
Citation: Nazir, A.; Memon, Z.;

Sadiq, T.; Rahman, H.; Khan, I.U. A

Novel Feature-Selection Algorithm in

IoT Networks for Intrusion Detection.

Sensors 2023, 23, 8153. https://

doi.org/10.3390/s23198153

Academic Editor: Carles Gomez

Received: 21 August 2023

Revised: 19 September 2023

Accepted: 25 September 2023

Published: 28 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Feature-Selection Algorithm in IoT Networks for
Intrusion Detection
Anjum Nazir 1, Zulfiqar Memon 1 , Touseef Sadiq 2,* , Hameedur Rahman 3 and Inam Ullah Khan 4

1 Department of Computer Science, National University of Computer and Emerging Sciences (NUCES—FAST),
Karachi 75123, Pakistan; annazir@gmail.com (A.N.); zulfiqar.memon@nu.edu.pk (Z.M.)

2 Centre for Artificial Intelligence Research, Department of Information and Communication Technology,
University of Agder, Jon Lilletuns vei 9, 4879 Grimstad, Norway

3 Department of Computer Games Development, Faculty of Computing & AI, Air University, E9,
Islamabad 44400, Pakistan; hameed.rahman@mail.au.edu.pk

4 Department of Electronic Engineering, School of Engineering & Applied Sciences (SEAS), Isra University,
Islamabad Campus, Islamabad 44400, Pakistan; inamullahkhan05@gmail.com

* Correspondence: touseef.sadiq@uia.no

Abstract: The Internet of Things (IoT) and network-enabled smart devices are crucial to the digitally
interconnected society of the present day. However, the increased reliance on IoT devices increases
their susceptibility to malicious activities within network traffic, posing significant challenges to
cybersecurity. As a result, both system administrators and end users are negatively affected by these
malevolent behaviours. Intrusion-detection systems (IDSs) are commonly deployed as a cyber attack
defence mechanism to mitigate such risks. IDS plays a crucial role in identifying and preventing
cyber hazards within IoT networks. However, the development of an efficient and rapid IDS system
for the detection of cyber attacks remains a challenging area of research. Moreover, IDS datasets
contain multiple features, so the implementation of feature selection (FS) is required to design an
effective and timely IDS. The FS procedure seeks to eliminate irrelevant and redundant features from
large IDS datasets, thereby improving the intrusion-detection system’s overall performance. In this
paper, we propose a hybrid wrapper-based feature-selection algorithm that is based on the concepts
of the Cellular Automata (CA) engine and Tabu Search (TS)-based aspiration criteria. We used a
Random Forest (RF) ensemble learning classifier to evaluate the fitness of the selected features. The
proposed algorithm, CAT-S, was tested on the TON_IoT dataset. The simulation results demonstrate
that the proposed algorithm, CAT-S, enhances classification accuracy while simultaneously reducing
the number of features and the false positive rate.

Keywords: IoT; intrusions; machine learning; feature selection

1. Introduction

The Internet of Things (IoT) has emerged as a transformative technology, connecting
a vast array of physical objects to the Internet. It can be defined as a network of phys-
ical objects that can sense (some physical phenomenon), communicate, and/or interact
with the environment by generating some response [1]. This network of interconnected
devices promises unprecedented convenience and efficiency across diverse domains, from
smart homes and healthcare to industrial automation and transportation. However, this
proliferation of IoT devices also presents significant security challenges.

In a recent study, Lee I. et al. [2] discussed how the attacks on IoT networks have
rapidly and widely increased in the last few years. Organisations and individuals are
facing a wide array of challenges. According to Gartner, 20% of organisations have already
observed cyber attacks on IoT devices in the past three years [3]. The Internet Security
Threat Report (ISTR) published by Symantec in the year 2019 [4] states that in 2017 alone,
there was a 600% increase in attacks against IoT devices. These studies and statistics show

Sensors 2023, 23, 8153. https://doi.org/10.3390/s23198153 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23198153
https://doi.org/10.3390/s23198153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6448-097X
https://orcid.org/0000-0001-6603-3639
https://orcid.org/0000-0003-3637-6977
https://doi.org/10.3390/s23198153
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23198153?type=check_update&version=2

Sensors 2023, 23, 8153 2 of 19

that attacks on IoT networks are increasing at an alarming rate and that there is a dire need
to address them.

Earlier, Louvieris et al. [5] conducted a detailed study in which they pointed out
several prevalent reasons that have caused the high growth in cyber attacks. Below, we
have presented a few notable causes discussed in the literature that have boosted growth
rate of attacks against IoT devices or IoT-based networks/systems.

• IoT systems are relatively easy to attack compared to normal networks because IoT
vendors focus more on device cost, usability, dimensions, etc., as compared to the
security [6].

• Nearly all IoT-enabled devices communicate insecurely over unencrypted channels.
This is a critical vulnerability that can easily disclose sensitive information to unautho-
rised users [7,8].

• A large number of IoT devices are exposed to medium- to high-risk vulnerabilities [9].
• Common Vulnerabilities and Exposure (CVE) [9] data for IoT devices showed that sev-

eral devices, such as endoscopic cameras and blood pressure monitoring devices, use
vulnerable operating systems or software packages, leaving the whole infrastructure
vulnerable.

• IoT networks generally use lightweight communication protocols and weak security
standards/techniques; therefore, they are easily exploitable [10].

Organisations use various security measures, such as firewalls, antivirus software,
and intrusion detection and prevention systems, to protect against cyber attacks. How-
ever, these solutions often fall short in providing sufficient protection against evolving
threats. As a result, organisations risk damage to their credibility, reputation, revenue, and
customer base.

Antivirus software, typically installed on end devices, aims to protect against mal-
ware by identifying malicious signatures or patterns [11]. Its main limitation lies in its
dependency on up-to-date signature databases, as it cannot detect or block files with
unknown signatures.

Similarly, the majority of common firewalls can only filter network traffic based on
source/target IP addresses or port numbers/services [12,13]. In contrast, modern firewalls
like Next-Generation Firewalls (NGFWs) often offer Deep Packet Inspection (DPI), enabling
them to scrutinise the payload within packets for signs of abnormalities or malicious
activities [14]. Nevertheless, they frequently rely on signature-based techniques.

In contrast, Intrusion Detection and Prevention Systems (IDSs/IPSs) have the capabil-
ity to identify and thwart network intrusions through either signature or anomaly detection
methods. Signature-based IDSs/IPSs rely on the discussed signatures, whereas anomaly-
based IDSs/IPSs employ various statistical techniques to identify intrusions within network
traffic. As a result, anomaly-based IDSs can detect novel attacks that signature-based IDSs
may overlook. In Figure 1, we present how an IDS/IPS can be deployed in IoT networks
that can detect and block malicious activities. Besides its capability to detect unknown
intrusions, anomaly-based IDS has the drawback of a high false positive rate and introduces
additional challenges such as the need for network training and the involvement of domain
experts to distinguish between false positives and true positives.

Besides several shortcomings, the literature shows that researchers have mainly fo-
cused on anomaly-based detection approaches due to their tendency to detect novel at-
tacks [15,16]. In order to develop an efficient IDS capable of detecting novel attacks with
high accuracy and low false positives, machine learning (ML) techniques have been in-
tensively studied by researchers. Machine learning is an evolving branch of Artificial
Intelligence (AI) that employs mathematical and statistical models to identify and establish
patterns in massive data [17]. The potential of machine learning has been demonstrated in
a variety of fields, including cancer diagnosis [18], genetics and genome sequence analy-
sis [19], textual data classification [20], face recognition [21], and affect analysis [22–24].

