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Sammendrag
Inferens og dataanalyse over nettverk har blitt viktige forskningsområder på grunn
av den økende utbredelsen av sammenkoblede systemer og det økende volumet av
data de produserer. Mange av disse systemene genererer data i form av multivariat
tidsserier som er samlinger av tidsseriedata som observeres samtidig på tvers av
flere variabler. For eksempel, EEG-målinger av hjernen gir multivariat tidsseriedata
som registrerer den elektriske aktiviteten i ulike hjerneområder over tid. Cyberfy-
siske systemer genererer multivariate tidsserier som fanger opp oppførselen til fy-
siske systemer som respons på kybernetisk input. Tilsvarende gjenspeiler finansielle
tidsserier dynamikken i flere finansielle instrumenter eller markedsindekser over tid.
Ved å analysere disse tidsseriene kan man avdekke viktige detaljer om systemets
oppførsel, oppdage mønstre og komme med forutsigelser. Derfor er det viktig å
utvikle effektive metoder for dataanalyse og inferens i nettverk av tidsserier med
flere variabler. Dette er et viktig forskningsområde med mange bruksområder på
ulike felt. I denne doktorgradsavhandlingen fokuserer vi på å identifisere de ret-
tede relasjonene mellom tidsserier og å utnytte denne informasjonen til å designe
algoritmer for prediksjon av data og imputering av manglende data.
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Abstract
Inference and data analysis over networks have become significant areas of research
due to the increasing prevalence of interconnected systems and the growing volume
of data they produce. Many of these systems generate data in the form of multi-
variate time series, which are collections of time series data that are observed simul-
taneously across multiple variables. For example, EEG measurements of the brain
produce multivariate time series data that record the electrical activity of different
brain regions over time. Cyber-physical systems generate multivariate time series
that capture the behaviour of physical systems in response to cybernetic inputs.
Similarly, financial time series reflect the dynamics of multiple financial instruments
or market indices over time.

Through the analysis of these time series, one can uncover important details
about the behavior of the system, detect patterns, and make predictions. Therefore,
designing effective methods for data analysis and inference over networks of multi-
variate time series is a crucial area of research with numerous applications across
various fields. In this Ph.D. Thesis, our focus is on identifying the directed relation-
ships between time series and leveraging this information to design algorithms for
data prediction as well as missing data imputation.

This Ph.D. thesis is organized as a compendium of papers, which consists of
seven chapters and appendices. The first chapter is dedicated to motivation and lit-
erature survey, whereas in the second chapter, we present the fundamental concepts
that readers should understand to grasp the material presented in the dissertation
with ease. In the third chapter, we present three online nonlinear topology iden-
tification algorithms, namely NL-TISO, RFNL-TISO, and RFNL-TIRSO. In this
chapter, we assume the data is generated from a sparse nonlinear vector autoregres-
sive model (VAR), and propose online data-driven solutions for identifying nonlinear
VAR topology. We also provide convergence guarantees in terms of dynamic regret
for the proposed algorithm RFNL-TIRSO. Chapters four and five of the dissertation
delve into the issue of missing data and explore how the learned topology can be
leveraged to address this challenge. Chapter five is distinct from other chapters in
its exclusive focus on edge flow data and introduces an online imputation strategy
based on a simplicial complex framework that leverages the known network structure
in addition to the learned topology. Chapter six of the dissertation takes a different
approach, assuming that the data is generated from nonlinear structural equation
models. In this chapter, we propose an online topology identification algorithm using
a time-structured approach, incorporating information from both the data and the
model evolution. The algorithm is shown to have convergence guarantees achieved
by bounding the dynamic regret. Finally, chapter seven of the dissertation provides
concluding remarks and outlines potential future research directions.
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Chapter 1

Introduction

1.1 Motivation
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Figure 1.1: Application of graph representation.

Multivariate time series analysis has paramount importance in network science,
as they are ubiquitous in real-world networks such as water distribution networks,
social networks, transportation networks, etc. Data generated in the form of mul-
tivariate time series are mostly interdependent. It is possible to represent these
networks in the form of a graph; in such a representation, each time series repre-
sents a node, and the relations between time series are expressed as edges connecting
nodes. The graph structure of the network can be utilized for a wide variety of tasks.
In financial systems, for example, predicting the future values of time series data like
stock prices or exchange rates is crucial. By constructing a graph where nodes rep-
resent stocks and edges denote the relationships between their prices, graph-based
algorithms can be leveraged to make accurate predictions based on historical data.
In sensor networks, noisy signals are a common problem. By modelling the network
as a graph, relationships between different sensors can be utilized to improve signal
quality. Similarly, in social networks, identifying groups of users who share common
interests or characteristics can be achieved by constructing a graph where nodes
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represent users and edges represent social connections between them. Community
detection algorithms can then be applied to identify clusters of users with close
connections and shared characteristics. Graph structures can also be employed in
designing control strategies for complex systems like power grids or transportation
networks. By modelling these systems as graphs, graph-based algorithms can be
used to optimize control strategies. For instance, a power grid can be modeled as a
graph with nodes representing power plants or substations and edges representing
transmission lines. By employing graph-based optimization algorithms, the optimal
control strategy can be determined, minimizing energy losses and ensuring stable
operation. In most cases, the graph structure might not be physically observable and

Brain interactions 

Stock market
Smart water neworks

O&G platform

Figure 1.2: Systems with complex nonlinear interactions.

identifying the graph structure in the network itself becomes a challenging task. As
there are countless practical applications for a graph representation of networks (see
Fig. 1.1), learning the graph structure from multivariate data has gained significant
research interest.

The majority of existing literature on graph learning considers an undirected or
symmetric relationship between nodes. Such an approach is not always the best
course of action since the interactions between nodes of real-world interconnected
physical systems are often nonsymmetrical and bidirectional. As an example, assume
that we want to categorize users as leaders and followers on a social network; the
directionality of the graph is essential. Similarly, when the data under consideration
is flow, such as power transfer in an electric grid, traffic flow in transportation
network, flow in a water network etc., the direction is inherently associated with
the data. The directional graphs can represent the system’s hidden underlying





structures or topology, for example, in neuroscience, social and sensor networks,
etc. Moreover, the edges in a directional graph representing complex real-world
dynamic systems can be seen as an abstract representation of causal relationships
corresponding to the time-lagged interactions within the system. In this thesis,
we will interchangeably use the terms causality, interactions, and dependency to
represent directional relationships and topology within graph structures.

Graph
Learning

Undirectional

Directional

Linear

Nonlinear

Batch

Online

Online nonlinear graph

topology identification

Figure 1.3: In this dissertation, we present algorithms that can learn nonlinear
directional dependencies online.

Identifying a graph structure or topology is not straightforward since it is often
not directly perceivable. Consider the case of oil and gas plants. The system con-
sists of numerous actuators and hundreds of sensors. Each of the sensors generates
time series data which are possibly dependent on each other. The dependencies are
due to various physical equations governing the dynamics of the system and control
actions. Solving the complex differential equations for such a complex system is
a daunting task, and data-driven approaches are gaining popularity, which facili-
tates the analysis of multiple parameters of the system simultaneously to unveil the
underlying physical laws. Even if an oil and gas (O&G) plant is mentioned as an
example, such complex relationships are present in many other scenarios, such as
brain networks, finance networks, various cyber-physical systems, etc. (please see
Fig. 1.2).

When the underlying structure is unknown, and relationships can only be de-
duced from observed data, the topology identification task can already be challeng-
ing, and this is further compounded by the nonlinear nature of physical equations
that govern real-world systems. In many cases, a linear approximation of the non-
linear system fails to express the fundamental nature of the system. As a result,





it is vital to take into account the nonlinearity when the topology identification is
performed. Apart from that, the dependencies between the multiple time series can
also vary across time. For instance, consider the case of social media networks based
on user activity, where the network structure varies based on various sociopolitical
events. During the time of the election, individuals with similar political inclinations
tend to create a stronger connection, or during a football match, sports enthusiasts
generate a stronger connection. Motivated by the nonlinearity, non-stationarity,
and directionality exhibited by real-world networks, the Ph.D. thesis proposes novel
algorithms for identifying online nonlinear directed graph topologies (see Fig. 1.3).

Leveraging on the proposed topology estimation algorithms, the thesis also de-
signs methods to impute missing time-series data, which is an important network
science problem related to several applications. Social networks, for instance, might
have privacy concerns or might be impractical to collect information from all the
nodes simultaneously due to their size. In the case of sensor networks, it might be
due to sensor or communication failures or nonuniform sampling. In such cases,
both the physical structure of the network and the hidden graph structure in the
network can be used to impute the missing data. Motivated by this, we propose two
algorithms in the dissertation for joint topology identification and data imputation.

1.2 Summarized State of the Art

Learning graphs from multivariate time series has gained significant research inter-
est, and a number of linear graph learning strategies have been proposed in recent
years [1–7]. Several of these works focus on learning undirected graphs [1, 4, 5] by
merely considering the correlation between time series. However, real-world net-
work interactions are often directional, and learning directed graphs [2, 6] that can
give meaningful insights about the actual system are the main focus of the thesis.
In [2], the authors propose a novel idea for learning directed graphs from a system
identification viewpoint and propose a batch solution for the topology identification
problem by assuming the graph is stationary. Such an approach is not suitable when
the graph structure varies with time. An online solution for the VAR topology iden-
tification problem is presented in [6]. The proposed method [6] is capable of learning
dynamic graphs from streaming data in a computationally light manner. In [8], the
authors use a similar approach to identify a time-varying structural equation model.
However, all the aforestated approaches fail to incorporate the nonlinear nature of
real-world networks.

Although nonlinear topology identification is less studied than linear topology
identification, some interesting approaches have been developed [9–12]. Neural net-
works are a powerful tool to model nonlinearities, and some relevant works in this
direction have been put forward [9,10]. In [9], the authors propose a neural Granger
causality algorithm with automatic lag selection, whereas [10] proposes a novel topol-
ogy identification method when the associated nonlinearity is invertible. To the best
of our knowledge, all the solutions proposed using neural networks provide batch (of-





fline) solutions. Kernels are another important tool for modelling nonlinearity [13].
In [11], a nonlinear structural vector autoregressive (SVAR) model is considered, and
nonlinearity is tackled using the kernel method, whereas [14] uses kernels to model a
nonlinear structural equation model. The problem associated with kernel methods
is the curse of dimensionality [15], i.e., as the number of data samples increases, the
computational complexity becomes prohibitive at some point. For this reason, the
literature on online learning of nonlinear graphs is very limited. In [12], the authors
propose a kernel-based online nonlinear topology identification algorithm and the
associated curse of dimensionality is tackled via the so-called dictionary method,
where the dictionary elements are selected based on a budget-maintaining strategy.
An alternative way to overcome the curse of dimensionality is to use Random feature
(RF) approximation [16]. Unlike the dictionary method, RF approximation allows
us to work in a fixed lower dimensional space and use standard convex optimization
techniques. Apart from that, using RF approximation gives the additional benefit
of nodal data privacy [17] because nodes share random features rather than actual
data.

Knowledge about the graph structure learned from multivariate time series data
can aid in filling in missing data samples. A number of approaches have been
proposed in this line [6, 18–20]. In [19], the authors provide a pretrained batch so-
lution to the data imputation problem using generative adversarial networks. An
algorithm to jointly learn linear graph and missing signal is proposed in [18] using
block coordinate descent and Kalman smoothing, whereas a computationally light
online solution to the problem is provided in [6] using inexact proximal gradient
descent. Apart from pure data-driven approaches, inherent knowledge about the
system can also be used for missing data imputation. A Simplicial Complex formu-
lation, exploiting prior knowledge from the system, for imputing time-invariant data
is presented in [20]. However, to the best of our knowledge, there is no work on the
problem of simplicial complex aided missing data imputation for multivariate time
series data in the literature.

1.3 Problem Statements

This dissertation addresses four problem statements derived from the current State
of the Art:

• Online nonlinear topology identification: Given a stream of multivariate
time series data, learn the time-lagged nonlinear directional graph structure
from the data in an online fashion.

• Joint online topology identification and missing data imputation:
Given multivariate time series data with missing entries, jointly learn the di-
rected graph and impute the missing data jointly in an online fashion.

• Online data imputation over a network, when the network structure
is given: Given streaming data from a linear VAR process and the physical





structure of the network, impute the missing data using available observation
and the structure of the network.

• Online learning of nonlinear structural equation model with privacy:
Given the streaming data from a time-varying nonlinear SEM model, estimate
the nonlinear SEM topology in an online way with nodal data privacy.

1.4 Outline of the Dissertation

This Ph.D. thesis is based on six papers attached in the Appendix, which are orga-
nized as the following chapters.

• Chapter 2 contents provides the background theory needed for the readers to
follow the thesis. In this chapter, we introduce the two nonlinear topology
identification models used in the Ph.D. thesis (i) nonlinear vector autore-
gressive model (ii) nonlinear structural equation model. We also introduce
the basics of online learning and the performance metric of dynamic regret.
Dynamic regret is a popular metric to evaluate the performance of an online
algorithm. Next, we explain the fundamentals of the well-known Kalman filter,
and finally, we present an overview of the simplicial complex.

• Chapter 3 summarizes papers A ( [21] ), B ( [22] ), and C ( [23] ). This chapter
discusses the problem of online nonlinear topology identification. We propose
three algorithms:

1. Nonlinear Topology Identification by Sparse Online learning (NL-TISO)
[21] described in Appendix A: a kernel-based online algorithm to estimate
the nonlinear topologies, which uses a forgetting window to tackle the
dimensionality growth arising from kernel formulation.

2. Random Feature approximation for Nonlinear Topology Identification by
sparse Online learning (RFNL-TISO) [22] described in Appendix B: even
if the NL-TISO is capable of identifying the graph structure, the solu-
tion provided is suboptimal due to the forgetting window; to solve this
problem, we use RF approximation. RF approximation allows us to work
in a fixed lower-dimensional state and use convex optimization tools to
develop an efficient online nonlinear topology identification algorithm.

3. Random Feature approximation for Nonlinear Topology Identification by
Recursive Sparse Online learning (RFNL-TIRSO) [23] described in Ap-
pendix C: an alternative algorithm inspired by the recursive least squares
(RLS) formulation is presented which is more robust to observation noise
than RFNL-TISO. Apart from the RLS formulation, we also provide con-
vergence guarantees in terms of dynamic regret, which is the typical per-
formance metric for an online algorithm.

We remark that all these three algorithms feature sparse graph estimates,
inspired by the fact that real-world dependencies are sparse.





• Chapter 4 summarizes paper D ( [24] ). This chapter proposes an algorithm
for joint online topology identification and missing data imputation. In this
chapter, we first formulate a nonconvex optimization problem and convexify
it by making certain assumptions. The convex version of the problem is in a
form that can be solved by a two-step approach: (1) estimation of the sparse
dependencies by proximal updates and (2) reconstruction of missing data from
the observed signal and previous topology estimate.

