misleading queries are queries of objects that do
not belong together and are referred to as noisy queries (or noise) within the OMA
paradigm. In simulations, we can mimic stochastic Environments by adjusting the
level of noisy queries presented as input to the automaton. We emphasize that, for
a real Environment, we have no way of knowing whether a query is noisy or not. As
an example, if o1 and o2 are in one of the groups in ∆∗, and o3 and o4 in another,
the query Q = {o2, o3} is a noisy query. On the other hand, Q = {o1, o2} is not a
noisy query.

In the OMA paradigm, we have different variants with distinct characteristics.
Thus, we have the Vanilla OMA, the Enhanced OMA (EOMA), the PEOMA6, the
Transitivity PEOMA (TPEOMA). As briefly mentioned above, the Vanilla OMA
was first proposed by Oommen et al in [72]. The Vanilla OMA variant had an
issue that was resolved in the improved EOMA variant [73]. Consequently, the
EOMA variant was continued, and the improved PEOMA variant was proposed
in [17] and [18]. The PEOMA utilizes the Pursuit concept, where the probabilities
about likely query pairs are estimated and utilized in order to expedite the OMA’s
convergence process. The latest variant, the TPEOMA, introduced in [74], utilizes

5The problem of “queries of increased size” is considered outside the scope of this work, and is
rather considered as a problem for further research.

6We also have the POMA version, but this version has the same impediment as the OMA
explained subsequently, and therefore, the PEOMA variant is preferred over the POMA. A detailed
explanation of the POMA can be found in [16].

32

the transitivity concept. The latter concept makes the algorithm perform even better
in certain Environments in terms of the required number of queries before attaining
convergence [38].

Although all of the applications listed above demonstrate the OMA’s versatile
applicability to real-life issues, their impediment of only being able to handle equally
sized groups, might have limited their overall applicability. As demonstrated by the
research contributions presented later in this dissertation, their ability to handle even
more complex group structures can greatly enhance the usefulness of OMA methods
in a variety of settings. Two approaches that have been proposed to address this
limitation is to use a modified versions of the OMA method that allows for the
inclusion of group sizes that are not equal. These research contributions will be
addressed later. However, it is important for the reader to first understand the
concept motivating the existing OMA algorithms. Therefore, in the subsequent
sections, we will briefly present the different existing types of OMA.

2.3.2.1 Vanilla OMA

Similar to the Tsetlin and Krinsky methods explained earlier, the Vanilla OMA
needs as many actions as there are groups in the partitioning problem, and has S

states per action. Likewise, the objects themselves traverse the states, and their
state determines their respective group. However, as highlighted, the Tsetlin and
Krinsky methods had drawbacks and needed more efficiency. Therefore, a tailored
LA solution for partitioning was needed. Such a solution was introduced in [67, 72],
namely the Vanilla OMA. The operation of the Vanilla OMA is based on the concept
that the LA is presented with queries and that each of the queried objects can stay
in a state, move from one state to another, or migrate to another action. The
transition function is dependent on whether the LA receives a Reward or a Penalty
and includes changes to the locations of the queried objects. Unlike the Tsetlin and
Krinsky method, the Vanilla OMA includes policies for objects other than the ones
that are queried.

In Figure 2.11, we visualize the concept of the OMA. As we can observe, we have
a system that generates queries and inputs them to the LA. The OMA then reports
its current object distribution (the states or actions of the queried objects) and the
query it received from the system. Consequently, the Environment will respond
with a Reward if the queried objects are currently in the same action (group) of the
OMA. If the queried objects are not in the same action (group), the Environment
will respond with a Penalty. Based on the feedback from the Environment, the
queried objects are rewarded or penalized. Whether an object changes its state or
not, depends primarily on whether it currently is in one of the boundary states or
in one of the innermost states. More specifically, ϕ = (k − 1)S + 1 indicates the
innermost states and ϕ = kS indicates the boundary states, where k ∈ {1, 2, ..., K}
and k denotes the partition ϱk.

33

Figure 2.11: Schematic of the overall OMA concept.

An overall description of the Vanilla OMA7 is presented in Algorithm 1 [75]. We
emphasize that the Vanilla OMA (and its other existing variants) can only solve
EPPs. Thus, it can solve groups of size O

K
, where the size is an integer, and where

we have an equal number of objects in each group. One of the reasons for this
limitation is that we want the objects to be separated into distinct groups and not
allow for the possibility of one group residing in the same action as another group.
Without the relation that the actions (groups) need to have the same number of
objects, the swapping operation of the penalties becomes void. Additionally, we
only have information on objects that are accessed together, meaning that it is hard
to know which objects are to be moved without the equi-principle being followed.

The Vanilla OMA is initialized by distributing the objects randomly among all
the states of the automaton, with O

K
objects in each action. Then, the automaton

considers the queries that are submitted as inputs according to its policy, until
convergence is achieved or a maximum number of queries has been considered. The
machine is said to have converged once all the objects are in the innermost states
of the machine, and the automaton reports the partitioning that it has discovered
based on the objects’ states. Checking the current partition of an object can be
accomplished mathematically by dividing the object’s current state by the number
of states per action, evaluating the “Floor” function of the resulting value, and
adding unity, i.e., ⌊ϕi−1

S
⌋ + 1. The most important functionality of the OMA is

7The reader should note that only the details of the Vanilla OMA algorithm are presented here,
and that the others (EOMA, PEOMA, etc.) are omitted (their algorithmic descriptions) to avoid
repetition, and because they are part of the papers presented in later parts of this dissertation,
and because some of them receive less focus in the dissertation. For the interested reader, the
algorithm descriptions can be found, in detail, in [75].

34

Algorithm 1 The Vanilla OMA Algorithm
Input:

• The set of objects, and an object is denoted as oi with i ∈ {1, 2, ..., O}.
• S states per action (group).
• A sequence of queries, where one query is denoted as Q = {oi, oj}.

Output:

• A partitioning (K = ∆+) of the O objects into K partitions, and K is the set
of partitions, K = ϱ1, ϱ2, ..., ϱK , and, e.g., ϱ2 = {o2, o5}.

• ϕi is the state of oi. It is an integer in the range {1, 2, ..., KS}.
• If (k − 1)S + 1 ≤ ϕi ≤ kS then oi is assigned to ϱk, which is done for all
i ∈ {1, 2, ..., O} and k ∈ {1, 2, ..., K} [38].

Initialize ϕi, ∀ i, i ∈ {1, 2, ..., O}
while not converged do

Read query Q(n) = {oi, oj}
if ⌊ϕi−1

S
⌋+ 1 = ⌊ϕj−1

S
⌋+ 1 then ▷ The objects are rewarded

Vanilla OMA Process Reward({ϕi, ϕj}, Q(n))
else ▷ The objects are penalized

Vanilla OMA Process Penalty({ϕi, ϕj}, Q(n))
end if

end while
Output the final partitioning based on ϕi, ∀ i.

how it processes Reward and Penalty inputs from the Environment, and a basic
description of these phenomena can be summarized as follows:

• Reward - the queried objects are in the same action (group)

– Case 1: None of the objects in the query are in an innermost state. In
this case we move both objects one step towards the innermost state.

– Case 2: One of the queried objects is in an innermost state. In this case,
we let the object in the innermost state remain in its state and move the
other queried object one step towards the innermost state of its action.

– Case 3: Both queried objects are in the innermost state. Here we permit
both the objects to remain in their current states.

We describe the Reward operation of the Vanilla OMA in Algorithm 2 [75].

• Penalty - the queried objects are not in the same action (group)

– Case 1: None of the queried objects are in their boundary states. In such
a case, we move both the objects one step towards the boundary states
in their respective actions.

– Case 2: One of the queried objects is in a boundary state, and the other is
not in a boundary state. In this case, we move the non-boundary object

35

one step towards the boundary state of its action, and let the object at
a boundary state remain in its current state.

– Case 3: Both queried objects are in boundary states. The new position
of the objects is determined as follows. Let (by uniform sampling) one
of the objects be the staying object and the other be the moving object.
Then, let the moving object switch to the state of the staying object, and
take a non-queried object (the one closest to the boundary - and if no
single object closest to the boundary can be determined, we choose one
by uniform sampling) from the staying object’s action and move it to the
state that the moving object came from.

We describe the penalty operation of the Vanilla OMA in Algorithm 3 [75].
We emphasize that in the Vanilla OMA version, both queried objects need to
be in their respective boundary states for them (one of them in two-object
query configurations) to switch its action.

Algorithm 2 Vanilla OMA Process Reward({ϕi, ϕj}, Q)
Input:

• The query pair Q = {oi, oj}.
• The states of the objects in Q ({ϕi, ϕj}).

Output:

• The next states of oi and oj.

1: if ϕi mod S ̸= 1 then ▷ Move oi towards the innermost state
2: ϕi = ϕi − 1

3: end if
4: if ϕj mod S ̸= 1 then ▷ Move oj towards the innermost state
5: ϕj = ϕj − 1

6: end if

2.3.2.2 Enhanced OMA (EOMA)

One issue with the Vanilla OMA is that it suffers from the Deadlock Situation8,
where the automaton can become stuck in an endless loop due to which it is pre-
vented from converging in noise-free Environments. Additionally, the Vanilla OMA
suffers from slow convergence. Therefore, the authors in [73] presented the EOMA
that does not have the same impediment. The significant differences between the
EOMA and the Vanilla OMA are that the objects are initially distributed differently,
the convergence criterion is adjusted, and the automaton’s operation upon a Penalty
feedback is adjusted. In this way, the EOMA represents a more robust method than

8For the interested reader, a detailed explanation and an example of the Deadlock Situation
can be found in [75].

36

Algorithm 3 Vanilla OMA Process Penalty({ϕi, ϕj}, Q)
Input:

• The query pair Q = {oi, oj}.
• The states of the objects in Q ({ϕi, ϕj}).

Output:

• The next states of oi and oj.

1: if ϕi mod S ̸= 0 and ϕj mod S ̸= 0 then ▷ Neither are in boundary
2: ϕi = ϕi + 1

3: ϕj = ϕj + 1

4: else if ϕi mod S ̸= 0 and ϕj mod S = 0 then ▷ oj is in boundary
5: ϕi = ϕi + 1

6: else if ϕi mod S = 0 and ϕj mod S ̸= 0 then ▷ oi is in boundary
7: ϕj = ϕj + 1

8: else ▷ Both are in boundary states
9: temp = ϕi or ϕj ▷ Store the state of moving object, oi or oj

10: ϕi = ϕj or ϕj = ϕi ▷ Put moving object and staying object together
11: ol = unaccessed object in group of staying object closest to boundary
12: ϕl = temp ▷ Move ol to the old state of moving object
13: end if

the Vanilla OMA. Therefore, it has been used as a foundation for other extensions,
and also the enhancements of this Ph. D. study.

One can summarize the overall new functionality of the EOMA, when compared
with the OMA, as follows:

• Different Initialization of Objects: In the EOMA, the objects are ini-
tialized into the boundary states of the automaton. Thus, O

K
objects are

distributed randomly (with a uniform probability distribution) into each of
the automaton’s boundary states. Consequently, instead of distributing the
objects randomly into all of the KS states, the EOMA distributes them among
the K boundary states of the automaton. In this way, the objects can easily
change the action that they initially reside in, upon receiving the first queries,
reducing the average number of queries required before convergence in an over-
all sense.

• Different Penalty Operation: The EOMA possesses a different strategy for
handling of the objects presented in a query, upon a certain object distribution
for a Penalty. We visualize this distinct Penalty operation in Figure 2.12,
where we are presented with a query, and one of the objects queried is in the
boundary state, and the other is in a non-boundary state. Consequently, the
EOMA operation lets us move the boundary object to the boundary state of
the action of the non-boundary object in the query. In this way, the objects
are able to switch actions without both objects in the query needing to be
in their boundary states. This allows the EOMA to be much more flexible
and efficient than the Vanilla OMA. Let us consider the case that we have

37

... ...

α1 α2

1 2 S 2S S + 2 S + 1

o2 o3 o1 o4

2S − 1

o7

o7

o2Q = {o2, o3}

Figure 2.12: The Penalty operation of the EOMA.

o1, o3 and o4 inside one action (as in the example presented in Figure 2.12)
with the Vanilla OMA in mind. In ∆∗, o2 should also be together with these
objects. However, o2 is currently in another action (group). The automaton
will probably be presented with queries consisting of objects that are already
correctly grouped, pushing, e.g., o3 towards the innermost state. On the other
side, queries consisting of o2 together with any of the objects that are already
grouped will (incorrectly) push them towards the boundary. For the Vanilla
OMA, o2 will only be able to move to the correct action once either o1, o3 or
o4 is moved to a boundary state, and a query consisting of one of these and o2
is presented to the automaton. Additionally, e.g., o3 might even be randomly
switched to the action of o2, resulting in a lot of iterations back and forth
before the objects are correctly grouped. Therefore, the EOMA operation is
much more effective, because it would directly move o2 to the action of o1, o3
and o4.

• Different Convergence Criterion: In the Vanilla OMA, all objects need to
reside in the innermost states for the automaton to be seen to have converged.
The convergence criterion for the EOMA is extended to include the second
innermost states. Thus, the convergence criterion for the EOMA is that all
objects reside in the innermost or the second innermost state in the actions
of the automaton. Consequently, the EOMA has a more relaxed criterion for
convergence when compared with the Vanilla OMA. This distinct criterion for
convergence makes it easier for the algorithm to converge, especially in noisy
Environments.

In the paragraphs above, we have briefly explained the phenomena that makes
the EOMA different from the Vanilla OMA. The rest of the EOMA’s concept and
operation are similar to the Vanilla OMA. Thus, the EOMA has the same Reward
function as the Vanilla OMA (as described in Algorithm 2), but the overall operation
and the Penalty functionality are different.

Another detail about the Penalty operation of the EOMA that we would like
to emphasize, is that it has been done in the Literature in two different ways.
In Figure 2.12, the boundary object is moved to the boundary state of the non-
boundary object, similar to the operation explained in [38]. However, as explained

38

in [39], upon such an object distribution as exemplified above, the boundary object
can also be moved directly to the same state as the non-boundary object or switch
state directly with the non-queried object that is moved to the boundary object’s
action. These differences have a minor conceptual impact on the overall operation
of the EOMA but might result in a different average number of iterations before
convergence.

2.3.2.3 Pursuit EOMA (PEOMA)

Noisy queries are a complicating factor in stochastic Environments, and the al-
gorithms in the OMA paradigm can handle such stochastic behavioral patterns.
However, the PEOMA algorithm is even more robust against noisy queries because
it utilizes the Pursuit concept. In LA, the Pursuit concept concerns pursuing the
most likely “Best” action [50]. The PEOMA is an extension of the EOMA and in
the former, the Pursuit concept is implemented a bit differently when compared
with the traditional LA which posses the same concept. In the case of PEOMA, we
filter out noisy queries using estimates, and only present queries to the automaton
that are likely to be “Correct” [16, 17, 18, 38]. In this way, the PEOMA represents
a more effective solution, especially when high levels of noise are encountered [38],
because fewer misleading queries are presented to the automaton.

The way that the Pursuit concept is implemented in the PEOMA is through a
frequency (“Pursuit”) matrix that is updated and checked in the process of learn-
ing. This matrix, denoted as M, has O rows and O columns for a system that
presents queries consisting of two objects. In more detail, the matrix maintains
the probability of each pair of objects being presented to the automaton from the
system based on previous queries, and in this way, we can determine the likelihood
of the queries of being noisy. If a query has been presented less often, it is more
likely to be a noisy query. Thus, if the Q = {o1, o2} has been presented 100 times,
and the automaton has considered 1,000 queries in total, the likelihood (or sampled
probability) of such a query being presented is 0.1. Likewise, if 10 out of the 1,000
queries is Q = {o1, o3}, the sampled probability of that query being presented is
0.01, meaning that this query is less likely to be presented from the system when
compared with Q = {o1, o2}. These probabilities are tracked during the operation
of the PEOMA. In Figure 2.13, we visualize, using “dummy” entries, the concept of
the frequency matrix,M.

M =

o1 o2 . . . oO

o1 0 100 · · · 10

o2 100 0 · · · 20
...

...
...

...
...

oO 10 20 · · · 0

Figure 2.13: The frequency matrix for query occurrences in the PEOMA.

39

The reader should note that M is symmetric along the diagonal and that the
diagonal itself has no meaning, since oi together with oi has no purpose in a grouping
problem, implying that the diagonal consists of zeros. The symmetry implies that
we have two entries for each object pair (query). Consequently, we update both
entries as we are presented with a query from the system. In reality, only half
of the matrix (either side of the diagonal) is actually needed, because we do not
consider the order of the objects in the query in the OMA processes. The frequency
matrix is checked before the query is considered by the automaton and is sent to
the Environment. If the number of times a query has been presented divided by the
total number of queries that the system has generated is below a certain threshold
we do not consider the query, and thus, this query is filtered out. We emphasize
that, when implementing the PEOMA, it is important to make sure that the query
probabilities are calculated correctly9.

The PEOMA has two phases. Initially, some queries have to be considered/sam-
pled before we start using M for the task of filtering. This initial phase is called
the Estimation phase. The number of queries that should be considered in the Es-
timation phase, denoted by κ, can be adjusted, and it is a parameter whose value
can be set through the following formula [38]:

κ =

((
O

K

)2

−
(
O

K

))
K. (2.8)

In the Estimation phase, the PEOMA acts as a normal EOMA, but updates M
based on the incoming queries. After the Estimation phase, we enter the Filtering
phase (also called the Thresholding phase), where the likelihood of the queries are
considered before they are processed. We denote the threshold for whether a query
should be processed or not as τ , where τ < 1

O
, and is an arbitrarily small value.

The threshold for the filtering needs to be adjusted according to the Environment
and the value can be adjusted according to the probabilities after κ queries has
been considered. Tuning κ and τ can be difficult, because it is a trade-off between
efficiency and accuracy. If we use a large κ, the probabilities become more certain,
but this requires more iterations. Likewise, with τ , a large value might yield a
scenario where only high quality queries are processed by the automaton, but at the
same time many queries that are actually useful might be filtered out, reducing the
overall system efficiency.

2.3.2.4 Transitivity Pursuit EOMA (TPEOMA)

As an extension to the PEOMA, the Literature reports the most recent machine
in the OMA paradigm, namely the TPEOMA [74]. In this OMA version, we uti-
lize the concept of Transitivity. By considering relations among the objects which
can be deduced from M, we can generate and present artificial information to the
automaton even if the system presenting the automaton with queries is dormant.

9The reader should remember that, the sum of all the elements inM represents the number of
queries times two, due to the symmetry.

40

In this way, the TPEOMA is a powerful solution when we have sparse information
from the query-generating system. In more detail, the TPEOMA is based on the
principle that if we know that, e.g., o1 and o2 should be together in a group, and
that o2 and o3 should be together in a group, then we can deduce that o1 and o3
should also be together.

The interesting feature of the TPEOMA is that we can obtain the transitivity
relations from the frequency matrix, M. To utilize the transitivity concept, we
introduce a new parameter for handling these relations, which is a threshold for
considering a transitivity relation. Let us denote the threshold parameter for the
transitivity relations as τt. By way of example, if the system generates a query
consisting of o1 and o2, we will first check the frequency matrix and see whether
the probability of that query being presented is above τ . If the query likeliness is
above τ , we let the automaton process that query. Additionally, we will consider
all combinations of o1 and o2 together with other objects in the matrix. If there
exist relations with either o1 or o2 and other objects that have a probability above
τt in the matrix, we will input these as artificial queries to the automaton. As an
example, if the system consists of o3 or o4 in addition to o1 and o2, we will consider
the combinations: {o1, o3}, {o1, o4}, {o2, o3}, {o2, o4}. If any of these combinations
result in a probability of being accessed together above τt, we will present them also
to the automaton for processing.

Normally, we configure τt to be stricter than τ . However, we should always adjust
the threshold parameters according to the grouping problem, and for an educated
guess for the transitivity threshold parameter, we can use the following equation [74]:

1

O(O − 1)
< τt <

K

O(O −K)
. (2.9)

The TPEOMA is identical to the PEOMA, but when we consider whether the
probability of a query is above a threshold, and it is, we also check the queried
objects’ transitivity relations. If the transitivity relations have a likelihood of being
accessed above the τt threshold, we additionally generate these objects as artificial
queries for the automaton to process.

The TPEOMA represents the state-of-the-art algorithm in the OMA paradigm,
and the authors in [39, 74] demonstrated that the TPEOMA required up to two times
less number of “real” queries before convergence was achieved, when compared with
the Vanilla OMA10.

2.4 Chapter Summary

In this chapter, we have explained the concept of LA and, specifically, the sub-group
of FSSA schemes. Consequently, we have outlined the characteristics of FSSA, with

10The reader should note that tuning the thresholds and κ parameter can be a complicated and
time-consuming task. There is currently no optimization setup to determine these values exactly,
and this is considered to be outside the scope of this dissertation.

41

examples of their operation in random Environments. As emphasized in the chap-
ter, the FSSA schemes have a finite state space, a finite number of actions, and
a finite set of possible feedback from the Environment. FSSA are independent of
time in terms of their transition and output functions and are so-called state-output
automatons, where the machine’s state determines its action. In addition, we have
discussed partitioning problems and outlined different methods for solving them
using LA. In particular, we have presented the Vanilla OMA and its subsequent
enhancements. The OMA algorithms are essential to this dissertation, as improve-
ments to algorithms within the OMA paradigm are some of the novel and pioneering
contributions of the work and publications within this Ph. D. study.

42

Chapter 3

Variable Structure Stochastic
Automata (VSSA)

LA mimic the mechanisms of learning. In order to learn a preferred behavior, the
learning unit selects actions and interacts with its teacher, namely, the Environment.
As alluded to earlier, for the FSSA type of LA, the memory of the automaton is
maintained in states, and the machine’s current state determines its behavior. In
this chapter, we will discuss the VSSA type of LA.

The VSSA type of LA is fundamentally different from the FSSA type because the
learning unit’s memory and behavior are maintained and determined by a probability
vector (the so-called action selection probability vector) [4]. This probability vector
keeps track of the different actions and their likelihood of being selected by the au-
tomaton. The machine’s behavior will change by interacting with the Environment,
and eventually, the automaton will, hopefully, learn the optimal action from the set
of actions within its operating sphere, with an arbitrarily high probability. More
specifically, the action selection probability vector determines the machine’s chosen
actions, and the vector is consequently updated based on the feedback from the
Environment for the automaton to learn the preferred behavior.

An FSSA has to go through a number of distinct states before it can explore
another action. In contrast, a VSSA can explore new actions in each iteration ac-
cording to its action selection probability vector, which speeds up the process of
exploring the action probability space. Within the paradigm of VSSA, there are dif-
ferent kinds of algorithms, and the VSSA schemes can be analyzed mathematically
by representing their Markovian behavior as being either ergodic or absorbing. Fur-
ther, the machine can operate in a continuous or discrete manner, and the updating
function of the action selection probabilities, which are based on the Environment’s
feedback, can be carried out in a linear or non-linear manner [4, 8, 7]. Subsequent
enhancements to the VSSA types include incorporating estimates of the action prob-
abilities and utilizing the Pursuit concept. In addition, another innovation consists
of incorporating structure into the machines’ operation. In what follows, we will
elaborate on these concepts and methodologies. Specifically, we will discuss the idea
of convergence in relation to VSSA, as well as the methods by which we may assess
the performance of these schemes in a variety of settings and configurations.

43

3.1 The Concept of VSSA

The VSSA machines are characterized by their ability to keep track of the inter-
actions with the Environment through a probability vector that is maintained to
encapsulate its memory1. The action chosen by the automaton is determined by
means of uniform random sampling of this probability vector, making these algo-
rithms more versatile than the FSSA schemes in terms of exploration. For VSSA
schemes, the action probabilities are updated at every instant based on every inter-
action with the Environment [4]. For example, the probability of an inferior action
could be decreased upon receiving a Penalty from the Environment. Likewise, upon
a Reward, the likelihood of that action being selected could be increased. In this
way, the machine learns. In general, the VSSA schemes maintain a single probabil-
ity for each of the actions in the machine’s sphere of operation. These types of LA
suffer from a slow convergence phenomenon when the action space becomes large,
and this impediment is, discussed, in more detail, later.

In formal terms, we are able to express a VSSA by using the four variables in
the following way [4]:

Θ = {A,B, P (n), T }, (3.1)

where we recognize from the earlier chapter that A and B are the set of actions
and the set of possible feedbacks from the Environment, respectively. The action
probability vector is denoted as P (n), and we refer to its components as pi(n), where
i ∈ {1, 2, ..., R}, and pi(n) is the probability of the LA selecting action i at time n.
Furthermore, T is the machine’s updating algorithm. The updating algorithm for
VSSA is different from the one utilized in the case of FSSA. In VSSA, the machine
operates by means of the probability vector, while FSSAs are defined by their states
and the corresponding state transition and output mappings. We can define the
updating algorithm, i.e., the reinforcement scheme in VSSA, as follows:

P (n+ 1) = T [P (n),A(n),B(n)], (3.2)

where the action probabilities at the next time instant, n+1, are updated based on
the current action probabilities, (P (n)), the action that was selected as input to the
Environment at time n ,(A(n)), and the response from the Environment based on
that input (B(n)). Function T indicates a mapping of the updating functionality.

Reinforcement schemes can be classified based on whether they are expedient,
ϵ-optimal or optimal, as established in Section 2.2. Another classification of VSSA
is in regards to the nature of T , i.e., the updating function. Furthermore, VSSA
schemes cannot be mathematically represented and analyzed using Markov chains
since the state space is not finite any longer. The VSSA classifications mentioned

1The reader should note that we present here only a brief overview of the VSSA paradigm. This
is in the interest of brevity, and in order to reduce the repetition of information included in the
subsequent papers presented in this dissertation. We particularly emphasize that all the concepts
presented here are discussed within an informal framework so that the concepts can be easily
understood. The formal mathematical details are thus omitted, but included in the accompanying
papers published in the Literature.

44

here are based on the theory expounded in [4], and the interested reader can find
more information there.

As an example, when T in Equation (3.2) is a linear function, the updating
algorithm is said to be linear, and the automaton itself is referred to as being linear.
More specifically, if the multiplication by a constant (that is less than unity) is used
to adjust the action probabilities, the probability is adjusted in a linear manner.
However, if T is a non-linear function, e.g., if any action probabilities are adjusted
in quadratic or polynomial manner, we say that the VSSA scheme is non-linear.

We emphasize that the invention of the VSSA provided the field with a quantum
increase in the speed of LA [2]. One of the reasons why these algorithms are notably
faster when compared to the FSSA variants is due to the enhanced stochastic ex-
ploration of the action space. Unlike the FSSA schemes, that need to move through
the states in order to explore new actions and which can only switch to another
action when it is in a boundary state, VSSA can explore new actions at every time
instant according to their action probabilities. In addition, the flexibility of choosing
various updating functions in the case of VSSA allows for an unlimited number of
possible updating configurations. To bring the thread back to grouping problems,
VSSA can also be used for this purpose, but it is far inferior compared to the FSSA
because it almost immediately reaches its limit on the number of objects that it can
manage.

3.1.1 Continuous Algorithms

We have different types of VSSA schemes. The first type of VSSA that was intro-
duced in the Literature was the continuous type [4]. The continuous type of VSSA
has a continuous updating of the action probabilities. More specifically, the learn-
ing, i.e., the updating of the action probabilities, are done in such a way that the
probabilities themselves can attain any value within the interval [0, 1]. A contin-
uous updating rule is a function where the likelihood of the inferior actions upon
a Reward are reduced, for example, in the linear case, by multiplying them with a
parameter, often referred to as the learning parameter, and the rewarded action’s
likelihood are the resulting difference from unity and the sum of the probabilities of
the other actions. Let us further denote the learning parameter as λ.

Two prominent VSSA schemes are the Linear Reward-Penalty (LR−P) and Linear
Reward-Inaction (LR−I) schemes. The first variant has a linear updating scheme for
the probabilities and considers both penalties and rewards. The latter is also a
linear scheme, but it only processes the rewards and ignores the penalties. Both
of these variants are simple schemes. However, the LR−I has demonstrated better
performance in terms of the average number of iterations required before the machine
has converged [2] when compared to the LR−P scheme. Therefore, the LR−I version
is often preferred over the LR−P scheme. In the Reward-Penalty scheme, we can
adjust the learning parameters and treat penalties and rewards differently. Thus,
we can have two different values for λ, where one is used upon a Reward (e.g., λ1),
and the other is used upon a Penalty (e.g., λ2). However, only when rewards and

45

penalties are treated equally, i.e., λ1 = λ2, can its properties be easily analyzed.
Let us consider the LR−P scheme in more detail, where we consider the case where

we have two actions in the machine’s solution space. We represent the probabilities
of the machine choosing the different actions by P (n) = [p1, p2]

T . Let λ1 be an
arbitrarily small non-zero value and λ1 ∈ (0, 1). Furthermore, we define λ2 = λ1.
Because the learning parameters are identical in the case of a symmetric LR−P
scheme, it is not really necessary to operate with two learning parameters. However,
in order to clearly explain the concept, in more detail, we utilize both notations
in the details below. The LR−P scheme follows the LA principle as depicted in
Equation (3.1), and it will choose an action by sampling randomly based on P (n).
Once an action is chosen as the output, it is provided to the Environment, and
the Environment will respond with a stochastic feedback. Let us assume that the
feedback is from a binary set, where the Environment can respond with a Reward
or a Penalty. Based on the feedback from the Environment, the two-actions LR−P
will update its behavior, and this reinforcement updating scheme can be specified
as follows [4]:

pj(n+ 1) = (1− λ1)pj(n) for j ̸= i,

pi(n+ 1) = 1− pj(n+ 1),

for the case that αi is chosen and receives a Reward (β1 = 0) from the Environment.
On the contrary, upon αi being selected and receiving a Penalty, we have:

pi(n+ 1) = (1− λ2)pi(n),

pj(n+ 1) = 1− pi(n+ 1) for j ̸= i.

Thus, when αi is selected, and it is penalized, the probability of that action being
selected in the next time instant is decreased, and vice versa.

The continuous type of LA suffers from slow/sluggish convergence2, because,
as any of the elements in the probability vector approaches unity, the change in
the probability vector with every update becomes correspondingly smaller. Let us
consider the case of an LR−I automaton with two actions. For the sake of simplicity,
assume that P (0) = [0.5, 0.5]T , that only α1 is selected, and that it is rewarded in
every iteration of the algorithm. Furthermore, for this purpose of demonstration,
let us define λ = 0.01. In Figure 3.1, we visualize the probability development for
α1. As we can observe from the graph, the probability increases less rapidly as we
approach unity on the y-axis. We demonstrate the same principle in Figure 3.2.
However, in the latter figure, we demonstrate the change in the probability itself
between the iterations. Again, we clearly see that the change in probability becomes
less as the probability approaches unity.

3.1.2 Discretized Algorithms

As explained above, the first quantum improvement in speed and efficiency in LA was
achieved when VSSA came into play. The first variant of VSSA was the continuous

2The details of convergence for VSSA algorithms are explained in more detail below.

46

0 100 200 300 400
Iteration (n)

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ilit

y
(p

1(
n)
)

Figure 3.1: An example of the probability development for a continuous LA.

0.5 0.6 0.7 0.8 0.9 1.0
Probability (p1(n))

0.000

0.001

0.002

0.003

0.004

0.005

Ch
an

ge
 in

 p
ro
ba

bi
lit
y
(p

1(
n)

−
p 1
(n

−
1)
)

Figure 3.2: An example of the change in probability for a continuous LA.

47

type. The next quantum improvement to speed and efficiency was achieved by the
invention of discretizing the action probability space. Unlike the continuous type
of VSSA, where the probabilities can attain any value in the closed interval [0, 1],
the discretized type of VSSA can only attain a fixed number of values in the closed
interval [0, 1]. More specifically, the probabilities of discretized VSSA for the two-
action case can only attain the starting probability plus or minus an integer number
times the learning parameter. For the multi-action VSSA, the learning parameter
is handled differently, as discussed later, but the probabilities still operate on a
discretized space. Thathachar et al. [76] were the ones to introduce the family of
discretized algorithms.

Discretized algorithms are realized by redefining the likelihood of choosing either
of the actions in the solution space to only a fixed number of values, as explained
above. Consequently, the updating of the probabilities themselves is done in steps,
as opposed to being done in a continuous manner. In this way, the discretized
algorithms can be viewed as a hybrid combination of both FSSA and VSSA. Thus,
the discretized algorithms operate within a finite set, similar to the case of FSSA.
However, their behavior is completely determined by the probability vector that
is a characteristic of the VSSA. The benefit of discretizing the probability space
is that the learning is achieved in a step-wise manner, mitigating the problem of
diminishing probability changes as an action probability approaches unity. Thus,
if the updating of probabilities is discretized, the change in probability upon a
Reward/Penalty can remain constant throughout the learning process. The reader
should note that the learning parameter can also be adjusted over time, leading to
a non-linear discretized VSSA, where the probability values are unevenly spaced in
the closed interval [0, 1] [76, 77].

Let us consider the example of a simple discretized DLR−I scheme. The oper-
ation of the DLR−I resembles the rules for the LR−P machine as described above
for the continuous world. However, in the case of a Reward-Inaction scheme, only
the rewards are processed, while the penalties are ignored. Let us denote ∆ as the
learning parameter, which is a common notation for the learning parameter in dis-
cretized VSSA. This discretized learning parameter is used in the updating function
for adjusting the action probabilities based on the feedback from the Environment.
In the case when we consider the two-actions case, the updating function of the
automaton can be specified as follows [49]:

p2(n+ 1) = max(p2(n)−∆, 0),

p1(n+ 1) = 1− p2(n+ 1),

for A(n) = α1 and B(n) = β1 = 0,

where the min and max operators are invoked to ensure that the probabilities remain
within the [0, 1] interval. Consequently, upon α1 being chosen by the automaton
and receiving a Reward from the Environment, its likelihood of being selected is
increased with ∆. The likelihood of the other action is similarly decreased by the
same quantity. The same principle applies to α2 when it is chosen and rewarded.
When the discretized VSSA scheme has more than two actions, the probability of

48

Figure 3.3: A visualization of a discretized DLR−I concept.

49

each of the non-rewarded actions are decreased by ∆ = 1
RH

(or made to zero), where
H is a positive integer, and the rewarded action is adjusted such that the sum of
the action probabilities remains unity.

As opposed to the case of a Reward, when an action is chosen and receives a
Penalty from the Environment, no updating occurs, defined as follows:

p1(n+ 1) = p1(n),

p2(n+ 1) = p2(n),

for A(n) = α1 or α2 and B(n) = β2 = 1,

which means that the penalties are “ignored”. Understandably, the concept of the
DLR−I scheme is quite different from the LR−P scheme as described earlier. We
visualize the concept of the DLR−I scheme in Figure 3.3. In the figure, we have an
initial action probability, and the outcomes of different events can be interpreted
from the arrows. Thus, when α2 is chosen, and it receives a Reward (β1), the
probability vector becomes P (n) = [0.49, 0.51], as the probability of α2 is increased
by ∆ = 0.01, where the learning parameter is specified for the particular problem.
With a large ∆, the automaton will learn fast, but less accurately. However, with
a smaller ∆, the automaton will be more likely to attain to an optimal solution.
Consequently, the tuning of ∆ is a trade-off and leads to a balance between the
accuracy and the efficiency. On the right side of the figure, we have a circle that
represents the action probability vector as the VSSA has converged. The concept of
convergence in VSSA will be addressed below.

3.1.3 Estimator/Pursuit Algorithms

The invention of the discretization of the probability space made the VSSA algo-
rithms more effective in terms of the number of iterations required before conver-
gence, especially for experiments requiring a high accuracy. However, what we refer
to as the next major discovery in the paradigm of VSSA, i.e., the EAs, represented
possibilities for an even better speed and accuracy. Thathachar and Sastry pre-
sented EAs as a novel category of algorithms in [9]. As the name suggests, these
algorithms are based on the concept of estimation. More specifically, in addition to
the action probability vector, these algorithms maintain a reward-estimate vector.
The reward-estimate vector keeps track of the different actions’ probabilities of re-
ceiving a Reward. These estimates are further utilized in the updating function of
the automaton.

By providing the machine with a new level and type of information, it can make
even more informed decisions in its operation, and attain convergence faster when
compared with non-estimation VSSA schemes. More specifically, the EAs have a
property that makes them quantum steps faster because of the intertwined combi-
nation of the convergence of the reward estimates, D̂(t) (the notation is explained
in more detail below), and the action probabilities themselves. If the actions are
sampled enough number of times, their estimates will converge to their true under-
lying values (and the same principle applies to the actions themselves in terms of

50

the action probabilities). When the automaton selects actions based on the action
probability vector, the estimates are both directly and indirectly influenced. At the
same time, the action probability vector and reward-estimates vector are separate
entities, meaning that the estimates can indicate that another action, other than
the one that has the highest action probability, can possess the highest reward esti-
mate. In this way, the information about the estimates can intelligently inform the
automaton about the current preferable actions.

The properties referred to above imply that, asymptotically, the ranking of the
estimates will be aligned to the ranking of the true reward probabilities with a high
probability. Based on this property, we can reward the action (or actions) that has
(have) the best reward-estimates, instead of the action that was chosen at any given
time instant. In this way, the action probability of the action/actions with the best
estimate is increased upon a Reward, regardless of which action actually received
the Reward from the Environment. The estimates will be updated according to the
true interactions with the Environment, i.e., the reward-estimate for the action that
actually was chosen and received the Reward is increased in the reward-estimate
vector. However, the likelihood of the action/actions with the highest reward es-
timates are increased in the action probability vector. The updating functionality
of these algorithms is different from the previously-described ones, and this signif-
icantly reduces the number of iterations required before convergence. The reason
for the EAs’ superiority is that the probability of the inferior actions converging to
zero is rendered faster, and consequently, they are also not sampled so often.

In the paradigm of EAs, we refer to a sub-type of them as Pursuit algorithms.
These algorithms distinctly utilize the reward estimates. Thus, we say that they
pursue the action that the automaton currently perceives to be the optimal one
based on the reward-estimate vector. Thathachar and Sastry proposed the first
pursuit algorithm, namely, the Continuous Pursuit Reward-Penalty (CPRP) algo-
rithm (discussed in [9], and referred to as the “Thathachar and Sastry’s Estimator”
algorithm). In this version, the currently perceived “best action” is always rewarded,
and the “less optimal actions” are penalized. We also have a similar Reward-Inaction
scheme, the CPRI , as described in [12].

As a natural next step in the development of VSSA, researchers developed the
combination of EAs incorporated with the discretization of the probability space.
More specifically, researchers discovered the benefit of combining the discretized ver-
sions of VSSA and the Pursuit phenomenon. By the works of Lanctôt and Oommen,
the “Thathachar and Sastry’s Estimator” algorithm was enhanced in [9]. Thus, the
authors proposed different schemes where the updating in probabilities was deter-
mined based on whether the reward estimate of the chosen action was smaller or
larger than the other reward estimates. The authors also addressed and significantly
improved the Pursuit algorithm with the discoveries presented in [78], referred to as
the Generalized Pursuit Algorithm (GPA). Later, in [12], Agache and Oommen pre-
sented their Discretized Generalized Pursuit Algorithm (DGPA), discretizing their
previously-presented GPA and essentially also generalizing the algorithms presented
in [9]. In general, these algorithms have been referred to as Discrete Estimator

51

Algorithms (DEAs) in the Literature [78]. To differentiate between the estimator-
based discretized algorithms and the Pursuit-based discretized algorithms, the term,
DPA [2], has also later been used.

The reward-estimate vector is often denoted as D̂(t) = [d̂1(t), . . . , d̂R(t)]
T in

the Literature, and the corresponding state vector as Q(t) = ⟨P (t), D̂(t)⟩3. The
notation refers to the reward estimates of the actions in a general manner, where
there are R actions in total. As mentioned above, the utilization of this vector in the
automaton’s operation can be achieved in different ways. In addition, calculating
the estimates can also be done in different ways. More specifically, the estimates
can be calculated using a Maximum likelihood scheme or a Bayesian approach [79].

The proofs related to the convergence of EAs are more complicated than those
for traditional LA because of the complicating factor of ensuring that all actions,
including the sub-optimal ones, are sampled enough number of times. The authors
in [78] showed that the DEAs possess the so-called Moderation and Monotone Prop-
erties. Indeed, some earlier proofs for the related DPA algorithms were flawed and
rectified in [11] and [14], respectively.

3.1.4 Hierarchical Algorithms

The action probability vector, P (n), is normally initialized with each of the action
probabilities being equal to pi(0) =

1
R
, where i ∈ {1, 2, 3..., R}. As R increases, the

likelihood of the automaton choosing one of the actions is correspondingly decreased.
If we compare the initial probabilities when R = 10 and R = 1, 000, the probability
that the LA selects α1 in the first alternative is 100 times more likely when compared
with the second alternative. Consequently, the more actions we have in a problem,
i.e., the larger the solution space we have, the less significant a single action becomes.

The most important aspect of VSSA concerning the convergence to the optimal
action is that all actions need to be explored sufficiently. Let us consider the case
when we have a VSSA scheme with 100 actions. Unless the learning parameter is
sufficiently small, we might explore only half of the actions, e.g., the latter 50 actions.
The explored actions might have been rewarded, making the probability of selecting
the remaining 50 first actions correspondingly smaller, and the optimal action can
be one of the unexplored actions. Although a small enough learning parameter can
ensure that we explore all actions sufficiently, as time goes to infinity, it might result
in an impractical time frame before convergence is achieved in practical scenarios.

Due to the aforementioned “problem of a large solution space,” it was imperative
that VSSA should be capable of supporting larger solution spaces. Incorporating
“structure” into the ordering of the actions represents a viable solution to problems
with a large number of actions, when this set is relatively high. The invention of
incorporating structure into VSSA is the most recent advancement in the field. The

3The Q(t) referred to here should not be confused with the query at time instant n (Q(n)) in
the OMA related contexts in this dissertation.

52

authors of [2]4, were motivated to devise a scheme by which small subsets of actions
(for example, of cardinality two) were compared, and the result of their comparison
was trickled up a structure to avoid dealing with an R-action LA directly. They
referred to their proposed solution as the HCPA. More details about this concept
are presented in detail below5.

The HCPA is based on the concept of a hierarchy of LAs, where the actions that
interact directly with the Environment are located at the leaves of a binary tree
structure [2]. The HCPA consists of CPAs, ordered in levels, where the LAs are
connected in a parent-child organization. More specifically, we have a root node at
the top of the tree structure. All nodes in the tree have a set of possible actions,
and these actions represent the possible nodes at the next level. In the HCPA [2],
all the nodes have two possible actions6. Thus, they can activate the child on its left
or right branch. The nodes at the second lowest level, i.e., the level above the leaves
of the tree, are the automata that ultimately choose the action to interact with the
Environment. Thus, the action chosen as output is selected through the path from
the root node to the arbitrary leaf action.

Because the individual CPA in the HCPA tree structure has to only handle two
actions, the authors avoided the problem of dealing with insignificant probabilities
in the action probability vector. The HCPA was many orders of magnitude faster
when compared with other legacy types of LA [2]. The significant improvement
in speed and accuracy was achieved because the HCPA combines the concept of
VSSA, EAs, and the novel structure in the LAs operation. In order for the HCPA
to learn the optimal action, it has to find the optimal path throughout the tree
structure. The learning is achieved at every level, and at every node of the tree, by
rewarding the actions on the reverse path of the rewarded action. Because the HCPA
utilizes the Pursuit phenomenon, the currently-estimated “best” action is rewarded
upon a Reward received from the Environment, even if another action triggered the
Reward. In order to accomplish global learning, each individual LA is responsible
for doing the learning locally, and the results of this learning are, thus, trickled up
in a recursive way by examining just a pair of LA at a time.

To better understand the concept of the HCPA we present in Figure 3.4 a step-
wise visualization of its concept for choosing the action to interact with the Environ-
ment. As explained above, the HCPA is based on the realization of a hierarchical
tree structure with a root node. Step 1 in the action selection process involves
uniform random sampling as per the root node’s action probability vector. In the

4In principle, the idea of incorporating structure into LA is not something completely new.
Already in 1994, with the works of Papadimitriou [19], there was an attempt to hierarchically
structure the automatons in a tree-like manner. The difference between the works of Papadimitriou
and the HCPA is described in detail in [2].

5The reader should note that only a brief explanation is presented here in order to avoid
repetition because the finer details about the HCPA are included in the research papers within
this dissertation.

6Each of the CPA nodes can have more than two actions. However, because we are trying to
mitigate the diminishing action probability as R becomes large, we should keep the number of
actions at each node to a minimum.

53

example, the left branch is selected. At the next level, the first LA is activated, and
by a new uniform random sampling as per its action probability vector, its right
branch is selected. As we can see from the figure, in Step 4, the leaf action, number
four, is activated and chosen to interact with the Environment.

Figure 3.4: Step-vise visualization of the path throughout a hierarchical structure
in the HCPA.

54

3.2 VSSA and Convergence

The VSSA schemes have a different convergence criterion when compared to the
FSSA schemes. For FSSA schemes, we have states, and when the LA is in a cer-
tain state, it will select the corresponding action as the output linked to that state.
Consequently, the convergence is related to the certainty of the automaton, and
the state depth can be adjusted to accommodate the accuracy requirement for the
specific problem. In the case of VSSA, the machine’s learning and the memory are
maintained in its action probability vector. Consequently, for the VSSA schemes,
convergence is defined in terms of the components of the probability vector. Specif-
ically, for VSSA, we say that the automaton has converged once any component
of the action probability vector is equal to, or above, a certain threshold. This
threshold is referred to as the “convergence criterion”.

The convergence criterion for the VSSA scheme is normally set to be an arbitrary
value close to unity [50]. As the action probability of an action increases, so does the
likelihood of that action being chosen by the automaton. When the probability of
any of the actions in the solution space of the machine is close to unity, the automa-
ton will, traditionally, tend to only choose that action. In this case, we say that the
automaton has converged to an action. The convergence criterion is connected to
the efficiency of the algorithm. Thus, in many cases, a convergence criterion of, e.g.,
0.95 or 0.99 is sufficient for assessing the machine’s performance, considering that
the automaton is quite certain about its favored action. The convergence criterion
is a method of specifying how certain we want the automaton’s solution to be.

Another question to be considered is whether the automaton has converged to the
optimal action. In practical cases, we need to learn the optimal action. However,
when we know which action is truly the optimal one, as we do in a simulation
environment, we can assess the LA’s accuracy. Because the VSSA algorithms operate
in stochastic environments, their performance is typically evaluated based on the
average performance over several experiments, typically referred to as the “ensemble
of experiments”. The convergence criterion is our method of assessing how certain
the decision of the automaton is. However, even if we have a high convergence
criterion, often referred to as a high accuracy requirement, it might not necessarily
mean that the algorithm is, in fact, accurate. If the learning parameter is not small
enough, the automaton might be unable to find the optimal action.

We emphasize the importance of the reader’s understanding of the relationship
between the various parameters encountered within the LA paradigm. By doing
this, one can appreciate the mechanisms invoked to improve these algorithms. For
example, continuous VSSA have slow convergence because the changes in probability
become less as any probability approaches unity. The discretized VSSA do not suffer
from the same impediment. However, if we compare them using a lower convergence
criterion, e.g., 0.85, we see that the difference between their efficiency might be
obscure as if we compared them using a convergence criterion of 0.99. Another
example involves choosing a large learning parameter. A large learning parameter
will ensure faster convergence compared with a smaller learning parameter, but the

55

solution of the automaton might not be correct. Thus, the learning parameter, the
convergence criterion, and the accuracy are all related, and influence one another.

3.3 Chapter Summary

In this chapter, we have informally explained the concept of VSSA and highlighted
why these algorithms are distinct from the FSSA algorithms described in the pre-
ceding chapter. We have briefly explained all the discoveries and improvements
proposed within this domain throughout the years. The discovery of VSSA in-
creased the efficiency of LA compared to its FSSA counterpart. The initial VSSA
varieties were continuous. However, their convergence was slow when the accuracy
requirements were high. A subsequent discovery, namely that of discretizing the
probability space, was not hindered by the same obstacle. The discovery of Estima-
tor/Pursuit algorithms was another significant development in the field of LA. The
algorithms can outperform other LA algorithms by estimating the reward probabil-
ities and including this knowledge in the automaton’s updating function. The most
recent innovation is the implementation of structure into LA, which enables the ex-
ploration of much bigger solution spaces. These discoveries serve as the foundation
for the subsequent enhancements proposed in this dissertation.

56

Chapter 4

Novel FSSA Solutions

As explained earlier, the FSSA type of LA can be used to solve partitioning problems.
Within FSSA, we have the family of OMA algorithms that are tailored to solve such
problems. By representing the groups as the actions in the LA and distributing the
entities to be grouped as abstract objects that traverse the states of the automaton,
the OMA can be used to obtain a grouping of entities and also monitor them over
time. One of the key strengths of the OMA is its ability to handle highly stochastic
environments [38, 75]. Additionally, the OMA algorithms are based on queries
presented as inputs to the automaton, where a query consists of abstract objects
presented together under the assumption that their joint accessibility ultimately
implies that they should be grouped. These queries can be presented over time,
and the OMA can handle problems without initially having any understanding of
the intricacies of the problem. Consequently, the OMA requires no information
up-front1, unlike other traditional clustering methods like, e.g., K-Means.

The reader may question why VSSA are not suitable for partitioning problems
when VSSA, in general, are more effective than the FSSA type of LA. To respond
to this question, we mention that two types of solutions are possible with VSSA.
The first approach could be by representing each abstract object by means of a
separate LA, where the LA is rewarded when the queried objects’ LAs output the
same action. Likewise, they are penalized when the queried objects do not output
the same action, and thus, we would only trigger outputs from the queried objects.
Still, as we know from VSSA, their output is based on a probability vector, making
them likely to try other actions than the currently “best action” according to the
sampling of the action probability for selecting the output action. This approach is
cumbersome because each entity to be grouped requires an action probability vector
(and a reward estimate vector in the case of an EA being utilized), and it would
require each LA to converge. This, in turn would require many more iterations than
having the objects traverse the states of an FSSA with, e.g., six states per action.
More groups and items would also increase the complexity of the underlying LA. On
the other hand, we believe that this approach could be a research direction worth
exploring, although this avenue has not been a part of our current study.

1In general, the only information that the OMA requires upfront is the number of groups, their
sizes, and a list of the abstract objects to be grouped. More details about the characteristics of
the OMA will be provided later, as we present our innovations to the field.

57

The second approach for using VSSA to solve partitioning problems could be by
representing all possible grouping configurations as different actions in the automa-
ton. Thus, we represent the different solutions as actions. However, this would be
a non-scalable solution. Even with as few as four objects to be grouped into two
groups of size two, we would have six components in the action probability vector.
Additionally, an extremely difficult question to resolve in this case would be that
of determining how to solve the problem around rewards and penalties when you
have query pairs, and a single pair would be in several of the configurations, while
at the same time, there would be objects in the configuration that should not be re-
warded. Therefore, as the reader can understand, VSSA are not suitable for solving
partitioning problems.

Establishing groups based on some underlying and, common, completely-unknown
criterion, is a complex and highly challenging task, and the problems are NP-
hard [38]. The reason for the complexity is that the number of potential solutions
and permutations of objects increases significantly with the number of objects in the
partitioning problem2. As presented earlier, the OMA algorithms can solve parti-
tioning problems. However, they have, until the works presented in this dissertation,
substantial drawbacks that limited their applicability to real-life problems. One of
these prominent limitations was that the algorithms could only handle problems of
equally sized groups. In other words, the OMA algorithms could previously only
handle EPPs. In this dissertation, we have made substantial research efforts in the
field of enhancing the power of OMA. Indeed, we have made novel contributions
to using FSSA-based algorithms to solve more complex grouping problems. More
specifically, we have proposed substantially better solutions to the algorithms in the
OMA family. In this chapter, we will address these novel contributions.

4.1 Proposed OMA Algorithms

As alluded to earlier, the OMA algorithms are powerful LA-based schemes for solving
partitioning problems. Four variants exist in the family of OMA algorithms, namely
the Vanilla OMA, the EOMA, the PEOMA, and the TPEOMA. The Vanilla OMA
suffered from the Deadlock Situation, and the EOMA presented a solution that mit-
igated this issue. With the PEOMA variant, the pursuit concept was incorporated
through pursuing the better queries by estimating the joint accessibility of the ab-
stract objects and filtering out queries that are less likely to be accessed together.
The PEOMA is especially beneficial when we have highly noisy systems [17, 18].
The TPEOMA variant implements the transitivity concept. More specifically, we
can utilize the estimations established in the PEOMA structure to infer other (pos-
sibly non-accessed) likely query pairs when presented with a query from the system.
In this way, the TPEOMA represents an especially beneficial approach when we have
sparse information from the system [74]. The TPEOMA is the most advanced ver-

2To avoid repetition, we do not detail the complexity of these problems here. The corresponding
complexity analysis is addressed in the articles included in this dissertation.

58

sion of the OMA algorithm currently in use. The EOMA, on the other hand, serves
as the foundation for both the PEOMA and the TPEOMA. As a result, the EOMA
variant has been the primary center of our attention throughout this dissertation.
Due to the fact that the proposed modifications are suggested to the fundamental
underlying OMA structure, the enhancements that have been subsequently proposed
can be implemented with any of the existing OMA variations.

Within the OMA paradigm, the objects that are accessed together are presented
to the automaton as a query. The reader might ask what triggers the “accessed
together” property. Only our creativity limits the type of grouping problems that
we can model and monitor, using OMA algorithms. As an example, we can trigger
a query of abstract objects representing files that are accessed together on a server.
Or a query can be generated once two supermarket items are put into the same
shopping cart. A query can also be triggered after checking whether a criterion of
similarity is satisfied, i.e., if the signal properties of two radio towers measured by
a correlation function, is within a certain percentage of the difference between the
least and most similar signal patterns. As we understand, the partitioning problems
that the OMA can solve are versatile. However, the existing OMA variants have
limitations to the problems that they can solve.

The ability to only be able to handle equally-sized groups, i.e., EPPs, is a limita-
tion that is shared by all of the existing OMA algorithms. When faced with real-life
challenges, we may encounter issues that involve groups of unequal sizes. Conse-
quently, to enhance the field, we need to discover (or rather “invent”) new ways to
instruct the OMA algorithms so that they can also solve NEPPs. If we consider a
grouping example where we want to distribute ten files across two databases, and
one of the databases has room for three files, and the other has room for seven files,
the existing OMA algorithms will be incapable of solving the problem. Only if the
databases were equally-sized, i.e., the databases had room for exactly five files each,
could the existing OMA versions solve it. This example illustrates that real-world
applications often involve varying partition sizes and capacities. Traditional OMA
algorithms, which rely on equally-sized groups in partitioning scenarios, lack the
flexibility to effectively accommodate real-life scenarios. The inability to handle un-
equal partition sizes limits the applicability of existing OMA algorithms in diverse
domains, including resource allocation, logistics, and those in operations research.

Our first proposed OMA scheme is the Greatest Common Divisor (GCD) OMA
variant in Section 4.1.1. This variant still imposes a constraint to the partition sizes
that it can handle. More specifically, it can only tackle problems where we have a
non-unity GCD between the groups in terms of their sizes. The second proposed
OMA scheme is the Partition Size Required (PSR) variant. Thus, the GCD OMA
can handle NEPPs, but a size requirement to the partitions remains. The PSR
OMA, discussed in Section 4.1.2, can handle partitions of arbitrary sizes. Indeed,
the PSR OMA is able to handle more general OPPs. More specifically, the PSR
OMA can handle both EPPs and NEPPs. Both these algorithms significantly ad-
vance the capabilities of OMA, and open avenues for new opportunities for solving
complex real-world problems. The proposed GCD and PSR variants mark a signif-

59

icant breakthrough in the field of OMA. By addressing the challenges of unequal
group sizes, and the absence of size requirements, these algorithms offer unprece-
dented flexibility and efficiency in solving complex grouping problems. As a result,
they pave the way for innovative applications and research opportunities in this
domain, and they can also inspire innovations in other LA-based domains.

The GCD and the PSR variants are compatible with all the earlier existing OMA
algorithms. Because of this, the name of the variation of the newly-suggested tech-
niques, will be associated with the fundamental OMA type, so as to make the docu-
mentation easier to understand. Consequently, the nomenclature for the GCD varia-
tions generates the terms GCD-OMA (Vanilla OMA), GCD-EOMA, GCD-PEOMA,
and GCD-TPEOMA when combined with any member of the OMA family. In a
similar fashion, when one invokes the PSR, one would get the PSR-OMA (Vanilla
OMA), the PSR-EOMA, the PSR-PEOMA, and the PSR-TPEOMA. When we talk
about algorithms in a more general sense, we will refer to them using a generic
terminology such as GCD OMA and PSR OMA, respectively.

4.1.1 The Greatest Common Divisor (GCD) OMA

The OMA is built on the principle of gathering the objects that are frequently
accessed together into groups, with the fundamental assumption that objects that
are accessed together, typically, pertain to the same underlying partition. This serves
as the scheme’s conceptual basis, and it remains as the most important principle in
the GCD OMA as well.

The existing OMA algorithms intelligently replace an object that transitions be-
tween actions (partitions), ensuring that all groups maintain an equal number of
objects at any given time instant. This functionality prevents all objects from con-
verging to the same action. As an example, if two complete groups, that, in reality,
should be in different groups, reside within the same partition, both of these groups
will be consistently rewarded and the need for them to be disintegrated disappears.
Thus, the queries with object pairs from either of these groups, will be rewarded, be-
cause they are in the same action. However, they should optimally be two separate
entities. The switch-action-and-replace behavior of the OMA prevents this undesir-
able behavior from happening. However, with the GCD OMA variant, we resort to
a solution where we extend the states onto a larger state space, while maintaining
the switch-action-and-replace phenomenon that is a fundamental attribute of the
already existing OMA algorithms.

In the GCD OMA, we broaden the states of actions into a larger state space by
creating additional sub-partitions for each action (state expansion), and we virtually
connect these sub-partitions. In this way, the automaton sees one or more sub-
partitions as an overall partition, even if these sub-partitions are, in fact, different
actions within the automaton. This proposed variant, allows the OMA to handle
NEPPs. However, we still have a size requirement to the partition sizes. More
specifically, the GCD OMA operation necessitates a shared non-unity GCD among
the partition sizes. This means that the GCD OMA can handle NEPPs with a

60

Figure 4.1: Example of the extended state-space of the GCD OMA upon a Reward
and a Penalty.

non-unity GCD, and that the partition sizes have a relation between themselves.
The GCD OMA has one or more sub-partitions that constitute an overall par-

tition. This behavior is achieved by the state expansion phenomenon explained
above, and by linking sub-partitions together. More specifically, in the GCD OMA
variant, we utilize the GCD as the number of objects that can reside within a sub-
partition. Consequently, the GCD variant can handle all group size combinations
composed of a multiple of the GCD. Thus, if we have three groups, where the size
of the first group is three, of the second is nine, and of the third group has room
for twelve objects; our GCD is three. We can then activate a single sub-partition
for the first group as an overall partition. In the second group, we must invoke
three sub-partitions as an overall partition. Lastly, we need four sub-partitions for
the third group’s overall partition. The rewards, penalties, and other GCD OMA
functionalities need to be carefully adjusted according to the described concept, as
described in more detail presently.

To construct the baseline for the GCD OMA, we need to determine the GCD
between the group sizes. We denote the GCD as Λ > 1, and this parameter needs
to be determined for the particular grouping problem we are dealing with. Based
on Λ, we can establish the links needed to fulfill the overall size requirements for
the groups. We consider the sub-partitions that are linked as a single entity within
the automaton. In this way, if a group size is greater than Λ, we need to consider
more than one sub-group in the overall partition. All of the actions in a GCD OMA
need to have Λ objects, and the number of sub-partitions that needs to be linked
into an overall partition ϱk, where k ∈ {1, 2, ..., K}, is given by xk = ρk

Λ
, and ρk,

k ∈ {1, ..., K}, is the number of objects in each partition. When we have a partition
ϱk which has a size equal to Λ, it follows that xk = 1, which means that only a single
sub-partition is adequate to accommodate its group size. Thus, when ρk = Λ, no
links are needed for the group ϱk.

