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ABSTRACT Human activity recognition (HAR) has become increasingly popular in recent years due to its
potential to meet the growing needs of various industries. Electromyography (EMG) is essential in various
clinical and biological settings. It is a metric that helps doctors diagnose conditions that affect muscle
activation patterns and monitor patients’ progress in rehabilitation, disease diagnosis, motion intention
recognition, etc. This review summarizes the various research papers based on HAR with EMG. Over
recent years, the integration of Artificial Intelligence (AI) has catalyzed remarkable advancements in the
classification of biomedical signals, with a particular focus on EMG data. Firstly, this review meticulously
curates a wide array of research papers that have contributed significantly to the evolution of EMG-based
activity recognition. By surveying the existing literature, we provide an insightful overview of the key
findings and innovations that have propelled this field forward. It explore the various approaches utilized
for preprocessing EMG signals, including noise reduction, baseline correction, filtering, and normalization,
ensure that the EMG data is suitably prepared for subsequent analysis. In addition, we unravel the multitude
of techniques employed to extract meaningful features from raw EMG data, encompassing both time-domain
and frequency-domain features. These techniques are fundamental to achieving a comprehensive characteri-
zation of muscle activity patterns. Furthermore, we provide an extensive overview of both Machine Learning
(ML) and Deep Learning (DL) classification methods, showcasing their respective strengths, limitations,
and real-world applications in recognizing diverse human activities from EMG signals. In examining the
hardware infrastructure for HAR with EMG, the synergy between hardware and software is underscored as
paramount for enabling real-time monitoring. Finally, we also discovered open issues and future research
direction that may point to new lines of inquiry for ongoing research toward EMG-based detection.

INDEX TERMS Machine learning (ML), human activity recognition (HAR), deep learning (DL), elec-
tromyography (EMG), real-time systems, artificial intelligence (AI).

I. INTRODUCTION
Over the past few years, researchers have taken a greater
interest in HAR, primarily as a result of advancements that
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have been made in computer vision and artificial intelli-
gence. Several elements come into play, including strategies,
the availability of wearable sensors, and the Internet of
Things [1]. HAR system can distinguish between various
human activities. These activities include Walking, sitting,
running, standing, sleeping, showering, driving, and cooking.
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FIGURE 1. Different categories of human activities.

The method of understanding and categorizing behavioral
patterns and raw activity data gathered from various sources
(so-called gadgets) using AI is known as HAR. Devices
with sensors, such as inertial sensors for smartphones [2],
camera gadgets, and wearable sensors [3]. HAR is essential in
applications like Remote healthcare [4] for elderly [5]people,
smart home/office/city, and numerous applications for mon-
itoring, including sports and exercise [6], [7]. Depending on
the Application, the objective of recognizing human activity
is to identify a specific person’s or a group of people’s phys-
ical work. Some of these jobs could be activities carried out
by a particular person, such as running, jumping, walking, and
sitting [8], which involve modifications to the complete body.
Some actions, like hand gestures [9], are performed through
a specific body part movement.

Some situations might be handled by talking to objects,
like cooking food in the kitchen. HAR can also refer to any
abnormal behaviors, such as unexpected falls [10], Rehabil-
itation progress [11] of patients. A few of the most popular
and practical uses of HAR are in nursing facilities, assisted
living environments monitoring one’s health, engaging in
rehabilitative activities, surveillance, and interacting with
computers. It is a complex problem because HAR has sev-
eral intrinsic difficulties. However, depending on the action
under consideration, the difficulty degree connected with
these impediments’ changes.

As shown in FIGURE 1, HAR can be divided into five
different types of activities depending on the difficulty degree
and duration [12].
Each form of activity is explained below,with human-object

and human-human interactions combined and characterized
as interaction.

•A gesture is a straightforward motion made with the hand
or other body parts to convey a thought or meaning. Face
expressions, handmotions, and head shaking are all examples
of gestures. A gesture is the most straightforward activity
among the four kinds and is usually performed in a brief
amount of time.

• An action is a simple activity performed by people that
involves many motions. Knocking, swimming, and running
are examples of activities.

• An interaction is defined as a two-agent activity. One of
the agents is a human, whereas the other can be an item or
another human. The interaction can be divided into two types
based on the nature of the agents: human-object interaction
and human-human interaction. Human-human interaction
examples include wrestling, hugging, and shaking hands,
whereas human-object interaction examples include interact-
ing with a mobile phone and laptop.

• A group activity is the most complex type because it
requires more than two individuals and may entail interaction
with one or more items. It involves several gestures, acts, and
interactions. Examples of group activities include a group
study and a football game. In recent years, AI Methods
have been increasing, including DL methodology, and have
demonstrated Superior performance to classical ML method-
ologies across various HAR challenges. FIGURE 2 illustrates
the Basic architecture model for HAR systems using ML/DL
[13]. A composite system, the deep learning architecture,
is made up of multiple crucial steps for the recognition of
human behavior.

As shown in FIGURE 3 main steps involved in HAR.
Sensor selection for analysis. The first stage consists in
choosing and using sensing equipment. The next step is data
collection, where data from input devices is processed by
an edge device and sent via various communication systems
to the primary server, such as Bluetooth and Wi-Fi. Edge
computing, which includes Reliable real-time information
processing using edge servers and sensors for data perception,
has the establishment of technology and storage devices at
the location wherever data is obtained and evaluated. Feature
extractions and classification models were used. This paper
reviews the recently taken advancements in HAR. The current
studies focused on various techniques, including ML & DL.

A. FEATURES OF THE PROPOSED REVIEW
TABLE 1 list some of the surveys and reviews on various
HAR methods that have been published. We compare our
papers to those already published to determine whether the
articles had key components (marked ‘Ë’ if discussed in
TABLE 1) such as HAR, ML, and DL techniques, dataset
discussion, and applications. The TABLE 1 also includes the
objectives of the review.

FIGURE 4 illustrates the review’s organizational frame-
work. The order of arranging the review paper is men-
tioned below, and a summary of the review paper is
described. Section II describes the research methods, includ-
ing PRISMA-based paper collection, VOS Viewer-based
visualization, and information extraction. Section III will
cover the Background of EMG Signal and the literature Sur-
vey on HAR. In Section IV, a succinct description of the
Data Acquisition, preprocessing, EMG Pattern Recognition
flow, and classification, In Section V, Available Datasets
are explained. Section VI examines AI for HAR with EMG
with various existing works on DL and ML. Section VII
discusses Hardware related works with HAR, Section VIII
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FIGURE 2. Basic architecture model for HAR system using ML/DL.

TABLE 1. Summary of previous surveys and reviews.

FIGURE 3. Main steps involved in HAR.

with Applications, and Section IX with Open issues, future
trends, and Research Direction. Section X, the conclusion of
the review paper.

II. RESEARCH METHODOLOGY
In our study, we meticulously followed the structured
methodology outlined by the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA)

framework [24]. This approach was instrumental in system-
atically assessing the extensive landscape of EMG-HAR
while ensuring transparency, minimizing bias, and compre-
hensively covering recent literature in this evolving field.
Our journey commenced with an exhaustive search across
a multitude of academic databases, encompassing prominent
sources like Google Scholar, Web of Science, IEEEXplore,
Pub Med, and Dimensions. This comprehensive search
yielded a substantial collection of 3507 articles that bore
potential relevance to our review. Leveraging keywords such
as ‘‘Activity Prediction,’’ ‘‘Wearable Sensors,’’ ‘‘HAR with
AI & Applications,’’ ‘‘Hardware used in HAR,’’ ‘‘Health-
care Application with EMG,’’ and ‘‘Hybrid Models used in
HAR,’’ we aimed to cast a wide net. To prevent redundancy,
we meticulously addressed duplicate entries, leading to the
exclusion of 1027 duplicate documents and streamlining the
list. With the list of unique articles in hand, we embraced
automation tools to conduct an initial eligibility assessment.
These tools efficiently identified 289 records that didn’t align
with our predetermined inclusion criteria, further refining the
pool of potential papers. Simultaneously, we identified and
pruned 580 records that were unrelated to our study due to
various reasons beyond eligibility criteria, such as irrelevance
to the research question or misalignment with the scope of
the review. Following these initial filtering rounds, a set of
1611 papers remained on our radar.
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FIGURE 4. Review’s organization framework.

To refine our selection further, we subjected these papers
to meticulous scrutiny by screening titles and abstracts.
This phase allowed us to identify papers that potentially
met the inclusion criteria by virtue of their relevance to

FIGURE 5. Statistical studies in HAR.

EMG-based HAR systems. Subsequently, we conducted fur-
ther refinement based on explicit inclusion and exclusion
criteria, ultimately narrowing down the selection. Out of the
initial 1611 papers, 1260 were excluded for not involving
ML/ DL techniques and for lacking direct relevance to HAR.
A more stringent screening process then eliminated an addi-
tional 115 papers that either lacked a substantial technical
contribution or were deemed irrelevant upon detailed assess-
ment. With a more focused set of 236 papers in our grasp,
we proceeded to the next phase—a comprehensive evaluation
of the full-text content. During this final phase, we applied
the inclusion criteria rigorously, leading to the exclusion of
33 papers for specific reasons such as not providing relevant
data, demonstrating non-significant results from experiments,
or being in a language other than English. In the culmination
of this comprehensive process, 203 papers were meticulously
identified and included in our ultimate review list. These
papers were thoughtfully chosen to align with our research
objective of evaluating EMG-based HAR systems, ensuring
they met our predefined criteria for relevance and technical
content. FIGURE 7, guided by the PRISMA framework, visu-
ally illustrate the systematic process that serves as a robust
foundation for our study.

We gathered the following type of documentation from the
various publications we read: datasets used,ML/DLmethods,
feature choice, and extraction analysis.

Statistics of Studies in HAR are provided in FIGURE 5,
which gives overall information on HAR related to EMG
research publications in the past five years considered in this
survey article.

To better identify and display the clusters that influence
the subject of the review study, we used VOSviewer, a soft-
ware tool framework where networks of biometric data are
displayed. The network visualization is depicted in Figure 6,
where things are represented by their labels and, by default,
a circle. Each cluster in the network represents a different
color. The titles and the circle’s sizes depend on the object’s
weight. The size of the title and the circle around it increases
with an item’s weight. In FIGURE 6, for instance, the item
labeled ‘‘electromyography’’ has the highest importance and
the most prominent label and circle sizes.
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FIGURE 6. Network visualisation using the VOSviewer’s term co-occurrence map to display the network of related terms.

A. RESEARCH QUESTIONS AND INFORMATION
EXTRACTION
The following research questions served as a guide for both
the review analysis and the article selection analysis: ‘‘What
is the current status in Classification using DL and ML
methods for HAR based on EMG ?’’, ‘‘Is there an adequate
public dataset for HAR and identification?’’ ‘‘What are Vari-
ous Application Related to HAR using sEMG?’’ and ‘‘What
typical problems remain in contemporary EMG-based HAR
systems, and by what methods can they be resolved using
AI?’’

