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Abstract This paper presents a fast GPU-based solution to the 3D
occlusion detection problem and the 3D camera placement optimisation
problem. Occlusion detection is incorporated into the optimisation prob-
lem to return near-optimal positions for 3D cameras in environments
containing occluding objects, which maximises the volume that is visible
to the cameras. In addition, the authors’ previous work on 3D sensor
placement optimisation is extended to include a model for a pyramid-
shaped viewing frustum and to take the camera’s pose into account when
computing the optimal position.

C.1 Introduction

Depth cameras and other point cloud-generating 3D sensors are becoming increasingly
important in many industries, particularly in intelligent autonomous systems. The
automotive vehicle industry have historically been leading the development, see for
example [C1, C2, C3]. Examples of sensors used are lidars, radars and 2D cameras,
and the use of such sensors are currently expanding into other industries as well.
The papers [C4] and [C5] present examples where the intended application domain
was in offshore drilling.

Occlusion detection in three dimensions is important in multiple research fields.
Most work on this topic is related to the tracking and classification of partially of
fully occluded objects, or removing occluded areas when rendering 3D images. For
example, in [C6], occlusion detection techniques for face recognition are discussed. A
KD-tree based occlusion detection algorithm for hologram displays was developed in
[C7]. For the 3D optimal sensor placement optimisation problem, occlusion detection
is needed in order to place the sensors in such a way that as much as possible of the
volume is visible to the cameras, despite the presence of occluding objects.

Previous work by the authors, [C4] and [C5], has aimed to solve the 3D optimal
sensor placement problem. The problem has proven to be challenging, and most
of the previous work in the open literature is limited to solving the 2D problem.





Mixed-integer programming is one of the approaches successfully used in solving the
2D problem, and this method was used to solve the 3D problem in [C4]. However,
it was shown that this approach did not scale well when high accuracy is wanted,
due to the fact that nonlinear equations were linearised by introducing many new
variables and constraints in the optimisation problem.

In [C5], the 3D problem was solved using a massively parallelised CUDA program
and random sampling. The solution was limited to a generic cone-shaped viewing
frustum, and only included optimisation of sensor position, not pose. This approach
reduced the computation time required to find good solutions from hours to minutes
compared to [C4]. Other previous work has attempted solving the 3D problem by
using heuristic approaches. However, such approaches tend to end up in local minima.
The authors’ previous work on this topic contained several references of different
methods used for both 2D and 3D sensor placement optimisation, see [C8], [C9],
[C10], [C11] and [C12].

In [C13] an approach for sensor placement optimisation is presented which
is termed minimax. Instead of a typical probabilistic framework for dealing with
dynamic occlusion, a robust (minimax) approach was presented to optimise the worst-
case scenario. The objects in the workspace is represented as multiple polyhedra,
and the occlusion detection involves Boolean operation such as the set-difference
(B \ A), resulting in an exponential time complexity when the number of polyhedra
increases.

In this paper, the previous work by the authors is extended by considering
occlusions in the workspace, a more realistic (pyramid shaped) viewing frustum of
the sensors as well as pan, tilt and roll angles of the cameras.

C.2 Problem Definition

Building upon the authors’ previous work in [C5], where a GPU-based optimisation
approach was considered for a generic cone-shaped field of view, a new method for
considering a camera’s pyramid-shaped viewing frustum is developed. The CUDA-
based optimisation solver is further evolved to not only optimise the sensor position,
but also include camera pan, tilt and roll angles. In addition, obstacles which occlude
the camera’s view are also included, and a method for detecting occluded space in a
camera’s viewing frustum is developed.

A series of test-cases are evaluated, where a limited volume in 3D space is
considered. Six camera sensors are used for surveillance of this volume. Previous
work by the authors considered a conical field of view. However, cameras typically do
not have a conical field of view, but are instead often characterised by the pyramid-
shaped viewing frustum, see for example [C14]. The considered volume in this paper





has a size of 10m× 10m× 4.5m and it is divided into a grid of smaller cubes of size
0.25m× 0.25m× 0.25m resulting in a total of 28 800 cubes.

The optimisation problem is defined as follows: Maximise the number of cubes
seen by the cameras subject to the following constraints:

• The camera field of view is specified by a viewing frustum including a minimum
and maximum distance.

