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Online Non-linear Topology Identifi-
cation from Graph-connected Time Se-
ries

R. Money, J. Krishnan, B. Beferull-Lozano

Abstract: Estimating the unknown causal dependencies among
graph-connected time series plays an important role in many applications,
such as sensor network analysis, signal processing over cyber-physical
systems, and finance engineering. Inference of such causal dependencies,
often know as topology identification, is not well studied for non-linear
non-stationary systems, and most of the existing methods are batch-based
which are not capable of handling streaming sensor signals. In this pa-
per, we propose an online kernel-based algorithm for topology estimation
of non-linear vector autoregressive time series by solving a sparse online
optimization framework using the composite objective mirror descent
method. Experiments conducted on real and synthetic data sets show
that the proposed algorithm outperforms the state-of-the-art methods
for topology estimation.

A.1 Introduction

Recent advancements in cyber-physical systems (CPS) and sensor networks call for
advanced research on data analysis of structured or inter-linked spatio-temporal sig-
nals. Such structured signals can be meaningfully represented using graph-connected
time series. Graph representation is a prevalent tool to model the inter-dependency
of data [52], and it plays a vital role in countless practical applications such as time
series prediction [53], change point detection [54], data compression [55], etc. Many
of the functional dependencies in real-world time series are causal [56], and infer-
ring the causal dependencies, which we term as topology identification, generates a
more informative representation of the multivariate data. These dependencies may
not be physically observable in some cases; instead, there can be logic connections
between data nodes that are not physically connected due to control mechanisms,
and inferring such typologies is a challenging task. Linear models, such as structural
equation models (SEM), vector auto-regressive (VAR) models, and structural vector
auto-regressive (SVAR) models [57] are widely used to study the causal dependencies
among the graph-connected time series. SEM being a memory-less model, does not
accommodate the temporal dependencies among the data, whereas the VAR is an





ideal choice for modeling the time-lagged interactions; however, it fails to capture
the instantaneous causal relations. SVAR is a slightly modified model that uni-
fies both SEM and VAR. The choice of the model depends on the physical nature
of the system; for instance, SVAR is a useful model for brain connectivity analy-
ses. However, VAR deserves special attention since the nodal dependencies on many
practical sensor networks (e.g., water networks, oil and gas networks) involve mainly
time-lagged interactions.

A significant challenge connected to topology identification is that the real-world
systems are usually non-stationary, meaning that the statistical properties of depen-
dencies vary over time. The commonly used batch-based off-line methods [11] have
two major drawbacks: i) they are not effective in tracking the topology of non-
stationary systems and ii) from a pure computational point of view, they suffer
from processing large batch of data; hence, it is necessary to develop online estima-
tion algorithms [48]. Online topology estimation algorithms have been developed
for linear models, meaning that the causal dependencies among the data time-series
hold a linear relation. For instance, in [48], a novel online linear topology identifi-
cation algorithm have been proposed by minimizing a group-lasso-regularized [58]
objective function.

Although the linear topology identification is a well-studied problem, many prac-
tical systems have non-linear dependencies [59]. As an example, in a smart water
network, the causal dependencies are non-linear due to various control systems, sat-
uration in valves or pumps, and non-linear physical equations governing the system.
Similarly, essential non-linear dependencies are present in most of the real-world
systems such as brain networks and finance networks. The ability of nonparametric
techniques [60] and deep neural networks to learn non-linear functions is well studied,
which has been exploited also in topology identification [9], [11], [14]. However, once
again most of these algorithms are batch-based. Kernel-based representations are
powerful tools to model the non-linear dependencies [15], which can be exploited
to develop algorithms for online non-linear topology identification. For instance,
in [61], authors have proposed an online algorithm based on functional gradient
descent by considering a SVAR model. In [12], authors used a more general non-
additive model for topology identification and a dictionary-based approach to solve
the computational complexity imposed by the kernels. But [12] restricts the choice
of the kernel functions to be twice differentiable to learn a sparse topology.

This paper proposes an online topology identification algorithm based on a non-
linear VAR model using kernels. The proposed algorithm learns sparse and time-
varying non-linear typology by solving an online optimization framework using com-
posite objective iterations [39]. We provide strong empirical evidence using real and
synthetic data sets, which show that the proposed algorithm outperforms its state-
of-the-art counterpart.