• Chapter 5 summarizes paper E ( [25] ). The chapter considers the problem of
online data imputation over a network when the network structure is given.
In this chapter, we first learn a line graph; then, the learned graph is used as
a model to describe the data. The learned model, along with observations, is
used to impute the data using a Kalman filtering framework. The SC formula-
tion of our Kalman filter also allows us to incorporate contextual information
specific to a network (e.g. flow conservation in a water network), as opposed
to the conventional Kalman filters.

• Chapter 6 summarizes paper F ( [26] ). The chapter introduces an algorithm
for the problem of online learning nonlinear SEM models with privacy. The
proposed algorithm estimates nonlinear directed SEM topologies using a pre-
diction correction approach. Additionally, the proposed approach is designed
in a way that the nodes of the network do not have to share real data with
each other. Finally, we also evaluate the dynamic regret of the algorithm.

• Chapter 7 In this chapter, the main conclusions of the dissertation are dis-
cussed. The chapter also lists possible future directions to extend the thesis.







Chapter 2

Background Theory

2.1 Multivariate Time Series Models

For designing the topology identification algorithm, we first have to assume that a
certain model is appropriate for describing the observed data. The choice of this
model depends on various factors such as the application, the peculiarity of the
underlying process, sampling time, etc. As the choice of model is cardinal in the
topology identification, we describe the models used in the dissertation.

2.1.1 Linear Vector Autoregressive Model

Most of the real-world dependencies are time-lagged in nature, so the choice of vector
autoregressive models is natural. Consider a multivariate time series {yn[t]}Nn=1

where yn[t] is the value of the time-series at time t = 1, 2, . . . , T measured at a given
node 1 ≤ n ≤ N . A P -th order linear VAR model is expressed as

yn[t] =
N∑

n′=1

P∑
p=1

a
(p)
n,n′yn′ [t− p] + un[t], (2.1)

where a
(p)
n,n′ captures the influence of the p-lagged data at node n′ on the node n,

and un[t] is the process noise.

2.1.2 Nonlinear Vector Autoregressive Model

Most of the physical systems are nonlinear in nature, and a linear model only cap-
tures an approximate representation of the actual physical reality, which usually
results in a suboptimal solution. Based on this fact, this dissertation proposes so-
lutions based on nonlinear models. The first nonlinear model that we use in this
dissertation is the nonlinear vector autoregressive model, which is capable of ex-
pressing time-lagged nonlinear directed interactions.

A P -th order nonlinear VAR model can be expressed as

yn[t] =
N∑

n′=1

P∑
p=1

f
(p)
n,n′(yn′ [t− p]) + un[t]. (2.2)
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Figure 2.1: Various models to represent multivariate time series.

Equation (2.2) expresses the value of the n-th time series at time t as a combination
of P time-lagged values of all the available time series. The function f

(p)
n,n′ encodes

the nonlinear causal influence of the p-th time-lagged value of the n′-th time series
on the n-th time series. Note that the model we consider is an additive nonlinear
model. Despite the fact that a general nonlinear model may fit the data better in
theory, we choose an additive model because of the following reasons: (i) it has more
explanatory power (see, Fig. 2.1 in a nonlinear additive model, the contribution of
each individual component or node can be separately identified, unlike in a general
nonlinear model ), and (ii) it supports a solid framework necessary to the design of
the online algorithms in the sequel. Also, the additive nonlinear models have been
shown to be important in many applications, such as brain connectivity analysis [11].
Note that the equation (2.1) is a special case of the nonlinear additive model (2.2)
under consideration.

2.1.3 Nonlinear Structural Equation Model

Structural equation models (SEM) are usually used to model multivariate time series
when interactions are faster than the sampling time; such interactions are prevalent
in brain networks, financial networks, social networks, etc. SEM is widely used to
represent network relationships since they are simple and can express directional
rather than correlation-based symmetrical relationships. Multivariate time series





data can be modelled using a nonlinear SEM model as

yn[t] =
N∑

n′=1,n′ ̸=n

fn,n′(yn′ [t]) + un[t], n = 1, . . . , N, (2.3)

where fn,n′(.) is the influence of n′-th node on n-th node and un[t] is the innovation
noise.

2.2 Expressing Nonlinearity

Nonlinear input-output relationships are mostly modeled using kernel method [27,28]
and neural networks in the literature. Since the goal of the thesis is to design online
algorithms capable of tracking dynamic graphs, we focus on kernel methods.

2.2.1 Function in Reproducing Kernel Hilbert Space

In order to model the possible function using kernel methods to represent nonlinear
relationships, we assume that the function belongs to a reproducing kernel Hilbert
space (RKHS) [15]. Any continuous function f(.) in an RKHS can be expressed as
an infinite sum of kernel evaluations:

H :=

{
f(·) | f (x[t]) =

∞∑
t=1

βt κ (x[t
′], x[t])

}
, (2.4)

where the function κ (., .) measures the similarity between the arguments and is
termed the kernel. Every RKHS has a definite kernel associated with it and an
inner product ⟨κ(y, x1), κ(y, x2)⟩ :=

∑∞
t=0 κ(y[t], x1)κ(y[t], x2), which characterizes the

RKHS. Positive-definite kernels satisfy the reproducing property ⟨κ(y, x1), κ(y, x2)⟩ =
κ(x1, x2), and a norm is induced as ∥f∥2H =

∑∞
t=0

∑∞
t′=0 βt βt′ κ(y[t], y[t

′]). Let us
consider a functional optimization problem in RKHS:

f̂ = arg min
{f∈H}

1

2

T−1∑
τ=0

[
x[τ ]− f(y[τ ])

]2
+ λΩ (||f ||H) , (2.5)

where x[τ ] and y[τ ] represent an input-output pair, f(.) encodes the functional
relationship between them, T is the total number of data samples available, and
λΩ (||f ||H) is a regularization term which consist of nondecreasing function Ω(.)

and a positive constant λ > 0. Here, the goal is to estimate the function f(.)

from the observations {x[τ ]}Tτ=1 and {y[τ ]}Tτ=1. In RKHS, the function is infinite-
dimensional and requires an infinite number of kernel evaluations and parameters,
making the optimization problem (2.5) infeasible. The solution to the optimization
problem (2.5) can be expressed with a finite number of kernel evaluations using
the Representer Theorem. As the function Ω(.) is non-decreasing, the Representer
Theorem can be invoked, yielding a finite-dimensional solution

f̂ (y[τ ]) =
T−1∑
t=0

βt κ(y[τ ], y[t]) . (2.6)





Note that here the number of kernel evaluations is equal to the number of data sam-
ples available, which circumvents the issues associated with the infinite dimension
of RKHS. However, it is important to note that, as the number of data samples in-
creases, the number of parameters required to express the function in (2.6) increases,
resulting in prohibitive computational complexity. We use Random Features (RF)
approximation to overcome this curse of dimensionality.

2.2.2 Random Features Approximation

According to the Johnson–Lindenstrauss Lemma [29], any two points in a higher
dimensional space can be expressed in a lower dimension if the distance between
points is preserved. In an infinite-dimensional RKHS, distance is measured using
the norm induced by the inner product. In RF [16] approximation, the inner product
is approximated in a fixed lower dimensional space, which allows us to embed the
functions in RKHS into a lower dimensional space. For RKHS generating from
shift-invariant kernels, the inner product can be approximated with a fixed number
of random Fourier features using Bochner’s theorem [30]. In this thesis, we exploit
the above fact and approximate kernel evaluations using random Fourier features.
In [31], the authors also explore the potential of employing RF approximation to
protect privacy in graph-based inference tasks. Similarly, in Chapter 6, we also
leverage RF approximation for privacy preservation purposes.

2.3 Online Learning

Input-output relationships can be expressed using the RF approximation with a
fixed dimension. However, notice that it is not trivial to estimate the required
function, as the optimization problem (2.5) proposed is in batch form. However, the
optimization (2.2) is in a batch form, meaning that the problem is solved by finding
the best fit of the data after collecting all the data points. Such a conventional offline
approach has two major drawbacks: (i) it fails to track changes in the model as the
entire data is used to fit the optimal parameters (ii) a high computational capability
is required to perform such an optimization problem, and (iii) it is impossible to
perform such an operation in a real-time applications where we do not have access
to the entire batch of data. Online convex optimization is the paradigm where the
model is updated on the fly according to the data stream. Consider an optimization
problem

argmina
1

T

T−1∑
t=0

ht(a) (2.7)

where ht(.) is the time-varying cost function and a the model parameter. Conven-
tional batch solutions require all the T data samples to solve the problem. Unlike
batch solutions, in an online framework, the model is updated on the fly every time
a new data stream is available. This not only reduces the computational bottleneck
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Figure 2.2: Data y[t] is available at each time instant 1 ≤ t ≤ T . The batch approach
shown at the top collects all the data samples and solves a batch optimization
problem to give a single model parameter at time T . The online approach is shown
at the bottom; it updates the model parameter whenever a new data sample is
available based on observed data and the previous state of the model. In the online
approach, the evolution of parameters is tracked as {â[t]}Tt=1.

of the batch solution but also tracks the change in model parameters, as shown in
Fig. 2.2.

2.3.1 Dynamic Regret

Dynamic regret [32] is a popular metric to evaluate the capability of an online
algorithm and is defined as

R[T ] =
T−1∑
t=0

ht(a[t])− ht(a
∗[t]) (2.8)

where a∗[t]
∆
= arg mina ht(a) is the optimal minimizer of the cost function at time

instant t and a[t] is the estimate computed using the online algorithm. Dynamic
regret provides a measure of how well the estimated solution tracks the optimum
solution. If the dynamic regret R[T ] is sublinear, the estimated solution will converge
to the optimal solution asymptotically, that is lim

T→∞
R[T ]
T

= 0.

2.4 Kalman Filter

The observations from practical networks are often noisy. In a dynamical system,
the Kalman filter can be used to infer system variables by combining information
from the observations and model dynamics. Such inferences will be superior to the
estimation techniques that rely just on observation. In Chapter 5 of this thesis,





Figure 2.3: A geometrical representation of a simplicial complex and associated
simplicial signals.

we propose a data imputation strategy based on the Kalman filtering framework.
Consider state space equations with a noisy model and noisy observations:

x[t] = Ax[t− 1] + u[t] (2.9)

y[t] = Cx[t] + v[t] (2.10)

where x[t] ∈ RN is the value of state vector at time t, A ∈ RN×N is the state transi-
tion matrix, y[t] ∈ RM is the observation of state measured using the measurement
matrix C ∈ RM×N , u[t] ∈ RN and v[t] ∈ RM are model and observation noise
respectively. For such a system, the best linear unbiased estimate of x[t] is given by
the Kalman filter [33]. The Kalman filter works in two steps, prediction and update:
prediction step:

x̂t|t−1 = Axt−1|t−1 (2.11)

Pt|t−1 = APt−1|t−1Â
⊤ +Qt, (2.12)

where t|t−1 is the estimate at time t given the measurement up to t−1, Pt|t−1 ∈ RN×N

is the prediction error covariance matrix and Qt ∈ RN×N , the noise covariance matrix.
update step:

xt|t = xt|t−1 +K(Cy[t]− xt|t−1), (2.13)

Pt|t = Pt|t−1 −KCPt|t−1, (2.14)

whereK=Pt|t−1C
⊤(CPt|t−1C

⊤+Rt)
−1is the so-called Kalman gain and Rt is the covariance

matrix of the observation noise. Note that when the observation and process noise are
Gaussian, the Kalman filter is the minimum variance, unbiased estimator.

2.5 Simplicial Complex
We have discussed in the previous sections, how to learn hidden graph structures from
observation. In some applications (e.g. water network), the physical structure of the
network will be known, and this additional information can aid in various tasks such





as topology identification, data imputation, denoising, etc. In the above tasks, we can
incorporate such structural information using the simplicial complex (SC) representation of
the network for data defined on higher-order topological structures (e.g., edges, triangles).
Given the set of nodes V, a k-simplex Sk is a subset of V having k+1 distinctive elements
[34], [35]. A SC of order K, denoted as ΨK , is a set of k-simplices for k = 0, 1 . . . ,K

such that a simplex Sk∈ΨK only if all of its subsets also belong to ΨK . The proximities
between different k-simplices in an SC can be represented using an incidence matrix Bk∈
RNk−1×Nk , k ≥ 1, where the row and the column indices of Bk correspond to (k − 1)-
and k-simplices, respectively. The structure of an SC is encoded by Hodge Laplacians,
constructed using Bk’s as

Lk =


Bk+1B

⊤
k+1, for k = 0,

B⊤
k Bk +Bk+1B

⊤
k+1, for 1 ≤ k ≤ K − 1,

B⊤
KBK , for k = K,

(2.15)

In an SC, k-simplex signals are mappings from k-simplices to the real set R. The 0-simplex,
1-simplex, and 2-simplex signals reside on the nodes, edges, and triangles, respectively (see,
Fig. 2.3). For instance, consider a water distribution network. The demand at each node
can be considered a 0-simplex signal, and the volume of water flow between two nodes is
a 1-simplex signal.







Chapter 3

Online Nonlinear Topology
Identification

This chapter summarizes Paper A ([21]), Paper B ([22]), and Paper C ([36]).

3.1 Motivation

Different methods for estimating time-varying spatio-temporal relationships among time
series are mentioned in Section 1.2. Most of the proposed works in the literature are based
on linear models. In this chapter, we focus on learning time-varying nonlinear dependen-
cies. Using kernel-based nonlinear models and online convex optimization tools, we propose
three online nonlinear topology identification algorithms, namely NL-TISO [21], RFNL-
TISO [22], and RFNL-TIRSO [36]. The kernel framework poses a significant challenge
due to the increase in dimensionality with the number of data samples. This dimension-
ality growth is circumvented in our first algorithm NL-TISO by discarding the past data
samples using a forgetting window. However, such an approach can lead to suboptimal
function learning because it discards data samples without assessing their significance in
representing the functions to be learned. Hence, building upon NL-TISO, we propose the
second algorithm RFNL-TISO, where the dimensionality growth is tackled through ran-
dom feature approximation. The third work, RFNL-TIRSO, introduces a recursive least
square loss in place of the least mean square loss used in RFNL-TISO. Next, we develop a
kernel-based framework to model and learn these nonlinear functional dependencies.

3.2 Problem Formulation

Consider a multivariate time series with N nodes. Let yn[t] be the value of time series
at time t = 0, 1, . . . , T − 1, observed at node n, 1 ≤ n ≤ N . A P -th order nonlinear VAR
model assuming additive functional dependencies can be formulated as

yn[t] =

N∑
n′=1

P∑
p=1

f
(p)
n,n′(yn′ [t− p]) + un[t], (3.1)

where f
(p)
n,n′ is the function that encodes the nonlinear causal influence of the p-lagged data

at node n′ on the node n and un[t] is the observation noise (although f
(p)
n,n′ changes with
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time, we chose to avoid time index in order to avoid complication in notation). Considering
the model (3.1), topology identification can be defined as the estimation of the functional

dependencies
{
f
(p)
n,n′(.)

}P

p=1
for n = 1, 2, . . . , N from the observed time series {yn[t]}Nn=1.

In order to model nonlinearity, we utilize the kernel method and consider the Reproducing
Kernel Hilbert Space (RKHS) framework.