In order for the automaton to handle the partitions that now are extended onto a
larger state space, the automaton needs to consider the corresponding state ranges.
In every sub-partition, we have room for Λ objects. Each of the sub-partitions

61

(actions) have S states, and xk indicates the number of sub-partitions that have to
be linked together to fulfill the size of ϱk. Furthermore, the state range of an overall
partition, ϱk is given by:

ιk = {max(ιk−1) + 1, ...,max(ιk−1) + xkS}, ∀k, (4.1)

where ιk represents the state range for partition ϱk. We emphasize that partition
k = 1 has no previous partition, meaning that the first partition considered in
the GCD OMA is ι1 = {1, 2, ..., xkS}. When constructing the state range for the
subsequent partitions, the max function in the preceding equation indicates that the
highest value from the state range of the previous partition should be used as the
starting point for the next state range.

To understand the concept of the state ranges, we consider the following example.
If we have S = 5, and xk = 1 for the first partition, the first overall partition has the
state range ι1 = {1, 2, ..., 5}. Consequently, the maximum of the first state range is 5,
and it follows that the state range of the second overall partition is ι2 = {6, 7, ..., 20}
when the partition has xk = 3. Furthermore, it is important to notice that the
number of sub-partitions (actions) in the automaton, R, is given by R =

∑K
k=1 xk.

In order to correctly comprehend the algorithms, we repeat here that the current
state of an object oi is denoted by ϕi, where i ∈ {1, 2, ..., O}.

To implement the GCD OMA variant when it concerns the other algorithms
within the OMA paradigm, we only need to propose modifications to the baseline
algorithms. More specifically, the innovations can be implemented in the OMA
or the EOMA variant, which provides the fundament for the PEOMA, and the
TPEOMA, respectively. In this dissertation, we refer to the GCD OMA variants
as the GCD-OMA (Vanilla OMA), the GCD-EOMA, the GCD-PEOMA, and the
GCD-TPEOMA. Further, since the EOMA is preferred over the OMA variant, we
only describe here the GCD-EOMA implementation. However, the GCD concept
can easily be extended to the Vanilla OMA variant.

The algorithmic description of the GCD-EOMA is presented in Algorithm 4 [75].
As we can perceive from the description, the Reward functionality utilized is de-
scribed in Algorithm 6, which implies that the EOMA Reward is not modified from
its EOMA version. We describe the Penalty operation of the GCD-EOMA in Algo-
rithm 5.

As in Algorithm 4, we initialize the objects into the automaton such that we
distribute the objects uniformly random across the R boundary states available.
Unlike the traditional EOMA, where O

K
objects are distributed into each of the

actions, we now place Λ objects in each of the sub-partitions (actions). As the
queries are presented to the automaton, the rewards and penalties are processed
according to the policies described in Algorithms 6 and 5, respectively [75]. In
the GCD-EOMA, a Reward is presented as the output from the Environment if
the objects in the query are currently within the same state-range, and a Penalty
is presented if they are not currently in the same state-range. Hence, the overall
partition is considered, instead of merely considering whether the objects are in the
same action or not.

62

Algorithm 4 GCD-EOMA

Input:

• The objects O = {o1, ..., oO}, and S states per sub-partition.

• A sequence of query pairs, denoted as Υ, where each entry Q = {oi, oj}.
• Initialized ϕi for all objects. Initially all ϕi, where i ∈ {1, 2, ..., O}, is given a

random boundary state, where we have Λ objects in each of the R =
∑K

k=1 xk

partitions. Thus, in each of the R partitions in the LA, we have Λ objects in
each boundary state rS ∀r, where r ∈ {1, 2, ..., R}.

Output:

• Convergence happens when all objects are in any of the two most internal
states, and the converged partitioning is then reported. If convergence is not
achieved within |Υ| queries, the LA should return its current partitioning.

• The LA, thus, outputs its partitioning (K = ∆+) of the O objects into K

partitions.

• ϕi is the state of oi and is an integer in the range {1, 2, ..., RS}.
• If ϕi ∈ ιk, where ιk = {max(ιk−1)+ 1, ...,max(ιk−1)+xkS}, then oi is assigned

to ϱk, which is done for all i ∈ {1, 2, ..., O} and k ∈ {1, 2, ..., K}.

1: while not converged or |Υ| queries not read do
2: Read query Q = {oi, oj} from Υ

3: if ϕi and ϕj ∈ ιk then ▷ If the objects are in the same state range
4: EOMA Process Reward (Algorithm 6)
5: else ▷ If the objects are in different state ranges
6: GCD-EOMA Process Penalty (Algorithm 5)
7: end if
8: end while
9: Output the final partitioning based on ϕi, ∀ i. ▷ According to the state ranges

In order for the reader to better understand the GCD-EOMA concept, let us
consider the example visualized in Figure 4.1. In this example we have S = 4,
and ρ1 = 12, ρ2 = 18 and ρ3 = 6. In this scenario, we need to consider links in
the GCD-EOMA operation, because the group sizes exceed Λ = 6, which is the
case for this problem. From the figure, we can observe that the first state range is
defined as ι1 = {1, 2, ..., 8}, and it represents the overall partition of ϱ1. Further,
ι2 = {9, 10, ..., 20} is the overall partition of ϱ2, and ι3 = {21, 22, ..., 24} is the
overall partition of ϱ3. Additionally, we visualize the operation upon a Reward and
a Penalty for a query, Q = {o1, o2}. In the example on the left side, the queried
objects are inside the same state range, and they are consequently rewarded. In the
example on the right side, the queried objects are in different state ranges, and they
are, consequently, penalized.

63

Algorithm 5 GCD-EOMA Process Penalty

Input:

• The query Q = {oi, oj}, and the states of the objects in Q ({ϕi, ϕj}).

Output:

• The next states of oi and oj.

1: if ϕi mod S ̸= 0 and ϕj mod S ̸= 0 then ▷ Neither are in boundary
2: ϕi = ϕi + 1

3: ϕj = ϕj + 1

4: else if ϕi mod S ̸= 0 and ϕj mod S = 0 then ▷ oj is in boundary
5: ϕi = ϕi + 1

6: temp = ϕj ▷ Store the state of oj
7: ol = unaccessed object in group of staying object (oi) closest to boundary
8: ϕj = ϕi

9: ϕl = temp

10: else if ϕi mod S = 0 and ϕj mod S ̸= 0 then ▷ oi is in boundary
11: ϕj = ϕj + 1

12: temp = ϕi ▷ Store the state of oi
13: ol = unaccessed object in group of staying object (oj) closest to boundary
14: ϕi = ϕj

15: ϕl = temp

16: else ▷ Both are in boundary states
17: temp = ϕi or ϕj ▷ Store the state of moving object, oi or oj
18: ϕi = ϕj or ϕj = ϕi ▷ Put moving object and staying object together
19: ol = unaccessed object in group of staying object closest to boundary
20: ϕl = temp ▷ Move ol to the old state of moving object
21: end if

The OMA was developed to organize objects in such a way that those that
are accessed often are grouped together under the presumption that these objects
pertain to the same underlying partition. This notion is also essential to the GCD’s
overall concept. The current OMA algorithms make use of a behavior known as
“switch-action-and-replace” in order to stop objects from inaccurately moving toward
the same action, and to also keep the size of each group to be the same. This same
phenomenon is built upon in the GCD OMA, which creates extra sub-partitions for
each partition and then virtually connects those sub-partitions to one another in
order to manage NEPPs. However, the GCD OMA requires for a common, non-
unity, GCD among the various partition sizes. This, in turn, means that it can
only deal with NEPPs that have a non-unity GCD and a consequent relationship
between the various partition sizes.

64

Algorithm 6 EOMA Process Reward

Input:

• The query Q = {oi, oj}.
• The states of the objects in Q ({ϕi, ϕj}).

Output:

• The next states of oi and oj.

1: if ϕi mod S ̸= 1 then
2: ϕi = ϕi − 1 ▷ Move oi towards the innermost state
3: end if
4: if ϕj mod S ̸= 1 then
5: ϕj = ϕj − 1 ▷ Move oj towards the innermost state
6: end if

4.1.2 The Partition Size Required (PSR) OMA

The GCD OMA variant requires a size relation between the group sizes. Thus, the
groups need to have a common non-unity GCD. Consequently, the GCD variant still
has limitations to the types of NEPPs that it is able to solve. Our next enhancement
is to develop an OMA scheme that is even more versatile to the problems that it
can solve.

Our proposed PSR OMA variant can generally solve NEPPs without a common
divisor between the group sizes, i.e., it can solve partitioning problems with arbitrary
partition sizes. This means that the PSR OMA can solve OPPs, but we still utilize
the notation of the EPP/NEPP to separate the innovations from the existing variants
distinctly. The distinct behavior that differentiates the PSR OMA from the GCD
OMA is that the PSR variant can adaptively swap the group sizes themselves within
its operation. Thus, the PSR can change the number of objects in one action upon a
certain object distribution, allowing it to adapt group sizes according to the incoming
queries intelligently.

The PSR variant represents a major innovation to the OMA paradigm. However,
it still has one requirement in relation to the partition sizes, which is that it requires
the user to know the group sizes a priori. Thus, the partition sizes need to be
pre-specified, i.e., the PSR OMA requires groups with pre-specified cardinalities.
Initially, the PSR OMA distributes the abstract objects representing the items to
be grouped into K actions. Thus, in the PSR OMA, we have the same number
of actions as we have partitions (similar to all the existing OMA variants). The
difference from the existing variants is that we can have a different number of objects
inside each of the actions. In the PSR OMA, the actions in the OMA have the same
number of objects as the group sizes in our partitioning problem itself. In this way,
the PSR OMA is completely different from the GCD variant. While in the GCD
OMA, we need to link sub-partitions to accommodate the group size requirement,

65

Figure 4.2: Example of a Standstill Situation and the PSR OMA’s solution for it.

in the PSR OMA, the actions are designed to directly represent the group sizes.
The PSR OMA possesses problems that do not exist when we handle the EPP

case that existing OMA algorithms can tackle. The same applies to the GCD OMA,
because the GCD OMA continues to handle an equal number of objects in each
action (partition). More specifically, we have the complicated issue that objects can
get stuck, in what we refer to as a Standstill situation. The “Deadlock Situation”
described in [73] must not be confused with the distinct “Standstill Situation”. The
occurrence of a “Standstill Situation” happens when a smaller partition is trapped
inside of a larger partition. This can prevent the automaton from converging, and
it can even result in an endless “infinite” loop of objects moving back and forth
between actions and states. When a smaller partition is contained within a larger
partition, objects are prevented from being grouped together, as they should be in
∆∗. Consequently, the problem of the Standstill Situation affects the convergence
and performance of the machine. Thus, it can result in a slower convergence, or that
the machine does not even converge within an infinite time frame, and even result
in non-optimal partitioning solutions.

To understand the Standstill Situation in more detail, let us consider a simple
example where we have four partitions. Two of the partitions have room for three
objects, the next partition has room for two objects, and the last partition has room
for four objects. Using the notations established earlier, we have ρ1 = 3, ρ2 = 3, ρ3 =

2, ρ4 = 4. We equip the automaton with five states (S = 5). In this problem, we have
twelve abstract objects, and four partitions. After a series of queries, the automaton
can then become stuck in a possible Standstill Situation, as visualized on the left
side in Figure 4.2. Thus, the automaton is “stuck”. Let us further assume that ∆∗

has the following groups: {o1, o2, o3}, {o4, o5, o6}, {o7, o8} and {o9, o10, o11, o12}}.
Let us continue with the example of a Standstill Situation problem as visualized

in Figure 4.2. In the case of a noise-free system, the object o4 will be queried together
with o5 or o6 as Q = {o4, o5}. If we only consider the existing OMA functionality,
such a query, when presented to the automaton, will result in a Penalty. In a normal
Penalty operation, o4 is to be moved to another partition. If we consider that o4 is
moved to ϱ3, o5 will replace o4 and is moved to state five. This operation does not
bring o4, o5 and o6 closer together. Actually, we are not any closer to the optimal
solution than we were before we were given the query. The described process might
continue until ϱ1 is practically reset, meaning that all other objects are moved from

66

ϱ1 to another group, so that there is enough room for o4, o5 and o6 to be inside that
particular partition. In the existing OMA, ϱ3 was initialized with two objects, and
it cannot change its partition size. Consequently, the Standstill Situation, without
any modifications to the existing policies in the OMA paradigm, complicates the
movement of the objects, and it can make convergence highly unlikely, i.e., within
reasonable time frames. Therefore, in our PSR OMA variant, we have proposed an
augmented functionality that prevents the Standstill Situation.

Due to randomness, the PSR OMA automaton might be able to recover from
Standstill Situations. However, as explained above, it is a complicating factor that
adversely affects the performance of the machine. Therefore, we seek a solution that
prevents the Standstill Situation. In our PSR variant, we have therefore proposed
a renewed Penalty functionality upon a certain distribution of objects. In the new
Penalty operation, we utilize the concept of Trust. Although we present the finer
details about the concept below, the concept, in itself, can be related to human
behavior. We can let the uncertain objects infer how they should behave based
on the obtained knowledge of certain objects. As humans, we might learn from
more experienced people, and in our new Penalty functionality that we introduce in
the PSR OMA, we utilize the same principle. In order to implement this concept
into the PSR OMA, we need to change the inter and intra-state transitions. In
what follows, the explanations will be based on the EOMA version of the PSR (the
PSR-EOMA).

The first major difference between the existing OMA algorithms and the PSR
OMA is the initialization of objects. In the PSR OMA, the abstract objects are
initialized in a randomized fashion into the actions (partitions) of the PSR-OMA in
accordance with the group sizes that have been established in advance. Similar to
the existing OMA algorithms, we distribute objects into the K boundary states in
our automaton. But, unlike the existing OMA algorithms, we can have an unequal
number of objects in each of these boundary states. The boundary states are the
integers given by kS, where k ∈ {1, 2, ..., K}, and they will be distributed according
to the group sizes given by ρk, where k ∈ {1, 2, ..., K}. We have O actions in total, K
partitions (actions), and each object’s state is denoted by ϕi, where i ∈ {1, 2, ..., O}.
We refer to the partitions as ϱk for partition k, where k ∈ {1, 2, ..., K}. For ease
of explanation, we utilize the parameter Bk as a reference to the boundary state of
partition k. It is important that we ensure that we have an action (partition) in the
automaton that represents each group size, but which of the action numbers it is, i.e.,
ϱk does not matter. We describe the initialization of objects for the PSR-EOMA
variant3 in Algorithm 7 [75]. The reader should note that object initialization is
independent of the group sizes, i.e., the process is similar for an EPP and a NEPP.

3Because the EOMA version can be easily changed to the Vanilla OMA version, we omit to
explain this method in detail here. The reader is referred to Chapter 2 for details about the Vanilla
OMA method.

67

Algorithm 7 PSR Initialization for EOMA
Input:

• The number of partitions K, and ρk for all k ∈ {1, 2, ..., K}.
• The objects O = {o1, ..., oO}, and S states per partition.

Output:

• An initialization of the O objects into the K partitions.

1: for all partitions k, where k ∈ {1, 2, ..., K} do
2: Bk = kS ▷ The boundary state of ϱk
3: temp = ρk randomly selected objects from O
4: for all objects x in temp do
5: ϕx = Bk ▷ Place object in boundary state of ϱk
6: end for
7: end for

The second major difference is that the PSR OMA algorithm introduces a novel
Penalty scheme to address the Standstill Situation, which distinguishes it from both
the GCD OMA variants and other existing OMA algorithms. The rationale behind
the new Penalty scheme is that when a boundary object (i.e., an uncertain object)
is queried together with an object in an innermost state (i.e., an certain object),
we utilize the knowledge of the certain object to infer the behavior of the uncertain
object. More specifically, when we have one object in a boundary state that is
queried together with an object in an innermost state, the boundary object is moved
directly to the state of the innermost object, without a replacement if that swap is
legal in terms of the partition sizes. If more than one object is required for a legal
swap to be done, we will move more objects to the group of the innermost object,
and adaptively change the partition sizes while the automaton is in operation. In
the event that relocating the said object does not directly satisfy the stipulated
size criteria, an assessment is conducted to determine the presence of other objects
within the boundary or state adjacent to the boundary. In the event that the size
requirements are met by relocating any or all of the aforementioned entities to the
innermost object’s partition, the boundary object and its accompanying objects will
be transferred to the boundary state of said partition. The concept is visualized on
the right side in Figure 4.2, where o4 is moved to ϱ3 without a replacement being
made.

We present the proposed PSR-EOMA’s Penalty operation in Algorithm 8 to-
gether with references to Algorithm 9 [75]. The rest of the PSR-EOMA operation is
similar to the existing EOMA (the EOMA Reward and EOMA overall operation).
We need to emphasize that when moving a single object fulfills the size require-
ments, we move that object to the same state as the innermost object. When we
need to move more than a single object, we are more uncertain that we are moving
the correct ones. Therefore, when moving more than a single object, we move them

68

to the boundary state of the innermost object’s action. This behavior can be tuned
according to the viewers preferences. If we encounter the scenario when we have
all-boundary objects that can be moved legally, we could say that we would anyway
move them to the innermost state, because all of them are uncertain. However, in
the explanations of the algorithms, we have kept the descriptions to the simplest
version, where we distinguish between a single object swap, and multiple object
swaps. If no legal swaps that fulfills the size requirement for all groups can be done,
we check the rest of the Penalty statements in the EOMA Penalty Process.

Algorithm 8 PSR-EOMA Process Penalty
Input:

• The query Q = {oi, oj}, and ρk for all k ∈ {1, 2, ..., K}.
• The states of the objects in Q ({ϕi, ϕj}).

Output:

• The next states of oi, oj and other affected objects.

1: if ϕi mod S ̸= 0 and ϕj mod S ̸= 0 then ▷ Neither are in boundary states
2: ϕi = ϕi + 1

3: ϕj = ϕj + 1

4: else if ϕi mod S = 1 and ϕj mod S = 0 then ▷ oi is in innermost state
5: PSR Process for Standstill Situation (Algorithm 9)
6: else if ϕi mod S = 0 and ϕj mod S = 1 then ▷ oj is in innermost state
7: PSR Process for Standstill Situation (Algorithm 9)
8: else if ϕi mod S ̸= 0 and ϕj mod S = 0 then ▷ oj is in boundary state
9: ϕi = ϕi + 1

10: temp = ϕj ▷ Store the state of oj
11: l = index of an unaccessed object in group of oi closest to the boundary
12: ϕj = ϕi

13: ϕl = temp

14: else if ϕi mod S = 0 and ϕj mod S ̸= 0 then ▷ oi is in boundary state
15: ϕj = ϕj + 1

16: temp = ϕi ▷ Store the state of oi
17: l = index of an unaccessed object in group of oj closest to the boundary
18: ϕi = ϕj

19: ϕl = temp

20: else ▷ Both are in boundary states
21: temp = ϕi or ϕj ▷ Store the state of Moving Object, oi or oj
22: ϕi = ϕj or ϕj = ϕi ▷ Put Moving Object and Staying Object together
23: ol =unaccessed object in group of Staying Object closest to boundary
24: ϕl = temp ▷ Move ol to the old state of Moving Object
25: end if

69

Algorithm 9 PSR Process for Standstill Situation
Input:

• The states of all objects ϕl, where l ∈ {1, 2, ..., O}, and the query Q = {oi, oj}.
• ρk for all k ∈ {1, 2, ...,K}, and the boundary states, Bk of all k ∈ {1, 2, ...,K}.

Output:

• The next states of oi, oj and other affected objects.

For ease of explanation, we suppose oi is in the innermost state of ϱi and oj is in the
boundary state of ϱj .

1: if moving oj to ϱi will let our system keep the specified sizes then
2: ϕj = ϕi ▷ Move oj to ϱi
3: else ▷ If more than one object is required to fulfill all ρk
4: for all objects ox in ϱj \ oj do ▷ All objects in ϱj except oj
5: if ϕx = ϕj or ϕx = ϕj − 1 then ▷ If ox is in (or nearest to) the boundary state
6: I ← ox ▷ I is the set of possible objects to move
7: end if
8: end for
9: if |ϱi| > |ϱj | then ▷ There are more objects in ϱi than in ϱj

10: ν = |ϱi| − |ϱj | ▷ |ϱi| is the number of objects in ϱi
11: else if |ϱi| < |ϱj | then ▷ There are more objects in ϱj than in ϱi
12: ν = |ϱj | − |ϱi|
13: else ▷ This means |ϱi| = |ϱj |
14: Continue Process Penalty ▷ Continue with the remaining statements in Alg. 8
15: end if
16: if |I|+ 1 ≥ ν then ▷ The number of objects in I are bigger than (or equal to) ν
17: Randomly select ν − 1 objects from I and put them in a new set J .
18: if |ϱi|+ ν and |ϱj | − ν fulfills all ρk then ▷ If the size requirement is fulfilled
19: ϕj = Bi ▷ Move oj to boundary of ϱi
20: for all objects oz in J do
21: ϕz = Bi ▷ Move objects in J to boundary state of ϱi
22: end for
23: end if
24: else ▷ It was not possible to make a legal swapping of objects
25: Continue Process Penalty ▷ Continue with the remaining statements in Alg. 8
26: end if
27: end if

The PSR OMA is a new variant of the OMA algorithm that can solve partitioning
problems with arbitrary partition sizes without requiring a common non-unity GCD
between the group sizes. This is achieved by adaptively swapping the group sizes
within its operation. However, the PSR variant still requires pre-specified cardinali-
ties and can lead to a Standstill Situation where a smaller partition is trapped inside
a larger partition, preventing objects from being grouped together. To address this
issue, we have proposed a renewed Penalty functionality that utilizes the concept

70

of trust, where uncertain objects infer how to behave based on the knowledge of
certain objects. This concept is implemented by changing the inter and intra-state
transitions of the automaton.

4.2 Chapter Summary

In this chapter, we have introduced two new variants to the OMA paradigm, namely
the GCD OMA and the PSR OMA. They can be utilized by invoking all the existing
OMA algorithms, and allow them to be able to handle both EPPs and NEPPs. The
existing OMA algorithms can only handle partitioning problems where the groups
have equal sizes, but the proposed variants do not have this limitation. The GCD
OMA requires a non-unity common GCD between the partition sizes, while the PSR
OMA does not have a size relation requirement to the group sizes of the problem.
The GCD OMA extends actions onto a larger state space. On the other hand, the
PSR OMA has a unique Penalty operation upon a particular distribution of objects,
a new initialization of objects, and other inter and intra-state policies allowing it
to solve NEPPs of arbitrary sizes. These innovations are, truly, remarkable to their
field, and the OMA algorithms can now solve a larger selection of grouping problems
than they were able to achieve prior to their invention.

71

Chapter 5

Novel VSSA Solutions

As emphasized in the previous chapters, the VSSA type of LA differ significantly
from their fixed-structure, FSSA, counterparts. In the preceding chapter, we intro-
duced our innovative contributions to the field of FSSA research. This chapter will
focus on our pioneering work in the VSSA domain. Similar to our FSSA contribu-
tions, our advancements in the VSSA domain also encompass entirely new learning
schemes. However, we have delved even deeper into the underlying algorithms by
conducting rigorous mathematical analyses. Specifically, we have established the ϵ-
optimality of the HDPA, and for the Action Distribution Enhancing (ADE) HDPA,
we elucidated the fundamental mathematical principles behind our proposed en-
hancement of the HDPA implementation. More specifically, our contributions in-
clude our novel HDPA and ADE HDPA, respectively. These innovations represent
the state of the art within the field of LA.

The VSSA machines are distinguished by their capacity to encapsulate memory
in the form of a probability vector, allowing them to monitor interactions with
the Environment and record those interactions. However, as explained earlier, the
problems become more complicated as the number of actions, R, increases. The
learning mechanism in continuous VSSA LA operates in a multiplicative manner.
In most cases, the appropriate action selection probability is initialized with the
value 1

R
as the starting probability for each action. Consequently, the likelihood

that a certain action would be picked as the starting point reduces as R increases.
Therefore, the LA needs a smaller learning parameter to ensure genuine learning if
it is to be achieved by the corresponding updating methods. Thus, the LA should
not just instantly boost the probability of one of the actions to the point where
it becomes the only action that the machine chooses, without exploring the entire
action space. These two phenomena can result in inaccurate and slow convergence
as R increases. In [2], the authors proposed the HCPA to resolve the issue of
“Environments with a large number of actions”. The HCPA represented the state-
of-the-art algorithm in VSSA before our innovations [2].

Even though it is a very fast machine, the HCPA suffers from a relatively slow
convergence as the accuracy requirement becomes high. Thus, when any of the
action’s probability in the action selection probability vector approaches unity, the
change in its probability becomes correspondingly smaller. For example, let us

73

assume that the action probability of one of the actions, say α1, in a two-action
Environment, is currently p1 = 0.999. Correspondingly, the action selection proba-
bility of the second action, say α2, is p2 = 0.001. Furthermore, let us assume that
we have a continuous learning scheme with a learning parameter, λ = 0.001, and
that α1 is selected and receives a Reward. The action selection probability of α2

is then updated according to the following formula: p2 = (1 − λ)p2, resulting in
p2 = 0.000999. Further, the action probability of α1 is updated according to the
formula: p1 = 1 − p2, i.e., p1 = 0.999001. Consequently, the change in the action
probability of α1 is 0.000001. In comparison, if α1 had an action selection prob-
ability of p1 = 0.57 initially (and p2 = 0.43), the corresponding change in action
probability would be 0.00043.

The behavior demonstrated above, results in sluggish convergence as the LA
gets closer to achieving convergence. Consequently, even if the HCPA can tackle a
large number of actions, a more effective behavior for high accuracy requirements
would make the algorithm better suited for the future. Another aspect related to
the algorithm’s effectiveness is that the HCPA organizes its LA in a tree structure,
with its second bottom LAs serving as the automatons responsible for the actual leaf
actions that interact with the Environment. The leaf actions are selected through
various pathways through the tree, and one would question if the ordering of the
actions at the leaf level could impact the overall machine’s performance. Therefore,
we were motivated to see if we could advance the field of VSSA further by proposing
new learning schemes that attain convergence faster while accurately converging to
the optimal action.

Our research has made two novel advancements in VSSA, with the introduction of
our proposed HDPA variant and the ADE HDPA, respectively. The HDPA concept
aims to enhance the performance of VSSA by organizing a set of DPA instances in a
hierarchical tree structure. This approach simultaneously discretizes the probability
space, structures the LA instances, and incorporates the Estimator concept. The
HDPA variant mitigates the sluggish LA performance, especially for high accuracy
requirements. The second novel scheme we propose is the ADE HDPA, where we
suggest a new methodology to structure the actions at the leaf level of the tree. These
developments reflect the most recent and advanced state-of-the-art algorithms in the
VSSA paradigm, and they will be presented briefly below.

The comprehensive details of our VSSA contributions are available in the sup-
porting papers incorporated later in this dissertation. This chapter aims to deliver
a high-level overview of the advancements made in the VSSA domain. To avoid
redundancy and ensure that the proposed concepts are adequately contextualized,
we present the VSSA contributions more concisely than the preceding chapter about
the novel FSSA contributions.

74

5.1 The HDPA

Although the HCPA represents a suitable solution (and it was the best available LA)
when we had many actions, it suffers from slow convergence, especially in the latter
phase of learning, as exemplified above. As the machine approaches the convergence
criterion, the ineffective updating scheme becomes especially noticeable when we
have high accuracy requirements, e.g., a convergence criterion above, for example,
0.99. When we have high accuracy requirements, the LA has to reach a higher
action selection probability threshold. Because the change in probability becomes
correspondingly less as the action selection probability approaches unity, it is clear
that the sluggish convergence behavior becomes more prominent for higher accuracy
requirements. In other words, the changes in the probability vector become less as
the number of iterations and interactions with the Environment increases, resulting
in more iterations being required before convergence is achieved. A more effective
learning scheme would increase the applicability of these types of ML solutions.

In order to enhance convergence speed in situations where we have environments
with a large number of actions, and we have high requirements for the accuracy of the
converged solution, we have proposed the HDPA variant. The benefit of the HDPA
is that it does not have the same impediment as the HCPA. Thus, the effective
learning rate remains strong as the learning progresses. We achieve this behavior
by piggybacking the phenomenon of discretization into the machine mechanism and
incorporating the earlier-explained innovations presented in Chapter 3, namely of
discretization, the Estimator phenomenon, and structure.

The HDPA represents a new algorithm within the VSSA domain. For the
HDPA, we establish a hierarchical tree arrangement for a collection of DPA in-
stances, wherein each DPA instance is associated with a distinct set of actions that
correspond to the potential paths throughout the tree structure. The action prob-
abilities of the corresponding LAs are maintained via vectors that are subject to
discretized updates contingent upon whether a given action incurs a Reward or
Penalty. At the lowest tier of the hierarchical structure, the actions are situated in
direct interaction with the Environment. The reward estimates of all the actions at
the leaf level of the tree are maintained in vectors that are distinct from the action
selection probability vector maintained in each LA. As explained in the respective
papers attached, action estimates are, in reality, only needed for the actions at the
leaf level1. As per the Pursuit paradigm, the HDPA pursues the currently best esti-
mated action in each iteration. Consequently, the action that possesses the highest
estimated probability of getting a Reward is granted an increase when a Reward
is received, irrespective of which action was responsible for triggering the Reward.
Estimator algorithms have been demonstrated to achieve a far superior convergence
faster than their predecessors [2].

1However, as explained in subsequent papers, the estimation in every LA is needed to prove its
ϵ-optimality, and define its behavior in a greater and more precise detail.

75

5.1.1 Motivation for this Study

In today’s society, the amount of data stored constantly increases, and the Internet
requires significant energy resources. Similarly, our machine learning algorithms add
to our carbon footprint [80, 81]. Therefore, it is essential to prioritize sustainability
by persistently striving to reduce the resources required to execute the various algo-
rithms. In this context, improving the schemes’ efficiency is crucial to the future of
these algorithms. Algorithmic efficiency is not only essential from a sustainability
standpoint, but it is also a fundamental consideration in the algorithm’s applicabil-
ity to real-life problems. Inefficient algorithms reduce the likelihood of their utility
in contexts where the systems are highly stochastic, and which might change rapidly.
In these cases, the algorithms that we use need to be efficient.

One of the most important aspects in the Literature on LA, has always involved
improving the speed and accuracy of the algorithms. Finding new ideas and princi-
ples to change the machines’ inner workings has been necessary to achieve better and
more effective learning schemes. Earlier, we discussed all of the significant develop-
ments that have advanced the field until today, i.e., the introduction of learning and
memory as maintained in a probability vector, the discretization of the probability
space, the Pursuit concept, and the concept of structure. The combinations of these
innovations have led to even further improvements, like in the case of larger action
spaces, where the ϵ-optimal HCPA is currently the record holder for such Environ-
ments. However, as already highlighted, we wanted to advance the algorithms even
further, impacting the field of VSSA in itself. Our proposed HDPA represents our
first novel contribution to the area of VSSA, representing a new record-holder in
both speed and accuracy.

5.1.2 Principles for the HDPA

In this section, we will explain the principles for the HDPA in a high level2. In
the HDPA, we combine the concepts of VSSA, discretization, the Pursuit concept,
and structure. More specifically, DPA instances are organized in a hierarchical tree
structure, where each automaton has a set of actions that lead to a child automaton.
Let us define the number of levels in the tree structure3 as L. The automata at tree
depth L−1 are responsible for the actual actions interacting with the Environment.
Thus, the children of these automatons are not new automatons, but the leaf actions
themselves. We visualize an example structure of an HDPA hierarchical tree in
Figure 5.1, which shows 8 actions structured in a tree with L = 3 and R − 1

automata. For R actions, we need R − 1 two-action DPA instances. The relation
between the number of actions and the required tree-depth is R = 2L.

2The details of the HDPA algorithm are presented in its entirety in the subsequent papers,
included in this dissertation.

3In the subsequent papers addressing the HDPA, K is used as a notation for the tree depth.
For the reader to not be confused with the symbol K, used as the number of partitions in the
OMA paradigm in the earlier chapters, we have used the symbol L to refer to the tree depth, in
this chapter.

76

Figure 5.1: An example of an HDPA structure for eight actions.

The LA instances in the tree can be of any type, with each of them having
an arbitrary number of actions. In this dissertation, and the subsequent attached
papers, we have utilized two-action DPR−I instances in the tree structure. The
reader should note that the instances could have possessed more than two actions,
but we should remember that the overall reason for the hierarchy is to reduce the
dimension of the action probability vector. If the number of actions is not a multiple
of two, we use a multiple of two with a number of actions above the number we
require, and set some of the actions to be inactive, with a reward probability of
zero.

Let us further define the notations for the hierarchy as follows4:

• The depth index of the tree: For a tree whose depth is L, we employ l to
index the tree depth, where l ∈ {0, 1, . . . , L}.

• The LA in the structure: We denote the individual LA by A{l,j}, where l

refers to its depth and j represents the index of the LA within the depth l.
Consequently, the LA j ∈ {1, ..., 2l} at depth l, is denoted as A{l,j}, where the
depth l, l ∈ {0, ..., L− 1}. Observe that there are no LA at depth L, because
they are the actions themselves.

• The LA in depths 0 to L− 1, i.e., 0 ≤ l < L− 1:

– Each of the LA, A{l,j}, has two actions, which we denote as α{l+1,2j−1}
and α{l+1,2j}, respectively.

– When the action α{l+1,2j−1} is selected, i.e., the left branch of the current
LA, the LA A{l+1,2j−1}, at the next depth of the tree is activated.

– When the action α{l+1,2j} is selected, i.e., the right branch of the current
LA, the LA A{l+1,2j}, at the next depth of the tree is activated.

4This notation is similar to the one established in [2], and the explanation given in subsequent
attached papers to this dissertation.

77

– We refer to A{l+1,2j−1} and A{l+1,2j} as the Left Child and the Right Child
of the Parent (A{l,j}), respectively.

• The LA in depth L − 1 (i.e., l = L − 1): The LA at depth L − 1 are
responsible for choosing the activated action at the leaf level, i.e., the action
that is chosen and which interacts with the Environment.

– Each LA at depth L−1 has two possible actions, which we refer to as the
left and right child. Formally, these are denoted as α{L,2j−1} and α{L,2j},
respectively.

– Inside depth L−1, the LA are responsible for 2L actions, and the actions
at the leaf level are referred to as α{L,j} where j ∈ {1, ..., 2L}.

– If we consider the chosen action at the leaf level to be: α{L,j}, we can
determine its parent from the following relation: A{L−1,⌈j/2⌉}.

• The actions at depth L (l = L): At depth L, we have the actions that
directly interact with the Environment.

The above notations and concepts are crucial for understanding the operation
of the HDPA. The principle of the HDPA is that an action is activated at the leaf
level from a path from the top node to a node at the L − 1 level through the tree.
The additional details of this operation will be presented presently.

5.1.3 Summary of the Overall HDPA Algorithm

In this section, we delve even deeper into the operation of the HDPA. As we can
observe from Figure 5.1, each node, except the ones at depth L− 1, is the parent of
two children. The procedure of the HDPA starts with the LA at the top of the tree
structure, referred to as the root node. The root node, A{0,1}, has an action selection
probability vector, p01, maintaining its probability for choosing either its Left or
Right child, respectively. By a random uniform sampling of this probability vector,
the LA at the next level in the tree is activated. A similar process is continued until
level L−1 is reached. The reader should note that the action selection probabilities
are followed for choosing a leaf action, and that the reward estimates are not a part
of the action selection process. Instead, the reward estimates are only a part of the
updating and learning mechanism of the machine.

When the LA at depth L − 1 has chosen an action at the leaf level by a uni-
form random sampling of its action selection probability vector, the action interacts
with the Environment. The Environment will respond, either with a Reward or a
Penalty5. Because we consider DPR−I instances in this dissertation, a Penalty does
not result in any updating of the action selection probability vector. However, the
reward estimates vector is updated both if a Reward or Penalty is received. More

5As we have mentioned earlier, the feedback from the Environment does not necessarily come
from a binary set of responses. However, in this dissertation, we only consider the scenario where
the Environment responds with either a Reward or a Penalty.

78

specifically, we maintain reward estimates for all the leaf actions. For example, the
reward estimate of α1 might be 0.9 if that action has been selected 100 times and
received a Reward 90 out of the 100 interactions with the Environment.

We base the updating mechanism of the HDPA on feedback from the Environ-
ment. However, in the HDPA, we follow the Pursuit concept. Thus, if α1 is the
action selected and the one that received a Reward from the Environment, but α2

currently has the highest reward estimate, we will reward the path to that action
instead of the action that was selected. In this way, we pursue the currently best-
estimated action in every iteration. More specifically, when a leaf action is selected
and receives a Reward, we will reward the backward (or rather, upward) path leading
to the action that currently has the best reward estimate. This process is continued
until convergence is achieved. Convergence can be defined in different ways for the
HDPA. We can either say that the HDPA converges once any of the action selec-
tion probabilities is above a specified threshold, or we can say that the HDPA only
converges once a complete path throughout the tree in terms of the action selection
probabilities, have converged, i.e., all the LA on the path to a particular action has
an action probability above a certain threshold.

Let us consider a more detailed example of the HDPA principle upon a Reward,
where we have eight actions as depicted in Figure 5.2. Furthermore, we define
our learning parameter as ∆ = 0.001, and we let D̂ denote our reward estimate
vector. The reader should remember that the reward estimate vector keeps track
of the number of times an action has been selected and has received a Reward
from the Environment. Let us consider that α3,4 was selected. From the reward
estimate vector in Figure 5.2, we observe that the selected action happens to be
the action with the highest estimated reward probability. The activated LA for
α3,4 to be chosen is colored green. The current action selection probabilities of the
green automatons on the path are listed on the left side of the figure. To select an
action, we follow the path down the tree by sampling the action probabilities in the
LA along the path. For example, when A{1,1} has an action probability vector of
[0.8, 0.2], it selects α{2,2}, with probability 0.2.

In Figure 5.2 referred to above, we saw that α3,4 was selected. Let us assume that
this action triggered a Reward from the Environment. In such a case, we will update
the reward estimate of that action, as highlighted by the blue color in D̂ in Figure 5.3.
From Figure 5.3, we can observe the changes in action selection probability along the
path leading to the action with the highest estimated reward probability given by
D̂. Whether we update the reward estimate before or after, the path updating can
be defined according to the executor’s preferences6. Consequently, we reward the
reverse path from α3,4, as demonstrated in Figure 5.3. The updated LA are marked
in blue, and their corresponding action probabilities that experience a change are

6The order of the operation in our HDPA is defined in the subsequent attached papers describing
the HDPA.

79

Figure 5.2: The HDPA principle, where an action at the leaf level has been chosen.

also marked in blue. As an example, p11 is updated as follows:

p11[0] = max(p11[0]−∆, 0), (5.1)

p11[1] = 1− p11[0], (5.2)

where p11[0] represents the Left child of A{1,1}, and p11[1] represents the probability
for choosing the Right child. The reader should note that, for the ease of under-
standing, we have omitted n in this example. Consequently, for this automaton, we
reward the right branch (increase the probability of selecting the Right child).

From the example described above, we understand the overall concept of the
HDPA. We want to emphasize that if another action than α3,4 had the highest
estimated reward probability, we would, as per the Pursuit concept, have rewarded
the path leading to that action instead. We have constructed this example so as to
make the concept easy to follow.

5.1.4 Overview of the HDPA Results

Extensive simulations were conducted to showcase the effectiveness of the proposed
HDPA scheme in various environments featuring a multitude of different numbers
of actions, and other configurations. These simulations are detailed in the attached
papers of this dissertation, and we will not completely reproduce them here. How-
ever, in Table 5.1 and Table 5.2, we have extracted some of the results to compare
the HCPA algorithm with our proposed HDPA algorithm. From the tables, we can
observe that the HDPA has significantly fewer average required number of iterations
before convergence, but that of the HCPA has a smaller standard deviation, in most
cases, compared with the HDPA. The reader should note that the “difficulty” associ-
ated with the Environments, sometimes referred to as its “hardness”, is significantly
different for various numbers of actions, e.g., making the 512 actions Environment

80

Figure 5.3: The HDPA principle, where we update the reward estimate and path to
the leaf action with the highest estimated reward probability.

easier than the case with 256 actions. The hardness is, e.g., related to how near
the sub-optimal and optimal action are, in terms of their reward probabilities in the
Simulation Environment.

Number of actions HCPA HDPA
128 155,100 97,800
256 1,039,200 633,000
512 95,400 78,800

Table 5.1: A brief synopsis of the simulation results over an average of 1, 000 exper-
iments for the HCPA and HDPA. The table lists the average number of iterations
required for different Environments.

Number of actions HCPA HDPA
128 10,600 13,300
256 88,700 71,000
512 13,100 15,400

Table 5.2: A brief synopsis of the simulation results over an average of 1, 000 ex-
periments for the HCPA and HDPA. The table lists the standard deviation of the
number of iterations required for different Environments.

As previously noted, a limitation of the HCPA is its slow rate of updating action
probabilities as the probability of increasing them approaches unity. In contrast
to this, it was hypothesized that the HDPA, characterized by a consistent increase
in the action selection probability in the updating functionality, would exhibit con-
siderably better convergence compared to the HCPA, which has been confirmed in

81

the rigorous simulations we conducted. Consequently, our proposed HDPA is sig-
nificantly more effective regarding the average number of iterations required before
convergence for high accuracy requirements (e.g., above 0.99).

5.2 The ADE HDPA

The reader will notice that the ordering of the actions has remained unimportant
throughout the introduction and development of VSSA. This is valid because the
ranking cannot be determined without resorting to a prior Random Race competi-
tion [52] and because, in general, there is no relevance to the ordering of the actions
in a standard action selection probability vector. Thus, the order of the actions in
the action probability vector is meaningless, and has no impact on the effectiveness
of the machine. However, when we have hierarchical structures of LA, as in the case
of the HDPA, we have discovered that the ordering matters for the algorithm’s effec-
tiveness in terms of the number of iterations required before the algorithm converges.
To confirm this hypothesis, we have proposed the ADE HDPA variant, where we
consider the ordering of the actions, and this is the avenue which we will discuss in
more detail below.

In the HDPA, we have automata that operate hierarchically, where the actions
that interact with the Environment are placed at the bottom of the tree. A leaf
action is selected based on the action selection process throughout the tree struc-
ture, from the root node to the nodes at the “second bottom” level of the tree.
Consequently, we hypothesized that the order of the actions at the leaf level could
influence the performance of the machine, because if two actions are close in terms
of their real reward probabilities, it requires more iterations if they are located far
apart in the tree structure as opposed to them being placed closer together. In
simple terms, the reason for this behavior is because it requires more effort for the
LA at each depth of the tree when they have more potentially optimal paths to
discriminate between, which happens when, e.g., the least sub-optimal and optimal
actions are located far apart. On the other hand, if the LA are concerned about
distinguishing between fewer potentially optimal paths (actions), they operate more
effectively, which happens when the sub-optimal and optimal actions are located
closer together at the leaf level of the tree structure. Therefore, the ADE approach
is based on the concept of ordering the actions in an ascending or descending order
based on the reward estimates, which ensures an optimal distribution of the actions
for an efficient operation for the LA. In Figure 5.6, we have visualized different
action distributions at the leaf level of an HDPA machine.

The reader should note that in a real system, we do not have any prior knowl-
edge of the actions’ reward probabilities. By distributing the actions into random
positions at the leaf level, we might be lucky. Thus, the actions might, with a small
probability, be ordered in an ascending or descending order naturally. However, it is
better to reduce this uncertainty, and this is what we can achieve by implementing
the ADE approach. In the simulations we conducted to demonstrate the improve-

82

ment that can be achieved with the ADE approach, which we summarize in the
section below, the proposed algorithm did not necessarily perform better when the
actions were already ordered in an ascending or descending order according to their
reward probability. The reason for this behavior is that the ADE approach estimates
the reward probabilities obtained stochastically and, therefore, does not necessarily
represent the actions’ real reward probabilities correctly. We do not know the real
reward probabilities up-front, and if we did, it would nullify the learning problem,
and render it to be void. Therefore, estimating the reward probabilities and then
reorganizing the actions at the leaf level according to the ADE approach represents
a pioneering and suitable solution to improve the effectiveness of hierarchical LA
structures further.

The reader should note that the ADE approach can be implemented into any
machine with hierarchically structured LA, e.g., the HCPA or the HDPA. However,
in the remaining parts of this dissertation, we would focus on the HDPA variant.
Because we have already highlighted its benefit over the HCPA, and in the interest
of simplicity, we thus proceed with the discussion by considering the case of the
HDPA.

5.2.1 Motivation for this Study

As Section 5.1 explains, it is extremely pertinent for the designer to improve the
algorithms’ efficiency. We have, thus, similar motivational arguments for proposing
the ADE approach as the ones we described earlier. Indeed, the algorithm’s efficiency
is an essential topic in the interest of sustainability and the applicability of VSSA
algorithms to practical problems. However, to further motivate the development of
our new ADE paradigm, let us consider an example where we have four actions,
denoted as α1, α2, α3, and α4, respectively7. Let us assume that we have estimated
the reward probabilities of these actions, and that their reward estimates are D̂ =

{d̂1 = 0.9, d̂2 = 0.3, d̂3 = 0.5, d̂4 = 0.8}, respectively. Let us assume that we
estimated the reward probabilities by testing each action with the Environment, a
few, say ten times. Thus, the reward estimate d̂1 = 0.9 means that α1 received a
Reward nine times out of the ten times were we tested that action.

We visualize the problem discussed above in Figure 5.4. We can place the actions
in one of the 4! possible positions. In the figure, we have placed the actions randomly
at the leaf level. In Figure 5.5, we visualize a configuration where the actions are
placed in a descending order8. The LA, in different depths, deals with different
complexities. The root node is the most important node for the operation of the
LA, and it influences all the LA below it. In this example, the LA at the level below
the root node governs no other LA, except its leaf actions.

In Figure 5.4, we observe that the node governing α1 and α2 has to deal with

7A similar example is highlighted in the attached papers in this dissertation about the ADE
approach.

8The reader should note that a descending and an ascending order are merely mirrored reflec-
tions of one another.

83

actions whose reward estimates are d̂1 = 0.9 and d̂2 = 0.3, respectively. In Figure 5.5,
the actions are ordered according to their reward estimates, and the same node has
to deal with distinguishing between actions with the reward estimates d̂1 = 0.9 and
d̂4 = 0.8, respectively. If we trickle “up” the maximum of the reward estimates to
the root node, the root node has to deal with distinguishing between the reward
estimates 0.9 and 0.8 in Figure 5.4, and between the reward estimates 0.9 and 0.5

in Figure 5.5. This implies that the root automaton, which must resolve the most
challenging issue, has a more difficult task in the configuration of Figure 5.4, when
compared with the corresponding configuration of Figure 5.5. Understandably, it
is easier for the root node to distinguish between actions with a higher difference
in reward probabilities. Consequently, we want to move the most discriminating
problem closest to the leaf level of the tree, which can be achieved by ordering
the actions in a ascending/descending order according to their reward estimates9.
Thus, the discriminating problem becomes harder with the depth of the tree. The
explained example of how the action distribution at the leaf level influences the
operation highlights the reason and motivation for considering the ordering of the
actions.

Figure 5.4: Example of an action distribution with the actions in a random order.

Figure 5.5: Example of an action distribution with the actions in descending order
based on their reward estimates.

9The formal mathematical analysis why this is true, is presented in the attached journal paper
in this dissertation, which deals with the ADE.

84

5.2.2 Principles for the ADE HDPA

The principle of the ADE approach is to distribute the actions at the leaf level of
the tree in a more optimal manner, to achieve faster convergence in hierarchical LA
structures. In order to optimally distribute the actions at the leaf level, we need
to order them in an ascending or descending manner. In this way, we will ensure
that the most discriminating problem lies with the root node, and the problem of
distinguishing between optimal and next sub-optimal actions in, e.g., a binary tree,
becomes more complicated as we move down the hierarchical depths of the tree.

Figure 5.6 shows examples of different action configurations at the leaf level. If
we focus on the sub-optimal and optimal actions in the figure, the configuration of
Figure 5.6a) represents the most effective configuration, while that of Figure 5.6b)
represents the least effective configuration at the leaf level. The two other config-
urations (the Figure 5.6c) and Figure 5.6d) configurations) represents distributions
in-between the hardness level of the most effective and least effective configurations.
The reader should note that the other actions’ probabilities also influence the dif-
ficulty of the Environment. In general, it takes fewer iterations for an LA to solve
a problem where the real reward probability of the optimal action is significantly
higher than the other actions’ reward probabilities [4].

We normally have sparse to non-existent a priori information about the different
actions’ fitness for a practical, real-life problem. Thus, their reward probabilities are
unknown. As a result, we must gather data so that we have information based on
which we can asses the distribution at the leaf level. Therefore, the principle of the
ADE requires two processes. More specifically, with minimized sampling, we need
to first gather information about the actions’ reward probabilities. Thus, we need to
initially estimate the reward probabilities, which we refer to as the Estimation Phase
of the ADE approach. The second phase involves the actual ordering of the actions,
referred to as the Reallocation Process of the ADE approach. By implementing these
two steps, we can distribute the actions in an improved order in such a manner that
the LA can operate more effectively.

5.2.3 Summary of the Overall ADE Algorithm

We will not describe the ADE HDPA algorithm in detail here because it is presented,
in its entirety, in the papers included in this dissertation. However, we will here
discuss only the steps required for the algorithm, in a general manner. As mentioned
above, the ADE approach consists of two processes, the Estimation phase and the
Reallocation phase. We will explain these two steps in more detail below. As we
can observe from Figure 5.7, within the LA, we have the Estimation Phase and
the Reallocation processes, and these steps need to be continued by the regular
operation of the machine. The hierarchical LA method can, in and of itself, be of
any type, but in this figure, we have suggested the HCPA and the HDPA algorithms
as examples.

Let us first consider the first part of the ADE approach, namely the Estimation
Phase. With the HDPA and other LA that utilize the concept of Estimation, we

85

Figure 5.6: Examples of different action distributions at the leaf level, where the
colored actions are the sub-optimal and optimal actions, respectively.

already include a vector (or vectors) for maintaining the reward estimates of the
machine. Typically, these estimates (and the action probabilities themselves) are
initialized as 0.5 [2]. With the ADE approach, we propose to initiate a standalone
Estimation Phase before we proceed with the other already-mentioned steps. More
specifically, in this step, we include θ initial iterations per action, where they are
tested with the Environment. We record the reward estimates, and based on these,
we proceed with the Reallocation Process. The reader should note that the reward
estimates should be kept, but the vector needs to be reordered according to the new
positions of the actions after the Reallocation Process. However, in the Estimation
Phase, no learning is conducted. We emphasize that the rough (or crude) estimates
might require several iterations, which are, indeed, not utilized for learning10.

Figure 5.7: A visualization of the processes within the ADE approach.

10In our simulations, detailed in the attached papers, we demonstrated that the benefit of the
ADE typically far exceeds the number of iterations required for the Estimation Phase.

86

The second part of the ADE approach is the Reallocation Process. In this step,
we distribute the actions in an improved manner based on the reward estimates
established in the Estimation Phase. As proven in the attached journal ADE paper,
enhanced organization can be achieved by ordering the actions at the leaf level in an
ascending or descending order. Consequently, the tree’s leaves are organized in an
ascending/descending sequence using the estimated reward probabilities. Thus, the
actions are given a new location at the leaf level, which, as mentioned, is referred
to as the Reallocation Process. We emphasize that due to the stochastic nature
of the problems in the LA domain, the estimation of the reward probabilities may
not always yield a perfect representation of the actual reward probabilities. Thus,
the Reallocation Process distributes the actions in an improved manner. After the
Reallocation Process, the algorithm continues its regular operation, and the reward
estimates are maintained to ensure that this information is preserved and not lost.

5.2.4 Overview of the ADE HDPA Results

To demonstrate the validity of our hypothesis, we conducted experiments with differ-
ent configurations to demonstrate the effectiveness and improvement of considering
the ordering of the actions in a hierarchical machine with the ADE approach. We
ran simulations with the HDPA variant, and in all of the configurations listed here,
the ADE HDPA performed better than the HDPA variant. Table 5.3 and Table 5.4
summarize the results of some of these experiments. These results are extracted
from the papers attached to this dissertation, and the details can be found there.
The results listed in the tables are approximated and simplified to demonstrate
the improved efficiency of the ADE HDPA compared with the HDPA, in a general
manner.

As we can observe from Table 5.3, we see that in all of the listed Environments,
the ADE HDPA performed better than the plain HDPA. We can observe that the
benefit of the ADE HDPA increased with the number of actions. For example, for
64 actions, the HDPA required on average approximately 91, 700 iterations before
convergence, while the ADE HDPA required approximately 75, 100 iterations, cor-
responding to approximately 18% improvement. Also, for the 8-action case, the
ADE HDPA yielded a 4% improvement to the average number of iterations required
before convergence, compared with the HDPA. From Table 5.4, we can clearly ob-
serve that the standard deviation achieved with the ADE HDPA is less than for the
HDPA. The benefit of the ADE approach for the standard deviation also increased
as the number of actions increased. From our simulations, we observed that the
ADE implementations reduced the instability from one simulation to another with
different leaf-level action distributions. Thus, the ADE approach performs similarly
for different initial action distributions because they are reorganized in the process,
where the individualities and influence of the actions’ locations at the leaf level of
the tree are eliminated.

In the performance evaluation of LA machines, we talk about the number of
iterations required before convergence to measure the algorithms’ effectiveness. The

87

reader might ask why, e.g., execution time and memory utilization are not measured
instead. This is because the average number of iterations metric remains constant ir-
respective of the computational capacity of the machine employed for conducting the
experiments, the way the algorithm is programmed (which depends on the program-
mer’s competence), and the utilized code or programming language. Consequently,
the average number of iterations required before convergence is a transferable and
stable comparable metric, especially for research purposes.

Number of actions HDPA ADE HDPA
8 7,100 6,800
16 12,700 11,600
34 17,700 16,300
64 91,700 75,100

Table 5.3: Simplified simulation results for the HDPA and ADE HDPA. The table
lists the average number of iterations required for different Environments.

Number of actions HDPA ADE HDPA
8 220 50
16 510 110
34 850 120
64 10,270 440

Table 5.4: Simplified simulation results for the HDPA and ADE HDPA. The table
lists the standard deviation of the number of iterations required for different Envi-
ronments.

5.3 Chapter Summary

In this chapter, we have discussed our novel contributions to the field of VSSA. Our
first contribution is the HDPA, which significantly reduces the number of iterations
required before convergence when we have a large action space, and where we im-
pose high accuracy requirements for the converged solution. The HDPA is better
than the HCPA for high accuracy requirements because of the delicately designed
combination of VSSA, discretization, the Pursuit concept, and structure. Further,
in the development of the HDPA, we discovered that the ordering of the actions at
the leaf level of the hierarchical tree, impacts the performance of the HDPA. Con-
sequently, we proposed the ADE HDPA. The ADE HDPA represents our second
contribution to the field of VSSA. These innovations are crucial contributions to the
research field, and represent the state-of-the-art solutions. We believe that these
results could hopefully remain to be the state of the art in LA, for a few decades!

88

Chapter 6

Communication-Based Novel
Applications

Since the first cellular-phone system was introduced in 1978 [82], and even long
before that1, mobile radio communications have been an important and interesting
research domain, worldwide. The development within mobile technology and as-
sociated infrastructure over the years is undoubtedly impressive, and research has
played a significant part in the evolution of mobile radio communications [82, 83, 84].
The development is still highly prosperous, and researchers are working with ad-
vancements to improve the technology even further by, e.g., increasing the speed,
increasing the efficiency, and reducing the resource utilization of these systems. The
domain of mobile communications represents a compelling field of research due to
its dynamic nature and its profound impact in our daily lives.

In recent years, the number of devices utilizing mobile communication networks
has been increasing. According to the statistics in the Ericsson’s Mobility Report
from November 2022, in 2028 there will be 5 billion 5G subscriptions and 9.2 billion
mobile subscriptions in total, worldwide [85]. Ericsson also reports that the number
of Internet of Things (IoT) connections will grow from 13.2 billion in 2022 to 34.7

billion2 in 2028. Consequently, the demands for wireless capacity are increasing,
and it is mandatory that we have solutions that can accommodate these increasing
requirements. The NOMA paradigm is a promising technique to meet these require-
ments [53], because more users can be multiplexed together in the same RB [57]. The
NOMA technology takes advantage of the channel condition differences between the
users in the mobile communication systems, which is feasible through the process
of Successive Interference Cancellation (SIC) [56]. In simple terms, more users can
use the same frequency, but with different power levels based on their individual
channel conditions.

1In [82], the cellular idea is said to have been introduced in the mid to late 1940s, but to
establish exactly when scientists started researching this technology is not the aim of this thesis.
Our aim with mentioning these historic happenings, is only to highlight the importance of the
field, as a whole.

2We emphasize that “standard” mobile phones are not the only devices that can utilize mobile
communication networks. Numerous other devices can also utilize such networks. However, in our
subsequent discussions, when we discuss “users”, we refer to mobile phone users.

89

In NOMA down-link operations, users are grouped into different RBs. For suc-
cessful SIC, the users to be grouped need to be carefully selected, and their power
levels need to be adjusted accordingly [56]. Consequently, the performance in NOMA
systems is highly dependent on the user grouping and the power allocation. There-
fore, the present aim is to propose a solution for user grouping and power allocation
in NOMA systems, and our proposed solution for user grouping was the first re-
ported RL solution to this problem at the time when we submitted the reports of
the research for publication. While we did observe that other existing solutions often
assumed a particular distribution for the communication channel, the user grouping
and power allocation were traditionally carried out and optimized for a static or
instantaneous environment. In our research, we proposed to utilize the OMA for
the purpose of user grouping with a heuristic approach for the power allocation in
a random environment. The benefit with the RL-based OMA solution is that it can
group the users over time in an adaptive manner.

This chapter offers an overview of NOMA and our solutions to the user grouping
and power allocation problem in a more informal manner than the more detailed
explanations presented in this dissertation’s accompanying papers. Before explain-
ing our suggested solutions and the results that we have, we will first explain the
motivation for tackling the challenging task in the NOMA domain.

6.1 Motivation for this Study

From the introduction above, it is clear that there is an interest in developing better
solutions to the domain of mobile communications. Furthermore, frequencies are
a finite resource. Thus, because the frequency spectrum is limited, we need more
frequency-efficient technology and more effective solutions for frequency sharing.
The NOMA technology is more resource effective because multiple mobile users can
share the same RB, and therefore, it is a promising technology for the future. As
mentioned, the performance in NOMA systems highly depends on which users are
grouped together. Consequently, the problem of user grouping in NOMA systems is
an important aspect which can be optimized in order to increase the overall efficiency
of such systems. However, in our research, we observed that in the existing solutions,
the stochastics of the users was not adequately considered. With our proposed
OMA approach to the grouping issue in NOMA systems, the users and groupings
are monitored over time, where we consider the users’ randomness and variations in
the channel.

In the field of mobile communications, it is a common practice to assume a
certain distribution for the fading of a channel. One example is the Rayleigh fading
model. It is comparable to assuming that the stochastic process follows a random
and stationary process when the channel coefficient, h, is expected to follow a given
time-invariant distribution. User grouping and power allocation have traditionally
been carried out based on an instantaneous sample from the assumed distribution.
As a result, in most cases, a constant, h, was assumed to have been known and

90

utilized for the optimization. Thus, in previous solutions, even though channel
fading was assumed to be following a certain random distribution, the resulting
optimization was based on a rather static nature, not addressing the behavior of
the users and their channel characteristics over time. In other words, the channels’
stochastic behavior was not considered during the previous power allocation and
grouping procedures. Therefore, we wanted to propose new approaches to these
issues that consider their behaviors over time, and adjusts the groupings and power
levels accordingly.

Channel sounding can be a rather in-expensive operation. However, monitoring
the instantaneous channel often enough to accommodate all changes in a real-time
manner is practically impossible. Consequently, when a single channel sounding has
been conducted, it might be misleading to optimize the system merely based on the
most recent channel sounding. Moreover, the general statistics of the channel may
change over time for various reasons, including, e.g., movement, moving obstacles,
and air movements. Therefore, it can be statistically smarter to have a solution that
monitors the behavior over time and accommodates the stochastic changes, e.g.,
using the OMA. As mentioned above, most earlier solutions to the grouping and
power allocation problem optimize the system based on a single channel sounding.
Furthermore, due to the complexity of optimization issues, it might not be possible,
or preferable, to solve the optimization problem regularly based on, for example,
instantaneous channel-sounding results whenever they are available. As a result,
we observed that the field needed a more appropriate foundation for the channel
coefficients and optimization. In addition, we seek a solution that is adaptive and
computationally effective.