A.2 Problem Formulation

Consider a collection of N time series, connected by a directed graph and let yn[t]

be the value of time series at time t = 0, 1, . . . , T − 1 measured at node 1 ≤ n ≤ N .
A P -th order non-linear VAR model of the time series can be formulated as

yn[t] =
N∑

n′=1

P∑
p=1

a
(p)
n,n′f

(p)
n,n′(yn′ [t− p]) + un[t], (A.1)

where f (p)
n,n′ is a non-linear function that captures the causal influence of the p-lagged

data at node n′ on the node n, a(p)n,n′ is the corresponding entry of the graph adjacency
matrix, and un[t] is the measurement noise.Referring to (A.1), topology identifica-
tion can be defined as the estimation of the non-linear dependencies expressed by{
a
(p)
n,n′f

(p)
n,n′(.)

}P

p=1
for n = 1, 2, . . . , N from the observed time series {yn[t]}Nn=1.

To circumvent the challenges in topology identification, imposed by the non-
linear dependencies, we assume that the functions f

(p)
n,n′(.) in (A.1) belong to a re-

producing kernel Hilbert space (RKHS):

H(p)
n′ :=

{
f
(p)
n,n′ |f (p)

n,n′ (y) =
∞∑
t=0

β
(p)
n,n′,t κ

(p)
n′ (y, yn′ [t− p])

}
, (A.2)

where κ
(p)
n′ : R × R → R is the Hilbert space basis function, often known as the

kernel, which measures the similarities between the arguments of the basis function.
Using (A.2), a function f

(p)
n,n′ evaluated at y can be represented as the linear weighted

sum of the similarities between y and the data samples {yn′ [t− p]}t=∞
t=0 , where the

weights are denoted by β
(p)
n,n′,t. We assume that the Hilbert space is characterized

by the inner product ⟨κ(p)
n′ (y, x1), κ

(p)
n′ (y, x2)⟩ :=

∑∞
t=0 κ

(p)
n′ (y[t], x1)κ

(p)
n′ (y[t], x2), with

the kernel having the reproducible property ⟨κ(p)
n′ (y, x1), κ

(p)
n′ (y, x2)⟩ = κ

(p)
n′ (x1, x2).

Such a Hilbert space with the reproducing kernel constitutes an RKHS with norm
∥f (p)

n,n′∥2H(p)

n′
=
∑∞

t=0

∑∞
t′=0 β

(p)
n,n′,t β

(p)
n,n′,t′ κ

(p)
n′ (yn[t], yn[t

′]). We refer to [37] for further

reading on RKHS.
The least-squares (LS) estimate

{
f
(p)
n,n′ ∈ H(p)

n′ ;n′ = 1, . . . , N, p = 1, . . . , P
}

for a par-
ticular node is obtained by solving the following non-parametric optimization prob-
lem: {

f̂
(p)
n,n′

}
n′,p

= arg min{
f
(p)

n,n′∈H
(p)

n′

} 1

2

T−1∑
τ=P

[
yn[τ ]−

N∑
n′=1

P∑
p=1

a
(p)
n,n′f

(p)
n,n′(yn′ [τ − p])

]2
. (A.3)

It is to be noted that, in (A.3), the functions {f (p)
n,n′} belongs to the RKHS, defined

in (A.2), which is an infinite dimensional space. However, by resorting to the Rep-
resenter Theorem [38], the solution of (A.3) can be written using a finite number of
data samples:

f̂
(p)
n,n′ (yn′ [τ − p]) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)κ

(p)
n′ (yn′ [τ − p]), yn′ [t− p]) . (A.4)





Using (A.4), (A.3) can be reformulated as a parametric optimization problem in-
volving the available data samples, as follows:{

α̂
(p)
n,n′,t

}
n′,p,t

= arg min{
α
(p)

n,n′,t

}Ln
(
α
(p)
n,n′,t

)
, (A.5)

where

Ln
(
α
(p)
n,n′,t

)
:=

1

2

T−1∑
τ=P

[
yn[τ ]−

N∑
n′=1

P∑
p=1

p+T−1∑
t=p

α
(p)
n,n′,tκ

(p)
n′ (τ, t)

]2
, (A.6)

α
(p)
n,n′,t := a

(p)
n,n′β

(p)
n,n′,(t−p), (A.7)

and

κ
(p)
n′ (τ, t) := κ

(p)
n′ (yn′ [τ − p]), yn′ [t− p]) . (A.8)

We stack the entries of
{
α
(p)
n,n′,t

}
and

{
κ
(p)
n′ (τ, t)