III. BACKGROUND OF EMG SIGNAL
EMG is an electrical signal that measures electrical potential
signals produced by muscle cells to assess muscle activ-
ity [25]. This electrical activity, which is referred to as the
EMG signal, reveals important information regarding the
function of muscles, as well as motor control and neuromus-
cular diseases [26]. During either voluntary or involuntary
muscular contractions, the depolarization of motor neu-
rons in the muscle tissue produces electrical activity that
is measured as an EMG signal [27]. These EMG signals
can be recorded using Electrodes. EMG Electrodes can
be classified into two types (a) Surface Electrode(sEMG)-
non-invasively, by placing electrodes on the skin (b)Needle
Electrode(iEMG)-invasively, by inserting a needle into the
muscle [17].

sEMGmost frequently used because of its user-friendliness
and absence of invasiveness. FIGURE 8 illustrates EMG
Signal Generation in the human body. The motor unit
action potentials (MUAPs) that fire within the muscle
fibers are detected and recorded by the electrodes, which
can pick up on the microscopic electrical potentials they
generate [28].

The EMG signal is comprised of several different compo-
nents, each of which carries its unique information [29]:
1. MUAPs: It represents the electrical impulses produced

by individual motor neurons. A compound action potential is
produced as a result of the combination of several impulses
during a contraction. This potential reflects the coordinated
activity of the muscle.

2. The Timing of Activation: The timing and synchroniza-
tion of MUAP firing provide insights into the patterns of
muscle recruitment and the coordination of different muscle
groups during various activities.

3. Amplitude: The amplitude of the EMG signal is a mea-
sure of how intensely the muscle is being activated. When
muscles are relaxed, their amplitudes are smaller, but more
muscular contractions result in bigger amplitudes.

4. Frequency: The EMG signal’s frequency content can
reveal muscle tiredness, tremor, or certain neuromuscular
disorders. Frequency is measured in hertz (Hz). A drop in the
amount of high-frequency components is frequently caused
by fatigue.
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FIGURE 7. The PRISMA chart of the article selection process for this
review.

5. EMG Enveloping: The EMG signal can be enveloped
to produce the envelope, which represents the total muscle
activation pattern across time. This can be accomplished by
using the ‘‘enveloping’’ technique.

This signal aids in assessing the performance of the mus-
cles [30]. To aid in the diagnosis of the muscle, the indication
may take the form of a graph, sound, or numerical value.
EMG signals have therefore been utilized in medicine to
identify neurodegenerative conditions like Parkinson’s [31]
and stroke [32] that impact motor functioning. The progress
of a patient’s rehabilitation after an injury or illness has also
been monitored using EMG signals. Recent developments
in biomedical technology also enable EMG to be used in
new ways, for example, by sending a signal of control to
exoskeleton systems to let patients execute tasks [33].
A skeletal muscle is in two different states at rest [34].

An electrochemical potential of about -80 mV can be found
in muscle cells (also known as muscle fibers) [35]. Whenever
muscles in the skeleton contract, an electrical potential is
created in a motor unit (MU) constructed up of muscle fibers
and a motor neuron.

Electric potential differences are created when two intra-
cellular action potentials from a motor neuron cause a
neuromuscular junction to fire in opposition to one another.
They are spread by depolarizing and repolarizing eachmuscle
fiber [36]. The combined intracellular action potential of all
the muscle fibers in a motor unit is known as MUAP [17].
Consequently, A linear average of multiple trains of MUAPs
makes up the EMG. When a skeletal muscle contracts. Static
and dynamic muscle contractions are two different kinds.

While the joints are immobile and the muscle fiber [37]
lengths do not change during a static contraction, the muscles
still tighten, as when a person keeps their peace sign or the
hand motionless. The joint movement and the muscle fiber
lengths differ during a dynamic contraction.

It is possible to model EMG signals using a stochastic
process that depends on the two distinct types of contraction
discussed above. First, the EMG is entirely dependent on
muscle power, and the mean and covariance of the mathe-
matical model for a static contraction (MMSC) may remain
virtually constant across time [34]. Consider:

EMG (t) =

∑N

i=1
si(t) ∗ mi(t) (1)

where N is the total number of active MUs, si(t) is the train of
impulses representing each MU’s active moments,mi(t)is the
MUAPs of each MU, and is used to imply convolution. When
conditions like physical exhaustion and temperature impact
the MMSC, however, it might be seen as a non-stationary
process [38].

Second, a dynamic contraction’s mathematical model
(MMDC) is a non-stationary process and is comparable to
amplitude modulation (AM modulation) in that it is a non-
stationary process:

EMG(t) = a(t)w(t) + n(t) (2)

where a(t) is a function that represents the EMG signal’s
strength (i.e., information signal), w(t) is a unit-variance
Gaussian process that represents the EMG signal’s stochastic
component (i.e., carrier signal), and n(t) is sensor noise and
biological signal artifacts [39].

IV. STEPS INVOLVED FOR EMG PATTERN RECOGNITION
Algorithms based on DL and ML Models have been used to
interpret the EMG signal [41]. Preprocessing and interpreta-
tion, the two critical components of EMG signal processing,
are covered in this section. FIGURE 9 displays a flow pat-
tern of the entire processing procedure. Variations in human
activity motion patterns can be seen in EMG signals [42].
However, the raw, unclassified EMGdata which is obtained is
frequently very noisy. Several processing steps are necessary
to identify these variances correctly. The following four com-
ponents can often be used to summarize the HAR process:

1. Data Acquisition
2. Data Preprocessing
3. Feature Extraction and Reduction
4. Classification Method
FIGURE 10 represents the HAR based on sensor and

vision. Vision-based HAR uses images, RGB-Cameras.
Sensor-based HAR uses EMG, IMU, Accelerometer, etc.

A. DATA ACQUISITION
To achieve a satisfactory level of recognition accuracy,

acquiring an EMG signal is significantly sought, making it
crucial to develop the front-end EMG acquisition methodolo-
gies appropriately. We will contrast the approaches used for
front-end EMG acquisition in this section [43].
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FIGURE 8. EMG Signal Generation in the human body [40] a)Schematic representation of the nerve and muscle system of EMG
signal b)neuromuscular system structure.

FIGURE 9. Flow pattern for HAR using data acquisition system.

Electrodes, amplifiers, microprocessors, and gearbox
devices comprise most of the sensor system used to gather
EMG data. The electrodes detect the electrical signal pro-
duced by the muscle, the amplification circuit amplifies it,
and the transmission device subsequently sends the call to the
host computer.

B. SIGNAL PREPROCESSING
Two procedures must be completed to get good performance
results, like accuracy and usefulness of the recorded signals,
before EMG data is sent to Model-based on classifiers. Pre-
processing is the earlier step [21].

It generally consists of three subparts: signal windowing,
also known as segmentation; filtering of signal, also known
as denoise; and signal rectification. By removing features and
reducing the dimensions, windowing (or segmentation) aids
in boosting classification precision. Denoising or the removal
of various interferences may be aided by filtering. Despite
ongoing debate, many experiments still view rectification as
essential.

1) WINDOWING
The windowing approach consists of two parts: overlapping
and sliding windows. Segmentation can improve classi-
fier accuracy, particularly when acquiring fresh data [43].
The maximum overlapping window length is limited to
300 ms [44]. The approach developed by M. Kunapipat et
al. for classifying hand gestures achieved the highest predic-
tion accuracy with a half-overlapping size temporal length
[45].Similarly, C. Tepe et al. preprocessed EMG signals for
control using 100 milliseconds of 50% overlap. The accuracy
of the prosthesis classification was 95.8 percent for five fin-
gers and one rest gesture [46] Most people look out of nearby
windows. Using EMG signal preprocessing windows led to
an accuracy greater than 98% for identifying gestures [47]
used a window size of 128 milliseconds across neighboring
segments to address the non-stationarity of the EMG signal
and enhance classification accuracy by 98.12%.

2) FILTERING
EMG data from a patient will likely be corrupted by the
environment and electrodes. Most noise is baseline wave
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FIGURE 10. HAR classification based on sensor and vision and detail about the sensor-based system.

(BW) or drift, Gaussian white noise (GWN), power line
noise, interference (PLI), and artifact noise [204]. The most
common filters are software and hardware, including dig-
ital filters. Modern EMG electrodes record analog signals
that, when fed through an analog-to-digital converter (ADC),
create digital signals that personal computers can swiftly
interpret. Hence digital filters are employed in more sit-
uations. For instance, C. Li and coworkers used a comb
filter operating at 50 Hz to filter out disruptive power fre-
quencies [205].To get rid of power line interference, J. R.
Torres-Castillo [206] and coworkers employ a rejects-band
filter (also called a notch filter) and a third-order Butterworth
filter (to dampen the effect of the subject’s baseline oscilla-
tions on the uncontrollablemotion of the signal). ElMohandes
and coworkers applied the Kalman filter to decipher kines-
thetic signals [207]. Since wavelets and other models have
varying responses to various inputs, they are often utilized in
signal filtering. Using Wavelet Transform, noise is induced
by spectral overlap. However, the main limitation is notions
without proof, and the settings chosen will considerably
affect the outcome. Modify filtering results. Empirical mode
decomposition avoided this restriction by using fewer param-
eter settings. Its end effect phenomena greatly limit its use
(EMD) stands for ‘‘empirical mode decomposition.’’ [204]
Musical group, Ensemble EMD reducing noise, helped solve
the problem of poor performance in complicated spatial
and temporal frameworks.S.Ma,coworkers A variable mode
decomposition (VMD) filter denoised PLI, BW, and GWN
signals with low RMSE and the same SNR [204].

3) RECTIFICATION
Full-wave and half-wave rectification are the EMG signal
rectification methods that are used the most [209]. While
the full-wave approach polarizes signals below the baseline
to a positive value and saves energy, the half-wave process

simply ignores them when they are below the baseline. It is
recommended to use full-wave rectification, which saves
energy. [210] The square value of the incoming signal data
can be obtained by a square rectification approach that T.
Roland and colleagues developed [212] and [213] Rectified
EMG signals can make more accurate predictions of the
motor unit (MU) synchronization for frequency components
in low-intensity movement, and they have a lower residual
partial correlation in the beta frequency region for bidirec-
tional load, according to the findings of a study that was
carried out by N. J. Ward and colleagues [212] and [213].
This was discovered as a result of the research that was
carried out. EMG rectification represses high-frequency com-
ponents, making it unsuitable in some situations [211]. The
frequency spectrum is distorted by amplitude cancellation
[210] EMG rectification is nonlinear and introduces undesir-
able central frequency filters that distort the power spectrum
[212].