3.3 Nonlinearity

We assume that the functions f
(p)
n,n′ in (3.1) belong to a reproducing kernel Hilbert space

(RKHS):

H(p)
n′ :=

{
f
(p)
n,n′ | f (p)

n,n′ (y) =

∞∑
t=0

β
(p)
n,n′,t κ

(p)
n′ (y, yn′ [t− p])

}
, (3.2)

where κ
(p)
n′ : R × R → R is the kernel associated with the Hilbert space. The kernel mea-

sures the similarity between data points y and yn′ [t − p]. Referring to (3.2), evaluation
of the function f

(p)
n,n′ at y can be represented as the linear combination of the similarities

between y and the data points {yn′ [t− p]}t=∞
t=0 , with weights β

(p)
n,n′,t. The inner product,

⟨κ(p)n′ (y, x1), κ
(p)
n′ (y, x2)⟩ :=

∑∞
t=0 κ

(p)
n′ (y[t], x1)κ

(p)
n′ (y[t], x2), is defined in the Hilbert space

using kernels with reproducible property ⟨κ(p)n′ (y, x1), κ
(p)
n′ (y, x2)⟩ = κ

(p)
n′ (x1, x2). Such a

Hilbert space with the reproducing kernels is termed RKHS and the inner product de-
scribed above induces a norm, ∥f (p)

n,n′∥2H(p)

n′
=
∑∞

t=0

∑∞
t′=0 β

(p)
n,n′,t β

(p)
n,n′,t′ κ

(p)
n′ (yn[t], yn[t

′]).

We refer to [37] for further reading on RKHS. For a particular node n, the estimates of{
f
(p)
n,n′ ∈ H(p)

n′

}
n′,p

are obtained by solving the functional optimization problem:

{
f̂
(p)
n,n′

}
n′,p

= arg min{
f
(p)

n,n′∈H
(p)

n′

} 1

2

T−1∑
τ=P

[
yn[τ ]−

N∑
n′=1

P∑
p=1

f
(p)
n,n′(yn′ [τ − p])

]2

+ λ
N∑

n′=1

P∑
p=1

Ω(||f (p)
n,n′ ||H(p)

n′
). (3.3)

The objective function in equation (3.3) comprises two essential terms, namely the data
fitting and sparsity-promoting regularizer. The primary aim of the former is to ensure
that the model fits the available data correctly. On the other hand, the regularizer term
promotes sparsity, which not only helps to prevent overfitting but also aids in the devel-
opment of more interpretable graphs with fewer connections. By incorporating a sparsity-
promoting regularizer in the objective function, the model is encouraged to identify and
select only the most relevant features or connections, while penalizing the selection of too
many non-zero weights or connections. This approach facilitates the creation of more ef-
ficient and interpretable models that are less susceptible to noise and overfitting. It is to
be noted that in (3.3), the functions {f (p)

n,n′} belong to the RKHS defined in (3.2), which is
an infinite dimensional space. However, For a non-decreasing function Ω, by resorting to
the Representer Theorem [38], the solution of (3.3) can be written using a finite number
of data samples:

f̂
(p)
n,n′ (yn′ [τ − p]) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)κ

(p)
n′ (yn′ [τ − p]), yn′ [t− p]) . (3.4)





Notice that the number of coefficients required to express the function increases with the
number of data samples.

3.4 NL-TISO
Using (3.4), (3.3) can be reformulated as a parametric optimization problem involving the
available data samples, as follows:{

β̂
(p)
n,n′,t

}
n′,p,t

= arg min{
β
(p)

n,n′,t

}Ln
(
β
(p)
n,n′,t

)
, (3.5)

where

Ln
(
β
(p)
n,n′,t

)
:=

1

2

T−1∑
τ=P

[
yn[τ ]−

N∑
n′=1

P∑
p=1

p+T−1∑
t=p

β
(p)
n,n′,tκ

(p)
n′ (τ, t)

]2
, (3.6)

and

κ
(p)
n′ (τ, t) := κ

(p)
n′ (yn′ [τ − p]), yn′ [t− p]) . (3.7)

The optimization problem in (3.5) can be reformulated as

β̂n = argmin
βn

1

2

T−1∑
τ=P

[
yn[τ ]− β⊤

n κτ

]2
+ λ

N∑
n′=1

P∑
p=1

∥β(p)
n,n′∥2. (3.8)

where βn and κτ are obtained by stacking the parameters and kernel evaluations given in
(3.4); and λ

∑N
n′=1

∑P
p=1 ∥β

(p)
n,n′∥2 is the sparsity providing regularizer (see Section 3.5 for

the derivation and detailed explanation of the regularizer). The stacking operations are
explained below:

βn,n′,t := [β
(1)
n,n′,t, β

(2)
n,n′,t, . . . , β

(P )
n,n′,t]

⊤ ∈ RP (3.9)

βn,t := [β⊤
n,1,t,β

⊤
n,2,t, . . . ,β

⊤
n,N,t] ∈ RNP (3.10)

κn′ (τ, t) := [κ
(1)
n′ (τ, t) , κ

(2)
n′ (τ, t) , . . . , κ

(P )
n′ (τ, t)]⊤ ∈ RP (3.11)

κ (τ, t) := [κ1 (τ, t)
⊤ ,κ2 (τ, t)

⊤ , . . . ,κN (τ, t)⊤] ∈ RNP (3.12)

βn := [βn,0,βn,1, . . . ,βn,T−1]
⊤ ∈ RNPT (3.13)

κτ := [κ (τ, p) ,κ (τ, p+ 1) , . . . ,κ (τ, p+ T − 1)]⊤ ∈ RNPT , (3.14)

The optimization problem presented in (3.8) is a batch (offline) solver, which requires
access to all data samples yn[τ ]T−1

τ=P to find the optimal coefficients βn. However, this offline
approach has two main drawbacks. Firstly, it is not suitable for real-time applications as
it requires the solver to wait for the entire batch of data. Secondly, it suffers from high
computation complexity and memory requirements, which increase super-linearly with the
batch size.

To overcome these limitations, we propose an online algorithm for estimating the co-
efficients βn in (3.8). This approach is designed to work with streaming data, where each
data point is processed one at a time, and the coefficients are updated incrementally. By
using an online approach, the computation complexity and memory requirements are sig-
nificantly reduced, making it suitable for real-time applications. First replace the original





loss function in (3.8) with the instantaneous loss function lnτ (βn) =
1
2 [yn[τ ]− β⊤

n κτ ]
2:

β̂n = argmin
βn

lnτ (βn) + λ
N∑

n′=1

P∑
p=1

∥β(p)
n,n′∥2. (3.15)

The cost function presented in (3.15) consists of a loss function that is differentiable and
a non-differentiable group-Lasso regularizer. To solve this optimization problem online,
we can use the online subgradient descent (OSGD) or mirror descent (MD) methods.
However, these methods work by linearizing the entire objective function in (3.15) using a
subgradient of it. If the group-Lasso regularizer is linearized, its ability to induce sparsity
in the estimates is compromised, resulting in non-sparse estimates.

To address this issue, we adopt an alternate optimization technique called composite
objective mirror descent (COMID) [39]. This is a modified version of the MD algorithm
that linearizes only the differentiable part of the objective function, while keeping the reg-
ularizer intact. By doing so, the sparsity-inducing property of the group-Lasso regularizer
is preserved, and the resulting estimates remain sparse. The online COMID update can
be written as

βn[t+ 1] = argmin
βn

J
(n)
t (βn), (3.16)

where

J
(n)
t (βn) ≜ ∇ℓnt (β̃n[t])

⊤
(
βn − β̃n[t]

)
+

1

2at
∥βn − β̃n[t]∥22 + λ

N∑
n′=1

P∑
p=1

∥β(p)
n,n′∥2. (3.17)

The equation (3.17) defines β̃n[t] ∈ RPN(t+1) as [βn[t];0], where βn[t] ∈ RPNt repre-
sents the estimated value of βn using the samples up to time t. Here, 0 ∈ RPN denotes the
initialization vector for the coefficients of the new kernel vector elements corresponding to
the (t+ 1)th data sample. In (3.17), the first term is the gradient of the loss function, the
second term is the Bregman divergence B(βn, β̃n[t]) = 1

2 |βn − β̃n[t]|22, which is selected
to have a closed-form solution for the COMID update [40]. The third term is a sparsity
enforcing regularizer aimed at promoting sparsity in the updates, and at represents the
corresponding step size. Bregman divergence ensures that βn[t + 1] is similar to β̃n[t] by
assuming that the topology changes smoothly. The gradient in (3.17) is computed as

vn[t] := ∇ℓnt (β̃n[t]) = κτ

(
β⊤
n κτ − yn[τ ]

)
. (3.18)

By ignoring the constants, the objective function in (3.17) can be expressed as

J
(n)
t (βn) ∝

β⊤
n βn

2at
+ β⊤

n

(
vn[t]−

1

at
β̃n[t]

)
+ λ

N∑
n′=1

P∑
p=1

∥β(p)
n,n′∥2

=

N∑
n′=1

P∑
p=1

[
β
(p)
n,n′

⊤
β
(p)
n,n′

2at
+ β

(p)
n,n′

⊤
(
v
(p)
n,n′ [t]−

1

at
β̃
(p)
n,n′ [t]

)
+ λ∥β(p)

n,n′∥2
]
. (3.19)





Note that (3.19) is separable in n′, m and p. Using (3.19), a closed form solution of (3.16)
can be obtained in terms of multidimensional shrinkage-thresholding operator [41] as

β
(p)
n,n′ [t+ 1] =

(
β̃
(p)
n,n′ [t]− atv

(p)
n,n′ [t]

)
×
[
1− atλ

∥β̃(p)
n,n′ [t]−t v

(p)
n,n′ [t]∥2

]
+

, (3.20)

where [x]+ = max {0, x}. The term β̃
(p)
n,n′ [t] − atv

(p)
n,n′ [t] in (3.20) performs a stochastic

gradient update of β(p)
n,n′ in a direction that decreases the instantaneous loss function lnτ (βn)

and the second term in (3.20) promotes group sparsity of β(p)
n,n′ . The proposed NL-TISO

algorithm is summarized as Algorithm 1.

Algorithm 1: NL-TISO Algorithm

Result: β
(p)
n,n′ , for n, n′ = 1, .., N and p = 1, .., P

Store {yn[t]}Pt=1,
Initialize λ, at (heuristically chosen) and kernel parameters depending on
the type of the kernel.

for t = P, P + 1, . . . do
Get data samples yn[t], ∀n and compute κτ

for n = 1, . . . , N do
compute vn[t] using (3.18)
for n′ = 1, . . . , N do

compute β
(p)
n,n′ [t+ 1] using (3.20)

end
end

end

Note that the solution (3.20) suffers from dimensionality growth of the kernel, i.e., the
dimension of the variables increases with t. In NL-TISO, we address this issue by selecting
only the most recent Tw data points to compute (3.20), where Tw is set to 2000 heuris-
tically. Although this is a sub-optimal approach, it still provides competitive empirical
performance, as demonstrated in the experiments section (see, paper [21]). As explained
in the next section, in order to mitigate the problem, we use Random feature approximation
which is explained in the following section.

3.5 RFNL-TISO
As mentioned, since the number of features increases with data samples, online learning be-
comes prohibitive at some point, referred to as the curse of dimensionality. The interesting
fact about RKHS is that it is defined by an inner product. If we are able to approximate
this inner product in a lower dimensional space, any function in the original infinite dimen-
sional space can be approximately expressed in a lower dimensional space. In this work,
in alignment with [42] and [43], we use Random Feature (RF) approximation to tackle the
dimensionality growth. To invoke the RF approximation, we restrict our choice of kernels
to the shift-invariant class, i.e., κ(p)n′ (yn′ [τ − p]), yn′ [t− p]) = κ

(p)
n′ (yn′ [τ − p])− yn′ [t− p]);

popular kernels such as Gaussian, Laplacian and radial basis function (RBF) are examples
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Figure 3.1: RKHS parameters (left) and fixed-size RF parameters (right). The Lasso
groups of RF parameters are indicated in different colors.

of such class of kernels. Bochner’s theorem [30] states that every shift-invariant kernel can
be represented as an inverse Fourier transform of a probability distribution. Hence the
kernel evaluation can be expressed as

κ
(p)
n′ (yn′ [τ − p]), yn′ [t− p]) =

∫
π
κ
(p)

n′
(v) ejv(yn′ [τ−p]−yn′ [t−p])dv

= Ev[e
jv(yn′ [τ−p]−yn′ [t−p])], (3.21)

where π
κ
(p)

n′
(v) is the probability density function which depends on the type of the kernel,

and v is the random variable associated with it. If sufficient amount of i.i.d. samples
{vi}Di=1 are collected from the distribution π

κ
(p)

n′
(v), the real ensemble mean in (3.21) can

be expressed as a sample mean:

κ̂
(p)
n′ (yn′ [τ − p]), yn′ [t− p]) =

1

D

D∑
i=1

ejvi(yn′ [τ−p])−yn′ [t−p]), (3.22)

irrespective of the distribution π
κ
(p)

n′
(v). Note that an unbiased estimate of kernel evaluation

in (3.22) involves a summation of a fixed D number of terms. In general, computing the
probability distribution corresponding to a kernel is a difficult task. In this work, the kernel
under consideration is assumed to be Gaussian; for a Gaussian kernel kσ with variance σ2, it
is well known that the Fourier transform is also a Gaussian, with variance σ−2. Considering
the real part of (3.22), which is also an unbiased estimator, we can approximate (3.21) as

κ̂
(p)
n′ (yn′ [τ − p], yn′ [t− p]) = zv (yn′ [τ − p])⊤ zv (yn′ [t− p]) , (3.23)

where, zv(x) =
1√
D
[sin v1x, . . . , sin vDx, cos v1x, . . . , cos vDx]

⊤. (3.24)

Subsisting (3.24) in (3.4), we obtain a fixed dimension (2D terms) approximation
of the function f̂

(p)
n,n′ :

ˆ̂f
(p)
n,n′ (yn′ [τ − p])) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)zv (yn′ [τ − p])⊤ zv (yn′ [t− p])

= α
(p)
n,n′

⊤
zv (yn′ [τ − p]) , (3.25)





where α
(p)
n,n′

⊤
=
∑p+T−1

t=p β
(p)
n,n′,(t−p)zv (yn′ [τ − p])⊤. For the sake of brevity, in the

succeeding steps, we define the following notation:

α
(p)
n,n′ = [α

(p)
n,n′,1, . . . , α

(p)
n,n′,2D]

⊤ ∈ R2D, (3.26)

zv (yn′ [τ − p]) = [z
(p)
n′,1 (τ) , . . . z

(p)
n′,2D (τ)]⊤ ∈ R2D. (3.27)

The loss function (3.3) is reformulated as a parametric optimization problem using
(3.25): {

α̂
(p)
n,n′,d

}
n′,p,d

= arg min{
α
(p)

n,n′,d

}Ln
(
α
(p)
n,n′,d

)
, (3.28)

where

Ln
(
α
(p)
n,n′,d

)
:=

T−1∑
τ=P

1

2

[
yn[τ ]−

N∑
n′=1

P∑
p=1

2D∑
d=1

α
(p)
n,n′,d z

(p)
n′,d (τ)

]2
. (3.29)

For convenience, optimization parameters
{
α
(p)
n,n′,d

}
and

{
z
(p)
n′,d (τ)

}
are stacked in

the lexicographic order of the indices p, n′, and d to obtain the vectors αn ∈ R2PND

and zτ ∈ R2PND, respectively, and (3.33) can be rewritten as

α̂n = argmin
αn

Ln (αn) , (3.30)

where Ln(αn) =
1

2

T−1∑
τ=P

[
yn[τ ]−α⊤

nzτ

]2
(3.31)

Following [43], the original regularization term in (3.3) can be converted to an equiv-
alent parametric form as:

Ω(||f (p)
n,n′ ||H(p)

n,n′
)

= Ω


√√√√p+T−1∑

τ=p

p+T−1∑
t=p

β̂
(p)
n,n′,(τ−p) β̂

(p)
n,n′,(t−p) k

(p)
n′ (yn(τ), yn(t))


= Ω

(√√√√p+T−1∑
τ=p

p+T−1∑
t=p

β̂
(p)
n,n′,(τ−p)β̂

(p)
n,n′,(t−p)z

(p)
v,n′(τ)

⊤z
(p)
v,n′(t)

)
.