}
in the lexicographic order of the

indices p, n′, and t to obtain the vectors αn ∈ RPNT and κτ ∈ RPNT , respectively,
and rewrite (A.5) as

α̂n = argmin
αn

Ln (αn) , (A.9)
where

Ln(αn) =
1

2

T−1∑
τ=P

[
yn[τ ]−α⊤

nκτ

]2
(A.10)

Further, to avoid overfitting and to enforce group sparsity, we propose a regularized
optimization framework:

α̂n = argmin
αn

Ln (αn) + λ
N∑

n′=1

P∑
p=1

∥α(p)
n,n′∥2, (A.11)

where λ ≥ 0 is the regularization parameter and α
(p)
n,n′ = (α

(p)
n,n′,0, α

(p)
n,n′,1, . . . , α

(p)
n,n′,T ) ∈

RT . The second term in (A.11) is a group-lasso regularizer, which promote a group-
sparse structure in α

(p)
n,n′ , thereby exploiting the prior information that the number

of causal dependencies are typically small for real-world graph-connected time series.
The parametric optimization given by (A.11) is a batch (offline) solver meaning

that to solve (A.11), we require all data samples {yn[τ ]}T−1
τ=P to be available. Such

an offline approach has two major drawbacks: i) it is not suitable for real-time
applications since the solver has to wait for the entire batch of data and ii) it
suffers from high computation complexity and memory requirements which grows
super linearly with the batch size. In the following section, we propose an online
algorithm to estimate the coefficients αn in (A.11).

A.3 Online topology estimation

First replace the original loss function Ln(αn) in (A.11) with the instantaneous loss
function lnτ (αn) =

1
2
[yn[τ ]−α⊤

nκτ ]
2:

α̂n = argmin
αn

lnτ (αn) + λ
N∑

n′=1

P∑
p=1

∥α(p)
n,n′∥2. (A.12)

A straightforward way to solve (A.12) is by applying the online subgradient de-
scent (OSGD). However, it is to be remarked that the regularizer in (A.12) is non-





differentiable and OSGD fails to provide sparse α
(p)
n,n′ since it linearizes the entire

instantaneous objective function in (A.12) [48].To mitigate this issue, we use the
composite objective mirror descent (COMID) [39] algorithm. The online COMID
update can be written as

αn[t+ 1] = argmin
αn

J
(n)
t (αn), (A.13)

where
J
(n)
t (αn) ≜ ∇ℓnt (α̃n[t])

⊤ (αn − α̃n[t])

+
1

2γt
∥αn − α̃n[t]∥22 + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2. (A.14)

In (A.14), α̃n[t] ∈ RPN(t+1) is defined as [αn[t];0], where αn[t] ∈ RPNt is the value
of αn estimated by processing the samples up to time t. The zero vector 0 ∈ RPN

is appended as an initialization for the coefficients of the new elements of the kernel
vector corresponding to the (t + 1)th data sample. In (A.14), the first term is
the gradient of the loss function and the second term is the Bregman divergence
B(αn, α̃n[t]) = 1

2
∥αn − α̃n[t]∥22, chosen in such a way that the COMID update

has a closed form solution [40] and γt is the corresponding step size. Bregman
divergence ensures that αn[t+ 1] is close to α̃n[t], in line with the assumption that
the topology changes smoothly. The third term is a sparsity enforcing regularizer,
in order to promote sparsity in the updates. The gradient in (A.14) is evaluated as

vn[t] := ∇ℓnt (α̃n[t]) = κτ

(
α⊤

nκτ − yn[τ ]
)

(A.15)
Expanding the objective function in (A.14) by omitting the constants leads to the
following formulation:

J
(n)
t (αn) ∝

α⊤
nαn

2γt
+α⊤

n

(
vn[t]−

1

γt
α̃n[t]

)
+ λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2

=
N∑

n′=1

P∑
p=1

[
α

(p)
n,n′

⊤
α

(p)
n,n′

2γt
+α

(p)
n,n′

⊤
(
v
(p)
n,n′ [t]−

1

γt
α̃

(p)
n,n′ [t]

)
+ λ∥α(p)

n,n′∥2
]
. (A.16)

Note that (A.16) is separable in n′, m and p. Using (A.16), a closed form solution of
(A.13) can be obtained in terms of multidimensional shrinkage-thresholding operator
[41] as

α
(p)
n,n′ [t+ 1] =

(
α̃

(p)
n,n′ [t]− γtv

(p)
n,n′ [t]

)
×[

1− γtλ ⊮ {n ̸= n′}
∥α̃(p)

n,n′ [t]− γtv
(p)
n,n′ [t]∥2

]
+

, (A.17)

where [x]+ = max {0, x} and

⊮ {n ̸= n′} =

{
1, if n ̸= n′

0, n = n′.