Sensors 2023, 23, 8153 3 of 19

Figure 1. General features of a secure IoT network. An IDS/IPS sensor deployed at the gateway can
detect and stop intrusions.

Network traffic contains valuable information utilised for identifying potential intru-
sions. A feature-extraction process may extract a large number of features from the traffic
that can be employed by a machine learning algorithm to build a model. However, not all
features contribute to the decision-making process equally. Furthermore, they can impede
classifier detection speed and potentially impact accuracy, false positives, etc. Therefore,
feature selection is conducted to choose features that not only reduce model complexity
but also enhance detection performance.

A feature selection (FS) process can be classified into three types: (i) filter, (ii) wrapper,
and (iii) embedding [25]. Filter-based feature-selection methods use statistical and informa-
tion theory techniques to identify robust features. However, these methods do not consider
how the selected sub-features affect the chosen classifier [26]. To address this limitation,
wrapper-based approaches utilise machine learning algorithms as fitness functions to find
the best features [27]. Alternatively, embedded methods [28] offer a faster convergence
compared to wrapper methods by integrating feature selection with the learning process.

In this paper, we propose a new wrapper-based feature-selection method. This new
feature-selection algorithm is based on (i) Cellular Automata, (ii) Tabu Search, and (iii) Ran-
dom Forest. Cellular Automata (CA) and Tabu Search (TS) are used as search strategy,
while Random Forest (RF) works as a predictor function or learning process. The fitness of
the solution is calculated by using Equation (3). A simulation shows that CAT-S algorithm
shows promising results in achieving high accuracy, lowering the false positive rate, and
reducing the number of features.

The rest of this paper is organised as follows. Section 2 presents the literature review,
covering intrusion datasets for IoT networks and various dimension-reduction approaches
used in network intrusion detection. In Section 3, we introduce our proposed CAT-S
metaheuristics-based algorithm. In Section 4, we briefly provide insight into the TON_IoT
dataset that is used in the study. In Section 5, we introduce a working example for under-
standing the operation of the CAT-S algorithm. In Section 6, we describe the environment

Sensors 2023, 23, 8153 4 of 19

designed to test the CAT-S algorithm. In Section 7, we present the results followed by the
conclusion.

2. Literature Review

Datasets, feature selection, and ML classifiers are fundamental components in the
realm of machine learning. They play pivotal roles in the development of predictive models
and data-driven solutions. In this section, we provide a comprehensive overview of the
datasets available for IoT networks, delve into various types of feature-selection techniques,
and explore the related studies involving machine learning techniques employed in network
intrusion-detection systems specifically designed for IoT networks.

2.1. Intrusion Datasets for IoT Networks

In general, intrusions are classified into two main types: (i) network-based intrusion
and (ii) host-based intrusion [29]. Network-based intrusion datasets encompass network
traffic captured over a specific time frame, containing both normal and malicious flow
patterns. In contrast, host-based intrusion datasets focus on the activities of individual hosts
or devices. This research centres around network intrusion detection and classification
within IoT networks. As a result, in this section, we introduce IoT datasets designed for
network intrusion-detection systems (NIDSs).

In the past two decades, numerous datasets [30] (e.g., DARPA 98-99, KDDCup99, NSL-
KDD, DEFCON-10, Sperotto, MAWI Dataset, UNB ISCX, CTU-13, UNSW-NB15, UGR’16,
and CICIDS 2017) have been published for network intrusion-detection systems (NIDSs).
However, a similarity among these datasets is their focus on traditional networks. IoT
networks present distinct challenges, featuring resource-constrained nodes with limited
computational, battery, and storage capacities [31]. Consequently, they support lightweight
operating systems, applications, network protocols, and APIs. Moreover, IoT network
attack vectors differ significantly from those of legacy networks [32].

Hence, an imperative requirement arises for a proficient intrusion detection dataset
tailored specifically to IoT networks. This dataset should encompass two key elements:
(i) the inclusion of up-to-date attacks relevant to IoT networks and (ii) the incorporation
of representative network traffic. In Table 1, we provide a summary of all pertinent IoT
datasets published for network intrusion detection research. Table 1 includes dataset names,
publication years, and the types of various attacks incorporated within each dataset.

Table 1. IoT Networks Datasets.

Year Dataset Attacks

2018 N-BaIot Botnet (Mirai and BASHLITE)

2019 Bot-IoT DoS/DDoS, Botnet, Information theft (data exfiltration,
keylogging), Reconnaissance (OS fingerprint, service scan)

2019 UNSW-IoT DDos, MITM

2019 IoT Network Intrusion
Dataset DDoS, Botnet, MITM, Scanning

2020 TON IoT DDoS, Ransomware, Backdoor, Data Injection
XSS, Password Cracking attack, MITM

2020 IoTID20 DDoS, Botnet, MITM, Scanning

2.2. Dimension-Reduction Techniques for Network Intrusion-Detection Systems (NIDSs)

In intrusion detection datasets, dealing with high-dimensional data is a common
challenge. Dimension-reduction techniques are vital to combat the “curse of dimension”,
benefiting both classification accuracy and computational efficiency. Existing methods
include feature transformation and feature selection [33]. Feature-transformation tech-
niques like extraction and construction reduce dimensionality, while feature selection aims
to identify the most relevant features, enhancing classifier performance by eliminating

Sensors 2023, 23, 8153 5 of 19

redundancy and irrelevance. In the following section, we will briefly discuss the preva-
lent feature-selection approaches, which are widely favoured over feature transformation
techniques today.

2.2.1. Filter Approach

To select features, filter-based approaches utilise the “structural” characteristic of
the data. They are independent of all learning algorithms, unlike wrapper approaches.
They employ a number of feature ranking approaches to identify the real significance of
features and whether or not to retain them. Rank or grade is computed using a variety of
methodologies, including dataset statistical characteristics, entropy, and Laplacian scor-
ing [34,35]. Filter algorithms are typically less computationally intensive than wrapper or
embedded strategies; however, a major downside of filter-based techniques is that they are
only appropriate for independent variables.

2.2.2. Wrapper Approach

Wrapper-based feature-selection approaches consist of three parts: (i) a search strategy,
(ii) a predictor function (learning process), and (iii) an evaluation or fitness function [29].
The search strategy selects the subset of features to be evaluated. The predictor approach
utilises any classifier to assess the quality of the specified features to the objective or
fitness function. The performance of the wrapper method is superior to that of filter-based
selection approaches despite the fact that it requires more time than the filter method.

2.2.3. Embedded Approach

Embedded approaches combine the positive characteristics of filter and wrapper
methods. It actually introduces a relationship between the feature search strategy and the
learning process (predictor function). Embedded approaches use a learning algorithm’s
own variable-selection mechanism to choose and classify features simultaneously. Com-
pared to the wrapper technique, it reaches convergence quickly and finds an optimal
solution. Secondly, embedded approaches contribute to the reduction in overfitting or
variance of a model by increasing its bias by penalising complexity.

2.3. Machine Learning-Based IDS Techniques for IoT Networks

This section describes the state-of-the-art machine learning and AI-based techniques
used in intrusion detection for IoT networks. For this subject, we studied recent papers
published in well-known journals since 2018 in this domain. In this regard, important
findings from the papers were extracted, evaluated, and formalised to present in a table. A
summary of the literature studied is presented in Table 2. The study was centred around
the dataset and classifiers used in the research, as well as any feature-selection approaches
being practised, followed by critical findings.