6.2 Principles for NOMA and the OMA

The NOMA methodology for mobile radio communication has attracted great atten-
tion [53, 54, 57], and the grouping and the power allocation problems in such systems
are major concerns because these realizations highly impact the overall performance
and throughput in the mobile communication system. The concept of NOMA is that
the users can be multiplexed together into the same RB. In Figure 6.1, we visualize
the difference between conventional Orthogonal Multiple Access and NOMA [86].
In the figure, we see that more users can share the same RB in the NOMA case,
while they are distinctly separated onto different orthogonal resources in the con-
ventional case [86]. The sharing implies that users in different traffic classes can
transmit concurrently on the same RB to enhance latency and fairness [87]. More
specifically, in conventional Orthogonal Multiple Access, the users are divided into
different orthogonal frequencies, while they can be super-positioned into the same
frequency resource with different power allocations in the NOMA case.

Let us briefly address some of the existing research related to grouping and power
allocation issues in NOMA. In [88], the authors introduced a fairness power alloca-
tion algorithm to address the power issue in NOMA systems. The authors in [89],

91

investigated the sum-rate and outage probability in down-link NOMA systems. The
up-link scenario has also been investigated, with a power back-off method proposed
in [90]. These aforementioned research initiatives mainly focused on intra-cell inter-
ference, where the interference is generated by the users within the same group. As
opposed to this, the inter-cell interference occurs between groups within the NOMA
system. Inter-cell interference was the topic of [91], where the authors considered
and evaluated both down-link and up-link scenarios in a dense multiple cell NOMA
network. In the NOMA paradigm, mmWave networks have also been investigated,
as in [92] and [93], where they considered beam-forming options, without taking
into account the users’ locations. Further, the “beamforming” strategy and power
allocation were jointly optimized for maximizing the throughput in [94]. In [57], the
authors used maximum weight matching to build disjoint groups of users, allocated
one RB to each group, and then explained a method for allocating power inside the
groups. Exhaustive search based on proportional fairness for solving the grouping
problem was presented in [58]. In both [54] and [95], the authors considered groups
of cardinality two, where the former invoked the so-called Hungarian algorithm, and
the latter considered proportional fairness for power allocation. In terms of ML in
the NOMA domain, the study was still in its infancy when we addressed the group-
ing using the OMA-based approach. However, one example was the use of K-Means
for addressing the grouping in NOMA systems [56], where the authors proposed
utilizing K-Means to obtain clusters based on the users’ geolocation, demonstrated
by a school hall example scenario.

Figure 6.1: The figure visualizes the difference between the orthogonal multiple
access and NOMA methods. In the example on the left side of the figure, the users
have different orthogonal resources. On the contrary, they are super-positioned and
allocated different power levels in the example on the right side of the figure.

In our proposed grouping and power allocation approaches, we considered a sim-
plified single-carrier down-link system. We aimed to group the K users in the mobile
system into N distinct and non-overlapping groups. In Figure 6.2, we visualize the
concept. On the left side of the figure, we have a NOMA system with one BS, and
six users to be grouped into three groups. On the right side of the figure, we see
that a grouping of the users has been obtained. In the research cited above, the

92

authors did not explore the stochastic nature of wireless communication channels,
and the channel characteristics were assumed to have been known a priori. When
the researchers assume a channel characteristic (h), optimization results can only be
valid when the coefficients are reasonably close to the actual values. Consequently,
with our proposed grouping solution, we aimed to obtain a grouping, as visualized
on the right side of the figure, while considering the mobile users by being able
to handle their channel characteristics, i.e., h, changing over time. Therefore, the
mobile users in our simulations were configured to move within a defined area, i.e.,
like the behavior of users in an university or an office building.

Figure 6.2: A visualization of the NOMA concept, where the users are grouped in
the box on the right side.

In Figure 6.3, we visualize the concept of NOMA [87]. The figure displays a
down-link NOMA communication scenario when two users are grouped together in
the system. Let us assume that in the figure, User 2 has better channel quality when
compared with User 1. Through the NOMA concept, the user with good channel
quality (User 2) can eliminate interference from the user with poor channel quality
by using SIC. In contrast, the user with poor channel quality (User 1) decodes its
signal without using SIC3. Hence, in the visualization, the process for User 2 has
two steps, and the process for User 1 has a single step. In this way, User 1 and
User 2 can utilize the same RB instead of requiring two different ones, given that
SIC can be performed adequately. When we have more than two users in the same
group, the same concept applies, where a user can remove the signal components
from users with lower channel coefficients in its group via SIC and then retrieve its
message in a step-wise manner. Consequently, the problem becomes that of knowing
which users must be grouped, and how to adjust their power for successful and fair
NOMA operations.

In our new OMA-based solution to the user grouping in NOMA systems, we
proposed to utilize the EOMA variant. However, any variant within the OMA
paradigm can also be used for this scenario. The utilization of the GCD and PSR
implementation can also be investigated as part of future work. The concept of
using OMA for this purpose, is to group and monitor the established groupings over

3For a user to perform SIC, there is a requirement to the channel characteristics of the specific
user and to the users inside its group, which needs to be fulfilled. The attached NOMA paper
details the SIC requirement and is not given here.

93

time, handling their stochastic behavior and adjusting the groups accordingly. The
OMA concept is based on queries presented to the automaton over time. Based on
learning through a reinforcement Reward and Penalty principle, the objects to be
grouped, i.e., the users in the NOMA scenario, traverse the states of the automaton,
and the current action that they reside in determines their group. Consequently,
the NOMA grouping problem needs to be configured in such a way that the OMA
algorithms are able to solve it, which will be addressed in more detail below4.

Figure 6.3: A single-carrier down-link system with two users and one BS.

The second contribution to the field of NOMA in our research, is related to the
power allocation issue in such systems. More specifically, we proposed two heuristic-
based approaches for power allocation once the groups have been established within
the NOMA system. In simple terms, the first approach was a greedy algorithm, and
the second one was an algorithm that considered the users more fairly based on their
channel characteristics. In the greedy algorithm, we allocate the minimum required
power to fulfill the data rate needed for the weakest users in the system, and give
the remaining power to the user with the best channel coefficient, ensuring that
the joint data rates (E) is maximized5. However, the greedy approach can result
in highly imbalanced data rates among the users, which can be unfair. Therefore,
the second approach allocates the power more equitably, according to a relation
between the users’ channel coefficients, such that the power level is adjusted more
evenly between the users in the system. The power allocation approaches constitute
solutions to allocate the power within a group after the establishment of the group,

4We have detailed the algorithms in the OMA domain in earlier parts of this dissertation.
Therefore, the algorithms will not be repeated in this chapter.

5In the paper about NOMA that is presented later in this dissertation, we used R to refer to
the data rate. However, in this thesis we have used R to refer to the number of actions. Therefore,
in this chapter, we utilize E to report the data rate.

94

and the power allocation process needs to be conducted for all the groups within
the NOMA system. The reader should note that we only considered the intra-cell
interference for our approaches and that further work should also consider the inter-
cell interference. We refer to the two approaches as the greedy algorithm and the
channel coefficient-based algorithm, respectively.

6.3 Algorithm Summary

As a part of the research contributions of this dissertation, we proposed a novel
OMA-based solution to the grouping problem in NOMA systems. In addition, we
introduced two approaches to solve the power allocation problem associated with
the users that are grouped in such systems. In this section, we explain the prin-
ciples of our OMA approach in NOMA systems, and our related power allocation
methodologies. We explain the concepts in a brief manner6. The proposed solution
is two-pronged. The first prong concerns the grouping of users, and the second prong
concerns allocating power within the obtained groups. We will present these two
concepts subsequently.

6.3.1 OMA for User Grouping

We proposed to use an OMA-based approach to solve the grouping problem in
NOMA systems. The reader should note that we can use any of the algorithms in
the OMA family for the grouping purpose. However, we described using EOMA as
an example in our NOMA papers, and we will also use the EOMA as the example
algorithm here. The EOMA can learn by itself, without prior knowledge of the sys-
tem parameters, channels, or clusters in this particular case, by interactions with the
Environment over time. In the NOMA case, our Environment is the communication
system, and the objects to be grouped are the users in the NOMA system.

When we initialize the EOMA algorithm, the users are represented as abstract
objects and distributed equally among the boundary states in the EOMA7. The
reader should note that the state depth can be adjusted according to our preferences.
A large state space per action (cluster) makes the algorithm more accurate. However,
the number of iterations before convergence increases when the state depth increases.
For K users to be grouped into N groups in the NOMA system, we need K

N
= Lc

clusters in the EOMA, where N and Lc are integers. Based on the corresponding
state of the object, we can infer the cluster of the corresponding user, and through
interactions with the Environment, these objects are moved around the state space
of the automaton upon receiving rewards or penalties. The goal of the EOMA is to
cluster users with similar ranking categories over time while handling the stochastics.

6We refer the reader to the NOMA paper presented later in this dissertation for the finer details
about the proposed solutions.

7As already explained in this dissertation, the existing EOMA could only handle groups of equal
sizes, which we considered in our proposed solution to the grouping in NOMA systems. However,
thereafter, we proposed the GCD and PSR variants, which can also be utilized for the grouping
purpose.

95

After the EOMA algorithm is initialized, the BS, or another processing unit,
conducts a channel sounding, and based on the results, it ranks all the users from 1 to
K. After that, we generate queries, and if the two users that are randomly uniformly
combined to a query are within the same ranking category, they are rewarded if they
are currently clustered in the EOMA, and they are penalized if they are not. The
ranking categories are defined such that we have Lc ranking categories, and the
worst channel qualities are given for the ranks in the ranking list from 1 to N , and
the next ranking category is for the ranks in the ranking list from 1+N to 2N , and
so on. The user with the smallest h value has the system’s worst channel conditions
and the first position in the ranking list. The channel sounding, ranking, and query
generation is continued until the EOMA has converged, or we can use the current
clustering in an online manner. The ranking can be based on instantaneous values
or averages over time, i.e., ∆t. Our work mainly focused on the averaged values of
h for the ranking procedure. However, the basis for the grouping can be adjusted
to be based on other parameters that characterize the uses as well.

The EOMA adaptively determines the users that are similar and clusters them.
After the users have been clustered, we need to invoke the last part of the proposed
process, where we obtain the final groups that constitute the basis for the power
allocation. In this latter phase, the users are grouped based on their ranking within
the respective groups. The users with the same place in the ranking list from each
cluster are put in the same group. More specifically, we have Lc clusters, with N

users in each cluster. These users are ranked from 1 to N inside each cluster, and
we put the users with the same ranking into the final groups. The overall grouping
process is visualized in Figure 6.4. Hence, queries are sent to the EOMA based on
the users’ channel characteristics and ranking, and the EOMA’s obtained clusters
are utilized by the latter grouping phase, where the final groups are determined.
The grouping process could be carried out in the BS or another processing unit.

Figure 6.4: A visualization of the OMA-based NOMA operation.

6.3.2 Heuristics for Power Allocation

When the users are grouped, the power must be properly allocated to the differ-
ent users. The reader should note that in mobile radio communication systems,
authorities usually define thresholds to the maximum power levels allowed in the
system. Let us assume that the maximum power level for a group is given by Ei for

96

group i in the NOMA system. In our first power allocation approach, we wanted to
maximize E while fulfilling a QoS requirement for all of the users. Thus, all users
should be allocated more than zero power, and the sum of the given power to all
users should be equal to, or below, a maximum power threshold. Consequently, we
want to determine the power of all the different users within each group to maximize
the total data rate of all groups in the NOMA system.

In the greedy algorithm, we can solve the problem outlined in the paragraph
above by providing the excess power to the user with the highest channel-coefficient,
and we distribute just enough power to the users with a smaller h to meet the min-
imum needed data rate. We allocate the majority of power to the users with higher
channel coefficients, resulting in the highest obtainable sum rate for the system.
With the greedy algorithm, the users with good channel quality are benefited more
than the users with poorer channel quality while fulfilling the QoS requirement.

As mentioned earlier, the greedy algorithm has the drawback that the data rates
between the users can become highly unbalanced. More specifically, a strong user
can obtain most of the power, resulting in a high data rate, while a weaker user
only experiences the QoS-required data rate. To mitigate this issue, we proposed
the channel coefficient-based algorithm. The channel coefficient-based algorithm is
based on a relation between the users’ |h|2 values. Consequently, when users are
part of an obtained group, their power levels are determined proportionally to their
channel qualities in relation to one another. We considered the Signal Interference
Noise Ratio (SINR), intra-group interference, and the data rate in this approach for
optimizing the sum of the data rates in the NOMA system.

The concept of the channel coefficient-based algorithm is that we first allocate
power to the weakest user8. By setting the weakest user’s data rate to the required
QoS data rate, we can calculate the power needed for that user. After that, we need
to find the power of the users between the weakest and strongest users. We find
these power levels by using the SINR of the previous user multiplied by the relation
between the h value for the previous user and the user we are calculating the power
level for. Once we have the power levels for the users between the weakest and the
strongest user, we can allocate the remaining power to the strongest user. In this
way, the power is allocated in a more balanced manner between the users based on
their channel quality realized through SINR and h.

6.4 Overview of the NOMA-based Results

This section summarizes some of the results obtained for our proposed approaches
to user grouping and power allocation in NOMA systems. In our experiments, we
utilized MatLab to simulate the behavior of h for the different users. We utilized
a Rayleigh distribution as the basis for the values of h, with a carrier frequency

8Whether a user is a strong or weak user is determined by its h value. Thus, the higher the
value of h, the better the channel quality. The characteristic of being weak or strong is seen in
relation to the others’ h values.

97

of 5.7 GHz. As mentioned, we implemented mobility into our simulations corre-
sponding to the movement inside an office building. Specifically, we used a mobility
factor of 2 km

h
for the users’ receivers. Moreover, we sampled the values of h for the

different users according to 1
2fd

, where fd is the Doppler frequency, and fd = fc(
vU
vL
),

where fc is the carrier frequency, vU is users’ mobility factor, and vL is the speed
of light. With the aforementioned configurations, we could simulate Environments
with different numbers of users and channels.

To demonstrate the performance of the EOMA for grouping the users, we based
our accuracy on whether the LA obtained the clusters that corresponded to the
minimal difference between the users in the cluster. We evaluated the intra-group
similarity based on the users’ configured mean values of h in our simulations. The
EOMA algorithm was provided with pairwise inputs of users and it discovered the
correct grouping in 100% of the experiments for experiments with −30dB differ-
ence between the average values of h(t) for groups of size 4, 6, 8, 10, 12, 14, 16, 18

and 20, with two users in each group9. In the EOMA, we used eight states, and
for the simulations, we averaged the performance over 100 experiments per group
size configuration. For the user grouping with our EOMA-based solution, we also
demonstrated that the algorithm could follow the change in the channel character-
istics adaptively. To cite one example, where two users distinctly changed channel
characteristics after around 40 samples, we visualized that the EOMA detected the
change, and made the users change group approximately 20 samples after the change
was detected.

To demonstrate the performance of the power allocation methods, we compared
them to the sum data rate obtained by an exhaustive grid search. We implemented
the exhaustive grid search with a step size of 0.001 (γ = 0.001), and we carried out
the exhaustive search for the same groups and values obtained of h for the greedy
and the channel coefficient-based solutions. We tested the methods for instantaneous
values of h and time averages of five samples. We compared the exhaustive search,
greedy, and channel coefficient-based algorithms. Our results demonstrated that
the greedy and exhaustive search algorithms obtained the same overall data rate
and that the channel coefficient-based solution obtained a lower sum rate. However,
the channel coefficient-based solution ensured increased fairness in the system, with
a more balanced power distribution among the users. Hence, there is a trade-off
between the system’s sum rate and the users’ fairness. In comparison, the exhaustive
search required testing

(
Ei

γ

)Lc combinations, where Lc is the number of users inside a
group, the greedy and channel coefficient-based solution required 2Lc computations.
Hence, our proposed solutions required less computation.

Because the channel characteristics and stochastics of the users can be adaptively
tracked over time, it is clear that the OMA approach for the grouping and the two
heuristics for the power allocation, represent practical solutions to the grouping
and power allocation problems in NOMA systems. This is especially true from the
perspective of the results that have been summarized above, which make it clear
that the proposed approaches represent effective state-of-the-art solutions.

9The details of these experiments can be seen in more detail in the NOMA paper attached to
this dissertation.

98

6.5 Chapter Summary

In this chapter, we have highlighted the importance of improving the efficiency
and applicability of solutions in the mobile radio communication domain. We have
briefly explained the concept of NOMA. Furthermore, we explained our proposed
approach for solving the grouping and power allocation problems in NOMA sys-
tems. More specifically, we proposed the EOMA variant in the OMA paradigm to
group and monitor the users over time in NOMA systems. Our simulation results,
which we briefly highlighted above, demonstrated a 100% accuracy for finding the
clusters with similar h(t) over time, also in changing environments. Thus, our ap-
proach to the grouping problem considers the stochastic nature of the users’ channel
coefficients as the system evolves. For power allocation in NOMA systems, we pro-
posed two solutions for maximizing the sum rate with a user QoS constraint. The
reader should note that the grouping and power allocation can be used indepen-
dently (or combined) in a NOMA system, making our proposed approach adaptive
and configurable to different scenarios. In conclusion, this chapter encapsulates our
contributions to the practical application of NOMA systems.

99

Chapter 7

Conclusion

In the Ph. D. work summarized in this dissertation, we have explored the intrigu-
ing field of LA, and its applications in various domains. One of the major benefits
of LA is that these machines are powerful tools in stochastic and dynamic Envi-
ronments. LA, which possess well-established mathematically-proven properties,
can solve complex problems through learning. Throughout this study, we have
delved into the finer details of some of the algorithms within this domain. We have
made significant contributions to the field, where we enhanced both the applicability
and performance of different state-of-the-art algorithms within the field of LA, and
explored practical implementations of LA algorithms for solving problems in the
domain of mobile radio communication.

The first essential contribution of our research concerned the development of
novel approaches to the family of OMA algorithms. The LA-based OMA algo-
rithms can be used to solve partitioning problems. However, the existing OMA
algorithms could only solve problems with equally sized groups. Consequently, we
proposed two new variants, namely the GCD and PSR OMA variants. By exploiting
the adaptive and exploratory behavior of LA, the GCD and PSR variants make it
possible for OMA algorithms to solve NEPPs, i.e., grouping problems where the
group sizes can be both equal and un-equal. Our experimental results demonstrated
that these algorithms can solve NEPPs effectively and accurately, where the PSR
variant is superior to the GCD variant in terms of average number of iterations
required before convergence for high noise levels. In addition, we summarized the
entire field of OMA, its potential benefit to society, and outlined the further work
for future researchers in the field.

All of these results have yielded, referenced publications, that are included in
the thesis.

Our next key research contribution concerned hierarchical LA, where we pro-
posed the HDPA and the ADE approach, with mathematical proofs formalizing
their behavior. Our experimental results clearly demonstrated the superior per-
formance of the HDPA for high accuracy requirements when compared with the
previous state-of-the-art algorithm, namely the HCPA. The ADE approach that has
also been proposed and implemented, concerns the ordering of the actions at the leaf
level in hierarchical LA, and can improve the efficiency of these algorithms by reduc-

101

ing the number of iterations required before convergence. Our experimental results
demonstrated that, e.g., the ADE HDPA is superior when compared to the plain
HDPA variant. Consequently, these innovations to the VSSA type of LA represent,
to the best of our knowledge, the state of the art.

Furthermore, we have proposed the use of LA for solving the intricate grouping
problem in NOMA systems, where an OMA-based approach was suggested for par-
titioning and monitoring the stochastic users in NOMA systems. The OMA solution
represents an adaptive solution that can accommodate the changes in user’s behav-
iors over time. This phenomenon has been demonstrated through simulations. In
addition, we proposed two heuristics for allocating the power in NOMA systems once
a grouping has been attained. The solution to the user grouping and the solutions
to the power allocation problem are standalone, and they can be used independently
or combined in NOMA systems, making them versatile contributions to the field.

If we look into the future, numerous challenges can be further investigated in
the field of LA. For example, in the case of the OMA, the mathematical analysis
of its convergence is open, and the issue of considering queries consisting of more
than two objects, is unsolved, and these are important aspects for future research.
Furthermore, increasing the speed and investigating hierarchical structures in the
OMA paradigm are other examples of potential further work. In the case of VSSA,
with hierarchical structures, an interesting possibility to investigate is the hierarchi-
cal LA’s potential in classification problems, where multiple LA would cooperate in
a forest-like structure with majority voting principles, which would be an area that
is tightly intertwined with game theory. Furthermore, there are numerous applica-
tions where LA can represent versatile and adaptive solutions to stochastic problems.
Consequently, studying applications for LA is also a thread that can lead to many
improvements and possible new insights into several domains.

In conclusion, this Ph. D. study has demonstrated the potential of LA as a tool
and paradigm in ML, and as an adaptive computational tool. The research and work
conducted within this study has contributed to the theoretical understanding and
algorithm development of LA, and demonstrated its use in a practical application.
We believe that our findings and the dissemination of these results will inspire further
research and innovations, and hopefully, push the field even further. With continued
interest, exploration and developments, LA can undoubtedly play a vital part in
solving complex problems, and in the evolution and future of intelligent systems.

102

Bibliography

[1] Sondre Glimsdal and Ole-Christoffer Granmo. A Novel Bayesian Network Based
Scheme for Finding the Optimal Solution to Stochastic Online Equi-Partitioning
Problems. In 2014 13th International Conference on Machine Learning and
Applications, pages 594–599. IEEE, December 2014.

[2] Anis Yazidi, Xuan Zhang, Lei Jiao, and B. John Oommen. The Hierarchical
Continuous Pursuit Learning Automation: A Novel Scheme for Environments
With Large Numbers of Actions. IEEE Transactions on Neural Networks and
Learning Systems, 31(2):512–526, February 2020.

[3] Tsetlin. Automation Theory and Modeling of Biological Systems. Academic
Press, February 1974.

[4] K. S. Narendra and M. A. L. Thathachar. Learning Automata: An Introduction.
Dover Publications, Mineola, New York, illustrated edition, December 2012.

[5] B. John Oommen, Xuan Zhang, and Lei Jiao. A Comprehensive Survey of Es-
timator Learning Automata and Their Recent Convergence Results. In Petros
Nicopolitidis, Sudip Misra, Laurence T. Yang, Bernard Zeigler, and Zhaolng
Ning, editors, Advances in Computing, Informatics, Networking and Cybersecu-
rity: A Book Honoring Professor Mohammad S. Obaidat’s Significant Scientific
Contributions, Lecture Notes in Networks and Systems, pages 33–52. Springer
International Publishing, March 2022.

[6] M. A. L. Thathachar and K. R. Ramakrishnan. A Hierarchical System of
Learning Automata. IEEE Transactions on Systems, Man, and Cybernetics,
11(3):236–241, March 1981.

[7] S. Lakshmivarahan. Learning Algorithms Theory and Applications: Theory and
Applications. Springer, softcover reprint of the original 1st ed. 1981 edition,
November 1981.

[8] S. Lakshmivarahan and M. A. L. Thathachar. Absolutely Expedient Algorithms
for Stochastic Automata. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-3(3):281–286, May 1973.

[9] M. A. L. Thathachar and P. S. Sastry. Estimator Algorithms for Learning Au-
tomata. In Proc. Platinum Jubilee Conf. Syst. Signal Process., Bangalore, India,
pages 29–32, December 1986.

103

[10] B. John Oommen and J.K. Lanctot. Discretized Pursuit Learning Automata.
IEEE Transactions on Systems, Man, and Cybernetics, 20(4):931–938, July 1990.

[11] B. John Oommen and M. Agache. Continuous and Discretized Pursuit Learning
Schemes: Various Algorithms and Their Comparison. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 31(3):277–287, June 2001.

[12] M. Agache and B. John Oommen. Generalized Pursuit Learning Schemes: New
Families of Continuous and Discretized Learning Automata. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), 32(6):738–749, De-
cember 2002.

[13] Xuan Zhang, Ole-Christoffer Granmo, and B. John Oommen. The Bayesian
Pursuit Algorithm: A New Family of Estimator Learning Automata. In Kis-
han G. Mehrotra, Chilukuri K. Mohan, Jae C. Oh, Pramod K. Varshney, and
Moonis Ali, editors, Modern Approaches in Applied Intelligence, Lecture Notes
in Computer Science, pages 522–531. Springer, June 2011.

[14] Xuan Zhang, Ole-Christoffer Granmo, and B. John Oommen. Discretized
Bayesian Pursuit – A New Scheme for Reinforcement Learning. In He Jiang,
Wei Ding, Moonis Ali, and Xindong Wu, editors, Advanced Research in Ap-
plied Artificial Intelligence, Lecture Notes in Computer Science, pages 784–793.
Springer, June 2012.

[15] Xuan Zhang, Ole-Christoffer Granmo, and B. John Oommen. On Incorporating
the Paradigms of Discretization and Bayesian Estimation to Create a New Family
of Pursuit Learning Automata. Applied Intelligence, 39(4):782–792, December
2013.

[16] A. Shirvani and B. John Oommen. On Enhancing the Object Migration Au-
tomaton Using the Pursuit Paradigm. Journal of Computational Science, 24:329–
342, January 2018.

[17] A. Shirvani and B. John Oommen. On Enhancing the Deadlock-Preventing
Object Migration Automaton Using the Pursuit Paradigm. Pattern Analysis
and Applications, 23(2):509–526, May 2020.

[18] A. Shirvani and B. John Oommen. On Utilizing the Pursuit Paradigm to
Enhance the Deadlock-Preventing Object Migration Automaton. In 2017 In-
ternational Conference on New Trends in Computing Sciences (ICTCS), pages
295–302, October 2017.

[19] G.I. Papadimitriou. Hierarchical Discretized Pursuit Nonlinear Learning Au-
tomata with Rapid Convergence and High Accuracy. IEEE Transactions on
Knowledge and Data Engineering, 6(4):654–659, August 1994.

[20] M. A. L. Thathachar and P. S. Sastry. A Hierarchical System of Learning
Automata That Can Learn die Globally Optimal Path. Information Sciences,
42(2):143–166, July 1987.

104

[21] M. A. L. Thathachar and P. S. Sastry. Networks of Learning Automata: Tech-
niques for Online Stochastic Optimization. Springer, New York, September 2011.

[22] A. V. Vasilakos, N. H. Loukas, and A. F. Atlasis. The Use of Learning Al-
gorithms in ATM Networks Call Admission Control Problem: A Methodology.
In Proceedings of 20th Conference on Local Computer Networks, pages 407–412,
October 1995.

[23] A. F. Atlasis and A. V. Vasilakos. The Use of Reinforcement Learning Algo-
rithms in Traffic Control of High Speed Networks. In Hans-Jürgen Zimmermann,
Georgios Tselentis, Maarten van Someren, and Georgios Dounias, editors, Ad-
vances in Computational Intelligence and Learning: Methods and Applications,
International Series in Intelligent Technologies, pages 353–369. Springer Nether-
lands, 2002.

[24] A. V. Vasilakos, M.P. Saltouros, A.F. Atlasis, and W. Pedrycz. Optimizing
QoS Routing in Hierarchical ATM Networks Using Computational Intelligence
Techniques. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 33(3):297–312, August 2003.

[25] M. R. Meybodi and H. Beigy. New Learning Automata Based Algorithms for
Adaptation of Backpropagation Algorithm Parameters. International Journal of
Neural Systems, 12(1):45–67, February 2002.

[26] C. Unsal, P. Kachroo, and J. S. Bay. Simulation Study of Multiple Intelligent
Vehicle Control using Stochastic Learning Automata. Transactions of the Society
for Computer Simulation International: Special Issue On Simulation Methodol-
ogy in Transportation Systems, 14(4):193–210, December 1997.

[27] C. Unsal, P. Kachroo, and J. S. Bay. Multiple Stochastic Learning Automata for
Vehicle Path Control in an Automated Highway System. IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans, 29(1):120–128,
January 1999.

[28] M. Barzohar and D.B. Cooper. Automatic Finding of Main Roads in Aerial Im-
ages by Using Geometric-stochastic Models and Estimation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 18(7):707–721, July 1996.

[29] Christian Bettstetter, Hannes Hartenstein, and Xavier Pérez-Costa. Stochas-
tic Properties of the Random Waypoint Mobility Model. Wireless Networks,
10(5):555–567, September 2004.

[30] B. John Oommen and J. R. Zgierski. Breaking Substitution Cyphers Using
Stochastic Automata. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(2):185–192, February 1993.

[31] B. John Oommen and Chris Fothergill. Fast Learning Automaton-Based Image
Examination and Retrieval. The Computer Journal, 36(6):542–553, January
1993.

105

[32] B. John Oommen Anis Yazidi, Ole-Christoffer Granmo. Service Selection in
Stochastic Environments: A Learning-Automaton Based Solution. Applied In-
telligence, 36(3):617–637, April 2012.

[33] A. Jobava. Intelligent Traffic-aware Consolidation of Virtual Machines in a
Data Center. Master’s thesis, University of Oslo, Norway, May 2015.

[34] F. M. Ung. Towards Efficient and Cost-Effective Live Migrations of Virtual
Machines. Master’s thesis, University of Oslo, Norway, May 2015.

[35] Meybodi M. R. Mamaghani A. S., Mahi M. A Learning Automaton Based
Approach for Data Fragments Allocation in Distributed Database Systems. In
Computer and Information Technology (CIT), 2010 IEEE 10th International
Conference on, pages 8–12. IEEE, June 2010.

[36] E. Fayyoumi and B. John Oommen. A Fixed Structure Learning Automa-
ton Micro-aggregation Technique for Secure Statistical Databases. In Josep
Domingo-Ferrer and Luisa Franconi, editors, Privacy in Statistical Databases,
Lecture Notes in Computer Science, pages 114–128. Springer, 2006.

[37] E. Fayyoumi and B. John Oommen. Achieving Microaggregation for Secure
Statistical Databases Using Fixed-Structure Partitioning-Based Learning Au-
tomata. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cyber-
netics), 39(5):1192–1205, October 2009.

[38] A. Shirvani. Novel Solutions and Applications of the Object Partitioning Prob-
lem. PhD thesis, Carleton University, Canada, May 2018.

[39] E. Bisong. On Designing Adaptive Data Structures with Adaptive Data “Sub”-
Structures. Master’s thesis, Carleton University, Canada, October 2018.

[40] Ole-Christoffer Granmo. The Tsetlin Machine - A Game Theoretic Bandit
Driven Approach to Optimal Pattern Recognition with Propositional Logic.
arXiv, April 2018. arXiv:1804.01508 [cs].

[41] Geir Thore Berge, Ole-Christoffer Granmo, Tor Oddbjørn Tveit, Morten Good-
win, Lei Jiao, and Bernt Viggo Matheussen. Using the Tsetlin Machine to Learn
Human-Interpretable Rules for High-Accuracy Text Categorization with Medical
Applications. IEEE Access, 7:115134–115146, August 2019.

[42] Bimal Bhattarai, Lei Jiao, and Ole-Christoffer Granmo. Measuring the Nov-
elty of Natural Language Text Using the Conjunctive Clauses of a Tsetlin Ma-
chine Text Classifier. In Proceedings of the 13th International Conference on
Agents and Artificial Intelligence - Volume 2: ICAART, pages 410–417. IN-
STICC, SciTePress, 2021.

106

[43] Rupsa Saha, Ole-Christoffer Granmo, and Morten Goodwin. Mining Inter-
pretable Rules for Sentiment and Semantic Relation Analysis using Tsetlin Ma-
chines. In Max Bramer and Richard Ellis, editors, Artificial Intelligence XXXVII,
Lecture Notes in Computer Science, pages 67–78, Cham, December 2020.

[44] Rohan K. Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin.
Human-Level Interpretable Learning for Aspect-Based Sentiment Analysis. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35(16):14203–14212,
May 2021.

[45] Rohan K. Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin. In-
terpretability in Word Sense Disambiguation using Tsetlin Machine. In Proceed-
ings of the 13th International Conference on Agents and Artificial Intelligence,
pages 402–409. SCITEPRESS - Science and Technology Publications, 2021.

[46] Lei Jiao, Xuan Zhang, Ole-Christoffer Granmo, and K. Darshana Abeyrathna.
On the Convergence of Tsetlin Machines for the XOR Operator. arXiv, January
2021. arXiv:2101.02547 [cs].

[47] Xuan Zhang, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin. On the
Convergence of Tsetlin Machines for the IDENTITY- and NOT Operators. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(10):6345–6359,
October 2022.

[48] Xuan Zhang, Ole-Christoffer Granmo, B. John Oommen, and Lei Jiao. A
Formal Proof of the ϵ-Optimality of Absorbing Continuous Pursuit Algorithms
Using the Theory of Regular Functions. Applied Intelligence, 41(3):974–985,
October 2014.

[49] Xuan Zhang, B. John Oommen, Ole-Christoffer Granmo, and Lei Jiao. A
Formal Proof of the ϵ-Optimality of Discretized Pursuit Algorithms. Applied
Intelligence, 44(2):282–294, March 2016.

[50] Xuan Zhang, Lei Jiao, B. John Oommen, and Ole-Christoffer Granmo. A Con-
clusive Analysis of the Finite-Time Behavior of the Discretized Pursuit Learning
Automaton. IEEE Transactions on Neural Networks and Learning Systems,
31(1):284–294, January 2020.

[51] Brian T. Mitchell and Dionysios I. Kountanis. A Reorganization Scheme for
a Hierarchical System of Learning Automata. IEEE Transactions on Systems,
Man, and Cybernetics, SMC-14(2):328–334, March 1984.

[52] D.T.H. Ng, B. John Oommen, and E.R. Hansen. Adaptive Learning Mecha-
nisms for Ordering Actions Using Random Races. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 23(5):1450–1465, September 1993.

[53] Yuanwei Liu, Zhijin Qin, Maged Elkashlan, Zhiguo Ding, Arumugam Nal-
lanathan, and Lajos Hanzo. Nonorthogonal Multiple Access for 5G and Beyond.
Proceedings of the IEEE, 105(12):2347–2381, December 2017.

107

[54] Mohammad Ali Sedaghat and Ralf R. Müller. On User Pairing in Uplink
NOMA. IEEE Transactions on Wireless Communications, 17(5):3474–3486,
May 2018.

[55] Yue Yin, Yang Peng, Miao Liu, Jie Yang, and Guan Gui. Dynamic
User Grouping-Based NOMA Over Rayleigh Fading Channels. IEEE Access,
7:110964–110971, August 2019.

[56] Jingjing Cui, Zhiguo Ding, Pingzhi Fan, and Naofal Al-Dhahir. Unsupervised
Machine Learning-Based User Clustering in Millimeter-Wave-NOMA Systems.
IEEE Transactions on Wireless Communications, 17(11):7425–7440, November
2018.

[57] Mylene Pischella and Didier Le Ruyet. NOMA-Relevant Clustering and Re-
source Allocation for Proportional Fair Uplink Communications. IEEE Wireless
Communications Letters, 8(3):873, June 2019.

[58] Xiaohang Chen, Anass Benjebbour, Anxin Li, and Atsushi Harada. Multi-
User Proportional Fair Scheduling for Uplink Non-Orthogonal Multiple Access
(NOMA). In 2014 IEEE 79th Vehicular Technology Conference (VTC Spring),
pages 1–5, May 2014.

[59] F. Liu, P. Mähönen, and M. Petrova. Proportional Fairness-Based Power Al-
location and User Set Selection for Downlink NOMA Systems. In 2016 IEEE
International Conference on Communications (ICC), pages 1–6, May 2016.

[60] Li-Hui Tasi. The Modified Differencing Method for the Set Partitioning Prob-
lem with Cardinality Constraints. Discrete Applied Mathematics, 63(2):175–180,
November 1995.

[61] Mehmet Hacibeyoglu, Vahit Tongur, and Kemal Alaykiran. Solving the Bi-
Dimensional Two-Way Number Partitioning Problem with Heuristic Algorithms.
In 2014 IEEE 8th International Conference on Application of Information and
Communication Technologies (AICT), pages 1–5, October 2014.

[62] N. Karmarker and R. M. Karp. The Differencing Method of Set Partitioning.
Technical Report, University of California, Berkeley, USA, January 1983.

[63] Richard E. Korf. From Approximate to Optimal Solutions: A Case Study of
Number Partitioning. In Proceedings of the 14th international joint conference
on Artificial intelligence - Volume 1, IJCAI’95, pages 266–272, San Francisco,
CA, USA, August 1995.

[64] Richard E. Korf. A Complete Anytime Algorithm for Number Partitioning.
Artificial Intelligence, 106(2):181–203, December 1998.

[65] P. C. Pop and O. Matei. A Genetic Algorithm Approach for the Multidimen-
sional Two-Way Number Partitioning Problem. In Giuseppe Nicosia and Panos

108

Pardalos, editors, Learning and Intelligent Optimization, Lecture Notes in Com-
puter Science, pages 81–86, Berlin, Heidelberg, November 2013.

[66] Jozef Kratica, Jelena Kojić, and Aleksandar Savić. Two Metaheuristic Ap-
proaches for Solving Multidimensional Two-Way Number Partitioning Problem.
Computers & Operations Research, 46:59–68, June 2014.

[67] B. John Oommen and D. C. Y. Ma. Deterministic Learning Automata Solutions
to the Equipartitioning Problem. IEEE Transactions on Computers, 37(1):2–13,
January 1988.

[68] Sondre Glimsdal and Ole-Christoffer Granmo. A Bayesian Network Based Solu-
tion Scheme for the Constrained Stochastic On-line Equi-Partitioning Problem.
Applied Intelligence, 48(10):3735–3747, October 2018.

[69] M. Hammer and Bahram Niamir. A Heuristic Approach to Attribute Parti-
tioning. In Proceedings of the 1979 ACM SIGMOD international conference on
Management of data, SIGMOD ’79, pages 93–101, New York, USA, May 1979.

[70] C. T. Yu, C. Suen, K Lam, and M. K. Siu. Adaptive Record Clustering. ACM
Transactions on Database Systems (TODS), 10(2):180–204, June 1985.

[71] D. Ciu and Y. Ma. Object Partitioning by Using Learning Automata. Master’s
thesis, Carleton University, Canada, April 1986.

[72] B. John Oommen and D.C.Y. Ma. Stochastic Automata Solutions to the Object
Partitioning Problem. Technical Report TR-103, Carleton University, Canada,
November 1986.

[73] W. Gale, S. Das, and C. T. Yu. Improvements to an Algorithm for Equiparti-
tioning. IEEE Transactions on Computers, 39(5):706–710, May 1990.

[74] A. Shirvani and B. John Oommen. On Invoking Transitivity to Enhance the
Pursuit-Oriented Object Migration Automata. IEEE Access, 6:21668–21681,
April 2018.

[75] Rebekka Olsson Omslandseter. Learning Automata-Based Object Partitioning
with Pre-Specified Cardinalities. Master’s thesis, University of Agder, Norway,
May 2020.

[76] B. John Oommen. Absorbing and Ergodic Discretized Two-Action Learning
Automata. IEEE Transactions on Systems, Man, and Cybernetics, 16(2):282–
293, March 1986.

[77] B. John Oommen and J.P.R. Christensen. Epsilon-Optimal Discretized Linear
Reward-Penalty Learning Automata. IEEE Transactions on Systems, Man, and
Cybernetics, 18(3):451–458, May 1988.

109

[78] J.K. Lanctot and B. John Oommen. Discretized Estimator Learning Automata.
IEEE Transactions on Systems, Man, and Cybernetics, 22(6):1473–1483, Novem-
ber 1992.

[79] Xuan Zhang, B. John Oommen, and Ole-Christoffer Granmo. The Design of
Absorbing Bayesian Pursuit Algorithms and the Formal Analyses of Their ϵ-
Optimality. Pattern Analysis and Applications, 20(3):797–808, August 2017.

[80] Loïc Lannelongue, Jason Grealey, and Michael Inouye. Green Algo-
rithms: Quantifying the Carbon Footprint of Computation. Advanced Science,
8(12):2100707, June 2021.

[81] Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and
Joelle Pineau. Towards the Systematic Reporting of the Energy and Carbon
Footprints of Machine Learning. The Journal of Machine Learning Research,
21(1):248:10039–248:10081, June 2022.

[82] Daniel D. Garcia-Swartz and Martin Campbell-Kelly. Cellular: An Economic
and Business History of the International Mobile-Phone Industry. The MIT
Press, Cambridge, 2022.

[83] Xingqin Lin and Namyoon Lee. 5G and Beyond: Fundamentals and Standards.
Springer, Cham, Switzerland, March 2021.

[84] Li-Hsiang Shen, Kai-Ten Feng, and Lajos Hanzo. Five Facets of 6G: Research
Challenges and Opportunities. ACM Computing Surveys, 55(11):1–39, November
2023.

[85] Ericsson. Ericsson Mobility Report November 2022. Technical report, Ericsson,
November 2022.

[86] Jinyong Cheon and Ho-Shin Cho. Power Allocation Scheme for Non-Orthogonal
Multiple Access in Underwater Acoustic Communications. Sensors, 17(11):2465,
November 2017.

[87] Zhiqiang Wei, Jinhong Yuan, Derrick Wing Kwan Ng, Maged Elkashlan, and
Zhiguo Ding. A Survey of Downlink Non-orthogonal Multiple Access for 5G
Wireless Communication Networks. arXiv, September 2016. arXiv:1609.01856
[cs, math].

[88] Stelios Timotheou and Ioannis Krikidis. Fairness for Non-Orthogonal Multi-
ple Access in 5G Systems. IEEE Signal Processing Letters, 22(10):1647–1651,
October 2015.

[89] Zhiguo Ding, Zheng Yang, Pingzhi Fan, and H. Vincent Poor. On the Per-
formance of Non-Orthogonal Multiple Access in 5G Systems with Randomly
Deployed Users. IEEE Signal Processing Letters, 21(12):1501–1505, December
2014.

110

[90] Ningbo Zhang, Jing Wang, Guixia Kang, and Yang Liu. Uplink Nonorthogonal
Multiple Access in 5G Systems. IEEE Communications Letters, 20(3):458–461,
March 2016.

[91] Yuanwei Liu, Zhijin Qin, Maged Elkashlan, Arumugam Nallanathan, and
Julie A. McCann. Non-Orthogonal Multiple Access in Large-Scale Heterogeneous
Networks. IEEE Journal on Selected Areas in Communications, 35(12):2667–
2680, December 2017.

[92] Zhiguo Ding, Pingzhi Fan, and H. Vincent Poor. Random Beamforming in
Millimeter-Wave NOMA Networks. IEEE Access, 5:7667–7681, February 2017.

[93] Jingjing Cui, Yuanwei Liu, Zhiguo Ding, Pingzhi Fan, and Arumugam Nal-
lanathan. Optimal User Scheduling and Power Allocation for Millimeter Wave
NOMA Systems. IEEE Transactions on Wireless Communications, 17(3):1502–
1517, March 2018.

[94] Zhenyu Xiao, Lipeng Zhu, Jinho Choi, Pengfei Xia, and Xiang-Gen Xia.
Joint Power Allocation and Beamforming for Non-Orthogonal Multiple Access
(NOMA) in 5G Millimeter Wave Communications. IEEE Transactions on Wire-
less Communications, 17(5):2961–2974, May 2018.

[95] Fei Liu, Petri Mähönen, and Marina Petrova. Proportional Fairness-Based User
Pairing and Power Allocation for Non-Orthogonal Multiple Access. In 2015 IEEE
26th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), pages 1127–1131, August 2015.

111

Part II

Appended Paper Contributions

113

Appendix A

The GCD and PSR OMA Papers

A.1 A Learning-Automata Based Solution for Non-
equal Partitioning: Partitions with Common
GCD Sizes

This paper has been published as:

R. O. Omslandseter, L. Jiao, and J. B. Oommen, “A Learning-Automata Based So-
lution for Non-equal Partitioning: Partitions with Common GCD Sizes,” Advances
and Trends in Artificial Intelligence, From Theory to Practice, IEA/AIE 2021, vol
12799, pp. 227–239, Springer International Publishing, July 2021.
DOI: https://doi.org/10.1007/978-3-030-79463-7_19

115

https://doi.org/10.1007/978-3-030-79463-7_19

A Learning-Automata Based Solution for Non-Equal
Partitioning: Partitions with Common GCD Sizes

Rebekka Olsson Omslandseter1, Lei Jiao1, and B. John Oommen1,2

1 University of Agder, Grimstad, Norway {rebekka.o.omslandseter,lei.jiao}@uia.no
2 Carleton University, Ottawa, Canada oommen@scs.carleton.ca

Abstract. The Object Migration Automata (OMA) has been used as a powerful
tool to resolve real-life partitioning problems in random Environments. The virgin
OMA has also been enhanced by incorporating the latest strategies in Learning
Automata (LA), namely the Pursuit and Transitivity phenomena. However, the
single major handicap that it possesses is the fact that the number of objects in
each partition must be equal. Obviously, one does not always encounter problems
with equally-sized groups3. This paper is the pioneering attempt to relax this con-
straint. It proposes a novel solution that tackles partitioning problems where the
partition sizes can be both equal and/or unequal, but when the cardinalities of the
true partitions have a Greatest Common Divisor (GCD). However, on attempt-
ing to resolve this less-constrained version, we encounter a few problems that
deal with implementing the inter-partition migration of the objects. To mitigate
these, we invoke a strategy that has been earlier used in the theory of automata,
namely that of mapping the machine’s state space onto a larger space. This pa-
per details how this strategy can be incorporated, and how such problems can be
solved. In essence, it presents the design, implementation, and testing of a novel
OMA-based method that can be implemented with the OMA itself, and also in all
of its existing variants, including those incorporating the Pursuit and Transitivity
phenomena. Numerical results demonstrate that the new approach can efficiently
solve partitioning problems with partitions that have a common GCD.

Keywords: Learning Automata · Object Migration Automata · Object Partition-
ing with GCD

1 Introduction

Object Partitioning Problems (OPPs): OPPs, where the true data elements are repre-
sented as “abstract” objects, concern dividing a set of elements into subsets based on a
certain underlying criterion. OPPs are NP-hard and have been studied since the 1970s.
Within OPPs, the sub-field of Equi-Partitioning Problems (EPPs) [3], where all the par-
titions are of equal sizes, have been solved efficiently using Learning Automata (LA).
To solve EPPs, LA-based Object Migration Automata (OMA) algorithms, based on the
semi-supervised Reinforcement Learning (RL) paradigm, have demonstrated a superior
efficiency, when compared with former algorithms [8–11].

3 When the true underlying problem has non-equally-sized groups, the OMA reports the best
equally-sized solution as the recommended partition.

116

2 R. Omslandseter et al.

Observe that the nature of the “true” underlying partitioning problem is always un-
known. However, the system presents a sequence of queries that are a realization of
objects belonging together. The OMA uses this information to infer and converge to the
near-optimal groupings. Essentially, OMA-based solutions are clustering algorithms,
except that they do not require an imposed distance-based relation between the objects.

Existing OMA Algorithms: There are different types of OMA algorithms, namely
the original OMA, the Enhanced OMA (EOMA), the Pursuit EOMA (PEOMA), and
the Transitivity PEOMA (TPEOMA)4. Of these algorithms, the OMA is the original
pioneering solution [3, 4]. Later, an enhancement to the OMA, termed the EOMA, was
proposed in [2], and this prevent the so-called Deadlock Situation. The authors of [11]
and [8] proposed the improved PEOMA, which incorporated the Pursuit concept (al-
ready established in the LA literature) into the EOMA, reducing the levels of noise
presented to the learning mechanism. Thereafter, the TPEOMA was introduced in [10],
where the transitivity phenomenon was further augmented into the PEOMA algorithm,
ensuring even better results in certain Environments and reducing the required number
of queries before convergence [7]. Numerous applications of OMA-based algorithm
have been in reported in different fields, including that of increasing the trustworthiness
of reputation systems [12], and user grouping in mobile radio communications [6]. A
detailed survey of OMA-based solutions for various applications is included in [7].

Limitations of Existing OMA Solutions: The developments in the field of OMA
have considerably improved their respective performances. However, one salient issue
remains unresolved, namely the restriction that the algorithms can only handle partition-
ing problems where the partitions are equally-sized. There are currently no solutions
reported in the literature to address this prominent issue.

Relaxing the Limitations of OMA Solutions: We now state the main goal of this
research. In this paper, we relax the equi-partitioning constraint needed for the existing
OMA algorithms, by introducing the Greatest Common Divisor OMA (GCD-OMA)
algorithm. The fascinating aspect of this novel concept is that it can be implemented in
all of the current OMA variants. Our proposed solution can solve both Non-Equal Par-
titioning Problems (NEEPs) and EPPs, whenever the partition sizes possess a non-unity
GCD between them. For example, the unknown state of nature may be a partitioning
problem that has three objects in one group, six in the second and twelve in the third.
However, it will not be able to handle partitions that have three objects in one group and
thirteen in the second, since the partition sizes do not have a non-unity GCD.

The Paper’s Contributions: The contributions of this paper are as follows:
1. We present the novel GCD-OMA algorithm, whose fundamental paradigm can be

incorporated in all the reported versions of OMA algorithms.
2. We formalize a new evaluation criterion for assessing the performance of OMA

algorithms. This criterion can also be used for evaluating the accuracies of other
algorithms that can solve similar partitioning problems.

3. By resorting to a rigorous experimental regime, we demonstrate the efficiency of
the algorithms.

4 It is clearly, impossible to survey all these families in this short paper. Apart from those men-
tioned below, the Pursuit OMA (POMA) is another version of the OMA. The concepts moti-
vating the POMA are similar to its PEOMA variant, and its details can be found in [9].

117

2. PROBLEM FORMULATION 3

The structure of the paper is organized as follows. In Section 2, we formulate the
nature of the set of partitioning problems studied in this paper, and analyze their com-
plexities. Then, in Section 3, we present the GCD-OMA algorithm in detail, including
its Reward and Penalty modules. The performance of the proposed algorithm is pre-
sented in Section 4, after which we conclude the paper in Section 5.

2 Problem Formulation

The partitioning problem is formalized as follows: We are dealing with an Environment
containing O objects, where the set of objects is denoted by O = {o1,o2, ...,oO}. Our
goal is to partition these objects into K disjoint partitions, and the given set of partitions
is indicated by K , where K = {ρ1,ρ2...,ρK}. For example, partition ρ1 might consist of
o1, o2 and o3, denoted as ρ1 = {o1,o2,o3}. The problem, however, is that the identities
of the objects that should be grouped together are unknown, but are based on a specific
but hidden criterion, known only to an “Oracle”, referred to as the “State of Nature”.
The Oracle noisily presents the objects that should be together in pairs, where the degree
of noise specifies the difficulty of the problem.

We assume that there is an true partitioning of the objects, ∆∗, and the solution
algorithm determines a partitioning, say ∆+. The solution is optimal if ∆+ = ∆∗. The
initialization of the objects before partitioning starts is indicated by ∆0.

2.1 Complexity

The complexity of the problems that can be solved using the existing OMA algorithms
and the GCD-OMA algorithms is related to their respective combinatorics. We empha-
size that, in reality, we cannot perform an exhaustive search to determine the optimal
partitioning. This is because, in traditional OMA problems, we are only presented with
queries encountered as time proceeds. Unfortunately, we do not have a performance
parameter that directly indicates the fitness of a particular partitioning.

When we consider the objects and their group affiliations, the minimum number of
possible partitions of the set of objects is given by an unordered Bell number5. Note that
we consider the Bell number to be unordered because we do not care about the order
of the objects. Rather, we are only concerned about whether the objects are grouped
or not. In our problems, we want to partition O objects into K non-empty sets, where
we note that each object can only be assigned to a single group. Thus, we have BO
partitioning options, where BO is the O-th Bell number, and the O-th Bell number is
given by BO = ∑O

k=1
{O

k

}
. Here

{O
k

}
is the Stirling numbers of the second kind [1], and

k ∈ {1, ...,O}. For the O-th Bell number, it follows that
(O

e lnO

)O
< BO <

(
O

e1−λ lnO

)O
,

which has exponential behavior for O and λ> 0. However, in our case, the partitioning
is pre-defined, independent of whether we have an EPP or an NEPP. Consequently, what
we need to consider is the different combinations of objects in the various partitions.

5 This is a count of the different partitions that can be established from a set with O elements.

118

4 R. Omslandseter et al.

In general, the number of possible combinations for partitioning problems, where
the cardinalities are defined, is given by:

W =
O!

(u!)xx!(v!)yy!...(w!)zz!
, (1)

where we have x groups of size u, y groups of size v, and so on for all groups and sizes.
Note that, in this case, ux+vy+ ...+wz = O. When all the groups are of equal size, we
have the combination number W as:

W =
O!

(O
K !
)K

K!
, (2)

where O
K is an integer, and consequently, such partitioning problems are also character-

ized by a combinatorial issue. However, this number is significantly smaller than the
one given by the Bell numbers.

In addition to the combinatorial complexity of the problem, the interactions between
the Environment and the algorithm is also contaminated by noise. In other words, the
queries may include misleading messages. Due to the system’s stochastic nature, the
problem is more complicated than just finding an instantaneous optimal partitioning,
because the optimal partitioning is defined stochastically.

2.2 Evaluation Criteria

We measure the efficiency of OMA algorithms by counting the required queries pre-
sented to the LA before convergence. The larger the number of queries needed, the less
efficient is the algorithm. The number of queries presented to the LA is, in principle,
equal to the number of responses from the Environment before convergence, which is a
standard performance criterion in LA. But sometimes, these two indices differ.

For the OMA, the EOMA, and their proposed GCD variants, a generated query al-
ways results in a response from the Environment. Therefore, for the OMA and EOMA
types, measuring the number of queries is equivalent to measuring the feedbacks from
the Environment, as in the case of standard LA. We will denote the number of queries
received before the LA has reached convergence by the parameter, Ψ. In the PEOMA, a
query is only considered by the LA if the estimated joint probability of the accessed ob-
jects is greater than a threshold, τ. Thus, we filter out some queries before we send them
to the LA, and so, a query will not always result in a response from the Environment.
Thus, the number of queries, Ψ, indicates the number of queries that are let through
the filtering process before the LA reaches convergence. For the number of queries re-
quired from the Query Generator before the automaton has converged, we will utilize
the parameter, ΨQ. Note that for the OMA and the EOMA variants, Ψ = ΨQ.

The TPEOMA, similar to the PEOMA, also filters out queries before they are given
to the LA. However, in the TPEOMA, artificially-generated queries are also presented
to the automaton due to the transitivity phenomenon. Therefore, in the TPEOMA, Ψ,
includes both the queries that “survive” the pursuit filtering, and the artificially gener-
ated queries. Again, ΨQ indicates the number of queries made by the Query Generator.
Besides, we introduce the parameter ΨT for counting the artificially-generated queries.

119

3. THE PROPOSED GCD-OMA SCHEME 5

When the OMA algorithms and their pre-specified versions have reached conver-
gence, we can analyze the partitioning that they have discovered. To be able to explain
the discovered partitioning in a similar manner for different configurations, we need a
parameter for indicating the similarity of the converged partitions, when compared with
∆∗. To achieve this, we introduce the parameter γ, which is referred to as the accuracy
of the converged partitioning, defined as:

γ =
∑∀i,∀ j,i̸= j Γoi,o j

∑K
k=1

ηk!
2!(ηk−2)!

, (3)

where i, j ∈ {1,2, ...,O}, i ̸= j and k ∈ {1,2, ...,K}. Note that ∑∀i,∀ j,i ̸= j Γoi,o j indi-
cates the number of queries that are correctly grouped, and that ∑K

k=1
ηk!

2!(ηk−2)! indi-
cates the total number of potentially correct queries. Note that the ηk parameter, where
k ∈ {1, ...,K}, is the number of objects in each partition. To determine γ, we need to
check all possible query pairs, observe if the objects in a query are grouped both in ∆+

and ∆∗, and divide this by the total of possible correct queries. More specifically, we
define:

Γoi,o j = Γo j ,oi =

{
1, if oi and o j is grouped in ∆∗ and ∆+,

0, otherwise.
(4)

Clearly, when ∆+ = ∆∗, we have 100% accuracy, which implies an optimal solution.

3 The Proposed GCD-OMA Scheme
3.1 The Novel Paradigm: State Expansion

The technique that we use to solve GCD-related OPPs is by invoking a fine, but estab-
lished methodology that has been used in the theory of Finite State Machines (FSMs).
In order to cite its importance, we mention two domains where it has been applied.

Firstly, when designing FSM Acceptors for Regular Languages, one first creates a
Non-Deterministic FSM (NDFSM) by using elementary machines, and by including the
operations of Concatenation, Union and Kleene-Star. In this way, one is able to obtain
the NDFSM for the entire language. Subsequently to obtain the find the Deterministic
FSM, one transforms the NDFSM into a deterministic one by increasing the number of
states to be the power set of the original machine. In this way one can obtain a Deter-
ministic machine with 2N states, but that is totally equivalent to the N-state NDFSM.

An analogous technique is also used to create LA with deterministic Output Matri-
ces, where the Output Matrix of the original LA is stochastic. Again, one transforms
this into an equivalent LA, except that the states of the new machine increases. Every
state in the new machine is specified by a pair which contains information about the
state of the old machine and the output generated by the old machine. In this way, the
output matrix of the new machine is rendered deterministic. The reader should observe
that by expanding the number of states, the complexity of the machine does not change,
although the capability of the machine changes.

This is exactly what we shall do in our particular case. We shall design new ma-
chines associated with a given GCD, and coalesce them to design the overall machine.

120

6 R. Omslandseter et al.

3.2 Designing the GCD-OMA

In traditional OMA, we handle pairs of objects and try to bring them together. Thus,
when the query objects are in the same partition, they are rewarded. They are penalized
when they are in different partitions. By intelligently replacing the object that changes
its partition, we ensure that the number of objects in each partition always remains the
same. In the proposed GCD scheme, all the partition sizes have a common GCD. In this
way, we can link some of the “sub-partitions” together, and consider them as being asso-
ciated with the same partition in terms of their behaviors when it concerns rewards and
penalties. We refer to the proposed algorithm as the GCD-OMA. However, because it
can be utilized together with any member of the OMA family, the nomenclature would
be GCD-OMA, GCD-EOMA, GCD-POMA, GCD-PEOMA, and GCD-TPEOMA de-
pending on the OMA type, where the latter suffix is the type of OMA involved.

To extend the OMA functionality to handle NEPPs with non-unity GCDs, we need
to change two fundamental concepts in the OMA algorithms. Firstly, we need to change
the initialization of objects to align with the GCD. Secondly, we need to link the re-
quired sub-partitions in the OMA together to fulfill the size requirement of the overall
partitions. Observe that these links need to be a part of the Reward and Penalty function-
alities. Additionally, the links also need to be implemented in checking which objects
that are together in the final solution reported by the LA. Due to these changes, the new
functionality affects many parts of the original OMA structure.

To make the partition links, we need to consider the GCD of the partitions. We will
denote the GCD of the partitioning problem by Λ > 1, which can be trivially obtained.
After we have determined Λ, we need to link the partitions together in the LA, and con-
sider them as representing a single entity. When a certain partition size is not equal to Λ,
we need to conceptually consider two or more partitions together as being a single over-
all partition. The number of partitions that need to be considered together for a given
partition k is indicated by xk given by xk =

ηk
Λ , where xk = 1 for a partition size equal

to Λ, indicating that this partition is single and is not part of any link. For indicating the
links between partitions inside the LA, we can utilize the state space, and consider the
set of states given in ranges for the overall partition k as follows:

ιk = {max(ιk−1)+1, ...,max(ιk−1)+ xkS}, ∀k, (5)

where the state range {a, ..,b} indicates that the objects with states within a and b are
inside partition k. Note that partition 1 (ρ1 = 1), in reality, has no previous partition.
Thus, for ρ1, ι0 = 0 and max(ι0) = 0, which leads to ιk = {1, ...,x1S}. The max function
indicates that we use the highest value in the range of states from the previous partition
to make the range of states of the next partition.

To clarify this, we consider an example where we have ι1 = {1, ...,4}. Consequently,
it follows that max(ι1) = 4. One should also note that we have one state range for
each of the K partitions in our problem. The Reward and Penalty responses from the
Environment is thus based on whether the objects in the query are currently in the same
state range or not. Note that in the LA, we have R = ∑K

k=1 xk partitions, and that S is the
number of states per partition R.

121

3. THE PROPOSED GCD-OMA SCHEME 7

Consider an example with the partitioning sizes of η1 = 3, η2 = 9 and η3 = 12.
Additionally, we have four states (S = 4) in the sub-partitions of the LA. The states
of this example are visualized in Figure 1. As indicated by the colors in the figure,
to comply with the partition sizes, we need to consider ρ1 as a partition in itself. In
contrast, partition two to four is another overall partition, and partition five to eight
constitute the last overall partition. Thus, if one object in a query is in state 17, and the
other object is in state 30, we will reward them, and not penalize them, as we would
have done in the original OMA for EPPs. Following Eq. (5), we have ι1 = {1, ...,4},
ι2 = {5, ...,16} and ι3 = {17, ...,32}, as the ranges for the states of our partitions ρ1, ρ2
and ρ3 respectively.