The term α̃
(p)
n,n′ [t]− γtv

(p)
n,n′ [t] in (A.17) performs a stochastic gradient update of

α
(p)
n,n′ in a direction that decreases the instantaneous loss function lnτ (αn) and the

second term in (A.17) promotes group sparsity of α(p)
n,n′ . The function ⊮ {n ̸= n′}

in the second term prevents the enforcement of sparsity of self-connections of the





graph. One major issue with (A.17) is that the size of v(p)
n,n′ [t] becomes prohibitive

as t increases. To mitigate this issue we select the recent Tw data points to calculate
(A.17). For the experiments presented in this paper, we heuristically fix the value
of Tw to 2000. Although this sub-optimal approach affects the performance of the
algorithm, we are getting quite competitive empirical performance as shown later in
the experiment section.

The proposed algorithm, termed as Nonlinear Topology Identification via Sparse
Online learning (NL-TISO), is summarized in Algorithm 5.

Algorithm 5: NL-TISO Algorithm

Result: α
(p)
n,n′ , for n, n′ = 1, .., N and p = 1, .., P

Store {yn[t]}Pt=1,
Initialize λ, γ (heuristically chosen) and kernel parameters depending on
the type of the kernel.

for t = P, P + 1, . . . do
Get data samples yn[t], ∀n and compute κτ

for n = 1, . . . , N do
compute vn[t] using (A.15)
for n′ = 1, . . . , N do

compute α
(p)
n,n′ [t+ 1] using (A.17)

end
end

end

A.4 Experiments

In this section, we illustrate the effectiveness of the proposed NL-TISO algorithm
using synthetic and real data. We compare our results with two state-of-the-art
topology estimation algorithms: i) TIRSO [48]- a recent online topology estimation
algorithm based on COMID update developed for linear causal dependencies and ii)
functional gradient descent (FGD) algorithm [61]- an online kernal based topology
estimation algorithm based on functional gradient descent updates

A.4.1 Experiments using synthetic data

A.4.1.1 Identifying causal dependencies

We generated graph connected time series, based on the non-linear VAR model (C.1)
with parameter values N = 5, T = 3000, and P = 2. The entries of the graph adja-
cency matrix

{
a
(p)
n,n′

}
are drawn from a Gaussian distribution N (8, 3) with an edge

probability pe = 0.1. The initial P samples of the time series are drawn randomly
from a Gaussian distribution N (0, 0.1) and the remaining samples are generated
using model (C.1). A Gaussian kernel centered at the dependent data points and





having variance 0.03 is used to model the non-linear dependencies in (C.1), where
the kernel coefficients β

(p)
n,n′ are drawn from a zero mean Gaussian distribution with

variance 0.03. The noise un[t] is generated from a zero mean Gaussian distribution
with variance 0.01. The causal dependencies

{
α

(p)
n,n′ [t]

}
are estimated using the

Figure A.1: Causal dependencies (normalized) estimated using different algorithms
compared with the true dependency.

Figure A.2: Reconstruction of true signal in node 1 using estimated coefficients.

Figure A.3: ISE comparison of NL-TISO and TIRSO when the signal to be recon-
structed is rapidly varying.

proposed NL-TISO algorithm using Gaussian kernel having variance 0.1 and with
hyper-parameters λ = 0.1 and γ = 10. Since a stationary topology is considered in
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this experiment, we compute the ℓ2 norms b̂
(p)
n,n′ = ∥α(p)

n,n′ [t]∥2 at t = T and arrange
them in a matrix structure similar to the graph adjacency matrix to visualize the
causal dependencies. A similar strategy is adopted for the FGD and the TIRSO
algorithms, and the estimated adjacency matrix is used to visualize the dependen-
cies. The true and the estimated dependencies are shown in Fig. B.1, in which for
each subplot, the 5× 5 dependency matrices corresponding to p = 1 and 2 are con-
catenated, resulting in a size 10× 5 size matrix. From Fig. B.1, it is clear that the
NL-TISO algorithm outperforms others in identifying the causal relationship.