Table 2. Comparison of Related Work: This table presents a survey of notable articles published
since 2018.

Year Ref. Dataset Classifiers /
Technique

Feature
Selection Critical Comments

2018 [31] NSL-KDD
Proposed a distributed
Deep Learning (DL)
model.

None

The authors claimed that the
performance of the proposed
distributed DL model is better than
traditional machine learning systems;
however, the comparison results are not
presented.
The authors used the NSL-KDD dataset,
which was published in the year 2000
and was not designed to represent
network traffic and attack vectors of
current IoT systems.

Sensors 2023, 23, 8153 6 of 19

Table 2. Cont.

Year Ref. Dataset Classifiers /
Technique

Feature
Selection Critical Comments

2019 [36]

UNSW-NB15,
NIMS botnet
dataset with
simulated
sensors’ data

Proposed
AdaBoost-based
ensemble learning

Coefficient
Correlation

Proposed the AdaBoost ensemble
learning method by using three ML
techniques. Decision Tree (DT), Naive
Bayes (NB) and Artificial Neural
Networks (ANNs).
Comparison is performed on DNS and
HTTP traffic. Comparison results
showed that the proposed ensemble
technique performed better than DT,
NB, and ANN.

2019 [37]

Designed and
deployed IoT
testbed for data
collection

They used nine different
classifiers for testing.
NB, BN, J48, Zero R,
OneR, Simple Logistic,
SVM, MLP, RF

Gain ratio, coefficient
correlation

Proposed model comprised three-layer
design to detect intrusion, i.e.,
(i) classifies the type of attack and
profiles the normal behaviour of IoT
appliances, (ii) identifies malicious
packets, and (iii) classifies the type of
the attack. The study is carried out in a
custom design testbed built for
evaluation.

2019 [38] Collected traffic
from the testbed

They studied seven
different techniques
SVM, KNN, NB, RF, DT,
LR and ANN

Yes, chose features
whose values change
during attack phases
compared to normal
operation phases.
Feature Ranking

The authors built a real-world testbed
to conduct attacks and design an IDS.
They performed backdoor, command
injection and SQLi attacks. Results
shows that Random Forest’s accuracy is
highest among all classifiers.

2020 [39] CICIDS 2017

Proposed DL-based
technique Deep Belief
Network (DBN) and
compared with SVMIDS,
RNNIDS, SNNIDS,
FNNIDS

None

The authors compared DBN with other
mentioned techniques. Simulation
results show that DBN performed better
than the other studied techniques.

2020 [40]

Built their own
dataset by
collecting logs
from in house
testbed

Passban—IDS None

The authors designed and built an
anomaly-based IDS for attack detection.
They launched port scanning, http and
ssh brute force, and syn flooding attacks
The results are not compared with other
approaches.

2021 [41]

BoT-IoT, IoT
Network
Intrusion, MQTT-
IoT-IDS2020, and
IoT-23

Proposed a novel
intrusion detection
model based on CNN by
using transfer learning.

Recursive Feature
Elimination (RFE)

Proposed CNN-based model for IDS.
Transfer learning is used to implement
binary and multiclass classification.

2021 [42] IoTID20 CNN, LSTM and hybrid
CNN-LSTM model PSO

Comparison with state-of-the-art
techniques proved that it has good
performance

3. Hybrid Metahueristics-Based Feature Selection Method

In this section, we present our innovative feature-selection technique, CAT-S, designed
specifically for IoT network intrusion detection. CAT-S is a hybrid wrapper-based feature-
selection method that is based on (i) Cellular Automata (CA) [43], (ii) a Tabu metaheuristics
search algorithm, and Random Forest (RF). Like Tabu Search, CAT-S is also a single-solution-
based iterative algorithm. This means that it focuses on iteratively improving a single
solution (feature subset). By combining the strengths of Cellular Automata, Tabu Search,
and Random Forest, CAT-S aims to provide an effective feature-selection technique that
enhances the accuracy and efficiency of IoT network intrusion detection.

Sensors 2023, 23, 8153 7 of 19

3.1. Cellular Automata (CA)—Basics

A cellular automaton (CA) is a collection of cells organised in a predetermined grid so
that each cell changes state as a function of time according to a given set of rules that are
influenced by the states of adjacent cells. In the early 1960s, J. Von Neumann and Stan Ulam
introduced the notion of Cellular Automata. Nonetheless, it remained inferior, and little
research was performed until Wolfram, R. produced the massive book titled “A New Kind
of Science”. Cellular Automata have drawn scientists from several fields. The popularity of
CA is due to their simplicity and vast modelling capability for complex systems.

CA can be considered as a simplified model of a spatially extensive, decentralised
system composed of a number of “cells” (Figure 2). Each individual cell maintains a distinct
state that varies over time based on the states of neighbouring cells and the transaction
rules. Despite its simplicity, the dynamics of CA are potentially quite rich when iterated
multiple times; they vary from attractive stable configurations to spatio-temporal chaotic
aspects and pseudo-random creation capabilities. These qualities allow for the possibility
of surpassing local optimums when solving engineering challenges.

Figure 2. Rule 30 is one of the simple rules developed by Stephen Wolfram for Cellular Automata. It
determines the next colour in a cell based on its current colour and the colours of its neighbours. Its
rule results are encoded as 30 = 00011110 in binary format.

3.2. Tabu Search (TS)

Tabu Search [44] is a form of local neighbourhood search. Each viable solution has a
collection of neighbours, denoted by N(S) ⊆ Ω, where Ω is a set of feasible solutions. A
solution S

′ ⊆ N(S) can be achieved by performing a “move” from S to S
′
. TS goes from a

solution to its best admissible neighbour, even if doing so degrades the objective or fitness
function. This is the non-greedy behaviour of Tabu Search, which is also advantageous for
avoiding local optima traps.

To minimise cycling and trapping into local minima, recently investigated solutions
are declared “prohibited” or “tabu”. These recently viewed solutions are maintained in
a tabu list for a certain number of iterations. Each time a move is made, the tabu list is
examined first. If a move is in the tabu list, the algorithm discards it and advances to the
next iteration. When specific requirements (aspiration criteria or level) are met, the tabu
status of a given solution might be overturned. An aspiration criterion is a mechanism used
to temporarily override the tabu list “rule”. If the cost of the forbidden move is less than
the aspiration level, then the tabu rule will be overridden and the move will be accepted.

3.3. Random Forest (RF)

Random Forest is essentially a tree-based classifier that generates a random number of
decision trees. The classification of an input vector is decided by the ensemble’s predomi-
nant classification. Because it employs many ensemble techniques, it is also classified as
an ensemble classifier [45]. RF is capable of classification and regression. In general, the
performance of RF classifiers is superior to that of decision trees based on unseen data [46].

Sensors 2023, 23, 8153 8 of 19

3.4. Fitness Function

In a wrapper-based feature-selection method, as discussed in Section 1, three funda-
mental components play a vital role in the selection process. The third significant compo-
nent is the fitness or evaluation function, which is also referred to as the cost function or
objective function.

In this context, the fitness function plays a critical role in guiding the feature-selection
process toward identifying an optimal subset of features. It serves as a quantitative measure
that defines the objective or goal to be achieved during the search for the best feature subset.
The function evaluates the quality or performance of each potential solution (subset of
features) within the search space.

Mathematically, we can represent the fitness function as f : S→ R, where f denotes
the function itself, S represents the search space consisting of all feasible subsets of features,
and R represents the set of real numbers. The output of the fitness function for a specific
feature subset is a real-valued score that quantifies how well the corresponding subset
performs with respect to the chosen objective.