C. FEATURE EXTRACTION AND REDUCTION TECHNIQUES
1) FEATURE EXTRACTION
The EMG signal’s hidden information can be deduced using
feature extraction, which also allows for the analysis of the
signal’s properties and behavior.

Three categories can be used to group the characteristics of
sEMG signals: time domain (TD), frequency domain (FD),
and time-frequency domain (TFD).

a: TIME DOMAIN (TD)
Indicators based on statistical approaches make up the TD
features of the EMG signal, while the EMG signal itself
is treated as a function of time. The EMG signal can
be expressed in this way, which is more intuitive. Many
early-stage research has concentrated on TD traits because
of the comparatively low computational burden involved in
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doing so. EMG signals were recovered from hand motions
by Bhattacharya et al [214], and these signals included root
mean absolute value (MAV), mean square (RMS), autore-
gressive (AR), zero crossing (ZC), waveform length (WL),
and slope sign change (SSC). These TD traits can be cate-
gorized with the help of LDA, K nearest neighbor (KNN),
and other similar methods. The classification accuracy of
the mixed multi-feature set with six features is the highest
possible, coming in at 83.33%. 11 standard temporal features
of 8 different types of hand movements were investigated
by Phinyomark et al. [215]. These characteristics were SSC,
WL, Willison amplitude (WAMP), variance (VAR), ZC, and
MAV.

b: FREQUENCY DOMAIN (FD)
After expressing the TD signal that has been transformed to
an FD using Fourier transformation and other techniques, the
FD characteristic of the EMG signal analyzes the spectral or
power spectrum features of the signal. This analysis takes
place after the movement has been represented as an FD.
The frequency domain feature is advantageous because it
is more stable, easier to extract stable characteristics, and
more resistant to noise. The power spectral density (PSD)
method is the most essential tool for frequency domain anal-
ysis. It is an obvious demonstration of the degree to which
the muscles are activated. Comparisons were made between
the discrimination power of time domain (TD) features and
frequency domain features on EMG data by Too et al. [216]
to determine which hand movements were being performed.

c: TIME-FREQUENCY DOMAIN (TFD)
The conventional Fourier transform is only able to describe
the frequency characteristics of the signal and does not pro-
vide any frequency information about the signal in any TD.
The combination of time and frequency characteristics allows
for the absorption of the benefits of both approaches. As a
result, academics have been interested in time-frequency
analysis techniques; short-time Fourier transforms (STFT),
Wigner-Ville transforms, Choi-Williams distributions, and
wavelet transforms (WT) are examples. Shanmuganathan et
al [217] collected the forearm EMG signal and used wavelet
packet transform (WPT) for feature extraction after prepro-
cessing and the R-CNN classifier for classification.

2) DIMENSIONALITY REDUCTION
The discriminative features are obscured by the large dimen-
sionality of the feature space occupied by the derived
feature set; the patterns may be incorrectly classified. Data
dimensionality reduction is effective in enhancing recogni-
tion precision, increasing the distance between classes, and
decreasing processing costs. Non-negative matrix factoriza-
tion (NMF), Principle component analysis (PCA), nonlinear
projection, and averaging independent components analysis
are a few of the algorithms that have been suggested to do
this task.Wemainly discuss PCA and NMF techniques in this

section. Different feature extraction techniques, including
LDA for features, LDA for raw EMG, PCA and LDA for
raw EMG, and PCA and LDA for features, were compared
by Zhang et al. [218]. The findings demonstrate that extract-
ing features from EMG signals can increase classification
precision and that dimensionality reduction via PCA is also
helpful for classification. The highest categorization success
percentage for hand movements is 99.8%. To classify the
time-domain properties of the EMG signal, The researchers
Negi et al. [219] made a scatter plot. They used principal
component analysis (PCA) and uncorrelated linear discrim-
inant analysis (ULDA) to reduce the number of features.
The findings indicate that the linear discriminant classifier
can produce classification results that are pretty accurate.
TABLE 2 summarizes the various Feature extraction tech-
nique done using EMG signals.

V. DATASETS
Various emotion databases are openly accessible for anybody
to download and analyze without the requirement for permis-
sion from anyone or the involvement of an organization in
their work. Those available data sets are listed below in the
TABLE 3. Among all, UCI-sEMG and WISDM datasets are
most employed for research work.

Sanchez et al.’s UCI-sEMG [61] dataset focuses on the
three distinct lower limb movements made by 22 male par-
ticipants, 11 of whom have normal knees and the other
11 have abnormal knees. The subjects were over 18 years
old. Walking, sitting, and standing were all used as lower
limb activities. The knees of healthy participants had never
previously experienced pain or injury. The sciatic nerve,
the anterior cruciate ligament (ACL), the meniscus, and six
other ligaments were all injured in the atypical patients. The
healthy subject’s EMG signal was recorded from their left
leg, whereas the abnormal subject’s signal was recorded from
their infected leg. The data was acquired with four surface
electrodes. They surround the biceps, rectus, semitendinosus,
and vastus medialis. The knee joint angle was measured
with a goniometer attached to the exterior to apply a knee
prosthetic leg. The resolution was 1000 Hz, and the sample
rate was 14 bits.

Used HAR-sEMG dataset Trigno wireless biofeed-
back sensors collected sEMG data from four lower limb
movements—jogging, standing, lunge stretching, walking,
and jumping—to form the HAR-sEMG dataset [62]. Forget-
ting The HAR-sEMG dataset contained nine healthy people,
two girls, and seven men, with a mean age of 23.5 years. They
each sent 1800 EMG signals for 10 seconds. The experiment
used six easily distinguishable lower-limb muscles.

One of the largest gait recognition databases, HuGaDB
[63], has two versions: v1 and v2. Study experiments
employed HuGaDB v2. HuGaDB v2 comprised 18 people’s
gaits throughout 10 gait activities, including walking, jog-
ging, climbing, descending, sitting, and more. Six wearable
IMUs and two EMG sensors collected data. Each IMU had
triaxial accelerometers and gyroscopes. The six IMUs were
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TABLE 2. Summary of various feature extraction techniques from sEMG signal.

on the left and right thighs, calves, and ankles. EMG sensors
were on lateral femoral muscles. Data from 38 sensor chan-
nels was obtained.36 IMU sensor channels, 2 EMG channels
Using 36 channel IMU sensor signals in this experiment.
The data was divided into fixed-length frames using a sliding
window with a stride of 64 and a window length of 2.3 s (128
points). After segmentation, 17,244 samples existed.

UCI-HAR dataset [64].The UC Irvine, HAR dataset was
used. The built-in MEMS IMU of a Samsung Galaxy S2
smartphone recorded triaxial acceleration and gyroscope
data. The dataset includes 30 subjects’ gait data, including
the six gait behaviors of walking, sitting, standing, lying
down, moving upstairs, and downstairs. The smartphone was
waist-mounted and sampled at 50 Hz. The gait activities were
hand-tagged after videoing the data-gathering technique. The
data were denoised and gravitational acceleration filtered.
The dataset had 10,299 samples. They evaluated 10,299 sam-
ples. The publisher split the dataset into 7:3 training and test
sets with 7352 and 2947 samples, respectively.

WISDM Dataset [65] is gathered using the integrated tri-
axial accelerometer of an Android smartphone, such as the
Nexus One, HTC Hero, and Motorola Backflip. WISDM
collected gait data from 29 people during six different gait
activities: walking, jogging, sitting, standing, going upstairs,
and going downwards. Data is sampled at a rate of 20 Hz by
the accelerometer.

PAMAP [68]-Three-axis MEMS sensors (two accelerom-
eters, a gyroscope, and a magnetometer) are found in IMUs,
and they are all captured at 100 Hz. The BM-CS5SR-HR-
monitor device for data collecting, a Viliv S5 UMPC with
an Intel Atom Z520 1.33GHz CPU and 1GB of RAM was
employed. Nine participants in all, eight men and onewoman,
took part in the data collection. From BM Innovations GmbH
was used to record heart rate data.

The OPPORTUNITY dataset [70] was obtained. The
OPPORTUNITY dataset examines breakfast-related house-
hold duties. A studio apartment with a kitchen, deck chair,

FIGURE 11. Dataset usage in HAR-sEMG.

and outdoor access is used to recreate a morning routine for
12 subjects, including getting dressed, making and drink-
ing coffee, eating a sandwich, and wiping the Table. The
OPPORTUNITY dataset, like CMUMMAC, collects data
from accelerometers, gyroscopes, magnetometers, micro-
phones, and video cameras in the environment, objects, and
people.

FIGURE 11 illustrates the Dataset Usage in HAR-sEMG
andmainly used dataset, which is available publicly, andmost
of the work is done by a self-formulated dataset.

VI. ARTIFICIAL INTELLIGENCE FOR HAR WITH EMG
SIGNAL
As per the ML subfield of AI, an algorithm on a computer
can take in fresh information and adjust itself accordingly.
The field of artificial intelligence is complete with ML [71].
In contrast to the purpose of AI, which is to construct an intel-
ligent system or assistant that uses various ML approaches to
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TABLE 3. Summary of available sensor-based dataset.

FIGURE 12. Flowchart demonstrates the relation between AI, ML and DL.

solve issues, ML aims to create computer systems that can
learn and respond based on prior observation. FIGURE 12
shows how artificial intelligence, ML, and DL are intercon-
nected.

ML methodologies come in two different flavors: super-
vised and unsupervised. The relationship between unpro-

cessed input and processed output data is the foundation of
the supervised approach, which builds a mathematical model.
Unsupervised methods seek to identify patterns in raw input
data without knowing the final product. On the other hand,
it is still necessary to examine the results on a dataset obtained
from the real world using a variety of classifiers. Medical
databases have been analyzed by ML [72] algorithms.

DL is a comprehensive approach encompassing the entire
process from input to output. The procedure commences
directly from the initial input data and autonomously per-
forms feature extraction and model learning via a multilayer
network. DL offers several advantages over traditional meth-
ods in machine learning. Firstly, it eliminates the need for
manual feature engineering, which can be a time-consuming
and laborious process. Instead, DL algorithms can auto-
matically learn and extract relevant features from the data,
resulting in more effective feature representation.

Additionally, DL models can fit complex functions
using fewer parameters. This allows for the expression
of more intricate and sophisticated models, enabling the
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FIGURE 13. Comparison of ML and DL for HAR.

representation of complex relationships within the data. Con-
sequently, DL has the potential to achieve higher levels of
performance and accuracy in various tasks and applications.
This approach offers significant benefits in terms of feature
expression, function modeling, and model generalization.
FIGURE 13 illustrates the comparison of DL and ML within
the context of HAR.