A.4.1.2 Signal Reconstruction Experiment

In this experiment, using the inferred causal dependencies, we reconstruct the time
series and compare it with the true signals. In contrary to the previous experiment,
a dynamic graph-topology is considered here using a time varying adjacency matrix

a
(p)
n,n′ [t+ 1] = a

(p)
n,n′ [t] + 0.01 sin(0.03 ∗ t) (A.18)

with a random initialization. We use a different non-linear dependency compared
to the previous experiment to generate data:

f
(p)
n,n′(x) = 0.4 sin(πx2) + 0.3 sin(2πx) + 0.3 sin(3πx). (A.19)

Graph-connected time series (N = 5) are generated using (C.1), (A.18), and (A.19)
in a similar manner as described in A.4.1.1.

The causal dependencies
{
α

(p)
n,n′

}
are estimated from the time series using NL-

TISO with a Gaussian kernel having variance 0.02 and with hyper-parameters λ =

10−6 and γ = 10 . Using the same Gaussian kernel and the estimated dependencies,
the time series are reconstructed. In Fig. A.2, a visual comparison of both the true
and reconstructed time series at one of the five nodes is shown. We observed that
the reconstructed signal is very close to the true one, although a Gaussian-based
kernel is used to infer the non-linearity imposed by (A.19), which in turn indicates
that kernel-based representations are a powerful tool in handling the non-linear
causal dependencies. Further, the signal reconstruction quality of the state-of-the-
art algorithms TIRSO [48] and FGD [61] are compared using instantaneous squared
error, which is defined as ISE(t) = (yn(t)− ŷn(t))

2 and is plotted in Fig. A.3, which
concludes that NL-TISO outperforms TIRSO by a considerable margin for the non-
linear signal models. We have also observed that the ISE of the FGD algorithm is
much worse than NL-TISO and TIRSO and is not shown in the figure.

A.4.2 Experiments using Real Data

In this section, we present experiments using real data collected from Lundin’s
offshore oil and gas (O&G) platform Edvard-Grieg1. We consider a directed graph
with 24 nodes; each node corresponds to temperature (T), pressure (P), or oil-level
(L) sensors. These sensors are placed in the separators of decantation tank that
separates oil, gas, and water. The time series are obtained by uniformly sampling
the sensor readings and applying normalization to have zero mean and unit sample

1https://www.lundin-energy.com/





variance. These time series are expected to exhibit causal dependencies due to the
underlying physical coupling arising from the pipeline connections and the control
systems.

The causal dependencies are learned using NL-TISO with a Gaussian kernel
having a variance of 0.1 and with hyper parameter values λ = 0.1 and γ = 10. In
Fig. A.4, we show one portion of the reconstructed signal corresponding to sensor-1,
which is a pressure sensor, and it can be observed that the reconstructed signal is
very close to the true sensor reading. Further, in Fig.B.6, we compare the recon-
struction error of NL-TISO with TIRSO in terms of ISE for sensor-1 signal samples.
We observe that NL-TISO outperforms TIRSO by a considerable margin, which sup-
ports the effectiveness of proposed algorithm in learning real world topology. The
causal dependencies among the 24 time series obtained by averaging the NL-TISO
estimates for one hour is shown in Fig. B.7.

Figure A.4: Reconstruction of sensor-1 signal with sampling time 5s from Lundin
data using estimated causal dependencies.

Figure A.5: ISE comparison of NL-TISO and TIRSO using real data.

A.5 Conclusion

An online algorithm for non-linear topology identification from graph-connected
time-series was proposed in this paper. Most of the state-of-the-art algorithms





Figure A.6: Causality graph in oil and gas plant estimated by NL-TISO.

solve the topology estimation problem by assuming a linear and stationary topol-
ogy. However, many real-world networks are highly dynamic and non-linear. The
proposed algorithm, NL-TISO, is devised based on kernel representation to handle
the non-linearities of the real-world sensor networks. Further, using a composite
objective mirror descent method, NL-TISO estimates sparse topology in an online
fashion aiming at dynamic system models. Qualitative and quantitative empirical
evidence provided in the paper using real and synthetic data show that NL-TISO is
an effective algorithm to infer the causal dependencies of real-world sensor networks.
We identify two major limitations of the proposed framework: i) the computational
complexity and memory requirements of kernel-based representations increases con-
siderably with number of data points which is handled in NL-TISO by considering
a time window to select recent samples and ii) the variance of the Gaussian ker-
nels used in NL-TISO are heuristically chosen. These limitations could be handle
by further research on dictionary-based multi-kernel representations, which will be
devoted to our future work.