By calculating the fitness scores for various feature subsets, the feature-selection
algorithm can iteratively explore the search space and identify the subset of features that
optimises the chosen objective or minimises the associated cost function. The ultimate goal
is to find the most relevant and informative features that lead to improved performance
or accuracy in the specific task or problem at hand, such as classification, regression,
or clustering.

Equation (1) presents the fitness calculation method. The formulation of Equation (1)
draws inspiration from the principles governing artificial neural networks, specifically
from the notion of assigning weights to individual inputs that contribute to the network’s
overall output.

In this context, the fitness calculation, denoted as f (cost), serves as an objective func-
tion that assesses the quality of each solution (x) within the search space. The objective
function quantifies the solution’s suitability or effectiveness in achieving the desired out-
come. It encompasses a set of weighted factors, akin to the weights assigned to inputs in
artificial neural networks, which collectively influence the fitness score.

Mathematically, the fitness calculation is represented as :

f (cost) = Σn
i=1xiwi (1)

where xi represents the objective we want to optimise, and wi is weight associated with the
objective.

Our primary objectives are threefold: (i) enhancing the classification accuracy, (ii) re-
ducing the false positive rate (FPR), and (iii) minimising the number of features used.
However, accomplishing these goals simultaneously gives rise to a multi-objective optimi-
sation problem with conflicting objectives, as improving accuracy often leads to an increase
in FPR. To address this issue, we have transformed the conflicting objectives into non-
conflicting ones using Equation (2). This equation allows us to calculate the classification
error in terms of accuracy

Error(e) = 100− Accuracy (2)

Equation (1) serves as a generic expression in this context. To cater to our specific
objectives, we have derived a customised and expanded form of this equation, denoted
as Equation (3). In Equation (3), the variables xi have been replaced with the actual
objectives that we aim to optimise. Specifically, x1 has been substituted with e, representing
the classification error; x2 with n, signifying the number of features; and x3 with fpr,
representing the weighted false positive rate. Our objective in this study is to (i) minimise
the classification error (e), (ii) reduce the number of features in the feature vector, and

Sensors 2023, 23, 8153 9 of 19

(iii) lower the false positive rate. Therefore, this is a multiobjective minimisation problem,
and our objective is to minimise the cost.

f (cost) = w1 ∗ e + w2 ∗ n + w3 ∗ f pr (3)

In Equation (3) w1 = 0.333, w2 = 0.333 , w3 = 0.333. Equal weights are assigned to each
objective to avoid any influence.

3.5. Cellular Automata (CA)-Based Tabu Search (TS) Feature-Selection Algorithm (CAT-S)

In this section, we present the step-by-step working of our proposed CAT-S feature-
selection algorithm. The proposed feature-selection algorithm is demonstrated in Figure 3.

Figure 3. Flowchart presenting CAT-S proposed feature-selection algorithm.

3.5.1. Data Preprocessing

Data preprocessing is a very important step that is performed during a machine learn-
ing process. In the preprocessing phase, various operations on the dataset are performed,
e.g., (i) handling of missing values, (ii) encoding of categorical data, and (iii) data scaling,
normalisation, standardisation, etc.

3.5.2. Generating an Initial Solution and Calculating the Fitness

After the preprocessing of data is completed, the fitness of the initial feature vector is
evaluated using Equation (3). The initial feature vector is also known as the initial solution.
The initial solution is created by randomly selecting the features from the feature vector.
The fitness of the initial feature vector and subsequent feature vectors is calculated by using
the following steps.

1. The Random Forest classifier is used to find the accuracy, detection error (e), and false
positive rate (f pr).

2. Error (e), number of features (n) in the feature vector, and (f pr) are input into
Equation (3) to calculate the fitness.

The detail of the entire process is presented in Section 5.

Sensors 2023, 23, 8153 10 of 19

3.5.3. CA Engine—Generate Neighbour Solutions

After calculating the fitness of the initial solution (feature vector), the Cellular Au-
tomata engine is used to generate new solutions in each iteration. These possible solutions
are known as candidate solutions or neighbour solutions. We generated five neighbour
solutions in each iteration.

3.5.4. Calculating the Fitness of Each Neighbour Solution

When the neighbour solutions are generated via the CA engine, the fitness (cost) of
each neighbour solution is calculated by using Equation (3). Among the five neighbour
solutions, the one with the lowest cost is selected as the best neighbour.

3.5.5. Tabu List Lookup

The best neighbour selected in the previous step is checked in the Tabu List (TL). If the
best neighbour solution is already present in the Tabu List, the solution will be set to the
hold state until the aspiration level (AL) is checked.

3.5.6. Aspiration Level Checking

As discussed in Section 3.2, if the cost of a forbidden move is less than the aspiration
level, then the tabu rule will be overridden, and the move will be accepted. The aspiration
level is a hyperparameter that is used to optimise the intensification and diversification
strategies. In Table 3, we present the CAT-S algorithm hyperparameters.

Table 3. CAT-S algorithm parameters.

Parameter Value

Tabu List size 7

No. of neighbours in each iteration 5

Aspiration level 0.02

Stopping criteria Max. number of iterations (set to 100)

3.5.7. Accepting the Best Neighbour

In both cases, i.e., (i) if the neighbour best is not in the Tabu List or (ii) if the cost of the
move is less than the aspiration level, then the move will be accepted. Please refer to the
Section 5 for details.

3.5.8. Stopping Criteria

The simulation will continue until the maximum iterations are not reached.

4. Dataset Details (TON_IoT)

In this section, we briefly discuss the details of the TON_IoT dataset and our simula-
tion environment. The TON_IoT datasets represent a new generation of datasets focused
on evaluating AI-enabled cybersecurity applications in the realm of IoT and IIoT (Indus-
trial Internet of Things) networks. These datasets are composed of diverse data sources,
including telemetry data from IoT and IIoT sensors, operating systems data from Windows
7 and 10, as well as Ubuntu 14.04 and 18.04 LTS and network traffic data.

The datasets were collected from a large-scale and realistic testbed network at the
IoT Lab of the UNSW Canberra Cyber, School of Engineering and Information Technol-
ogy (SEIT), UNSW Canberra. The testbed encompasses properties of Software-Defined
Networking (SDN), Network Function Virtualisation (NFV), and Service Orchestration
(SO), enabling communication between edge, fog, and cloud layers. The dataset includes
nine different types of attacks, which are briefly presented below. It provides forty-six
features/attributes (that include class label and attack category), which are collected from
the network pcap files.

Sensors 2023, 23, 8153 11 of 19

1. Scanning attack: This attack is alternatively known as a reconnaissance or probing
attack, and it represents the initial phase in the cyber kill chain model or penetration
testing. The primary objective of this attack is to gather information about the target
systems, which involves identifying active IP addresses and open ports within the
testbed network.

2. Denial of Service (DoS) attack: DoS refers to the act of flooding a network or IoT/IIoT
services with fake requests in an attempt to disrupt or corrupt their resources.

3. Distributed Denial of Service (DDoS) attack: A DDoS is a sophisticated cyber attack
that overwhelms a target with an enormous volume of fake requests from multiple
sources simultaneously. The goal of DDoS attacks is to render a website or online ser-
vice inaccessible to legitimate users, causing disruption and downtime. Perpetrators
use networks of compromised devices (botnets) to orchestrate DDoS attacks, making
them difficult to mitigate.