Fig. 1. Example of partition links in GCD with 3 partitions and 4 states as described in the text.

To change the OMA functionality, we need to change both the original OMA and
the EOMA. We emphasize that these changes also apply to the PEOMA and TPEOMA
versions, but because these algorithms utilize the EOMA as a basis, we can directly
invoke the same principles in their operations. The EOMA version of GCD is described
in Algorithm 1. Observe that the GCD-OMA is easily extended to the existing OMA
scheme, and is omitted to avoid repetition.

In the GCD schemes, the objects are still initialized in the same manner as before,
but instead of placing O

K objects in each partition, we put Λ objects in each partition
initially. For the OMA, the objects are randomly distributed into the ∑K

k=1 xkS states,
while they are distributed among the ∑K

k=1 xk boundary states in the EOMA version.
We also utilize the existing Reward and Penalty functionalities. Because we fulfill the
requirement of having equally-sized partitions, we do not need to make any changes to
the existing transitions on being rewarded and penalized. Understandingly, when two
objects are rewarded, they behave as if they were in the same partition even though they
are in different sub-partitions within the LA. This is done by invoking “EOMA Process
Reward” where the objects go deeper into their present action one step at a time, or stay
in the same state if they are in the most internal state. Similarly, the objects in a query
need to be in different state ranges to be penalized. Again, this is done by invoking
“EOMA Process Penalty” where the objects go towards the central boundary states one
step at a time, or switch actions when they reach the border.

122

8 R. Omslandseter et al.

Algorithm 1 GCD-EOMA
Input:

– The objects O = {o1, ...,oO}.
– S states per sub-partition.
– A sequence of query pairs ϒ, where each entry Q = {oi,o j}.
– Initialized θi for all objects. Initially all θi, where i ∈ {1,2, ...,O}, is given a random bound-

ary state, where we have Λ objects in each of the R = ∑K
k=1 xk partitions. Thus, in each of the

R partitions in the LA, we have Λ objects in each boundary state rS ∀r, where r∈{1,2, ...,R}.
Output:

– Convergence happens when all objects are in any of the two most internal states, and the
converged partitioning is then reported. If convergence is not achieved within |ϒ| queries,
the LA should return its current partitioning.

– The LA, thus, outputs its partitioning (K = ∆+) of the O objects into K partitions.
– θi is the state of oi and is an integer in the range {1,2, ...,RS}.
– If θi ∈ ιk, where ιk = {max(ιk−1)+1, ...,max(ιk−1)+xkS}, then oi is assigned to ρk, which

is done for all i ∈ {1,2, ...,O} and k ∈ {1,2, ...,K}.
1: while not converged or |ϒ| queries not read do
2: Read query Q = {oi,o j} from ϒ
3: if θi and θ j ∈ ιk, where k ∈ {1,2, ...,K} then // If the objects are in the same state range
4: EOMA Process Reward
5: else // If the objects are in different state ranges
6: EOMA Process Penalty
7: end if
8: end while
9: Output the final partitioning based on θi, ∀ i. // According to the state ranges

Algorithm 2 EOMA Process Reward
Input:

– The query Q = {oi,o j}.
– The states of the objects in Q ({θi,θ j}).

Output:
– The next states of oi and o j.

1: if θi mod S ̸= 1 then
2: θi = θi−1 // Move oi towards the innermost state
3: end if
4: if θ j mod S ̸= 1 then
5: θ j = θ j−1 // Move o j towards the innermost state
6: end if

4 Experimental Results
In this section6, we demonstrate the performance of GCD-OMA types for various de-
grees of noise. Section 4.1 demonstrates results for EPPs compared with other existing

6 The results presented here are a brief summary of all the results obtained for numerous settings.
The detailed set of results are found in the Masters Thesis of the First Author [5].

123

4. EXPERIMENTAL RESULTS 9

Algorithm 3 EOMA Process Penalty
Input:

– The query Q = {oi,o j}.
– The states of the objects in Q ({θi,θ j}).

Output:
– The next states of oi and o j.

1: if θi mod S ̸= 0 and θ j mod S ̸= 0 then // Neither are in boundary
2: θi = θi +1
3: θ j = θ j +1
4: else if θi mod S ̸= 0 and θ j mod S = 0 then // o j is in boundary
5: θi = θi +1
6: temp = θ j // Store the state of o j

7: ol = unaccessed object in group of staying object (oi) closest to boundary
8: θ j = θi
9: θl = temp

10: else if θi mod S = 0 and θ j mod S ̸= 0 then // oi is in boundary
11: θ j = θ j +1
12: temp = θi // Store the state of oi

13: ol = unaccessed object in group of staying object (o j) closest to boundary
14: θi = θ j
15: θl = temp
16: else // Both are in boundary states
17: temp = θi or θ j // Store the state of moving object, oi or o j
18: θi = θ j or θ j = θi // Put moving object and staying object together
19: ol = unaccessed object in group of staying object closest to boundary
20: θl = temp // Move ol to the old state of moving object
21: end if

OMA algorithms. Section 4.2 demonstrates the GCD’s performance for NEPPs, which
cannot be compared with any of the existing OMA algorithms, as they are unable to
handle problems of these kinds. Furthermore, in this context, noise is referred to as
queries of objects that are not together in ∆∗ but are presented to the LA. A system with
noisy queries might also yield a slower convergence rate than a system with fewer (or
zero) noisy queries. Consequently, we use:

Noise = 1−Πoi,o j = 1−Πo j ,oi , for oi,o j ∈ ∆∗,∀i, j,

as the probability reference for LA being presented with a noisy query in the simula-
tions. To clarify, Πoi,o j is the probability of oi and o j being accessed together and being
together in ∆∗. For all the simulations, we utilized 100,000 queries as the maximum
number of queries. If the OMA algorithm had not converged within the consideration
of |ϒ|= 105, we deemed that the algorithm had not converged.

4.1 Existing OMA and GCD-OMA for an EPP

Let us first consider the simulations for an EPP where we simulated a partitioning prob-
lem with 30 objects to be partitioned into three partitions, implying that O

K = 10. Ta-

124

10 R. Omslandseter et al.

ble 1 show simulation results for different existing OMA types, and Table 2 presents
results obtained for the GCD-OMA types. GCD-EOMA required approximately 307
and 422 queries before convergence for 0% and 10% noise, respectively. These conver-
gence rate levels are almost equal to those of the existing EOMA algorithm given in
Table 1. As the noise level increased, the number of iterations increased. As more noisy
queries are presented to the LA, more objects are “misguided” to be together, even if
the contrary represents reality. Clearly, the GCD-OMA types and the existing OMA al-
gorithms had similar performance. This behavior is expected. When GCD-OMA types
were presented with partitions of equal sizes, it would consider all partitions in the LA
separately, which, in essence, yielded a similar operation to that of the existing OMAs.

Note that Ψ indicates the number of queries considered by the LA, ΨQ the total
number of queries generated, and ΨT the queries made from the concept of transitiv-
ity in the TPEOMA. For PEOMA, we have to include the parameter κ, indicating the
number of queries before we decide to start filtering the queries based on their likeli-
ness before letting the LA process it (pursuit). Additionally, we have the parameter τ,
indicating the threshold for whether a query should be considered or not [8, 10].

Type Noise γ ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT κ τ
EOMA 0% 100% 100% 0% 305.36 305.36 - - -
EOMA 10% 100% 100% 0% 425.08 425.08 - - -

PEOMA 0% 100% 100% 0% 307.42 309.71 - 270 0.1
O

PEOMA 10% 100% 100% 0% 398.11 417.58 - 270 0.1
O

TPEOMA 0% 100% 100% 0% 369.55 275.46 96.28 270 0.2
O

TPEOMA 10% 100% 100% 0% 555.63 316.91 253.81 270 0.2
O

Table 1. Statistics of existing OMA types for a case involving 30 objects, 3 partitions and 10
states averaged over 1,000 experiments.

Type Noise γ ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT κ τ
GCD-EOMA 0% 100% 100% 0% 307.04 307.04 - - -
GCD-EOMA 10% 100% 100% 0% 421.89 421.89 - - -

GCD-PEOMA 0% 100% 100% 0% 303.84 305.90 - 270 0.1
O

GCD-PEOMA 10% 100% 100% 0% 398.39 417.96 - 270 0.1
O

GCD-TPEOMA 0% 100% 100% 0% 371.59 275.37 98.54 270 0.2
O

GCD-TPEOMA 10% 100% 100% 0% 553.50 316.94 251.72 270 0.2
O

Table 2. Statistics of GCD-OMA types for a case involving 30 objects, 3 partitions and 10 states
averaged over 1,000 experiments.

4.2 GCD-OMA variants for NEPPs

This section presents the results for the GCD-OMA types’ NEPPs with a non-unity
GCD between the respective partition sizes. As demonstrated in Section 4.1, the PEOMA
and the TPEOMA variants can enhance the convergence rate of the methods in different
ways. The PEOMA is best for systems with higher noise levels, and the TPEOMA is
preferred when we have less information (queries) from the system. However, as they
are essential parts of the OMA paradigm, repeating the same methods’ performance
with the EOMA, PEOMA, and TPEOMA might not be necessary to analyze and discuss
their performance for NEPPs. We thus present the results only for the GCD-EOMA.

125

4. EXPERIMENTAL RESULTS 11

The first problem that we considered had three partitions and 18 objects. The first
partition had room for three objects (η1 = 3), the second partition had room for six
objects (η2 = 6), and the last partition had room for nine objects (η3 = 9). The second
problem that we considered, had 20 objects, where η1 = 2, η2 = 4, η3 = 6 and η5 = 8.
For this problem, the maximum number of queries was increased to |ϒ|= 106.

Let us first consider the 18-objects case, where the results are listed in Table 3. For
0% noise and three states, we can observe that the method had issues with obtaining the
optimal solution. However, the accuracy was not at the same low level but was around
70% on average, which means that most of the objects that should have been grouped
were grouped in the LA. The reason for simulating a noise-free problem that utilized
only three states was because the method achieved convergence only for a minimum of
the experiments, with six states.

Observing the results for 10% and 20% noise for GCD-EOMA in Table 3, we see
that we were able to obtain a higher percentage of the experiments converging to the
optimal solution with respectively 98.90% and 99.90% for the different noise levels.
Additionally, the accuracy and the percentage of experiments converging to the optimal
partitioning increased as the noise level became higher. However, when the system was
noise-free or the noise level was lower, the algorithm, astonishingly, performed less
accurately, and required more queries if one considered the state depth.

Noise S Accuracy ∆+ = ∆∗ Not Conv. Ψ = ΨQ
0% 3 69.56% 14.49% 0% 3,168.04
10% 6 99.63% 98.90% 0% 7,880.37
20% 6 99.98% 99.90% 0% 24,864.40

Table 3. Statistics of GCD-EOMA for the problem with 18 objects (η1 = 3, η2 = 6, η3 = 9) with
different noise levels, averaged over 1,000 experiments.

In Table 4, we present the results for the second problem with GCD-EOMA for
higher noise levels than for the first problem. The algorithm required more queries for
the case of 5% noise compared with the case of 10% noise. Based on this observation,
surprisingly, we confirm that a higher noise level is easier to manage than a lower one.
In real-life, the noise levels are usually unknown, but they are seldom noise-free.

Noise Accuracy ∆+ = ∆∗ Not Conv. Ψ = ΨQ
5% 99.73% 98.6% 0% 85,397.82

10% 99.93% 99.6% 0% 68,945.01
15% 99.98% 99.9% 0% 111,335.16
20% 100% 100% 2.8% 248,926.46

Table 4. Statistics of GCD-EOMA for the problem with 20 objects (η1 = 2, η2 = 4, η3 = 6,
η4 = 8), with different noise levels and 6 states, averaged over 1,000 experiments.

From the results, the performance of GCD-EOMA seemed to increase for higher
noise levels. This behavior might seem counter-intuitive. However, one observes that
a high level of noise causes more movement of the objects, which is a desirable phe-
nomenon for the convergence rate, and mitigates problems of having objects “stuck”
or locked into a configuration. If we consider the case of a noise-free Environment, the
objects will only be accessed together and go deeper, with no ability to move out of a
partition that they should not be in. Thus, the noise helps objects being moved out of
“stuck” (or locked in) situations similar, to the Deadlock Situation [2].

126

12 R. Omslandseter et al.

5 Conclusions
The existing algorithms within the OMA paradigm can only solve partitioning prob-
lems with partitions of equal sizes. The constraint of having equally-sized partitions is
a limitation to the algorithms’ application to real-life issues. In this paper, we have re-
laxed the constraint of having equally-sized partitions in OMA schemes. We propose a
novel solution that tackles partitioning problems, where the partition sizes can be both
equal and/or unequal, but when the cardinalities of the true partitions have a GCD. We
achieve this by invoking a strategy that has been earlier used in the theory of automata,
namely that of mapping the machine’s state space onto a larger space. In essence, we
have presented the design, implementation, and testing of a novel OMA-based method
that can be implemented with the OMA itself, and also in all of its existing variants.
The scheme has also been rigorously tested. This paper is a novel contribution and
constitutes the first reported OMA-based solution for NEPPs.

References

1. Berend, D., Tassa, T.: Improved Bounds on Bell Numbers and on Moments of Sums of
Random Variables. Probability and Mathematical Statistics 30(2), 185–205 (2010)

2. Gale, W., Das, S., Yu, C.T.: Improvements to an Algorithm for Equipartitioning. IEEE Trans-
actions on Computers 39(5), 706–710 (May 1990). https://doi.org/10.110912.53585

3. Oommen, B. J., Ma, D.C.Y.: Deterministic Learning Automata Solutions to the Equiparti-
tioning Problem. IEEE Transactions on Computers 37(1), 2–13 (1988)

4. Oommen, B. J., Ma, D.C.Y.: Stochastic Automata Solutions to the Object Partitioning Prob-
lem. The Computer Journal 35, A105–A120 (1992)

5. Omslandseter, R. O.: Learning Automata-Based Object Partitioning with Pre-Specified Car-
dinalities. M.S. thesis, University of Agder, Norway (2020)

6. Omslandseter, R.O., Jiao, L., Liu, Y., Oommen, B. J.: User Grouping and Power Allocation
in NOMA Systems: A Reinforcement Learning-Based Solution. In: Fujita, H., Fournier-
Viger, P., Ali, M., Sasaki, J. (eds.) Trends in Artificial Intelligence Theory and Applications.
Artificial Intelligence Practices. pp. 299–311. Lecture Notes in Computer Science, Springer
International Publishing, Cham (2020). https://doi.org/10.1007978-3-030-55789-8 27

7. Shirvani, A.: Novel Solutions and Applications of the Object Partitioning Problem. Ph.D.
thesis, Carleton University, Ottawa (2018)

8. Shirvani, A., Oommen, B. J.: On Utilizing the Pursuit Paradigm to Enhance the
Deadlock-Preventing Object Migration Automaton. In: 2017 International Confer-
ence on New Trends in Computing Sciences (ICTCS). pp. 295–302 (Oct 2017).
https://doi.org/10.1109ICTCS.2017.40

9. Shirvani, A., Oommen, B. J.: On Enhancing the Object Migration Au-
tomaton Using the Pursuit Paradigm. Journal of Computational Sci-
ence 24, 329–342 (Jan 2018). https://doi.org/10.1016/j.jocs.2017.08.008,
http://www.sciencedirect.com/science/article/pii/S1877750317302259

10. Shirvani, A., Oommen, B. J.: On Invoking Transitivity to Enhance the Pursuit-
Oriented Object Migration Automata. IEEE Access 6, 21668–21681 (2018).
https://doi.org/10.1109/ACCESS.2018.2827305

11. Shirvani, A., Oommen, B. J.: On Enhancing the Deadlock-Preventing Object Migration
Automaton Using the Pursuit Paradigm. Pattern Analysis and Applications (Apr 2019).
https://doi.org/10.1007/s10044-019-00817-z

12. Yazidi, A., Granmo, O.C., Oommen, B. J.: Service Selection in Stochastic Environments: A
Learning-Automaton Based Solution. Applied Intelligence 36(3), 617–637 (2012)

127

A.2 Object Migration Automata for Non-Equal Par-
titioning Problems with Known Partition Sizes

This paper has been published as:

R. O. Omslandseter, L. Jiao, and J. B. Oommen, “Object Migration Automata
for Non-Equal Partitioning Problems with Known Partition Sizes,” Artificial Intel-
ligence Applications and Innovations, AIAI 2021, vol 627, pp. 129–142, Springer
International Publishing, June 2021.
DOI: https://doi.org/10.1007/978-3-030-79150-6_11

129

https://doi.org/10.1007/978-3-030-79150-6_11

Object Migration Automata for Non-Equal Partitioning
Problems with Known Partition Sizes

Rebekka Olsson Omslandseter1, Lei Jiao1, and B. John Oommen1,2

1 University of Agder, Grimstad, Norway
2 Carleton University, Ottawa, Canada

{rebekka.o.omslandseter,lei.jiao}@uia.no, oommen@scs.carleton.ca

Abstract. Solving partitioning problems in random environments is a classic and
challenging task, and has numerous applications. The existing Object Migration
Automaton (OMA) and its proposed enhancements, which include the Pursuit
and Transitivity phenomena, can solve problems with equi-sized partitions. Cur-
rently, these solutions also include one where the partition sizes possess a Great-
est Common Divisor (GCD). In this paper, we propose an OMA-based solution
that can solve problems with both equally and non-equally-sized groups, without
restrictions on their sizes. More specifically, our proposed approach, referred to
as the Partition Size Required OMA (PSR-OMA), can solve general partition-
ing problems, with the only additional requirement being that the unconstrained
partitions’ sizes are known a priori. The scheme is a fundamental contribution in
the field of partitioning algorithms, and the numerical results presented demon-
strate that PSR-OMA can solve both equi-partitioning and non-equi-partitioning
problems efficiently, and is the only known solution that resolves this problem.

Keywords: Learning Automata · Object Migration Automata · Object Partition-
ing with Non-Equal Sizes

1 Introduction

What is Object Partitioning: In the Object Partitioning Problem (OPP), we aim to
divide a set of “objects” into groups in an optimal manner based on some hidden or
unknown criterion. The “object” itself can be the “abstract” representation of a true,
real-life data entity. The grouping criterion is always unknown, and only known to an
Oracle, which provides information to the system that processes interactions with the
real world. A sub-problem and constrained version of the OPP is the Equi-Partitioning
Problem (EPP) [5], where all the partitioned groups have an equal size. The family of
Object Migration Automata (OMA) algorithms, which are Learning Automata (LA)-
based solutions, were first presented in [5, 6]. They could solve EPPs two orders of
magnitudes faster than the previously-reported solutions. Over the decades, enhance-
ments have emerged, and include the Enhanced OMA (EOMA) [3], the Pursuit EOMA
(PEOMA) [13], and the Transitivity PEOMA (TPEOMA) [12]. In [11], we introduced
a solution to the Non-Equal-Partitioning Problem (NEPP) where the sizes of the parti-
tions have a non-unity Greatest Common Divisor (GCD), namely the GCD-OMA.

Although partitioning problems are akin to the related field of clustering, which in-
volves Machine Learning (ML) algorithms like, e.g., K-Means, spectral clustering, and

130

2 R. Omslandseter et al.

Gaussian mixtures, it is crucial to understand the distinct aspects of OPPs, and the way
by which OMA solve them. While clustering problems, often, have a relation between
the objects that can be represented through distance metrics, which in, turn, are required
“up-front”, OMA algorithms are based on their ability to process queries (consisting,
for example, of object pairs) presented along time. Consequently, OMA algorithms do
not require complete information of the “up-front” inter-relationships between the ob-
jects themselves. Thus, OMA algorithms can follow even the stochastic nature of the
relations, over time. We emphasize that the true nature of such a partitioning problem
is always unknown. However, the presented queries consist of objects that stochasti-
cally belong together, or should be considered to be together, for some underlying and
unknown reasons. The OMA uses this information to infer the groupings.
Applications of Partitioning: One of the numerous applications (extensively given
in [9]) for the OMA is cryptanalysis. In [7] and [8], the OMA was employed to solve
a cipher using only plaintext and its corresponding ciphertext. This solution achieved a
90% cost reduction compared to its competitors. The authors of [4] proposed an OMA-
based scheme to create an image database using conceptually similar images. Recently,
the authors of [10] proposed an OMA-based algorithm for mobile radio communica-
tions, by partitioning users in a Non-Orthogonal Multiple Access (NOMA) system.
Advancement from the State-of-the-Art: The GCD-OMA represents the state-of-the-
art. It rendered the OMA capable of solving NEPPs with specially-constrained group
cardinalities. However, this solution cannot handle general partitioning, due to the GCD
requirement on the partition sizes. This paper presents a novel solution, namely the so-
called Partition Size Required OMA (PSR-OMA), to EPPs and NEPPs, which does
not require a non-unity GCD between the partition sizes. The PSR-OMA can solve
partitioning problems with partitions of arbitrary equal or non-equal sizes. The change
between the existing OMA solutions and the PSR-OMA is that the latter can adaptively
swap the partition sizes. The algorithm still requires us to provide information about the
partition sizes, and hence its name, the PSR-OMA. We emphasize that one can use the
PSR-OMA with any of the already-existing OMA’s “incarnations” and that the PSR-
OMA stands apart from the GCD-OMA. The reader should also note that proposing a
solution to both EPPs and NEPPs is the same as offering a solution to OPPs, but that
we use the EPP and NEPP terminologies to differentiate between the two.
Contributions of this Paper: The contributions of this paper are as follows:
1. We present the novel PSR-OMA scheme applicable for both EPPs and NEPPs,

which can be employed with all the existing versions of the OMA algorithms.
2. We demonstrate the convergence and efficiency properties of the PSR-OMAs, show-

ing that it can be used for further applications.
The remainder of the paper is organized as follows. In Section 2, we formulate the na-
ture of the partitioning problems considered in this paper and analyze their complexity.
In Section 3, we present the PSR-OMA algorithm in detail. The performance of the
proposed algorithm is presented in Section 4, and conclude the paper in Section 5.

2 Problem Formulation

We now formalize the partitioning problem as follows: Our problem consists of O ob-
jects, where the set of objects is denoted by O = {o1, o2, ..., oO}. We want to divide

131

PSR-OMA Solution to Non-Equal Partitioning Problems 3

the O objects into K disjoint partitions. The set of partitions is indicated by K, where
K = {̺1, ̺2..., ̺K}. For example, partition ̺3 might consist of o4, o5 and o6, denoted
by ̺3 = {o4, o5, o6}. The problem, however, is that the identities of the objects that
should be grouped together are unknown, but are based on a specific but hidden crite-
rion, known only to an “Oracle”, referred to as the “State of Nature”. The Oracle noisily
presents the objects that should be together in pairs, where the degree of noise specifies
the difficulty of the problem. Thus, we assume that there is an true partitioning of the
objects, ∆∗, and the solution algorithm determines a partitioning, say ∆+. The solution
is optimal if ∆+ = ∆∗. The initialization of the objects is indicated by ∆0.
The Combinatorics of the OPP: The combinatorial nature of partitioning leads to the
complexity of the issues related to the existing OMA and the PSR-OMA algorithms.
In OPPs, queries are encountered as time proceeds, and we do not have a performance
parameter that directly indicates a particular partitioning’s fitness. Thus, we cannot per-
form an exhaustive search to determine the optimal partitioning of an OPP.
Bell Numbers: An unordered Bell number gives the number of possible partitions of
a set of objects. In OPPs, we assume that the ordering of the objects does not matter.
Consequently, the Bell number is of an unordered type, and we only consider whether
the correct objects are together. Here, we want to partition O objects into K non-empty
sets, where each object can only be inside a single group. Accordingly, we have BO par-
titioning options, where BO is the O-th Bell number, and the O-th Bell number is given
by BO =

∑O
k=1

{
O
k

}
, with

{
O
k

}
being the Stirling numbers of the second kind [1], and

k ∈ {1, ..., O}. The O-th Bell number obeys:
(

O
e lnO

)O
< BO <

(
O

e1−λ lnO

)O
, which

has an exponential behavior for O and λ > 0. However, in our case, the partitioning
is pre-defined, independent of whether we have an EPP or an NEPP. Consequently,
we need to consider the different combinations of objects in the various partitions.
For the partitions, where each of the groups has the possibility to consist of a differ-
ent number of objects, the number of possible combinations, W , can be expressed as
W = O!

ρ1!ρ2!ρ3!...ρK ! , where ρk, k ∈ {1, ...,K}, is the number of objects in each parti-
tion [2]. Further, ρ1 is the number of objects in ̺1, ρ2 the number of objects in ̺2 and so
on. Note that in the given expression for W , none of the numbers of objects are equal,
and thus, ρ1 6= ρ2 6= ρ3 6= ... 6= ρK and ρ1 + ρ2 + ρ3 + ...+ ρK = O. For partitions in
which some of the partition sizes are equal, we have W = O!

(u!)xx!(v!)yy!...(w!)zz! , where
we have x groups of size u, y groups of size v, and so on for all groups and sizes, im-
plying that, in this case, ux + vy + ... + wz = O. Furthermore, when all the groups
are of equal size, we can express W as: W = O!

(O
K !)

K
K!

, where O
K is an integer. As a

result of the above, we observe that the solution space for an EPP or an NEPP has a
combinatorial complexity.
Complexity of EPPs/NEPPs: EPPs and NEPPs have fewer possible combinations than
a Bell number because the partition sizes are specified and known. However, the in-
teractions between the Environment and the algorithm may be contaminated by noise.
This means that the queries may include misleading messages. Thus, due to the sys-
tem’s stochastic nature, the problem is more complicated than just finding an optimal
partitioning for a given time instant. The optimal partitioning is defined stochastically.
Evaluation Criteria: As in [11], γ will be the accuracy of the partitioning determined
by the algorithm. We calculate γ by dividing the number of object pairs in ∆+ that

132

4 R. Omslandseter et al.

exist in ∆∗ with the total number of possible correct object pairs in ∆∗. Clearly, when
∆+ = ∆∗, the scheme will have 100% accuracy, which implies an optimal solution.
We denote the number of queries generated from the Environment by ΨQ, and let Ψ be
the number of queries that the LA has considered. We also use symbol ΨT to denote the
number of transitivity pairs made in the TPEOMA variant. Note that Ψ = ΨQ for the
OMA and the EOMA variants.

3 The Proposed PSR-OMA Scheme

The newly-proposed PSR-OMA can handle partitioning problems with partitions of ar-
bitrary non-equal or equal sizes. The primary difference between PSR-OMA and the ex-
isting OMA solutions is that PSR-OMA can adaptively swap the partition sizes through-
out its operation. In designing it, we encounter some obstacles that are not present for
the EPP and the GCD-OMA solution of [11]. Specifically, when we have partitions of
pre-specified cardinalities, the objects can become stuck in situations that we refer to as
a Standstill Situations3. Such a “Standstill Situation” is one in which the objects become
“stuck” in a loop that might not even be resolved after an infinite time-frame.
Standstill Situation: In this situation, the LA cannot reach convergence due to the con-
straints imposed by the pre-specified cardinalities. Also, once the partitions have been
initialized with their respective number of objects, these allocations will, without mod-
ification, be the same. Thus, the objects of a smaller partition, that randomly happen
to be within a larger partition, prevent the excess objects in that partition from being
grouped with the objects that they, in reality, should be together with, and traps them.
Because the traditional OMA algorithms need to have the same number of objects in
each partition, our initial belief was that a new initialization process was the only com-
ponent needed to solve the NEPP. However, as discussed above, the Standstill Situation
is a serious issue, and the difficulty associated with solving NEPPs is more intricate.

We can explain this with an example where we have a partitioning problem with
three partitions. We have room for three objects in one partition, three objects in the
second, and two objects in the third. Consequently, we have eight objects and three par-
titions. Let us assume that there are four states associated with each partition, and that
the true partitioning is given by ∆∗ = {{o1, o2, o3}, {o4, o5, o6}, {o7, o8}}. Consider
the case in which we use the existing EOMA, and we randomly initialize the objects
into the different boundary states. After considering an arbitrary number of queries, the
EOMA might be stuck in a Standstill Situation, as visualized in Fig. 1.

We observe that in Fig. 1, o4 is stuck in ̺1. o4 will, most likely, depending on the
level of noise in the system, be queried together with o5 or o6. Consequently, o4 will be
swapped with o5 or o6 according to the policy schemes of the EOMA, since our starting
premise is that we specify the cardinalities a priori, and make no additional modifica-
tions to the algorithm. The swapping process will then continue until the objects are
randomly moved out of ̺1 and made accessible by the whole group of o4, which makes
convergence unlikely to occur within a reasonable time-frame.

3 The Standstill Situation must not be confused by the Deadlock Situation previously considered
by the authors of [3].

133

PSR-OMA Solution to Non-Equal Partitioning Problems 5

1 2

%1

3 4

8

7

6

%2

5

12 11

%3

10 9

o7 o8 o4

o5 o6

o1 o3o2

Fig. 1. Example of objects stuck in a Standstill Situation.

The reader should note that the scenario depicted in Fig. 1 is not merely included
for explanatory purposes. Rather, this represents an actual Standstill Situation which
can occur for many different distributions of objects, and for other courses of action.
Thus, sometimes the OMA might be able to converge due to the randomness in the
initialization process and the levels of noise in the system. However, without changing
the policy schemes according to the constraints imposed by NEPPs, we can have OMA
algorithms that perform poorly by yielding slow convergence, or by not even attaining
to convergence at all. Specifically, if the queries provided by the Environment are noise-
free, upon entering a Standstill Situation, an OMA will not be able to converge at all.
On the contrary, if some queries are noisy, the OMA algorithm could resolve the issue,
and be able to ultimately converge. However, the convergence rate would be very slow.

Understandably, the Standstill Situation becomes more critical as more partitions
are introduced to the OMA algorithm, and its effect increases with the difference in the
number of objects in each partition. Thus, when we have more possibilities for a smaller
partition to be stuck in a larger partition, the complexity for solving the problem with
pre-specified cardinalities increases, and the probability of the OMA algorithm having a
slow convergence rate, or not converging at all, correspondingly increases. To mitigate
this, the PSR-OMA (which deviates from the OMA) is designed in detail below. In
the interest of brevity, the algorithms for the OMA Reward, the OMA Penalty and the
EOMA Penalty are not given here. They can be found in [9] and [11], respectively.

Proposed Functionality: The PSR-OMA can be seen to be an extension of the existing
OMA algorithms. Its first phase concerns the initialization of the objects. Because the
fundamental operation of the OMA and the EOMA algorithms are different, these two
methods will be considered separately. To achieve this, we first remember that for the
OMA, the objects are distributed randomly across the KS states of the LA, while the
objects in the EOMA are distributed randomly across the LA’s K boundary states. For
both the algorithms, the difference due to the pre-specification of cardinalities is that
we need to distribute the objects among the partitions of the automaton according to
the pre-specified number of objects in each partition. The new functionality is similar,
independent of whether the group sizes are equal or unequal.

134

6 R. Omslandseter et al.

Algorithm 1 PSR Process for Standstill Situation
Input:

– The states of all objects θl, where l ∈ {1, 2, ..., O}.
– The query Q = 〈oi, oj〉.
– ρk for all k ∈ {1, 2, ..., K}.
– The boundary states, Bk of all k ∈ {1, 2, ...,K}.

Output:
– The next states of oi, oj and other affected objects.

For ease of explanation, let us assume that oi is in the innermost state of ̺i and oj is in the
boundary state of ̺j .

1: if moving oj to ̺i will let our system keep the specified sizes then
2: θj = θi // Move oj to ̺i
3: else // If more than one object is required to fulfill all ρk
4: for all objects ox in ̺j \ oj do // All objects in ̺j except oj
5: if θx = θj or θx = θj − 1 then // If ox is in (or nearest to) the boundary state
6: I ← ox // I is the set of possible objects to move
7: end if
8: end for
9: if |̺i| > |̺j | then // There are more objects in ̺i than in ̺j

10: ν = |̺i| − |̺j | // |̺i| is the number of objects in ̺i
11: else if |̺i| < |̺j | then // There are more objects in ̺j than in ̺i
12: ν = |̺j | − |̺i|
13: else // This means |̺i| = |̺j |
14: Continue Process Penalty // Continue with the remaining statements in Alg. 2/3
15: end if
16: if |I|+ 1 ≥ ν then // The number of objects in I are bigger than (or equal to) ν
17: Randomly select ν − 1 objects from I and put them in a new set J .
18: if |̺i|+ ν and |̺j | − ν fulfills all ρk then // If the size requirement is fulfilled
19: θj = Bi // Move oj to boundary of ̺i
20: for all objects oz in J do
21: θz = Bi // Move objects in J to boundary state of ̺i
22: end for
23: end if
24: else // It was not possible to make a legal swapping of objects
25: Continue Process Penalty // Continue with the remaining statements in Alg. 2/3
26: end if
27: end if

In the second phase of the PSR-OMA, we try to mitigate the Standstill Situation
by introducing a new policy when the system receives a Penalty. This occurs when an
object in a query is in a boundary state, and at the same time, the other object is in the
innermost state of another partition. When such a situation occurs, we check the number
of objects in the partition of the object in the innermost state. We, thereafter, move the
boundary object to the innermost object’s partition if such a transition fulfills the size
requirements for all the partitions. If such a transition requires more objects to fulfill the
size requirements, and if there are more objects in the boundary or in the second nearest

135

PSR-OMA Solution to Non-Equal Partitioning Problems 7

1 2

%1

3 4

8

7

6

%2

5

12 11

%3

10 9

o7 o8 o4

o5 o6

o1 o3o2

o4

Fig. 2. Example of the Penalty functionality for the Standstill Situation.

state to the boundary of the boundary object’s partition, we check the partition sizes and
move the required number of objects from these states (chosen randomly) together with
the boundary object, to the innermost object’s partition. This solution to the Standstill
Situation is depicted in Fig. 2, where o4 is allowed to move to the partition of o5 and
o6, without requiring any replacement.
Migration of Objects: We emphasize that when we move a single object according
to the new policy, we move it to the same state as the queried object in the innermost
state. If we move more than a single object, we might choose some objects in the pro-
cess that, in reality, should not be changing its partition. Thus, when moving more than
a single object in this process, we will move them to the boundary state of the inner-
most object’s partition. In this way, we compromise between the scheme’s convergence
rate and accuracy. The new Penalty function is presented in Algorithm 1. Observe that
for Algorithm 1, we introduce the parameter θBk

, which indicates the boundary state
of partition k, k ∈ {1, 2, ...,K}. Additionally, we assume that the distribution of the
randomly-chosen objects in the scheme is uniform. If we are not able to move any ob-
jects in the new Penalty, we check the rest of the Penalty statements. Thus when, for
example, an object is in an innermost state, the other is in a boundary state, and we are
not able to swap partition sizes, we handle them as if one object is in the boundary and
the other object not being in the boundary according to the EOMA’s existing rules.

By introducing the new functionality, the LA can actively swap the cardinalities
and partition relations while it is executing its operation. An example of this function-
ality, where one object changes its partition without replacement, and thus, changes the
partition size of the partition it moves to, is depicted in Fig. 2.
Implementation Details: The PSR-OMA includes a new initialization of objects. Thus,
the objects need to initialized into the partitions according to their pre-specified sizes.
This should be done randomly. The second part of the new functionality is invoked as
the machine encounters a certain placement of the objects and receives a Penalty. More
specifically, the new functionality comes into play when the LA receives a Penalty
and one queried object is in the innermost state, and the other queried object is in the
boundary state. Consequently, if moving the boundary object, or more objects from
the partition of the boundary object, fulfills the size requirements for the partitions,

136

8 R. Omslandseter et al.

Algorithm 2 PSR-OMA Process Penalty
Input:

– The query Q = 〈oi, oj〉, and ρk for all k ∈ {1, 2, ..., K}.
– The states of the objects in Q ({θi, θj}).

Output:
– The next states of oi, oj and other affected objects.

1: if θi mod S 6= 0 and θj mod S 6= 0 then // Neither are in boundary states
2: θi = θi + 1
3: θj = θj + 1
4: else if θi mod S = 1 and θj mod S = 0 then // oi is in innermost state
5: PSR Process for Standstill Situation (Algorithm 1)
6: else if θi mod S = 0 and θj mod S = 1 then // oj is in innermost state
7: PSR Process for Standstill Situation (Algorithm 1)
8: else if θi mod S 6= 0 and θj mod S = 0 then // oj is in boundary state
9: θi = θi + 1

10: else if θi mod S = 0 and θj mod S 6= 0 then // oi is in boundary state
11: θj = θj + 1
12: else // Both are in boundary states
13: temp = θi or θj // Store the state of Moving Object, oi or oj
14: θi = θj or θj = θi // Put Moving Object and Staying Object together
15: ol =unaccessed object in group of Staying Object closest to boundary
16: θl = temp // Move ol to the old state of Moving Object
17: end if

a legal swapping of object(s) from the boundary object’s partition to the innermost
object’s partition is executed. Consequently, the LA is able to change the partition sizes
throughout its operation, as long as we, in total, always maintain the pre-specified sizes.
By way of example, consider the scenario that we have a problem with the pre-specified
sizes of 5, 6 and 7. If ̺1 changes from being the size of 5 to 6, the earlier partition with
size 6 needs to become the 5-sized one. By operating in this manner, we will always
maintain the partition sizes as being 5, 6 and 7.

The reader should observe that the proposed functionality can be directly imple-
mented into the currently-existing algorithms by merely changing some of their already-
established behaviors. To crystallize matters for the new Penalty functionality, the pro-
posed Penalty operations for the OMA and the EOMA are given in Algorithm 2 and
Algorithm 3 respectively.

To summarize, for the PSR-OMA its Penalty functionality is given by Algorithm 2,
while the rest of the established method remains the same. For the PSR-EOMA, the
Penalty scheme is given by Algorithm 3. Again, the other functionalities of the PSR-
EOMA behavior are similar to that of the existing EOMA. Additionally, the function-
ality of “PSR”-based functionalities can be easily extended to the PEOMA and the
TPEOMA, yielding what we will refer to as the PSR-PEOMA and PSR-TPEOMA re-
spectively. The details of these LA is trivial and not included to avoid repetition.

137

PSR-OMA Solution to Non-Equal Partitioning Problems 9

Algorithm 3 PSR-EOMA Process Penalty
Input:

– The query Q = 〈oi, oj〉, and ρk for all k ∈ {1, 2, ..., K}.
– The states of the objects in Q ({θi, θj}).

Output:
– The next states of oi, oj and other affected objects.

1: if θi mod S 6= 0 and θj mod S 6= 0 then // Neither are in boundary states
2: θi = θi + 1
3: θj = θj + 1
4: else if θi mod S = 1 and θj mod S = 0 then // oi is in innermost state
5: PSR Process for Standstill Situation (Algorithm 1)
6: else if θi mod S = 0 and θj mod S = 1 then // oj is in innermost state
7: PSR Process for Standstill Situation (Algorithm 1)
8: else if θi mod S 6= 0 and θj mod S = 0 then // oj is in boundary state
9: θi = θi + 1

10: temp = θj // Store the state of oj
11: l = index of an unaccessed object in group of oi closest to the boundary
12: θj = θi
13: θl = temp
14: else if θi mod S = 0 and θj mod S 6= 0 then // oi is in boundary state
15: θj = θj + 1
16: temp = θi // Store the state of oi
17: l = index of an unaccessed object in group of oj closest to the boundary
18: θi = θj
19: θl = temp
20: else // Both are in boundary states
21: temp = θi or θj // Store the state of Moving Object, oi or oj
22: θi = θj or θj = θi // Put Moving Object and Staying Object together
23: ol =unaccessed object in group of Staying Object closest to boundary
24: θl = temp // Move ol to the old state of Moving Object
25: end if

4 Numerical Results

In this section, we demonstrate the performance of the PSR-OMA, both for an EPP
and two NEPPs. Section 4.1 demonstrates results for an EPP, and it is compared with
other existing OMA algorithms. Section 4.2 displays the PSR’s performance for NEPPs,
which cannot be compared with any of the existing OMA algorithms due to their lim-
itation of requiring equally-sized partitions. Our simulations included “Noise”, which
represents the proportion of queries with objects that did not belong together in ∆∗.
Such queries present disinformation to the LA, and indeed, the hardness of the problem
(the Environment) increases with the level of noise. Therefore, we use:

Noise = 1− Pr{oi, oj accessed together} = 1−Πoi,oj , for oi, oj ∈ ∆∗, ∀i, j,
as the probability measurement for the LA being presented with a noisy query in the
simulations [11], to demonstrate its performance in harder Environments. Consequently,
Πoi,oj is the probability of oi and oj being accessed together and being together in ∆∗.

138

10 R. Omslandseter et al.

4.1 Existing OMA and PSR-OMA for an EPP

Let us first consider the simulations for an EPP where we simulated a partitioning prob-
lem with 30 objects to be grouped into three partitions, implying that O

K = 10. Table 1
shows the simulation results for different existing OMA types, and Table 2 presents
results obtained for the PSR-OMA types.

One of the main differences between the PSR-EOMA and the existing EOMA is that
it considers the scenario when a single object in the query is in the boundary, and the
other is in the innermost state of another partition. However, because in problems with
equally-sized partitions, no legal swapping of objects is possible without replacement,
the new policy does not apply to these problems. We thus expect the PSR-OMA to yield
results similar to those of the existing OMA types. The results obtained in Tables 1 and 2
verify this hypothesis, as the existing OMA types and the PSR-OMA types have similar
performance for the different noise levels.

Note that for the PEOMA and TPEOMA, we have the κ value indicating the number
of queries that have to be processed before we start filtering the queries before letting
the LA process them (i.e., deploying the Pursuit concept) and making transitivity pairs.
Additionally, we have τ , indicating the threshold for whether a query should be consid-
ered or not [12, 13].
Table 1. Statistics of existing OMA types for a case involving 30 objects, 3 partitions and 10
states averaged over 1,000 experiments.

Type Noise γ ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT κ τ

EOMA 0% 100% 100% 0% 305.36 305.36 - - -
EOMA 10% 100% 100% 0% 425.08 425.08 - - -

PEOMA 0% 100% 100% 0% 307.42 309.71 - 270 0.1
O

PEOMA 10% 100% 100% 0% 398.11 417.58 - 270 0.1
O

TPEOMA 0% 100% 100% 0% 369.55 275.46 96.28 270 0.2
O

TPEOMA 10% 100% 100% 0% 555.63 316.91 253.81 270 0.2
O

Table 2. Statistics of PSR-OMA types for a case involving 30 objects, 3 partitions and 10 states
averaged over 1,000 experiments.

Type Noise γ ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT κ τ

PSR-EOMA 0% 100% 100% 0% 304.44 - - - -
PSR-EOMA 10% 100% 100% 0% 417.89 - - - -

PSR-PEOMA 0% 100% 100% 0% 308.65 310.91 - 270 0.1
O

PSR-PEOMA 10% 100% 100% 0% 393.14 411.80 - 270 0.1
O

PSR-TPEOMA 0% 100% 100% 0% 362.26 274.16 90.08 270 0.2
O

PSR-TPEOMA 10% 100% 100% 0% 551.48 315.43 250.13 270 0.2
O

4.2 PSR-OMA for NEPPs

We now demonstrate the performance of the PSR-EOMA for general NEPPs. Clearly,
the existing OMA types cannot solve these problems because they do not have equally-
sized partitions. Further, the reader should observe that unlike the problems presented
for the GCD-OMA in [11], these do not possess a non-unity GCD requirement. We
configured 106 as the maximum number of queries.

We considered two partitioning problems in our simulations. The first problem
had “many partitions”, and the second problem had “big partition size differences”.

139

PSR-OMA Solution to Non-Equal Partitioning Problems 11

These problems are referred to as NEPP 1 and NEPP 2, respectively. The first problem,
NEPP 1, has ρ1 = 4, ρ1 = 5, ρ2 = 6, ρ3 = 7, and ρ4 = 8. The second problem,
NEPP 2, has ρ1 = 4, ρ2 = 9, and ρ3 = 13. Note that only results for PSR-EOMA are
presented here due to space limitations.

Results for the PSR-EOMA for NEPP 1: Let us first consider PSR-EOMA’s perfor-
mance for NEPP 1. In Table 3, the percentage of experiments that discovered the op-
timal partitioning increases from 91% to 98% and 99% for 10%, 20% and 30% noise,
respectively. The PSR-OMA was able to find accurate solutions that were not far from
the optimal ones. The accuracy level increased together with the noise level. With in-
creased noise levels, the objects were forced to move in “unexpected ways”, which
could have contributed to discovering the optimal partitioning with a higher probabil-
ity. Nevertheless, independent of the noise level, we observed that the average accuracy
(γ) was at the same level. Combining the results for the accuracy and the percentage of
finding the optimal partitioning, we understand that for the non-optimal solutions, there
were only one or two objects in the incorrect partitioning as the LA converged.
Table 3. Statistics of PSR-EOMA for NEPP 1, with different noise levels and 6 states, averaged
over 100 experiments.

Noise γ ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)
10% 99.25% 91.0% 0% 1,704.01
20% 99.83% 98.0% 0% 3,379.18
30% 99.95% 99.00% 0% 22,631.58

Results with PSR-EOMA for NEPP 2: In Table 4, we present the statistics for simu-
lations for NEPP 2 with PSR-EOMA. From these results, we see that the method again
had better performance in terms of accuracy and convergence as the noise increased.
For 30% noise compared with 20% noise, the required number of queries was less than
halved. Ironically, the noise seemed to increase the algorithm’s ability to reach conver-
gence for NEPP 2.
Table 4. Statistics of PSR-EOMA for NEPP 2, with different noise levels and 6 states, averaged
over 100 experiments.

Noise γ ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)
10% 97.11% 90.62% 36% 134,405.40
20% 100% 100% 0% 44,974.36
30% 100% 100% 0% 4,764.84

As the results above indicate, the PSR-EOMA struggled for partitioning problems
with lower noise levels as the difference between the partition sizes increased, as for
NEPP 1. For such cases, the noise helps the algorithm continue “exploring” by keeping
objects in the outer states. This happens when all the objects, except some, are correctly
placed. In that case, they might be introduced to a noisy query that could help them get
“un-stuck”. For more manageable problems, like for NEPP 1, the noise has the opposite
effect by increasing its number of required queries. Indeed, for problems with smaller
differences between the partition sizes, the noise complicated the LA’s convergence by
misleading it. For both issues, in general, we attained relatively high accuracy levels.

140

12 R. Omslandseter et al.

5 Conclusion
Existing algorithms within the OMA paradigm can only solve partitioning problems
with partitions of equal sizes or problems with a GCD between the partition sizes. In
this paper, we have proposed a solution that can solve NEPPs in general with known
partition sizes. Our experimental results show that the proposed algorithm has compa-
rable performance to the existing algorithms regarding solving EPPs and that it can also
solve NEPPs accurately. As far as we know, this is the only known solution that resolves
this problem.

References

1. Berend, D., Tassa, T.: Improved Bounds on Bell Numbers and on Moments of Sums of
Random Variables. Probability and Mathematical Statistics 30(2), 185–205 (2010)

2. Brualdi, R.A.: Introductory Combinatorics. Pearson, 5th edition edn.
3. Gale, W., Das, S., Yu, C. T.: Improvements to an Algorithm for Equipartitioning. IEEE Trans-

actions on Computers 39(5), 706–710 (May 1990). https://doi.org/10.1109/12.53585
4. Oommen, B. J., Fothergill, C.: Fast Learning Automaton-Based Image Examination and Re-

trieval. The Computer Journal 36(6), 542–553 (1993)
5. Oommen, B. J., Ma, D. C. Y.: Deterministic Learning Automata Solutions to the Equiparti-

tioning Problem. IEEE Transactions on Computers 37(1), 2–13 (1988)
6. Oommen, B. J., Ma, D. C. Y.: Stochastic Automata Solutions to the Object Partitioning

Problem. The Computer Journal 35, A105–A120 (1992)
7. Oommen, B. J., Zgierski, J. R.: A Learning Automaton Solution to Breaking Substitution

Ciphers. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(2), 185–192
(1993) https://doi.org/10.1109/34.192492

8. Oommen, B. J., Zgierski, J. R.: Breaking Substitution Cyphers Using Stochastic Automata.
IEEE Transactions on Pattern Analysis and Machine Intelligence 15(2), 185–192 (1993)
https://doi.org/10.1109/34.192492

9. Omslandseter, R. O.: Learning Automata-Based Object Partitioning with Pre-Specified Car-
dinalities. 178 (2020), University of Agder,

10. Omslandseter, R. O., Jiao, L., Liu, Y., Oommen, B. J.: User Grouping and Power Allocation
in NOMA Systems: A Reinforcement Learning-Based Solution. In: IEA/AIE 2020

11. Omslandseter, R. O., Jiao, L., Oommen, B. J.: A Learning-Automata Based Solution for
Non-Equal Partitioning: Partitions with Common GCD Sizes. In: IEA/AIE 2021

12. Shirvani, A., Oommen, B. J.: On Invoking Transitivity to Enhance the Pursuit-
Oriented Object Migration Automata. IEEE Access 6, 21668–21681 (2018).
https://doi.org/10.1109/ACCESS.2018.2827305

13. Shirvani, A., Oommen, B. J.: On Enhancing the Deadlock-Preventing Object Migration
Automaton Using the Pursuit Paradigm. Pattern Analysis and Applications (Apr 2019).
https://doi.org/10.1007/s10044-019-00817-z

141

Appendix B

The HDPA Papers

B.1 The Hierarchical Discrete Learning Automaton
Suitable for Environments with Many Actions
and High Accuracy Requirements

This paper has been published as:

R. O. Omslandseter, L. Jiao, X. Zhang, A. Yazidi, and J. B. Oommen, “The Hierar-
chical Discrete Learning Automaton Suitable for Environments with Many Actions
and High Accuracy Requirements,” AI 2021: Advances in Artificial Intelligence, AI
2022 (AJCAI 2021), vol 13151, pp. 507–518, Springer International Publishing,
February 2022.
DOI: https://doi.org/10.1007/978-3-030-97546-3_41

193

https://doi.org/10.1007/978-3-030-97546-3_41

The Hierarchical Discrete Learning Automaton
Suitable for Environments with Many Actions

and High Accuracy Requirements

Rebekka Olsson Omslandseter1, Lei Jiao 1, Xuan Zhang 2, Anis Yazidi 3, and
B. John Oommen 1,4

1 Dept. of Information and Communication Technology, University of Agder,
4879, Grimstad, Norway, {rebekka.o.omslandseter, lei.jiao}@uia.no

2 Norwegian Research Centre (NORCE), 4879, Grimstad, Norway
3 Oslo Metropolitan University, 0167, Oslo, Norway

4 Carleton University, Ottawa, Canada

Abstract. Since its early beginning, the paradigm of Learning Au-
tomata (LA), has attracted much interest. Over the last decades, new
concepts and various improvements have been introduced to increase
the LA’s speed and accuracy, including employing probability updat-
ing functions, discretizing the probability space, and implementing the
“Pursuit” concept. The concept of incorporating “structure” into the or-
dering of the LA’s actions is one of the latest advancements to the field,
leading to the ϵ-optimal Hierarchical Continuous Pursuit LA (HCPA)
that has superior performance to other LA variants when the number
of actions is large. Although the previously proposed HCPA is power-
ful, its speed has a handicap when the required action probability of
an action is approaching unity. The reason for this slow convergence is
that the learning parameter operates in a multiplicative manner within
the probability space, making the increment of the action probability
smaller as its probability becomes close to unity. Therefore, we propose
the novel Hierarchical Discrete Learning Automata (HDPA) in this pa-
per, which does not possess the same impediment as the HCPA. The
proposed machine infuse the principle of discretization into the action
probability vector’s updating functionality, where this type of updating
is invoked recursively at every depth within a hierarchical tree structure
and we pursue the best estimated action in all iterations through utiliza-
tion of the Estimator phenomenon. The proposed machine is ϵ-optimal,
and our experimental results demonstrate that the number of iterations
required before convergence is significantly reduced for the HDPA, when
compared with the HCPA.

Keywords: Reinforcement Learning · Learning Automata · Hierarchical
Discrete Pursuit LA.

1 Introduction

In the field of Learning Automata (LA), non-human agents, implemented through
computer programs, find solutions to problems of stochastic nature through the

194

2 R. O. Omslandseter et al.

concept of learning. One of the main advantages of this type of Machine Learn-
ing (ML) is the scheme’s ability to operate adaptively. The paradigm is based on
a learning agent, or Learning Automaton, referred to as a LA, that interacts with
a teacher, referred to as the Environment [4]. The LA has several actions that
often correspond to the different solutions for the given problem. Through se-
lecting actions and getting feedback from the Environment, the LA learns which
action (behavior) results in the highest probability of receiving a Reward from
the Environment. Although the LA requires feedback from an Environment, it
learns in a Semi-Supervised manner. Thus, the LA does not need examples of so-
lutions to learn. They explore different actions and learn via trial-and-error. We
can model the Environment in numerous ways. The reader should note that, in
this paper, the shortened term LA refers to both the field of Learning Automata
and the Learning Automaton according to the context where it appears.

In LA, we evaluate the schemes’ performance by the number of iterations
needed before convergence and the schemes’ accuracy in finding the optimal
solution [4]. Improvements that have enhanced the accuracy and speed in LA
include using action probability vectors to decide the LA behavior (VSSA), dis-
cretizing the probability space of these vectors (Discrete LA), and deploying
the “pursuit” concept. In addition, pursuing the most likely action to receive a
Reward throughout the LA operation (Estimator-based LA) and ordering the
LA in a hierarchical structure (Hierarchical LA) improved the LA’s performance
further. The structuring of the LA led to the state-of-the-art ϵ-optimal Hierar-
chical Continuous Pursuit LA (HCPA) [12], which can handle a large number of
actions.

Although the HCPA handles a large number of actions, its convergence speed
has an impediment when any action probability approaches unity. The reason
for this slow convergence is that the learning parameter, and thus the updating
of the probabilities operates in a multiplicative manner within the probability
space. Consequently, the learning rate decreases as the probability approaches
unity. In more detail, as the learning continues, the increment of action prob-
ability is less and less, making it more challenging for the LA to converge in
the latter phase of learning. This drawback is even more apparent when the
criterion for convergence is high, i.e., when high accuracy is required. To solve
this problem, we propose the novel ϵ-optimal Hierarchical Discrete Learning Au-
tomata (HDPA) scheme in this paper. The HDPA includes all the phenomena
mentioned earlier to speed up the convergence when high accuracy is required.
The beauty of the HDPA is that the learning speed does not decrease as the
learning continues because it operates in a step-wise manner in the probability
space. Our simulation results demonstrate that the HDPA has significantly faster
convergence for high accuracy requirements. Thus, the HDPA outperforms the
state-of-the-art HCPA scheme presented in [12] when the accuracy requirement
is high.

195

The Hierarchical Discrete Learning Automaton 3

Our contributions are summarized as follows:

– We propose the novel HDPA that converges faster than the state-of-the-art
HCPA algorithm, when the accuracy requirement is high. The advantages
become more pronounced when a large number of actions exist.

– Via extensive simulations, we demonstrate how much the HDPA converged
faster than the HCPA for Environments with many actions and high accu-
racy requirements.

2 Related Work

Michael Lvovitch Tsetlin pioneered the field of LA by inventing the Tsetlin Au-
tomata (TA) [10], which can be categorized as a Fixed Structure Stochastic Au-
tomata (FSSA). The FSSA has a discrete and state-based structure, where the
automaton’s current state determines its action. The first significant improve-
ment in LA was achieved through the discovery/invention of Variable Structure
Stochastic Automata (VSSA), where the action of the LA is selected by randomly
sampling an action probability vector. The probability vector is updated through
functions according to the Environment’s feedback, influencing and changing the
behavior of the LA (where this updating functionality can also change over time).
While an FSSA needs to move through numerous states before exploring another
action, VSSA can possibly explore distinct actions along consecutive iterations,
speeding up the exploration of the Environment.

The earlier established variants, the Linear Reward-Penalty (LR−P) scheme,
the Linear Reward-Inaction (LR−I) scheme, the Linear Inaction-Penalty (LI−P)
scheme, and the Linear Reward-ϵPenalty (LR−ϵP) scheme in [1] and [4] are all
examples of continuous VSSA schemes. The “linear”(L) schemes have such a
categorization because the action probabilities are increased in a linear manner.
The probabilities of the VSSA can also be increased in a non-linear manner [1, 2,
4]. In mathematical analyses, LA can described through Markov chains, where
we have ergodic and absorbing types [1, 8].

The next quantum step in terms of speed and accuracy in LA was achieved
through discretizing the action probability space [5]. In traditional VSSA, the
action selection probabilities can assume any real value in the interval [0, 1],
and the updating is achieved in a multiplicative manner with a learning pa-
rameter (λ ∈ (0, 1)). The drawback of this continuous approach is its sluggish
convergence. As the action probability approach unity, the updating step be-
comes smaller and smaller, slowing down the algorithm’s speed. To address this
issue, discretizing the probability space and updating the action probabilities in
constant steps was proposed, which significantly improved the convergence speed
in LA. The different properties (absorbing and ergodic) of these discretized LA,
and their different updating schemes were studied in [5, 6]. In addition, con-
tinuous and discretized updating mechanisms with mathematical analyzes are
investigated in [7] and [13], respectively.

The invention of Estimator-based Algorithms (EAs) increased the achieved
convergence speed of LA even further [9]. The EAs possessed a faster convergence

196

4 R. O. Omslandseter et al.

than all earlier variants. These algorithms are based on VSSA, but in addition,
estimates of the reward probabilities of the different actions are maintained in
a separate vector. These reward estimates are employed in updating the action
selection probabilities, where the LA pursues the currently estimated best ac-
tion in terms of the reward estimates (referred to as the Pursuit paradigm).
The reward estimates can be found by Maximum Likelihood, or in a Bayesian
manner, investigated in [11]. Thereafter, the researchers combined dicretization
and the Pursuit paradigm and introduced the family of Discrete Estimator Al-
gorithms (DEAs) [3].

For the above mentioned LA, the convergence becomes challenging when
the number of possible actions is large. Understandably, for VSSA, the action
probability vector has a dimension of R (for R actions) and its elements sum
up to 1. When R is large, many of the action probabilities can have very small
values and may not even be chosen, thus rendering the principle behind VSSA to
be void. Inclusion of structure into the field of LA solved this problem, and the
HCPA constitutes the state-of-the-art [12]. Although HCPA solves the problem
to a certain extent, it is always valuable if we can improve the convergence
speed of the algorithm without satisfying the accuracy, leading to the proposed
algorithm in this paper.

3 The Proposed Algorithm

The concept of the HDPA is to utilize VSSA, discretizing the probability space,
structuring the LA instances in a hierarchical tree structure and incorporating
the Estimator concept. In more detail, we organize a set of Discrete Pursuit
Automata (DPA) instances in a tree structure, where each instance has a set of
actions corresponding to the possible paths down the tree structure from that
automaton. The probabilities of these actions are maintained through vectors
that are updated in a discretized manner. At the bottom level of the tree, we have
the actions that directly interact with the Environment. The HDPA maintains
reward estimates of all the actions throughout the tree structure, and we pursue
the action with the currently best reward estimate in all iterations according
to the pursuit paradigm. The reader should note that, in reality, the reward
estimates are only necessary for the actions at the leaf level. We utilize the
reward estimates in this way, because the proof of the algorithm’s convergence
needs the reward estimates along the path5. A more detailed explanation of the
algorithm is given in what follows.

3.1 The Structure of the HDPA

For ease of explanation of the HDPA in this paper, we utilize 2-action DPRI

instances as the LA in the tree structure. The reason for using Reward-Penalty

5 A formal proof of the HDPA’s convergence will be given in an extended version of
this paper.

197

The Hierarchical Discrete Learning Automaton 5

Inaction LA is that they have demonstrated better performance than other con-
figurations [12]. Furthermore, we use 2-actions automatons in our explanations.
Therefore, we can model the HDPA as a balanced full binary tree for a problem
with 2K actions, where K is the maximum depth of the tree. The number of
actions per LA instance can be changed to another configuration. However, the
reader should remember that one of the main reasons for organizing the actions
in a tree structure is to mitigate a large action probability vector because of its
inferior performance [12]. Therefore, the number of actions in the LA instances
should, in any case, be limited. The HDPA in these explanations is, thus, con-
figured to handle 2K original actions. If the number of original actions is not
2K , we consider the nearest power of 2 above the number of original actions
and configure the excess number of actions with zero Reward probability. To
continue our explanations in greater detail, we further formalize the levels in the
tree structure as follows:

– Hierarchical tree structure: The depth of the tree is indexed by parame-
ter k, k ∈ {0, ...,K}. For each level of depth, the number of nodes is indexed
by j ∈ {1, ..., 2k}. Note that k and j are also employed to index different LA
and actions with their corresponding ranges of definition.