• The Z-position (height) of the cameras is fixed at a certain height, e.g. 4.5m.

• The camera location is along a wall, meaning that either the X- or Y - direction
is a free variable.

• The camera pan angle is a free variable (tilt and roll are fixed in these tests).

• Occluding obstacles represented by cubes are present in the considered volume.

To solve this expanded problem, a method to detect if an object is inside a pyramid
shaped viewing frustum is needed and a check for occlusion must be implemented.
The optimisation solver must then be expanded to include more free variables.

C.3 Methodology

As mentioned, previous work by the authors include a GPU-based optimisation solver
for 3D sensor placement [C5]. This approach divided a given volume into a grid of
cubes at a specified resolution. The optimisation solver was developed in CUDA,
where a corresponding grid of threads was implemented. As seen in Fig. C.1, each
cube was assigned a CUDA thread which determined if the cube was inside or outside
the visible area of one or more sensors. This was done by calculating the angle formed
between the sensor’s direction vector and the vector pointing from the sensor to the
cube, and comparing this to the angle of the cone-shaped field of view. In addition,
the range of the sensor was considered. The process was then repeated thousands
of times with different (random) values for the sensor positions, limited by a set of
constraints. The positions that yielded the most visible cubes were then saved as the
optimal solution. When multiple sensors were considered, one CUDA grid for each
sensor was stacked on top of each other and the number of sensors viewing a single
cube was counted. This allowed for an additional redundancy constraint, assuring
that cubes were viewed by at least n sensors, where n was specified for each cube.

In this paper, the method described above was extended with multiple new
features, which will be described in the following sections.
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Figure C.1: Layout of CUDA threads compared to the volume of interest.

C.3.1 Occlusion Detection

First, a method for detecting occluded space was developed. Initially, before the
optimisation procedure starts, a set of cubes in the volume is labelled as "possibly
occluding", meaning these cubes will create a shadow inhibiting cubes behind them
to be viewed by a camera. In a real scenario, these could be structures such as
walls, machinery, pipes, etc. When running the optimisation solver and a cube is
determined to be inside the camera’s viewing frustum, a new set of CUDA threads
are forked from the original thread. These new threads now correspond to all the
cubes marked as "possibly occluding", and each of them will determine if they are
occluding (i.e. casting a shadow over) the cube inside the viewing frustum. If one or
more of the threads report that they are occluding, the original thread will mark the
cube in question as not viewed by the camera.

The variables used in the occlusion detection are illustrated in Fig. C.2 and the
algorithm for occlusion detection is described in Algorithm 1, and is computed by
each possibly occluding cube for each cube determined to be inside the camera’s
viewing frustum.

The check α < 0 determines if the point O is behind the point P relative to the
sensor position S. If this is true, the cube at O can not be occluding. Next, for the
cube at O to be occluding, the distance d must be less than half the diagonal of the
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Figure C.2: Definition of variables used for occlusion detection. S is the camera
location, O is the obstacle (possibly occluding cube) and P is the point to check for
occlusion (a cube inside the camera’s viewing frustum). d is the distance from the
point O to the vector PS. Lc is the side length of a cube, and dc is the diagonal of a
cube.

cube, dc, where d is defined as

d = |PO| sin (arccos (α))

= |PO|
√
1− α2. (C.1)

By testing against the diagonal of the cube, the worst case scenario is always
considered, as the required distance will vary between Lc/2 and dc/2 depending on
the orientation of the cube relative to the vector PS. Hence, for this check, the cube
is considered as a sphere with diameter dc.

Algorithm 1 Occlusion Check
1: Find vectors PS and PO
2: Calculate α = cos θ
3: if α < 0 then
4: P ← not occluded by O
5: end if
6: Calculate the distance d
7: if d < 1

2
dc then

8: P ← occluded by O
9: end if





C.3.2 The Pyramid-shaped Viewing Frustum

The pyramid-shaped viewing frustum of a typical camera differs from the generic
cone-shaped frustum by being defined by two angles instead of one, i.e. vertical
and horizontal field of view. Fig. C.3 shows an example where a point P is located
outside the viewing frustum of sensor S. Four unit vectors v1, · · · , v4 are defined,
pointing from point S to the four corners describing the sensor’s viewing frustum.
In addition, another unit vector v is defined pointing from S to P . A sufficient
condition to check if the point P is located inside the viewing frustum is as follows:

c1 = v1 × v2 (C.2)

c2 = v2 × v3 (C.3)

c3 = v3 × v4 (C.4)

c4 = v4 × v1 (C.5)

di = cTi v > 0 ∀i ∈ {1, · · · , 4} (C.6)

Figure C.3: Four vectors v1 to v4 used to determine if a point P is located inside a
sensor S pyramid-shaped field-of-view.