4. Ransomware attack: A ransomware attack is a type of malicious cyber attack where
hackers encrypt the victim’s data and demand a ransom in exchange for the decryption
key. Once infected, users are denied access to their files until the ransom is paid, posing
significant risks to data privacy and business operations. Ransomware attacks are
typically delivered through phishing emails, malicious downloads, or exploiting
software vulnerabilities.

5. Backdoor attack: A backdoor attack is a stealthy and unauthorised method used
by hackers to gain access to a computer system or network. It involves exploiting
vulnerabilities to create hidden entry points, allowing attackers to bypass normal
authentication measures. Backdoor attacks can result in unauthorised access, data
breaches, and compromised system security.

6. Injection attack: An injection attack is a form of cyber attack where malicious code or
commands are inserted into an application or system. These attacks exploit vulnerabil-
ities, such as SQL injection, to manipulate the behaviour of the target and potentially
gain unauthorised access or compromise data. Injection attacks pose significant risks
to web applications, databases, and other software systems susceptible to user input
manipulation.

7. Cross-site Scripting (XSS) attack: Cross-site scripting (XSS) is a type of cyber attack
that allows attackers to inject malicious scripts into web pages viewed by other users.
These scripts can then be executed in the context of the victim’s browser, stealing
sensitive information or performing unauthorised actions on behalf of the user. XSS
attacks pose a serious threat to web applications and can lead to the theft of user
credentials, session hijacking, and other security breaches.

8. Password cracking attack:A password cracking attack is a cybersecurity technique
aimed at gaining unauthorised access to user accounts by systematically guessing or
decrypting passwords. Attackers use various methods such as brute force, dictionary
attacks, or rainbow tables to crack weak or poorly protected passwords. Once suc-
cessful, password cracking allows attackers to impersonate users, potentially leading
to data breaches and compromising sensitive information.

9. Man-In-The-Middle (MITM) attack: A Man-in-the-Middle (MITM) attack is a cyber
attack where an unauthorised actor intercepts and relays communications between
two parties without their knowledge. During the attack, the attacker can eavesdrop,
modify, or inject malicious content into the communication, potentially stealing sensi-
tive information or gaining unauthorised access. MITM attacks pose significant risks
to data privacy, online transactions, and the integrity of communication channels.

5. CAT-S Working Example

In this section, we present the working example for the proposed CAT-S feature-
selection algorithm. When dataset preprocessing is completed, the initial feature vector is
encoded.

Sensors 2023, 23, 8153 12 of 19

5.1. Binary Encoding and Initial Solution

After the preprocessing phase, a unique random pattern of zeros and ones is generated,
which is known as the initial solution. Each feature in the feature vector is assigned a
binary value of 0 or 1. A binary one/zero in the bit pattern is used to indicate that the
corresponding feature in the feature vector will be included (1) or excluded (0) from the
current iteration of the study. A sample solution is presented in the Figure 4.

Figure 4. Feature vector encoding by using a binary bit pattern. A zero indicates that the feature is
not selected, and a one indicates that the feature is selected for the study.

5.2. Calculate Cost of Initial Solution

After binary encoding of the feature vector, the cost of the initial solution is calculated
by using Equation (3). This is the initial cost of the solution that is used to compare with
the cost of neighbour solutions.

5.3. Generate Neighbour Solutions

The generated initial solution in the form of a bit vector is passed to the CA engine
to generate neighbour solutions. The neighbour solutions are generated with the help
of the CA rule 30. Rule 30 is an elementary cellular automaton that operates in a one-
dimensional grid of cells, with each cell having two possible states: black (1) or white (0).
It is characterised by its binary rule representation, which is 00011110 in binary or 30 in
decimal. To compute the state of each cell in the next generation, rule 30 considers the
current state of the cell and its immediate neighbours (the cell to the left and the cell to the
right). It then looks up the corresponding pattern in its binary rule representation. Rule 30
looks at the three-cell neighbourhood in the current generation and determines the state
of the center cell in the next generation based on the pattern formed by these three cells.
There are a total of eight possible three-cell patterns (23), and rule 30 specifies what the
centre cell’s state should be for each of these patterns. The process is repeated for each cell
in the solution, generating the next generation of cells based on the rule and the previous
generation as demonstrated in Figure 5. to find the next state of a cell.

Figure 5. This figure shows how a new solution is generated from the existing solution. For each cell,
CA rule 30 is applied; e.g., for the first cell 010, rule 30 will yield 1, and for the second cell 101, rule 30
will yield 1. The highlighted cells represents flipped cells.

5.4. Calculating the Fitness of Each Neighbour Solution

In each iteration, five neighbour solutions are generated, and their fitness is also
calculated using Equation (3). Among all the generated neighbour solutions, one best
solution is selected with the minimum cost, which is known as the neighbour best.

Sensors 2023, 23, 8153 13 of 19

5.5. Tabu List Lookup

When a new neighbour is selected, that move is held in the Tabu List. The size of
the Tabu List is set to 7, which means it keeps the last seven moves only, and in the next
iteration, the oldest move is discarded. The purpose of the Tabu List is to prevent the
algorithm from taking the same move and getting stuck in local minima.

5.6. Aspiration Level Checking

As discussed in Section 3.5.6, if the cost of the forbidden move (new solution) is less
than the aspiration level, then the tabu rule will be overridden, and the move will be
accepted.

The CAT-S algorithm continues till the stopping criteria are not reached.

6. Testing Configuration

In this section, we present the experimental methods employed for implementing
the proposed algorithm and evaluating its performance. Various tools and languages
commonly found in the literature were considered for implementing and evaluating the
proposed IDS. These include Matlab, Python, C++, Weka tool etc. Among these options,
Weka emerged as the most user-friendly tool, offering support for several well-known
algorithms. However, it suffered from a notable drawback in terms of processing time. To
overcome this limitation, we built a custom-designed environment for implementing and
testing our feature-selection algorithm.

The entire environment was built on Ubuntu Linux. We used the Python programming
language for implementing Cellular Automata and Tabu Search. Since multiple candidate
solutions are generated in each iteration, and their fitness needs to be computed, we em-
ployed ranger [47]—a fast implementation of Random Forests in C++. For each candidate
solution, we created multiple threads that invoke ranger (binary), transferring control to
ranger. Multiple threads are executed concurrently to achieve parallelism. This hybrid
environment enabled us to conduct efficient and effective experiments while addressing
processing time constraints.

Various metrics are employed to assess the performance of an intrusion-detection
system (IDS). In the existing literature, the majority of research efforts in the field of intru-
sion detection have primarily concentrated on evaluating the accuracy and false positive
rate (fpr). However, the specific focus of this research is to reduce the number of features
incorporated into the IDS model, thereby reducing its overall complexity. Consequently, the
number of features retained after the feature-selection process is identified as an additional
crucial parameter to consider in this study.

To ensure the reliability and robustness of our experimental results, we conducted the
experiment 100 times iteratively. This repetition aims to mitigate any potential statistical
errors or fluctuations that could influence the outcome. By averaging the results obtained
from these multiple runs, we enhanced the validity of our findings and achieved a more
comprehensive understanding of the experiment’s outcomes.

7. Experiments and Results

In this section, we present the experimental analysis conducted to evaluate the effec-
tiveness of the proposed CAT-S feature-selection algorithm, along with its corresponding
results. Our evaluation involved a comparison with the state-of-the-art feature-selection
techniques reported in recent studies. The assessment was performed on the ToN_IoT
dataset. The comparison results are summarised in Table 4 and Figure 6, which includes
key metrics such as the classification accuracy, the false positive rate, and the number of
features selected. In addition to this, Figure 7 presents the confusion matrix of the proposed
CAT-S feature-selection algorithm.