– The various LA: The LA j ∈ {1, ..., 2k} at depth k, is referred to as A{k,j},
where k ∈ {0, ...,K − 1}. The LA at the root is the one at depth 0.

– The LA at depths from 0 to K − 1 (0 ≤ k < K − 1):
• Each of the LA, A{k,j}, has two actions, denoted by α{k+1,2j−1} and
α{k+1,2j}, respectively.

• Whenever the action α{k+1,2j−1} is chosen, the LA, A{k+1,2j−1}, at the
next level is activated.

• Whenever the action α{k+1,2j} is chosen, the LA, A{k+1,2j}, at the next
level is activated.

– The LA at depth K − 1 (k = K − 1): The LA at depth K − 1 select the
actual actions to interact with the Environment.
• All of the LA at depth K − 1 have two possible actions each, referred to

as α{K,2j−1} and α{K,2j}, respectively.
• The K−1 depth of the tree has 2K actions in total, referred to as α{K,j}

where j ∈ {1, ..., 2K}.
• The selected action denoted by: α{K,j}, is the child of A{K−1,⌈j/2⌉}.

– The actions at level K (k = K): At depth K, i.e., at leaves of the tree,
we have the actions that directly interact with the Environment.

– P{k,j} = [p{k+1,2j−1}, p{k+1,2j}]: The action probability vector of LA A{k,j},
where k ∈ {0, ...,K − 1} and j ∈ {1, ..., 2k}.

Fig. 1 visualizes the structure of a simple HDPA when four actions exist in
the Environment. The leaves of the tree are representations of the actions that
the HDPA can take and interact with the Environment. For a HDPA with 2K

actions in the leaf level, the number of LA in the tree structure is 2K − 1. In
this example, we have three LA, i.e., A{0,1}, A{1,1} and A{1,2}. As depicted,
each LA in the tree has two actions. To choose an action, HDPA follows the

198

6 R. O. Omslandseter et al.

Fig. 1. A visualization of the hierarchy of the HDPA. The instances at the bottom/leaf
level of the tree represent the actions that interact with the Environment.

path down the tree by sampling of these action probabilities in the vector. For
example, when A{0,1} has an action probability vector of [0.9, 0.1], it selects
α{1,1} at the root level with probability 0.9. Once α{1,1} is chosen, A{1,1} is
selected for making the decision at level 1 for the next level (which is at the
leaf level in this example), following the action probability vector that A{1,1}
maintains. Thereafter, if A{1,1} happens to select the action α{2,2}, it means
that the second action is chosen to interact with the Environment. Thereafter,
the HDPA updates its parameters based on the feedback from the Environment.
If and only if the Environment offers a Reward, following the pursuit concept,
the action probabilities are updated, following the reverse path from the leaf
with the current maximum reward estimate to the root. The reader should note
that HDPA might reward another action than the one that is currently selected,
due the inferior reward estimate in the currently selected action. Independent of
whether a Reward or Penalty is received, the reward estimates in all the DPA
instances are updated according to whether the action received a Reward or not.
The process is detailed as follows:

Parameters:
∆: The learning parameter, where 0 < ∆ < 1, and its value is usually configured close
to zero.
u{K,j}: The number of times that action α{K,j} was rewarded when selected, where
j ∈ {1, . . . , 2K}.
v{K,j}: The number of times that action α{K,j} was selected, where j ∈ {1, . . . , 2K}.
d̂{k,j}: The estimated reward probability of action α{k,j}, k ∈ {1, ...,K}, j ∈ {1, . . . , 2k}.
At level K, d̂{K,j} is computed as d̂{K,j} =

u{K,j}
v{K,j}

, where j ∈ {1, . . . , 2K}.
β: The response from the Environment, where β = 0 corresponds to a Reward, and
β = 1 to a Penalty.
T : Convergence criterion threshold.
We initialize the estimate of the reward probabilities as 0.5, i.e., u{K,j}(0) = 1,

v{K,j}(0) = 2, thus d̂{K,j}(0) = 1
2
. The action probability vector is also initialized as

0.5 for all the LA, i.e., P{k,j}(0) = [1
2
, 1
2
], where k ∈ {0, ...,K − 1} and j ∈ {1, ..., 2k}.

Begin algorithm:

t = 0

199

The Hierarchical Discrete Learning Automaton 7

Loop

1. Depths 0 to K − 1:
– The LA A{0,1} selects an action by randomly (uniformly) sampling as per its

action probability vector [p{1,1}(t), p{1,2}(t)].
– Let j1(t) be the index of the chosen action at depth 0, where j1(t) ∈ {1, 2}.
– The next LA is activated A{1,j1(t)} which in turn chooses an action and acti-

vates the next LA at depth “2”.
– This process continues including depth K − 1.

2. Depth K:
– Let jK(t) be the index of the chosen action at depthK where jK(t) ∈ {1, . . . , 2K}.
– Update d̂{K,jK(t)}(t) based on the response from the Environment at the leaf

depth, K:
u{K,jK(t)}(t+ 1) = u{K,jK(t)}(t) + (1− β(t))
v{K,jK(t)}(t+ 1) = v{K,jK(t)}(t) + 1

d̂{K,jK(t)}(t+ 1) =
u{K,jK (t)}(t+1)

v{K,jK (t)}(t+1)
.

– For all other “leaf actions”, where j ∈ {1, ..., 2K} and j ̸= jK(t):
u{K,j}(t+ 1) = u{K,j}(t)
v{K,j}(t+ 1) = v{K,j}(t)

d̂{K,j}(t+ 1) =
u{K,j}(t+1)

v{K,j}(t+1)
.

3. Define the reward estimate for all other actions along the path to the root, k ∈
{0, ...,K − 1} in a recursive manner, where the LA at any one level inherits the
feedback from the LA at the level below:

d̂{k,j}(t) = max
(
d̂{k+1,2j−1}(t), d̂{k+1,2j}(t)

)
.

4. Proceed to updating the action probability vectors in the LA along the reverse
path from the leaf with the current maximum reward estimate, as follows:
– By definition, each LA j ∈ {1, ..., 2k} at depth k, referred to as A{k,j}, where

k ∈ {0, ...,K − 1}, has two actions α{k+1,2j−1} and α{k+1,2j}. Let jhk+1(t) ∈
{2j − 1, 2j} be the index of the larger element between d̂{k+1,2j−1}(t) and

d̂{k+1,2j}(t).

– Let jhk+1(t) = {2j − 1, 2j} \ jhk+1(t) be the opposite action, i.e., the one that
has the lower reward estimate.

– Update p{k+1,jh
k+1

(t)} and p{k+1,jh
k+1

(t)} using the estimates d̂{k+1,2j−1}(t) and

d̂{k+1,2j}(t) as (for all k ∈ {0, ...,K − 1}):
If β(t) = 0 Then

p{k+1,jh
k+1

(t)}(t+ 1) = min
(
p{k+1,jh

k+1
(t)}(t) +∆, 1

)
,

p{k+1,jh
k+1

(t)}(t+ 1) = 1− p{k+1,jh
k+1

(t)}(t+ 1).

Else
p{k+1,jh

k+1
(t)}(t+ 1) = p{k+1,jh

k+1
(t)}(t),

p{k+1,jh
k+1

(t)}(t+ 1) = p{k+1,jh
k+1

(t)}(t).

EndIf
5. For each A{k,j}, if either of its action probabilities p{k+1,2j−1} and p{k+1,2j} sur-

passes a threshold T , where T is a positive number that is close to unity, the action
probabilities for the HDPA will stop updating, and convergence is achieved.

6. t = t+ 1

EndLoop
End algorithm

200

8 R. O. Omslandseter et al.

4 Experimental Results

To demonstrate the performance of the HDPA compared with the HCPA in [12], we
simulated the different schemes’ performance for distinct Environments. To enhance the
validity of our simulations, we increased the number of experiments and the criteria for
convergence compared with the simulations in [12]. As discussed previously, the HCPA
has an impediment when the action probability vector approach unity. Our simulations,
which we present in more detail shortly, demonstrate the advantage of the HDPA over
the HCPA as the convergence criterion is high. The reader should note that we have
omitted the comparison with the traditional CPA variants in this paper due to their
well-known inferior performance [12].

We conducted experiments for different Environments with many actions. The
Environments for the 16, 32, and 64 actions were based on the benchmark action
probabilities that were first established in [12]. For the 128 actions Environment, we
uniformly generated 128 different probabilities between zero and unity, representing
the probabilities of the LA receiving a Reward from the Environment. The 128-action
Environment’s reward probabilities are visualized in Fig. 2.

4.1 The Learning Parameters

From the mathematical proof in [12], and the established theory of VSSA, we under-
stand that when the learning parameter, λ, is sufficiently small, the HCPA will most
likely converge to the action that ensures it the maximum probability of obtaining a
Reward. The same applies to the value of ∆ [14]. In general, a smaller learning pa-
rameter results in a slower convergence but has a higher probability of finding the
optimal action as its configured value approaches zero. Therefore, tuning the learning
parameter is a trade-off between the system’s accuracy and convergence speed. In this
paper, to find the best value of λ and ∆, we utilized a top-down approach. In more
detail, we decreased the value of the learning parameters in a step-wise manner with
two decimals precision until their configured value made the LA achieve 100% accu-
racy for all the given experiments. Consequently, the value of the learning parameters
that fulfilled these criteria represents the assumed “best” values of λ and ∆ given the
distinct Environments used in the simulations.

Although the values for λ and ∆ are obtained through extensive testing, it is not
entirely certain that one will achieve convergence to the correct action with the found
values of λ or ∆ for a certain number of consecutive experiments. The Environment and
the LA’s stochastic behavior over time make it impossible to determine whether the
LA will surely converge correctly with a λ or ∆ below a certain threshold. The reader
should also note that the λ and ∆ values are entirely dependent on the Environment’s
reward probabilities and that the best λ and ∆ can vary from case to case. Therefore,
we refer to the obtained values of λ and ∆ as the “best” learning parameters (and not
the optimal ones).

4.2 The Average Number of Iterations

In the field of LA, a learning scheme’s performance is often measured through the
number of iterations required before the algorithm has converged. Due to the stochastic
nature of the Environments that LA operates in, we normally measure the average
number of iterations, i.e., we conduct many experiments and report the average number

201

The Hierarchical Discrete Learning Automaton 9

Table 1. HCPA performance for the different simulation Environments.

Number of actions Mean Standard deviation (Std.)

16 1,366.61 121.14
32 10,281.84 681.82
64 169,839.67 13,687.48
128 155,088.62 10,613.21

Table 2. HDPA performance for the different simulation Environments.

Number of actions Mean Standard deviation (Std.)

16 868.25 135.50
32 6,172.38 744.84
64 100,638.41 17,653.41
128 97,795.59 13,266.12

of iterations required before convergence over a number of experiments. In VSSA, the
LA has achieved convergence once the action probability of any one of the actions has
reached a certain threshold. The convergence criterion threshold is often configured
close to unity. In these simulations, we configured T = 0.992, and considered the
average of the schemes’ performance for 600 experiments.

The simulations discussed in this section, the “best” learning parameters for the
Environment with 16 actions were λ = 0.0043 and ∆ = 0.0011. For the Environment
with 32 and 64 actions, the best learning parameters were λ = 0.00057 and λ = 3.6e−5,
and ∆ = 0.00015 and ∆ = 9.9e−6, respectively. The “best” obtained values for the
128 action Environment were λ = 3.9e−5 and ∆ = 9.7e−6. The reader will observe
that the learning parameters for the 64 actions and 128 actions cases are quite similar,
which is because the 64 actions’ Environment’s benchmark probabilities were more
challenging than the generated Environment for 128 actions.

Tables 1 and 2 show results for our different simulation Environments. In these
simulations, we used the benchmark probabilities for the Environments with 16, 32,
and 64 actions. For the 128 actions Environment, we used the reward probabilities
visualized in Fig. 2. The tables include both algorithms’ results and list both the mean
and the Standard Deviation (Std). Let us first consider the 16, 32, and 64 actions’
Environments, where the HDPA had approximately 37%, 40%, and 41% fewer required
iterations compared with the HCPA. Consequently, the benefit of HDPA over HCPA
increased with the number of actions. Observing the Std, the HDPA had more variation
in the number of iterations for all the three action configurations.

Considering the results obtained for the 128 actions’ Environment (based on the
reward probabilities visualized in Fig. 2), the HDPA converged within approximately
98, 000 iterations, while the HCPA required 155, 000 iterations before convergence.
Comparing the algorithms’ Std, the HDPA had more variation in the number of iter-
ations before convergence than the HCPA. Thus, the HDPA was more unpredictable
in its number of iterations required before convergence, but needed significantly fewer
iterations on average!

202

10 R. O. Omslandseter et al.

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2. The action probabilities for the 128 actions Environment.

4.3 The Nature of Convergence

The nature of convergence for the HDPA compared with the HCPA is different. As
explained earlier, the HDPA updates its action probability in a discretized manner. In
contrast, the HCPA updates these probabilities multiplicatively, where the increase in
the probability vector can take any value in the interval [0, 1). In Fig. 3 and Fig. 4,
we can observe the differences between the operations of the HDPA and the HCPA
in greater detail. In these experiments, we increased the convergence criterion to T =
0.999 and used the 64 actions Environment from the benchmark probabilities. The
figures depict the different schemes’ operation for a single iteration. We found the “best”
learning parameters through the same top-down approach as explained earlier. The
“best” learning parameters were configured as ∆ = 1e−5 and λ = 5.3e−5, respectively.

0 2 4 6 8
Iteration 1e4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
tio

n
se
le
ct
io
n
pr
ob

ab
ilit

HDPA
Theoretical increase Δ

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Iteration 1e5

0.5

0.6

0.7

0.8

0.9

1.0

Ac
tio

n
se
le
ct
io
n
pr
ob

ab
ilit

HCPA
Theoretical increase λ

Fig. 3. The action probability of the optimal action per iteration compared to the
theoretical increase in the action probability vector for the different schemes.

Fig. 3 depicts the action probability per iteration. As we can observe from the
figure, the HDPA requires fewer iterations before convergence than the HCPA does. In
addition, we observe the different nature of the two schemes. While the HDPA has a
rather linear increase in the action probability, the increase of the action probability for
the HCPA scheme slows down as the probability approach unity. Indeed, the HCPA
has a faster increase than the HDPA in the initial iterations but suffers from slow
convergence because of its behavior as the action probability increases. The reader

203

The Hierarchical Discrete Learning Automaton 11

0 2 4 6 8
Iteration 1e4

101

102

103

104
Nu

m
be
r o

f t
im
es
 se

le
ct
ed

HDPA optimal
HDPA inferior

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Iteration 1e5

101

102

103

104

105

Nu
m
be
r o

f t
im
es
 se

le
ct
ed

HCPA optimal
HCPA inferior

Fig. 4. The number of times that the optimal and the most inferior action were selected
for the number of iterations required before convergence for the different schemes.

should also observe that both schemes do not follow the theoretical increase lines in
the respective plots. The theoretical increase lines show the convergences when the
optimal action is chosen in each iteration, where the action probabilities of the actions
in the optimal branch are monotonically increasing. Clearly, these lines depict the
theoretical convergence benchmarks without any exploration and are only achievable
when the optimal action is known in advance.

In Fig. 4, we observe the difference between the optimal and inferior action for
the different schemes. As we observe, the inferior action (the action with the lowest
probability of resulting in a Reward) is only selected in the initial phase of the schemes’
operation and rarely sampled as the algorithms approach convergence. In contrast, the
optimal action is selected more often as the number of iterations increases. As we ob-
serve from the figure, the HDPA required significantly fewer iterations than the HCPA.
The plots also demonstrate that the inferior action is, indeed, explored throughout the
LA operation.

5 Conclusion

In this paper, we proposed the HDPA scheme. The HDPA incorporates all the major
phenomena within LA that have improved these algorithms over the last six decades. By
implementing VSSA probability updating functionality and discretizing the probability
space, utilizing the Estimator phenomenon, and structuring the LA in a hierarchical
tree structure akin to the concept of binary search, the HDPA outperforms the state-of-
the-art HCPA when the convergence criterion is close to unity, i.e., when the accuracy
requirement is high. Our simulations demonstrated the clear advantage of the HDPA
over the HCPA for different Environments with many actions. We also demonstrated
the difference between the action probability updating of the schemes, and thus, why
their performance and convergence speeds are different.

204

12 R. O. Omslandseter et al.

References

1. Lakshmivarahan, S.: Learning Algorithms Theory and Applications. New York
Springer-Verlag (1981)

2. Lakshmivarahan, S., Thathachar, M.A.L.: Absolutely expedient algorithms for
stochastic automata. IEEE Transactions on Systems, Man, and Cybernetics 3, 281–
286 (1973)

3. Lanctot, J.K., Oommen, B.J.: Discretized estimator learning automata. IEEE Trans-
actions on Systems, Man, and Cybernetics 22(6), 1473–1483 (1992)

4. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Courier
Corporation (Dec 2012)

5. Oommen, B.J.: Absorbing and ergodic discretized two-action learning automata.
IEEE Transactions on Systems, Man, and Cybernetics 16(2), 282–293 (1986)

6. Oommen, B.J., Christensen, J.P.R.: ϵ-optimal discretized linear reward-penalty
learning automata. IEEE Transactions on Systems, Man, and Cybernetics 18(3),
451–458 (1988)

7. Oommen, B.J., Agache, M.: Continuous and discretized pursuit learning schemes:
Various algorithms and their comparison. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 31(3), 277–287 (2001)

8. Poznyak, A.S., Najim, K.: Learning Automata and Stochastic Optimization, vol. 3.
Springer (1997)

9. Thathachar, M.A.L., Sastry, P.S.: Estimator algorithms for learning automata. Pro-
ceedings of the Platinum Jubilee Conference on Systems and Signal Processing
(1986), Department of Electrical Engineering, Indian Institute of Science

10. Tsetlin, M.L.: Finite automata and the modeling of the simplest forms of behavior.
Uspekhi Matem Nauk 8, 1–26 (1963)

11. X. Zhang, B.J.O., Granmo, O.C.: The design of absorbing bayesian pursuit algo-
rithms and the formal analyses of their ϵ-optimality. Pattern Analysis and Applica-
tions 20, 797–808 (2017)

12. Yazidi, A., Zhang, X., Jiao, L., Oommen, B.J.: The hierarchical continuous pursuit
learning automation: A novel scheme for environments with large numbers of ac-
tions. IEEE Transactions on Neural Networks and Learning Systems 31(2), 512–526
(2020)

13. Zhang, X., Granmo, O.C., Oommen, B.J.: Discretized Bayesian pursuit - A new
scheme for reinforcement learning. In: Proceedings of IEA-AIE. pp. 784–793. Dalian,
China (Jun 2012)

14. Zhang, X., Jiao, L., Oommen, B.J., Granmo, O.C.: A conclusive analysis of the
finite-time behavior of the discretized pursuit learning automaton. IEEE transac-
tions on neural networks and learning systems 31(1), 284–294 (2020)

205

B.2 The Hierarchical Discrete Pursuit Learning Au-
tomaton: A Novel Scheme With Fast Conver-
gence and Epsilon-Optimality

This paper has been published as:

R. O. Omslandseter, L. Jiao, X. Zhang, A. Yazidi, and J. B. Oommen, “The Hierar-
chical Discrete Pursuit Learning Automaton: A Novel Scheme With Fast Conver-
gence and Epsilon-Optimality,” IEEE Transactions on Neural Networks and Learn-
ing Systems, Early Access, pp. 1–15, IEEE, December 2022.
DOI: https://doi.org/10.1109/TNNLS.2022.3226538

207

https://doi.org/10.1109/TNNLS.2022.3226538

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 1

The Hierarchical Discrete Pursuit Learning
Automaton: A Novel Scheme with Fast

Convergence and Epsilon-Optimality
Rebekka Olsson Omslandseter, Lei Jiao, Senior Member, IEEE, Xuan Zhang, Anis Yazidi, Senior Member, IEEE,

and B. John Oommen, Life Fellow, IEEE.

Abstract—Since the early 1960s, the paradigm of Learning
Automata (LA) has experienced abundant interest. Arguably,
it has also served as the foundation for the phenomenon and
field of Reinforcement Learning (RL). Over the decades, new
concepts and fundamental principles have been introduced to
increase the LA’s speed and accuracy. These include using
probability updating functions, discretizing the probability space,
and using the “Pursuit” concept. Very recently, the concept of
incorporating “structure” into the ordering of the LA’s actions,
has improved both the speed and accuracy of the corresponding
hierarchical machines, when the number of actions is large.
This has led to the ǫ-optimal Hierarchical Continuous Pursuit
LA (HCPA). This paper1 pioneers the inclusion of all the
above-mentioned phenomena into a new single LA, leading to
the novel Hierarchical Discretized Pursuit LA (HDPA). Indeed,
although the previously-proposed HCPA is powerful, its speed
has an impediment when any action probability is close to
unity, because the updates of the components of the probability
vector are correspondingly smaller when any action probability
becomes closer to unity. We propose here, the novel HDPA,
where we infuse the phenomenon of discretization into the
action probability vector’s updating functionality, and which is
invoked recursively at every stage of the machine’s hierarchical
structure. This discretized functionality does not possess the same
impediment, because discretization prohibits it. We demonstrate
the HDPA’s robustness and validity by formally proving the ǫ-
optimality by utilizing the moderation property. We also invoke
the sub-martingale characteristic at every level, to prove that
the action probability of the optimal action converges to unity
as time goes to infinity. Apart from the new machine being ǫ-
optimal, the numerical results demonstrate that the number of
iterations required for convergence is significantly reduced for the
HDPA, when compared to the state-of-the-art HCPA scheme.

Index Terms—Reinforcement Learning, Learning Automata,
Hierarchical Discrete Pursuit LA, Convergence Analysis

R. O. Omslandseter and Lei Jiao are with University of Agder, Grimstad,
Norway (email: rebekka.o.omslandseter@uia.no, lei.jiao@uia.no).

X. Zhang is with Norwegian Research Center (NORCE), Grimstad, Norway,
(email:xuan.z.jiao@gmail.com).

A. Yazidi is with Oslo Metropolitan University, Oslo, Norway
(email:anisy@oslomet.no).

B. J. Oommen is a Chancellor’s Professor with Carleton University, Ottawa,
Canada. He is also an Adjunct Professor with the University of Agder,
Grimstad, Norway (email:oommen@scs.carleton.ca). He dedicates this paper
to Neil and Louise Lee, and Michael and Inger-Maria Twilley, who were like
parents to his wife and him, when they moved to Canada in 1982.

1We are very grateful to the anonymous Referees of the initial version
of this paper. Their comments significantly improved the quality of this final
version. A preliminary and very abridged version of some of these results was
presented at the 34th Australasian Joint Conference on Artificial Intelligence
(AJCAI 2021), in February 2022, in Sydney, Australia.

I. INTRODUCTION

The field of Learning Automata (LA), pioneered by Michael
Lvovitch Tsetlin in the 1960s [1], has been thoroughly studied
over the years [2]. In LA, non-human agents learn with the
goal of solving particular tasks through computer programs.
Specifically, the concept of LA is based on a learning agent,
referred to as a LA2, interacting with a teacher, referred to
as the Environment. LA entails lightweight adaptive learning
schemes that are able to solve complex learning tasks in
stochastic Environments. The LA learns from the Environment
through continuous trial-and-error interactions, and gradually
increases its chances of choosing the most favorable action.
Without loss of generality, the mapping from the States to the
Actions is deterministic.

The LA operates in conjunction with a stochastic Environ-
ment, where the LA chooses an action from among a finite set
of actions offered by the Environment, which, in turn, provides
a feedback based on the chosen action. Consequently, the LA
adjusts its action based on a selection strategy as per this
feedback. Hopefully, this feedback cycle should subsequently
lead to the LA making “more intelligent” decisions. The
feedback from the Environment is commonly binary, but it
can also be from a finite set, or from a continuous range.

There are primarily two categories of LA, namely:
• Fixed Structure Stochastic Automata (FSSA), which have

a fixed policy for the inter-state transitions within a finite
set of states, where the LA’s current state corresponds to
its chosen action [2], and where both the updating and
decision functionalities are, typically, time-invariant.

• Variable Structure Stochastic Automata (VSSA), where
the action selection is based on an action probability
vector. In VSSA, updating functions are utilized to change
the behavior of the LA according to feedbacks from the
Environment. These will be explained in more detail in
the next section.

LA have scores of applications reported in the Literature. In
the interest of brevity, we omit3 them here and merely include
them in the bibliography.

2In this paper, the shortened term LA refers to both the field of Learning
Automata, the machine, and the Learning Automaton itself, depending on the
context in which it appears.

3The original submission had a detailed list of the applications of LA from
the past decades. Since they are all well cited in the Literature, we merely
include them in the bibliography as per the request of the AE and Referees.
We are grateful for their input. They can be included if required by the EiC.

208

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 2

A. Goal of this Paper

In any competition, setting an initial record is hard enough4,
but excelling it is a feat. The goal of this paper is to try to
attain to a speed/accuracy limit for LA dealing with a large
number of actions, that will be hard (if not impossible) to beat!

Improving the speed and accuracy of LA has always in-
volved discovering new concepts and fundamental principles.
One of the aims of this paper is to record the ways by which
the speed/accuracy of LA has been improved over the last
six decades. All of these enhancements have incorporated
new and fundamental principles that were not invented earlier.
Subsequently, combinations of these principles have led to
even further improvements. Our goal is to record all of the
principles and paradigms, and then combine them efficiently5.

As briefly explained below, these include using probability
updating functions in VSSA, discretizing the probability space,
and using the “Pursuit” concept. Very recently, the concept of
incorporating “structure” into the ordering of the LA’s actions,
has improved both the speed and accuracy of the correspond-
ing hierarchical machines, when the number of actions is
large. This has led to the ǫ-optimal Hierarchical Continuous
Pursuit LA (HCPA), which is currently the record holder for
such Environments. This paper pioneers the inclusion of all the
above-mentioned phenomena into a new single LA, leading to
the novel Hierarchical Discretized Pursuit LA (HDPA).

B. Organization of this paper

The remainder of the article is organized as follows. Sec-
tion II takes the reader through all the avenues by which
the speed/accuracy of LA have been enhanced in quantum
jumps or relatively incrementally, over the last six decades.
This motivates and sets the stage for the main contribution of
this paper, namely, the HDPA. In Section III, we describe,
in detail, the new algorithm. In Section IV, we prove the
algorithm’s convergence property, i.e., its ǫ-optimality. The
numerical results are presented in Section V, after which we
conclude the paper in the last section.

II. STRATEGIES TO ENHANCE SPEED/ACCURACY IN LA

A. The Infancy: FSSA

As briefly alluded to above, in a stochastic LA, if the
state transition probability and output function are constant,
i.e., they do not vary with the time step “t” and the input
sequence, the automaton is an FSSA. The pioneering and
popular examples of these LA were proposed by Tsetlin,
Krylov, and Krinsky [1] - all of which are ǫ-optimal under
various conditions. These were the primitive ground-breaking
LA, and the whole world of LA and RL had their very
existence because of them. Their details can be found in [2].

4This is apparent from the 100-meter sprint, which is reckoned as the
ultimate test of a person’s speed. The physical and psychological barrier of
completing it in under ten seconds makes the person “a world-class sprinter”.
Although Carl Lewis pioneered this challenge at 9.97 seconds in 1983, the
current record holder is Usain Bolt who ran it in 9.58. It takes a lot more
effort, and years of hard work, to even marginally improve a quantifying
performance metric, that is almost at the limit of par excellence!

5We are not aware of any publication which records these details, and we
believe that it will be extremely helpful for future researchers.

B. From FSSA to VSSA

The first quantum increase in speed was achieved by the
discovery/invention of VSSA. Unlike FSSA, VSSA are the
ones in which the state transition probabilities are not fixed.
Here, the state transitions or the action probabilities themselves
are updated at every time instant using a suitable scheme.

VSSA are an order of magnitude faster than FSSA because:
1) VSSA permit an enhanced stochastic exploration of the

action probability space, rather than moving through the
states of the machine step-by-step, as FSSA do;

2) Unlike FSSA, VSSA permit a “switch” of actions at
every step in time, and not merely at the so-called
Boundary states;

3) VSSA also provide a far greater flexibility, because
they utilize functions to determine the updating, and the
number of functions that can be used is limitless;

4) The transition probabilities and the output function vary
with time, and the action probabilities are updated on
the basis of the input. The action chosen is dependent on
the action probability vector, which is, in turn, updated
based on the Reward/Penalty input that the LA receives
from the Environment.

VSSA are modeled by a discrete-time Markov Process,
defined on a suitable set of states. If a probability updating
scheme is time invariant, the action probability vector when
t ≥ 0, {P (t)}t≥0, is a discrete-time, homogenous Markov
process, and the probability vector at the current time instant
P (t), (along with the action at time t, α(t), and the feedback
from the Environment at time t, β(t)) completely determine
P (t + 1). Hence, each distinct updating scheme, identifies a
different type of learning algorithm. For Continuous Linear
VSSA, the following four learning schemes are extensively
studied in the literature: The well-known Linear Reward-
Penalty (LR−P) scheme, the Linear Reward-Inaction (LR−I)
scheme, the Linear Inaction-Penalty (LI−P) scheme and the
Linear Reward-ǫPenalty (LR−ǫP) scheme, are examples of
linear VSSA updating rules [2], [3]. As opposed to these,
increasing the probabilities of the LA in a non-linear manner
has been investigated in [2], [3], [23].

C. From Continuous VSSA to Discretized VSSA

The next paradigm that was invented/discovered to increase
the speed/accuracy of LA was that of discretizing the action
probability space. The previous VSSA algorithms are contin-
uous, i.e., the action probabilities can assume any real value
in the interval [0, 1]. In such LA, the choice of an action is
determined by a Random Number Generator (RNG). In order
to increase the speed of convergence of these LA, Thathachar
et al [24] introduced the family of discretized algorithms which
pioneered the discretization of the probability space.

Discretized automata can be perceived to be like a hybrid
combination of FSSA and VSSA. Discretization is conceptu-
alized by restricting the probability of choosing the actions
to only a fixed number of values in the closed interval [0, 1].
Thus, the updating of the action probabilities is achieved in
steps, rather than in a continuous manner. The different prop-
erties (absorbing and ergodic) of these LA, and the updating

209

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 3

schemes of action probabilities for these discretized automata
(like their continuous counterparts) were later studied in detail
by Oommen et al in [24], [25]. Also, similar to the continuous
LA paradigm, the discretized versions, the DLRI , DLIP , and
DLRP automata have also been reported.

Originally, the assumption was that the RNGs could gen-
erate real values with arbitrary precision. In the case of
discretized LA, if an action probability is reasonably close
to unity, the probability of choosing that action increases in a
single iteration to unity (when the conditions are appropriate)
directly, rather than asymptotically.

The second important advantage of discretization is that it
is more practical since RNGs used by continuous VSSA can
only theoretically be assumed to be any value in the interval
[0, 1]. But machine implementations use pseudo-RNGs, where
the set of possible values is not infinite in [0, 1], but finite.

Finally, discretization is also important in terms of imple-
mentation and representation. Discretized implementations of
automata use integers for tracking the number of multiples
of the learning parameter, 1

N = ∆, where N is the so-
called resolution parameter. This, not only increases the rate
of convergence of the algorithm, but also reduces the time, in
terms of the clock cycles it takes for the processor to do each
iteration of the task, and the memory needed. By virtue of the
above, Discretized algorithms are both more time and space
efficient than their continuous counterpart algorithms.

D. The Estimator-based Paradigm

The next major quantum jump in the speed/accuracy of
LA was by the discovery/invention of Estimator-based Algo-
rithms (EAs). Just as in the case of the family of discretized
algorithms Thathachar and Sastry designed a new-class of
algorithms, called the Estimator Algorithms [4], which at
their time possessed a faster rate of convergence than all the
previous families. These algorithms, like the previous ones,
maintain, and update an action probability vector. However,
unlike the previous ones, these algorithms also keep running
estimates for each action that is rewarded, using a reward-
estimate vector, and then use those estimates in the probability
updating equations. The reward estimates vector is, typically,
denoted in the literature by D̂(t) = [d̂1(t), . . . , d̂r(t)]

T . The
corresponding state vector is denoted by Q(t) = 〈P (t), D̂(t)〉,
and the estimates can be computed using a Maximum Likeli-
hood scheme (see below), or in a Bayesian manner [26].

The reason for the quantum increase in speed is because
in EAs, the convergence involves two intertwined phenomena,
namely the convergence of the reward estimates, D̂(t), and
the convergence of the action probabilities themselves. The
combination of these vectors in the updating rule is intricate,
and must be done in a delicately-designed manner. By the
law of large numbers, if the actions are sampled “enough
number of times”, their estimates6 converge to their true
values. The Environment thus influences the probability vector

6The convergence proofs of EAs are far more complex than those of
traditional LA. This is because, if the accuracies of the estimates are poor
because of inadequate estimation (i.e., if the sub-optimal actions are not
sampled “enough number of times”), the convergence accuracy can be
diminished. We address this issue later.

both directly and indirectly, the latter being as a result of the
estimation of the reward estimates of the different actions.
This may, thus, lead to increases in action probabilities for
actions different from the currently-rewarded action. This revo-
lutionary concept changed the entire world of LA, and indeed,
even though there is an added computational cost involved in
maintaining the reward estimates, these estimator algorithms
possess an order of magnitude superior performance than the
non-estimator algorithms previously introduced.

Pursuit algorithms are a sub-class of EAs that pursue an
action that the automaton “currently” perceives to be optimal.
The first pursuit algorithm, referred to as the CPRP algorithm
due to Thathachar and Sastry, pursues the optimal action on
Reward and Penalty. Here, the currently perceived “best ac-
tion” is rewarded, and its action probability value is increased
with a value directly proportional to its distance to unity,
whereas the “less optimal actions” are penalized. The cases of
changing the action probabilities only on reward and ignoring
the penalties lead to the CPRI scheme, also described in [27].
Thathachar et al [4] introduced the class of continuous EAs,
where one pursues not only the best currently-optimal action7,
and Agache et al proposed the so-called Generalized Pursuit
LA [27].

E. Merging Estimators-based and Discretized Worlds

The next steps in enhancing the speed/accuracy of LA
involved merging the properties of the previously-introduced
phenomena. In particular, the researchers piggy-backed on
the benefits of dicretization and of the Pursuit paradigm.
Utilizing the previously proven capabilities of discretization in
improving the speed of convergence of the learning algorithms,
Lanctôt and Oommen [28] enhanced the Pursuit algorithm
and the “Thathachar and Sastry’s Estimator” algorithm [4].
This led to the designing of classes of learning algorithms,
referred to in the literature as the Discrete Estimator Algo-
rithms (DEAs) [28], which possessed the so-called Moderation
and Monotone Properties. Agache and Oommen [27] provided
a discretized version of their GPA algorithm presented earlier.
Their algorithm, called the Discretized Generalized Pursuit Al-
gorithm (DGPA), also essentially generalized the “Thathachar
and Sastry’s Estimator” algorithm [4].

All of these were further investigated in [29] and [30]
respectively, where the earlier flawed proofs of the schemes
themselves, were perfected.

F. Incorporating Structure

All of the LA schemes that have been discussed till now
assumed that the actions were unordered, which, of course,
makes sense since the penalty probabilities are unknown.
Indeed, why should one action be preferred above the others?
The next major quantum jump in the speed and accuracy of
designing LA occurred by incorporating structure into the
ordering of the actions. This represents the current state-
of-the-art, and is particularly pertinent when the number of

7The probability updates differ depending in whether the reward estimates
are smaller or larger than the estimate of the currently selected action.

210

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 4

actions involved, R, is large. In such scenarios, the learning
problem becomes extremely complex, which motivated the
authors of [31] to devise a scheme by which small subsets
of actions (for example, of cardinality two) were compared,
and the result of their comparison was trickled up to avoid
dealing with R-action LA and vectors.

Unlike the prior art, in the case of FSSA, one requires S-
states for each of the R actions. When the number of actions
is large, a LA deals with an R ·S×R ·S-sized Markov chain,
and this adds to the sluggishness of the machine. In the case of
VSSA, the action probability vector has a dimension of R and
its elements sum up to 1. When R is large, many of the action
probabilities can have very small values and may not even be
chosen, thus rendering the principle behind VSSA to be void.
For the families of pursuit algorithms, the problem still exists
because one still utilizes the action probability vector with
dimension R, which could be large in this setting.

To make the LA work for a large number of actions, the
HCPA was developed [31]. In the hierarchical structure8 of
the HCPA, instead of using one CPA with R actions, they
employed multiple CPA, and arranged them in different layers.
In this way, the authors avoided having insignificant values in
the action probability vector. This endowed the HCPA with
the ability to handle the cases when R was very large, which
was not even feasible for the traditional CPA to solve.

The quantum jump in speed and accuracy was achieved by
merging the phenomena of VSSA and EAs, and doing this
in an ordered hierarchical manner, where each LA dealt with
a small number of actions. Indeed, the convergence speed of
the novel LA proposed in [31] was many orders of magnitude
faster than any of the other legacy LA. In essence:

1) It incorporated the area of “data structures” into the field
of LA, and suggested a novel hierarchical LA which
uses a tree structure as a part of the learning process;

2) The scheme was based on a multi-level hierarchy com-
posed of two-action CPA at each of the levels, where
both the estimation required for an EA, and interaction
occurred only at the leaves of the hierarchy;

3) The individual LA performed the learning locally and
the result of this was trickled-up in a recursive manner
by considering only a node and its sibling so as to
achieve global learning. This also mitigated the problem
of having very small action probabilities, since every LA
dealt with only two actions.

The HCPA is the state-of-the-art in LA. The goal of this
paper is to incorporate all of the above phenomena (VSSA,
discretization, the Estimator phenomenon and structure), into
our present novel contribution, namely the HDPA. The contri-
butions of this present work are thus summarized as follows:

• We propose a novel HDPA that converges faster than
the state-of-the-art HCPA algorithms as the convergence
criterion is configured close to unity, e.g., above 0.99. The
advantage of the HDPA over the HCPA becomes more
obvious when one works with a large number of actions;

8A notable prior attempt to devise hierarchical LA is due to Papadim-
itriou [32]. The difference between what the HCPA and we have done (when
compared to the work of [32]), is explained, in detail, in [31].

• We prove, using a formal, rigorous mathematics analysis,
the ǫ-optimality of HDPA;

• By resorting to simulation results, we quantify, in detail,
how much faster the convergence of the HDPA is when
compared to the HCPA. We have also stated, for the first-
time, a bound for the number of iterations, which is an
avenue for future analytical studies.

G. Roadmap for Our HDPA
Although the HCPA can work in the scenario when there are

a large number of actions, the novelty of this paper is that we
have proposed a viable mechanism by which its convergence
speed can be improved. By some insight, one observes that
HCPA has a relatively sluggish convergence, especially when
the required convergence accuracy is high, e.g., above 0.99.
The reason behind it is that the changes in the probability
vector decrease with the number of iterations. As the learning
continues, the increment of the superior action probability
is correspondingly decreased, making it more difficult to
converge in the later phase of learning. To overcome this,
we propose the HDPA to speedup the convergence when high
convergence accuracy is required. The beauty of HDPA is that
learning speed is not decreasing as the learning continues. This
is because we piggy-back the phenomenon of discretization
– we incorporate all of the above phenomena, i.e., VSSA,
discretization, the Estimator phenomenon and structure!

The newly-proposed discretized learning is shown to be
faster than what has been achieved previously in the liter-
ature for Environments where the convergence criterion is
configured to be more than 99%. The speed of the scheme
for such convergence criteria is significantly faster than the
HCPA, and the gained efficiency is observed to increase as
the number of actions increases. Thus, when we are faced
with many actions and we are concerned with the accuracy
of convergence, the HDPA outperforms the state-of-the-art
HCPA scheme presented in [31] in terms of efficiency, i.e.,
the number of iterations required before convergence.

We conjecture that the HDPA has thus attained to a
speed/accuracy limit for LA dealing with a large number of
actions, that will be hard (if not impossible) to beat!

III. DESCRIPTION OF THE HDPA
The HDPA incorporates all of the phenomena detailed

in the introduction. More specifically, we organize a set of
DPA instances in a hierarchical tree structure, where all
the DPA instances have a set of actions corresponding to
the possible paths down the tree structure. We maintain the
action probabilities of the respective LAs through vectors that
are updated in a discretized manner based on whether an
action receives a Reward (or Penalty). At the bottom level
of the tree, we have the actions that directly interact with
the Environment, and we maintain reward estimates of all
the different actions throughout the tree. According to the
Pursuit concept, the HDPA pursues the currently estimated
best action in all iterations. Thus, the action that currently
has the best-estimated reward probability is rewarded upon
a Reward, regardless of which action actually triggered the
Reward. A more throughout explanation is given in below.

211

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 5

A. The Structure of the HDPA

In the interest of simplicity and clarity, in the following
explanations, we will utilize a 2-action DPRI instances as
the primitive machine in the construction of the HDPA.
Consequently, the hierarchy can be organized as a balanced
full binary tree for a problem with 2K actions9 and a maximum
depth of K. If the number of actions is less than 2K ,
one can add dummy actions with zero reward probabilities.
Likewise, when we have more than 2K actions, we need to
consider the nearest power of two and then set the action
probabilities to zero for the excess number of actions. To
incorporate the mathematics established in [31] and for ease of
the comparisons to the HCPA scheme, we utilize notations that
are similar to those of the latter paper. We further formalize
the levels in the hierarchy as follows:

• The depth index of the tree: For a tree with the
maximum depth K, we employ k to index the depth of
the tree, where k ∈ {0, 1, . . . ,K}.

• The various LA: We denote a specific LA by A{k,j},
where k refers to its depth and j represents its partic-
ular index in depth, k. More specifically, the LA j ∈
{1, ..., 2k} at depth k, is referred to as A{k,j}, where
k ∈ {0, ...,K − 1}. The LA at the top of the hierarchy
is the one at depth 0.

• The LA at depths from 0 to K − 1 (0 ≤ k < K − 1):
– Each of the LA, A{k,j}, has two actions, denoted by
α{k+1,2j−1} and α{k+1,2j}, respectively.

– Whenever the action α{k+1,2j−1} is chosen, the spe-
cific LA A{k+1,2j−1}, at the next level is activated.

– Whenever the action α{k+1,2j} is chosen, the specific
LA A{k+1,2j}, at the next level is activated.

– A{k+1,2j−1} and A{k+1,2j} are referred to as the
Left Child and the Right Child of its parent (A{k,j}),
respectively.

• The LA at depth K − 1 (k = K − 1): The LA at
depth K − 1 select the actual actions to interact with the
Environment.

– All of the LA at depth K − 1 have two possible
actions each, referred to as α{K,2j−1} and α{K,2j},
respectively.

– The K − 1 depth has 2K actions in total, referred to
as α{K,j} where j ∈ {1, ..., 2K}.

– The selected action denoted by: α{K,j}, is the child
of A{K−1,⌈j/2⌉}.

• The actions at level K (k = K): At depth K, i.e., at
the bottom of the tree, we have the actions that directly
interact with the Environment.

B. The Concept of the HDPA

As explained above, the concept of the HDPA is to or-
ganize the DPA nodes in a tree structure. Observe that any
of the various reported instantiations of the DPA can be

9The LA instances can easily be extended to have more actions, but the
reader should remember that we endeavor to mitigate the problem of slow
convergence associated with many actions in the action probability vector.
Consequently, the number of actions should, in any case, be limited in
consideration of the convergence rate.

utilized at every level. However, we have chosen to utilize
the DPRI instances, because the Reward-Inaction scheme has
demonstrated a superior performance than the Reward-Penalty
types [31].

As depicted in Fig. 1, each node, except the nodes at the
bottom level, is the parent of two children, i.e., each node
maintains a discretized probability vector with two possible
actions, corresponding to its children. The HDPA maintains
the original actions through the 2-actions DPA instances at the
second bottom level of the tree, i.e., the nodes at depth K−1.
Consequently, if a problem has 28 = 256 actions, there are
128 nodes at the K − 1 depth of the tree, each maintaining a
2-action probability vector, i.e., 256 actions in total.

By way of example, let us consider the structure in Fig. 1,
where we have eight original actions, i.e., eight leaves. In this
case, we have seven LA, i.e., A{0,1}, A{1,1}, A{1,2}, A{2,1},
A{2,2}, A{2,3} and A{2,4}. When the HDPA scenario can be
structured as a full binary tree, the number of LA needed is
given by 2K − 1. Each LA maintains an action probability
vector of dimension 2. To choose an action, we follow the
path down the tree by sampling the action probabilities in these
vectors. For example, when A{0,1} has an action probability
vector of [0.9, 0.1], it selects α{1,1} at the root, with probabil-
ity 0.9. Once α{1,1} is chosen, A{1,1} is selected for making
the decision at depth 1 for the next depth in the tree. Let us
assume that A{1,1} happens to select the action α{2,2}, and the
LA A{2,2} is consequently activated. After that, A{2,2} selects
the action at the leaf depth as per its action probability vector.
If α{3,4} happens to be chosen, the fourth original action is
selected to interact with the Environment in that iteration. The
HDPA consequently updates the probability components in
the tree based on the feedback from the Environment. More
specifically, the reward estimates are updated in the reverse
path of the actions selected in the tree. For the updating of
the action selection probabilities, it is based on whether the
selected leaf receives a Reward or not. If the selected leaf
receives a Reward, following the Pursuit concept, we reward
all actions in the tree along the path that leads to the leaf with
the current best reward estimate. Note that the leaf with the
current best reward estimate may not be the selected leaf in the
current iteration due to the fact that we only pursue the action
that currently most likely receives a Reward, when averaged
over all iterations. The above concepts are formalized below.

Notations and definitions:
To clarify the concepts explained above, we use the following
definitions in the description of the algorithm:

• The 2K actions that interact with the Environment are
elements from the set

{
α{K,1}, . . . α{K,2K}

}
. Further, the

actions
{
α{K,2j−1}, α{K,2j}

}
are the only two actions

that can be selected at depth K − 1, namely A{K−1,j}.
• Each LA j ∈ {1, ..., 2k} at depth k, referred to as A{k,j},

where k ∈ {0, ...,K − 1} has two actions, namely,
α{k+1,2j−1} and α{k+1,2j}.

• P{k,j} = [p{k+1,2j−1}, p{k+1,2j}], is the action probabil-
ity vector of LA A{k,j}, where k ∈ {0, ...,K − 1} and
j ∈ {1, ..., 2k}.

Parameters:

212

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 6

Fig. 1. A visualization of the tree structure in the HDPA with notations as utilized for the explanations in the paper.

∆: The learning parameter, where 0 < ∆ < 1, and its value
is configured arbitrarily close to zero.
u{K,j}: The number of times that action α{K,j} was rewarded
when selected, where j ∈ {1, . . . , 2K}.
v{K,j}: The number of times that action α{K,j} was selected,
where j ∈ {1, . . . , 2K}.
d̂{k,j}: The estimated reward probability of action α{k,j},
k ∈ {1, ...,K}, j ∈ {1, . . . , 2k}. At level K, d̂{K,j} is
computed as d̂{K,j} =

u{K,j}
v{K,j}

, where j ∈ {1, . . . , 2K}.
β: The response from the Environment, where β = 0 corre-
sponds to a Reward, and β = 1 to a Penalty.
T : The convergence criterion threshold.
We initialize the estimates of the reward probabilities as 0.5.
Thus, both actions in all the LA in the tree have an initial
estimated reward probability of 0.5, i.e., u{K,j}(0) = 1,
v{K,j}(0) = 2, thus d̂{K,j}(0) = 1

2 . The action probability
vector is also initialized as 0.5 for all the LA, i.e., P{k,j}(0) =
[12 ,

1
2], where k ∈ {0, ...,K − 1} and j ∈ {1, ..., 2k}.

Begin algorithm:
t = 0
Loop

1) Depths 0 to K − 1:
• The LA A{0,1} selects an action by randomly (uni-

formly) sampling as per its action probability vector
[p{1,1}(t), p{1,2}(t)].

• Let j1(t) be the index of the chosen action at depth
0, where j1(t) ∈ {1, 2}.

• The next LA activated is A{1,j1(t)}, in turn, chooses
an action and activates the next LA at depth “2”.

• This process continues including depth K − 1.
2) Depth K:

• Let jK(t) be the index of the action chosen at depth
K, where jK(t) ∈ {1, . . . , 2K}.

• Update d̂{K,jK(t)}(t) based on the response from
the Environment at the leaf depth, K:

u{K,jK(t)}(t+1) = u{K,jK(t)}(t) + (1− β(t))
v{K,jK(t)}(t+ 1) = v{K,jK(t)}(t) + 1

d̂{K,jK(t)}(t+ 1) =
u{K,jK (t)}(t+1)

v{K,jK (t)}(t+1) .

• For all other “leaf actions”, where j ∈ {1, ..., 2K}
and j 6= jK(t):

u{K,j}(t+ 1) = u{K,j}(t)
v{K,j}(t+ 1) = v{K,j}(t)

d̂{K,j}(t+ 1) =
u{K,j}(t+1)

v{K,j}(t+1) .

3) Define the reward estimates for all other actions along
the path to the root, k ∈ {0, ...,K − 1} in a recursive
manner, where the LA at any one level inherits the
feedback from the LA at the level below as:

d̂{k,j}(t) = max
(
d̂{k+1,2j−1}(t), d̂{k+1,2j}(t)

)
.

4) Proceed to update the action probability vectors along
the path leading to the leaf with the current maximum
reward estimate, as follows:

• By definition, each LA j ∈ {1, ..., 2k} at depth k,
referred to as A{k,j}, where k ∈ {0, ...,K − 1},
has two actions α{k+1,2j−1} and α{k+1,2j}. Let
jhk+1(t) ∈ {2j − 1, 2j} be the index of the larger
element between d̂{k+1,2j−1}(t) and d̂{k+1,2j}(t).

• Let jhk+1(t) = {2j−1, 2j}\jhk+1(t) be the opposite
action, i.e., the one with the lower reward estimate.

• For all k ∈ {0, ...,K−1}, update p{k+1,jhk+1(t)} and

p{k+1,jhk+1(t)}
using the estimates d̂{k+1,2j−1}(t)

and d̂{k+1,2j}(t) as:
If β(t) = 0 Then
p{k+1,jhk+1(t)}(t+ 1) =

min
(
p{k+1,jhk+1(t)}(t) + ∆, 1

)
,

p{k+1,jhk+1(t)}
(t+1) = 1− p{k+1,jhk+1(t)}(t+1).

Else
p{k+1,jhk+1(t)}

(t+ 1) = p{k+1,jhk+1(t)}
(t),

p{k+1,jhk+1(t)}(t+ 1) = p{k+1,jhk+1(t)}(t).
EndIf

5) For each A{k,j}, if either of its action probabilities
p{k+1,2j−1} and p{k+1,2j} surpasses a threshold T ,
where T is a positive number that is close to unity, the
action probabilities for the HDPA will stop updating,
and convergence is achieved.

6) t = t+ 1

EndLoop
End algorithm

The above algorithm can be simplified because it is unnec-
essary to update the reward estimates along the path for the
algorithm to run. In other words, we only need the estimated
reward probabilities for the actions that directly interact with
the Environment, i.e., for the leaves. But we have chosen
to describe the scheme using the above algorithm, because
we utilize, in the next section, the reward estimates along
the path in the convergence analysis. In the interest of space

213

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 7

and brevity, as one can see, the detailed description of the
updates are omitted here, as recommended by the Referees.
The interested reader can find them in [40].

IV. PROOF OF ǫ-OPTIMALITY

The proof follows the four-step method established in [33]
for the DPA. But in contrast, we prove here that convergence
will also occur when the learning units are structured hierarchi-
cally. In particular, we consider the moderation property and
prove that we have a marginality property along the optimal
path. After that, we utilize the sub-martingale property in a
level-by-level approach. We finally prove that the probability
of the optimal action approaches unity as time goes to infinity.

A. The Moderation Property

We first need to consider the moderation property, proving
that under the HDPA, by utilizing a sufficiently small value
of the learning parameter, ∆, each action will be selected an
arbitrarily large number of times.

Theorem 1. For any value of δ ∈ (0, 1] and integer M <∞,
there exist a non-zero positive learning parameter, ∆0 < 1,
such that for all ∆ < ∆0:

Pr{x} > 1− δ,

where x indicates the event that each action is selected more
than M times before time t0.

Proof. The details of the proof that Theorem 1 is true for
the DPA can be found in [4], [29], and [34]. We now further
elaborate on why this is also true for the HDPA.

In the case of the HDPA, we have 2K actions at depth
K denoted as α{K,j} and j ∈ {1, ..., 2K}. Let Y t

{K,j} be the
number of times action α{K,j} is chosen up to time t. To prove
Theorem 1, we want to show Pr{Y t

{K,j} > M} > 1 − δ,
which is the same as Pr{Y t

{K,j} ≤ M} ≤ δ. The events
{Y t

{K,j} = l} and {Y t
{K,j} = n} are mutually exclusive for

l 6= n. Consequently, it follows that:

Pr
{
Y t
{K,j} ≤M

}
=

M∑

l=1

Pr
{
Y t
{K,j} = l

}
.

Further, the probability of the actions at depth K being chosen
is connected to the probabilities in shallower depths as follows:

Pr{α{K,jK}is chosen} = p{K,jK}p{K−1,jK−1} · · · p{0,j0},

where jK−1 = ⌈jK/2⌉, jK−2 = ⌈jK−1/2⌉, ..., and j0 =
⌈j1/2⌉. Considering the time aspect, it follows that:

Pr{α{K,jK}is chosen at time t} =

p{K,jK}(t)p{K−1,jK−1}(t) · · · p{1,j1}(t).

Let us further assume that all the LA instances have the same
action probability at beginning, i.e., pk,j(0) = 1/2 at t = 0.
For ease of expression, we use p(0) to represent the initial
action probabilities, pk,j(0), for all actions. By the modus
operandus of the various instances of the DPA, we know that

the magnitude by which any action probability can decrease
in any single iteration is bounded by ∆ such that we have:

Pr{α{K,jK}is chosen at time t} ≤ 1 and

Pr{α{K,jK}is not chosen at time t} ≤ (1− (p(0)− t∆)K).

Consider the first t iterations. Using these upper bounds, the
probability that α{K,jK} is chosen at most M times among
the t iterations has the following upper bound:

Pr{Y t
{K,j} ≤M} =

M∑

l=1

Pr{Y t
{K,j} = l} ≤

M∑

l=1

(
t

l

)
(1)lΨt−l,

where Ψ = 1−(p(0)−t∆)K . To show that a sum of M terms
is less than δ, it is sufficient to make each element of the sum
is less than δ

M . Let us consider the case of l = m, where
the m-th term times M should be less than δ. Consequently,
we need to show that M

(
t
l

)
(1)m(1 − (p(0) − t∆)K)t−m is

bounded by δ. We see that
(
t
l

)
≤ tm, and we need to show that

MtmΨt−m ≤ δ. In order to achieve this, (1− (p(0)− t∆)K)
must be strictly less than unity. In order for (1−(p(0)−t∆)K)
to be less than unity, we must have p(0)−t∆ > 0, which leads
to the bound of ∆, i.e., ∆ < p(0)

t = 1
2t . Hence, (1− (p(0)−

t∆)K) < 1. By definition, 0 < ∆ and thus 0 < ∆ < 1
2t . With

this value of ∆, we can simplify the analysis, and we now
have Pr{Y t

{K,j} ≤M} < MtmΨt−m, where 0 < Ψ < 1. We
now evaluate the case when t→ ∞ as:

lim
t→∞

MtmΨt−m =M lim
t→∞

tm

(1/Ψ)t−m
.

By using L’Hospital’s Rule, it follows that:

M lim
t→∞

tm

(1/Ψ)t−m
=M lim

t→∞
m!

(ln(1/ψ))m(1/Ψ)t−m
= 0.

Therefore, for every leaf action α{K,j}, there exists t = t(j)

such that Pr(Y t
{K,j} ≤M) ≤ δ. Since t > t(j) then Y t(j)

{K,j} ≥
M gives Y t

{K,j} ≥ M , and therefore Pr{Y t
{K,j} ≥ M} ≥

Pr{Y t(j)
{K,j} ≥ M}. Consequently, Pr{Y t

{K,j} ≤ M} ≤ δ for
all t > t(j). This implies that the probability of an action not
being chosen as t→ ∞, given the restriction of ∆, is zero.

To complete the proof, let t0 = max1≤j≤2K{t(j)}. Then
for all t > t0 and for all j such that 1 ≤ j ≤ 2K , we have
Pr{Y t

{K,j} ≤M} ≤ δ. Theorem 1 is thus proven.

B. The Marginality Property

For the second part of the proof, we need to show that,
given that each action α{K,j} is selected a sufficiently large
number of times, the reward estimate of the optimal action
will remain the largest with sufficiently large probability along
the optimal path throughout the hierarchical tree structure. We
first establish a baseline for Theorem 2. Let q{k,j∗k} be the
probability that the reward estimate, d̂{K,j∗K}, of the optimal
action, is the largest among all actions of the tree at A{k,j∗k},
where the ∗ is used to indicate the action that corresponds

214

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 8

to the path of the optimal action. This relates to the various
depths of the HDPA, when K > 3, as follows:

• The first level (root): At this depth, we have a single
LA A{0,1}, and q{0,1} is the probability that d̂{K,j∗K} is
the maximum among all the 2K actions.

• The second level: q{1,j∗1} is the probability that d̂{K,j∗K}
is the maximum among all actions of the tree rooted
from A{1,j∗1}. There are 2(K−1) actions that compete for
having the best reward estimate at this depth.

• The interior level(s): For the interior depths of the hier-
archy, this phenomenon holds as we follow the path down
the tree at every level, having fewer actions competing for
the best reward estimate as we go further down the tree.

• The last/leaf level: q{K−1,j∗K−1} is the probability that
d̂{K,j∗K} is maximum among the two actions of LA
A{K−1,j∗K−1} at this level. There are exactly two actions
that compete for having the best reward estimate here.

Theorem 2. Given a value of ∆ ∈ (0, 1), there exists a time
instant denoted by t0 <∞, such that:

q{k,j∗k} > 1− δ,

which is true ∀t > t0 and ∀k ∈ {0, 1, ...,K − 1}.

Proof. To prove Theorem 2, we use the aspect that q{0,0} <
q{1,j∗1} < ... < q{K−1,j∗K−1}, since the probability of being
the best from a set of actions is less than the probability of
being the best from a subset of actions. Consequently, proving
Theorem 2 can be achieved by proving that q{0,0} > 1 −
δ. Given that Theorem 1 is proven, the proof of Theorem 2
become identical to the corresponding proof for the DPA given
in [4], [29], and [34], respectively. The additional details of
the proof, are thus, omitted here, to avoid repetition.

C. The Sub-Martingale Property

In order to conclude the proof in Section IV-C, we first need
to show that the HDPA has the sub-martingale property. To do
this, we now show that after a time instant t0, the probability
of choosing the optimal action is increasing, in the expected
sense. This feature is different from the probability of being
monotonically increasing, which is a very strong condition.

Theorem 3. Under the HDPA, the quantity:
{
p{k,j∗k}(t)

}
,

where k ∈ {1, ...,K} and t > t0 is a sub-martingale.

Proof. We first formalize the sub-martingale property by de-
noting a sequence of random variables as X1, X2, ..., Xt. The
sequence is a sub-martingale if for any time instant t:

E[Xt] <∞ and E[Xt+1|X1, X2, ..., Xt] ≥ Xt.

To prove Theorem 3, we first observe that p{k,j∗k} is a
probability, which means p{k,j∗k} ≤ 1 < ∞. Secondly, we

explicitly calculate E
[
p{k,j∗k}(t)

]
, for all k ∈ {1, ...,K}. The

proof of this theorem is achieved by an inductive argument.
At every level, we consider the nodes that are one and two
levels below it, respectively. Indeed, this is true because that is

the structure that effectively remains at the specific node, and
is essentially depicted in Fig. 1, where the root node of the
subtree is determined by the decision of two children and four
grandchildren. Once the proof has been proven for such a sce-
nario, the overall proof follows trivially, because the decision
of every node is based on the decision of its immediate two
children and four grandchildren. A straightforward inductive
argument formalizes this to be true for the overall tree, since
it is true at every level for the subtree of depth two from the
root of the corresponding subtree. Thus, in what follows, we
merely use the tree structure of Fig. 1 to formalize the proof.