In other words, if all the four inner products between the vectors ci and v are
positive, then the point P is inside the viewing frustum. A positive inner product
means that the point P lies on the inner side of the plane spanned by the two vectors
vi and vj. Finally, the length of the vector SP is checked against the minimum and
maximum range of the sensor.

To construct the vectors vi, five different rotation matrices Rs and Ri are created,
where Rs describes the transformation from the global coordinate system to the
sensor’s coordinate system, and Ri describe the transformations from the sensor’s
direction vector to the four vectors vi. The local coordinate system of the sensor is
defined as a right-hand coordinate system where the sensor direction is a unit vector
along the Z axis.

The sensor configuration related to the global coordinate system is described by
the three Euler angles pan, tilt and roll, corresponding to rotating around the sensor’s
Z, Y and X axes, in that order. Using this Z-Y -X Euler rotation convention, the
matrix Rs is generated based on these angles.

The sensor’s pyramid-shaped viewing frustum is described by the vertical and
horizontal field of view angles (FOVv and FOVh), corresponding to a rotation around
the sensor’s Y and X axes, respectively. The four matrices Ri can then be generated
by the four possible combinations of a rotation of ±FOVv around the Y axis and
±FOVh around the X axis.

With the sensor’s direction vector defined as vd = [ 0 0 1 ]T , then the vectors
describing the sensor direction and field of view are

v = Rsvd (C.7)

vi = RsRivd ∀i ∈ {1, · · · , 4}. (C.8)

C.3.3 Extension of the Sensor Placement Optimisation Solver

The optimisation solver outlined at the start of Section C.3 has been extended in this
paper. While only the sensor positions were considered in the previous algorithm,
the extended version includes sensor pan, tilt and roll angles, as well as occlusion
detection. A simplified algorithm of the process for a single sensor is shown in
Algorithm 2. Note that the for loops in line 4 and 7 are not executed sequentially,
but in parallel on the GPU processor.

All extrinsic sensor configuration values can be selected as free variables in the
optimisation problem, e.g. the X, Y , Z location in the global coordinate system and
the pan, tilt and roll angles of each sensor. The variables must be constrained by
a lower and upper bound, and in each iteration, the values are randomly assigned
a value within these limits. This kind of random sampling ensures that the solver





Algorithm 2 Extended Optimization Solver
1: for N number of iterations do
2: Generate new values for free variables
3: Generate v and vi using Eq. C.7 and C.8.
4: for each cube do
5: Launch CUDA thread
6: Check if cube is inside sensor’s viewing
7: frustum using Eq. C.6
8: for all possibly occluding cubes do
9: Check if the cube is occluding its parent

10: cube according to Alg. 1
11: end for
12: end for
13: Count the number of visible cubes
14: end for
15: Save the values of the set of free variables which yielded the maximum number

of visible cubes inside the sensor’s viewing frustum.

does not end up in a local minimum, but it requires that enough samples are tested
to reach a satisfying accuracy. However, as will be shown in the case studies, it is
found that the solver quickly converges towards a near-optimal solution.

C.4 Case Studies

To verify the developed solution, three case studies were conducted.

1. Both the pyramid-shaped viewing frustum and the occlusion detection was
tested on a simple case with two sensors looking at a beam in the middle of
the volume. In this test, there is no sensor placement optimisation, thus only a
single iteration of the program with no free variables was executed.

2. The extended sensor optimisation solver was tested using the new viewing
frustum and including the sensor pan angle as a free variable in addition to
sensor position, but without occlusion detection.

3. Last, Case 2 was repeated, but with occlusion detection active. This test was
performed to gauge the increased computational complexity compared to Case
2.