= Ω(||α(p)
n,n′ ||2). (3.32)

The function Ω in (3.32) is chosen to be Ω(.) = |.|, where |.| represents the absolute
value function, in order to promote the group sparsity of α(p)

n,n′ [11]. Such regularizers
are typically known as group-Lasso regularizers (see, Fig. 3.1 for a visual represen-
tation of the Lasso groups). Note that the function |.| is non-decreasing, thereby
satisfying the regularization criteria to apply the Representer Theorem. Using (3.3)
and (3.32), a parametric form of (3.3) can be constructed as follows:

{α̂n}n′ = arg min
{αn}

Ln (αn) + λ

N∑
n′=1

P∑
p=1

||α(p)
n,n′ ||2. (3.33)





However, notice that the batch formulation in (3.30) has some major limitations:
i) requirement of entire batch of data points before estimation, ii) inability to track
time-varying topologies, and iii) high computational complexity when T is large,
even if RF approximation is used. To mitigate these problems, we adopt an online
optimization strategy, which is explained in the following section.
In this case, we replace the batch loss function Ln(αn) in (3.30) with the stochastic
(instantaneous) loss function lnt (αn) =

1
2
[yn[t]−α⊤

nzt]
2:

α̂n = argmin
αn

lnt (αn) + λ
N∑

n′=1

P∑
p=1

∥α(p)
n,n′∥2. (3.34)

Now we have a differentiable loss function and non-differentiable regularizer as dis-
cussed in the Section 3.4; we can solve such a problem using COMID, and closed
form solution is obtained as:

α
(p)
n,n′ [t+ 1] =

(
α

(p)
n,n′ [t]− atv

(p)
n,n′ [t]

)
×[

1− atλ

∥α(p)
n,n′ [t]− atv

(p)
n,n′ [t]∥2

]
+

, (3.35)

where [v
(1)
n,n′

⊤,v
(2)
n,n′

⊤, . . . ,v
(P )
n,n′

⊤]⊤ ≜ vn,n′ ∀n′, [v⊤
n,1,v

⊤
n,2, . . . ,v

⊤
n,N ]⊤ ≜ ∇αℓ̃

n
t (αn[t])

and [x]+ = max {0, x}. The required time-lagged dependencies are encoded in{
α

(p)
n,n′ [t+ 1]

}
; and the proposed RFNL-TISO is summarized in Algorithm 2. In

the next section, we propose a new algorithm called RFNL-TIRSO, which addresses
the instability of the LMS loss function in the presence of input noise. Unlike the
NLTISO and RF-NLTISO algorithms, RFNL-TIRSO is designed to be robust to
input noise. Additionally, we provide a dynamic regret analysis for RFNL-TIRSO,
which guarantees its ability to track changes in the input.

Algorithm 2: RF-NLTISO Algorithm

Result: α
(p)
n,n′ , for n, n′ = 1, .., N and p = 1, .., P

Store {yn[t]}Pt=1,
Initialize λ, at, D (heuristically chosen) and kernel parameters depending
on the type of the kernel.

for t = P, P + 1, . . . do
Get data samples yn[t], ∀n and compute zτ

for n = 1, . . . , N do
compute ∇αℓ̃

n
t (αn[t])

for n′ = 1, . . . , N do
compute α

(p)
n,n′ [t+ 1] using (3.35)

end
end

end





3.6 RFNL-TIRSO

The loss function lnt (αn) = 1
2
[yn[t] − α⊤

nzt]
2 introduced in the previous section is

analogues to least mean squares (LMS) formulation. The algorithms in such struc-
ture suffer in practical settings due to instability produced by noise and dependence
of convergence on condition number [44]. We modify the objective function by using
the recursive least squares (RLS) principle,

ℓ̃nt (αn) = µ
t∑

τ=P

γt−τℓnτ (αn). (3.36)

Here, the instantaneous loss is replaced with a running average loss using an expo-
nential window. The parameter γ ∈ (0, 1) is a forgetting factor, and µ = 1−γ is set
to normalize the exponential weighting window. Expanding the function as follows:

ℓ̃nt (αn) =µ
t∑

τ=P

γt−τ (y2n[τ ] +α⊤
nzτz

⊤
τ αn − 2yn[τ ]z

⊤
τ αn) (3.37)

=
1

2
µ

t∑
τ=P

γt−τy2n[τ ] +α⊤
nϕ[t]αn − r⊤

nαn2yn[τ ]z
⊤
τ (3.38)

where

ϕ[t] = µ
t∑

τ=P

γt−τzτz
⊤
τ (3.39)

rn[t] = µ
t∑

τ=P

γt−τ2yn[τ ]zτ (3.40)

As in RLS, these quantities can be updated recursively as ϕ[t] = γϕ[t− 1] + µztz
⊤
t

and rn[t] = γrn[t− 1] + µyn[t]zt. The gradient of the loss function can be obtained
as,

∇ℓ̃nt (αn) = ϕ[t]αn − rn[t]. (3.41)

The new objective function in the RLS analogous form can be expressed as,

α̂n = argmin
αn

ℓ̃nt (αn) + λ
N∑

n′=1

P∑
p=1

∥α(p)
n,n′∥2. (3.42)

As the objective function has a differentiable loss function and a nondifferentiable
regularizer, a closed-form solution for the required time-lagged dependencies is ob-
tained, using the COMID update as :

α
(p)
n,n′ [t+ 1] =

(
α

(p)
n,n′ [t]− atv

(p)
n,n′ [t]

)
×[

1− atλ

∥α(p)
n,n′ [t]− atv

(p)
n,n′ [t]∥2

]
+

, (3.43)





where [v
(1)
n,n′

⊤,v
(2)
n,n′

⊤, . . . ,v
(P )
n,n′

⊤]⊤ ≜ vn,n′ ∀n′, [v⊤
n,1,v

⊤
n,2, . . . ,v

⊤
n,N ]⊤ ≜ ∇ℓ̃nt (αn[t]) and

[x]+ = max {0, x}. The first term α
(p)
n,n′ [t]− atv

(p)
n,n′ [t] in (3.43) forces the stochastic

gradient update of α(p)
n,n′ in a way to descend the recursive loss function ℓ̃nt (αn), and

the second term enforces group sparsity of α(p)
n,n′ . The required causal influence of

p− th time-lagged value of n′ − th sensor on n− th sensor is encoded in α
(p)
n,n′ . The

proposed RFNL-TIRSO is summarized as Algorithm 3.

Algorithm 3: RFNL-TIRSO Algorithm

Result:
{
α

(p)
n,n′

}
n,n′,p

Store {yn[t]}Pt=1,
Initialize λ > 0, at > 0, θ > 0, D, σn and Φ(P − 1) = θI2PND

for t = P, P + 1, . . . do
Collect data samples yn[t], ∀n and compute zv(t)

Φ[t] = γΦ[t− 1] + µzv(t)zv(t)
⊤

for n = 1, . . . , N do
rn[t] = γrn[t− 1] + µyn[t]zv(t)

compute ∇ℓ̃nt (αn[t]) using (3.41)
for n′ = 1, . . . , N do

compute α
(p)
n,n′ [t+ 1] using (3.43)

end
end

end

3.7 Numerical Experiments

We provide a detailed numerical analysis using both synthetic and real data. The
synthetic data sets that we consider are generated by considering nonlinear topolo-
gies having challenging dynamic nature. The real data set include data collected
from an O&G platform as well as data from the EEG recordings of two pediatric
subjects with intractable seizure. Through a series of numerical experiments, we
show that our algorithms estimate interpretable topologies as well as outperform
the state-of-the-art benchmarks (see, papers [21,22,36]).

3.8 Dynamic Regret

The dynamic regret bound for the proposed algorithm RFNL-TIRSO is based on
the following assumptions

• A1 Bounded samples: For all the time series samples, there exists By > 0

such that {|yn[t]|2} ≤ By ≤ ∞,∀n, t.





• A2 Shift-invariant kernels: kernels used are shift-invariant, i.e., k(xi, xj) =

k(xi − xj).

• A3 Bounded minimum eigenvalue of Φ[t]: There exists ρl > 0 such that
Λmin(Φ[t]) > ρl, where Λmin(.) denotes the minimum eigenvalue.

• A4 Bounded maximum eigenvalue of Φ[t]: There exists L > 0 such that
Λmax(Φ[t]) < L < ∞, where Λmax(.) denotes the maximum eigenvalue.

A1 is generally true since real-world signals are mostly bounded. Kernels such as
Gaussian, Laplacian, etc. satisfy the property A2. A3 will hold as long as the
feature vectors are linearly independent and the condition is typically satisfied in
practice. Note that A3 is important for the strong convexity of the loss function,
which is used in the derivation of regret bound. A4 can be obtained by combining
A1 and the fact that the sum of eigenvalues of Φ[t] is equal to its trace.

Dynamic regret is a popular way to test the capability of an online algorithm
in a dynamic environment. Dynamic regret is defined as the cumulative sum of
the difference between the estimated loss function and optimal loss function at each
time instant(see (2.8), in Section 2.3.1). Dynamic regret of RFNL-TIRSO at time
T is bounded as

Rn(T ) ≤
((

1 +
L

ρl

)√
2PNDBy + λ

√
PN

)
×
(
∥α∗

n[P ]∥2 +Wn(T )
)
+ϵLhTC,

(3.44)

where Wn(T ) =
∑T−1

t=P ∥α∗
n[t] − α∗

n[t − 1]∥2 is the path length, Lh is the Lipschitz
constant and α∗

n[P ] is the optimal solution at time P (Proof: see paper [36]). There-
fore, it is guaranteed to achieve sub-linear dynamic regret by suitably choosing ϵ as
long as W n

T is sub-linear.

3.9 Chapter Summary

• This chapter proposes online algorithms to estimate the time-varying non-
linear topology from streaming multi-variate time series. We use a VAR
model equipped with kernels to model the nonlinear spatio-temporal interac-
tion among the time series. We propose a group Lasso-based online optimiza-
tion framework to learn sparse model parameters, which is solved efficiently
using the COMID algorithm.

• We design three successive algorithms, namely, NL-TISO, RFNL-TISO, and
RFNL-TIRSO, which take into account important elements of online learn-
ing. NL-TISO deploys a forgetting window to mitigate kernel’s dimensionality
growth in online learning. The suboptimality associated with the forgetting
window based approach is effectively addressed in RFNL-TISO by using RF
approximation, which is further improved in RFNL-TIRSO by using an RLS
loss function having better robustness to input noise.





• We provide a detailed theoretical analysis of the convergence of RFNL-TIRSO
algorithm. Our analysis derives a sublinear upper bound for the dynamic
regret of the algorithm under certain reasonable assumptions.





Chapter 4

Online Joint Topology Identification
and Missing Data Imputation

This chapter summarizes Paper D ([24])

4.1 Motivation

In the previous chapter, we discussed topology identification when all the time series
are fully observed. There are often times when the signals cannot be observed in
their entirety. In this chapter, we discuss joint topology identification and miss-
ing data imputation. The proposed algorithm estimates topology from incomplete
observations and uses the learned topology to impute the missing entries.

4.2 Problem Formulation

Let the multivariate time series {yn[t]}Nn=1 be generated from a P -th order nonlinear
VAR model:

yn[t] =
N∑

n′=1

P∑
p=1

f
(p)
n,n′(yn′ [t− p]) + un[t], (4.1)

where f
(P )
n,n′(.) captures the influence of the p-th time-lagged value of the n′-th time

series on the n-th time series, we represent the collection of time series at a time
in a vector form as y[t] = [y1[t], y2[t], . . . , yN [t]]

⊤ ∈ RN . Unlike Chapter 3, now the
full signal vector y[t] is not always observable. The observed signal at time t can be
expressed in a vector form as

ỹ[t] = m[t]⊙ (y[t] + e[t]), (4.2)

where m[t] ∈ {0, 1} is a known masking vector, where the n-th element mn[t] is 0

only if the 88value of n-th series is missing at time t, e[t] is the observation noise
and ⊙ is the Hadamard product 1. In such a situation, the learned graph topology

1The Hadamard product is a binary operation between two matrices, A and B, that have the
same dimension. It is denoted by the symbol ⊙, and is defined such that each element of the
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can be exploited to impute the missing data. An illustrative example is shown in
Fig. 4.1. At the time t, we have the masked observation vector ỹ[t] and predicted
graph topology. An estimate of the actual signal vector y[t] is constructed using the
observation vector and predicted topology. The estimated signal vector ŷ[t] is then
used to update the graph topology.

Predicted graph
structure at

Predicted graph
    structure at

Figure 4.1: Illustration of proposed method.

Revisiting (3.25) the function fp
n,n′(.) can be approximated in parametric form

using RF as ˆ̂f
(p)
n,n′ (.) = α

(p)
n,n′

⊤
zv (.), where α

(p)
n,n′ is the parameter vector and zv (.)

the data-dependent features (3.27). The parameter vectors {α(p)
n,n′} are stacked in

lexicographic order of n, p, n′ obtaining the vector α, and an estimate of the signal
vector is obtained :

ˆ̂y[t] = α⊤zv[t]. (4.3)

Now, we have an estimate of the signal based on the model and an observation vector.
Combining this information, an online joint topology identification and missing data
imputation problem can be formulated as

{α̂, ŷ[τ ]}τ=T−1
τ=P = arg min

α,y[τ ]

T−1∑
τ=P

1

2
∥y[τ ]−α⊤zv[τ ]∥22

+ λ

N∑
n′=1

2D∑
d=1

∥αn,n′,d∥2+
T−1∑
τ=P

ν

2Mτ
∥ỹ[τ ]−m[τ ]⊙ y[τ ]∥22. (4.4)

resulting matrix (A⊙B)ij is equal to the product of the corresponding elements of A and B, i.e.,
(A⊙B)ij = AijBij .