We look at the first three levels of the LA hierarchy,
and calculate E

[
p{k,j∗k}(t)

]
, when k = 2. Without loss of

generality, we simplify the notations to what are shown in
Fig. 1, and let A{1,1} (α{1,1}) and A{2,1} (α{2,1}) be the LA
(actions) on the optimal path. One can see that this implies that
the optimal path is the one consisting of all the left-most nodes
in both levels. We denote the set of all the action probabilities
in time instant t in the tree as P(t). Then, by going through
all the four paths that lead to four individual actions at level 2,
and by following the action probability updating rules of the
HDPA, we can calculate the expected probability of choosing
the optimal action at level 2 as:

E [p21(t+ 1)|P(t)]

=p11p21(d21(q11(p21 +∆) + (1− q11)(p21 −∆))

+ (1− d21)p21)

+ p11p22(d22(q11(p21 +∆) + (1− q11)(p21 −∆))

+ (1− d22)p21)

+ p12p23p21 + p12p24p21

=p11p21(d21q11p21 − d21q11∆+ d21p21 − d21∆

− d21q11p21 + d21q11∆+ p21 − d21p21)

+ p11p22(d22q11p21 − d22q11∆+ d22p21 − d22∆

− d22q11p21 + d22q11∆+ p21 − d22p21)

+ p12p21

=p11p21d21∆(2q11 − 1) + p11p21p21

+ p11p22d22∆(2q11 − 1) + p11p22p21

+ p12p21

=p11∆(p21d21 + p22d22)(2q11 − 1) + p21.

Note that in the above expression, we have omitted all the
time instant information to keep the expression simpler and
neat. The complete version should be:

E [p21(t+ 1)|P(t)]

=p11(t)∆

(
p21(t)d21 + p22(t)d22

)(
2q11(t)− 1

)
+ p21(t).

Following the same manner in which we calculated the
above E [p21(t+ 1)|P(t)], we are able to get the generalized
formula for the expected probability of choosing the optimal
action at level k:

E
[
p{k,j∗k}(t+ 1)|P(t)

]
= p{k,j∗k}(t) +

∏

l=1,...,k−1

p{l,j∗l }(t)

)

215

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 9

∑

j=1,2

p{k,j}(t)d{k,j}∆(2q{k−1,j∗k−1}(t)− 1)

)
,

which can be proven by an inductive argument. The difference
between E

[
p{k,j∗k}(t+ 1)

]
and p{k,j∗k}(t), is thus:

Diffp{k,j∗
k
}(t) = E[p{k,j∗k}(t+ 1)|P (t)]− p{k,j∗k}(t)

=

(∏

l=1,...,k−1

p{l,j∗l }(t)

)

(∑

j=1,2

p{k,j}(t)d{k,j}∆(2q{k−1,j∗k−1}(t)− 1)

)
.

As p{k,j}(t) > 0 and d̂{k,j}(t) > 0 for all t, k, and
j, we clearly see that if ∀t > t0, q{k,j∗k}(t) > 1

2 , then
Diffp{k,j∗

k
}(t) > 0, and the sequence p{k,j∗k} with t > t0

is a sub-martingale. Therefore, we only need to let 1− δ = 1
2 ,

then, by Theorem 2, there exists a time instant t0, such that
for all t > t0 we have:

q{k,j∗k}(t) >
1

2
.

Theorem 3 is thus proven.

D. The ǫ-Optimality of the HDPA

Finally, we show the ǫ-Optimality of the HDPA.

Theorem 4. For all stationary stochastic Environments, the
HDPA is ǫ-optimal, i.e., the HDPA will converge to the optimal
path P∗ = {p{k,j∗k}}, k = {1, ...,K}. Formally, given any
1 − δ > 1

2 , there exists a ∆ ∈ (0, 1) and a time instant
t0 < ∞, such that for all ∆ < ∆0 and for all time instants
t > t0, we have q{k,j∗k}(t) > 1− δ, ∀k, and the quantity:

Pr
{
p{k,j∗k}(∞) = 1

}
→ 1, where k ∈ {1, ...,K − 1}.

Proof. We can interpret Theorem 4 as follows: If the proba-
bility of choosing the optimal action in each level converges
to unity, then the entire tree will converge to the optimal path,
which consists of the optimal nodes from each level. We thus
can follow the level-wise approach to prove Theorem 4.

We again refer to the simplified tree and notations in Fig. 1
and consider the first two levels in the LA hierarchy, i.e.,
when k = 1. We are to prove that Pr {p11(∞) = 1} → 1,
and the proof is essentially the same as how we proved
that a flat DPA converges to the optimal action in [36].
Consequently, the proof can be based on the sub-martingale
convergence theory, and we can utilize a Regular function to
indirectly study the convergence probability. Firstly, as per
Theorem 3, p11(∞) is a sub-martingale. According to the sub-
martingale convergence theory, p11(∞) = 0 or 1. Secondly,
the convergence probability Pr {p11(∞) = 1} can be written
as Pr {P01(∞) = em}, where em is the unit vector, and m is
the index of element which corresponds to the optimal action.
At node A{0,1}, em = e1 = [1, 0], as the optimal action is
the first action. Therefore, proving Pr {p11(∞) = 1} → 1 is
equivalent to proving Γ(P01) = Pr {P01(∞) = e1} → 1.

To prove this, we shall use the theory of Regular functions,
and follow an argument similar to the one given in [36]. Let
Φ(P) be a function of P , and we define an operator U as:

UΦ(P) = E[Φ(P (t+ 1))|P (t) = P].

Then, we repeatedly apply U , resulting in the expression:

U tΦ(P) = E[Φ(P (t))|P (0) = P].

If Φ(P) = UΦ(P) = U2Φ(P) = ... = U∞Φ(P), we
call Φ(P) a regular function of P . If Φ(P) ≥ UΦ(P) ≥
U2Φ(P) ≥ ... ≥ U∞Φ(P), Φ(P) is a super-regular function
of P , and when Φ(P) ≤ UΦ(P) ≤ U2Φ(P) ≤ ... ≤
U∞Φ(P), Φ(P) is a sub-regular function of P . Furthermore,
if Φ(P) satisfies the boundary conditions:

Φ(em) = 1 and Φ(ej) = 0, (for j 6= m), (1)

then, as per the definition of Regular functions and the sub-
martingale convergence theory, we have:

U∞Φ(P) = E[Φ(P (∞))|P (0) = P]

=
∑

j=1,2

Φ(em)Pr{P (∞) = ej |P (0) = P}

= Pr{P (∞) = em|P (0) = P}
= Γ(P). (2)

Eq. (2) shows that Γ(P) is exactly the function Φ(P) upon
which U is applied an infinite number of times, and this
function can be lower/upper bounded by Φ(P) if Φ(P) is
a sub-regular/super-regular.

Our goal is to find a proper sub-regular function to serve
as the lower bound Γ(P01). We solve this by first finding a
corresponding super-regular function of P01. Let us consider
a specific instantiation of Φ to be the function Φ1 and:

Φ1(P01) = e−x1p11 ,

where x1 is a positive constant. It follows that, under the
HDPA, we have:

U(Φ1(P01))− Φ1(P01)

= E[Φ1(P01(t+ 1))|P(t)]− Φ1(P01(t))

= E
[
e−x1p11(t+1)|P01(t)

]
− e−x1p11(t)

=
∑

j=1,2

e−x1(p11+∆)p1jd1jq01

+
∑

j=1,2

e−x1(p11−∆)p1jd1j (1− q01)

+
∑

j=1,2

e−x1p11p1j(1− d1j)− e−x1p11

=
∑

j=1,2

p1jd1je
−x1p11

(
q01

((
e−x1∆ − ex1∆

)

+ (ex1∆ − 1)
))

. (3)

In the above equation, time instant (t) has been omitted from
p1j(t), p11(t), and q01(t). We now need to determine a proper
value for x1 such that Φ1(P) is super-regular, i.e.,

U(Φ1(P01))− Φ1(P01) ≤ 0,

216

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 10

which is equivalent to solving the following inequality:

q01
(
e−x1∆ − ex1∆

)
+
(
ex1∆ − 1

)
≤ 0.

By Taylor expansion, the above equation can be approximated:

q01

(
1− x1∆+

x21∆
2

2
− 1− x1∆− x21∆

2

2

)

+ 1 + x1∆+
x21∆

2

2
− 1 ≤ 0

⇒x1(
x1∆

2
+ 1− 2q01) ≤ 0

⇒0 ≤ x1 ≤ 2(2q01 − 1)

∆
. (4)

Let us now introduce a new function, φ1(P01), which
satisfies the boundary conditions as follows:

φ1(P01) =
1− e−x1p11

1− e−x1
=

{
1, when P01 = e1,

0, when P01 = e2.

where x1 is similar to how it is defined in Φ1(P01). It follows
that, if Φ1(P01) = e−x1p11 is super-regular (sub-regular), then
φ1(P01) = 1−e−x1p11

1−e−x1
is a sub-regular (super-regular) [2].

The definition of x1 that renders Φ1(P01) to be super-regular,
makes φ1(P01) to be sub-regular. Following the property of
Regular functions, it follows that:

Γ(P01) ≥ φ1(P01) =
1− e−x1p11

1− e−x1
. (5)

As Eq. (5) holds for every x1 bounded by Eq. (4), we can
choose the largest value x1max = 2(2q01−1)

∆ . When ∆ → 0,
we have x1max → ∞, which renders φ1(P01) → 1, hence
Γ(P01) → 1. Thus, Pr (p11(∞) = 1) → 1 under the HDPA.

The above proof methodology can be applied to higher
levels of the HDPA hierarchy. Take the simplest hierarchical
DPA with K = 2 for an example, again, we refer to
Fig. 1 for the simplified notations, and we are to prove that
Γ(P11) = Pr {P11(∞) = e1} = Pr {p21(∞) = 1} → 1.

Let us consider another specific instantiation of Φ to be:

Φ2(P11) = e−x2p21 ,

where x2 is a positive constant. Under the HDPA, we have:

U(Φ2(P11))− Φ2(P11)

=E[Φ2(P11(t+ 1))|P(t)]− Φ2(P11(t))

=E
[
e−x2p21(t+1)|P(t)

]
− e−x2p21(t)

=e−x2(p21+∆)(p11p21d21q11) + e−x2(p21−∆)(p11p21d21(1− q11))

+ e−x2p21(p11p21(1− d21))

+ e−x2(p21+∆)(p11p22d22q11) + e−x2(p21−∆)(p11p22d22(1− q11))

+ e−x2p21(p11p22(1− d22))

+ e−x2p21(p12p23) + e−x2p21(p12p24)

− e−x2p21

=e−x2p21

[
p11p21

(
e−x2∆d21q11 + ex2∆d21(1− q11) + (1− d21)

)

+ p11p22
(
e−x2∆d22q11 + ex2∆d22(1− q11) + (1− d22)

)
+ p12

]

− e−x2p21

=e−x2p21

[
p11

∑

j=1,2

p2j e−x2∆d2jq11

+ ex2∆d2j(1− q11) + (1− d2j)

))
+ p12

]
− e−x2p21

=e−x2p21

[
p11

∑

j=1,2

p2j e−x2∆d2jq11

+ ex2∆d2j(1− q11)− d2j)

))
+ p11

∑

j=1,2

p2j + p12

]
− e−x2p21

=e−x2p21

[
p11

∑

j=1,2

p2j e−x2∆d2jq11

+ ex2∆d2j(1− q11)− d2j)

))
+ 1

]
− e−x2p21

=e−x2p21

[
p11

∑

j=1,2

p2jd2j e−x2∆q11 + ex2∆(1− q11)− 1

))]

=e−x2p21

[
p11

∑

j=1,2

p2jd2j q11
(
e−x2∆ − ex2∆

)
+

(ex2∆ − 1)

))]
(6)

Just as in Eq. (3), in the above Eq. (6), the time instant (t)
has been omitted from p2j(t), p11(t), and q11(t), to make the
notation less cumbersome. In order for Φ2(P11) to be super-
regular, we need:

U(Φ2(P11))− Φ2(P11) ≤ 0

⇒q11
(
e−x2∆ − ex2∆

)
+
(
ex2∆ − 1

)
≤ 0

⇒0 ≤ x2 ≤ 2(2q11 − 1)

∆
. (7)

The same x2 will render φ2(P11) = 1−e−x2p21

1−e−x2
to be sub-

regular. Clearly, φ2(P11) meets the boundary condition, thus:

Γ(P11) ≥ φ2(P11) =
1− e−x2p21

1− e−x2
. (8)

Similarly, when ∆ → 0, we have x2max = 2(q11−1)
∆ → ∞,

which renders φ2(P11) → 1, whence Γ(P11) = Pr{p21(∞) =
1} → 1 under the HDPA.

As explained above, the overall proof of the entire tree
follows by a simple inductive argument. Defining xk as a
positive constant, we can generalize Eq. (6) to any level k:

U(Φk(P{k−1,j∗
k−1

}))− Φk(P{k−1,j∗
k−1

})

=E[Φk(P{k−1,j∗
k−1

}(t+ 1))|P(t)]− Φk(P{k−1,j∗
k−1

}(t))

=E
[
e
−xkp{k,j∗

k
}(t+1)|P(t)

]
− e

−xkp{k,j∗
k
}(t)

=e
−xkp{k,j∗

k
}

(∏

l=0,...,k−1

p{l,j∗
l
}(t)

)(∑

j=1,2

p{k,jk}d{k,j}

q{k−1,j∗
k−1

}
(
e−xk∆ − exk∆

)
+ (exk∆ − 1)

))
, (9)

and the conclusion is the same: when ∆ → 0, we

have xkmax =
2
(
2q{k−1,j∗

k−1
}−1

)

∆ → ∞, which ren-
ders φk

(
P{k−1,j∗k−1}

)
→ 1. Hence Γ(P{k−1,j∗k−1}) =

Pr{p{k,j∗k}(∞) = 1} → 1 under the HDPA.

217

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 11

As the LA converges to the optimal action at each level, the
HDPA converges the optimal path, proving Theorem 4.

V. NUMERICAL RESULTS

To demonstrate the performance of the proposed HDPA
scheme, we carried out extensive simulations for different
Environments with “many” actions. To ensure the credibility
of our simulations, we increased the number of experiments
and the convergence criteria compared to the experiments
in [31]. As highlighted earlier, one of the drawbacks of the
HCPA is that it has a sluggish increase in updating the action
probabilities when the probability to be increased approaches
unity. As opposed to this, we expected that the HDPA, which
has a constant increment in the action probability, would have
significantly faster convergence than that of the HCPA when
the convergence criterion is close to unity. Our results pre-
sented below, demonstrated that the HDPA, indeed, required
significantly fewer iterations for cases requiring high accuracy.

A. The Simulation Environments

We conducted simulations for Environments with 16, 32,
64, 128, 256 and 512 actions. We configured the simulation
Environments for the 16, 32, and 64 actions on the benchmark
action reward probabilities established in [31], which are
listed in Tab. I. The table lists 64 reward probabilities. The
parameter jK in Tab. I indicates the index of the action at
depth K in the HDPA structure, and Ω = Pr{β = 0} shows
the probability of that action obtaining a Reward from the
Environment. We utilized the first 16 probabilities as the 16-
action Environment, i.e., jK ∈ {1, ..., 16}. Likewise, for the
32-action Environment, we used jK ∈ {1, ..., 32}, and so
on. For the 128 and 256 actions Environments, we uniformly
generated 128 and 256 reward probabilities between zero and
unity, visualized in Fig. 2 and Fig. 3, respectively. Note that
for 128, 256 and 512 actions, the reward probabilities utilized
were distinct from those used for the Environments in [31].

B. The Algorithms’ Learning Parameters

From the mathematical proof above and the established
theory of VSSA, we know that when the learning parameter,
∆, is sufficiently small, the HDPA will converge to the action
that has the maximum reward probability with a probability
close to unity. The same is true when it concerns the value of
λ for the HCPA. The respective values for λ and ∆ determine
how quickly the LA achieves convergence. The higher the
learning parameters are configured, the faster the algorithms
converge. However, if the learning parameters are configured
too high, the algorithm might not converge to the optimal
action with high probability. Therefore, the tuning of these
parameters is a trade-off between the accuracy of finding the
optimal action and the speed of convergence.

To find the best values for λ and ∆, we utilized a top-
down approach10. More specifically, we decreased the value
of the learning parameters in a step-wise manner with two

10This issue is application dependent, and there is no hard-and-fast rule to
determine this. We thank the anonymous Referee who pointed this out to us.

decimals precision until their configured values made the LA
achieve 100% accuracy in converging to the optimal action
for all the number of experiments arranged. Consequently, the
values of the learning parameters that fulfilled these criteria
represented the assumed “best” values for λ and ∆ given the
distinct Environments used in the simulations. We emphasize
that tuning the values of λ and ∆ are challenging because
the Environments’s stochastic nature can cause uncertainty in
the values of λ and ∆. Moreover, although we obtained the
values for λ and ∆ through extensive testing, it is not true that
the HDPA will “always” select the optimal action because the
convergence is, indeed, in probability due to the ǫ-optimal
property. The reader should also note that the λ and ∆ values
are dependent on the Environment’s reward probabilities and
that the best values of λ and ∆ vary from Environment to
Environment. Therefore, we refer to the values determined for
λ and ∆ in this paper as the “best” learning parameters for
the given Environments, and not the “optimal” ones.

C. Average Number of Iterations
The average number of iterations required before con-

vergence (to a convergence threshold, T), is an established
parameter for evaluating a learning scheme’s. efficiency.

We first address the simulation results presented in Table II.
For these simulations, we conducted 600 experiments and
configured the convergence criterion to be 0.992. Thus, we
affirmed that the LA had converged when it achieved a
0.992 probability of choosing one of the actions in its action
probability vector. All the results presented in Table II were
based on all 600 experiments converging to the optimal action.

For the Environment with 16 actions, the “best” learning
parameters were λ = 0.0043 and ∆ = 0.0011. For the
Environment with 32 and 64 actions, the best learning pa-
rameters were λ = 0.00057 λ = 3.6e−5, ∆ = 0.00015
and ∆ = 9.9e−6, respectively. The “best” obtained values
for the Environment with 128 actions were λ = 3.9e−5 and
∆ = 9.7e−6. For 256 actions, we obtained λ = 5.9e−6 and
∆ = 1.5e−6 as the “best” learning parameters. For the 512-
action case, visualized in Fig. 8, we used λ = 7.9e−5 and
∆ = 1.7e−5. From the these, we can observe that the optimal
action is further away from the sub-optimal one. Therefore,
the Environment is “simpler” than, e.g., the 64, 128 and 256-
action cases, because the algorithms required less number
of iterations for this Environment. Thus, the hardness of the
Environment can impact the number of iterations more than
the number of actions.

Table II includes both algorithms’ results, and lists both
the Mean and the Standard Deviation (Std) of the number of
iterations required before convergence. Let us first consider
the cases with 16, 32, and 64 actions based on the benchmark
probabilities in Table I. The HDPA required just 64%, 60%,
and 59% of the total number of iterations that the HCPA
required for the 16, 32, and 64 actions, respectively. The
benefit of HDPA over HCPA increased with the number of
actions. Observing the Std, the HDPA had more variation in
the number of iterations for all three environments.

Considering the results for 128 actions (with action reward
probabilities depicted in Fig. 2), the HDPA converged within

218

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 12

TABLE I
BENCHMARK ACTION REWARD PROBABILITIES ESTABLISHED IN [31].

jK Ω jK Ω jK Ω jK Ω jK Ω jK Ω jK Ω jK Ω
1 0.3934 9 0.0333 17 0.7362 25 0.02152 33 0.6214 41 0.0970 49 0.2413 57 0.4763
2 0.9902 10 0.4323 18 0.7603 26 0.2399 34 0.9777 42 0.1319 50 0.1714 58 0.4446
3 0.4883 11 0.6926 19 0.5142 27 0.7509 35 0.4232 43 0.1738 51 0.8512 59 0.9617
4 0.5768 12 0.3474 20 0.2273 28 0.8773 36 0.02773 44 0.8901 52 0.9791 60 0.0329
5 0.2023 13 0.6152 21 0.6080 29 0.4962 37 0.1255 45 0.3511 53 0.7443 61 0.5004
6 0.2390 14 0.0900 22 0.4791 30 0.5649 38 0.5650 46 0.8945 54 0.3469 62 0.3784
7 0.5887 15 0.0850 23 0.9339 31 0.9202 39 0.1660 47 0.6133 55 0.8707 63 0.6553
8 0.8894 16 0.5652 24 0.3808 32 0.1335 40 0.0148 48 0.4813 56 0.3863 64 0.9737

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2. The action reward probabilities for the 128 actions Environment.

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3. The action reward probabilities for the 256 actions Environment.

TABLE II
THE SIMULATION RESULTS OBTAINED FOR THE VARIOUS ENVIRONMENTS.

Nr. of Actions HCPA HDPA
Mean: 1,366.61 Mean: 868.2516 Std: 121.14 Std: 135.50
Mean: 10,281.84 Mean: 6,172.3832 Std 681.82 Std: 744.84
Mean: 169,839.67 Mean: 100,638.4164 Std: 13,687.48 Std: 17,653.41
Mean: 155,088.62 Mean: 97,795.59128 Std: 10,613.21 Std: 13,266.12
Mean: 1,039,215.58 Mean: 632,985.27256 Std: 88,744.96 Std: 70,978.51
Mean: 95,354.61 Mean: 78,779.84512 Std: 13,099.73 Std: 15,418.82

approximately 97,800 iterations on average, while the HCPA
required 155,000 iterations. Comparing the algorithms’ Std,
we again observe that the HDPA had more variation compared
with that of the HCPA. This indicates that HDPA is slightly
more unpredictable in its convergence iterations. As we can
observe for the 256 case, the HDPA required significantly
fewer iterations than the HCPA. More specifically, the HDPA
achieved convergence with just 60% of the iterations that the
HCPA required, which clearly demonstrated the advantage of
the HDPA over HCPA in the above-studied configurations.

D. Illustrative Details of Convergence Analysis

In this subsection, we present more convergence details for
the Environments with 64 actions. For these simulations, we
conducted 1000 experiments with 0.999 as the convergence
criterion. The “best” learning parameters for these simulations,

found with the top-down approach, were λ = 3.8e−5 and ∆ =
9.4e−6, respectively. In Fig. 4, a cumulative representation of
the number of iterations required with the different schemes
are presented. As we can observe, the HDPA required signif-
icantly fewer iterations, and we see that approximately 90%
of the experiments converged within approximately 140,000
iterations. In comparison, none of the HCPA experiments
required less than 200,000 iterations.

100000 150000 200000 250000 300000
Number of iterations

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f e
xp

er
im

en
ts

 (%
)

Cumulative representation of convergence for 64 actions

HCPA
HDPA

Fig. 4. Cumulative representation of the percentage of experiments converging
within a certain number of iterations. The figure is based on 1,000 experi-
ments, with 0.999 as the convergence criterion for 64 actions.

In Fig. 5, we present the number of iterations required for
the HCPA and the HDPA through a scatter representation. We
can observe that some of the HDPA experiments required more
iterations than the HCPA, and that some of them coincide
with the number of iterations as the HCPA. However, these
are outliers, and most of the experiments are concentrated at
around 100,000 for the HDPA. For the HCPA we see that the

219

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 13

number of iterations is located at around 200,000. The reason
that the iteration numbers in most of the experiment instances
are close to the actual minimum number is that the numbers of
iterations become close to each other after the action selection
probabilities reach a certain level. In these cases, it is very
likely that the LA choose the optimal actions, and that they
also obtain a reward for choosing these actions. Due to the
pursuit concept, the system rewarded the current best actions
even if a sub-optimal action was chosen and rewarded.

0 200 400 600 800 1000
Experiment

50000

100000

150000

200000

250000

300000

350000

400000

450000

Nu
m
be

r o
f i
te
ra
tio

ns

Scatter plot representation of convergence for 64 actions
Theoretical minimum HCPA
Actual minimum HCPA
Theoretical minimum HDPA
Actual minimum HDPA
HCPA
HDPA

Fig. 5. Scatter plot of the experiment number and the number of iterations
it took before the LA converged for that experiment. The figure is based on
1,000 experiments, with 0.999 as the convergence criterion for 64 actions.

E. Performance for Different Convergence Criteria

In Fig. 6 and Fig. 7, we present the performance of the
HCPA and the HDPA for different convergence criteria for 64
actions. In these simulations, we conducted 100 experiments,
where we used the top-down approach for finding the “best”
λ and ∆ for each individual convergence criterion. The
“best” λ and ∆ for the convergence criteria between 0.90
and 0.99 can be made available to the interested readers.
For the convergence criteria between 0.990 and 0.999, the
“best” learning parameters were found to be λ = 5.3e−5
and ∆ = 1.0e−5 for all convergence criteria11. The reason
why these learning parameters remained constant, is that when
the LA reached such a high probability level as 0.990, it
rarely changed to another action than the one it was currently
pursuing. Consequently, the values for λ and ∆ that we found,
represented the highest (fastest) learning parameters for all
convergence criteria above 0.990.

In Fig. 6, we can observe that the HCPA required less
iterations on average for the convergence criteria between
0.9 and 0.97. However, for the convergence criteria of 0.98
and 0.99, the HDPA had fewer required iterations on average.
Consequently, we observed that the HDPA was more efficient
as the convergence requirement was configured closer to unity.

11The reader should note that the “best” values for λ and ∆ found here
differ from the “best” ones reported in Section V-C and V-D because the
numbers of experiments are different. Indeed, the 1,000 experiments stipulated
in Section V-D set a higher requirement to the learning parameters than the
100 experiments in Section V-E, and thus required more conservative learning.

The effectiveness of the HDPA for higher convergence criteria
was further verified in Fig. 7, where the HDPA had fewer re-
quired iterations on average for all convergence requirements.
Additionally, it is clear from Fig. 7 that the difference between
the two schemes increased as the criterion increased.

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
Convergence criterion

50000

60000

70000

80000

90000

100000

110000

Av
er
ag
e
nu
m
be
r o

f i
te
ra
tio

ns
 b
ef
or
e
co
nv
er
ge
nc
e Performance for 64 actions with different convergence criteria

HCPA
HDPA

Fig. 6. The average number of iterations required before convergence for
100 experiments with different convergence criteria from 0.90 to 0.99 for a
64 actions Environment.

0.99 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999
Convergence criterion

100000

110000

120000

130000

140000

150000

160000

Av
er
ag
e
nu
m
be
r o

f i
te
ra
tio

ns
 b
ef
or
e
co
nv
er
ge
nc
e Performance for 64 actions with different convergence criteria

HCPA
HDPA

Fig. 7. The average number of iterations required before convergence for 100
experiments with different convergence criteria from 0.990 to 0.999 for a 64
actions Environment.

F. Comparison with Other Competing LA

Before we conclude this paper, it is pertinent that we
compare our results with another set of algorithms12. These
papers [37]–[39], (referred to as AlgJu1, AlgJu2, and AlgJu3)
have all been written by the same team of researchers, and it
is prudent to compare them quantitatively and qualitatively.

Our first remark is that these papers are brilliant within
the field of LA. We have implemented all of them and found
that they are very competitive even against the best-reported
schemes. Of particular interest, however, is the scheme AlgJu3
presented in [39], which is noticeably superior to AlgJu1 and
AlgJu2 from [37] and [38], respectively. In the interest of
brevity and space, we merely report below the results compar-
ing our work with the paper of [39], while the comparisons
with [37] and [38] are included in the PhD thesis [40].

12We were unaware of these papers, when we submitted the initial version
of the paper. We are extremely grateful to the anonymous Referee who
directed us to them. This section is dedicated to such a mutual comparison.

220

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 14

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 8. The action reward probabilities for the 512 actions Environment.

0 5000 10000 15000 20000 25000 30000 35000
Iterations

0.00

0.01

0.02

0.03

0.04

0.05

p i

The action selection probability (pi)
Action 2 (i=2)
Action 1 (i=1)

Fig. 9. The performance for a 64-action Environment where the optimal
action changes over time. After about 13,000 iterations both α1 and α2 are
discarded from the competition because of the Environment’s non-stationarity.

The methodology that is used in AlgJu3 has the potential
of making it the most superior algorithm. However, the under-
lying principle is a two-edged sword as explained below.

• The principle which renders this paper competitive is
that after a sufficiently large number of iterations it is
able to distinguish between “the boys and the men”. In
this way, the algorithm decides to discard many of the
rather inferior actions, resulting in a brilliant paradigm of
learning within a smaller action space. This is the reason
why the method becomes so competitive.

• The negative side of such a decision is that if such an
action-pruning task is undertaken after a large number
of iterations, it is, indeed, not profitable. But if it is
undertaken before this “large” number of iterations, in
many cases the scheme, unfortunately, discards some
of the more superior actions. While this is mostly an
infrequent occurrence, in reality, when the actions are
highly competitive, it does occur to a noticeable extent
by which some of the best actions are discarded.

• The above negative phenomenon, while being less likely
in stationary Environments, is an almost-predominant
occurrence in “non-stationary” Environments.

• While the above phenomenon can be mitigated by using
a small enough learning parameter, the question of deter-
mining the size of the parameter is still open, other than
by invoking a meta-learning scheme.

The results of comparing our algorithm with AlgJu3 [39] are
given in Table III, where as mentioned above, the weaker
schemes of AlgJu1 and AlgJu2 are omitted. The reader will
observe that AlgJu3 is superior in most cases, but we have
to emphasize that the results reported in the paper are not as
stringent as those reported here because we have required a
categoric 100% accuracy. AlgJu3 is arguably superior, but it
has an impediment in that in some cases it discards the best

Nr. of Actions HDPA AlgJu3
Mean: 6,813.089 Mean: 3,721.99 (6,134.39)

10 (E3 in [39]) Std: 1274.38 Std: 235.14 (159.38)
Acc: 100% Acc: 99.2% (100%)
∆: 0.00026 n: 59 (100)
Mean: 104,884.60 Mean: 35,713.68

64 (Env. in [31]) Std: 18393.40 Std: 532.42
Acc: 100% Acc: 100%
∆: 9.5e−6 n: 100

Mean: 79,623.64 Mean: 46,004.62
512 (in Fig. 8) Std: 16,432.28 Std: 587.53

Acc: 100% Acc: 100%
∆: 1.7e−5 n: 10

TABLE III
A COMPARISON BETWEEN THE HDPA AND ALGJU3 BASED ON 1,000

EXPERIMENTS.

action from the entire competition. Thus, while it appears to
be superior, as explained in the above items, the truth of the
matter is that its superiority is a result of operating within a
diminished action space.

This comment has a major significance as mentioned in
the third item above. The graph in Fig. 9, displays the action
selection probability when α1 is the best action and after about
13,000 iterations it discards both α1 and α2 because of the
non-stationarity of the Environment.

VI. CONCLUSION

In this paper, we have thoroughly surveyed the strategies
to enhance the speed and accuracy in the field of LA over
the last six decades. By incorporating the major phenomena
into a single machine, namely the HDPA, proposed in this
paper, we are able to beat the state-of-the-art HCPA in terms
of efficiency when the accuracy requirement is uniformly
superior, e.g., above 0.99. In specifically, the HDPA combines
VSSA probability updating functionality, discretizing the prob-
ability space and the Estimator phenomenon together into a
hierarchical tree structuring with pursuit capabilities. We have
explained the fine details of the algorithm and proven its ǫ-
optimality through a formal, rigorous mathematical analysis.
Our simulation results have demonstrated the advantage of
the HDPA compared with the HCPA when the convergence
criterion is close to unity. Indeed, the HDPA is arguably the
best LA reported in the literature, to-date.

Acknowledgements: This work is supported by the project
“Spacetime Vision: Towards Unsupervised Learning in the 4D
World” financed by the EEA and Norway Grants 2014-2021
under the grant number EEA-RO-NO-2018-04.

221

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 15

REFERENCES

[1] M. L. Tsetlin, “Finite Automata and Modeling the Simplest Forms of
Behavior,” Uspekhi Matem Nauk, vol. 8, no.4, pp. 1–26, 1963.

[2] K. S. Narendra and M. A. L. Thathachar, Learning Automata: An
Introduction, ser. Dover Books on Electrical Engineering Series, Dover
Publications, Incorporated, 2012.

[3] S. Lakshmivarahan, Learning Algorithms Theory and Applications, ed. 1,
Springer-Verlag New York, 1981.

[4] M. A. L. Thathachar and P. S. Sastry, “Estimator Algorithms for Learning
Automata,” Proceedings of the Platinum Jubilee Conference on Systems
and Signal Processing, Department of Electrical Engineering, Indian
Institute of Science, 1986.

[5] R. Thapa, L. Jiao, B. J. Oommen, and A. Yazidi, “A learning automaton-
based scheme for scheduling domestic shiftable loads in smart grids,”
IEEE Access, vol. 6, pp. 5348–5361, 2018.

[6] A. Yazidi, I. Hassan, H. L. Hammer, and B. J. Oommen, “Achieving
fair load balancing by invoking a learning automata-based two-time-
scale separation paradigm,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, no. 8, pp. 3444–3457, 2021.

[7] S. Sahoo, B. Sahoo, and A. K. Turuk, “A Learning Automata-Based
Scheduling for Deadline Sensitive Task in The Cloud,” IEEE Transactions
on Services Computing, vol. 14, no. 6, pp. 1662–1674, Nov. 2021.

[8] L. Zhu, K. Huang, Y. Hu, and X. Tai, “A Self-Adapting Task Scheduling
Algorithm for Container Cloud Using Learning Automata,” IEEE Access,
vol. 9, pp. 81 236–81 252, 2021.

[9] R. R. Rout, G. Lingam, and D. V. L. N. Somayajulu, “Detection of
malicious social bots using learning automata with url features in twitter
network,” IEEE Transactions on Computational Social Systems, vol. 7,
no. 4, pp. 1004–1018, 2020.

[10] H. Guo, S. Li, K. Qi, Y. Guo, and Z. Xu, “Learning automata based
competition scheme to train deep neural networks,” IEEE Transactions
on Emerging Topics in Computational Intelligence, vol. 4, no. 2, pp. 151–
158, 2020.

[11] Z. Zhang, D. Wang, and J. Gao, “Learning automata-based multiagent
reinforcement learning for optimization of cooperative tasks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32, no. 10,
pp. 4639–4652, 2021.

[12] C. Di, B. Zhang, Q. Liang, S. Li, and Y. Guo, “Learning automata-based
access class barring scheme for massive random access in machine-to-
machine communications,” IEEE Internet of Things Journal, vol. 6, no. 4,
pp. 6007–6017, 2019.

[13] S. Tanwar, S. Tyagi, N. Kumar, and M. S. Obaidat, “La-mhr: Learning
automata based multilevel heterogeneous routing for opportunistic shared
spectrum access to enhance lifetime of wsn,” IEEE Systems Journal,
vol. 13, no. 1, pp. 313–323, 2019.

[14] B. El Khamlichi, D. H. N. Nguyen, J. El Abbadi, N. W. Rowe, and
S. Kumar, “Learning automaton-based neighbor discovery for wireless
networks using directional antennas,” IEEE Wireless Communications
Letters, vol. 8, no. 1, pp. 69–72, 2019.

[15] X. Deng, Y. Jiang, L. T. Yang, L. Yi, J. Chen, Y. Liu, and X. Li,
“Learning-automata-based confident information coverage barriers for
smart ocean internet of things,” IEEE Internet of Things Journal, vol. 7,
no. 10, pp. 9919–9929, 2020.

[16] Z. Yang, Y. Liu, Y. Chen, and L. Jiao, “Learning automata based q-
learning for content placement in cooperative caching,” IEEE Transac-
tions on Communications, vol. 68, no. 6, pp. 3667–3680, 2020.

[17] R. O. Omslandseter, L. Jiao, Y. Liu, and B. John Oommen, “User
grouping and power allocation in NOMA systems: A novel semi-
supervised reinforcement learning-based solution,” Pattern Analysis and
Applications, July 2022.

[18] O.-C. Granmo, “The Tsetlin Machine – A Game Theoretic Bandit Driven
Approach to Optimal Pattern Recognition with Propositional Logic,”
April 2018, arXiv:1804.01508.

[19] R. K. Yadav, L. Jiao, O.-C. Granmo, and M. Goodwin, “Robust
interpretable text classification against spurious correlations using and-
rules with negation,” in Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22, L. D. Raedt, Ed.
International Joint Conferences on Artificial Intelligence Organization,
July 2022, pp. 4439–4446.

[20] K. D. Abeyrathna, B. Bhattarai, M. Goodwin, S. Gorji, O.-C. Granmo,
L. Jiao, R. Saha, and R. K. Yadav, “Massively Parallel and Asynchronous
Tsetlin Machine Architecture Supporting Almost Constant-Time Scaling,”
In proceedings of The Thirty-eighth International Conference on Machine
Learning (ICML), 2021.

[21] L. Jiao, X. Zhang, O.-C. Granmo, and K. D. Abeyrathna, “On the
Convergence of Tsetlin Machines for the XOR Operator,” IEEE Trans.
Pattern Anal. Mach. Intell., accepted, Aug. 2022.

[22] X. Zhang, L. Jiao, O.-C. Granmo, and M. Goodwin, “On the Conver-
gence of Tsetlin Machines for the IDENTITY- and NOT Operators,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 10, pp. 6345–6359,
2022.

[23] S. Lakshmivarahan and M. A. L. Thathachar, “Absolutely Expedient
Learning Algorithms for Stochastic Automata,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. SMC-3, no. 3, pp. 281–286, 1973.

[24] B. J. Oommen, “Absorbing and Ergodic Discretized Two-Action Learn-
ing Automata,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 16, no. 2, pp. 282–293, 1986.

[25] B. J. Oommen and J. P. R. Christensen, “ǫ-Optimal Discretized Linear
Reward-Penalty Learning Automata,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 18, no. 3, pp. 451–458, 1988.

[26] X. Zhang, B. J. Oommen and O.-C. Granmo, “The Design of Absorbing
Bayesian Pursuit Algorithms and the Formal Analyses of Their ǫ-
Optimality,” Pattern Analysis and Applications, vol. 20, pp. 797–808,
2017.

[27] M. Agache and B. J. Oommen, “Generalized Pursuit Learning Schemes:
New Families of Continuous and Discretized Learning Automata,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 32, no. 6, pp. 738–749, 2002.

[28] J. K. Lanctot and B. J. Oommen, “Discretized Estimator Learning
Automata,” IEEE Transactions on Systems, Man, and Cybernetics, vol.
22, no. 6, pp. 1473–1483, 1992.

[29] B. J. Oommen and M. Agache, “Continuous and Discretized Pursuit
Learning Schemes: Various Algorithms and Their Comparison,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 31, no. 3, pp. 277–287, 2001.

[30] X. Zhang, O.-C. Granmo, B. J. Oommen, “Discretized Bayesian Pursuit
- A New Scheme for Reinforcement Learning,” Advanced Research in
Applied Artificial Intelligence, vol. 7345, pp. 784–793, 2012.

[31] A. Yazidi, X. Zhang, L. Jiao, and B. J. Oommen, “The Hierarchical
Continuous Pursuit Learning Automation: A Novel Scheme for Environ-
ments with Large Numbers of Actions,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 31, no. 2, pp. 512–526, 2020.

[32] G. I. Papadimitriou, “Hierarchical Discretized Pursuit Nonlinear Learn-
ing Automata with Rapid Convergence and High Accuracy,” IEEE
Transactions on Knowledge and Data Engineering, vol. 6, no. 4, pp.
654–659, 1994.

[33] X. Zhang, B. J. Oommen, O.-C. Granmo, and L. Jiao, “Using the
Theory of Regular Functions to Formally Prove the ǫ-Optimality of
Discretized Pursuit Learning Algorithms,” Proceedings, Part I, of the 27th
International Conference on Modern Advances in Applied Intelligence,
vol. 8481, pp. 379–388, 2014.

[34] K. Rajaraman and P. S. Sastry, “Finite Time Analysis of the Pursuit
Algorithm for Learning Automata,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 26, no. 4, pp. 590–598, 1996.

[35] X. Zhang, L. Jiao, B. J. Oommen, and O.-C. Granmo, “A Conclusive
Analysis of the Finite-Time Behavior of the Discretized Pursuit Learn-
ing Automaton,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 1, pp. 284–294, 2020.

[36] X. Zhang, B. J. Oommen, O.-C. Granmo, and L. Jiao, “A Formal
Proof of the ǫ-Optimality of Discretized Pursuit Algorithms,” Applied
Intelligence, vol. 44, no. 2, pp. 282–294, 2016.

[37] J. Zhang, C. Wang, D. Zang, and M. Zhou, “Incorporation of Optimal
Computing Budget Allocation for Ordinal Optimization Into Learning
Automata,” IEEE Transactions on Automation Science and Engineering,
vol. 13, no. 2, pp. 1008–1017, 2016.

[38] J. Zhang, C. Wang, and M. Zhou, “Fast and Epsilon-Optimal Discretized
Pursuit Learning Automata,” IEEE Transactions on Cybernetics, vol. 45,
no. 10, pp. 2089–2099, 2015.

[39] J. Zhang, C. Wang, and M. Zhou, “Last-Position Elimination-Based
Learning Automata,” IEEE Transactions on Cybernetics, vol. 44, no. 12,
pp. 2484–2492, 2014.

[40] R. O. Omslandseter, “On the Theory and Applications of Hierarchical
Learning Automata and Object Migration Automata,” Ph. D. Thesis,
University of Agder, 2023.

222

THE HDPA: AN ǫ-OPTIMAL SCHEME WITH FAST CONVERGENCE 16

Rebekka O. Omslandseter was born in Porsgrunn,
Norway on January 15, 1995. She received her BE
degree from University of Agder, Norway, in 2017.
She is currently an integrated Ph. D. student at the
University of Agder, and she is a scientific researcher
at Centre of Artificial Intelligence Research (CAIR)
in UiA. Her research interests include Learning
Automata, Partitioning and Clustering Algorithms,
Resource Allocation and Performance Evaluation for
Communication and Energy Systems.

Lei Jiao (M’12-SM’18) received his BE degree from
Hunan University, China, in 2005. He received his
ME degree from Shandong University, China, in
2008. He obtained his PhD degree in Information
and Communications Technology from University of
Agder (UiA), Norway, in 2012. He is now an As-
sociated Professor in the Department of Information
and Communication Technology, UiA. His research
interests include Reinforcement Learning, Learning
Automata, Natural Language Processing, Resource
Allocation for Communication and Energy Systems.

Xuan Zhang received her PhD degree in Infor-
mation and Communication Technology from the
University of Agder (UiA) in 2015. She has a Mas-
ter’s degree in Signal and Information Processing
and a Bachelor’s degree in Electronics and Infor-
mation Engineering. She is now a senior researcher
in Norwegian Research Center (NORCE). At the
same time, she is a scientific researcher at Centre
of Artificial Intelligence Research (CAIR) in UiA.
She is currently serving as a Board Member of
Norwegian Association for Image Processing and

Machine Learning. Her research interests include Learning Automata, Mathe-
matical Analysis on Learning Algorithms, Deep Learning, Natural Language
Processing and Computer Vision.

Anis Yazidi received the M.Sc. and Ph.D. degrees
from the University of Agder, Grimstad, Norway, in
2008 and 2012, respectively. He was a Researcher
with Teknova AS, Grimstad. From 2014 to 2019,
he was an Associate Professor with the Department
of Computer Science, Oslo Metropolitan University,
Oslo, Norway, where he is currently a Full Professor,
leading the research group in applied artificial intel-
ligence. He is also a Professor II with the Norwe-
gian University of Science and Technology (NTNU),
Trondheim, Norway. His current research interests

include Machine Learning, Learning Automata, Stochastic Optimization, and
Autonomous Computing.

Dr. John Oommen was born in Coonoor, India on
September 9, 1953. He obtained his B.Tech. degree
from the Indian Institute of Technology, Madras,
India in 1975. He obtained his M.E. from the Indian
Institute of Science in Bangalore, India in 1977. He
then went on for his M.S. and Ph. D. which he
obtained from Purdue University, in West Lafayettte,
Indiana in 1979 and 1982 respectively. He joined the
School of Computer Science at Carleton University
in Ottawa, Canada, in the 1981-82 academic year.
He is still at Carleton and holds the rank of a

Full Professor. Since July 2006, he has been awarded the honorary rank of
Chancellor’s Professor, which is a lifetime award from Carleton University.
His research interests include Automata Learning, Adaptive Data Structures,
Statistical and Syntactic Pattern Recognition, Stochastic Algorithms and
Partitioning Algorithms. He is the author of more than 495 refereed journal
and conference publications, and is a Life Fellow of the IEEE and a Fellow
of the IAPR. Dr. Oommen has also served on the Editorial Board of the IEEE
Transactions on Systems, Man and Cybernetics, and Pattern Recognition.

223

Appendix C

The ADE HDPA Papers

C.1 Enhancing the Speed of Hierarchical Learning
Automata by Ordering the Actions – A Pio-
neering Approach

R. O. Omslandseter, L. Jiao, and J. B. Oommen, “Enhancing the Speed of Hier-
archical Learning Automata by Ordering the Actions – A Pioneering Approach,”
AI 2022: Advances in Artificial Intelligence, AI 2022 (AJCAI 2022), Lecture Notes
in Computer Science, vol 13728, pp. 775–788, Springer International Publishing,
December 2022.
DOI: https://doi.org/10.1007/978-3-031-22695-3_54

225

https://doi.org/10.1007/978-3-031-22695-3_54

Enhancing the Speed of Hierarchical Learning
Automata by Ordering the Actions – A

Pioneering Approach

Rebekka Olsson Omslandseter1, Lei Jiao1, and B. John Oommen2

1 Dept. of Information and Communication Technology,
University of Agder, 4879, Grimstad, Norway,
{rebekka.o.omslandseter, lei.jiao}@uia.no

2 School of Computer Science,
Carleton University, K1S 5B6, Ottawa, Canada

Abstract. For the past six decades, the operation of Learning Au-
tomata (LA) has involved states and action probabilities. These have
been central to “remembering” the quality of the actions chosen dur-
ing the learning. The latest enhancements have also incorporated esti-
mates of the actions’ reward probabilities. However, a phenomenon that
has never been used to-date is that of considering how these actions
themselves, can be ordered. Ordering the actions in traditional LA is
rather meaningless unless one resorts to invoking the theory of Random
Races [1]. However, we show that such an ordering makes sense if the
automata operate hierarchically, within a tree, with the actions being
placed at the leaves. In this paper, we shall show that when the LA are
arranged “in a tree formation”, and when the learning is achieved within
such a tree, the hierarchical LA has a superior performance if the actions
located at the leaves of the tree are arranged suitably. While this concept
can be incorporated in any hierarchical LA, we demonstrate its power
for the most recent machine, i.e., the Hierarchical Discretized Pursuit
Automaton (HDPA). These strategies can also be included in the Hier-
archical Continuous Pursuit Automaton (HCPA), and to both of these
which utilize traditional Maximum Likelihood (ML) or Bayesian esti-
mates [2]. The experimental results presented here are very impressive,
and so, if we consider the chronology of LA from FSSA through VSSA,
the Estimator schemes, and the recent hierarchical LA, our modest claim
is that the inclusion of the ADE represents the state-of-the-art which is
not easily surpassed.

Keywords: Learning Automata · Reinforcement Learning · Hierarchical
Learning Automata.

226

2 R. O. Omslandseter et al.

1 Introduction

The field of Learning Automata (LA)3 concerns non-human agents learning the
optimal action from a set of actions through the principles of Reinforcement
Learning (RL). The learning agent in LA is often referred to as the Learning
Automaton. The system that the learning agent operates in and learns through
interactions with, is often referred to as the Environment. The learning agent
selects an action, and the Environment responds with a feedback to the automa-
ton. The feedback can be a set of discrete responses or from a continuous range,
but most commonly, the feedback is binary, consisting of either a reward or a
penalty. Depending on the LA’s learning policy, the LA updates its knowledge
based on the feedback, and hopefully, learns to output the action that yields
the highest probability of getting a reward over time. The LA learns in a semi-
supervised manner, meaning that it does not need examples of solutions but
learns via the feedback in a trial-and-error mode. The metric of quantifying the
performance of LA is the average number of iterations it takes, over an ensemble
of experiments. For the Variable Structure Stochastic Automata (VSSA) type
of LA used in this paper, the algorithm converges once the LA attains a specific
probability level that is arbitrarily close to unity.

1.1 Memory Considerations

Learning cannot be achieved without remembering certain quantities during the
process. We shall informally refer to these as the “memory”. However, even if one
remembers all the pertinent information in a very efficient manner, the learning
will not succeed if the algorithm that utilizes the memory, is poor. To bring
out the salient features of the pioneering contribution of this paper, we briefly
itemize the respective components of the different families.

– FSSA: Fixed Structure Stochastic Automata (FSSA) are LA, where the
memory is encapsulated in states which are identical to those possessed by
Finite State Machines or flip flops. Examples of these are the Tsetlin, Krin-
sky, and Krylov LA [3]. In each case, the learning algorithm directs the LA
to move across the states based on the response from the Environment, and
each of the latter boast their own individual strategy. Correspondingly, they
all have different convergence characteristics.

– VSSA: Unlike FSSA, in VSSA, the memory is contained in the action prob-
ability vector, P (n). The action is chosen based on P (n), which is then
communicated to the Environment. P (n + 1) is obtained in the next step,
and is based on P (n), the action chosen, α(n), and the feedback that the En-
vironment provides, β(n). The updating algorithm, on the other hand, can
be varied and includes, among others, the Linear Reward-Penalty (LR−P)
scheme, the Linear Reward-Inaction (LR−I) scheme, the Linear Inaction-
Penalty (LI−P) scheme, and the Linear Reward-ϵPenalty (LR−ϵP) [4], [5].

3 The term LA is used interchangeably to address the field of Learning Automata or
the Learning Automata themselves, depending on the context.

227

The ADE Approach for Hierarchical LA 3

– Estimator Algorithms: In Estimator LA, the memory resides in the action
probability vector and running estimates of the reward probabilities. In the
Pursuit algorithm, the learning algorithm now increases the probability of
the currently recorded best action and not of the action that is chosen. In
the Pursuit algorithm, only the probability of the best action is increased.
In the Generalized Pursuit, the action probabilities of a subset of actions
are increased, while the rest of the probabilities are decreased. One has to
mention that the estimates can be done in an ML or Bayesian manner [2],
and the updates done in a continuous or a discretized paradigm.

– Hierarchical LA: In the family of hierarchical LA, the machines are ar-
ranged in a tree structure, and the actions are at the leaves. These individual
LAs can be VSSA or can be Pursuit machines themselves. More details of
this are included in the next section.

The above bullets briefly encapsulates the entire prior art.

1.2 Action Ordering Considerations

The reader will observe that throughout the above discussions, the ordering
of the actions has remained insignificant. This is valid because the ordering is
unknown unless one resorts to a prior Random Race competition that is not
relevant to our present study [1]. Of course, the ordering of the actions in an
action probability vector is also meaningless.

The hypothesis of this study is that there is an advantage to ordering the ac-
tions. Clearly, such an ordering can only be enforced if there are crude estimates
of the reward probabilities. If they are arranged linearly, ordering the actions can
enhance the corresponding choice by resorting to a fast searching mechanism, as
opposed to a linear search. We shall not elaborate on that issue here.

However, let us consider the case when the automata operate in a hierarchical
manner. The actions then are placed at the leaves of the tree, and the decisions
of the individual LA trickle up to the root. Our hypothesis is that rather than
keeping the leaves completely unordered, information gleaned during the initial
learning phase can be used to order them, and to yield a superior performance.
This is precisely the hypothesis and contribution of our paper.

1.3 Contributions of this Paper

The contributions of this paper can be summarized as follows:

– Unlike the prior art, we show that there is an advantage in considering the
ordering of the actions when the LA operate in a hierarchical manner.

– We demonstrate this, by considering the most recent machine in the field,
the HDPA.

– We confirm the hypothesis, by reporting the results of extensive simulations
in different Environments and a host of distributions.

As mentioned above, the concept presented in this paper is true, not only for the
HDPA, but also for any other type of machine utilizing a hierarchical structure.

228

4 R. O. Omslandseter et al.

2 Related Work

The paradigm of LA originated in the 1960s with Michael Lvovitch Tsetlin
and his innovation of learning agents and, ultimately, the Tsetlin Automata [6].
Later advancements followed, and the types of LA are generalized into two cat-
egories, namely FSSA and the VSSA. In VSSA, we have the Linear Reward-
Penalty(LR−P) scheme, the Linear Reward-Inaction(LR−I) scheme, the Linear
Inaction-Penalty(LI−P) scheme, and the Linear Reward-ϵPenalty(LR−ϵP) [4], [5].
In these different schemes, the probability vector is updated linearly. The up-
dating can also be done in a non-linear manner [4], [5], [7]. At the same time,
VSSA schemes can be continuous or discrete [8]. Continuous type VSSA updates
the probability in a multiplicative manner with a factor, while the discretized
type updates the probability with a constant in each update. Due to the multi-
plicative updating, the continuous type can experience slower algorithm speeds
than the discretized type. Thus, when an action selection probability gets closer
to unity, the change in its probability becomes less and less. The continuous and
discrete updating functionality has been investigated mathematically in [9], [10].

Another major discovery in the field of LA was the Estimator-based Algo-
rithms (EAs), which significantly increased the convergence speed of VSSA [11].
The concept of EAs is the utilization of estimation. In more detail, the LA
keeps reward estimates while in operation, using these estimates to pursue the
currently most promising action (referred to as Pursuit in the Literature) [12].
Researchers combined the Pursuit concept with discretized updating, leading to
the paradigm of Discrete Estimator Algorithms (DEAs) [13], superior to earlier
VSSA variants in terms of convergence speed.

Although all of the advances mentioned above increased the applicability
and efficiency of LA dramatically, VSSA still had an impediment as the num-
ber of actions (possible solutions to a problem) became large (e.g., more than
ten [14]). Therefore, the authors of [14] proposed the HCPA, bringing structure
to the domain of VSSA. The HCPA was a quantum step to the field of LA, mak-
ing VSSA able to handle a large number of actions. However, as the accuracy
requirement to the HCPA became large, e.g., above 0.98, the HCPA suffered
from its multiplicative property of updating its action selection probabilities,
resulting in sluggish convergence. In [15], the HDPA was proposed, combining
VSSA, discretized updating, the Pursuit concept, and structure. The HDPA pro-
vides a solution to problems with many actions and high accuracy requirements,
constituting the state-of-the-art for generic LA, being significantly faster when
compared to the HCPA.

3 Incorporating Ordering into an Hierarchical LA

Although the HDPA improved the convergence speed significantly for high ac-
curacy requirements, we experienced that the convergence speeds were substan-
tially dependent on the action distribution on the leaf level of the tree. Linked to
the concept of Random Races [1], where the LA is modeled to find an ordering of

229

The ADE Approach for Hierarchical LA 5

the actions in an ascending/descending order, we hypothesize that we can order
the actions in a manner that is beneficial to the algorithm. More specifically, we
propose that we can use an Estimation Phase in the HDPA process and also the
estimated reward probabilities to reorder the actions at the leaf level to yield
an improved performance. Consequently, in this paper, we propose the Action
Distribution Enhancing (ADE) approach for enhancing the convergence speed
of the HCPA and HDPA. The improvement in the convergence speed becomes
more noticeable as the number of actions at the leaf level increases. Therefore,
organizing the actions in an improved manner can significantly reduce the num-
ber of iterations before the convergence is achieved. While this was our intended
hypothesis, as demonstrated through extensive simulations documented later in
the paper, we show that the ADE approach is, indeed, beneficial compared to
randomly initializing the actions at the leaf level of the tree. The reader should
note that the problems that LA can solve are random in nature, and for a real
problem, no information about the reward probabilities can be known a pri-
ori. Therefore, understandably, the Estimation Phase is needed to obtain an
improved ordering.

3.1 Motivating arguments

To motivate the development of our new paradigm, we consider a problem involv-
ing four actions A = {α1, α2, α3, α4} with the corresponding estimated action

probability vector D̂ = {d̂1, d̂2, d̂3, d̂4}, taken over an initial estimation phase
of 20 iterations. The reader must please observe that because the number of
iterations are small, the corresponding estimates will be inaccurate. Also, before
we proceed with the arguments, it is wise to see how these estimates will effect
the learning process. Further, in the interest of simplicity, we proceed with the
discussion by considering the case of the HDPA instead of any other arbitrary
hierarchical LA.

At the leaf levels, the four actions are to be placed in one of the 4! positions. It
is also obvious that the descending and ascending orders of the placements of the
actions are merely mirror reflections of each other. On a deeper examination of an
Hierarchical Pursuit LA, one observes that from every level, the estimates of the
most suitable actions chosen at that level will be trickled up. This implies that
the automata at each level will be dealing with problems of different complexities.
However, the most important automaton is the one placed at the root, because
that governs, or rather dictates, the operations of all the automata below it.

Consider the following figure in which the four actions are placed at the leaves
in the descending order (Fig. 1a). From Fig. 1a, we see that the LA A1,1 has
to deal with actions whose reward estimates are 15

20 and 11
20 . Similarly, when the

actions are in a more random order, Fig. 1b, the corresponding reward estimates
for the LA A1,1 are 15

20 and 3
20 . If all goes well as in a perfect world, the trickled

up estimates are those of the optimal actions of their corresponding children.
The root level, which is encountering the most important task, has now to deal
with distinguishing between the reward estimates 15

20 and 7
20 in Fig. 1a, and 15

20
and 11

20 in Fig. 1b. This means that the root automaton, that has to solve the

230

6 R. O. Omslandseter et al.

(a) (b)

Fig. 1: Example of two hierarchical tree structures for four actions with different
action distributions at the leaf level.

most discriminating problem of all the automata, has to resolve actions α1 and
α2, in the case of Fig. 1b, which is much more difficult than the problem in
Fig. 1a.

When we use the euphemistic expression above “if all goes well in a perfect
world”, we emphasize that it is statistically not at all unrealistic. This is because
by the law of large numbers or the Estimation Phase in the Bayesian case, the
estimates of the reward probabilities will converge to their true values with an
arbitrarily high accuracy. Thus, the asymptotic arguments (and probabilities) of
the trees of Fig. 1a and Fig. 1b will still be valid4.

4 The Action Distribution Enhancing (ADE) Approach

As mentioned earlier, such an ADE approach applies to both the HCPA and
the HDPA, and indeed, to any hierarchical LA. However, because the HDPA
has demonstrated superior performance to the HCPA for high accuracy require-
ments, and we have limited space, we only highlight the ADE approach for the
HDPA, by understanding that the principles for the HCPA are analogous. The
ADE approach for the HCPA is similar to the approach explained for the HDPA.

The ADE approach concerns distributing the actions at the leaf level of
the hierarchical tree in an improved manner. For a practical, real-life problem,
there can be little information as a priori information about the actions. This
is why the distribution of the actions at the leaf level is an intricate problem
which has not yet been considered in the Literature. The ADE approach is
two-pronged. The first prong is the Estimation Phase, used for estimating the
action reward probabilities. The second concerns distributing the actions in an
improved manner, and is referred to as the Reallocation Process.

4 The proof that the ADE approach represents a superior solution compared with
unordered solutions, will be proven in the extended version of the paper [16].

231

The ADE Approach for Hierarchical LA 7

The first part of the ADE approach concerns the Estimation Phase. In the
HDPA, the estimated reward probability and the action selection probabilities of
LAs throughout the tree structure are initialized as 0.5, according to [14] and [15].
Thus, the HDPA estimates the reward probabilities as per the Pursuit concept
(maintaining an estimated reward probability vector). We propose a standalone
Estimation Phase with the ADE approach prior to the HDPA starting its regular
operation. This means that in this phase, we include θ iterations per action for
estimating their reward probabilities. These estimates are further utilized as to
initialize the corresponding values in the regular operation of the HDPA, which
happens after the Reallocation Process.

The second part of the ADE approach concerns the Reallocation Process,
which distributes the actions in an improved manner. For a two-action LA con-
figured tree, such an organization can be achieved by ordering the actions ac-
cording to their estimated reward probabilities in either an ascending or descend-
ing order. In this way, asymptotically, the optimal and second optimal actions
will share the same LA at the level below the root. Thus, asymptotically, the
algorithm will have achieved a correct estimation of the reward probabilities,
and the actions will be distributed in an improved manner. Clearly, due to the
stochastic nature of the problem, the Estimation Phase might not always yield a
perfect interpretation of the reward estimates and the corresponding trees. This
phenomenon and its consequences are explained further in the section with the
experimental results (Section 5).