The computation time measured in the results is the run-time of the entire
program including pre- and post data reads and writes. To ensure ease of use, the
CUDA solver was implemented as a library which is called by a Python script. Using
Python, all required setup variables, occluding objects and constraints can easily be





changed to test different scenarios. After the program launch, the results are saved in
a single file using the JSON format for easy inclusion in other programs, e.g. Matlab.

C.4.1 Case Study 1

In the first case, the developed occlusion test and pyramid-shaped viewing frustum
was evaluated. The sensors were specified with both vertical and horizontal field of
view of 22.5◦, a minimum range of 0.5m and a maximum range of 10m. The setup
used for this case is shown in Table C.1.

Table C.1: Setup for Case Study 1

Number of sensors 2
Free variables None
Room dimension 10m× 10m× 10m
Cuboid size 0.25m× 0.25m× 0.25m
Occlusion detection On
Number of iterations 1

In addition, a “beam” of possibly occluding cubes were inserted in the middle of
the room, spanning the length along the X axis. The result of the test can be seen
in Fig. C.4 and Table C.2. As seen from the figure both the occlusion detection and
the pyramid-shaped viewing frustum worked as expected.

Table C.2: Results for Case Study 1

Sensor 1 (X, Y, Z, pan, tilt, roll) 2.5, 10, 10, −90◦, 135◦, 0◦
Sensor 2 (X, Y, Z, pan, tilt, roll) 7.5, 0, 10, 90◦, 135◦, 0◦
Computation time 0.536 s
GPU Utilisation N/A (Not measurable)
No. of cubes covered 4104

C.4.2 Case Study 2

In the second case, the extended optimisation solver was evaluated. Here, a simple
model of the Industrial Robotics Lab at the University of Agder was used (see for
example Figure 8 in [C15] for more information). The sensors were specified as
Microsoft Kinect V2s, with a vertical field of view of 60◦ and a horizontal field of view
of 70.2◦. The minimal and maximal range was set to 1.0m and 8.0m respectively.
Occlusion detection was not activated. The setup used for this case is shown in
Table C.3.

The result of the test can be seen in Table C.4. The best result was found in
iteration no. 3666. As seen from Fig. C.5 the sensors were placed to cover as many





Figure C.4: Result of Case Study 1, with two sensors, one on each side of the room,
where a beam is inserted in the middle of the room.

cubes as possible. The optimised pan angles are close to the middle of the constraint
ranges.

C.4.3 Case Study 3

In the third case, Case 2 was repeated, but with occlusion detection active. The
setup used for this case is shown in Table C.5.

In addition, four occluding objects were inserted. Two representing two robots
and their track motion, and two representing persons. These can be seen in Fig. C.6a.
The best result was found in iteration no. 1764. The result of the test can be seen
in Fig. C.6b and Table C.6. As can be seen by the figure, sensors 3 and 4 are now
placed lower on the Y axis, as well as panned to view as many cubes as possible
behind the obstacles.





Table C.3: Setup for Case Study 2

Number of sensors 6
Free variables Y coordinate and pan for all sensors
Position Constraints S1 and S2 0 < Y < 4m
Position Constraints S3 and S4 2 < Y < 8m
Position Constraints S5 and S6 6 < Y < 10m
Pan Constraints S1: 135◦±45◦, S2: 45◦±45◦

S3: 180◦±45◦, S4: 0◦±45◦
S5: −135◦±45◦, S6: −45◦±45◦

Room dimension 10m× 10m× 4.5m
Cuboid size 0.25m× 0.25m× 0.25m
Occlusion detection Off
Number of iterations 5000

Table C.4: Results for Case Study 2

Sensor 1 (X, Y *, Z, pan*, tilt, roll) 10, 0.34, 4.5, 161.5◦, 150◦, 0◦

Sensor 2 (X, Y *, Z, pan*, tilt, roll) 0, 1.7, 4.5, 16.5◦, 150◦, 0◦

Sensor 3 (X, Y *, Z, pan*, tilt, roll) 10, 5.39, 4.5, −179.8◦, 150◦, 0◦
Sensor 4 (X, Y *, Z, pan*, tilt, roll) 0, 4.75, 4.5, 1.4◦, 150◦, 0◦

Sensor 5 (X, Y *, Z, pan*, tilt, roll) 10, 9.56, 4.5, −136.2◦, 150◦, 0◦
Sensor 6 (X, Y *, Z, pan*, tilt, roll) 0, 8.5, 4.5, −21.9◦, 150◦, 0◦
Computation time 246.1 s
GPU Utilisation 100%
No. of cubes covered 18152