The optimization problem (4.4) consists of three terms (i) the topology identifica-
tion part which fits the parametric model with data (ii) sparsity promoting regular-
izer as most of the real-world networks are sparse (iii) missing signal reconstruction
term based on observation. The optimization problem (4.4) is nonconvex and com-
putationally difficult to solve. In the next section, we introduce approximations to
convexify the problem and drive an online solution.

4.3 Online Joint Topology Identification and Signal
Reconstruction

The feature vector zν [t] depends on the P previous values of all the N time se-
ries. Therefore, it is necessary to estimate the P previous values along with the
instantaneous values in the required online estimation strategy:

{α̂, ŷ[t], {ŷ[τ ]}t−1
τ=t−P} = argmin

α,y[t]

{y[τ ]}t−1
τ=t−P

ℓt
(
α,y[t], {y[τ ]}t−1

τ=t−P

)
+ λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2,

(4.5)

where the loss function ℓt(.) is defined as

ℓt
(
α,y[t], {y[τ ]}t−1

τ=t−P

)
=

1

2
∥y[t]−α⊤zv[t]∥22 +

ν

2Mt

∥ỹ[t]−m[t]⊙ y[t]∥22. (4.6)

The optimization problem (4.5) is nonconvex as well as computationally expensive.
In order to have a computationally light solution, we can convexify the optimization
problem by assuming that y[t] is independent of {ŷ}t−1

τ=t−P . Now, we can formulate
the loss function without the arguments {y[τ ]}t−1

τ=t−P :

ℓ̃t (α,y[t]) =
1

2
∥y[t]−α⊤zv[t]∥22 +

ν

2Mt

∥ỹ[t]−m[t]⊙ y[t]∥22. (4.7)

The optimization problem (4.7) is separable with respect to α and y[t], leading to
subproblems that are convex in the respective variables, which can be solved using
a two-step iterative block coordinate descent method. These two steps (i) signal
reconstruction and (ii) topology identification, are explained below.

4.3.1 Signal Reconstruction

Assume that the estimates of dependency vectors {αn[t]}Nn=1 are available and sub-
stitute α[t] = [α1[t], . . . ,αn[t]]

⊤ in place of α in (4.7). Then, the estimate of the
signal vector is obtained by solving the following optimization problem:

ŷ[t] = argmin
y[t]

1

2
∥y[t]−α[t]⊤zv[t]∥22 +

ν

2Mt

∥ỹ[t]−m[t]⊙ y[t]∥22. (4.8)





Note that the regularization term is not included in the formulation as it is inde-
pendent of y[t]. The optimization problem (4.8) can be separated into n quadratic
problems, each one solved for each node with respect to yn[t], 1 ≤ n ≤ N :

ŷn[t] = argmin
yn[t]

ℓnt (yn[t]) , (4.9)

where ℓnt (yn[t]) =
1
2

[
yn[t]−αn[t]

⊤zv[t]

]2
+ ν

2Mt
(ỹn[t]−mn[t]yn[t])

2. As the optimization

problem is quadratic, a closed-form solution can be readily obtained as

ŷn[t] =
νmn[t]ỹn[t]

Mt + νmn[t]
+

kn[t]Mt

νmn[t] +Mt

, (4.10)

where kn[t] = αn[t]
⊤zv[t]. Let νmn[t]

Mt+νmn[t]
= qn[t], then,

ŷn[t] = qn[t]ỹn[t] + [1− qn[t]]kn[t]. (4.11)

Now the reconstructed signals {ŷn[τ ]}Nn=1 can be used to estimate parameter vectors
{αn[t+ 1]}Nn=1.

4.3.2 Topology Identification

The estimates {ŷn[τ ]}Nn=1 are substituted in (4.7) and then, the topology identifica-
tion problem can be formulated as

α[t] = argmin
α

1

2
∥ŷ[t]−α⊤zv[t]∥22 + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2. (4.12)

Here, again, the optimization problem is node separable and the dependency vector
for a particular node n can be obtained by solving the optimization problem:

α̂n = arg min
αn

ℓ̃nt (αn) + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2. (4.13)

where ℓ̃nt (αn) =
1
2
[ŷn[t]−α⊤

nzv[t]]
2. Unlike the signal reconstruction (4.8), the opti-

mization problem (4.13) is not quadratic. The objective function of (4.13) contains
a differentiable loss function and a nondifferentiable regularizer, and such problems
can be solved efficiently using COMID methods [22]. A closed-form solution for the
COMID update is obtained via the multidimensional shrinkage-thresholding opera-
tor:

α
(p)
n,n′ [t+ 1] = [α

(p)
n,n′ [t]− γtv

(p)
n,n′ [t]]×[

1− γtλ

∥α(p)
n,n′ [t]− γtv

(p)
n,n′ [t]∥2

]
+

, (4.14)

where [v
(1)
n,n′

⊤,v
(2)
n,n′

⊤, . . . ,v
(P )
n,n′

⊤]⊤ ≜ vn,n′ ∀n′, [v⊤
n,1,v

⊤
n,2, . . . ,v

⊤
n,N ]⊤ ≜ ∇αℓ̃

n
t (αn[t]).

The proposed solution is explained in Algorithm 4.





Algorithm 4:

Result:
{
α

(p)
n,n′ [t+ 1]

}
n,n′,p

, ŷ[t]

Initialize {yn[t]}Pt=1,
{
α

(p)
n,n′ [P ]

}
n,n′,p

as all-ones vector, λ, kernel parameters, γ, D, ν

(heuristically chosen)
for t = P, P + 1, . . . do

Get data observation vector ỹn[t] and masking vector m[t], compute zv[t] (3.27)
for n = 1, . . . , N do

compute ŷn[t] using (4.11)
compute v

(p)
n,n′ [t]

for n′ = 1, . . . , N do
compute α

(p)
n,n′ [t+ 1] using (4.14)

end
end

end

4.3.3 Numerical Experiments

We present numerical analysis using both synthetic and real data sets and show that
the proposed algorithm outperforms the state-of-the-art benchmarks (see, paper
[24]). The synthetic data sets feature dynamic nonlinear topologies with various
missing data patterns, while the real data experiments involve data from Lundin’s
O&G platform subjected to different missing data scenarios.

4.4 Summary of Chapter

• This chapter presents an algorithm for joint nonlinear topology identification
and missing signal reconstruction. While the original problem is nonconvex
and computationally intensive, we propose a convexified version that can be
solved using convex optimization techniques.

• Using the block coordinate decent method, the proposed method iteratively
solves topology identification and missing data imputation problems.







Chapter 5

Online Data Imputation over
Structure-aware Higher order
Networks

This chapter summarizes Paper E ([25])

5.1 Motivation

As explained in previous chapters, missing data is very common in multivariate time
series due to various practical reasons. In this chapter, we focus on missing data
imputation when the signal is defined over the edges of the network. Traffic flow in
the transportation network, information flow in the brain networks, and water flow
in the water network are examples of signals defined on the edges. Imputation of
missing flows can be performed by exploiting the prior information from the network
structure as well as the data-driven features from the observations. Consider the
case of a water distribution network, as shown in Fig. 5.1. The physical structure im-
poses priors, e.g., flow conservation at the junction of edges. Simplicial complex and
algebraic topological tools [45] can be used to incorporate such priors in the formula-
tion of missing data imputation algorithms. Apart from the physical structure, the
time series data are also coupled through hidden interactions that are not physically
observable. In Fig. 5.1, suppose that the demand in node 7 increases; automatically,
water flowing through pipe 9 increases and in order to meet this increased demand,
pipe 4 will draw more water from the reservoir. From this illustrative example, it is
clear that the flow through pipe 9 has a time-lagged influence on the flow through
pipe 4. In this chapter, we introduce an algorithm which utilizes both the physical
structure and the time-lagged interaction for imputing the flows.

5.2 System Model

Consider a network G with node set V , and the nodes are physically connected
through edge set E . Let V ≜ |V| and E ≜ |E| represent cardinality of V and E ,
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Pipes

Reservoir

Demand

Time-lagged interaction

Figure 5.1: Schematic of a water distribution network.

respectively.

5.2.1 Model Flow as a Simplicial Signal

The network structure of G can be expressed using a simplicial complex (SC). In SC,
a k-simplicial signal is a mapping from a k-simplex to R. A 0-simplex signal resides
on the node; similarly, a 1-simplex signal is on the edge, and a 2-simplex signal is on
the triangle Fig. 2.3. In this work, we focus on the signal residing on edges, i.e., the 1-
simplex signal. From here onwards, we call the 1-simplex signals flow signals. A flow
signal at time t between two nodes i and j is defined as f(i,j)[t] = −f(j,i)[t], ∀ (i, j) ∈
E . We can stack the flows into a vector f̃ [t] = [f1[t] f2[t] . . . fE [t]]

⊤ ∈ RE. The
structure of SC can be represented in the form of Hodge Laplacian. First-order
Hodge Laplacian is constructed based on incidence matrices B1 and B2, which
measure proximities between the edges with respect to the nodes and triangles,
respectively. The first order Hodge Laplacian is defined as follows

L1 = B⊤
1 B1 +B2B

⊤
2 , (5.1)

where B⊤
1 B1 = Lℓ

1 is termed as first-order lower Laplacian and B2B
⊤
2 = Lu

1 is
termed as first order upper Laplacian. Flows in networks such as water distribution
and road transportation exhibit flow conservation, which can be mathematically
expressed using the incidence matrix as B1f̃ [t] = 0 ∈ RV [20]. The first-order lower
Laplacian Lℓ

1 can be used to model the flow conservation since it describes the
relationship among the edges that incident on a node, which is given by

∥B1f̃ [t]∥22 = f̃ [t]⊤B⊤
1 B1f̃ [t] = f̃ [t]⊤Lℓ

1f̃ [t] = 0. (5.2)

5.2.2 Line Graph Modeling

The simplicial signals are mostly interdependent in real-world systems, and these
dependencies are physically unobservable. For example, a traffic block on a road





′X ′ that is not directly connected to road ′Z ′ can affect vehicles flowing through ′Z ′

in a time-lagged manner. Similarly, the physical equations and pressure differences
in the water network allow us to retrieve information about one flow from another.
Many such interactions are time-lagged so that a VAR model can fit the process
well. If we can learn a line graph that describes the model, it is possible to estimate
the missing flows in a better way by combining the information from the learned
line graph and available either define or use lower Laplacian. A P -th order VAR
model with E number of flows can be expressed as,

f̃ [t] =
P∑

p=1

[
Ã(p)[t]f̃ [t− p] + b(p)[t]

]
+ u[t], (5.3)

where Ã(p)[t] ∈ RE×E is the weighted adjacency matrix, u[t] is the process noise
and b(p)[t] ∈ RE is the bias component. The model can be compactly written
using an augumented matrix A(p)[t] = [Ã(p)[t] b(p)[t]] ∈ RE×E+1 and the signal vector
f [t] = [f̃ [t]⊤; 1]⊤ ∈ RE+1, as,

f [t] =

P∑
p=1

A(p)[t]f [t− p] + u[t]. (5.4)

5.3 Problem Formulation

Assume that at a particular time t, only a subset of flows is observable. The observed
flow vector is fo[t] = M[t]f [t] ∈ RE+1, where M[t] ∈ R(E+1)×(E+1) is a diagonal mask-
ing matrix, that is, M(n, n)[t] = 0 if the n-th flow is missing and M(n, n)[t] = 1,
otherwise. Unlike the previous chapter, in this setting, some flows can be perma-
nently unobserved. The goal is to find, in an online fashion, both a sequence of
line graphs {A(p)[t]}p,t, representing the causal dependencies between flows, and the
original signal f [t], from the partial observation fo[t].

Figure 5.2: The problem under consideration is to infer the missing flows from available
observation.





5.4 Proposed Solution

A joint direct optimization of A(p)[t] and f [t] leads to a nonconvex optimization
problem, which is computationally difficult to solve. Hence, in this work, we propose
a bi-level optimization problem: i) signal reconstruction- missing flows are estimated
using structure-aware Kalman Filter (KF) based on the observed flows and the
learned line graph topology, and ii) line graph identification- line graph is estimated
using the reconstructed signals.

5.4.1 Signal Reconstruction

Assume that we have an estimate of Â(p)[t], ∀p at time t of the topology and
estimates of the previous P flow values {f̂ [t − p]}Pp=1. By rearranging the data as
follows, it is possible to model flow in state space form:

ÂS [t]≜


Â(1:P )[t]︸ ︷︷ ︸
E × P (E + 1)

IP (E + 1)− E 0︸︷︷︸
(P (E + 1)− E)× E

, CS [t]≜


M[t]︸︷︷︸

(E + 1)× (E + 1)

0︸︷︷︸
(E + 1)× (P − 1)(E + 1)

0︸︷︷︸
(P − 1)(E + 1)× (E + 1)

I(P − 1)(E + 1)

,

yS [t] ≜ [fo[t]
⊤; f̂ [t− 1 : t− P + 1]⊤]⊤, (5.5)

f̂S [t] ≜ [f̂ [t]⊤; f̂ [t− 1]⊤; . . . ; f̂ [t− P + 1]⊤]⊤,

The state space representation of the model is given as

f̂S [t] = ÂS [t]f̂S [t− 1] + vt, (5.6)

yS [t] = CS [t]f̂S [t] +wt, (5.7)

where f̂S [t] ∈ RP (E+1) is the current state vector, ÂS [t] ∈ RP (E+1)×P (E+1) is the
state transition matrix and yS [t] ∈ RP (E+1), and CS ∈ RP (E+1)×P (E+1) are the
observed signal and the observation matrix, respectively. The process noise vt and
the observation noise wt are assumed zero-mean Gaussian. The optimal estimates
of f̂S [t] can be obtained using a Kalman filter (KF) [33].
1) Prediction:

f̂St|t−1 = ÂS [t]f̂St−1|t−1, (5.8)

Pt|t−1 = ÂS [t]Pt−1|t−1Â
S [t]

⊤
+Qt, (5.9)

2) Update: The KF update of the state vector can be expressed as a convex opti-
mization problem [46], [47]:

minimize
f̂S
t|t,wt

w⊤
t Rt

−1wt+(f̂St|t − f̂St|t−1)
⊤P−1

t|t−1(f̂
S
t|t − f̂St|t−1),

subject to yS [t] = CS [t]f̂St|t +wt. (5.10)





Solving (5.10) yields the standard KF update equation.

f̂St|t = f̂St|t−1 +Kt(y
S [t]−CS [t]f̂St|t−1). (5.11)

The covariance matrix can be updated as

Pt|t = Pt|t−1 −KtC
S [t]Pt|t−1. (5.12)

3) Flow-conservation update: The KF update problem (5.10), penalized with
the flow conservation (5.2), can be written as

minimize
f̂S
t|t,wt

w⊤
t Rt

−1wt + (f̂St|t − f̂St|t−1)
⊤P−1

t|t−1(f̂
S
t|t − f̂St|t−1)

+ µf̂St|t[t]
⊤Lf̂St|t[t],

subject to yS [t] = CS [t]f̂St|t +wt, (5.13)

where

L =

[
L̃ℓ
1 0(E + 1)× (P − 1)(E + 1)

0(P − 1)(E + 1)× (E + 1) 0(P − 1)(E + 1)× (P − 1)(E + 1)

]
,

with L̃ℓ
1=[L

ℓ
1 0E ;0

⊤
E 0]∈R(E+1)×(E+1), the Laplacian Lℓ

1 padded with zero vector 0E ∈ RE

to nullify the bias component in f [t] and µ is a hyperparameter. The optimization prob-
lem (5.13) is a convex quadratic optimization problem that yields flow-conservation-
based Kalman updates. We adopt a similar strategy as followed in [47] to obtain
a closed-form solution. We first reformulate the problem (5.13) by substituting the
constraint wt = yS [t]−CS [t]f̂St|t in the objective function:

minimize
f̂S
t|t

(yS [t]−CS [t]f̂St|t)
⊤
Rt

−1(yS [t]−CS [t]f̂St|t)

+(f̂St|t − f̂St|t−1)P
−1
t|t−1(f̂

S
t|t − f̂St|t−1)

⊤ + µf [t]⊤L̃ℓ
1f [t] (5.14)

Next, we differentiate the objective function with respect to f̂St|t and equate to 0

to find the optimum f̂St|t:

−2CS [t]⊤R−1
t (yS [t]−CS [t]f̂St|t)

+ 2P−1
t|t−1(f̂

S
t|t − f̂St|t−1) + 2µLf [t] = 0 (5.15)

=⇒ f̂St|t =(CS [t]
⊤
R−1CS [t] +P−1

t|t−1 + 2µL)−1×

(CS⊤
R−1YS [t] +P−1

t|t−1f̂
S
t|t−1), (5.16)

which is the required flow-conservation-based Kalman filter solution.