The Reallocation Process uses the estimated reward probabilities from the
Estimation Phase to reallocate the actions to the tree’s leaves in an ascend-
ing/descending order. Thus, after the Estimation Phase, the actions are given
a new location at the leaf level. The reader should note that the estimates also
need to be updated according to this new ordering. By maintaining these es-
timates, the information from the Estimation Phase is also retained. After the
Reallocation Process, the HDPA starts its normal operation, by utilizing the
reward estimates from the Estimation Phase5.

5 Experimental Results

To demonstrate the effectiveness of the proposed ADE approach presented in
this paper, we conducted experiments with various action distributions, num-
bers of actions, and Environments. For quantifying the effectiveness of the LA
algorithms, we recorded the number of iterations required before convergence,
as this is the most common evaluating measurement [5]. As mentioned earlier,
the convergence requirement for VSSA is that one of the action selection prob-
abilities attains a certain threshold (T). In our experiments, we tested different
convergence criteria, and report the results for the most utilized convergence
threshold to be 0.995. The reader should note that this metric is helpful because

5 Although the algorithm have been explained in details verbally in this paper, a more
detailed programmatic description of the algorithm will be presented in an extended
version of the paper [16].

232

8 R. O. Omslandseter et al.

it will remain identical, regardless of the computing power on the machine used
for the experiments, or the efficiency of the code or language used6.

Paired together with this, is the accuracy of the algorithm. Due to the
stochastic nature of the problem, one often conducts more experiments and
reports the average performance. In terms of accuracy, we usually measure this
as the percentage of experiments which have converged to the optimal action.
Consequently, when a 100% accuracy is achieved, all the experiments conducted
in an ensemble of experiments have converged to the optimal action (i.e, the
action with the highest reward probability). The reader should note that the
number of iterations used for the Estimation Phase is also reckoned into the
overall number of iterations in our experimental results.

In LA, the tuning of the learning parameter leads to a trade-off between the
accuracy and the speed. Generally, as the learning parameter becomes smaller,
the number of iterations increases, and at the same time, the algorithm performs
more accurately. The same dilemma applies to the algorithm proposed in this
paper. As demonstrated in the experiments, placing the optimal and sub-optimal
actions in opposite parts of the tree at the leaf level requires more iterations
than establishing them as entities in the same part of the tree (for example, i.e.,
with an ascending/descending ordering). Thus, the ascending/descending orders
generally require substantially less number of iterations before convergence.

With our experiments, we wanted to demonstrate the behavior of the HDPA
for different action distributions at the leaf level, thereby demonstrating the
improved performance with the ADE approach. In practice, we have little or
no a priori information about the reward estimates in a real-life scenario. In
our simulations, we know that with a knowledge of the exact reward probabili-
ties, we are able to execute the programs for different action distributions with
and without the ADE approach. By demonstrating the phenomena for different
configurations, we intend to highlight the improved performance that can be
achieved in a real-life scenario by using the ADE approach with the Estimation
Phase and Reallocation Process before the actual LA learning is performed.

In our simulations, we denote the real reward probabilities, i.e., the prob-
ability of getting a reward for selecting a certain action, as dj , where j ∈
{1, 2, ..., 2K}. If nothing else is specified, for the ADE HDPA, we used a de-
scending ordering in the Reallocation Process. To help understand the ordering
at the leaf level, we present visualizations of the action distributions with their
corresponding reward probabilities. Please note that these visualizations show
the real reward probability of α1 to α2K , i.e., d1 to d2K , for the actions at the
leaf level. Consequently, the HDPA without the ADE will run the experiments

6 In our experiments, we have configured the convergence criterion as being achieved
once any of the LA has attained a certain threshold of choosing one of the actions
in its action probability vector. However, in [15], they defined the convergence as
being achieved only when all the LA along the path to a leaf action had attained
the prescribed threshold. Thus, the convergence criterion in this paper is different,
i.e., it utilizes the “logical or” instead of the “logical and”, making the algorithms
(i.e., both the HDPA without/with the ADE) attain a faster convergence.

233

The ADE Approach for Hierarchical LA 9

with the actions ordered as displayed by the configuration. Conversely, the ADE
HDPA will reallocate the actions at the leaf level in an ascending/descending
order based on the corresponding reward estimates.

5.1 Simulation 1: 8 Actions

Let us first consider the results for Simulation 1 presented in Tables 1 and 2,
which involve Environments of 8 actions. The difference between the two tables
is that Table 1 does not incorporate the ADE, and Table 2 does. The categoric
superiority of the results in Table 2 demonstrates the power of the ADE.

Table 1: Experimental results for different action distributions without the ADE
approach for eight actions with T = 0.995 as the convergence criterion. The
results were averaged over 1, 000 experiments, with ∆ = 9e−5.
Config. d1 d2 d3 d4 d5 d6 d7 d8 Avg Std Acc.

1 0.99 0.95 0.87 0.6 0.43 0.54 0.67 0.51 6,727.40 42.76 100%
2 0.87 0.6 0.43 0.54 0.67 0.51 0.99 0.95 6,791.75 56.81 100%
3 0.87 0.6 0.99 0.95 0.43 0.54 0.67 0.51 6,730.42 42.03 100%
4 0.87 0.6 0.43 0.99 0.95 0.54 0.67 0.51 7,082.38 215.46 100%
5 0.99 0.6 0.43 0.54 0.67 0.51 0.87 0.95 7,109.98 220.78 100%
6 0.95 0.99 0.51 0.67 0.54 0.43 0.6 0.87 6,791.15 57.52 100%
7 0.99 0.95 0.87 0.67 0.6 0.54 0.51 0.43 6,713.85 42.49 100%

Table 2: Experimental results for different action distributions with the ADE
HDPA with eight actions and T = 0.995 as the convergence criterion. The results
were averaged over 1, 000 experiments, with ∆ = 9e−5.
Config. d1 d2 d3 d4 d5 d6 d7 d8 Avg Std Acc.

1 0.99 0.95 0.87 0.6 0.43 0.54 0.67 0.51 6,810.10 44.66 100%
2 0.87 0.6 0.43 0.54 0.67 0.51 0.99 0.95 6,824.48 51.26 100%
3 0.87 0.6 0.99 0.95 0.43 0.54 0.67 0.51 6,823.52 49.19 100%
4 0.87 0.6 0.43 0.99 0.95 0.54 0.67 0.51 6,821.79 49.51 100%
5 0.99 0.6 0.43 0.54 0.67 0.51 0.87 0.95 6,825.32 49.49 100%
6 0.95 0.99 0.51 0.67 0.54 0.43 0.6 0.87 6,813.32 47.15 100%
7 0.99 0.95 0.87 0.67 0.6 0.54 0.51 0.43 6,810.91 44.67 100%

In Simulation 1, we ran 1,000 experiments with similar reward probabilities
associated with the Environment, but with different action distributions. In Ta-
bles 1 and 2 we have marked the optimal and optimal action in at the leaf level
with a different background color. For example, we can observe Config. 5, where
the optimal and sub-optimal actions are located in opposite parts of the tree.
We had earlier explained that this configuration was the hardest for the HDPA

234

10 R. O. Omslandseter et al.

to handle. As opposed to this, having the actions with regard to the reward
probabilities in an ascending/descending order, like the case of Config. 7, would
be easier. This is confirmed from the results in Table 1, where the HDPA with
the ADE has a superior performance. Config. 4 and Config. 5 required the high-
est number of iterations and had high standard deviations (Std). However, for
Config. 7, where the actions were ordered in a descending order according to the
reward probabilities, the number of iterations was the lowest. This is obvious
since this is the most optimal setting. Again, the results for the ascending and
descending orders are almost identical.

In Table 2 we present the results for the experiments for the ADE HDPA for
Simulation 1. As we observe from the table, some configurations required more
iterations than the other configurations without the ADE approach. However,
the ADE HDPA was more consistent in the number of iterations, and had a
more stable and smaller standard deviation. Config. 2, which is the reversed
form of Config. 6, yielded a little higher standard deviation than the others. We
also, tested Config. 2 for the ADE HDPA with an ascending ordering in the
Reallocation Process, and these experimental results were similar to those of
Config. 6. More specifically, for 1,000 experiments with the ADE HDPA and an
ascending ordering in its Reallocation Process, the algorithm required 6,818.14
iterations on average and a standard deviation of 48.46 yielded 100% accuracy.

In real-life, we do not know the underlying reward probabilities. Therefore,
we can only tune the number of tests, θ, that is used in the Estimation Phase.
Testing each action for a larger number of iterations in the Estimation Phase
will make the ADE more certain that it has estimated the reward probabili-
ties correctly, and it will, thus, order them correctly as well. However, in most
cases, because we want a fast convergence, a rough estimate might be sufficient.
In Simulation 1, we used θ = 12. If we had perfect estimation of the reward
probabilities, we would have similar results to Config. 7 without the ADE.

5.2 Simulation 2: 16 Actions

In Simulation 2, we increased the number of actions to 16. Again, we set the value
of θ to be 12. The different original action distributions are visualized in Fig. 2,
where we focus on the optimal and sub-optimal actions’ locations in the different
configurations. However, the actions in between them were distributed more or
less randomly. In subsequent simulations, we shall highlight what happens when
we have more constructed forms in the original distributions.

In Tables 3 and 4, we present the results for Simulation 2. Analogous to Sim-
ulation 1, we see that the number of iterations is more consistent, and that the
standard deviation is smaller for the ADE HDPA (Table 4). The HDPA with-
out ADE still had better results for the configurations where the actions were
manually ordered in an ascending/descending order, which is quite understand-
able. Thus, the ADE HDPA did probably not achieve the perfect estimation of
the reward probabilities, since the number of iterations used for the estimation,
where θ = 12 and R = 16 (θR = 192), was too small.

235

The ADE Approach for Hierarchical LA 11

Furthermore, the simulation demonstrated a bigger gain using the ADE ap-
proach for 16 actions when compared with the 8 actions case. As an example, for
Row No. 1, the ADE HDPA used approximately 11,550 iterations before conver-
gence, while the HDPA without the ADE used approximately 12,700 iterations,
which yielded a superiority of more than 1,000 iterations. Thus, the ADE had an
approximately 9.95% better performance in terms of the number of iterations.
In comparison, for Simulation 1, the biggest gain of using the ADE approach
was approximately 4.25%.

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0 2 4 6 8 10 12 14 16
Action (j)

0.0

0.5

1.0

Re
wa

rd
 P
ro
ba

bi
lit
y
(d

j)

Fig. 2: The figure shows the action distribution in accordance with the reward
probabilities for Simulation 2. Config. 1 is at the top, Config. 5 is at the bottom,
and the others are ordered in between them systematically.

5.3 Simulation 3: 32 Actions

In Tables 5 and 6, we present the results obtained for Simulation 3, which in-
volved 32 actions. The configurations in these experiments followed the same
concept as depicted in Fig. 2 for Simulation 2. We can observe that the HDPA
without the ADE required considerably more iterations for the case when the
optimal and sub-optimal actions were in opposite parts of the tree (Row No. 1),

236

12 R. O. Omslandseter et al.

Table 3: Experimental results for different action distributions without the ADE
for Simulation 2, with 16 actions and 0.995 as the convergence criterion. The
results were averaged over 100 experiments, with ∆ = 6.75e−5. The different
rows represent different action configurations as described in the second column.

Row No. Configuration characteristics Avg Std Acc.

1 Config 1 in Fig.2 12,691.92 509.64 100%
2 Config 2 in Fig.2 12,362.99 413.44 100%
3 Config 3 in Fig.2 11,674.32 100.95 100%
4 Ascending 11,285.18 83.24 100%
5 Descending 11,291.90 86.09 100%

Table 4: Experimental results for different action distributions with the ADE
for Simulation 2, with 16 actions and 0.995 as the convergence criterion. The
results were averaged over 100 experiments, with ∆ = 6.75e−5. The different
rows represent different action configurations as described in the second column.

Row No. Configuration characteristics Avg Std Acc.

1 Config 1 in Fig.2 11,556.77 111.29 100%
2 Config 2 in Fig.2 11,540.57 106.94 100%
3 Config 3 in Fig.2 11,543.75 94.47 100%
4 Ascending 11,573.89 119.07 100%
5 Descending 11,520.16 91.70 100%

i.e., compared with having the actions ordered in a descending order (Row No. 5).
The numbers of iterations were approximately 17, 700 and 15, 800, respectively.
Comparing the results in Table 5 with those in Table 6, we observe that the
ADE HDPA had a more consistent performance in terms of the number of iter-
ations and the standard deviations. For Row No. 1 in the tables, we see that the
HDPA with the ADE required approximately 16, 350, while the HDPA without
the ADE required 17, 700, which is approximately 8.26% worse.

Table 5: Experimental results for different action distributions without the ADE
for Environments with 32 actions where 0.995 is the convergence criterion. The
results were averaged over 100 experiments, with ∆ = 4.5e−5. The different
rows represent different configurations as described in the second column.

Row No. Configuration characteristics Avg Std Acc.

1 As in Config 1 in Fig.2 17,690.81 849.65 100%
2 As in Config 2 in Fig.2 17,980.64 742.41 100%
3 As in Config 3 in Fig.2 16,911.9 600.69 100%
4 Ascending 15,807.09 89.47 100%
5 Descending 15,806.49 90.23 100%

237

The ADE Approach for Hierarchical LA 13

Table 6: Experimental results for different action distributions with the ADE
HDPA for 32 actions and 0.995 as the convergence criterion. The results were
averaged over 100 experiments, with ∆ = 4.5e−5 and θ = 12. The different rows
represent different configurations as described in the second column.

Row No. Configuration characteristics Avg Std Acc.

1 As in Config 1 in Fig.2 16,338.12 114.54 100%
2 As in Config 2 in Fig.2 16,302.25 121.44 100%
3 As in Config 3 in Fig.2 16,327.96 121.10 100%
4 Ascending 16,371.00 134.76 100%
5 Descending 16,256.67 107.27 100%

6 Conclusion

In this paper we have proposed the novel Action Distribution Enhancing (ADE)
approach for optimally configuring the underlying hierarchical tree representing
the distribution of the actions in the HCPA/HDPA. The ADE involves two
phases, the first of which estimates the action probabilities very crudely, and
subsequently assigns the actions at the leaves of the tree. The corresponding LA
then operate in a hierarchical manner, each of them involving two actions. Our
hypothesis was that if the leaves were arranged in an ascending/descending order,
the collection of hierarchical automata would perform in their most optimized
manner, and we confirmed this hypothesis by both a formal theoretical analysis
and experimentally [16].

We have then proceeded to verify the power of incorporating the ADE into
problems involving different numbers of automata, and various Environments
with corresponding reward probabilities. Quite briefly stated, our simulation
results uniformly confirm that the inclusion of the ADE significantly stabilizes
and increases7 the convergence speed of the hierarchical machine.

If we consider the chronology of LA from its infancy in FSSA through VSSA,
the Estimator approaches, and the more-recent hierarchical schemes, we mod-
estly believe that the inclusion of the ADE represents the state-of-the-art which
will not be able to be surpassed too easily.

References

1. D. T. H. Ng, B. J. Oommen and E. R. Hansen, “Adaptive Learning Mechanisms
for Ordering Actions Using Random Races,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 23, no. 5, pp. 1450-1465, 1993.

2. X. Zhang, O.-C. Granmo and B. J. Oommen, “On Incorporating the Paradigms of
Discretization and Bayesian Estimation to Create a New Family of Pursuit Learning
Automata,” Applied Intelligence, vol. 39, no. 4, pp. 782-792, 2013.

7 The speed of HDPA with ADE, compared with vanilla HDPA, indeed decreases a
bit for the ascending/descending case. Nevertheless, considering the significant speed
gain for other cases, the average speed increases.

238

14 R. O. Omslandseter et al.

3. M. L. Tsetlin, Automaton Theory and the Modeling of Biological Systems, New York:
Academic Press, 1973.

4. S. Lakshmivarahan, Learning Algorithms Theory and Applications, ed. 1, New York:
Springer-Verlag, 1981.

5. K. S. Narendra and M. A. L. Thathachar, Learning Automata: An Introduction,
Dover Books on Electrical Engineering Series, Dover Publications, Courier Corpo-
ration, 2013.

6. M. L. Tsetlin, “Finite Automata and Modeling the Simplest Forms of Behavior,”
Uspekhi Matem Nauk, vol. 8, no.4, pp. 1–26, 1963.

7. S. Lakshmivarahan and M. A. L. Thathachar, “Absolutely Expedient Learning Al-
gorithms for Stochastic Automata,” IEEE Transactions on Systems, Man, and Cy-
bernetics, vol. SMC-3, no. 3, pp. 281–286, 1973.

8. B. J. Oommen, “Absorbing and Ergodic Discretized Two-Action Learning Au-
tomata,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 16, no. 2,
pp. 282–293, 1986.

9. B. J. Oommen and M. Agache, “Continuous and Discretized Pursuit Learning
Schemes: Various Algorithms and Their Comparison,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B (Cybernetics), vol. 31, no. 3, pp. 277–287,
2001.

10. X. Zhang, O.-C. Granmo, B. J. Oommen, “Discretized Bayesian Pursuit - A New
Scheme for Reinforcement Learning,” Advanced Research in Applied Artificial In-
telligence, vol. 7345, pp. 784–793, 2012.

11. M. A. L. Thathachar and P. S. Sastry, “Estimator Algorithms for Learning Au-
tomata,” Proceedings of the Platinum Jubilee Conference on Systems and Signal
Processing, Department of Electrical Engineering, Indian Institute of Science, 1986.

12. X. Zhang, B. J. Oommen and O.-C. Granmo, “The Design of Absorbing Bayesian
Pursuit Algorithms and the Formal Analyses of Their ϵ-Optimality,” Pattern Anal-
ysis and Applications, vol. 20, pp. 797–808, 2017.

13. J. K. Lanctot and B. J. Oommen, “Discretized Estimator Learning Automata,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, no. 6, pp. 1473–1483,
1992.

14. A. Yazidi, X. Zhang, L. Jiao, and B. J. Oommen, “The Hierarchical Continuous
Pursuit Learning Automation: A Novel Scheme for Environments with Large Num-
bers of Actions,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 31, no. 2, pp. 512–526, 2020.

15. R. O. Omslandseter, L. Jiao, X. Zhang, A. Yazidi, and B. J. Oommen, “The Hierar-
chical Discrete Learning Automaton Suitable for Environments with Many Actions
and High Accuracy Requirements,” in Proc. AJCAI 2022. Lecture Notes in Com-
puter Science, vol. 13151, pp. 507–518, 2022.

16. R. O. Omslandseter, L. Jiao, and B. J. Oommen, “Pioneering Approaches for
Enhancing the Speed of Hierarchical LA by Ordering the Actions”. Unabridged
version of this paper. To be submitted for publication.

239

Appendix D

The NOMA Papers

D.1 User Grouping and Power Allocation in NOMA
Systems: A Reinforcement Learning-Based So-
lution

This paper has been published as:

R. O. Omslandseter, L. Jiao, Y. Liu, and J. B. Oommen, “User Grouping and Power
Allocation in NOMA Systems: A Reinforcement Learning-Based Solution,” Trends
in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices,
IEA/AIE 2020, vol 12144, pp. 299–311, Springer International Publishing, Septem-
ber 2020.
DOI: https://doi.org/10.1007/978-3-030-55789-8_27

261

https://doi.org/10.1007/978-3-030-55789-8_27

User Grouping and Power Allocation in NOMA
Systems: A Reinforcement Learning-Based Solution

Rebekka Olsson Omslandseter1, Lei Jiao1, Yuanwei Liu2, and B. John Oommen1,3

1 University of Agder, Grimstad, Norway {rebekka.o.omslandseter,lei.jiao}@uia.no
2 Queen Mary University of London, London, UK yuanwei.liu@qmul.ac.uk

3 Carleton University, Ottawa, Canada oommen@scs.carleton.ca

Abstract. In this paper, we present a pioneering solution to the problem of user
grouping and power allocation in Non-Orthogonal Multiple Access (NOMA) sys-
tems. There are two fundamentally salient and difficult issues associated with
NOMA systems. The first involves the task of grouping users together into the
pre-specified time slots. The subsequent second phase augments this with the
solution of determining how much power should be allocated to the respective
users. We resolve this with the first reported Reinforcement Learning (RL)-based
solution, which attempts to solve the partitioning phase of this issue. In particular,
we invoke the Object Migration Automata (OMA) and one of its variants to re-
solve the user grouping problem for NOMA systems in stochastic environments.
Thereafter, we use the consequent groupings to infer the power allocation based
on a greedy heuristic. Our simulation results confirm that our solution is able to
resolve the issue accurately, and in a very time-efficient manner.

Keywords: Learning Automata · Non-Orthogonal Multiple Access · Object Mi-
gration Automata · Object Partitioning

1 Introduction

The Non-Orthogonal Multiple Access (NOMA) paradigm has been proposed and pro-
moted as a promising technique to meet the future requirements of wireless capacity [6].
With NOMA, the diversity of the users’ channels and power is exploited through Suc-
cessive Interference Cancellation (SIC) techniques in receivers [1]. This technology in-
troduces questions concerning users who are ideally supposed to be grouped together,
so as to obtain the maximum capacity gain. Additionally, the power level of the signal
intended for each user is a crucial component for the successful SIC in NOMA oper-
ations. Consequently, it is an accepted fact that the performance of NOMA is highly
dependent on both the grouping of the users and the power allocation.

The user grouping and power allocation problems in NOMA systems are, in gen-
eral, intricate. First of all, the user grouping problem, in and of itself, introduces a
combinatorially difficult task, and is infeasible as the number of users increases. This is
further complicated by the channel conditions, and the random nature of the users’ be-
haviors in communication scenarios. For this reason, the foundation for grouping, and
consequently, for power allocation, can change rapidly. It is, therefore, necessary for a
modern communication system to accommodate and adapt to such changes.

262

2 R. Omslandseter et al.

The user grouping in NOMA systems, is akin to a classic problem, i.e., to the Object
Partitioning Problem (OPP). The OPP concerns grouping “objects” into sub-collections,
with the goal of optimizing a related objective function, so as to obtain an optimal
grouping [3]. Our goal is utilize Machine Learning (ML) techniques to solve this, and
in particular, the ever-increasing domain of Reinforcement Learning (RL), and its sub-
domain, of Learning Automata (LA). When it concerns RL-based solutions for the OPP,
the literature reports many recent studies to solve Equi-Partitioning Problems (EPPs).
EPPs are a sub-class of the OPP, where all the groups are constrained to be of equal
size. Among these ML solutions, the Enhanced Object Migration Automata (EOMA)
performs well for solving different variants of EPPs [2]. They can effectively handle the
stochastic behavior of the users, and are thus powerful in highly dynamic environments,
similar to those encountered in the user grouping phase in NOMA systems.

Moving now to the second phase, the task of allocating power to the different users
of a group in NOMA systems, further complicates the NOMA operation. However, a
crucial observation is that the problem resembles a similar well-known problem in com-
binatorial optimization, i.e., the Knapsack Problem (KP). KPs, and their variants, have
been studied for decades [4], and numerous solutions to such problems have been pro-
posed. Among the numerous solutions, it is well known that many fundamental issues
can be resolved by invoking a greedy solution to the KP. This is because a greedy so-
lution can be exquisite to a highly complex problem, and can quickly utilize a relation
among the items, to yield a near-optimal allocation of the resources based on this rela-
tion. The power allocation problem in NOMA systems can be modeled as a variation of
a KP, and this can yield a near-optimal solution based on such a greedy heuristic.

In this paper, we concentrate on the problem’s stochastic nature and propose an
adaptive RL-based solution. More specifically, by invoking a technique within the OMA
paradigm, we see that partitioning problems can be solved even in highly stochastic en-
vironments. They thus constitute valuable methods for handling the behavior of compo-
nents in a NOMA system. In particular, we shall show that such methods are compelling
in resolving the task of grouping the users. Indeed, even though the number of possi-
ble groupings can be exponentially large, the OMA-based scheme yields a remarkably
accurate result within a few hundred iterations. This constitutes the first phase of our
solution. It is pertinent to mention that the solution is unique, and that we are not aware
of any analogous RL-based solution for this phase of NOMA systems.

The second phase groups users with different channel behaviors, and allocates power
to the respective users. Here, we observe that the power allocation problem can be
mapped onto a variation of a KP. Although the types of reported KPs are numerous,
our specific problem is more analogous to a linear KP. By observing this, we are able
to resolve the power allocation by solving a linear (in the number of users) number of
algebraic equations, all of which are also algebraically linear. This two-step solution
constitutes a straightforward, but comprehensive strategy. Neither of them, individually
or together, has been considered in the prior literature.

The paper is organized as follows. In Section 2, we depict the configuration of the
adopted system. Then, in Section 3, we formulate and analyze the optimization prob-
lem. Section 4 details the proposed solution for the optimization problem. We briefly
present numerical results in Section 5, and conclude the paper in Section 6.

263

2. SYSTEM DESCRIPTION 3

2 System description

Consider a simplified single-carrier down-link cellular system that consists of one base
station (BS) and K users that are to be divided into N groups for NOMA operation.
NOMA is applied to each group, but different groups are assigned to orthogonal re-
sources. For example, one BS assigns a single frequency band to the K users. The users
are to be grouped in N groups, each of which occupies a time slot. User k is denoted by
Uk where k ∈ K = {1,2, . . . ,K}. Similarly, the set of groups are denoted by G = {gn},
n ∈ N = {1,2, . . . ,N}, where gn is the set of users inside the n-th group. The groups
are mutually exclusive and collectively exhaustive, and thus, gn ∩ go = /0 with n ̸= o.
When a User Uk belongs to Group n, we use the notation Un,k to refer to this user and
its group. We adopt the simplified notation Uk to refer to a user when the user’s group is
trivial or undetermined. Thus, if we have 4 users in the system, User 1 and User 3 could
belong to Group 1, and User 2 and User 4 belong to group 2. In this case, when we
want to refer to User 1 without its group, we use U1. Likewise, when we want to men-
tion User 4 belonging to Group 2, we apply U2,4. For mobility, the users are expected to
move within a defined area. The user behavior in a university or an office building are
examples of where the user behavior coincides with our mobility model.

2.1 Channel Model

The channel model coefficient for Uk is denoted by hk(t) and refers to the channel
fading between the BS and Uk along time. The channel coefficient is generated based
on the well-recognized mobile channel model, which statistically follows a Rayleigh
distribution [8]. The parameters of the channel configuration will be detailed in the
section describing the numerical results. Note that the LA solution to be proposed can
handle a non-stationary stochastic process, and the solution proposed in this work is
distribution-independent. Therefore, the current Rayleigh distribution can be replaced
by any other channel model, based on the application scenario and environment.

2.2 Signal Model

Based on the NOMA concept, the BS sends different messages to the users of a group
in a single time slot via the same frequency band. Consequently, the received signal yk
at time t for Un,k can be expressed as

yk(t) =
√

pn,khk(t)sk +
|gn|−1

∑
e=1

√
pn,ehk(t)se +nk, (1)

where e is the index of the users in the set gn\Un,k, which is the complementary set of
Un,k in gn. |gn| returns the number of users in gn. The received signal yk(t) has three
parts, including the signal intended for Un,k, the signal from all users other than Un,k in
the same group, and the additive white Gaussian noise (AWGN) nk ∼ C N (0,σ2

k) [10].
The transmitted signal intended for Un,k and Un,e is given by sk and se ∼ C N (0,1)
respectively. pn,k is the allocated power for Un,k, and the total power budget for group
gn is given by Pn.

264

4 R. Omslandseter et al.

The BS’ signals are decoded at the users through SIC by means of channel coeffi-
cients in an ascending order [9]. As a result, through SIC, a user with a good channel
quality can remove the interference from the users of poor channel quality, while users
of poor channel quality decode their signals without applying SIC. Hence, for the User
Un,k, successful SIC is applied when |hn,w(t)|2 ≤ |hn,k(t)|2 fulfills, where w is the index
of the users that have lower channel coefficients than User k in the user Group gn.

3 Problem Formulation

In this section, we formulate the problem to be solved. The problem is divided into
two sub-problems. Specifically, in the first problem, we cluster the users into categories
based on the time average of the channel coefficients. In the second step, we group the
users based on the learned categories and solve the resultant power allocation problem.

3.1 Problem Formulation for the Clustering Phase

To initiate discussions, we emphasize that the channel coefficients of the users in a
group need to be as different as possible so as to achieve successful NOMA operation.
To group the users with different coefficients, we thus first cluster the users with similar
coefficients, and then select one user from each cluster to formulate the groups. The
first problem, the clustering problem, is formulated in this subsection. The problem for
user grouping, together with power allocation, is formulated later.

The criterion that we have used for clustering the users is the time average of the
channel coefficients, hk(t). The reason motivating this is because the user grouping is
computationally relatively costly, and the fact that the environment may change rapidly,
i.e., h(t) might change after channel sounding. If we cluster the users according to the
time average, we can reduce the computational cost, and at the same time, capture the
advantages of employing NOMA statistically.

We consider clustering users to clusters of the same size, where the number of the
clusters is Lc = K/N, and where Lc and N are integers4. Let qc be the set of users in
Cluster c, where c ∈ [1,2, . . . ,Lc] is the index of the cluster. Clearly, for the clustering
problem, the difference of coefficients in each cluster needs to be minimized, and the
problem can be formulated as

min
{ϕc,k}

Lc

∑
c=1

K

∑
k=1

ϕc,k|hk(t)−Ec|, (2a)

s.t.
Lc

∑
c=1

K

∑
k=1

ϕc,k = K, c ∈ C ,k ∈ K, (2b)

K

∑
k=1

ϕc,k = N, ∀c, (2c)

4 In reality, if Lc is not an integer, we can add dummy users to the system so as to satisfy this
constraint. Dummy users are virtual users that are not part of the real network scenario, but are
needed for constituting equal-sized partitions in the clustering phase.

265

3. PROBLEM FORMULATION 5

where ϕc,k is an indicator function showing the relationship of users and clusters, as
ϕc,k = 1 when Uk belongs to Cluster c, and 0 otherwise. Additionally, the mean value
of the channel fading in each cluster is denoted by the parameters Ec and δ, which are
given by Ec =

1
δ ∑K

k=1 hk(t)ϕc,k, and δ = ∑K
k=1 ϕc,k respectively. To explain the above

equation, we mention that Eq. (2a) states the objective function. Specifically, for all the
clusters, we want to minimize the difference of channel coefficients between the users
within each cluster. Eq. (2b) and Eq. (2c), state a description of the variable ϕc,k for
User k in c. Hence, the sum of the variables ϕc,k needs to be equal to the number of
users, meaning that all the users need to be a part of a single cluster, and in each cluster,
there needs to be an equal number of users.

The result of the clustering problem, i.e., the {ϕc,k} that minimizes the objective
function, formulates Lc sets of users, each of which has exactly N users.

3.2 Problem Formulation for the Power Allocation

From the output of the clustering, we know which users that are similar. Thus, when
we take one user from each cluster and construct N groups, the size of each group is
Lc. Without loss of generality, we can assume that the average channel coefficients are
sorted in ascending order, i.e., h1(t)≤ h2(t)≤ . . .≤ hK(t). If we consider user grouping
and power allocation based on average channel coefficients, the reduces to:

max
{gn},{pn,k}

R =
K

∑
k=1

b log2

(
1+

pn,k|hn,k|2
In,k +σ2

)
(3a)

s.t. gn∩go = /0, n ̸= o, n,o ∈N , (3b)

∑
j,∀U j∈gn

pn, j ≤ Pn, n ∈N , (3c)

Rn, j(t)≥ RQoS, j ∈K ,n ∈N , (3d)

hi(t)> h j(t), ∀i> j, i, j ∈K , (3e)
|gn∩qc|= 1, ∀c, ∀n, (3f)

∑
j,∀U j∈gn

τn, j = Lc, ∀n, (3g)

∑
n,∀n∈N

∑
j,∀U j∈gn

τn, j = NLc. (3h)

In Eq. (3a), In,k = ∑ j,
∀ j>k, {U j , Uk}∈gn

|hk|2 pn, j is the interference to User k in Group n. In

Eq. (3b), we state that the groups need to be disjoint. Hence, one user can only be in
one group. In (3c), we address the constraint for the power budget. The QoS constraint
is given in Eq.(3d), where Rn, j(t) is the achievable data rate for User j in Group n, and
Eq. (3e) gives the SIC constraint. The constraint in Eq. (3f) specifies that only a single
user is selected to formulate a group from each cluster. In Eq. (3g), we introduce an
indicator τn,k, stating whether Uk is in Group n, as τn,k = 1 when Uk belongs to Group
n, and 0 otherwise. Furthermore, all users should belong to a certain group, which is
given in Eq. (3h). Table 1 summarizes the notation.

266

6 R. Omslandseter et al.

Notation Description Notation Description
h, h(t) Channel coefficient, and h for t pn,k Allocated power for Un,k

hk , hn,k h for Uk and Un,k nk , σ2 AWGN at Uk and Gaussian noise
hk(t), hn,k(t) The mean of h for Uk hk(t), hn,k(t) h for Uk and Un,k at t

K Total number of users In,k Interference from other users to Un,k
N Total number of groups Ec Mean of channel fading in qc
K Set of user indexes R Total data rate (capacity)
N Set of group indexes S Number of states per action
G Set of groups RQoS Minimum required data rate for a user
gn Set of users inside the n-th group vU ,vL Mobility factor and speed of light
|gn| Number of users inside gn fc, fd Carrier and Doppler frequency

Uk ,Un,k User k and user k in group n Lc Number of clusters
gn\Un,k The complementary set of users in set gn qc Set of users in cluster c

/0 Empty set C Set of clusters
yk , yk(t) Signal from BS at Uk and Uk at time t ϕc,k Indicator of whether Uk is in cluster c

sk Transmitted signal intended for Uk δ Number of ϕc,k = 1 for a cluster
Pn Power budget for gn b Channel bandwidth
τn,k Indicator of whether Uk is in group n rk Rank of Uk
∆t Time period for average of h ϒk Ranking category of user k
εk Index of the current state of user k Θk Cluster of Uk

Q = (Ua,Ub) Input query of users to the EOMA W, Mbps Watt and Megabits per second
r Rank c Index of the set of clusters

Table 1. Summary of notations

4 Solution to User Grouping and Power Allocation

The problem of grouping and power allocation in NOMA systems is two-pronged.
Therefore, in Section 4.1, we only consider the first issue of the two, namely the group-
ing of users. We will show that our solution can handle the stochastic nature of the
channel coefficients of the users, while also being able to follow changes in their chan-
nel behaviors over time. This will ensure that the system will be able to follow the
nature of the channels in a manner that is similar to what we will expect in a real sys-
tem. Thereafter, in Section 4.2, we will present our solution to the power allocation
problem. Once the groups have been established in Section 4.1, we can utilize these
groups to allocate power among them either instantaneously, or over a time interval
using a greedy solution to the problem.

4.1 Clustering Through EOMA

The family of OMA algorithms are based on tabula rasa Reinforcement Learning.
Without any prior knowledge of the system parameters, the channels, or the clusters,
(as in our case), the OMA self-learns by observing, over time, the Environment that
it interacts with. For our problem, the communication system constitutes the Environ-
ment, which can be observed by the OMA through, e.g., channel sounding. By gaining
knowledge from the system behavior and incrementally improving through each in-
teraction with the Environment, the OMA algorithms are compelling mechanisms for
solving complex and stochastic problems. In the OMA, the users of our system need
to be represented as abstract objects. Therefore, as far as the OMA is concerned, the
users are called “objects”. The OMA algorithms require a number of states per action,
indicated by S. For the LA, an action is a solution that the algorithm can converge to. In
our system, the actions are the different clusters that the objects may belong to. Hence,

267

4. SOLUTION TO USER GROUPING AND POWER ALLOCATION 7

based on the current state of an object, we know that object’s action, which is equal to
its current cluster in our system. Therefore, each object, or user in our case, has a given
state indicated by εk = {1,2, ...,SLc}, where εk denotes the current state of Uk, S is the
number of states per action, and Lc is the number of clusters. Clearly, because we have
Lc clusters, the total number of possible states is SLc. To indicate the set of users inside
Cluster c, where c ∈ [1,2, . . . ,Lc], we have qc. The cluster for a given User, k, is repre-
sented by Θk, where the set of clusters is denoted by C and Θk ∈ C = {q1,q2, . . . ,qLc}.

Algorithm 1 Clustering of Users
Require: hk(t) for all users K

while not converged do // Converged if all users are in the two innermost states of any action
for all K do

Rank the users from 1 to K // 1 is given to the user with lowest h (K to the highest)
end for
for K

N pairs (Ua,Ub) of K do // The pairs are chosen uniformly from all possible pairs
if ϒa = ϒb then // If Ua and Ub have the same ranking category

if Θa = Θb then // If Ua and Ub are clustered together in the EOMA
Process Reward

else // If Ua and Ub are not clustered together in the EOMA
Process Penalty

end if
end if

end for
end while // Convergence has been reached

The states are central to the OMA algorithms, and the objects are moved in and
out of states as they are penalized or rewarded in the Reinforcement Learning process.
When all objects have reached the two innermost states of an action, we say that the
algorithm has converged. When convergence is attained, we consider the solution that
the EOMA algorithm has found to be sufficiently accurate. In the EOMA, the number-
ing of the states follows a certain pattern. By way of example, consider a case of three
possible clusters: the first cluster of the EOMA has the states numbered from 1 to S,
where the innermost state is 1, the second innermost state is 2, and the boundary state
is S. The second cluster has the innermost state S+ 1 and the second innermost state
S+2, while the boundary state is 2S. Likewise, for the third cluster, the numbering will
be 2S+ 1 for the innermost and 2S+ 2 for the second innermost state, while 3S is the
boundary state.

Algorithm 1 presents the overall operation for the clustering of the users. The func-
tionality for reward and penalty, as the EOMA interacts with the NOMA system, are
given in Algorithms 2 and 3 respectively. In the algorithms, we consider the operation
in relation to a pair of users Ua and Ub, and so Q = {(Ua,Ub)}. The EOMA consid-
ers users in pairs (called queries, denoted by Q). Through the information contained
in their pairwise ranking, we obtain a clustering of the users into the different channel
categories. For each time instant, ∆t , the BS obtains values of hk(t) through channel
sounding, and we use the average of ∆t samples as the input to the EOMA (hk(t)). The

268

8 R. Omslandseter et al.

BS then ranks the users, indicated by rk = {1,2, ...,K}, where each Uk is given a single
value of rk for each ∆t. For the ranks, rk = 1 is given to the user that has the lowest chan-
nel coefficient compared to the total number of users, and rk = K is given to the user
with the highest channel coefficient of the users. The others are filled in between them
with ranks from worst to best. Furthermore, the values of these ranks corresponds to
ranking categories, denoted by ϒk for Uk, where ϒk = {r ∈ [1,N] = 1,r ∈ [1+N,2N] =
2,r ∈ [1+2N,3N] = 3, . . . ,r ∈ [K−N +1,K] = Lc}. In this way, even if the users have
similar channel conditions, they will be compared, and the solution can work on finding
the current best categorization of the K users for the given communication scenario. As
depicted in Algorithm 1, we check the users’ ranking categories in a pairwise manner. If
the users in a pair (query) are in the same ranking category, they will be sent as a query
to the EOMA algorithm. The EOMA algorithm will then work on putting the users that
are queried together in the same cluster, which, in the end, will yield clusters of users
with similar channel coefficients. More specifically, if two users have the same ranking
category, they are sent as a query to the EOMA and the LA is rewarded if these two
users are clustered together (penalized if they are not together).

Algorithm 2 Process Reward
Require: Q = (Ua,Ub) // A query (Q), consisting of Ua and Ub
Require: The state of Ua (εa) and Ub (εb)

if εa mod S ̸= 1 then // Ua not in innermost state
εa = εa−1 // Move Ua towards innermost state

end if
if εb mod S ̸= 1 then // Ub not in innermost state

εb = εb−1 // Move Ub towards innermost state
end if
return The next states of Ua and Ub

When the algorithm converges to obtain the groups that are needed for the power
allocation, we rank the users within each cluster based on hk(t) that was obtained in
the clustering process, and then formulate the groups that consist of one user from each
cluster with the same rank.

4.2 Power Allocation Through a Greedy Solution

Once the grouping of the users has been established, we can allocate power to different
users in such a way that the joint data rate (R) is maximized. There are numerous ways
of power allocation in various communication scenarios [5, 10]. The power allocation
can be replaced by any other algorithm and will not change the nature of the Rein-
forcement Learning procedure. However, in this paper, we will consider the problem of
power allocation as a variation of the KP, and solve it through a greedy solution.

Our aim for the greedy solution is that of maximizing the total data rate of the
system. Thus, the weakest user will always be limited to the minimum required data

269

5. NUMERICAL RESULTS 9

Algorithm 3 Process Penalty
Require: Q = (Ua,Ub) // A query (Q), consisting of Ua and Ub
Require: The state of Ua (εa) and Ub (εb)

if εa mod S ̸= 0 and εb mod S ̸= 0 then // Neither of the users are in boundary states
εa = εa +1, εb = εb +1 // Move Ua and Ub towards boundary state

else if εa mod S ̸= 0 and εb mod S = 0 then // Ub in boundary state but not Ua
εa = εa +1, temp = εb
x = unaccessed user in cluster of Ua which is closest to boundary state
εx = temp, εb = εa

else if εb mod S ̸= 0 and εa mod S = 0 then // Ua in boundary state but not Ub
εb = εb +1, temp = εa
x = unaccessed user in cluster of Ub closest to boundary state
εx = temp, εa = εb

else // Both users are in boundary states
εy = ε{a or b} // y equals a or b with equal probability, and y is the staying user
εz = ε{a or b} // z is the moving user, and is a if b was chosen as y (b if a was chosen)
temp = εz
x = unaccessed user in cluster of Uy closest to boundary state
εx = temp
εz = εy // Move Uz to cluster of Uy

end if
return The next states of Ua and Ub

rate. The heuristic involves allocating the majority of the power to the users with higher
values of h, and this will result in a higher sum rate for the system. Consequently,
the stronger users are benefited more from the greedy solution than those with weaker
channel coefficients. However, the weak users’ required data rate is ensured and can be
adjusted to the given scenario. The formal algorithms are not explicitly given here in
the interest of brevity, and due to space limitations. They are included in [7].

5 Numerical Results

The techniques explained above have been extensively tested for numerous numbers of
users, power settings etc., and we give here the results of the experiments. In the interest
of brevity, and due to space limitations, the results presented are a very brief summary
of the results that we have obtained. More detailed results are included in [7] and in the
Doctoral Thesis of the First Author.

We employed Matlab for simulating the values of the channel coefficient, h. Addi-
tionally, we invoked a Python script for simulating the LA solution to the user grouping
and the greedy solution to power allocation. The numerical results for the power alloca-
tion solution are based on the results obtained from the EOMA clustering and grouping.
For the simulations, we used a carrier frequency of 5.7GHz and an underlying Rayleigh
distribution for the corresponding values of h(t). For the mobility in our model, we
utilized a moving pace corresponding to the movement inside an office building, i.e.,
vU = 2 km/h. We sampled the values of h according to 1

2 fd
, where fd is the Doppler

frequency and fc is the carrier frequency. The Doppler frequency can be expressed as

270

10 R. Omslandseter et al.

fd = fc(
vU
vL
) and vL is the speed of light. Therefore, in the following figures, we use

“Sample Number” as the notation on the X-axis. Fig. 1 illustrates the snap-shot of h
values for four users and the principle for the simulation when the number of users
increased.

0 20 40 60 80 100
Sample number

−50

−45

−40

−35

−30

−25

−20

−15

−10

h
(d
B)

U1
U4
U14
U20

Fig. 1. Example of the simulated h(t) for four different users. In the interest of clarity, and to
avoid confusion, we did not plot all the 20 users.

4 6 8 10 12 14 16 18 20
Number of users

20

40

60

80

100

120

140

160

Nu
m
be

r o
f i
te
ra
tio

ns

Fig. 2. A plot of the average number of iterations needed before convergence, as a function of
number of users, where there were two users in each group. This was obtained by executing 100
independent experiments.

For evaluating the simulation for the clustering phase, we recorded whether or not
the LA were able to determine the clusters that corresponded to the minimized differ-
ence between the users in a cluster, based on the users’ mean values of h in the simu-
lations. Remarkably, in the simulation, the EOMA yielded a 100 % accuracy in which
the learned clustering was identical to the unknown underlying clustering in every sin-

271

5. NUMERICAL RESULTS 11

gle run for the example provided with −10dB difference between values of h within
the different clusters. This occurred for groups of sizes 4,6,8,10,12,14,16,18 and 20,
where the number of users in a group was equal to two. The difference between the
users can be replaced by any “equivalent metric”, and it should be mentioned that these
values were only generated for testing the solution, since in a real scenario, the “True
partitioning” is always unknown. The number of iterations that it took the EOMA to
achieve 100 % accuracy for the different number of users is depicted in Fig. 2. Notably,
the EOMA retains its extremely high accuracy as the number of users increased, and
yielded 100 % accuracy both for 4 users as well as 20 users.

0 20 40 60 80 100
Sample number (time average)

140

145

150

155

160

165

170

175

180

Da
ta
 ra

te
 (M

bp
s)

Orthogonal Multiple Access
NOMA

Fig. 3. Data rate for orthogonal multiple access compared to NOMA for time averages of h. Based
on averages over 500 samples of h.

The simulation for the greedy solution to the power allocation phase, was carried
out based on the groups established in the LA solution. Again, in the interest of brevity,
we only report the results for the cases with 20 users in total and 2 users in each group,
and more extensive results are included in [7] and in the Doctoral Thesis of the First
Author. The optimal power allocation for 2 users in a group was obtained when we
gave the minimum required power to the user with smaller h value and then allocated
the rest to the user with lager h value. The optimality of the greedy algorithm for the 2
user-group case was verified by an alternate independent exhaustive search. For illus-
trating the advantages of our NOMA greedy solution when NOMA was employed, we
compared it with the data rate that would be achieved with orthogonal multiple access5.

5 The achieved data rate for User k in Group n in orthogonal multiple access is given by

Rn,k =
1
2 log2

(
1+ Pn|hn,k |2

σ2

)
. The factor 1

2 is due to the multiplexing loss when 2 users share
the orthogonal resource.

272

12 R. Omslandseter et al.

In Fig. 3, we depict the results obtained for the greedy NOMA solution together with
the orthogonal multiple access, for an average over ∆t = 5 samples of h. Further, with
regard to the parameters used, the data rate for the simulations depicted in Fig. 3 was
based on the following configuration: The minimum required data rate was configured
to 2.0 Mbps, the noise to 10−8 W , the bandwidth to 1 MHz, and the power level for all
groups to 0.125 W . As illustrated, the simulation results obtained show that the greedy
solution to the power allocation is higher than the data rate achieved with orthogonal
multiple access. From the graph in Fig. 3 we see that the average difference between
the orthogonal multiple access and NOMA was approximately 28.17 Mbps.

6 Conclusions

In this paper, we have proposed a novel solution to the user grouping and power alloca-
tion problems in NOMA systems, where we have considered the stochastic nature of the
users’ channel coefficients. The grouping has been achieved by using the tabula rasa
Reinforcement Learning technique of the EOMA, and the simulation results presented
demonstrate that a 100 % accuracy for finding clusters of similar h(t) over time can
be obtained within a limited number of iterations. With respect to power allocation, we
proposed a greedy solution, and again the simulation results confirm the advantages of
the NOMA solution. Our solutions offer flexibility, as both the grouping and the power
allocation phases, can be used as stand-alone components of a NOMA system.

References
1. Cui, J., Ding, Z., Fan, P., Al-Dhahir, N.: Unsupervised Machine Learning-Based User Clus-

tering in Millimeter-Wave-NOMA Systems. IEEE Transactions on Wireless Communications
17(11), 7425–7440 (Nov 2018)

2. Gale, W., Das, S., Yu, C.T.: Improvements to an Algorithm for Equipartitioning. IEEE Trans-
actions on Computers 39(5), 706–710 (May 1990)

3. Glimsdal, S., Granmo, O.: A Novel Bayesian Network Based Scheme for Finding the Op-
timal Solution to Stochastic Online Equi-Partitioning Problems. In: 2014 13th International
Conference on Machine Learning and Applications. pp. 594–599 (Dec 2014)

4. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer, Berlin (2004)
5. Liu, Y., Elkashlan, M., Ding, Z., Karagiannidis, G.K.: Fairness of User Clustering in MIMO

Non-Orthogonal Multiple Access Systems. IEEE Communications Letters 20(7), 1465–1468
(July 2016)

6. Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., Hanzo, L.: Nonorthogonal Multiple
Access for 5g and Beyond. Proceedings of the IEEE 105(12), 2347–2381 (Dec 2017)

7. Omslandseter, R. O., Jiao, L., Liu, Y. Oommen, B. J.: An Efficient and Fast Reinforcement
Learning-Based Solution to the Problem of User Grouping and Power Allocation in NOMA
Systems. Unabridged version of this paper. To be submitted for publication.

8. Pätzold, M.: Mobile Radio Channels. Wiley, Chichester, 2nd ed. edn. (2012)
9. Pischella, M., Le Ruyet, D.: Noma-Relevant Clustering and Resource Allocation for Propor-

tional Fair Uplink Communications. IEEE Wireless Communications Letters 8(3), 873–876
(June 2019)

10. Xing, H., Liu, Y., Nallanathan, A., Ding, Z., Poor, H.V.: Optimal Throughput Fairness Trade-
offs for Downlink Non-Orthogonal Multiple Access Over Fading Channels. IEEE Transac-
tions on Wireless Communications 17(6), 3556–3571 (June 2018)

273

D.2 User Grouping and Power Allocation in NOMA
Systems: A Novel Semi-supervised Reinforce-
ment Learning-based Solution

This paper has been published as:

R. O. Omslandseter, L. Jiao, Y. Liu, and J. B. Oommen, “User Grouping and Power
Allocation in NOMA Systems: A Novel Semi-Supervised Reinforcement Learning-
Based Solution,” Pattern Analysis and Applications, vol 26, pp.1–17, Springer Lon-
don, July 2022.
DOI: https://doi.org/10.1007/s10044-022-01091-2

275

https://doi.org/10.1007/s10044-022-01091-2

Noname manuscript No.
(will be inserted by the editor)

User Grouping and Power Allocation in NOMA
Systems: A Novel Semi-Supervised Reinforcement
Learning-based Solution

Rebekka Olsson Omslandseter ·
Lei Jiao ·
Yuanwei Liu ·
B. John Oommen

Received: date / Accepted: date

Abstract In this paper, we present a pioneering solution to the problem
of user grouping and power allocation in Non-Orthogonal Multiple Access
(NOMA) systems. The problem is highly pertinent because NOMA is a well-
recognized technique for future mobile radio systems. The salient and difficult
issues associated with NOMA systems involve the task of grouping users to-
gether into the pre-specified time slots, which are augmented with the question
of determining how much power should be allocated to the respective users.
This problem is, in and of itself, NP-hard. Our solution is the first reported
Reinforcement Learning (RL)-based solution, which attempts to resolve parts
of this issue. In particular, we invoke the Object Migration Automaton (OMA)
and one of its variants to resolve the grouping in NOMA systems. Further-
more, unlike the solutions reported in the literature, we do not assume prior
knowledge of the channels’ distributions, nor of their coefficients, to achieve
the grouping/partitioning. Thereafter, we use the consequent groupings to
heuristically infer the power allocation. The simulation results that we have
obtained confirm that our learning scheme can follow the dynamics of the
channel coefficients efficiently, and that the solution is able to resolve the issue
dynamically.

R. O. Omslandseter and L. Jiao
Address of the first two authors: Department of Information and Communication Tech-
nology, University of Agder, Jon Lilletuns vei, 4879 Grimstad, Norway. E-mail: re-
bekka.o.omslandseter@uia.no, lei.jiao@uia.no.

Yuanwei Liu
Address: School of Electronic Engineering and Computer Science, Queen Mary University
of London, Mile End Road, London, E1 4NS, U.K. E-mail: yuanwei.liu@qmul.ac.uk.

B. John Oommen
Chancellor’s Professor; Life Fellow: IEEE and Fellow: IAPR. Address: School of Computer
Science, Carleton University, Ottawa, Canada: K1S 5B6. This author is also an Adjunct Pro-
fessor with the University of Agder in Grimstad, Norway. E-mail: oommen@scs.carleton.ca.

276

2 Rebekka Olsson Omslandseter et al.

Keywords Learning Automata · Non-Orthogonal Multiple Access · Object
Migration Automaton · Object Partitioning · Semi-Supervised Reinforcement
Learning

1 Introduction

The Non-orthogonal Multiple Access (NOMA) paradigm has been established
as a promising technique to meet the future requirements of wireless capac-
ity [1]. As user demands are increasing due to the ever-increasing range of
applications and technologies, (such as the Internet of things) (IoT), NOMA
constitutes a valuable solution, as more users can be multiplexed together
in the same orthogonal Resource Block (RB) [2]. With NOMA, the diversity
of the user’s channel and power are exploited through Successive Interference
Cancellation (SIC) techniques in receivers [3]. The RB sharing introduces ques-
tions as to which users are the most ideal candidates to be grouped together,
so as to obtain the maximum gain of capacity. Additionally, the power level of
the signal intended for each user is a crucial component for successful SIC in
NOMA operation. Therefore, the performance of NOMA is highly dependent
on both the user grouping and the subsequent power allocation.

The user grouping and power allocation problems in NOMA systems are, in
general, inter-twined and intricate. The user grouping problem, in and of itself,
introduces a combinational in-feasibility when the number of users increases.
In addition, users in NOMA systems can suffer from both inter- and intra-
channel interference, constituting the non-convex property of power allocation
in NOMA systems [3]. Furthermore, the channel conditions and user behavior
in communication scenarios have a random nature, complicating the problem.
Consequently, the foundation for grouping, and thus for power allocation, can
change rapidly. Therefore, in addition to searching for instantaneous optimiza-
tion, it is necessary for a modern communication system to accommodate and
adapt to such changes.

In recent years, the fields of Machine Learning (ML), including Reinforce-
ment Learning (RL), have been exploding, which provides new opportunities
for facilitating communication systems with more capacity in terms of au-
tomation. With some insight, one sees that the problem of user grouping in
NOMA systems, is similar in nature and with regard to the solution space,
to a classic problem, namely, to the Object Partitioning Problem (OPP). The
OPP concerns grouping objects into sub-collections and attempts to optimize
a related objective function to obtain a near-optimal grouping [4]. When it
concerns RL-based solutions for the OPP, many recent studies have been car-
ried out for Equi-Partitioning Problems (EPPs). EPPs are a subset of OPPs,
where all the groups (referred to as partitions) need to be equi-sized.

Among the ML solutions, Enhanced Object Migration Automata (EOMA)1

is a technique that performs well for solving different variants of EPPs [5].

1 Object Migration Automata and its abbreviation, OMA, should not be confused with
Orthogonal Multiple Access, often also abbreviated OMA in the Literature. In this paper,
the abbreviation OMA (and its variants) refers to the ML algorithm.

277

User Grouping and Power Allocation in NOMA Systems 3

Further advancements to the EOMA algorithm, that can be found in [6] and
[7], are the Pursuit Enhanced Object Migration Automata (PEOMA) and
the Transitivity Pursuit Enhanced Object Migration Automata (TPEOMA),
respectively. These OMA-based algorithms can partition a set of users into
disjoint groups through the use of Learning Automata (LA)2 instances, which
can handle stochastic behavior. LA instances learn through the concept of
RL in a semi-supervised manner. These are powerful techniques applicable in
highly dynamic environments, dealing with problem instances that are akin to
the underlying ones encountered by users in NOMA systems.

An LA is a decision-making algorithm that can sequentially learn the op-
timal action from a set of actions in a stochastic environment. At each time
instant, an action is chosen by the LA, and serves as the input to the environ-
ment. The environment then responds to the action chosen by the LA, by a
feedback that is usually a reward or a penalty to the action. Based on both the
response of the environment and the current state of the LA, the LA adjusts
its action selection strategy for future interactions. Initial LA was designed in
[21] with a fixed structure, where the state update and the decision functions
were time-invariant. Later, Variable Structure Stochastic Automata (VSSA)
were developed, such as the linear reward-penalty scheme, the linear reward-
inaction scheme, the linear inaction-penalty scheme, and the linear reward-
penalty scheme [22], [23]. Schemes that apply nonlinear functions have also
been designed and analyzed [22], [23], [24], where the updating functions can
either be of continuous or discretized [25], [26]. In addition, the Markovian
representation of the states in LA can be either absorbing or ergodic [22], [27],
where the latter adapts better to non-stationary environments where the re-
ward probabilities are time-variant. The state-of-the-art of the field of LA, is
reported in [28], [29].

The task of allocating power to the different users of a group in NOMA
systems further complicates the NOMA operations. Depending on the objec-
tive of power allocation, the formulation and complexity can be quite different.
Various solutions can be adopted for distinct problems, and heuristics-based
solutions can be quite pertinent to such a highly complex problem.

1.1 Motivation of this Paper

In communications, a particular distribution for the channel fading is often
assumed, e.g., Rayleigh fading, which involves a stochastic process in which
we observe the channel, as time proceeds. When the channel coefficient, h, is
assumed to follow a specified distribution that is time-invariant, it is equiva-
lent to assuming that the stochastic process follows a random and stationary
process. In previous solutions, although channel fading was assumed to be
following a certain random distribution, user grouping and power allocation

2 The abbreviation LA is used interchangeably throughout the paper, referring to both the
field of Learning Automata and the Learning Automaton itself, depending on the context
in which it appears.

278

4 Rebekka Olsson Omslandseter et al.

were traditionally carried out based on an instantaneous sample from the dis-
tribution, and thus a constant, h, was assumed to have been known, and was
utilized for optimization. In other words, the stochastic behavior of channels
was not handled in the prior grouping and power allocation.

Although channel sounding is not an expensive operation, it may not be
carried out frequently enough to follow the instantaneous changes of the chan-
nels in certain systems. Therefore, basing a system on the most recent channel
sounding result for optimization, may not be a statistically-prudent strategy.
Furthermore, due to the complexity of optimization problems, in practice, the
system may not prefer to solve the optimization problem frequently based on,
e.g., instantaneous channel sounding results every time when they are avail-
able. In addition, the overall statistics of the channel may even change over
time due to, for example, mobility. Therefore, we need a more reasonable base
for the channel coefficients for optimization, and at the same time, require a
more computationally-effective and adaptive solution.

1.2 Contributions of this Paper

In this paper, we study the problem considering the issue’s stochastic nature,
and propose an adaptive solution based on RL. To be specific, by incorporat-
ing a technique from within the OMA paradigm, partitioning problems can
be solved even in environments with a highly stochastic nature. Hence, OMA
algorithms constitute valuable methods for handling the behavior of compo-
nents in a NOMA system. In particular, we shall show that such methods are
powerful in resolving the task of grouping the users. Indeed, even though the
number of possible groupings can be exponentially large, the OMA schemes
can yields a remarkably accurate result, which can be achieved within a few
hundred iterations! This constitutes the first phase of our solution.

The second phase groups users with different channel behaviors and al-
locates power to the respective users. For power allocation, we adopt the
objective of maximizing the sum rate, and propose two heuristic-based al-
gorithms. Other objective functions and the corresponding solutions may also
be employed for power allocation, depending on the system’s demand. This
two-step solution constitutes a straightforward but comprehensive strategy,
which has not been considered in the prior literature.

Our proposed solution handles random stationary environments and can
learn from the environment and adjust user groupings adaptively, based on the
time-averaged values of the channel’s coefficients. Instead of grouping users
and allocating power to users based on instantaneous measurements, which
is not practical due to the complexity and stochastic nature of the problem
domain, the proposed solution employs user grouping according to the time
average of the communication environment. Further, based on the obtained
groups, heuristic-based schemes resolve power allocation in NOMA systems.
In addition, when the statistics of the environment changes, the RL algorithm
can follow them so that the groupings of the users can be updated. The beauty

279

User Grouping and Power Allocation in NOMA Systems 5

of the proposed algorithm is that it requires no prior knowledge of the channel,
and that the learning and adaptation are carried out while the communication
system is in operation.

The reader will also observe that the problem is two-pronged. Firstly, it
involves the grouping of the users, and thereafter, secondly, the corresponding
power allocations. With respect to the first prong, our solution converges ar-
bitrarily close to the optimal clustering. This, of course, does not address the
power allocation problem. To address the second prong, we have resorted to
straightforward heuristic-based algorithms.