The rise in popularity of DL techniques can be attributed
to their ability to automatically extract key features from
vision or image data and time-series data [14]. Accuracy,
Precision, Recall, and F1 Score are only a few classifica-
tion performance criteria where DL methods excel above
traditional ML approaches for activity detection [160], [161].
The first step is to choose and set up the necessary sensing
equipment. Through wireless connections like Wi-Fi and
Bluetooth, data gathered by an edge device is transmitted
to a central server. Sensors and edge servers are used in
edge computing for real-time data processing [161], [162].
CNN can automatically identify and extract features from
unprocessed signals. Here, we make use of the CNN archi-
tecture to remember actions. The final step is a notification
mechanism for agents. The notification system can alert the
appropriate authorities in the event of emergency. TABLE 4
illustrates the various studies carried out with EMG data sets
using ML /DL algorithms. Several systematic reviews of the
development of activity recognition in humans may be found
in this body of work. HARhas been researched using a variety
of techniques, including DL [163], ML [164], sensor [165],
and vision [166]. Two HARs were conducted [167], and a
review of a vision-based HAR was published [168]. Sensor-
based HAR radio communication strategies were outlined
in [12], while a review of current wearable sensors-based
HAR applications and an analysis of twenty-eight HAR
systems from varying perspectives were presented in [167].
HAR [169] and research into HAR via vision [166]. The
accelerometer, gyroscope, torque, and hybrid sensors, as well
as their individual functions, were broken down [170]. In con-
trast, the preprocessing strategy, data collection methods, and
relevant signals were investigated [169]. In addition, DL and
other cutting-edge techniques for vision-based HAR have
been explored [171]. There was a 2018 roundtable discus-
sion [172] about the latest findings in RGB-depth-based HAR
can be seen in FIGURE 10. Using features from both the data

streams and the activity recognition, another study character-
ized vision-based HAR [173].

Montazerin et al. [124] developed a Vision Trans-
former (ViT) architecture to recognize hand gestures
from HD-sEMG data. They leverage the transformer
architecture’s recent accomplishment in solving complex
issues and its attention mechanism’s potential for addi-
tional input parallelization. The Vision Transformer-based
Hand Gesture Recognition (ViTHGR) framework can
classify a large number of hand gestures without data
augmentation or transfer learning and without training
time issues. A 65- isometric hand gesture HD-sEMG
dataset is used to evaluate the proposed ViT-HGR sys-
tem. With only 78,210 learnable parameters, our 64-sample
(31.25 ms) window size studies give average test accuracy of
84.62 ± 3.07%.

Zhang et al. [111] worked on Wearable devices that
recognize lower limb motions are a major challenge in
lower limb-based HCI technologies. Biological and kine-
matic signals distinguish human mobility. In this research,
we suggested a Vision Transformer (ViT)-based architec-
ture for lower limb motion detection from multichannel
Mechanomyography (MMG) signals and kinematic data
because unimodal signals do not provide enough information.
First, we enhanced each input channel signal with self-
attention. Then ViTmodel received data. This paper proposes
aVision Transformer-based Lower LimbMotion Recognition
(ViT - LLMR) architecture that avoids model training issues
like autonomous feature extraction and feature selection for
ML and can recognize eight lower limbmotions from six sub-
jects with 94.62% accuracy. We also examined the model’s
generalization when undersampled and gathering fragment
signals.

Rahimian et al. [125] use a vision transformer network
to recognize hand gestures using high-density surface EMG
(HD-sEMG) signals. The proposed attention mechanism
model finds commonalities between data segments for par-
allel processing.HD-sEMG uses 128 electrodes to record
65 isometric signals. 20 subjects’ hand motions. CT-HGR is
applied to 31.25, 62.5, 125, 250 ms. Window sizes for 32,
64, and 128 electrode channel datasets. Results are acquired
by using the suggested framework to each dataset in 5-
fold cross-validation. subject separately and averaging the
accuracies. The average accuracy of 86.23% of participants
using 32 electrodes and a window size of 31.25 ms climbs
to 91.98% for 128 electrodes and 250 ms. CT-HGR achieves
89.13% for immediate recognition from a single HD-sEMG
frame.

Rahimian et al. [126]proposed a Transformer-based sEMG
signal processing system to overcome these challenges. New
idea Vision Transformer-based neural network architecture
(TEMGNet) to identify upper limb hand motions from sEMG
for control of the prosthesis. Training TEMGNet is planned
without pre-training or fine-tuning a limited dataset. Follow-
ing recent literature, evaluate efficacy.NinaPro DB2’s second
subset (exercise B) was used, where the suggested TEMGNet
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TABLE 4. Various studies carried out with EMG data sets using ML /DL algorithms.

framework attained recognition accuracy of 82.93% and
82.05% for window sizes 300ms and 200ms.

Zabihi et al. [127] proposed a Transformer for Hand Ges-
ture Recognition (TraHGR) hybrid architecture that uses two
parallel processors.pathways followed by a fusion center
linear layer integrate module benefits and give robustness
distinct situations. We assessed the suggested architec-
ture.TraHGR uses the popular second Ninapro dataset, the
DB2. DB2 dataset sEMG signals 40 healthy users’ real-
life measurements 49 gestures each.TraHGR architecture
with each path and showed the hybrid’s unique architecture.

TraHGR recognition accuracy architecture: 86.18%, 88.91%,
81.44%, and 93.84% are 2.48%, 5.12%, 8.82%, and 4.30%
better than the state-of-the-art for DB2 (49 gestures), DB2-B
(17 gestures),DB2-C (23) and DB2-D (9 gestures).

Shen et al. [128] propose a stacking ensemble-learning
convolutional vision transformer (CviT) with considerable
potential in the field.EMG signal fusionwith parallel training.
NinaPro DB2’s approach 80.02% at 200ms. In the Exer-
cise E1 of NinaPro DB2, the recommended approach is
83.47% and 84.09% at 200ms and 300ms. The proposed
technique obtains 76.83% in NinaPro DB5 subsets (Exercise
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A, Exercise B) and 73.23%. Experimental results show that
the proposed CviT outperforms most current methods.

AI-based models for HAR are illustrated in FIGURE 14,
and several DLmodels are used for HAR using EMG signals.
Here are some models that were commonly used for HAR.
1. Convolutional Neural Networks (CNNs): CNNs have

been applied to EMG-based HAR tasks by treating sequences
of EMG signals as images. CNNs can capture spatial patterns
in the signal data, which can be indicative of different muscle
activations during different activities.
2. Recurrent Neural Networks (RNNs): RNNs, including

LSTMs and GRUs, have been used for EMG-based HAR as
they can capture temporal dependencies and variations in the
EMG signal. They can effectivelymodel the sequential nature
of muscle activations during different activities.
3. Hybrid Models: Some approaches combine CNNs and

RNNs to leverage both spatial and temporal information in
EMG data. CNNs can be used for feature extraction from the
raw EMG signals, and the extracted features are then passed
to RNNs for sequence modeling and classification.
4. Transformer-based Models:While initially designed for

sequential data in natural language processing, transformer-
based architectures have been adapted for sequential data like
EMG signals [73]. They can capture long-range dependencies
in the signal, making them potentially effective for HAR
tasks. FIGURE 15 illustrates the basic Transformer model.
5. Attention Mechanisms: Attention mechanisms can be

applied to EMG data to focus on specific parts of the signal
that are more informative for different activities. These mech-
anisms can enhance the discriminative power of the model.
6. Graph Neural Networks (GNNs): If the EMG signals

come from multiple electrodes placed on different muscles,
GNNs can be used to model the relationships between differ-
ent muscle activations and perform activity recognition.
7. Autoencoders and Variational Autoencoders (VAEs):

These models can be used for feature extraction and dimen-
sionality reduction of the EMG signals before feeding them
into a classifier. VAEs can also generate synthetic EMG
signals for augmentation.
8. Capsule Networks: Capsule networks aim to model

hierarchical relationships between features in the data. They
have been explored for EMG-based HAR to capture complex
patterns in muscle activations during different activities.

Hybrid models in ML and DL refer to approaches that
combine the strengths of multiple individual models or tech-
niques to achieve better performance or address specific
challenges. These models often leverage the unique char-
acteristics of each constituent model to enhance overall
performance.
1) CNN-RNN Hybrid: Combining Convolutional Neural

Networks (CNNs) with Recurrent Neural Networks (RNNs)
can be powerful for tasks like video analysis. CNNs extract
spatial features from frames, and RNNs capture temporal
dependencies between frames, enhancing the model’s ability
to understand both spatial and sequential information.

2) Autoencoder-GAN Hybrid: Combining autoencoders
with Generative Adversarial Networks (GANs) can lead to
more realistic and semantically meaningful generated data.
Autoencoders can help in learning useful latent representa-
tions, which can then be used to guide the GAN’s generator
for better synthesis.
3) Transformer-Convolutional Hybrid: Transformers are

excellent at capturing long-range dependencies in sequences,
while convolutional layers are effective at extracting local
patterns. Combining these architectures can lead to models
that understand both global context and local details, suitable
for tasks like image captioning.
4) Ensemble Models: Ensemble models combine the pre-

dictions of multiple base models to make final predictions.
Techniques like bagging, boosting, and stacking leverage the
diversity and expertise of various models to improve overall
accuracy and robustness.

Dual-channel LSTMwas employed byHssayeni et al. [74]
for hand-crafted features, 1D CNN-LSTM for raw signals,
and 2D CNN-LSTM for time-frequency data. In order to
investigate the use of DL in recognition of beach volleyball
movement, Tora et al. [75] developed a deep convolutional
neural network based on sensor-based activity categoriza-
tion. They then compared the effectiveness of this novel
approach with five well-used classification techniques. Deep
convolutional neural networks were discovered to be capable
of achieving a classification accuracy of 83.2%, which is
16.0% higher than existing classification algorithms. Using
CNN and LSTM layers, Mekruksavanch et al. [76] presented
a hybrid deep-learning network. The network is suitable for
identifying human activity in sensor data from smartphones
since it is capable of automatically learning space attributes
and time representation.

GRU and LSTM both perform equally well when
it comes to identifying human activity, according to
Chung et al.’s comparative study [77]. In [78], a Deep Neural
Network-based model is proposed as an end-to-end model
that does automatic feature extraction and classification of
the activities as well. This model makes use of CNN and
GRU. A region-convolutional neural network (RCNN) was
proposed by Yang et al. [79] to recognize the wearer’s gait
characteristic TABLE 5 and TABLE 6 summarizes the vari-
ous ML and DL models used, the Latest DL methods used by
various Authors.

An inertial sensor-based HAR method was put forth by
Hassan et al. [203]. After extracting usable features from the
raw data, linear discriminant analysis (LDA) and kernel PCA
(KPCA) were used to increase the robustness of the features.