KF prediction
equation (5.8),(5.9)

Flow conservation
based KF update

equation (5.12),(5.16)

Learn line graph
equation (5.19)

Signal reconstruction

Figure 5.3: Proposed algorithm.

5.4.2 Line Graph Identification

The node separable version of the model (5.4) is expressed as

fn[t] =
E+1∑
n′=1

P∑
p=1

a
(p)
n,n′ [t]fn′ [t− p] + un[t], (5.17)

where a
(p)
n,n′ is the coefficient which encodes relationship between p-th time-lagged

value of n′-th sensor and n-th sensor. Assuming P previous flows {fn[t− p]}Pp=1 ∀n
are known, an online line graph learning problem can be formulated as [23,48]

ân[t] = arg min
an∈R(E+1)P

ℓnt (an) + λ

E+1∑
n′=1

∥an,n′∥2, (5.18)

where the loss function ℓnt (an) = 1
2
[fn[t] − a⊤

n f̂
S [t − 1]]2 and an ∈ R(E+1)P is a

column vector containing all the VAR coefficients that influence the sensor n and

is obtained by stacking
{
a
(p)
n,n′

}P

p=1
∀n′ in the lexicographic order of p and n′. The

optimization problem (5.18) has a regularization term which induces group sparsity
by grouping the influence of all the time-lagged values of n′-th sensor on n-th sensor
as an,n′ = [a

(1)
n,n′ , . . . , a

(P )
n,n′ ]⊤ ∈ RP . The optimization problem has a differentiable

loss function and a nondifferentiable regularizer, so the optimization problem can





be solved using COMID. The closed-form solution for the problem is obtained as

ân,n′ [t+1]=
(
ân,n′ [t]−γtvn,n′ [t]

)[
1− γtλ

∥ân,n′ [t]−γtvn,n′ [t]∥2

]
+

, (5.19)

where [v⊤
n,1,v

⊤
n,2, . . . ,v

⊤
n,N ]

⊤ ≜ ∇aℓ
n
t (an[t]) ∈ R(E+1)P . The proposed algorithm is

illustrated in Fig. 5.3.

5.5 Summary of the Chapter

• This chapter presents an algorithm for missing data imputation for edge data.
First, the missing data is reconstructed using a structure-aware Kalman filter,
and then, the reconstructed signal is used to learn a noisy model constructed
using a line graph. The capability of the proposed algorithm for imputing both
permanently and randomly missing flow data is tested using data generated
from the EPANET software (see paper [25]).

• To the best of our knowledge, it is the first SC-based data imputation that
has been proposed for time series data.

• Even if the problem is formulated as a missing data imputation problem, the
proposed model can be extended for data denoising, time series forecasting
from partial observation, etc.







Chapter 6

Scalable and Privacy-aware Online
Learning of Nonlinear Structural
Equation Models

This chapter summarizes Paper F ([26])

6.1 Motivation

The capability of the Structural Equation model (SEM) to express directional mul-
tivariate relationships is well studied. In some real-world applications, time-lag rela-
tionships cannot be observed due to swift interactions between variables. SEMs are
adequate models in such situations where the interactions are faster than the sam-
pling time. We have discussed in the previous chapters the importance of learning
nonlinear relationships in time-varying systems. In this chapter, we propose a non-
linear time-varying SEM topology identification algorithm using a time-structured
online optimization approach. Our approach considers the evolution of the model
with time rather than the popular time-unstructured approach, which solely re-
lies on observations. A linear SEM topology identification algorithm based on a
time-structured approach has been proposed recently [49]. As opposed to existing
approaches, we do not rely solely on linear symmetric relationships based on correla-
tion. Instead, we propose a nonlinear and node-separable solution for the problem,
where our node-separability feature enhances the scalability of the algorithm com-
pared to other methods. Moreover, we utilize RF approximation, which enables
nodes to maintain their data privacy, as data sharing between nodes is not required.

6.2 Problem Formulation

Consider N interdependent time series, and let yn[t] be the value of the n-th time
series at time t. We use a nonlinear SEM with no exogenous variables to model the
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dependencies among these time series:

yn[t] =
N∑

n′=1,n′ ̸=n

fn,n′(yn′ [t]) + un[t], n = 1, . . . , N, (6.1)

where fn,n′(·) encodes the nonlinear influence of n′-th time series on n-th time series
and un[t] is the observation noise [14]. We assume that{fn,n′(·)}n,n′ belongs to an
RKHS, and identify the topology by estimating the nonlinear functions {fn,n′(·)}n,n′ .
RF approximation allows us to express fn,n′ (yn′ [τ ]) in random Fourier space with
fixed dimension:

˜̂
fn,n′ (yn′ [τ ]) = αn,n′

⊤zv,n′ [τ ], (6.2)
where αn,n′ ∈ R2(N−1)D are the parameters that determine the function and zv,n′ [τ ]

is the node-specific RF at time τ . In the following sections, we formulate an opti-
mization problem to estimate {αn,n′}n,n′ .

6.3 Topology Identification

Using (6.2), we formulate a parametric optimization problem:

{α̂n,n′}n′= arg min
{αn,n′}

1

2

T−1∑
τ=0

[
yn[τ ]−

N∑
n′=1,n′ ̸=n

αn,n′
⊤zv,n′ [τ ]

]2

+λ
N∑

n′=1,n′ ̸=n

||αn,n′ ||2, (6.3)

where the group Lasso regularizer is introduced to promote sparse solutions. We
stack the vectors αn,n′ and zv,n′ [t] along the index n′ = 1, . . . , N, n′ ̸= n to form
αn ∈ R2(N−1)D and zn[t] ∈ R2(N−1)D, and compactly write (6.3) as

α̂n = argmin
αn

Ln (αn) + λ
N∑

n′=1,n′ ̸=n

||αn,n′ ||2, (6.4)

where Ln(αn) =
1

2

T−1∑
τ=0

[
yn[τ ]−α⊤

nzn[τ ]

]2
. (6.5)

The proposed optimization problem 6.4 is in batch form, which requires a high
computational capability to be solved, and moreover, it does not allow tracking the
time-varying nature of real-world dependencies.

6.4 Time-varying Solution

Following the online optimization framework, we replace the batch loss in (6.5) with
a recursive least squared (RLS) loss using an exponential window:

ℓ̃nt (αn) = µ
t∑

τ=0

γt−τℓnτ (αn). (6.6)

where ℓnτ (αn) =
1
2
[yn[τ ]− α⊤

nzn[τ ]]
2 is the instantaneous loss function, γ ∈ (0, 1) is

the forgetting factor of the window, and µ = 1 − γ normalizes the window. The
RLS loss function can be expanded as





ℓ̃nt (αn) =
1

2
µ

t∑
τ=0

γt−τ
(
y2n[τ ] +α⊤

nzn[τ ]zn[τ ]
⊤αn

− 2yn[τ ]zn[τ ]
⊤αn

)
=
1

2
µ

t∑
τ=0

γt−τy2n[τ ] +
1

2
α⊤

nΦn[t]αn − r⊤
nαn, (6.7)

where

Φn[t] = µ

t∑
τ=0

γt−τzn[τ ]zn[τ ]
⊤, (6.8)

rn[t] = µ

t∑
τ=0

γt−τyn[τ ]zn[τ ]. (6.9)

The new optimization problem using the RLS loss becomes

argmin
αn

ℓ̃nt (αn) + λ

N∑
n′=1,n′ ̸=n

∥αn,n′∥2. (6.10)

The objective function in (6.10) has a differentiable loss but a non-differentiable
regularizer. We solve it using COMID [39]. The COMID update can be solved in
closed form for each lasso group αn,n′ ∈ αn [cf. (6.3)] using the multidimensional
shrinkage thresholding operator (MSTO) [41]:

α
(1)
n,n′ [t+ 1] = (αn,n′ [t]− νtvn,n′)×[

1− νtλ

∥αn,n′ [t]− νtvn,n′∥2

]
+

, (6.11)

where [v⊤
n,1,v

⊤
n,2, . . . ,v

⊤
n,N ]

⊤ ≜ ∇αℓ̃
n
t (αn[t]) and [x]+ = max {0, x}. The MSTO

solution (6.11) involves a one-step COMID update. For brevity of the succeeding
formulation, we represent the K-step version of (6.11) as

α(K)
n [t+ 1] = MSTO(K)(ℓ̃nt (αn[t]), νt, λ), (6.12)

which computes the K-step descent update of αn,n′ [t] as in (6.11), for n′ = 1, . . . , N, n′ ̸=

n, for the loss function ℓ̃nt (·) with the parameters νt and λ, and stacks them to form
α

(K)
n [t+ 1].

6.5 Prediction Correction

Solving the optimization problem (6.6) online is possible using a standard time un-
structured approach. Using such a method has the limitation that it neglects the
model’s evolution [50]. The optimization problem (6.6) is presented in a way that
allows time-structured approaches to be used. In this work, we use a prediction-
correction algorithm under time-structured optimization. It is necessary for the
prediction correction algorithm to have a strongly convex loss function and a prop-
erly convex regularizer. As the optimization problem (6.6) satisfies this property, we
follow such an approach for solving the required problem. The prediction correction
algorithm works in two steps: (i) Predict the yet unobserved loss function based on
available information and make an estimate based on the predicted loss function (ii)





Correct the predicted estimate whenever additional information is available in the
form of the data stream.
Prediction: The first step is to predict at time t, the yet unobserved loss function
ℓ̃nt+1 (αn) using Taylor series expansion (because the function is strongly convex):

ℓ̃n,prt+1 (αn) = αn
⊤∇ααℓ̃

n
t (αn)αn + [∇αℓ̃

n
t (αn[t])

+∇tαℓ̃
n
t (αn[t])−∇ααℓ̃

n
t (αn[t])αn[t]]

⊤αn (6.13)

In order to predict the evolution of the loss function, we require, the gradient
∇αℓ̃

n
t (αn[t]), the Hessian ∇ααℓ̃

n
t (αn[t]) and the partial derivative of ∇αℓ̃

n
t (αn[t])

w.r.t. time ∇tαℓ̃
n
t (αn[t]) which have the forms
∇αℓ̃

n
t (αn[t]) = Φn[t]αn − rn[t], (6.14)

∇ααℓ̃
n
t (αn[t]) = Φn[t], (6.15)

∇tαℓ̃
n
t (αn[t])=(Φn[t]−Φn[t−1])α−(rn[t]−rn[t−1]). (6.16)

The regularizer is time-invariant; hence the prediction step is not required for it.
Using the predicted loss (6.13) in place of (6.10), we predict the RF coefficients as

αpr
n [t+ 1] = MSTO(P )(ℓ̃n,prt+1 (αn[t]), νt, λ), (6.17)

where αpr
n [t + 1] denotes the P -step COMID descent of αn[t] under the predicted

loss. The gradient of the predicted loss involved in the MSTO operation (6.17) can
be obtained from (6.13) as

∇αℓ̃
n,pr
t+1 (αn[t]) =(2Φn[t− 1]−Φn[t− 2])αn

+ 2rn[t− 1]− rn[t− 2]. (6.18)
Correction: At time t+1, the loss ℓ̃nt+1(·) [cf. the one appearing in (6.10)] becomes
available, and the predicted RF coefficients αpr

n [t+1] are corrected via C-step COMID
descents:

αn[t+ 1] = MSTO(C)(ℓ̃nt+1(α
pr
n [t+ 1]), νt, λ), (6.19)

The illustration of the proposed algorithm for node n is shown in Fig. 6.1. As
we can see from the Fig. 6.1 model, predict an estimate based on the trajectory of
the loss function and update the prediction when new node-specific random features
are available. It is possible for the nodes to maintain nodal data privacy since they
share random features instead of actual data.

6.6 Dynamic Regret

The dynamic regret analysis is derived under the following mild assumptions:

A1) Bounded time series: there exists By > 0 such that {|yn[t]|2}n,t ≤ By ≤ ∞,

A2) Shift-invariant kernels: the kernels are shift-invariant, i.e., k(xi, xj) = k(xi −
xj).

A3) Bounded minimum eigenvalue of Φn[t] : There exists ρl > 0 such that Λmin(Φn[t]) ≥
ρl, ∀t, where Λmin(·) is the minimum eigenvalue operator.





time

Correction based on
new data: eqn. (6.19)

Prediction based on
model evolution: eqn. (6.17)

Private data

Privacy preserving 
RF

Figure 6.1: Proposed Algorithm.

A4) Bounded maximum eigenvalue: there exists L > 0 such that 2Λmax(Φn[t]) <

L < ∞, ∀t, where Λmax(·) is the maximum eigenvalue operator.

Under assumptions A1, A2, A3, and A4, the dynamic regret Rn(T ) satisfies

Rn(T ) ≤
((

1 +
L

2ρl

)√
2(N − 1)DBy + λ

√
N − 1

)
×

T
(
q(P+C)∥α∗

n[0]∥2 + q(P+C)d+ q(P+C+1)l
)
+ϵηLhT,

where η > 0 is a constant, Lh is the Lipschitz continuity parameter of function
hn
t (·, ·), d is the maximum temporal variation in the optimal solution ∥α∗

n[t]−α∗
n[t−

1]∥2, and l is the maximum error in the optimal prediction ∥α∗
n[t] − αpr∗

n [t]∥2 with
αpr∗

n [t] the optimum prediction at time t. The quantity q ∈ (0, 1) is the contraction
coefficient, and its value for various optimization techniques is provided in [51](The
proof is provided in [26]).

The dynamic regret bound is linear in time, which implies that limt→∞Rn(T )/T =

constant, where constant is the steady state error, which depends on l = ∥α∗
n[t] −

αpr∗
n [t]∥2, d = ∥α∗

n[t] − α∗
n[t − 1]∥2, and the constant ϵ ≥ 0. This means that if d

and l are low (slowly varying systems), it is possible to have a very low bound for
the asymptotic Rn(T )/T by controlling ϵ at the expense of model complexity.