Our contributions can thus be summarized as follows:

1. We study the user grouping and power allocation problem in stochastic
environments. This real-life scenario is hardly addressed in the literature.

2. Through a two-step solution, the user grouping and power allocation prob-
lems are solved through a RL technique and heuristic solutions, respec-
tively. The solution is adaptive to changes in the environment. Addition-
ally, without prior knowledge of the channel, the system can learn the
knowledge when the system is in operation, and thus both these solutions,
can be implemented on the fly.

3. We provide fairly extensive simulation results to illustrate the effectiveness
and the strength of RL for problems in NOMA systems.

1.3 Organization of the Paper

The paper is organized as follows3. First of all, Section 2 summarizes the
related work in the research area of NOMA and LA. In Section 3, we depict
the configuration of the adopted system, and in Section 4, the optimization
problem is formulated and analyzed. Section 5 details the proposed solution
for the optimization problem. Numerical results are illustrated in Section 6,
before we conclude the paper in Section 7.

2 The State of the Art

In this paper, we present a solution to user grouping and power allocation
in NOMA systems through the use of LA, and specifically the OMA-based
partitioning algorithms. Therefore, in this section, we present the state of the
art of both NOMA and LA in relation to partitioning.

2.1 NOMA

Recently, NOMA technology has attracted a great attention and research effort
[1,2,8]. Substantial research has been devoted to the field of NOMA through

3 The notation for the paper is given below, so as to not distract from the content itself.

280

6 Rebekka Olsson Omslandseter et al.

Table 1 Table of notations.

Notation Description
h Channel coefficient

hk, hk(t), hn,k, hn,k(t) h for Uk and Un,k, and for Uk and Un,k at t

hk(t), hn,k(t) The mean of the channel coefficient for Uk

K Total number of users
N Total number of groups
K Set of user indexes
N Set of group indexes
G Set of groups
gn Set of users inside the n-th group
|gn| Number of users inside gn

Uk, Un,k User k and user k in group n
gn\Un,k The complementary set of users in set gn
∅ Empty set

yk, yk(t) Signal from BS at Uk and Uk at time t
sk Transmitted signal intended for Uk

Pn, Pn(t) Power budget for gn, and Pn considering t
τn,k Indicator of whether Uk is in group n
∆t Time period for considering average of h
S Number of states per action
ϵk Index of the current state of user k

Q = (Ua, Ub) Input query of users to the EOMA
fc, fd Carrier and Doppler frequency
W Number of combinations

pn,k, pn,k(t) Allocated power for Un,k and considering t
nk, σ

2 AWGN at Uk and Gaussian noise power
Γk(t), Γn,k, Γn,k(t) SINR of user Uk and Un,k, and considering t

In,k(t) Interference from other users to Un,k at t
b Bandwidth of the channel

R, R(t) Total data rate, and R considering t
Rk, Rn,k, Rn,k(t) Data rate of Uk and Un,k, and considering t

RQoS Minimum required data rate for a user
BK The K-th Bell number{K
κ

}
Stirling number of the second kind

Lc Number of clusters
qc Set of users in cluster c
C Set of clusters

φc,k Indicator of whether Uk is in cluster c
δ Number of φc,k = 1 for a cluster

U ′
c,g,k User k in cluster c and group g in (13)

rk Rank
Υk Ranking category of user k
Ec Mean of channel fading in qc
Θk Cluster of Uk

γ Precision in exhaustive search
vU , vL Mobility factor of users and speed of light
αc Action in the LA for cluster c

the recent past, and user grouping and power allocation are among the many
problems that have been researched.

A power allocation algorithm for NOMA networks was introduced in [9]
so as to assure the fairness for users. Thereafter, in a single cell scenario, the

281

User Grouping and Power Allocation in NOMA Systems 7

physical layer security was studied [10]. The sum-rate and outage probabil-
ity for the downlink were analyzed in [11]. For the uplink, a power back-off
method was investigated in [12]. The aforementioned research effort mainly fo-
cused on the intra-cell interference analysis. A dense multiple cell network for
NOMA techniques considering inter-cell interference, where both uplink and
downlink transmissions were evaluated, was studied in [13]. The study of the
mmWave networks with NOMA was carried out in [14] and [15] with a focus
on random beamforming without considering the locations of the users. There-
after, the “the beamforming” strategy and power allocation coefficients were
jointly optimized for maximizing the throughput [16]. In addition, stochastic
geometry, which is able to characterize the communication distances between
transceivers by providing a spatial framework, has also been utilized in NOMA
[13,17] to model the locations of primary and secondary NOMA receivers.

In terms of user grouping and the corresponding ML techniques applied in
NOMA, the study is still in its infancy. In [18], a dynamic method for clas-
sifying users for power allocation was investigated. The channel coefficients
were sorted from high to low, and were assigned to channels, such that the
difference between the users in each group increased. In [3], the authors uti-
lized a K-means scheme for user grouping based on geolocation, where they
considered the grouping of NOMA systems in, for example, school halls. Max-
imum weight matching was adopted in [2] to build non-disjoint groups per RB
and for subsequently allocating power, given the obtained groups. In [19], pro-
portional fairness (PF) was applied through an exhaustive search to allocate
groups to the RBs. Groups of size two were investigated in [8] by invoking the
Hungarian algorithm, and in [20] through PF for power allocation.

The above studies did not explore the stochastic nature of the wireless com-
munication environment, and the channel coefficients for the different users
were assumed to be known. Therefore, the optimization results based on the
known channel coefficients were valid only when the coefficients were not far
from reality. In practice, channel coefficients may vary along time rapidly, and
channel sounding may not be frequent enough to capture the instantaneous
change of mobile radio channels in the stochastic environment. In such sit-
uations, appropriate channel coefficients are to be used as the basis for user
grouping and power allocation.

2.2 Learning Automata and Object Migration Automata

LA can be applied to solve many different problems, including OPPs in a
random environment. The OPP is, in general, NP-hard, and a special case
of the OPP, in which the number of objects in each group is equal, is the
EPP. The benchmark solutions for the EPP have involved the classic field of
LA [30], namely, the OMA and its variations. A comprehensive review of the
previously proposed solutions for the OPP/EPP can be found in [6].

As the wireless communication system operates in a stochastic environ-
ment, and the NOMA technology involves multiple user groupings for SIC, it

282

8 Rebekka Olsson Omslandseter et al.

Fig. 1 Groups are assigned to orthogonal resources. The users within a group employ
NOMA.

is natural to apply the most recent RL-based solution for such an application
in order to improve the system’s performance in the stochastic environment.
In this study, we confirm the potential of applying the OMA in optimizing the
system’s performance in the stochastic environment for the NOMA, which, to
the best of our knowledge, has not been previously addressed in the literature.

3 System description

Consider a simplified single-carrier downlink cellular system that consists of
one base station (BS) and K users that are to be divided into N groups for
NOMA operation. User k is denoted by Uk where k ∈ K = {1, 2, . . . ,K}.
Similarly, the set of groups are denoted by G = {gn}, n ∈ N = {1, 2, . . . , N},
where gn is the set of users inside the n-th group. Each user can only be in one
of the groups implying that gn∩go = ∅ with n ̸= o. When a user Uk belongs to
group n, we use the notation Un,k to refer to this user and its corresponding
group. The simplified notation Uk is adopted to refer to a user, when the group
of the user is trivial or undetermined. For example, if we have 4 users in the
system, we could have user 1 and user 3 belong to group 1, and user 2 and
user 4 belong to group 2. In this case, when we want to refer to user 1 without
its group, we use the notation U1. Likewise, when we want to mention user 4
belonging to group 2, we apply U2,4.

In this paper, we will consider the case of a single BS and with K users
connected to that BS. NOMA is applied to each group, but different groups
are assigned to orthogonal resources. One realization of such a communication
scenario is shown in Fig. 1. In this scenario, the BS has assigned a frequency
band to the K users. The users are to be grouped in N groups, each of which
occupies a time slot. Here the orthogonal resource is the set of time slots, but
it could just as well be other orthogonal resources, such as frequency bands.
For mobility, the users are expected to move within a defined area. The users’
behavior in a university or an office building are examples of where their
behavior coincides with the mobility model utilized in this paper.

3.1 Channel Model

The channel model coefficient for Uk is denoted by hk(t) and refers to the
channel fading between the BS and Uk along time. The channel coefficient
is generated based on the well-recognized mobile channel model, which sta-
tistically follows a Rayleigh distribution [31]. The parameters of the channel

283

User Grouping and Power Allocation in NOMA Systems 9

configuration will be detailed in the sections listing the numerical results. Note
that our proposed LA solution can handle non-stationary stochastic processes,
and so, it is distribution-independent. Therefore, the current Rayleigh distri-
bution can be replaced by any other channel model, based on the application
scenario and the environment.

3.2 Signal Model

In NOMA, each user in a group may suffer from both intra- and inter-group
interference [3]. Intra-group interference refers to interference from other users
within the same group, and inter-group interference refers to interference from
users in other groups that employ the same band at the same time. In this
study, we consider the case that different groups adopt orthogonal resources
such that the inter-group interferences are non-existent.

Based on the NOMA protocol, the BS sends different messages to the users
of a group in a single time slot via the same frequency band. Consequently,
the received signal yk at time t for Uk can be expressed as

yk(t) =
√
pn,khk(t)sk +

|gn|−1∑

e=1

√
pn,ehk(t)se + nk, (1)

where e is the index of the users in the set gn\Un,k, which is the complementary
set of Un,k in gn. |gn| returns the number of users in gn. The received signal
yk(t) has three parts, including the signal intended to Un,k, the signal from
all users other than Un,k in the same group, and the additive white Gaussian
noise (AWGN), where nk ∼ CN (0, σ2

k) [32]. The transmitted signal intended
for Un,k and Un,e are given by sk and se ∼ CN (0, 1) respectively. pn,k is the
allocated power for Un,k. Further, the total power budget for group gn is given
by Pn.

The BS’ signals are decoded at the users through the SIC by using the
channel coefficients in an ascending order [2]. As a result, through SIC, a user
with a good channel quality can remove the interference from the users pos-
sessing poor channel qualities, while users with poor channel qualities decode
their signals without applying SIC4. Hence, for user Un,k, successful SIC is
applied when the following requirement fulfills,

|hn,w(t)|2 ≤ |hn,k(t)|2, (2)

where w is the index of the users that have lower channel coefficients than
user k in the user group gn. Note that the channel coefficient for a certain user
may be quite different in distinct frequency levels. In this study, similar to
assumptions in [33] and [34], we assume that the ranking of channel coefficients
along time, on average, keep the same for all the users. Indeed, the differences

4 We assume that differences between the time average of channel coefficients are due
to the distinct geolocations of the users. Although the channel coefficient for a user may
vary in different frequency bands, it is assumed that the ranking of the time averages of the
coefficients among the various users maintains the same order in the different bands due to
their distinct geolocations. With this assumption, the heterogeneity in different frequency
bands will not influence the results of the user grouping.

284

10 Rebekka Olsson Omslandseter et al.

of channel coefficients are due to the various distances among the users to the
BS, which makes the assumption in this paper valid. Eq. (2) implies that Un,k

is able to remove the messages to the users with lower channel coefficients in its
group via SIC and then retrieve its own message. Hence, Un,k considers users
with higher channel coefficients in its group as interference in the decoding
process.

4 Problem Formulation

In this section, we formulate the problem to be solved. The first problem,
which we refer to as the main problem, is formulated when instantaneous
channel coefficients, say, at time t0, are considered for grouping and power
allocation. Here time t0 is the time instant when the channel sounding is
employed for the current round of user grouping and power allocation. Ideally,
if the optimization of user grouping and power allocation is quick enough, and
if the packet is short enough, the channel coefficients can be considered as a
constant. In addition, if it is possible to re-group users and allocate power to
them more often than the changes of channel coefficients, the system becomes
adaptive and can thus be operated always in an optimized manner.

In reality, though, by studying the complexity of the main problem, we
show that it is computationally very costly to solve. Therefore, it is not prac-
tical for the BS to follow the instantaneous channel condition as the basis
for user grouping. For this reason, the main problem is divided into two sub-
problems, where in the first sub-problem, the user channels are clustered based
on the time averages of the coefficients, and subsequently, in the second sub-
problem, the power allocation is considered.

4.1 Problem Formulation of Overall System

The objective of the main problem is to maximize the overall data rate given
channel coefficients hk(t0) and power budget. To take advantage of NOMA,
the K users need to be divided into N groups, and for each group, the users
share the same resource block (in time and frequency). Additionally, power
allocation is to be optimized according to the channel conditions for each
user in that group. To ease in the formulation, without loss of generality,
we assume that the channel coefficients are sorted in ascending order, i.e.,
h1(t0) ≤ h2(t0) ≤ . . . ≤ hK(t0)

5.
Following the description given in [3], for the n-th group, after deployment

of SIC, the SINR (signal-to-interference-plus-noise ratio) of user k in gn is
given by

Γn,k(t0) =
pn,k|hn,k(t0)|2
In,k(t0) + σ2

, (3)

5 This assumption applies only in the problem formulation with instantaneous channel
coefficients at t0. Understandably, the channel coefficients will change along time due to
the stochastic behavior, and the ranking of instantaneous channel coefficients belonging to
different users may change from time to time due to channel fading.

285

User Grouping and Power Allocation in NOMA Systems 11

where pn,k is the power allocated to Un,k. Clearly, it is true that for any
group n,

∑
j,∀Uj∈gn

pn,j ≤ Pn holds, where Pn denotes the power budget of

gn, with σ
2 denoting the Gaussian noise power. Parameter In,k(t) represents

the intra-group interference from other users to Un,k, as

In,k(t0) =
∑

j,
∀j>k, {Uj , Uk}∈gn

|hk(t0)|2pn,j . (4)

Given that the SIC requirement is fulfilled, the achievable data rate of user
k is

Rn,k(t0) = b log2
(
1 + Γn,k(t0)

)
, (5)

where b is the bandwidth of the channel. Therefore, the total achievable data
rate for the system is expressed as

R(t0) =

K∑

k=1

b log2
(
1 + Γn,k(t0)

)
. (6)

Based on the above analysis, we can formulate the optimization problem
as follows.

max
{gn},{pn,k}

R(t0) (7a)

s.t. gn ∩ go = ∅, n ̸= o, n, o ∈ N (7b)
∑

j,∀Uj∈gn

pn,j ≤ Pn, ∀n ∈ N , (7c)

Rn,k(t0) ≥ RQoS , k ∈ K, (7d)

hi(t0) > hj(t0), ∀i > j, i, j ∈ K. (7e)

We now explain the significance of each of the above equations. The con-
straints in (7b) say that each user can only be part of one group. In (7c), we
state that the sum of powers for a certain group needs to be less than or equal
to Pn, which guarantees that the total power of the group is within the power
constraint. The constraints in (7d) concern the demands on the Quality of
Service (QoS) for each user. Hence, the data rate of a user needs to be above a
specified required value, RQoS , ensuring the QoS to all users, and addressing
the fairness issue [32]. Finally, Eq. (7e) addresses the SIC requirement.

4.2 Complexity Considerations

We shall now consider the complexity of the associated problem. Consider-
ing the users and their placement into different groups, the minimum number
of combinations possible is a Bell number, without even reckoning with the
task of power allocation, where the Bell number gives the number of possible
partitions of a set. In our case, we have BK options where BK is the K-th
Bell number. Our task is to partition K users into κ non-empty sets. Consid-
ering that κ, without any additional constraints, can range from 1 to K, the
consecutive Bell number for K is given by

BK =

K∑

κ=1

{K
κ

}
, (8)

286

12 Rebekka Olsson Omslandseter et al.

where
{
K
κ

}
is the Stirling numbers of the second kind [35]. Consequently, it

follows that (
K

e lnK

)K

< BK <

(
K

e1−λ lnK

)K

, (9)

which is exponential with regard to K [35], and λ > 0. Because the number of
possible combinations to solve such a maximization problem (as stated in (7))
increases drastically with the number of users, and since the power allocation
problem is non-convex [3], finding an optimal solution to the problem, based on
instantaneous hk(t0), is computationally hard. Further, when the system is to
be adaptive to the changes in the environment, computations are to be carried
out very frequently. Therefore, it is more practical to aim for a compromised
solution, where the problem is divided into two sub-problems.

Specifically, in the first problem, we cluster the users into categories based
on the time averages of the channel coefficients, and in the second step, we
group the users based on the obtained categories, and proceed to solve the
power allocation phase. The rationale behind such a computational paradigm
is that we capture the long time average of the channel coefficients for the pur-
pose of grouping, and thereafter, the power allocation is based on the available
instantaneous values of h, or a time average computed over a certain number
of channel sounding samples of h. Thus, as the grouping is considered more
costly than the power allocation, by doing the grouping based on the mean,
and being able to do power allocation more often at a minimal cost once the
groups have been established, the computational effort is kept low.

Since there is no known solution for the general OPP, we further sim-
plify the model for the solution, to consider the equi-partitioning of the users,
namely the EPP. When all the groups are of equal sizes, we have the combi-
nation number W as:

W =
K!

(
K
N
!
)N

N !

, (10)

where K
N is an integer. As a result of the above, we observe that the partition-

ing problems are still characterized by a combinatorial issue, but the number
is significantly smaller than the Bell numbers. Note that the problem is still
more complicated than just finding an optimal partitioning once and for all,
because the environment changes stochastically.

4.3 Problem Formulation of Clustering

For NOMA, the channel coefficients of the users in a group need to be as
different as possible to attain to a successful NOMA operation. To group the
users with different coefficients, we first want to cluster the users with similar
channel coefficients, and then select a single user from each cluster in order to
formulate the groups. In other words, we want to cluster similar users together
first, and then group them by selecting one user from each cluster. The first
problem is the clustering problem, which is formulated in this subsection. The
problem for user grouping, together with power allocation, is formulated in
the next subsection.

287

User Grouping and Power Allocation in NOMA Systems 13

The criterion for user clustering involves the time averages of the channel
coefficients, denoted by hk(t). In other words, the users that have similar av-
erage channel coefficients will be clustered together. The reason behind this is
that the task of grouping the users is relatively costly in terms of computation,
and it is, further, not cost-efficient to apply it based on the channel’s instan-
taneous values. If we cluster the users according to the time averages, we can
efficiently reduce the computational cost, and at the same time, capture the
advantages of statistically employing NOMA.

In this study, as mentioned, we consider clustering users to groups of the
same size. Therefore the number of the clusters is Lc = K

N , where Lc and N

are integers6. Let qc be the set of users in cluster c, where c ∈ C = {1, . . . , Lc}
is the index of the set of clusters. Clearly, for the clustering problem, the
differences between the coefficients in each cluster needs to be minimized, and
the problem can be formulated as

min
{φc,k}

Lc∑

c=1

K∑

k=1

φc,k|hk(t)− Ec|, (11a)

s.t.

Lc∑

c=1

K∑

k=1

φc,k = K, c ∈ C, k ∈ K, (11b)

K∑

k=1

φc,k = N, ∀c, (11c)

where φc,k is an indicator showing the relationship between the users and the
clusters, and is given by

φc,k =

{
1,when Uk belongs to cluster c.

0, otherwise.
(12)

Additionally, the mean value of the channel fading in each cluster is denoted
by the parameters Ec and δ, which are given by Ec = 1

δ

∑K
k=1 hk(t)φc,k, and

δ =
∑K

k=1 φc,k respectively, where the objective function is stated in Eq. (11a).
Specifically, for all the clusters, we want to minimize the difference of the
channel coefficients between the users inside each of them. Eqs. (11b) and
(11c) give a description of the variable φc,k for user k in c. Hence, the sum of
the variable φc,k needs to be equal to the number of users, implying that all
the users need to be a part of one cluster, and in each cluster, there needs to
be an equal number of users.

6 In reality, if Lc is not an integer, we can add dummy users to the system to satisfy the
requirement. Dummy users are virtual users that are not part of the real network scenario,
but are needed for constituting an equal size for all the clusters. Thus, the dummy users are
used for the clustering, but these users are not real, and no resources are given to them in
the power allocation process (they should be excluded in the power allocation process).

288

14 Rebekka Olsson Omslandseter et al.

The result of the clustering problem, i.e., the {φc,k} that minimizes the
objective function, can be re-arranged in an Lc ×N matrix, as

1 2 . . . N

1 U ′
1,1,k U ′

1,2,k . . . U ′
1,N,k

2 U ′
2,1,k U ′

2,2,k . . . U ′
2,N,k

.
Lc U ′

Lc,1,k
U ′
Lc,2,k

. . . U ′
Lc,N,k

, (13)

indicating Lc clusters with N users in each cluster. The user in the matrix is
indexed by U ′

c,g,k, where c is the index of the cluster, and g is the index of a
user in a certain group, while k indicates the user (the position of a user k, in
the matrix, is an independent term). Note that Un,k is different from U ′

c,g,k as
the indexes are different.

For the next step, the problem is then to group users together by selecting
one user from each cluster, and to then allocate power to them in order to
achieve the maximized sum of data rate.

4.4 Problem Formulation of Power Allocation

As the grouping and power allocation tasks are inter-twined, we must consider
these two aspects jointly when we study the maximization of the data rate.
Although from the first step, we have obtained information on which users
have similar channel coefficients, we observe that the power allocation problem
remains unresolved. Therefore, we need to consider the power allocation of the
users inside each cluster so as to be able to solve both the grouping and power
allocation in NOMA.

Clearly, from the output of the clustering, we know which users are similar,
and when we take one user from each cluster and construct N groups, the size
of each group will be Lc. Without loss of generality, we can assume that the
average channel coefficients are sorted in ascending order, i.e., h1(t) ≤ h2(t) ≤
. . . ≤ hK(t) (similar to [33] and [34]). If we now consider user grouping and
power allocation based on the average channel coefficients, the problem can
be formulated as

max
{gn},{Pn}

R (14a)

s.t. gn ∩ go = ∅, n ̸= o, n, o ∈ N , (14b)
∑

j,∀Uj∈gn

pn,j ≤ Pn, n ∈ N , (14c)

Rn,j(t) ≥ RQoS , j ∈ K, n ∈ N , (14d)

hi(t) > hj(t), ∀i > j, i, j ∈ K, (14e)

|gn ∩ qc| = 1, ∀c, ∀n, (14f)
∑

j,∀Uj∈gn

τn,j = Lc, ∀n, (14g)

∑

n,∀n∈N

∑

j,∀Uj∈gn

τn,j = NLc. (14h)

289

User Grouping and Power Allocation in NOMA Systems 15

In Eq. (14a), the parameter R is calculated based on Eq. (6) when hk(t)
is replaced by hk(t), indicating that this rate is based on the average channel
coefficients. Further, in (14b), we state that the groups need to be disjoint.
Hence, any user can only be in a single group. In Eq. (14c), we address the
constraint for the power budget. The QoS constraint is given in (14d), which
ensures the fairness among the users. The SIC constraint is given in Eq. (14e).
The constraint in Eq. (14f) specifies that only a single user is selected to
formulate a group from each cluster. Finally, in Eq. (14g), we introduce an
indicator τn,k, stating whether Uk is in group n, as

τn,k =

{
1,when Uk belongs to group n.

0, otherwise.
(15)

This constraint states that each group has Lc users. Furthermore, all users
should belong to a certain group, which is given in Eq. (14h).

The solution to this problem will provide the grouping of users along with
their corresponding power allocations. Note that the power allocation is calcu-
lated based on the average of the channel coefficients. When communication
happens, these coefficients may be different. Thus, the power allocation can be
done for time averages of the channel sounding, or for instantaneous values.

Comparing the problem in Eq. (7) with the sub-problems in Eqs. (11) and
(14), we record the following differences. (a) In Eq. (7), the instantaneous chan-
nel coefficients are followed for grouping and optimization. However, in Eqs.
(11) and (14), the clustering and grouping of users are based on the respective
time-averaged values. (b) In Eq. (7), the groups of users may have different
sizes, while in Eqs. (11) and (14), the sizes of all the groups are equal. Indeed,
since following the instantaneous channel coefficients is both costly and im-
practical, the task of following the average values becomes a reasonable and
feasible foundation for the grouping. Considering that the equi-partitioning of
the users reduces the complexity of the original problem, practical and adap-
tive solutions based on RL algorithms can be proposed. In the next section,
we will propose a two-step solution corresponding to the sub-problems, based
on the adaptive Tabula rasa RL paradigm.

5 Solution to User Grouping and Power Allocation

The problem of grouping and power allocation in NOMA systems is two-
pronged. Therefore, in Section 5.1, we only consider the first issue of the two,
namely the clustering and the grouping of the users. We will show that our
solution can handle the stochastic nature of the channel coefficients of the
users, while it is also able to follow changes in their channel behaviors over
time, ensuring that the system can prudently follow the nature of the channels
that are similar to what we will expect in a real system. More specifically, we
will categorize users into clusters based on similar channel coefficients for long-
term fading. Because the values of h for different users are stochastic, we need
a method for capturing the long-time average of the channels. Therefore, we

290

16 Rebekka Olsson Omslandseter et al.

exploit a ML algorithm from within the OMA family for clustering them.
Specifically, we utilize the Enhanced Object Migration Automata (EOMA) to
capture the users’ similarities, for the purposes of categorization. Thereafter,
as mentioned above, the users are grouped by taking a single user from each
cluster so that users within any one group have distinct channel coefficients.
Once the groups have been established in Section 5.1, we can utilize these
groups to allocate power among them either instantaneously or for a time
interval using heuristic-based solutions.

5.1 Clustering Through EOMA

To solve problems in stochastic environments, the field of LA has shown itself
to be a powerful tool because fast and accurate convergence can be achieved
while the computational complexity remains low [36]. OMA algorithms are
part of the LA paradigm, and can solve partitioning problems by having LA
instances cooperate to find the best partitioning [37]. With some insight, we
see that the family of OMA algorithms are based on Tabula rasa RL. Without
any prior knowledge of the system parameters, channels, or clusters in our case,
the OMA self-learns by observing the environment that it interacts with, over
time. For our problem, the communication system constitutes the environment,
which can be observed by the OMA through, e.g., channel sounding. By gaining
knowledge from the system behavior and improving incrementally through
each interaction with the environment, the OMA algorithms prove themselves
to be compelling mechanisms for solving complex and stochastic problems. The
OMA algorithms attempt to learn the “true partitioning” in different grouping
scenarios, based on the elements from the respective groups that are accessed
together. The “true partitioning” that occurs in nature is always unknown, but
assuming that the true partitioning consists of equi-sized clusters, the OMA
algorithms can find these with a high accuracy [6], [7], [38].

In the OMA, the users of our system need to be represented as abstract
objects. Therefore, in OMA terms, the users are called objects. The OMA
algorithms require a number of states per action, indicated by S. An action in
LA is a solution that the algorithm can converge to. In our system, the actions
are the different clusters that objects can be assigned to. Hence, based on the
current state of an object, we know that object’s action, which is precisely its
current cluster in the system. Therefore, each object, or user in our case, has a
given state indicated by ϵk = {1, 2, ..., SLc}, where ϵk denotes the current state
of Uk, S is the number of states per action, and Lc is the number of clusters.
Clearly, because we have Lc clusters, the total number of possible states is
SLc. To indicate the set of users inside cluster c, where c ∈ [1, 2, . . . , Lc], we
have qc. The cluster for a given user, k, is represented by Θk, where the set of
clusters is denoted by C and Θk ∈ C = {q1, q2, . . . , qLc}.

The states are the foundational memory components of the OMA algo-
rithms, and the objects are moved in and out of states as they are penalized
or rewarded in the RL process. In this paper, we utilize the EOMA variant

291

User Grouping and Power Allocation in NOMA Systems 17

of OMA, where each object has an equal number of possible states. We say
that the algorithm has converged when all the objects have reached the two
innermost states of an action. When convergence has been attained, we reckon
that the solution that the EOMA algorithm has found, is sufficiently accurate.

The requirement for convergence can be tuned through the number of states
introduced to the system. Consequently, introducing a deeper state space in-
creases the solution’s accuracy of finding the “true partitioning”. However, the
time before convergence is achieved, also increases with the number of states.
Therefore, the state depth, given by S, is a trade-off between time and accu-
racy. In Fig. 2, we describe the state numbering of any two actions. By way
of example, consider a scenario with three possible clusters: the first cluster of
the EOMA will have the state numbering from 1 to S, where the innermost
state is 1, and the second innermost state is 2, while the boundary state is S.
For the second cluster, it will have the innermost state S + 1 and the second
innermost state S + 2, while the boundary state is 2S. Likewise, for the third
cluster, the numbering will be 2S + 1 for the innermost and 2S + 2 for the
second innermost state whilst 3S for the boundary state.

1 2 3

U1 U1

4

α1 α2

8 7 6

U3U3

5

Fig. 2 An example of the states of the EOMA, for the updates for the penalty for U1 and
U3 when they have the same ranking category.

Algorithm 1 Clustering of Users

Require: hk(t) for all users K over ∆t

while not converged do {Convergence is reached when all users are in the two most
internal states of any action}

for all K do
Rank the users from 1 to K {Index 1 is given to the user with lowest hk(t) (K to
the highest)}

end for
for K

N
pairs (Ua, Ub) of K do {The pairs are chosen uniformly from all possible pairs}

if Υa = Υb then {If Ua and Ub have the same ranking category}
if Θa = Θb then {If Ua and Ub are clustered together in the EOMA}

Process Reward
else {If Ua and Ub are not clustered together in the EOMA}

Process Penalty
end if

end if
end for

end while{Convergence has been reached}

292

18 Rebekka Olsson Omslandseter et al.

Algorithm 1 gives the overall operation for the clustering of the users. The
functionalities on receiving a reward or a penalty, as the EOMA is interacting
with the NOMA system, are given in Algorithms 2 and 3. In the algorithms,
we consider the operation in relation to a pair of two users Ua and Ub (Q =
(Ua, Ub)). The EOMA considers users in pairs (called queries, denoted by
Q). Through information about their pairwise rankings, we work towards a
clustering of the users into the different channel categories. For each time
instant ∆t, the BS obtains values of hk(t) through channel sounding, and we
use the average of the samples of ∆t as input to the EOMA (hk(t)). Note that
when ∆t = 1, the instantaneous values are utilized as the input.

The BS proceeds to rank the users, indicated by rk = {1, 2, ...,K}, where
each Uk is given a single value of rk for each∆t. For the ranks, rk = 1 is given to
the user that has the lowest channel coefficient compared to the total number
of users; rk = K is given to the user with the highest channel coefficient of
the users, and the others are filled in between them with ranks from worst to
best. Furthermore, the values of these ranks corresponds to ranking categories,
denoted by Υk for Uk, where Υk = {r ∈ [1, N] = 1, r ∈ [1 + N, 2N] = 2, r ∈
[1 + 2N, 3N] = 3, . . . , r ∈ [K − N + 1,K] = Lc}. In this way, even if the
users have similar channel conditions, they will be compared, and the solution
can work on determining the current best categorization of the K users for
the given communication scenario. As depicted in Algorithm 1, we check the
users’ ranking categories in a pairwise manner. If the users in a pair (query)
are in the same ranking category, they will be sent as a query to the EOMA
algorithm. The EOMA algorithm will then work on putting the users that are
queried together in the same cluster, which, in the end, will yield clusters of
users with similar channel coefficients. More precisely, if two users have the
same ranking categories, they are sent as a query to the EOMA and the LA
is rewarded if these two users are clustered together, and penalized if they are
not.

Algorithm 2 Process Reward
Require: Q = (Ua, Ub) {A query (Q), consisting of Ua and Ub}
Require: The state of Ua (ϵa) and Ub (ϵb)

if ϵa mod S ̸= 1 then {Ua not in innermost state}
ϵa = ϵa − 1 {Move Ua towards innermost state}

end if
if ϵb mod S ̸= 1 then {Ub not in innermost state}

ϵb = ϵb − 1 {Move Ub towards innermost state}
end if
return The next states of Ua and Ub

As an example, let us consider four users in a NOMA communications
scenario for ∆t = 5. The users should be grouped into two groups. Therefore,
we need to categorize them into two clusters based on their channel conditions:
one with weak channel conditions (ground truth in this example: Υ1 = 1 and
Υ2 = 1) and the other with strong channel conditions (ground truth in this

293

User Grouping and Power Allocation in NOMA Systems 19

Algorithm 3 Process Penalty
Require: Q = (Ua, Ub) {A query (Q), consisting of Ua and Ub}
Require: The state of Ua (ϵa) and Ub (ϵb)

if ϵa mod S ̸= 0 and ϵb mod S ̸= 0 then {Neither of the users are in boundary
states}

ϵa = ϵa + 1 {Move Ua towards boundary state}
ϵb = ϵb + 1 {Move Ub towards boundary state}

else if ϵa mod S ̸= 0 and ϵb mod S = 0 then {Ub in boundary state and Ua not in
boundary state}

ϵa = ϵa + 1
temp = ϵb
x = unaccessed user in cluster of Ua closest to boundary state
ϵx = temp
ϵb = ϵa

else if ϵb mod S ̸= 0 and ϵa mod S = 0 then {Ua in boundary state and Ub not in
boundary state}

ϵb = ϵb + 1
temp = ϵa
x = unaccessed user in cluster of Ub closest to boundary state
ϵx = temp
ϵa = ϵb

else {Both users are in boundary states}
ϵy = ϵ{a or b} {y equals a or b with equal probability}
temp = ϵy
x = unaccessed user in cluster of U ̸y closest to boundary state
ϵx = temp
ϵy = ϵ̸y {Move chosen user (y) to cluster of ̸ y}

end if
return The next states of Ua and Ub

example: Υ3 = 2 and Υ4 = 2). First, when hk(5) for the different users are
obtained, we rank them according to hk(5). Then, we consider the arbitrary
pair Q = (U1, U3), ranked r1 = 2 giving Υ1 = 1 and r3 = 2 giving Υ3 = 1
(r = {3, 4} resulting in Υ = 2). Additionally, their current states are ϵ1 = 3
and ϵ3 = 5. For this scenario the state depth for each action is four, meaning
that we have 8 states in total (SLc = 8). Following the descriptions given in
[6], [7], [39], or the same concept that we observe in Algorithms 2 and 3, we
understand that the objects are currently not clustered together. Therefore,
we will penalize them according to Algorithm 3. A visualization of the example
is depicted in Fig. 2.

When the algorithm has converged, the users in distinct actions constitute
different clusters. We will then invoke Algorithm 4, to obtain the groups that
are needed for the power allocation, where the users are selected into groups
based on their ranking of hk(t) within each cluster. Again we use the ranking
information of the users, where users with the same rank in each cluster are
put together. Thus, all the users with the same rank in each of their respective
clusters, will form a group.

294

20 Rebekka Olsson Omslandseter et al.

Algorithm 4 Get Groups
Require: The users and information about their cluster obtained by the EOMA

for all clusters in C do
Rank the users from 1 to Lc based on h(t) {r = 1 to the user with lowest value (r = Lc
to the highest)}

end for
for Number of groups (N) do

for all r do
for all clusters in C do {Each group will consist of one user from each cluster with
the same rank}

gn = One user from each cluster with rank r
end for

end for
end for
return The users’ groups

5.2 Power Allocation via Heuristic-based Solutions

Once the grouping of the users has been established, we can allocate power to
the different users in such a way that the joint data rate (R) is maximized.
For a group with K

N = Lc users and power budget Pn, the problem can be
expressed by:

max

K∑

k=1

b log2
(
1 + Γn,k

)
, (16a)

s.t.

K∑

k=1

pn,k ≤ Pn, ∀n, n ∈ N , (16b)

0 ≤ pn,k, ∀n, n ∈ N , ∀k, k ∈ K, (16c)

RQos ≤ Rk, ∀k, k ∈ K, (16d)

where Γn,k =
pn,k|hn,k|2

|hn,k|2(Pn−
∑

∀i≤k pn,i)+σ2 . Our goal is to determine the power to

the different users within each group so as to maximize the total data rate of
all the groups.

Note the the objective function for the optimization may be changed to
also work with other functions, such as that of maximizing the minimum data
rate within a group. There are also numerous ways of power allocation in
various communication scenarios [40],[32]. The power allocation schemes can
be replaced by any other algorithm and will not change the nature of the
RL procedure. However, in this paper, we will consider two heuristic-based
algorithms, namely, the greedy algorithm and the channel coefficient based
algorithm for maximizing the sum rate.

For the greedy solution, we allocate to the users with limited power to
just fulfill the minimum required data rate, and give the remaining power to
the user with the best channel coefficient, as presented in Algorithm 5. Given
Eqs. (5) and (6), allocating the majority of power to the users with higher
values of h will result in a higher sum rate for the system. Consequently, the
stronger users are benefited more from the greedy solution than those with

295

User Grouping and Power Allocation in NOMA Systems 21

weaker channel coefficients. Nevertheless, the weak users’ required data rate
is ensured, and can be adjusted to the given scenario. The greedy solution can
also be used for checking the feasibility. When all users are given power values
that are just sufficient to fulfill the QoS requirement, and if the total power is
sufficient, we deem the solution obtained as being “feasible”.

The main drawback of the greedy solution is that the data rates among
the users may be highly unbalanced. To mitigate this drawback, we propose
another solution based on a relation between the values of |h|2 of the different
users, when they are a part of an established group. This solution is depicted in
Algorithm 6. As observed in the algorithm, we base a linear algebraic system
on the SINR (Eq. (3)), intra-group interference (Eq. (4)) and the data rate (Eq.
(5)) for optimizing the sum rate of the system given by Eq. (6). Firstly, the
data rate of the user with the weakest h is ensured by setting its data rate equal
to RQoS . Once we know the data rate of the weakest user, we can calculate the
power that needs to be given to that particular user. Consequently, we then
find the power for the users between the weakest and strongest users for the
given group (based on hn,i), where we use the SINR of the previous user times
the relation between h-values for the previous user and the user for whom we
are finding the SINR. Once we have the SINR for the user in-between the
weakest and strongest, we can calculate its needed power based on Eq. (3).
The strongest user is then given the remaining power by subtracting the power
allocated for the other users from the total power budget of its group. The
process is repeated for all the groups.

6 Numerical Results

For the experiments reported here, we used MatLab for simulating the values
of h. Additionally, a Python script was utilized for simulating the LA solution
to the user grouping and the greedy solution to power allocation.

Algorithm 5 Greedy solution for the power allocation

Require: hn,k for all users K {Requires the value of hn,k for t
(
hn,k(t)

)
or ∆t

(
hn,k(∆t)

)
}

Require: RQoS {The minimum required data rate}
Require: G {The groups established in Algorithm 4}

for all gn, in G do
for all users, i from 1 to the size of gn do {Ordered, where user 1 has the lowest h (Lc

has the highest h)}
Solve for pn,i using RQoS = B log2

(
1 +

pn,i|hn,i|2
|hn,i|2(Pn−∑

∀k≤i pn,k)+σ2

)
{The feasibil-

ity check}
end for
if Pn −

∑
i pn,i ≥ 0 then

pn,Lc = Pn −
∑

j,∀pn,j∈gn\pn,Lc
pn,j {The problem is feasible, and we give the

remaining power to the strongest user}
end if

end for

296

22 Rebekka Olsson Omslandseter et al.

Algorithm 6 Channel-coefficient based solution for power allocation

Require: hn,k for all users K {Requires the value of hn,k for t
(
hn,k(t)

)
or ∆t

(
hn,k(∆t)

)
}

Require: RQoS {The minimum required data rate}
Require: G {The groups established in Algorithm 4}

for all gn, in G do
for all users, i, in gn do {Ordered, where user 1 has the lowest h (Lc has the highest
h)}

if i is 1 then {For the weakest user}
Rn,1 = RQoS {Data rate of weakest user}
Solve for pn,1 using Rn,1 = B log2

(
1 +

pn,1|hn,1|2
|hn,1|2(Pn−pn,1)+σ2

)

else if i is Lc then {For the strongest user}
pn,Lc = Pn −

∑
j,∀pn,j∈gn\pn,Lc

pn,j {We give the remaining power to the

strongest user}
else {For the user between the weakest and strongest user}

Γn,i =
pn,i|hn,i|2

|hn,i|2(Pn−∑
∀k≤i pn,k)+σ2

Solve for pn,i using
Γn,i

Γn,i−1
=

|hn,i|2
|hn,i−1|2

{SINR of user i is based on a relation

between Ui and Ui−1}
end if

end for
end for
return The power for the different users in the different groups

The numerical results for the power allocation solution are based on the
results obtained from the EOMA clustering and grouping. For the simulations,
we used a carrier frequency of 5.7GHz and an underlying Rayleigh distribution
for the corresponding values of h(t). For mobility in our model, we utilized a
moving pace corresponding to the movement inside an office building. Thus,
we assumed a mobility factor of 2 km

h = vU for the users’ receivers. We sampled
the values of h according to 1

2fd
, where fd is the Doppler frequency, where the

latter is expressed as fd = fc(
vU
vL

), and vL is the speed of light.
In the figures given below, we use “Sample Number” (∆t) as the notation

on the X-axis. The numerical results for the sub-problems will be presented
separately in Sections 6.1 and 6.2.

6.1 Results for Grouping

For evaluating the simulation of clustering and grouping, we base our accuracy
on whether or not the LA found the clusters that correspond to the minimized
difference between the users in a cluster, based on the users’ given mean val-
ues of h in the simulations. Remarkably, if it is provided with such pairwise
inputs, the EOMA yielded a 100% accuracy in which the learned clustering
was identical to the unknown underlying clustering in every single run for the
example provided with −30dB difference between values of h, and for groups
of size 4, 6, 8, 10, 12, 14, 16, 18 and 20, where the number of users in a group
was equal to two. The difference between the users can be replaced by any

297

User Grouping and Power Allocation in NOMA Systems 23

4 6 8 10 12 14 16 18 20
Number of users

20
40
60
80

100
120
140
160
180

Nu
m
be

r o
f i
te
ra
tio

ns

Fig. 3 Graph showing the average number of
required iterations (∆t) before convergence
is reached for different number of users, and
groups of size two, based on the average of
100 independent experiments.

0 20 40 60 80 100
t (ms)

−60

−50

−40

−30

−20

−10

|h
(t)

| i
n
dB

U1
U4
U14
U20

Fig. 4 Example of the simulated |h(t)| for
four different users in dB scale.

0 20 40 60 80 100 120 140
Δt

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

|h
(Δ

t)|

ChannelΔcoefficientsΔforΔtheΔdifferentΔusers

U1
U2
U3
U4

Fig. 5 Graph showing |h(∆t)| as a function
of time ∆t, where U3 and U4 changes dis-
tinctly around 40∆t.

0 20 40 60 80 100
Δt

1

4

8

12

16

20

St
at
e

StateΔdevelopmentΔofΔtheΔdifferentΔusersΔinsideΔtheΔEOMA
U1
U2
U3
U4

Fig. 6 The changes of states in the EOMA
for different users over ∆t, where the LA
starts changing clusters around 40∆t.

other equivalent condition, and these values are only generated for testing the
solution. The reader should observe that in a real-life scenario, the “true par-
titioning” is always unknown. The number of iterations that it took for the
EOMA to achieve 100% accuracy for the different numbers of users is depicted
in Fig. 3. These results were based on h values that are shown in Fig. 4. In the
interest of simplicity of presentation, the plot shown in Fig. 4 is for 4 users.
For the case of 20 users, the lines become hard to distinguish, even though
the principles used in the simulation of h are the same. Notably, the EOMA
retains its accuracy as the number of users increases, and yields 100% accuracy
both for four users as well as 20 users7.

When we formulated the problem in Section 3, for conciseness, we assumed
that the ranking of the average values of the channel coefficients were kept the

7 In these simulations, we used S = 8. The way that we obtained the solution’s accuracy
was in terms of whether or not the EOMA found the clusters that it should have found,
based on the mean values of the different users in the NOMA system.

298

24 Rebekka Olsson Omslandseter et al.

same. In fact, the proposed EOMA algorithm can follow the changes adaptively
even if the mean values vary along time. Here in Figs. 5 and 6, we demon-
strate that the EOMA is able to follow the changes adaptively when the users’
channel coefficients vary along time. As depicted in Fig. 5, a change in channel
coefficients happens at around ∆t ≈ 40. From Fig. 6, we can observe that the
EOMA quickly detects the change even as early as around ∆t ≈ 40, and up-
dates its clustering after approximately 20 samples. More specifically, we can
observe from Fig. 5 that the most similar users are initially U1 and U3, and
U2 and U4, which change to U1 and U4, and U2 and U3 after around 40 sam-
ples. To show the updates of the states in the EOMA, the states are depicted
as a function of time in Fig. 6. Initially, the objects are randomly located in
boundary states (State 24 and State 12 in this figure). We can observe that the
users with similar coefficients move to the same cluster after a few interactions,
and they eventually move to deeper states. When the environment changes at
around time instant 40, they move shallower instead of deeper. Eventually,
the user clusters are updated in accordance to the new environment, and the
states move deeper and deeper again. The LA converges once all the objects
are in the innermost states (1 or 2, or 14 or 13), which we can observe from the
end of the lines in the plot. It is important to note that, in this example, we
have utilized a state depth of 12 in the EOMA. With a shallower state space,
we could have followed the channels more instantaneously.

6.2 Results for Power Allocation

The simulation of the greedy solution and the channel-coefficient based solu-
tion to power allocation was done based on the groups established in the LA
solution. For demonstrating the results of our approaches, we compared our
solutions with those obtained by an exhaustive grid search. The exhaustive
grid search was implemented in a step size of 0.001 (γ = 0.001). It was carried
out for the same groups and the same values obtained from h through chan-
nel sounding as for the greedy and the channel-coefficient based solutions. We
tested both the cases of doing power allocation based on instantaneous values,
and on a time average (∆t = 5). In Fig. 7, we depict the results of the three
approaches, for an average of ∆t = 5 samples of h.

As illustrated, the results of the greedy solution coincide with that of the
exhaustive search, which means that giving more power to the user with strong
channel coefficient, indeed, optimizes the sum rate of the system in the cur-
rent configuration. The results of the channel-coefficient based solution have
a better fairness among the users, where this is at a cost of attaining to a
sub-optimal solution in terms of sum rate. The computations required for the
greedy or the channel-coefficient based solution, depend on the number of users
in each group, where 2Lc computations are needed for each group. By way of

comparison, for Lc users in each group, we need to test
(
Pn

γ

)Lc
combinations

for an exhaustive search.

299

User Grouping and Power Allocation in NOMA Systems 25

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Δt

91.0

91.5

92.0

92.5

93.0

Da
ta
Δra

te
Δ(M

bp
s)

Exha stiveΔsearch
Channel-coefficientΔbased
Greedy

Fig. 7 Data rate for exhaustive, greedy and channel-based solution for groups of three
users. Based on averages over 5 samples of |h(t)|.

Because the LA-based adaptive grouping solution accomplishes the par-
titioning of the users in favor of NOMA technology (i.e., users with distinct
channel coefficients are grouped together), once the group is formulated, the
objective of the power allocation may be changed to any other interesting
form for NOMA, and thus different solutions can be further developed. In
other words, the objective function of power allocation is not constrained to
be the one requiring “sum-rate maximization”.

7 Conclusions

In this paper, we have proposed a novel solution to the user grouping and
power allocation problems in NOMA systems, also taking into consideration
the stochastic nature of the users’ channel coefficients. The grouping has been
achieved by using the tabula rasa RL technique specified by the EOMA, and
the simulation results presented show that a 100% accuracy for finding clusters
of similar h(t) over time, can be obtained in a limited number of iterations. In
addition, our solution is able to follow the changes of h(t), which makes our
solution for grouping adaptive to changes in users’ channel conditions, and the
corresponding changes for their group associations. For power allocation, we
proposed two solutions for the sum rate maximization with a QoS constraint
for users. Our two-step solution offers flexibility with regard to both the group-
ing and power allocation phases, and can be used as stand-alone components
of a NOMA system.

Acknowledgements We are very grateful to the anonymous Referees of the previous ver-
sion of the paper, who suggested various modifications and changes. Their suggestions have
enhanced the quality of this present version.

300

26 Rebekka Olsson Omslandseter et al.

References

1. Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo, “Nonorthogonal
Multiple Access for 5G and Beyond,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2347–
2381, Dec. 2017.

2. M. Pischella and D. Le Ruyet, “NOMA-Relevant Clustering and Resource Allocation for
Proportional Fair Uplink Communications,” IEEE Wireless Commun. Lett., vol. 8, no. 3,
pp. 873–876, Jun. 2019.

3. J. Cui, Z. Ding, P. Fan, and N. Al-Dhahir, “Unsupervised Machine Learning-Based
User Clustering in Millimeter-Wave-NOMA Systems,” IEEE Trans. Wireless Commun.,
vol. 17, no. 11, pp. 7425–7440, Nov. 2018.

4. S. Glimsdal and O. Granmo, “A Novel Bayesian Network Based Scheme for Finding the
Optimal Solution to Stochastic Online Equi-Partitioning Problems,” in 13th International
Conference on Machine Learning and Applications, Dec. 2014, pp. 594–599.

5. W. Gale, S. Das, and C. T. Yu, “Improvements to an Algorithm for Equipartitioning,”
IEEE Trans. Comput., vol. 39, no. 5, pp. 706–710, May 1990.

6. A. Shirvani and B. J. Oommen, “On Invoking Transitivity to Enhance the Pursuit-
Oriented Object Migration Automata,” IEEE Access, vol. 6, pp. 21 668–21 681, 2018.

7. ——, “On Utilizing the Pursuit Paradigm to Enhance the Deadlock-Preventing Object
Migration Automaton,” in International Conference on New Trends in Computing Sci-
ences (ICTCS), Oct. 2017, pp. 295–302.

8. M. A. Sedaghat and R. R. Müller, “On User Pairing in Uplink NOMA,” IEEE Trans.
Wireless Commun., vol. 17, no. 5, pp. 3474–3486, May 2018.

9. S. Timotheou and I. Krikidis, “Fairness for Non-Orthogonal Multiple Access in 5g Sys-
tems,” IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1647–1651, 2015.

10. Y. Liu, Z. Qin, M. Elkashlan, Y. Gao, and L. Hanzo, “Enhancing the Physical Layer
Security of Non-Orthogonal Multiple Access in Large-Scale Networks,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1656–1672, 2017.

11. Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the Performance of Non-Orthogonal
Multiple Access in 5G Systems with Randomly Deployed Users,” IEEE Signal Process.
Lett., vol. 21, no. 12, pp. 1501–1505, 2014.

12. N. Zhang, J. Wang, G. Kang, and Y. Liu, “Uplink Nonorthogonal Multiple Access in
5G Systems,” IEEE Commun. Lett., vol. 20, no. 3, pp. 458–461, 2016.

13. Y. Liu, Z. Qin, M. Elkashlan, A. Nallanathan, and J. A. McCann, “Non-Orthogonal
Multiple Access in Large-Scale Heterogeneous Networks,” IEEE J. Sel. Areas Commun.”,
vol. 35, no. 12, pp. 2667–2680, 2017.

14. Z. Ding, P. Fan, and H. V. Poor, “Random Beamforming in Millimeter-Wave NOMA
Networks,” IEEE Access, vol. 5, pp. 7667–7681, 2017.

15. J. Cui, Y. Liu, Z. Ding, P. Fan, and A. Nallanathan, “Optimal User Scheduling and
Power Allocation for Millimeter Wave NOMA Systems,” IEEE Trans. Wireless Commun.,
vol. 17, no. 3, pp. 1502–1517, 2017.

16. L. Zhu, J. Zhang, Z. Xiao, X. Cao, D. O. Wu, and X. Xia, “Joint Power Allocation
and Beamforming for Non-Orthogonal Multiple Access (NOMA) in 5G Millimeter Wave
Communications,” IEEE Trans. Wireless Commun., vol. 17, no. 9, pp. 6177–6189, Sep.
2018.

17. Y. Liu, Z. Ding, M. Elkashlan, and H. V. Poor, “Cooperative Non-Orthogonal Multiple
Access with Simultaneous Wireless Information and Power Transfer,” IEEE J. Sel. Areas
Commun.”, vol. 34, no. 4, pp. 938–953, 2016.

18. Y. Yin, Y. Peng, M. Liu, J. Yang, and G. Gui, “Dynamic User Grouping Based NOMA
Over Rayleigh Fading Channels,” IEEE Access, vol. 7, pp. 110 964–110 971, 2019.

19. X. Chen, A. Benjebbour, A. Li, and A. Harada, “Multi-User Proportional Fair Schedul-
ing for Uplink Non-Orthogonal Multiple Access (NOMA),” in IEEE 79th Vehicular Tech-
nology Conference (VTC Spring), May 2014, pp. 1–5.

20. F. Liu, P. Mähönen, and M. Petrova, “Proportional Fairness-Based User Pairing and
Power Allocation for Non-Orthogonal Multiple Access,” in IEEE 26th Annual Interna-
tional Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC),
Aug. 2015, pp. 1127–1131.

301

User Grouping and Power Allocation in NOMA Systems 27

21. M. L. Tsetlin, “Finite Automata and Modeling the Simplest Forms of Behavior,” in
Mathematics in Science and Engineering, 1973, vol. 102, pp. 3–83.

22. S. Lakshmivarahan, Learning Algorithms: Theory and Applications. New York:
Springer, 1981.

23. K. S. Narendra and M. A. L. Thathachar, Learning Automata: An Introduction. Courier
Corporation, May 2013.

24. S. Lakshmivarahan and M. A. L. Thathachar, “Absolutely Expedient Algorithms for
Stochastic Automata,” IEEE Trans. Syst. Man Cybern., vol. 3, pp. 281–286, 1973.

25. B. J. Oommen and M. Agache, “Continuous and Discretized Pursuit Learning Schemes:
Various Algorithms and Their Comparison,” IEEE Trans. Syst. Man Cybern.: B Cybern.,
vol. 31, no. 3, pp. 277–287, 2001.

26. X. Zhang, O.-C. Granmo, and B. J. Oommen, “Discretized Bayesian Pursuit - A New
Scheme for Reinforcement Learning,” in Proceedings of IEA-AIE 2012, Dalian, China,
Jun. 2012, pp. 784–793.

27. A. S. Poznyak and K. Najim, Learning Automata and Stochastic Optimization.
Springer, 1997, vol. 3.

28. A. Yazidi, X. Zhang, L. Jiao, and B. J. Oommen, “The Hierarchical Continuous Pur-
suit Learning Automation: A Novel Scheme for Environments With Large Numbers of
Actions,” IEEE Trans. Neural. Netw. Learn. Syst., vol. 31, no. 2, pp. 512–526, 2020.

29. X. Zhang, L. Jiao, B. J. Oommen, and O. Granmo, “A Conclusive Analysis of the Finite-
Time Behavior of the Discretized Pursuit Learning Automaton,” IEEE Trans. Neural.
Netw. Learn. Syst., vol. 31, no. 1, pp. 284–294, 2020.

30. A. Shirvani, “Novel Solutions and Applications of the Object Partitioning Problem,”
Ph.D. dissertation, Carleton University, 2018.

31. M. Pätzold, Mobile Radio Channels, 2nd ed. Chichester: Wiley, 2012.
32. H. Xing, Y. Liu, A. Nallanathan, Z. Ding, and H. V. Poor, “Optimal Throughput
Fairness Tradeoffs for Downlink Non-Orthogonal Multiple Access Over Fading Channels,”
IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 3556–3571, Jun. 2018.

33. J. Kang and I. Kim, “Optimal User Grouping for Downlink NOMA,” IEEE Wireless
Commun. Lett., vol. 7, no. 5, pp. 724–727, Oct. 2018.

34. L. Zhu, J. Zhang, Z. Xiao, X. Cao, and D. O. Wu, “Optimal User Pairing for Downlink
Non-orthogonal Multiple Access (NOMA),” IEEE Wireless Commun. Lett., vol. 8, no. 2,
pp. 328–331, Apr. 2019.

35. D. Berend and T. Tassa, “Improved Bounds on Bell Numbers and on Moments of Sums
of Random Variables,” Probability and Mathematical Statistics, vol. 30, no. 2, pp. 185–205,
2010.

36. O. Granmo, B. J. Oommen, S. A. Myrer, and M. G. Olsen, “Learning Automata-Based
Solutions to the Nonlinear Fractional Knapsack Problem With Applications to Optimal
Resource Allocation,” IEEE Trans. Syst. Man Cybern.: B Cybern., vol. 37, no. 1, pp.
166–175, Feb. 2007.

37. B. J. Oommen, “Stochastic Searching on the Line and its Applications to Parameter
Learning in Nonlinear Optimization,” IEEE Trans. Syst. Man Cybern.: B Cybern., vol. 27,
no. 4, pp. 733–739, 1997.

38. M. Stege, J. Jelitto, N. Lohse, M. Bronzel, and G. Fettweis, “A Stochastic Vector
Channel Model-Implementation and Verification,” in IEEE 50th Vehicular Technology
Conference, vol. 1, Sep. 1999, pp. 97–101 vol.1.

39. W. Gale, S. Das, and C. T. Yu, “Improvements to an Algorithm for Equipartitioning,”
IEEE Trans. Comput., vol. 39, no. 5, pp. 706–710, May 1990.

40. Y. Liu, M. Elkashlan, Z. Ding, and G. K. Karagiannidis, “Fairness of User Clustering in
MIMO Non-Orthogonal Multiple Access Systems,” IEEE Commun. Lett., vol. 20, no. 7,
pp. 1465–1468, Jul. 2016.

302

	ny-omslagsside-doktorgradsavhandling.pdf
	RebekkaOmslandseterPhdThesis-edit.pdf
	I Summary of Contributions
	Introduction
	Families of LA
	FSSA
	VSSA
	Estimator LA
	Hierarchical LA
	Brief Overview of Applications

	Research Challenges within LA
	Non-Equal Partition Sizes
	Problems with Large Number of Actions
	Incorporating Ordering in the Actions
	Practical Applications

	Research Objectives and Methodology
	Organization of the Dissertation

	Fixed Structure Stochastic Automata (FSSA)
	The Family of FSSA
	The FSSA Characteristics
	Examples of FSSA
	The Tsetlin Automaton
	The Krylov Automaton

	Assessment of LA Behavior
	FSSA and Convergence

	FSSA for Partitioning Problems
	Previous LA Solutions for Partitioning Problems
	The Tsetlin Automaton for Solving OPPs
	The Krinsky Automaton for Solving OPPs

	Existing OMA Solutions for Partitioning Problems
	Vanilla OMA
	Enhanced OMA (EOMA)
	Pursuit EOMA (PEOMA)
	Transitivity Pursuit EOMA (TPEOMA)

	Chapter Summary

	Variable Structure Stochastic Automata (VSSA)
	The Concept of VSSA
	Continuous Algorithms
	Discretized Algorithms
	Estimator/Pursuit Algorithms
	Hierarchical Algorithms

	VSSA and Convergence
	Chapter Summary

	Novel FSSA Solutions
	Proposed OMA Algorithms
	The Greatest Common Divisor (GCD) OMA
	The Partition Size Required (PSR) OMA

	Chapter Summary

	Novel VSSA Solutions
	The HDPA
	Motivation for this Study
	Principles for the HDPA
	Summary of the Overall HDPA Algorithm
	Overview of the HDPA Results

	The ADE HDPA
	Motivation for this Study
	Principles for the ADE HDPA
	Summary of the Overall ADE Algorithm
	Overview of the ADE HDPA Results

	Chapter Summary

	Communication-Based Novel Applications
	Motivation for this Study
	Principles for NOMA and the OMA
	Algorithm Summary
	OMA for User Grouping
	Heuristics for Power Allocation

	Overview of the NOMA-based Results
	Chapter Summary

	Conclusion
	Bibliography

	II Appended Paper Contributions
	The GCD and PSR OMA Papers
	A Learning-Automata Based Solution for Non-equal Partitioning: Partitions with Common GCD Sizes
	Object Migration Automata for Non-Equal Partitioning Problems with Known Partition Sizes
	Learning Automata‑based Partitioning Algorithms for Stochastic Grouping Problems with Non‑equal Partition Sizes
	The Object Migration Automata: Its Field, Scope, Applications, and Future Research Challenges

	The HDPA Papers
	The Hierarchical Discrete Learning Automaton Suitable for Environments with Many Actions and High Accuracy Requirements
	The Hierarchical Discrete Pursuit Learning Automaton: A Novel Scheme With Fast Convergence and Epsilon-Optimality

	The ADE HDPA Papers
	Enhancing the Speed of Hierarchical Learning Automata by Ordering the Actions – A Pioneering Approach
	Pioneering Approaches for Enhancing the Speed of Hierarchical LA by Ordering the Actions

	The NOMA Papers
	User Grouping and Power Allocation in NOMA Systems: A Reinforcement Learning-Based Solution
	User Grouping and Power Allocation in NOMA Systems: A Novel Semi-supervised Reinforcement Learning-based Solution