Deep belief networks (DBN) were then employed to iden-
tify a variety of sample actions. This method’s prediction
accuracy and anti-interference capability are higher than
those of conventional SVM and ANN approaches. Two
waist-mounted sensors were utilized by Lawal et al. [202] to
gather hip joint motion signals, turn them into spectral image
signals, and then use deep neural networks to extract features.
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FIGURE 14. AI based models for HAR.
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TABLE 5. Summary of HAR using different ML/DL based classifiers.

FIGURE 15. Basic architectures of transformer model [73].

A. PERFORMANCE EVALUATION
ML and DL algorithms must be evaluated to be useful. Evalu-
ate a ML classifier by comparing its suggested method to the

object’s genuine categorization. Evaluation metrics measure
and explain a trained classifier’s performance versus unseen
data. The assessment measure chooses the best training clas-
sifier to separate and choose the best answer in the future.
Accuracy, Sensitivity, Specificity, Precision, Recall, F1 score,
ROC, AUC, ANOVA test, Log-loss, Root Mean Squared
Error, Cross Validation, and other metrics are common.

It is often used to evaluate binary or multi-class categoriza-
tion problems. It is suitable for multi-class and label scenarios
because it is easy to understand and compute. Compare the
amount of correctly classified points to the total points to
compute it [201].

A confusion matrix in TABLE 7 (a),TABLE 7(b)will illus-
trate the predicted classifier training correct and incorrect
points. Accuracy, specificity, Recall (sensitivity), Precision,
F-measure, and area under the curve (AUC) are commonly
calculated using the confusion matrix in the TABLE 8. The
four main metrics of a binary classification result are True
Positive (TP) and True Negative (TN), which indicate that
the predicted value matches the actual value, and False Pos-
itive (FP) and False Negative (FN), which indicate that the
predicted value was falsely predicted.

VII. HARDWARE RELATED EXISTING WORKS FOR HAR
This section will give an overview of Existing Hardware
works related to HAR, and TABLE 8 illustrates the literature
survey on the hardware platform.
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TABLE 6. Summary of HAR using advanced DL based models.

FIGURE 16. Knee Bandage [129].

Liu et al. [129] developed a Genutrain knee bandage for
patients to measure muscle weakness, as shown in FIGURE
16. They used to outline the offline implementation of HAR
models, which cover hardware requirements, software devel-
opment, data gathering, and biosignal processing, Studying
features and modeling human action before concentrating on
the switch from offline to real-timemodels for information on
the graphical user interface, sensor/device selection, window
length, overlap ratio, and other details(GUI), as well as on-air
capabilities.

Kerdjidj et al. [130] proposed a hand gesture recog-
nition hardware architecture for Xilinx’s Zynq platform
(XC7Z020). This system is intended for robotic prostheses
to improve daily life. They create a Vivado HLS architecture
to identify hand movements using EMG. The idea architec-
ture requires two intellectual creations to develop, test and
validate hardware Ips against software implementation. First
performs feature extraction from EMG signals, and the sec-
ond classifies using the k-NN algorithm with eight-channel
biosensor EMG data.

Kundu et al. [131] developed a hand gesture-based omni-
directional wheelchair control employing wearable IMU and
myoelectric sensors, as shown in FIGURE 17. Classifying
seven typical gestures DSVM classifier with shape-based
feature extraction. Animated gestures mapped to wheelchair
navigation omnidirectional motion commands. One IMU
measures the wrist tilt and three-axis acceleration. EMG
waves and Extensor Flexor Carpi Radialis and processed
to RMS signal. Autonomous activity starts and stops.
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TABLE 7. (a) Confusion matrix. (b) Performance evaluation metrixs.

FIGURE 17. Wheelchair navigation omnidirectional motion [131].

Real-world classification with Five healthy participants
tested the algorithm for real-time wheelchair navigation.
Classification DSVM classifier on ‘k’ had 94% accuracy fold
five-user cross-validation data. Classifier accuracy is 90.5%
of wheelchair users.

Bai et al. [132] designed a wearable robotic system for
the lower limbs described in this research to provide stroke
patients with assistive torque during their rehabilitation.

By detecting, the device specifically delivers the helpful
torque. The purpose for which sEMG is used. The research
was done to gather hamstring and quadriceps EMG readings
from 10 healthy volunteers’ muscles. The estimated force
and torque Results indicate that the assistive technology is
a highly implementable device. Online exams using assistive
technology were also conducted. Motors are controlled by an
EMG signal. The result estimation force, the locations of the
hip and knee joints, and the Application in real-time can be
seen in FIGURE 18.

Franco et al. [133] implemented an Ageing causes func-
tional decline, which can impair locomotion and require
assistance. The NanoStim project intends to build a
home electrostimulation system to reduce patient visits.
FIGURE 19 illustrates the knee angle helps determine the
patient’s mobility during treatment. IMU sensors detect knee
angles in this wearable system. Low-cost technology, such as
an ESP32 microcontroller and an ESP32MPU-6050 sensor,
is incorporated into the wearables. This hardware causes
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TABLE 8. Summary on hardware used for HAR.

FIGURE 18. Lower extremities rehabilitation device [132].

a reduction in the Precision of signals when multitasking.
The complementary filter had the best performance, with an
average error of 0.6 degrees and a 77% improvement inMSE.

Faisal et al. [220] One of the most actively researched areas
in the field of HCI is hand gesture recognition. Although
several hand gesture detection modalities have been inves-
tigated over the past three decades, recent years have seen a
resurgence in the field thanks to hardware advancements and
DL algorithms. In this article, we assess low-cost dataglove’s
effectiveness for categorizing hand gestures in the context of
deep learning. Additionally, they suggested a brand-new Spa-

FIGURE 19. IMU acquisition system diagram [133].

tial Projection Image-based method for recognizing dynamic
hand gestures, as shown in FIGURE 20.

VIII. APPLICATIONS OF EMG
In the past ten years, there has been a proliferation of sEMG-
based solutions, as evidenced by an increase in the number
of demonstrations and attempts in three crucial rehabilitation
settings. FIGURE 21 illustrate the various Application of
EMG; Surface EMG signals huge Application in healthcare,
such as the control of prosthetics or exoskeletons, the evalu-
ation of neuromuscular diseases, activity tracking, and other
applications [174].
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TABLE 9. Summary of existing important ML/DL models for disease prediction and diagnosis in healthcare domain.

FIGURE 20. Dataglove architecture [220].

A. HEALTHCARE SYSTEM
Systems that analyze and interpret patient behavior are fre-
quently employed in healthcare systems to make it easier
for medical personnel and other key staff to monitor, diag-
nose, and provide treatment for patients [175]. This leads
to better patient satisfaction, a reduction in hospital stays,

FIGURE 21. Various applications using EMG.

lower medical expenses, and a lower risk of major harm.
It also minimizes the stress on healthcare personnel while
improving the quality of care provided to patients. Recog-
nition of human activities systems is utilized in a wide
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TABLE 10. List of acronyms.

range of health care applications, including automatic fall
detection [179], emergency response systems for detecting

TABLE 10. (Continued.) List of acronyms.

unintentional falls and offering immediate support, respi-
ratory actions modeling applications for identifying and
diagnosing sleep problems [180], cardiovascular diseases,
stroke [181], Parkinson’s disease [131], Amyotrophic lat-
eral sclerosis (ALS) [176] and prescription drug surveillance
systems for ensuring proper medication usage. Automatic
wheelchairs, exercise-aid systems that steer suitable postures
during everyday activities, hand gesture detection systems for
sign language-based interaction, and hand-based monitoring
systems for eating disorders are some significant instances of
the technologies described [182] and various Applications in
Healthcare discussed in TABLE 9.

B. SYSTEMS FOR MONITORING
Surveillance systems, another application category, make
extensive use of HAR technologies. Activities detection sys-
tems are utilized in monitoring situations to monitor and
observe people and gatherings, assisting security personnel
in recognizing and identifying threats or suspicious behav-
ior. Drowsiness among drivers detection systems to ensure
proper driving behavior [183] and to reduce injuries caused
by driver inattention; automatically drowning identifying
systems [184] in pool areas to safeguard life; and so on.
Identification of human activity systems for monitoring a
variety of systems.

C. SYSTEMS FOR ENTERTAINMENT
Recognizing humanmovement and activities commonly used
in the entertainment sector for the track, sports authori-
ties, and participants, as well as to have fun when playing
video games. There are various examples of HAR in action.
Entertainment systems use activity recognition systems to
accurately time swimming and diving, identify and score
real-world dance moves, navigate in 3-D spaces, and interact
in virtual environments [185], [186], [187]. Tennis games use
movement recognition to detect strokes and events.

D. TRAFFIC SAFETY
When driving a car, safety is of the utmost importance. The
potential of autonomous vehicles to avoid accidents and pro-
mote safety benefits substantially from the assessment of the
driver’s biological data. The driver data gathering and mark-
ing system developed by Seckin et al. [111] makes extensive
use of EEG, EMG, and IMU, the vehicle’s capacity to dis-
tinguish unsafe circumstances in autonomous driving. The
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KNN method classifies the data after PCA dimensionality
reduction.

E. REHABILITATION AND PROSTHESIS CONTROL
Following some surgeries and diseases, physical rehabilita-
tion therapy is frequently required, and using multimodal
measurement systems makes it possible to track the devel-
opment more precisely [189]. Monge et al. [190] presented
an intelligent physical rehabilitation system that used aug-
mented reality, EMG, ECG, and IMU sensors, remote health
status monitoring, and supported rehabilitation to engage
patients. J. Gallego, others [191].

F. SPORTS ASSESSMENTS
HAR is utilized to collect data like acceleration, which is
angular haste, haste, and so on, for numerical analysis of
mortal body corridor actions in order to calculate sportsmen
and women’s performance and assist them with enhancement
approaches [192], [193].

IX. OPEN ISSUES, FUTURE TRENDS, AND RESEARCH
DIRECTIONS
A. OPEN ISSUES
Although the current HAR-based algorithms excel at
identifying atomic and fundamental activities in single-
subject settings, they continue to have difficulty with
HAR in a variety of complicated real-life scenarios [195].
There are some presented open issues with HAR systems
below.

1) SIGNAL INSTABILITY IN THE EMG
The instability problems with the outputted EMG signals
(particularly for sEMG technology) show that the repro-
ducibility of EMG signals becomes a challenge. Frequently,
even the ability of the same patient to produce EMG signals
of varying amplitudes poses significant difficulties for illness
analysis and intention/motion interpretation.

2) HIGH-ACCURACY REAL-TIME INTERPRETATION
EMG signals are frequently utilized to control teleopera-
tion and exoskeletons by interpreting the user’s intentions.
Nevertheless, achieving great interpretation accuracy while
exerting less control delay has not yet been attained. In real-
time control systems, increased interpretation accuracy typi-
cally necessitates longer EMG signal recording times, which
causes undesirable a delay [196].