6.7 Summary of the Chapter

• This chapter presents an online algorithm for SEM topology identification
using a time-structured approach, in which the evolution of the model is also
exploited along with data. The Optimization problem is formulated in a way
that is privacy-aware and scalable.

• We also derive a dynamic regret bound for the algorithm.

• We test the capability of the algorithm with both synthetic and real data (see
paper [26]).





Chapter 7

Concluding Remarks

7.1 Conclusion

This dissertation proposes various algorithms for online inference from multiple time
series. The two major areas covered in the dissertation are; (i) online nonlinear
topology identification, (ii) online missing data imputation. A detailed description
of the proposed algorithms can be found in Chapters 3, 4, 5, and 6, after providing
the motivation and background in Chapters 1 and 2.

In Chapter 3, we assume that the observed data is generated from a nonlin-
ear VAR model (2.2) and propose three algorithms (NL-TISO, RFNL-TISO, and
RFNL-TIRSO) to solve the problem of online topology identification. Motivated
by the sparse interactions in real-world networks, we formulate convex optimization
problems with differentiable loss functions and non-differentiable group Lasso regu-
larizers. Such optimization is then solved using a composite objective mirror descent
technique, resulting in online topology estimation algorithms with fixed computa-
tional complexity per iteration. We leverage the kernel methods to handle the non-
linearities. The curse of dimensionality associated with kernel methods is mitigated
using a forgetting window in NL-TISO, whereas RFNL-TISO and RFNL-TIRSO
use random feature approximation. Compared to RFNL-TIRSO, RFNL-TISO is
computationally less demanding; however, RFNL-TIRSO is more resilient to noise.
The strong convexity of the RFLN-TIRSO loss function, allows us to derive an up-
per bound for the dynamic regret and conduct a theoretical investigation into the
convergence assurance.

In Chapter 4, we propose a kernel-based online framework using random feature
approximation to jointly estimate nonlinear VAR topologies and missing data from
partial observations of streaming multivariate time series data. We convexify the
joint optimization problem and solve it using a two-step approach: (i) estimate the
signal based on observations and the current model, and (ii) update the model based
on the estimated signals.

Chapter 5 presents a novel online algorithm for imputing missing data in net-
works with edge-defined signals. We use a bi-level optimization scheme that takes
advantage of the known physical structure of the network. Our proposed algo-
rithm involves two steps: (i) a sparse line graph identification step obtained by
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Figure 7.1: Key features of the algorithms proposed in Chapters 3-6.

solving a group-Lasso-based optimization framework via composite objective mirror
descent to exploit the spatio-temporal dependencies among the edge signals; and
(ii) a Kalman-filtering-based signal reconstruction step developed using the simpli-
cial complex (SC) formulation to exploit the flow conservation of the edge signals.
Unlike the preceding chapters, this chapter focuses on signals defined on edges.
Furthermore, the SC formulation employed in this chapter gives the algorithm the
capacity to integrate flow-conservation properties of edge signals, assisting in imput-
ing permanently missing signals, which is not possible with the imputation schemes
proposed in Chapter 4.

In Chapter 6, we assume that the dependencies are instantaneous and propose
an online algorithm using the RF-based kernel formulation for estimating nonlinear
SEM topology. In our proposed method, data is used for both learning the model
and tracking its evolution. The SEM parameters are updated using the predicted
model parameters and the new data samples through a time-structured prediction-
correction strategy. Our proposed approach possesses three key properties. First,
it enables node-separable learning, which promotes scalability in large networks.
Second, it provides privacy in SEM learning by substituting the actual data with
node-specific Random Features (RF). Third, its performance can be characterized
theoretically via a dynamic regret analysis, demonstrating that a linear dynamic
regret bound can be achieved under mild assumptions.

A summary of the key differences between the algorithms proposed in each chap-
ter is provided in Fig. 7.1.

7.2 Future Work

• The existing literature mostly assumes the underlying network has a graph
structure with pairwise relationships. In many real-world networks like the
brain network, gene regulatory network, etc; the interactions are higher order;
identifying these higher-order interactions and representing the networks in





the form of hypergraphs or simplicial complex (SC) is a challenging problem,
and it comes as a natural extension to my Ph.D. work.

• Inference over higher-order network: Representing networks as simplicial com-
plexes (SC) offers an efficient way to capture higher-order interactions and uti-
lize algebraic topological tools for network inference. By incorporating context
through the SC representation, tasks such as denoising, missing data imputa-
tion, and time series forecasting in flow networks (e.g., transportation, water,
and brain information flow networks) can be improved by biasing solutions
based on existing knowledge, such as divergence and curl.

• Controller design for the graph-structured network: Apart from signal process-
ing over networks, I have a deep interest in control theory. In graph-connected
networks, it is possible to manipulate the behavior of entire nodes by control-
ling a subset of nodes, provided the graph is fully connected. Optimal control
strategies for such networks have applications in various fields, including epi-
demic control, stock market management, and data-driven control for sensor
networks.

• Graph-informed Reinforcement learning (RL): A research area that I find par-
ticularly interesting is the development of interpretable graph-informed rein-
forcement learning (RL) algorithms. This is a promising area for designing
control strategies in large-scale dynamical systems that involve subsystems
with intricate spatio-temporal interactions, such as wind farms. Traditionally,
researchers and engineers learn the interactions within the dynamical systems
using physics-based models (e.g., computational fluid dynamics model). How-
ever, such models are often computationally expensive, restricting their use in
RL algorithms for real-time applications. I intend to investigate the possibil-
ity of designing RL algorithms that utilize computationally light online graph
learning techniques. This would improve control strategies by exploiting the
subsystem interactions embedded in the graph.
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Online Non-linear Topology Identifi-
cation from Graph-connected Time Se-
ries

R. Money, J. Krishnan, B. Beferull-Lozano

Abstract: Estimating the unknown causal dependencies among
graph-connected time series plays an important role in many applications,
such as sensor network analysis, signal processing over cyber-physical
systems, and finance engineering. Inference of such causal dependencies,
often know as topology identification, is not well studied for non-linear
non-stationary systems, and most of the existing methods are batch-based
which are not capable of handling streaming sensor signals. In this pa-
per, we propose an online kernel-based algorithm for topology estimation
of non-linear vector autoregressive time series by solving a sparse online
optimization framework using the composite objective mirror descent
method. Experiments conducted on real and synthetic data sets show
that the proposed algorithm outperforms the state-of-the-art methods
for topology estimation.

A.1 Introduction

Recent advancements in cyber-physical systems (CPS) and sensor networks call for
advanced research on data analysis of structured or inter-linked spatio-temporal sig-
nals. Such structured signals can be meaningfully represented using graph-connected
time series. Graph representation is a prevalent tool to model the inter-dependency
of data [52], and it plays a vital role in countless practical applications such as time
series prediction [53], change point detection [54], data compression [55], etc. Many
of the functional dependencies in real-world time series are causal [56], and infer-
ring the causal dependencies, which we term as topology identification, generates a
more informative representation of the multivariate data. These dependencies may
not be physically observable in some cases; instead, there can be logic connections
between data nodes that are not physically connected due to control mechanisms,
and inferring such typologies is a challenging task. Linear models, such as structural
equation models (SEM), vector auto-regressive (VAR) models, and structural vector
auto-regressive (SVAR) models [57] are widely used to study the causal dependencies
among the graph-connected time series. SEM being a memory-less model, does not
accommodate the temporal dependencies among the data, whereas the VAR is an





ideal choice for modeling the time-lagged interactions; however, it fails to capture
the instantaneous causal relations. SVAR is a slightly modified model that uni-
fies both SEM and VAR. The choice of the model depends on the physical nature
of the system; for instance, SVAR is a useful model for brain connectivity analy-
ses. However, VAR deserves special attention since the nodal dependencies on many
practical sensor networks (e.g., water networks, oil and gas networks) involve mainly
time-lagged interactions.

A significant challenge connected to topology identification is that the real-world
systems are usually non-stationary, meaning that the statistical properties of depen-
dencies vary over time. The commonly used batch-based off-line methods [11] have
two major drawbacks: i) they are not effective in tracking the topology of non-
stationary systems and ii) from a pure computational point of view, they suffer
from processing large batch of data; hence, it is necessary to develop online estima-
tion algorithms [48]. Online topology estimation algorithms have been developed
for linear models, meaning that the causal dependencies among the data time-series
hold a linear relation. For instance, in [48], a novel online linear topology identifi-
cation algorithm have been proposed by minimizing a group-lasso-regularized [58]
objective function.

Although the linear topology identification is a well-studied problem, many prac-
tical systems have non-linear dependencies [59]. As an example, in a smart water
network, the causal dependencies are non-linear due to various control systems, sat-
uration in valves or pumps, and non-linear physical equations governing the system.
Similarly, essential non-linear dependencies are present in most of the real-world
systems such as brain networks and finance networks. The ability of nonparametric
techniques [60] and deep neural networks to learn non-linear functions is well studied,
which has been exploited also in topology identification [9], [11], [14]. However, once
again most of these algorithms are batch-based. Kernel-based representations are
powerful tools to model the non-linear dependencies [15], which can be exploited
to develop algorithms for online non-linear topology identification. For instance,
in [61], authors have proposed an online algorithm based on functional gradient
descent by considering a SVAR model. In [12], authors used a more general non-
additive model for topology identification and a dictionary-based approach to solve
the computational complexity imposed by the kernels. But [12] restricts the choice
of the kernel functions to be twice differentiable to learn a sparse topology.

This paper proposes an online topology identification algorithm based on a non-
linear VAR model using kernels. The proposed algorithm learns sparse and time-
varying non-linear typology by solving an online optimization framework using com-
posite objective iterations [39]. We provide strong empirical evidence using real and
synthetic data sets, which show that the proposed algorithm outperforms its state-
of-the-art counterpart.





A.2 Problem Formulation

Consider a collection of N time series, connected by a directed graph and let yn[t]

be the value of time series at time t = 0, 1, . . . , T − 1 measured at node 1 ≤ n ≤ N .
A P -th order non-linear VAR model of the time series can be formulated as

yn[t] =
N∑

n′=1

P∑
p=1

a
(p)
n,n′f

(p)
n,n′(yn′ [t− p]) + un[t], (A.1)

where f (p)
n,n′ is a non-linear function that captures the causal influence of the p-lagged

data at node n′ on the node n, a(p)n,n′ is the corresponding entry of the graph adjacency
matrix, and un[t] is the measurement noise.Referring to (A.1), topology identifica-
tion can be defined as the estimation of the non-linear dependencies expressed by{
a
(p)
n,n′f

(p)
n,n′(.)

}P

p=1
for n = 1, 2, . . . , N from the observed time series {yn[t]}Nn=1.

To circumvent the challenges in topology identification, imposed by the non-
linear dependencies, we assume that the functions f

(p)
n,n′(.) in (A.1) belong to a re-

producing kernel Hilbert space (RKHS):

H(p)
n′ :=

{
f
(p)
n,n′ |f (p)

n,n′ (y) =
∞∑
t=0

β
(p)
n,n′,t κ

(p)
n′ (y, yn′ [t− p])

}
, (A.2)

where κ
(p)
n′ : R × R → R is the Hilbert space basis function, often known as the

kernel, which measures the similarities between the arguments of the basis function.
Using (A.2), a function f

(p)
n,n′ evaluated at y can be represented as the linear weighted

sum of the similarities between y and the data samples {yn′ [t− p]}t=∞
t=0 , where the

weights are denoted by β
(p)
n,n′,t. We assume that the Hilbert space is characterized

by the inner product ⟨κ(p)
n′ (y, x1), κ

(p)
n′ (y, x2)⟩ :=

∑∞
t=0 κ

(p)
n′ (y[t], x1)κ

(p)
n′ (y[t], x2), with

the kernel having the reproducible property ⟨κ(p)
n′ (y, x1), κ

(p)
n′ (y, x2)⟩ = κ

(p)
n′ (x1, x2).

Such a Hilbert space with the reproducing kernel constitutes an RKHS with norm
∥f (p)

n,n′∥2H(p)

n′
=
∑∞

t=0

∑∞
t′=0 β

(p)
n,n′,t β

(p)
n,n′,t′ κ

(p)
n′ (yn[t], yn[t

′]). We refer to [37] for further

reading on RKHS.
The least-squares (LS) estimate

{
f
(p)
n,n′ ∈ H(p)

n′ ;n′ = 1, . . . , N, p = 1, . . . , P
}

for a par-
ticular node is obtained by solving the following non-parametric optimization prob-
lem: {

f̂
(p)
n,n′

}
n′,p

= arg min{
f
(p)

n,n′∈H
(p)

n′

} 1

2

T−1∑
τ=P

[
yn[τ ]−

N∑
n′=1

P∑
p=1

a
(p)
n,n′f

(p)
n,n′(yn′ [τ − p])

]2
. (A.3)

It is to be noted that, in (A.3), the functions {f (p)
n,n′} belongs to the RKHS, defined

in (A.2), which is an infinite dimensional space. However, by resorting to the Rep-
resenter Theorem [38], the solution of (A.3) can be written using a finite number of
data samples:

f̂
(p)
n,n′ (yn′ [τ − p]) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)κ

(p)
n′ (yn′ [τ − p]), yn′ [t− p]) . (A.4)





Using (A.4), (A.3) can be reformulated as a parametric optimization problem in-
volving the available data samples, as follows:{

α̂
(p)
n,n′,t

}
n′,p,t

= arg min{
α
(p)

n,n′,t

}Ln
(
α
(p)
n,n′,t

)
, (A.5)

where

Ln
(
α
(p)
n,n′,t

)
:=

1

2

T−1∑
τ=P

[
yn[τ ]−

N∑
n′=1

P∑
p=1

p+T−1∑
t=p

α
(p)
n,n′,tκ

(p)
n′ (τ, t)

]2
, (A.6)

α
(p)
n,n′,t := a

(p)
n,n′β

(p)
n,n′,(t−p), (A.7)

and

κ
(p)
n′ (τ, t) := κ

(p)
n′ (yn′ [τ − p]), yn′ [t− p]) . (A.8)

We stack the entries of
{
α
(p)
n,n′,t

}
and

{
κ
(p)
n′ (τ, t)

}
in the lexicographic order of the

indices p, n′, and t to obtain the vectors αn ∈ RPNT and κτ ∈ RPNT , respectively,
and rewrite (A.5) as

α̂n = argmin
αn

Ln (αn) , (A.9)
where

Ln(αn) =
1

2

T−1∑
τ=P

[
yn[τ ]−α⊤

nκτ

]2
(A.10)

Further, to avoid overfitting and to enforce group sparsity, we propose a regularized
optimization framework:

α̂n = argmin
αn

Ln (αn) + λ
N∑

n′=1

P∑
p=1

∥α(p)
n,n′∥2, (A.11)

where λ ≥ 0 is the regularization parameter and α
(p)
n,n′ = (α

(p)
n,n′,0, α

(p)
n,n′,1, . . . , α

(p)
n,n′,T ) ∈

RT . The second term in (A.11) is a group-lasso regularizer, which promote a group-
sparse structure in α

(p)
n,n′ , thereby exploiting the prior information that the number

of causal dependencies are typically small for real-world graph-connected time series.
The parametric optimization given by (A.11) is a batch (offline) solver meaning

that to solve (A.11), we require all data samples {yn[τ ]}T−1
τ=P to be available. Such

an offline approach has two major drawbacks: i) it is not suitable for real-time
applications since the solver has to wait for the entire batch of data and ii) it
suffers from high computation complexity and memory requirements which grows
super linearly with the batch size. In the following section, we propose an online
algorithm to estimate the coefficients αn in (A.11).