Figure 6 provides a comprehensive overview of the variables on which the evaluation
was performed, including the accuracy, the false positive rate, and the number of selected
features. It is worth noting that, in several recent papers, the false positive rate (FPR)

Sensors 2023, 23, 8153 14 of 19

and precision measure were not considered during the evaluation process, which shows a
significant weakness in their proposition.

The simulation outcomes indicate that the CAT-S algorithm demonstrated superior
performance in comparison to other state-of-the-art feature-selection techniques. CAT-S
achieved improved attack detection accuracy around 95.5% while simultaneously reducing
the number of features required for the IDS model. The CAT-S algorithm achieved higher
accuracy and a lower false positive rate when the number of selected features reached 13.
The false positive rate for the CAT-S algorithm reaches 0.004, which is considerably good.
By reducing the number of features to 13, CAT-S has succeeded in reducing the number of
features by over 72% while achieving higher accuracy and a better false positive rate.

Table 4. Comparison of CAT-S with state-of-the-art methods. Results show that CAT-S achieved
higher accuracy and a lower false positive rate with a reduced no. of features.

Reference Classifier Feature-Selection
Technique Accuracy FPR Number of

Features Cost

Kumar et al. [48] XG-Boost TP2SF 98.84 NA 19 6.713 + ∆fpr
Gad et al. [49] XG-Boost Chi2-SMOTE 99.10 NA 20 6.959 + ∆fpr
Dey et al. [50] SVM NSGA-II 98.86 NA 18 6.373 + ∆fpr
Dey et al. [50] SVM Filter + NSGA-II 99.48 NA 13 4.502 + ∆fpr

Oseni et al. [51] CNN CC 90.55 NA NA 3.146 + n + ∆fpr
M Sarhan et al. [52] Extra Trees NA 98.05 NA NA 0.649 + n + ∆fpr

CAT-S RF CAT-S 99.50 0.004 13 4.496

Figure 6. Comparison of the CAT-S algorithm with other state-of-the-art algorithms.

Sensors 2023, 23, 8153 15 of 19

Figure 7. Confusion Matrix for CAT-S feature-selection algorithm.

A confusion matrix is a table or matrix used in machine learning and statistics to
assess the performance of a classification model. It provides a summary of the predictions
made by a model compared to the actual or true outcomes (ground truth) in a classification
problem. A confusion matrix typically consists of four components:

True Positives (TP): The number of instances that were correctly predicted as positive
by the model. In other words, these are the cases where the model correctly identified
positive instances.

True Negatives (TN): The number of instances that were correctly predicted as neg-
ative by the model. These are the cases where the model correctly identified negative
instances.

False Positives (FP): The number of instances that were predicted as positive by the
model but were actually negative. These are also known as Type I errors or false alarms.

False Negatives (FN): The number of instances that were predicted as negative by
the model but were actually positive. These are also known as Type II errors or missed
detections.

In multiclass classification, the confusion matrix is an extension of the concept used
in binary classification, but it involves more than two classes. The confusion matrix
for multiclass classification provides a detailed summary of how a classification model
performs across all the classes in the problem. As discussed, Figure 7 represents the
confusion matrix of our proposed feature-selection algorithm. It has classes, including
“Normal”, “Scanning”, “DoS”, “Injection”, “DDoS”, “Password”, “XSS”, “Ransomware”,
“Backdoor”, and “MITM”.

Precision (also known as positive predictive value) is calculated as the number of
correct positive predictions divided by the total number of positive predictions. The best
precision is 1.0, whereas the worst is 0.0. The formula to calculate precision is presented in
Equation (4):

Precision =
TP

TP + FP
(4)

Table 5 shows the precision calculated for each category separately.

Sensors 2023, 23, 8153 16 of 19

Table 5. Precision of each attack type, calculated using Equation (4).

Type Precision

Normal 0.998320845

Scanning 0.992083772

DoS 0.989661372

Injection 0.982534281

DDoS 0.989150635

Password 0.992393713

XSS 0.984740845

Ransomware 0.986996228

Backdoor 0.999150042

MITM 0.876579203

Critical Discussion

Our findings indicate that CAT-S demonstrates remarkable performance in terms of
attack detection accuracy and feature reduction. The algorithm achieves an accuracy of
99.50%, outperforming the other techniques, which exhibit lower accuracy values. More-
over, CAT-S significantly reduces the number of features down to 13 while still maintaining
excellent classification performance. Additionally, the false positive rate achieved by CAT-
S is impressively low at 0.004, showcasing its ability to effectively distinguish between
normal and malicious instances.

The CAT-S algorithm is based upon a hybrid metaheuristic approach, which has
demonstrated its efficacy in searching for optimal solutions within extensively large search
spaces. It has a relatively reduced computational burden compared to techniques rooted in
machine learning or deep learning that require training over large datasets. This advantage
can be attributed to the inherent capacity of metaheuristic algorithms to systematically
explore the entirety of the search space, with the overarching objective of identifying the
global optimum. In contrast, machine learning and deep learning models are susceptible
to becoming ensnared within local optima. Below, we discuss the overall strengths and
weaknesses identified during the study.

• The normal class has the number of highest true positives; however, it also has a
significant number of false positives for some other classes (e.g., “Injection”, “DDoS”).
The high false positives suggest that the classifier occasionally misclassifies instances
as “Normal” when they belong to other classes.

• The scanning and DoS classes have a relatively high number of true positives and
fewer false positives compared to some other classes. It indicates that the model
performs relatively well in identifying instances of these classes.

• The injection class also has a reasonably high number of true positives but has a
moderate number of false positives, particularly for the “Normal” class. This suggests
that the model sometimes misclassifies “Injection” instances as “Normal”.

• The DDoS class has a high number of true positives and a relatively low number of
false positives, indicating that the model performs well in identifying instances of this
class.

• For other classes like Password, XSS, etc., they have varying numbers of true positives
and false positives. The model’s performance in these classes may require further
investigation and potentially fine-tuning.

• The precision values for the majority of the classes, such as “Normal”, “Scanning”,
“DoS”, and “Password”, are very high, exceeding 0.98. This suggests that the model
performs exceptionally well in correctly identifying instances of these classes and
minimising false positives.

Sensors 2023, 23, 8153 17 of 19

• The MITM class has moderately low precision as compared to other classes. This may
be due to the smaller number of samples for the MITM class.

8. Conclusions

This research paper introduces a novel hybrid wrapper-based feature-selection algo-
rithm that integrates Cellular Automata (CA) with the Tabu Search metaheuristic technique.
The primary objective of this algorithm is to minimise the number of features, maximise the
classification accuracy and lower the false postive rate (for), specifically for IoT networks.
The proposed approach consists of three main steps. Firstly, various preprocessing opera-
tions are applied to transform the dataset into a suitable format for machine learning tasks.
Secondly, the CAT-S feature-selection algorithm, which combines CA and TS, is formulated
and implemented. In the third step, the performance of CAT-S is evaluated by comparing
it with recently published state-of-the-art approaches. To assess the effectiveness of the
algorithm, experiments are conducted on the TON_IoT dataset, specifically designed for IoT
networks. The simulation results indicate that the CAT-S algorithm significantly improves
attack-detection accuracy while simultaneously reducing the false positive rate (fpr) and
the number of features by more than 70%.