3) CLASS IMBALANCE FOR SPECIFIC ACTIVITIES
Even in specialized datasets, data for other anomalous behav-
iors like unintentional falls from various positions are quite
uncommon, in contrast to the abundance of data for every-
day activities like walking, talking, jogging, and swimming.
In light of this, data for various sorts of activities frequently
show a class imbalance.

4) ISSUES WITH THE UNDERLYING TECHNOLOGY THAT ARE
INHERENT
The portability, expensive hardware requirements, and envi-
ronmental interference of HAR systems relying on radar
signals are some of the drawbacks. Similar wearability
restrictions apply to HAR systems based on smartphones
and wearable sensors. The HAR systems that rely on several
sensory modalities are similarly susceptible to data noise,
making the data more difficult to understand and extrapolate
from.

5) LACK OF STANDARDIZATION
Different research studies employ distinct testing method-
ologies and benchmarks. While some HAR systems employ
many assessment criteria, others only use portions of datasets.
Consequently, it is quite challenging to make quantitative
comparisons between the systems and carry out an accurate
evaluation.

6) OTHER COMMON CHALLENGES
The main challenges are the noisy behavior of EMG signals
and data overfitting. In order to eliminate the undesired noise,
it is crucial to perform rectification and filtering after the pre-
processing stage. Lack of training and testing data represents
yet another significant obstacle. The majority of publications
split their dataset into training and testing data, which the
current study proved was insufficient [194]. As a result, data
augmentation techniques that create synthetic data from the
obtained data can be utilized to prevent overfitting. Feature
selection algorithms may be useful to improve classification
accuracy along with the response time.The complexity and
limitations of the processing, as well as design problems
like electrodes, present difficulties, especially in applications
where both recognition accuracy and Real-time efficiency
have exacting standards [195].

B. FUTURE TRENDS AND RESEARCH DIRECTIONS
Based on the systematic review of sEMG-based HAR using
AI, several research directions can be identified for future
studies. These directions aim to address existing challenges
and further enhance the capabilities of sEMG-based HAR
systems. Some potential research directions include:

1) ROBUSTNESS AND ADAPTABILITY
This investigates methods to improve the robustness and
adaptability of sEMG-based HAR systems. This can involve
exploring techniques for handling inter-subject and intra-
subject variability, electrode placement variation, and differ-
ent skin conditions. Developing algorithms that can adapt
to individual users and accommodate changes over time can
improve the reliability and applicability of HAR systems.

2) MULTIMODAL INTEGRATION
This explores the integration of multimodal data sources
with sEMG signals to improve activity recognition accuracy
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and robustness. This may entail merging sEMG data with
accelerometers, gyroscopes, and IMUs. Multiple sensors can
be combined to better reflect human behaviors and improve
HAR systems.

3) REAL-TIME MONITORING AND FEEDBACK
This system\method focuses on the development of real-time
sEMG-based HAR systems that provide immediate feedback
and assistance to users. This can be particularly valuable
in rehabilitation settings, where real-time feedback can help
patients adjust their movements and optimize their rehabilita-
tion exercises. Designing algorithms that can process sEMG
signals in real time and provide instantaneous feedback is an
important research direction.

4) TRANSFER LEARNING AND DOMAIN ADAPTATION E
MONITORING AND FEEDBACK
This method technique investigates transfer learning and
domain adaptation techniques for sEMG-based HAR. Trans-
fer learning can leverage knowledge learned from a source
domain (e.g., a well-labeled dataset) and apply it to a tar-
get domain with limited labeled data. Domain adaptation
techniques can help generalize HAR models across different
subjects, conditions, or environments. These approaches can
reduce the reliance on large labeled datasets and improve the
generalization capability of HAR systems.

5) EXPLAINABLE AI IN HAR
This method explores ways to enhance the interpretability
and transparency of AI models used in sEMG-based HAR.
Explainable AI techniques can provide insights into the
decision-making process of AI models and increase the trust
and acceptance of HAR systems in real-world applications.
Developing explainable AI methods specific to sEMG-based
HAR can help users understand the factors influencing activ-
ity recognition outcomes and facilitate user interaction and
customization.

6) LONG-TERM MONITORING AND CONTEXT AWARENESS
This method investigates approaches for long-term monitor-
ing of activities using sEMG signals. Long-term monitoring
can provide valuable data for healthcare professionals, sports
scientists, and researchers to analyze activity patterns, detect
anomalies, and track progress over extended periods. Addi-
tionally, integrating context awareness into HAR systems can
enhance their performance by considering contextual infor-
mation such as environmental conditions, user context, and
task-specific factors.

7) PRACTICAL IMPLEMENTATION AND USER ACCEPTANCE
This method looks at the practical implementation of
sEMG-based HAR systems in real-world settings. This
includes the design and development of user-friendly wear-
able devices, optimized signal acquisition techniques, and
user-centered evaluation studies. Understanding user needs,
preferences, and acceptance factors can guide the develop-

ment of HAR systems that are practical, comfortable to wear,
and seamlessly integrated into users’ daily lives.

8) GENERATIVE MODELS TO IMBALANCE DATA
Generic models, like GANs [195], are now frequently
employed to produce photorealistic fake data. These gen-
erative models can be adjusted to produce information on
unequal classes.

C. FUTURE ACTIVITY PREDICTION
A development of HAR called future activity prediction
makes it possible to forecast the likely course of monitored
people’s actions. Law enforcement and the identification of
driver behavior both use future activity prediction. Due to the
sequential nature of human actions, other technologies (such
as brain-computer,fMRI, interfaces, and EEG).

1) ESTABLISHING RELIABLE HAR SYSTEMS
The type of surface and environmental factors like clothing
and attire selection has a big impact on how people behave.
The pertinent sensor data likewise shows these modifica-
tions. However, the majority of publicly available datasets
on the detection of human activities were gathered in lab
test settings that did not take into account these variations.
Therefore, future research efforts can concentrate on creat-
ing accurate activity datasets for various environments and
reliable, environment-resistant human activity identification
algorithms.

Technology is helping now. In actuality, commercial
low-power MCUs have the computing capacity to conduct
near-sensor processing that matches performance, and it will
improve in the next years. The capacity to automatically learn
features from EMG data is appealing for improving recog-
nition. Natural language computing in linguistics, ML in
mech engg, and recently created ECE and EEE networks
exist. Additional research into sensing and feature extrac-
tion methods for recognizing tiny motions and postures may
have implications in a variety of sectors, including HMI. For
instance, human finger movements based on UWB Doppler
characteristics is one such case for use in portable gadgets.

X. CONCLUSION
In conclusion, this systematic review examined sEMG-based
HAR utilizing AI, including methodologies, applications,
problems, and future implementation options. The review
showed that sEMG signals, which measure muscle elec-
trical activity, are promising for HAR because of their
non-invasiveness, ease of acquisition, and potential for
real-time monitoring. ML and DL methods have enabled
accurate and robust activity detection from sEMG data.
Review approaches for sEMG feature extraction and cate-
gorization were discussed. Time-domain, frequency-domain,
time-frequency analysis, and higher-order statistics extract
features. Traditional ML methods like SVM and RF were
used for classification, as were DL models like CNN and
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RNN. The review showed that HAR systems need the right
feature extraction and classification methods to be accurate.

The review also explored a wide range of applications
where sEMG-based HAR has been applied, including reha-
bilitation [197], prosthesis control, human-robot interaction,
sports science [193], and virtual reality. The potential ben-
efits of HAR systems in these domains include enhanced
rehabilitation outcomes, improved prosthetic control, more
natural human-robot interaction, better performance mon-
itoring in sports, and superior immersive virtual reality
experiences.

In summary, sEMG-based HAR using AI holds great
promise for huge applications in healthcare, robotics, sports,
and virtual reality. By addressing the challenges and incor-
porating advancements in AI techniques, future implemen-
tations of sEMG-based HAR systems have the potential
to revolutionize human activity monitoring and interaction.
Systems for recognizing human activity are vital tools for
humanity since they allow for the monitoring, analysis, and
aid of general human activities aswell as their recording using
various sensory modalities through powerful computing sys-
tems of daily life. Systems for recognizing human activity
in many fields of crucial industries, including healthcare,
surveillance, and entertainment [202]. Systems for recogniz-
ing human activity are crucial tools for humankind because
they make it possible to watch, analyze, and provide assis-
tance while also enabling the recording of common human
activities using various sensingmodalities. Through powerful
computer systems of everyday life. The reviewed systems
are given in the context of the importance of AI and details
on EMG Signal with various existing systems [201]. Also
shown are the systems’ available hyperparameters. We also
included a quick overview of the publicly accessible datasets
that contain information gathered using different types of
sensing techniques that are often employed in the systems
under examination and the wider field [200]. Finally, we talk
about some potential solutions, applications, and open issues.
Future studies should be interested in HAR systems that
would raise the standard of living for those who have had a
stroke or who have lost limbs. EMG signal equality in these
patients will be of great help. Consequently, a deep learning-
based strategy could aid in the Application of EMG in these
circumstances. Future research direction is also discussed
in the review [42]. The intended system must be trans-
portable, and these embedded systems must be lightweight.
To address the issue of computing cost, techniques including
parameter downsizing, embedded GPU, and remote servers
should be investigated. Along with the sensing apparatus,
mathematical techniques, including feature extraction and
classification algorithms, are also covered [199]. In accor-
dance with cutting-edge HAR methodologies, the technical
issues targeted included the limitations of sensing methods
for convenient applications, reliance on PCs for data pro-
cessing, challenges in recognizing tiny gestures, specificity
in motion analysis, disease prediction [176], and HAR. The
direction of future research is thought to be toward finding

answers to these problems. HAR and motion analysis may be
more important in future IoT-enabled intelligent information
systems because they can improve human-information sys-
tem interaction.

Challenges and limitations in sEMG-based HAR were
identified in the review. These include inter-subject and intra-
subject variability, sensitivity to electrode placement and
skin conditions, limited interpretability of DL models, and
the need for large labeled datasets for training. Addressing
these challenges requires further research and development
in the field [198]. Finally, the review discussed future direc-
tions and potential areas for implementation of sEMG-based
HAR using AI. These include wearable devices for con-
tinuous activity monitoring, multimodal data integration for
better recognition, transfer learning, and domain adaptation,
and explainable AI methods to improve HAR system inter-
pretability.

REFERENCES
[1] N. Gupta, S. K. Gupta, R. K. Pathak, V. Jain, P. Rashidi, and J. S. Suri,

‘‘Human activity recognition in artificial intelligence framework: A narra-
tive review,’’ Artif. Intell. Rev., vol. 55, no. 6, pp. 4755–4808, Aug. 2022,
doi: 10.1007/s10462-021-10116-x.