* Optimised

Table C.5: Setup for Case Study 3

Number of sensors 6
Free variables Y position and pan for all sensors
Position Constraints S1 and S2 0 < Y < 4m
Position Constraints S3 and S4 2 < Y < 8m
Position Constraints S5 and S6 6 < Y < 10m
Pan Constraints S1: 135◦±45◦, S2: 45◦±45◦

S3: 180◦±45◦, S4: 0◦±45◦
S5: −135◦±45◦, S6: −45◦±45◦

Room dimension 10m× 10m× 4.5m
Cuboid size 0.25m× 0.25m× 0.25m
Occlusion detection On
Number of iterations 5000





Figure C.5: Result of Case Study 2, with 6 sensors and no occluding objects.

(a) (b)

Figure C.6: (a) Obstacles created by inserting possibly occluding cubes. (b) Result
of Case Study 3, with 6 sensors and occluding objects.





Table C.6: Results for Case Study 3

Sensor 1 (X, Y *, Z, pan*, tilt, roll) 10, 2.5, 4.5, 169.6◦, 150◦, 0◦

Sensor 2 (X, Y *, Z, pan*, tilt, roll) 0, 1.1, 4.5, 19.8◦, 150◦, 0◦

Sensor 3 (X, Y *, Z, pan*, tilt, roll) 10, 3.67, 4.5, 147.1◦, 150◦, 0◦

Sensor 4 (X, Y *, Z, pan*, tilt, roll) 0, 2.67, 4.5, 31.1◦, 150◦, 0◦

Sensor 5 (X, Y *, Z, pan*, tilt, roll) 10, 8.2, 4.5, −169.8◦, 150◦, 0◦
Sensor 6 (X, Y *, Z, pan*, tilt, roll) 0, 9.3, 4.5, −35.6◦, 150◦, 0◦
Computation time 1688.3 s
GPU Utilisation 100%
No. of cubes covered 15862

* Optimised





C.5 Discussion and Conclusions

As can be seen by the results of the three case studies, the developed solutions
for both the pyramid-shaped viewing frustum and the occlusion detection work as
expected. When extending the sensor placement optimiser with these new features
in addition to more free variables, the calculated optimal sensor positions and poses
quickly converge to a good result. In Case Study 2, the best result was found in
iteration 3666 out of 5000, and in Case Study 3, the best result was found after
only 1764 iterations. Including the occlusion detection in Case Study 3, the sensor
positions and pan angles are changed as expected to cover as many cubes as possible.

When comparing Case Study 2 and 3, the computation time was only increased
by a factor of 6.86, even though the problem is exponentially more complex. When
running n CUDA threads in Case Study 2, n2 threads are launched in a worst
case scenario when the occlusion detection is active (although only the threads
corresponding to possibly occluding cubes will do actual work). This result implies
that the GPU scheduler is able to utilise the GPU multiprocessors efficiently and
that the number of cubes used in the tests (28 800) are not enough to completely
exhaust the GPU resources. However, performing a full analysis and optimisation of
the GPU utilisation is left for future work.

In [C13], the minimax solver was limited by a slow occlusion detector. Using the
approach found in this paper could be a good alternative to the time-consuming
set-difference operation (B \ A) on multiple polyhedra. The occlusion check requires
only a single iteration of the presented solution.

Even though the optimiser seems to quickly converge to a good result, there is no
guarantee that the optimal result will be found without running an infinite number
of iterations. This is due to the fact that the solver is based on random sampling.
Enabling more free variables such as pan, tilt, and roll, also decreases the chances
of quickly reaching a good result. On the other hand, many algorithms in machine
learning applications are based on random sampling.

In future work, the CUDA-based optimiser could be used to quickly find a set
of good results, which could then be further refined using e.g. a gradient search
based approach. Additional future work includes limiting the solver to only optimise
coverage in confined areas inside the overall volume, e.g. minimise occlusion in areas
which are more important. The developed solution in [C5] also contains a redundancy
constraint which was not active during the test cases in this paper. In addition, a
method for using the optimisation solver in rooms with arbitrary (not square) layouts
should be developed.
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