Author Contributions: A.N. Conceptualisation, Validation, Methodology, Visualisation, Software,
Formal analysis, Investigation, Data curation, Writing—original draft. Z.M. Conceptualisation,
Formal analysis, Project administration, Resources, Supervision, Validation, review and editing. T.S.
Formal analysis, review, resources. H.R. Formal analysis, review, resources. I.U.K. Formal analysis,
review, resources. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sengupta, J.; Ruj, S.; Bit, S.D. A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT. J.

Netw. Comput. Appl. 2020, 149, 102481. [CrossRef]
2. Lee, I. Internet of Things (IoT) cybersecurity: Literature review and IoT cyber risk management. Future Internet 2020, 12, 157.

[CrossRef]
3. Hung, M. Leading the IoT, gartner insights on how to lead in a connected world. Gart. Res. 2017, 1, 1–5.
4. Symantec. Internet Security Threat Report; Technical Report; Symentec Corporaton: Tempe, AZ, USA, 2019; Volume 24.
5. Louvieris, P.; Clewley, N.; Liu, X. Effects-based feature identification for network intrusion detection. Neurocomputing 2013,

121, 265–273. [CrossRef]
6. Rathore, S.; Park, J.H. Semi-supervised learning based distributed attack detection framework for IoT. Appl. Soft Comput. 2018,

72, 79–89. [CrossRef]
7. Capellupo, M.; Liranzo, J.; Bhuiyan, M.Z.A.; Hayajneh, T.; Wang, G. Security and Attack Vector Analysis of IoT Devices. In

Security, Privacy, and Anonymity in Computation, Communication, and Storage; Wang, G., Atiquzzaman, M., Yan, Z., Choo, K.K.R.,
Eds.; Springer: Cham, Switzerland, 2017; pp. 593–606.

8. Networks, P.A. 2020 Unit 42 IoT Threat Report; Technical Report; Palo Alto: Santa Clara, CA, USA, 2020.
9. CVE: Common Vulnerabilities and Exposures (CVE). Available online: https://cve.mitre.org/ (accessed on 16 July 2022).
10. Asharf, J.; Moustafa, N.; Khurshid, H.; Debie, E.; Haider, W.; Wahab, A. A review of intrusion-detection systems using machine

and deep learning in internet of things: Challenges, solutions and future directions. Electronics 2020, 9, 1177. [CrossRef]
11. Kaspersky: Antivirus Fundamentals: Viruses, Signatures, Disinfection. Available online: https://www.kaspersky.com/blog/

signature-virus-disinfection/13233/ (accessed on 16 May 2018).
12. Forouzan, B.A. TCP/IP Protocol Suite, 2nd ed.; McGraw-Hill Higher Education: New York, NY, USA, 2002.
13. Dharmapurikar, S.; Krishnamurthy, P.; Sproull, T.; Lockwood, J. Deep packet inspection using parallel bloom filters. In

Proceedings of the 11th Symposium on High Performance Interconnects, 2003. Proceedings, Stanford, CA, USA, 20–22 August
2003; pp. 44–51.

14. Thomason, S. Improving network security: Next generation firewalls and advanced packet inspection devices. Glob. J. Comput.
Sci. Technol. 2012, 12, 47–50.

http://doi.org/10.1016/j.jnca.2019.102481
http://dx.doi.org/10.3390/fi12090157
http://dx.doi.org/10.1016/j.neucom.2013.04.038
http://dx.doi.org/10.1016/j.asoc.2018.05.049
https://cve.mitre.org/
http://dx.doi.org/10.3390/electronics9071177
https://www.kaspersky.com/blog/signature-virus-disinfection/13233/
https://www.kaspersky.com/blog/signature-virus-disinfection/13233/

Sensors 2023, 23, 8153 18 of 19

15. Gan, X.S.; Duanmu, J.S.; Wang, J.F.; Cong, W. Anomaly intrusion detection based on PLS feature extraction and core vector
machine. Knowl. Based Syst. 2013, 40, 1–6. [CrossRef]

16. Karami, A.; Guerrero-Zapata, M. A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric
networks. Neurocomputing 2015, 149, 1253–1269. [CrossRef]

17. Ripley, B.D. Pattern Recognition and Neural Networks; Cambridge University Press: Cambridge, UK, 2007.
18. Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and

prediction. Comput. Struct. Biotechnol. J. 2015, 13, 8–17. [CrossRef]
19. Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015, 16, 321. [CrossRef]

[PubMed]
20. Tong, S.; Koller, D. Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2001,

2, 45–66.
21. Chopra, S.; Hadsell, R.; LeCun, Y. Learning a similarity metric discriminatively, with application to face verification. In

Proceedings of the CVPR (1), San Diego, CA, USA, 20–25 June 2005; pp. 539–546.
22. Khan, R.A.; Crenn, A.; Meyer, A.; Bouakaz, S. A novel database of children’s spontaneous facial expressions (LIRIS-CSE). Image

Vis. Comput. 2019, 83, 61–69. [CrossRef]
23. Khan, R.A.; Meyer, A.; Konik, H.; Bouakaz, S. Human vision inspired framework for facial expressions recognition. In

Proceedings of the 2012 19th IEEE International Conference on Image Processing, Orlando, FL, USA, 30 September–3 October
2012; pp. 2593–2596. [CrossRef]

24. Khan, R.A.; Meyer, A.; Konik, H.; Bouakaz, S. Saliency-based framework for facial expression recognition. Front. Comput. Sci.
2019, 13, 183–198. [CrossRef]

25. Liu, H.; Motoda, H. Computational Methods of Feature Selection; CRC Press: Boca Raton, FL, USA, 2007.
26. Kasongo, S.M.; Sun, Y. A deep learning method with wrapper based feature extraction for wireless intrusion-detection system.

Comput. Secur. 2020, 92, 101752. [CrossRef]
27. Panthong, R.; Srivihok, A. Wrapper feature subset selection for dimension reduction based on ensemble learning algorithm.

Procedia Comput. Sci. 2015, 72, 162–169. [CrossRef]
28. Lal, T.N.; Chapelle, O.; Weston, J.; Elisseeff, A. Embedded methods. In Feature Extraction; Springer: Berlin/Heidelberg, Germany,

2006; pp. 137–165.
29. Nazir, A.; Khan, R.A. A novel combinatorial optimization based feature selection method for network intrusion detection.

Comput. Secur. 2021, 102, 102164. [CrossRef]
30. Nazir, A.; Khan, R.A. Network Intrusion Detection: Taxonomy and Machine Learning Applications. In Machine Intelligence

and Big Data Analytics for Cybersecurity Applications; Maleh, Y., Shojafar, M., Alazab, M., Baddi, Y., Eds.; Springer International
Publishing: Cham, Switzerland, 2021; pp. 3–28. [CrossRef]

31. Diro, A.A.; Chilamkurti, N. Distributed attack detection scheme using deep learning approach for Internet of Things. Future
Gener. Comput. Syst. 2018, 82, 761–768. [CrossRef]

32. Alrawais, A.; Alhothaily, A.; Hu, C.; Cheng, X. Fog computing for the internet of things: Security and privacy issues. IEEE
Internet Comput. 2017, 21, 34–42. [CrossRef]

33. Masaeli, M.; Fung, G.; Dy, J.G. From transformation-based dimensionality reduction to feature selection. In Proceedings of the
ICML, Haifa, Israel, 21–24 June 2010.

34. Dash, M.; Choi, K.; Scheuermann, P.; Liu, H. Feature selection for clustering-a filter solution. In Proceedings of the 2002 IEEE
International Conference on Data Mining, 2002. Proceedings, Maebashi City, Japan, 9–12 December 2002; pp. 115–122.