[2] C. Pham, S. Nguyen-Thai, H. Tran-Quang, S. Tran, H. Vu, T.-H. Tran,
and T.-L. Le, ‘‘SensCapsNet: Deep neural network for non-obtrusive
sensing based human activity recognition,’’ IEEE Access, vol. 8,
pp. 86934–86946, 2020, doi: 10.1109/ACCESS.2020.2991731.

[3] S. Qiu, H. Zhao, N. Jiang, Z. Wang, L. Liu, Y. An, H. Zhao, X. Miao,
R. Liu, and G. Fortino, ‘‘Multi-sensor information fusion based on
machine learning for real applications in human activity recogni-
tion: State-of-the-art and research challenges,’’ Inf. Fusion, vol. 80,
pp. 241–265, Apr. 2022, doi: 10.1016/j.inffus.2021.11.006.

[4] J. Qi, Z. Wang, X. Lin, and C. Li, ‘‘Learning complex spatio-temporal
configurations of body joints for online activity recognition,’’ IEEE
Trans. Hum.-Mach. Syst., vol. 48, no. 6, pp. 637–647, Dec. 2018, doi:
10.1109/THMS.2018.2850301.

[5] L. Schrader, A. Vargas Toro, S. Konietzny, S. Rüping, B. Schäpers,
M. Steinböck, C. Krewer, F. Müller, J. Güttler, and T. Bock, ‘‘Advanced
sensing and human activity recognition in early intervention and reha-
bilitation of elderly people,’’ J. Population Ageing, vol. 13, no. 2,
pp. 139–165, Jun. 2020, doi: 10.1007/s12062-020-09260-z.

[6] C. N. Phyo, T. T. Zin, and P. Tin, ‘‘Deep learning for recogniz-
ing human activities using motions of skeletal joints,’’ IEEE Trans.
Consum. Electron., vol. 65, no. 2, pp. 243–252, May 2019, doi:
10.1109/TCE.2019.2908986.

[7] H. Ding, L. Shangguan, Z. Yang, J. Han, Z. Zhou, P. Yang, W. Xi, and
J. Zhao, ‘‘FEMO: A platform for free-weight exercise monitoring with
RFIDs,’’ in Proc. 13th ACM Conf. Embedded Networked Sensor Syst.
New York, NY, USA: Association for Computing Machinery, Nov. 2015,
pp. 141–154, doi: 10.1145/2809695.2809708.

[8] Y. Liu, Q. Zhang, and W. Chen, ‘‘Massive-scale complicated
human action recognition: Theory and applications,’’ Future
Gener. Comput. Syst., vol. 125, pp. 806–811, Dec. 2021, doi:
10.1016/j.future.2021.06.060.

[9] S. Jiang, P. Kang, X. Song, B. Lo, and P. Shull, ‘‘Emerging wear-
able interfaces and algorithms for hand gesture recognition: A sur-
vey,’’ IEEE Rev. Biomed. Eng., vol. 15, pp. 85–102, 2022, doi:
10.1109/RBME.2021.3078190.

[10] O. Kerdjidj, E. Boutellaa, A. Amira, K. Ghanem, and F. Chouireb, ‘‘A
hardware framework for fall detection using inertial sensors and com-
pressed sensing,’’ Microprocessors Microsystems, vol. 91, Jun. 2022,
Art. no. 104514, doi: 10.1016/j.micpro.2022.104514.

[11] A. Gautam, M. Panwar, D. Biswas, and A. Acharyya, ‘‘MyoNet: A
transfer-learning-based LRCN for lower limb movement recognition
and knee joint angle prediction for remote monitoring of rehabilitation
progress from sEMG,’’ IEEE J. Translational Eng. Health Med., vol. 8,
pp. 1–10, 2020, doi: 10.1109/JTEHM.2020.2972523.

VOLUME 11, 2023 105163

http://dx.doi.org/10.1007/s10462-021-10116-x
http://dx.doi.org/10.1109/ACCESS.2020.2991731
http://dx.doi.org/10.1016/j.inffus.2021.11.006
http://dx.doi.org/10.1109/THMS.2018.2850301
http://dx.doi.org/10.1007/s12062-020-09260-z
http://dx.doi.org/10.1109/TCE.2019.2908986
http://dx.doi.org/10.1145/2809695.2809708
http://dx.doi.org/10.1016/j.future.2021.06.060
http://dx.doi.org/10.1109/RBME.2021.3078190
http://dx.doi.org/10.1016/j.micpro.2022.104514
http://dx.doi.org/10.1109/JTEHM.2020.2972523


G. J. Rani et al.: Surface Electromyography and AI for HAR

[12] L.MinhDang, K.Min, H.Wang,M. Jalil Piran, C. Hee Lee, andH.Moon,
‘‘Sensor-based and vision-based human activity recognition: A compre-
hensive survey,’’ Pattern Recognit., vol. 108, Dec. 2020, Art. no. 107561,
doi: 10.1016/j.patcog.2020.107561.

[13] N. Nazmi, M. A. Abdul Rahman, S.-I. Yamamoto, and S. A. Ahmad,
‘‘Walking gait event detection based on electromyography signals using
artificial neural network,’’ Biomed. Signal Process. Control, vol. 47,
pp. 334–343, Jan. 2019, doi: 10.1016/j.bspc.2018.08.030.

[14] M. M. Islam, S. Nooruddin, F. Karray, and G. Muhammad, ‘‘Human
activity recognition using tools of convolutional neural networks: A
state of the art review, data sets, challenges, and future prospects,’’
Comput. Biol. Med., vol. 149, Oct. 2022, Art. no. 106060, doi:
10.1016/j.compbiomed.2022.106060.

[15] D. Xiong, D. Zhang, X. Zhao, and Y. Zhao, ‘‘Deep learning
for EMG-based human–machine interaction: A review,’’ IEEE/CAA
J. Autom. Sinica, vol. 8, no. 3, pp. 512–533, Mar. 2021, doi:
10.1109/JAS.2021.1003865.

[16] X. Wang, H. Yu, S. Kold, O. Rahbek, and S. Bai, ‘‘Wearable
sensors for activity monitoring and motion control: A review,’’
Biomimetic Intell. Robot., vol. 3, no. 1, Mar. 2023, Art. no. 100089, doi:
10.1016/j.birob.2023.100089.

[17] A. Vijayvargiya, B. Singh, R. Kumar, and J. M. R. S. Tavares, ‘‘Human
lower limb activity recognition techniques, databases, challenges and
its applications using sEMG signal: An overview,’’ Biomed. Eng. Lett.,
vol. 12, no. 4, pp. 343–358, Nov. 2022, doi: 10.1007/s13534-022-00236-
w.

[18] Z. Meng, ‘‘Recent progress in sensing and computing techniques for
human activity recognition and motion analysis,’’ Electronics, vol. 9,
no. 9, pp. 1–19, Sep. 2020, doi: 10.3390/electronics9091357.

[19] M. Al-Ayyad, H. A. Owida, R. De Fazio, B. Al-Naami, and P. Visconti,
‘‘Electromyography monitoring systems in rehabilitation: A review of
clinical applications, wearable devices and signal acquisition methodolo-
gies,’’ Electronics, vol. 12, no. 7, p. 1520, Mar. 2023, doi: 10.3390/elec-
tronics12071520.

[20] A. Fleming, N. Stafford, S. Huang, X. Hu, D. P. Ferris, and H. Huang,
‘‘Myoelectric control of robotic lower limb prostheses: A review of
electromyography interfaces, control paradigms, challenges and future
directions,’’ J. Neural Eng., vol. 18, no. 4, Aug. 2021, Art. no. 041004,
doi: 10.1088/1741-2552/ac1176.

[21] A. Asghar, S. J. Khan, F. Azim, C. S. Shakeel, A. Hussain, and I. K. Niazi,
‘‘Review on electromyography based intention for upper limb control
using pattern recognition for human-machine interaction,’’ Proc. Inst.
Mech. Eng., H, J. Eng. Med., vol. 236, no. 5, pp. 628–645, May 2022,
doi: 10.1177/09544119221074770.

[22] R. A. Lateef and A. R. Abbas, ‘‘Human activity recognition using
smartwatch and smartphone: A review on methods, applications,
and challenges,’’ Iraqi J. Sci., pp. 363–379, Jan. 2022, doi:
10.24996/ijs.2022.63.1.34.

[23] F. Kulsoom, S. Narejo, Z. Mehmood, H. N. Chaudhry, A. Butt,
and A. K. Bashir, ‘‘A review of machine learning-based human
activity recognition for diverse applications,’’ Neural Comput. Appl.,
vol. 34, no. 21, pp. 18289–18324, Nov. 2022, doi: 10.1007/s00521-
022-07665-9.

[24] M. J. Page, ‘‘The PRISMA 2020 statement: An updated guideline for
reporting systematic reviews,’’ BMJ, vol. 372, p. n71, Mar. 2021, doi:
10.1136/bmj.n71.

[25] K. C. McGill, ‘‘Surface electromyogram signal modelling,’’ Med.
Biol. Eng. Comput., vol. 42, no. 4, pp. 446–454, Jul. 2004, doi:
10.1007/BF02350985.

[26] A. Subasi, ‘‘Classification of EMG signals using PSO optimized
SVM for diagnosis of neuromuscular disorders,’’ Comput. Biol. Med.,
vol. 43, no. 5, pp. 576–586, Jun. 2013, doi: 10.1016/j.compbiomed.
2013.01.020.

[27] J. S. Kim and S. B. Pan, ‘‘A study on EMG-based biometrics,’’ J. Internet
Services Inf. Secur., vol. 7, no. 2, pp. 1–13, 2017.

[28] A. Cimolato, J. J. M. Driessen, L. S. Mattos, E. De Momi, M. Laffranchi,
and L. De Michieli, ‘‘EMG-driven control in lower limb prostheses: A
topic-based systematic review,’’ J. NeuroEngineering Rehabil., vol. 19,
no. 1, May 2022, doi: 10.1186/s12984-022-01019-1.

[29] Z. Zheng, Z. Wu, R. Zhao, Y. Ni, X. Jing, and S. Gao, ‘‘A review of
EMG-, FMG-, and EIT-based biosensors and relevant human–machine
interactivities and biomedical applications,’’ Biosensors, vol. 12, no. 7,
p. 516, Jul. 2022, doi: 10.3390/bios12070516.

[30] C. Fang, B. He, Y. Wang, J. Cao, and S. Gao, ‘‘EMG-centered multisen-
sory based technologies for pattern recognition in rehabilitation: State of
the art and challenges,’’ Biosensors, vol. 10, no. 8, p. 85, Jul. 2020, doi:
10.3390/BIOS10080085.

[31] S. Haufe, I. U. Isaias, F. Pellegrini, and C. Palmisano, ‘‘Gait event
prediction using surface electromyography in parkinsonian patients,’’
Bioengineering, vol. 10, no. 2, p. 212, Feb. 2023, doi: 10.3390/bioengi-
neering10020212.