35. He, X.; Cai, D.; Niyogi, P. Laplacian score for feature selection. In Proceedings of the Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, 5 December 2005; pp. 507–514.

36. Moustafa, N.; Turnbull, B.; Choo, K.K.R. An Ensemble Intrusion Detection Technique Based on Proposed Statistical Flow Features
for Protecting Network Traffic of Internet of Things. IEEE Internet Things J. 2019, 6, 4815–4830. [CrossRef]

37. Anthi, E.; Williams, L.; Słowińska, M.; Theodorakopoulos, G.; Burnap, P. A supervised intrusion-detection system for smart home
IoT devices. IEEE Internet Things J. 2019, 6, 9042–9053. [CrossRef]

38. Zolanvari, M.; Teixeira, M.A.; Gupta, L.; Khan, K.M.; Jain, R. Machine learning-based network vulnerability analysis of industrial
Internet of Things. IEEE Internet Things J. 2019, 6, 6822–6834. [CrossRef]

39. Manimurugan, S.; Al-Mutairi, S.; Aborokbah, M.M.; Chilamkurti, N.; Ganesan, S.; Patan, R. Effective attack detection in internet
of medical things smart environment using a deep belief neural network. IEEE Access 2020, 8, 77396–77404. [CrossRef]

40. Eskandari, M.; Janjua, Z.H.; Vecchio, M.; Antonelli, F. Passban IDS: An intelligent anomaly-based intrusion-detection system for
IoT edge devices. IEEE Internet Things J. 2020, 7, 6882–6897. [CrossRef]

41. Ullah, I.; Mahmoud, Q.H. Design and Development of a Deep Learning-Based Model for Anomaly Detection in IoT Networks.
IEEE Access 2021, 9, 103906–103926. [CrossRef]

42. Alkahtani, H.; Aldhyani, T.H. Intrusion-detection system to advance internet of things infrastructure-based deep learning
algorithms. Complexity 2021, 2021, 5579851. [CrossRef]

43. Bays, C. Introduction to cellular automata and Conway’s Game of Life. In Game of Life Cellular Automata; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 1–7.

http://dx.doi.org/10.1016/j.knosys.2012.09.004
http://dx.doi.org/10.1016/j.neucom.2014.08.070
http://dx.doi.org/10.1016/j.csbj.2014.11.005
http://dx.doi.org/10.1038/nrg3920
http://www.ncbi.nlm.nih.gov/pubmed/25948244
http://dx.doi.org/10.1016/j.imavis.2019.02.004
http://dx.doi.org/10.1109/ICIP.2012.6467429
http://dx.doi.org/10.1007/s11704-017-6114-9
http://dx.doi.org/10.1016/j.cose.2020.101752
http://dx.doi.org/10.1016/j.procs.2015.12.117
http://dx.doi.org/10.1016/j.cose.2020.102164
http://dx.doi.org/10.1007/978-3-030-57024-8_1
http://dx.doi.org/10.1016/j.future.2017.08.043
http://dx.doi.org/10.1109/MIC.2017.37
http://dx.doi.org/10.1109/JIOT.2018.2871719
http://dx.doi.org/10.1109/JIOT.2019.2926365
http://dx.doi.org/10.1109/JIOT.2019.2912022
http://dx.doi.org/10.1109/ACCESS.2020.2986013
http://dx.doi.org/10.1109/JIOT.2020.2970501
http://dx.doi.org/10.1109/ACCESS.2021.3094024
http://dx.doi.org/10.1155/2021/5579851

Sensors 2023, 23, 8153 19 of 19

44. Gallego, R.A.; Romero, R.; Monticelli, A.J. Tabu search algorithm for network synthesis. IEEE Trans. Power Syst. 2000, 15, 490–495.
[CrossRef]

45. Banfield, R.E.; Hall, L.O.; Bowyer, K.W.; Kegelmeyer, W.P. A comparison of decision tree ensemble creation techniques. IEEE
Trans. Pattern Anal. Mach. Intell. 2006, 29, 173–180. [CrossRef]

46. Khan, R.A.; Meyer, A.; Konik, H.; Bouakaz, S. Framework for reliable, real-time facial expression recognition for low resolution
images. Pattern Recognit. Lett. 2013, 34, 1159–1168. [CrossRef]

47. Ranger: A Fast Implementation of Random Forests in C++. Available online: https://github.com/imbs-hl/ranger (accessed on
20 June 2022).

48. Kumar, P.; Gupta, G.P.; Tripathi, R. TP2SF: A Trustworthy Privacy-Preserving Secured Framework for sustainable smart cities by
leveraging blockchain and machine learning. J. Syst. Archit. 2021, 115, 101954. [CrossRef]

49. Gad, A.R.; Nashat, A.A.; Barkat, T.M. Intrusion-detection system using machine learning for vehicular ad hoc networks based on
ToN-IoT dataset. IEEE Access 2021, 9, 142206–142217. [CrossRef]

50. Dey, A.K.; Gupta, G.P.; Sahu, S.P. Hybrid Meta-Heuristic based Feature Selection Mechanism for Cyber-Attack Detection in
IoT-enabled Networks. Procedia Comput. Sci. 2023, 218, 318–327. [CrossRef]

51. Oseni, A.; Moustafa, N.; Creech, G.; Sohrabi, N.; Strelzoff, A.; Tari, Z.; Linkov, I. An explainable deep learning framework
for resilient intrusion detection in IoT-enabled transportation networks. IEEE Trans. Intell. Transp. Syst. 2022, 24, 1000–1014.
[CrossRef]

52. Sarhan, M.; Layeghy, S.; Portmann, M. Towards a standard feature set for network intrusion-detection system datasets. Mob.
Netw. Appl. 2022, 27, 357–370. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/59.867130
http://dx.doi.org/10.1109/TPAMI.2007.250609
http://dx.doi.org/10.1016/j.patrec.2013.03.022
https://github.com/imbs-hl/ranger
http://dx.doi.org/10.1016/j.sysarc.2020.101954
http://dx.doi.org/10.1109/ACCESS.2021.3120626
http://dx.doi.org/10.1016/j.procs.2023.01.014
http://dx.doi.org/10.1109/TITS.2022.3188671
http://dx.doi.org/10.1007/s11036-021-01843-0

	Introduction
	Literature Review
	Intrusion Datasets for IoT Networks
	Dimension-Reduction Techniques for Network Intrusion-Detection Systems (NIDSs)
	Filter Approach
	Wrapper Approach
	Embedded Approach

	Machine Learning-Based IDS Techniques for IoT Networks

	Hybrid Metahueristics-Based Feature Selection Method
	Cellular Automata (CA)—Basics
	Tabu Search (TS)
	Random Forest (RF)
	Fitness Function
	Cellular Automata (CA)-Based Tabu Search (TS) Feature-Selection Algorithm (CAT-S)
	Data Preprocessing
	Generating an Initial Solution and Calculating the Fitness
	CA Engine—Generate Neighbour Solutions
	Calculating the Fitness of Each Neighbour Solution
	Tabu List Lookup
	Aspiration Level Checking
	Accepting the Best Neighbour
	Stopping Criteria

	Dataset Details (TON_IoT)
	CAT-S Working Example
	Binary Encoding and Initial Solution
	Calculate Cost of Initial Solution
	Generate Neighbour Solutions
	Calculating the Fitness of Each Neighbour Solution
	Tabu List Lookup
	Aspiration Level Checking

	Testing Configuration
	Experiments and Results
	Conclusions
	References