[32] K. Lee, ‘‘EMG-triggered pedaling training on muscle activation, gait,
and motor function for stroke patients,’’ Brain Sci., vol. 12, no. 1, p. 76,
Jan. 2022, doi: 10.3390/brainsci12010076.

[33] Y. Sun, Y. Tang, J. Zheng, D. Dong, X. Chen, and L. Bai, ‘‘From sensing
to control of lower limb exoskeleton: A systematic review,’’ Annu. Rev.
Control, vol. 53, pp. 83–96, 2022, doi: 10.1016/j.arcontrol.2022.04.003.

[34] E. Stålberg, H. van Dijk, B. Falck, J. Kimura, C. Neuwirth, M. Pitt,
S. Podnar, D. I. Rubin, S. Rutkove, D. B. Sanders, M. Sonoo, H. Tankisi,
and M. Zwarts, ‘‘Standards for quantification of EMG and neurography,’’
Clin. Neurophysiol., vol. 130, no. 9, pp. 1688–1729, Sep. 2019, doi:
10.1016/j.clinph.2019.05.008.

[35] C. J. De Luca, ‘‘A model for a motor unit train recorded during constant
force isometric contractions,’’ Biol. Cybern., vol. 19, no. 3, pp. 159–167,
Sep. 1975, doi: 10.1007/BF00337255.

[36] D. Farina and R.Merletti, ‘‘A novel approach for precise simulation of the
EMG signal detected by surface electrodes,’’ IEEE Trans. Biomed. Eng.,
vol. 48, no. 6, pp. 637–646, Jun. 2001, doi: 10.1109/10.923782.

[37] N. Foley and C.-H. Yu, ‘‘MusCare+: Muscle monitoring for anomalies,’’
in Proc. IEEE World AI IoT Congr. (AIIoT), Jun. 2022, pp. 425–430, doi:
10.1109/AIIoT54504.2022.9817161.

[38] E. Shwedyk, R. Balasubramanian, and R. N. Scott, ‘‘A nonstationary
model for the electromyogram,’’ IEEE Trans. Biomed. Eng., vol. BME-
24, no. 5, pp. 417–424, Sep. 1977, doi: 10.1109/TBME.1977.326175.

[39] Y. Zheng, G. Xu, Y. Li, and W. Qiang, ‘‘Improved online decomposition
of non-stationary electromyogram via signal enhancement using a neuron
resonance model: A simulation study,’’ J. Neural Eng., vol. 19, no. 2,
Apr. 2022, Art. no. 026030, doi: 10.1088/1741-2552/ac5f1b.

[40] S. Shan, B. Fang, Y. Zhang, C. Wang, J. Zhou, C. Niu, Y. Gao,
D. Zhao, J. He, J. Wang, X. Zhang, and Q. Li, ‘‘Mechanical stretch
promotes tumoricidal M1 polarization via the FAK/NF-κB signaling
pathway,’’ FASEB J., vol. 33, no. 12, pp. 13254–13266, Dec. 2019, doi:
10.1096/fj.201900799RR.

[41] E. L. W. Ting, A. Chai, and L. P. Chin, ‘‘A review on EMG signal
classification and applications,’’ Int. J. Signal Process. Syst., vol. 9, no. 1,
pp. 1–6, Mar. 2022, doi: 10.18178/ijsps.10.1.1-6.

[42] N. Parajuli, N. Sreenivasan, P. Bifulco, M. Cesarelli, S. Savino, V. Niola,
D. Esposito, T. J. Hamilton, G. R. Naik, U. Gunawardana, and
G. D. Gargiulo, ‘‘Real-time EMG based pattern recognition control for
hand prostheses: A review on existing methods, challenges and future
implementation,’’ Sensors, vol. 19, no. 20, p. 4596, Oct. 2019, doi:
10.3390/s19204596.

[43] C. Tepe and M. C. Demir, ‘‘Real-time classification of EMG myo
armband data using support vector machine,’’ IRBM, vol. 43, no. 4,
pp. 300–308, Aug. 2022, doi: 10.1016/j.irbm.2022.06.001.

[44] D. D’Accolti, K. Dejanovic, L. Cappello, E. Mastinu, M. Ortiz-Catalan,
and C. Cipriani, ‘‘Decoding of multiple wrist and hand movements using
a transient EMG classifier,’’ IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 31, pp. 208–217, 2023, doi: 10.1109/TNSRE.2022.3218430.

[45] P. S. Palar, V. de Vargas Terres, and A. S. de Oliveira, ‘‘Human–robot
interface for embedding sliding adjustable autonomy methods,’’ Sensors,
vol. 20, no. 20, pp. 1–30, Oct. 2020, doi: 10.3390/s20205960.

[46] S. A. Mousavi, F. Moradianpour, F. Heidari, S. M. Yasoubi, S. E. Tahami,
and M. Azarnoush, ‘‘Hand movement detection using empirical mode
decomposition and higher order spectra,’’ in Proc. Int. Congr. Hum.-
Comput. Interact., Optim. Robot. Appl. (HORA), Ankara, Turkey, 2020,
pp. 1–6, doi: 10.1109/HORA49412.2020.9152901.

[47] J. Chen, S. Bi, G. Zhang, and G. Cao, ‘‘High-density surface EMG-based
gesture recognition using a 3D convolutional neural network,’’ Sensors,
vol. 20, no. 4, p. 1201, Feb. 2020, doi: 10.3390/s20041201.

[48] G. Purushothaman and R. Vikas, ‘‘Identification of a feature selection
based pattern recognition scheme for finger movement recognition from
multichannel EMG signals,’’ Australas. Phys. Eng. Sci. Med., vol. 41,
no. 2, pp. 549–559, Jun. 2018, doi: 10.1007/s13246-018-0646-7.

[49] J. Maier, A. Naber, and M. Ortiz-Catalan, ‘‘Improved prosthetic control
based on myoelectric pattern recognition via wavelet-based de-noising,’’
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 2, pp. 506–514,
Feb. 2018, doi: 10.1109/TNSRE.2017.2771273.

105164 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.patcog.2020.107561
http://dx.doi.org/10.1016/j.bspc.2018.08.030
http://dx.doi.org/10.1016/j.compbiomed.2022.106060
http://dx.doi.org/10.1109/JAS.2021.1003865
http://dx.doi.org/10.1016/j.birob.2023.100089
http://dx.doi.org/10.1007/s13534-022-00236-w
http://dx.doi.org/10.1007/s13534-022-00236-w
http://dx.doi.org/10.3390/electronics9091357
http://dx.doi.org/10.3390/electronics12071520
http://dx.doi.org/10.3390/electronics12071520
http://dx.doi.org/10.1088/1741-2552/ac1176
http://dx.doi.org/10.1177/09544119221074770
http://dx.doi.org/10.24996/ijs.2022.63.1.34
http://dx.doi.org/10.1007/s00521-022-07665-9
http://dx.doi.org/10.1007/s00521-022-07665-9
http://dx.doi.org/10.1136/bmj.n71
http://dx.doi.org/10.1007/BF02350985
http://dx.doi.org/10.1016/j.compbiomed.2013.01.020
http://dx.doi.org/10.1016/j.compbiomed.2013.01.020
http://dx.doi.org/10.1186/s12984-022-01019-1
http://dx.doi.org/10.3390/bios12070516
http://dx.doi.org/10.3390/BIOS10080085
http://dx.doi.org/10.3390/bioengineering10020212
http://dx.doi.org/10.3390/bioengineering10020212
http://dx.doi.org/10.3390/brainsci12010076
http://dx.doi.org/10.1016/j.arcontrol.2022.04.003
http://dx.doi.org/10.1016/j.clinph.2019.05.008
http://dx.doi.org/10.1007/BF00337255
http://dx.doi.org/10.1109/10.923782
http://dx.doi.org/10.1109/AIIoT54504.2022.9817161
http://dx.doi.org/10.1109/TBME.1977.326175
http://dx.doi.org/10.1088/1741-2552/ac5f1b
http://dx.doi.org/10.1096/fj.201900799RR
http://dx.doi.org/10.18178/ijsps.10.1.1-6
http://dx.doi.org/10.3390/s19204596
http://dx.doi.org/10.1016/j.irbm.2022.06.001
http://dx.doi.org/10.1109/TNSRE.2022.3218430
http://dx.doi.org/10.3390/s20205960
http://dx.doi.org/10.1109/HORA49412.2020.9152901
http://dx.doi.org/10.3390/s20041201
http://dx.doi.org/10.1007/s13246-018-0646-7
http://dx.doi.org/10.1109/TNSRE.2017.2771273


G. J. Rani et al.: Surface Electromyography and AI for HAR

[50] R. R. Essa, H. A. Jaber, and A. A. Jasim, ‘‘Features selection for
estimating hand gestures based on electromyography signals,’’ Bull.
Electr. Eng. Informat., vol. 12, no. 4, pp. 2087–2094, Aug. 2023, doi:
10.11591/eei.v12i4.5048.

[51] T. Tuncer, S. Dogan, and A. Subasi, ‘‘Novel finger movement classi-
fication method based on multi-centered binary pattern using surface
electromyogram signals,’’ Biomed. Signal Process. Control, vol. 71,
Jan. 2022, Art. no. 103153, doi: 10.1016/j.bspc.2021.103153.

[52] S. Shen, K. Gu, X.-R. Chen, M. Yang, and R.-C. Wang, ‘‘Movements
classification of multi-channel sEMG based on CNN and stacking ensem-
ble learning,’’ IEEE Access, vol. 7, pp. 137489–137500, 2019, doi:
10.1109/ACCESS.2019.2941977.

[53] N. Sezgin, ‘‘A new hand finger movements’ classification system based
on bicoherence analysis of two-channel surface EMG signals,’’ Neu-
ral Comput. Appl., vol. 31, no. 8, pp. 3327–3337, Aug. 2019, doi:
10.1007/s00521-017-3286-z.

[54] N. Nazmi, M. A. A. Rahman, S. A. Mazlan, H. Zamzuri, and
M. Mizukawa, ‘‘Electromyography (EMG) based signal analysis for
physiological device application in lower limb rehabilitation,’’ in
Proc. 2nd Int. Conf. Biomed. Eng. (ICoBE), Mar. 2015, pp. 1–5, doi:
10.1109/ICoBE.2015.7235878.

[55] R. N. Khushaba, S. Kodagoda, M. Takruri, and G. Dissanayake, ‘‘Toward
improved control of prosthetic fingers using surface electromyogram
(EMG) signals,’’ Expert Syst. Appl., vol. 39, no. 12, pp. 10731–10738,
Sep. 2012, doi: 10.1016/j.eswa.2012.02.192.
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