A.3 Online topology estimation

First replace the original loss function Ln(αn) in (A.11) with the instantaneous loss
function lnτ (αn) =

1
2
[yn[τ ]−α⊤

nκτ ]
2:

α̂n = argmin
αn

lnτ (αn) + λ
N∑

n′=1

P∑
p=1

∥α(p)
n,n′∥2. (A.12)

A straightforward way to solve (A.12) is by applying the online subgradient de-
scent (OSGD). However, it is to be remarked that the regularizer in (A.12) is non-





differentiable and OSGD fails to provide sparse α
(p)
n,n′ since it linearizes the entire

instantaneous objective function in (A.12) [48].To mitigate this issue, we use the
composite objective mirror descent (COMID) [39] algorithm. The online COMID
update can be written as

αn[t+ 1] = argmin
αn

J
(n)
t (αn), (A.13)

where
J
(n)
t (αn) ≜ ∇ℓnt (α̃n[t])

⊤ (αn − α̃n[t])

+
1

2γt
∥αn − α̃n[t]∥22 + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2. (A.14)

In (A.14), α̃n[t] ∈ RPN(t+1) is defined as [αn[t];0], where αn[t] ∈ RPNt is the value
of αn estimated by processing the samples up to time t. The zero vector 0 ∈ RPN

is appended as an initialization for the coefficients of the new elements of the kernel
vector corresponding to the (t + 1)th data sample. In (A.14), the first term is
the gradient of the loss function and the second term is the Bregman divergence
B(αn, α̃n[t]) = 1

2
∥αn − α̃n[t]∥22, chosen in such a way that the COMID update

has a closed form solution [40] and γt is the corresponding step size. Bregman
divergence ensures that αn[t+ 1] is close to α̃n[t], in line with the assumption that
the topology changes smoothly. The third term is a sparsity enforcing regularizer,
in order to promote sparsity in the updates. The gradient in (A.14) is evaluated as

vn[t] := ∇ℓnt (α̃n[t]) = κτ

(
α⊤

nκτ − yn[τ ]
)

(A.15)
Expanding the objective function in (A.14) by omitting the constants leads to the
following formulation:

J
(n)
t (αn) ∝

α⊤
nαn

2γt
+α⊤

n

(
vn[t]−

1

γt
α̃n[t]

)
+ λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2

=
N∑

n′=1

P∑
p=1

[
α

(p)
n,n′

⊤
α

(p)
n,n′

2γt
+α

(p)
n,n′

⊤
(
v
(p)
n,n′ [t]−

1

γt
α̃

(p)
n,n′ [t]

)
+ λ∥α(p)

n,n′∥2
]
. (A.16)

Note that (A.16) is separable in n′, m and p. Using (A.16), a closed form solution of
(A.13) can be obtained in terms of multidimensional shrinkage-thresholding operator
[41] as

α
(p)
n,n′ [t+ 1] =

(
α̃

(p)
n,n′ [t]− γtv

(p)
n,n′ [t]

)
×[

1− γtλ ⊮ {n ̸= n′}
∥α̃(p)

n,n′ [t]− γtv
(p)
n,n′ [t]∥2

]
+

, (A.17)

where [x]+ = max {0, x} and

⊮ {n ̸= n′} =

{
1, if n ̸= n′

0, n = n′.

The term α̃
(p)
n,n′ [t]− γtv

(p)
n,n′ [t] in (A.17) performs a stochastic gradient update of

α
(p)
n,n′ in a direction that decreases the instantaneous loss function lnτ (αn) and the

second term in (A.17) promotes group sparsity of α(p)
n,n′ . The function ⊮ {n ̸= n′}

in the second term prevents the enforcement of sparsity of self-connections of the





graph. One major issue with (A.17) is that the size of v(p)
n,n′ [t] becomes prohibitive

as t increases. To mitigate this issue we select the recent Tw data points to calculate
(A.17). For the experiments presented in this paper, we heuristically fix the value
of Tw to 2000. Although this sub-optimal approach affects the performance of the
algorithm, we are getting quite competitive empirical performance as shown later in
the experiment section.

The proposed algorithm, termed as Nonlinear Topology Identification via Sparse
Online learning (NL-TISO), is summarized in Algorithm 5.

Algorithm 5: NL-TISO Algorithm

Result: α
(p)
n,n′ , for n, n′ = 1, .., N and p = 1, .., P

Store {yn[t]}Pt=1,
Initialize λ, γ (heuristically chosen) and kernel parameters depending on
the type of the kernel.

for t = P, P + 1, . . . do
Get data samples yn[t], ∀n and compute κτ

for n = 1, . . . , N do
compute vn[t] using (A.15)
for n′ = 1, . . . , N do

compute α
(p)
n,n′ [t+ 1] using (A.17)

end
end

end

A.4 Experiments

In this section, we illustrate the effectiveness of the proposed NL-TISO algorithm
using synthetic and real data. We compare our results with two state-of-the-art
topology estimation algorithms: i) TIRSO [48]- a recent online topology estimation
algorithm based on COMID update developed for linear causal dependencies and ii)
functional gradient descent (FGD) algorithm [61]- an online kernal based topology
estimation algorithm based on functional gradient descent updates

A.4.1 Experiments using synthetic data

A.4.1.1 Identifying causal dependencies

We generated graph connected time series, based on the non-linear VAR model (C.1)
with parameter values N = 5, T = 3000, and P = 2. The entries of the graph adja-
cency matrix

{
a
(p)
n,n′

}
are drawn from a Gaussian distribution N (8, 3) with an edge

probability pe = 0.1. The initial P samples of the time series are drawn randomly
from a Gaussian distribution N (0, 0.1) and the remaining samples are generated
using model (C.1). A Gaussian kernel centered at the dependent data points and





having variance 0.03 is used to model the non-linear dependencies in (C.1), where
the kernel coefficients β

(p)
n,n′ are drawn from a zero mean Gaussian distribution with

variance 0.03. The noise un[t] is generated from a zero mean Gaussian distribution
with variance 0.01. The causal dependencies

{
α

(p)
n,n′ [t]

}
are estimated using the

Figure A.1: Causal dependencies (normalized) estimated using different algorithms
compared with the true dependency.

Figure A.2: Reconstruction of true signal in node 1 using estimated coefficients.

Figure A.3: ISE comparison of NL-TISO and TIRSO when the signal to be recon-
structed is rapidly varying.

proposed NL-TISO algorithm using Gaussian kernel having variance 0.1 and with
hyper-parameters λ = 0.1 and γ = 10. Since a stationary topology is considered in





this experiment, we compute the ℓ2 norms b̂
(p)
n,n′ = ∥α(p)

n,n′ [t]∥2 at t = T and arrange
them in a matrix structure similar to the graph adjacency matrix to visualize the
causal dependencies. A similar strategy is adopted for the FGD and the TIRSO
algorithms, and the estimated adjacency matrix is used to visualize the dependen-
cies. The true and the estimated dependencies are shown in Fig. B.1, in which for
each subplot, the 5× 5 dependency matrices corresponding to p = 1 and 2 are con-
catenated, resulting in a size 10× 5 size matrix. From Fig. B.1, it is clear that the
NL-TISO algorithm outperforms others in identifying the causal relationship.

A.4.1.2 Signal Reconstruction Experiment

In this experiment, using the inferred causal dependencies, we reconstruct the time
series and compare it with the true signals. In contrary to the previous experiment,
a dynamic graph-topology is considered here using a time varying adjacency matrix

a
(p)
n,n′ [t+ 1] = a

(p)
n,n′ [t] + 0.01 sin(0.03 ∗ t) (A.18)

with a random initialization. We use a different non-linear dependency compared
to the previous experiment to generate data:

f
(p)
n,n′(x) = 0.4 sin(πx2) + 0.3 sin(2πx) + 0.3 sin(3πx). (A.19)

Graph-connected time series (N = 5) are generated using (C.1), (A.18), and (A.19)
in a similar manner as described in A.4.1.1.

The causal dependencies
{
α

(p)
n,n′

}
are estimated from the time series using NL-

TISO with a Gaussian kernel having variance 0.02 and with hyper-parameters λ =

10−6 and γ = 10 . Using the same Gaussian kernel and the estimated dependencies,
the time series are reconstructed. In Fig. A.2, a visual comparison of both the true
and reconstructed time series at one of the five nodes is shown. We observed that
the reconstructed signal is very close to the true one, although a Gaussian-based
kernel is used to infer the non-linearity imposed by (A.19), which in turn indicates
that kernel-based representations are a powerful tool in handling the non-linear
causal dependencies. Further, the signal reconstruction quality of the state-of-the-
art algorithms TIRSO [48] and FGD [61] are compared using instantaneous squared
error, which is defined as ISE(t) = (yn(t)− ŷn(t))

2 and is plotted in Fig. A.3, which
concludes that NL-TISO outperforms TIRSO by a considerable margin for the non-
linear signal models. We have also observed that the ISE of the FGD algorithm is
much worse than NL-TISO and TIRSO and is not shown in the figure.

A.4.2 Experiments using Real Data

In this section, we present experiments using real data collected from Lundin’s
offshore oil and gas (O&G) platform Edvard-Grieg1. We consider a directed graph
with 24 nodes; each node corresponds to temperature (T), pressure (P), or oil-level
(L) sensors. These sensors are placed in the separators of decantation tank that
separates oil, gas, and water. The time series are obtained by uniformly sampling
the sensor readings and applying normalization to have zero mean and unit sample

1https://www.lundin-energy.com/





variance. These time series are expected to exhibit causal dependencies due to the
underlying physical coupling arising from the pipeline connections and the control
systems.

The causal dependencies are learned using NL-TISO with a Gaussian kernel
having a variance of 0.1 and with hyper parameter values λ = 0.1 and γ = 10. In
Fig. A.4, we show one portion of the reconstructed signal corresponding to sensor-1,
which is a pressure sensor, and it can be observed that the reconstructed signal is
very close to the true sensor reading. Further, in Fig.B.6, we compare the recon-
struction error of NL-TISO with TIRSO in terms of ISE for sensor-1 signal samples.
We observe that NL-TISO outperforms TIRSO by a considerable margin, which sup-
ports the effectiveness of proposed algorithm in learning real world topology. The
causal dependencies among the 24 time series obtained by averaging the NL-TISO
estimates for one hour is shown in Fig. B.7.

Figure A.4: Reconstruction of sensor-1 signal with sampling time 5s from Lundin
data using estimated causal dependencies.

Figure A.5: ISE comparison of NL-TISO and TIRSO using real data.

A.5 Conclusion

An online algorithm for non-linear topology identification from graph-connected
time-series was proposed in this paper. Most of the state-of-the-art algorithms





Figure A.6: Causality graph in oil and gas plant estimated by NL-TISO.

solve the topology estimation problem by assuming a linear and stationary topol-
ogy. However, many real-world networks are highly dynamic and non-linear. The
proposed algorithm, NL-TISO, is devised based on kernel representation to handle
the non-linearities of the real-world sensor networks. Further, using a composite
objective mirror descent method, NL-TISO estimates sparse topology in an online
fashion aiming at dynamic system models. Qualitative and quantitative empirical
evidence provided in the paper using real and synthetic data show that NL-TISO is
an effective algorithm to infer the causal dependencies of real-world sensor networks.
We identify two major limitations of the proposed framework: i) the computational
complexity and memory requirements of kernel-based representations increases con-
siderably with number of data points which is handled in NL-TISO by considering
a time window to select recent samples and ii) the variance of the Gaussian ker-
nels used in NL-TISO are heuristically chosen. These limitations could be handle
by further research on dictionary-based multi-kernel representations, which will be
devoted to our future work.
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Random Feature Approximation for
Online Nonlinear Graph Topology Iden-
tification

R. Money, J. Krishnan, B. Beferull-Lozano

Abstract: Online topology estimation of graph-connected time se-
ries is challenging, especially since the causal dependencies in many real-
world networks are nonlinear. In this paper, we propose a kernel-based
algorithm for graph topology estimation. The algorithm uses a Fourier-
based Random feature approximation to tackle the curse of dimension-
ality associated with the kernel representations. Exploiting the fact that
the real-world networks often exhibit sparse topologies, we propose a
group lasso based optimization framework, which is solve using an it-
erative composite objective mirror descent method, yielding an online
algorithm with fixed computational complexity per iteration. The ex-
periments conducted on real and synthetic data show that the proposed
method outperforms its competitors.

B.1 Introduction

The amount of data generated from interconnected networks such as sensor net-
works, financial time-series, brain-networks, etc., are increasing rapidly. Extraction
of meaningful information from such interconnected data, represented in the form of
a graph can have many practical applications such as, signal denoising [62], change
point detection [54], time series prediction [53], etc. Many of the functional relation-
ships in such networks are causal and identification of this causal graph structure is
termed topology identification. Many real world causal systems can be well described
using vector autoregressive model (VAR) as naturally most of the dependencies are
time-lagged in nature. Moreover under causal sufficiency, VAR causality implies
well known Granger causality [63].

Topology identification based on the linear VAR model has been well-studied.
In [48], an efficient way to estimate linear VAR coefficients from streaming data is
proposed. However, such linear VAR models fail to capture the real-world nonlinear
dependencies.A novel nonlinear VAR topology identification is proposed in [11] in
which, the kernels are used to linearize the nonlinear dependencies by mapping them
to a higher-dimensional Hilbert space. However, being a batch-based approach, [11]
is computationally expensive and is not suitable for identifying the time-varying





topologies.
The above shortcomings are tackled by kernel-based online algorithms [61], [21].

In [21], sparse VAR coefficients are recursively estimated using a composite objective
mirror decent (COMID) approach, whereas [61] uses functional stochastic gradient
descent (FSGD), followed by soft-thresholding. However, the kernel-based represen-
tations have a major drawback of unaffordable growth of computational complexity
and memory requirement, which is commonly known as the “curse of dimensional-
ity". Both [61] and [21] propose to circumvent this issue by restricting the numeric
calculation to a limited number of time-series samples using a time window, which
results in suboptimal performance.

A standard procedure to address the curse of dimensionality is to invoke the ker-
nel dictionaries [64]. Often, the dictionary elements are selected based on a budget
maintaining strategy. In large-scale machine learning problems, the dictionary size
can go prohibitively high in order to maintain the budget. Recently, the random
feature (RF) approximation [16] techniques are gaining popularity in approximat-
ing the kernels, which are shown to yield promising results compared to the budget
maintaining strategies [16, 42].

In this work, we use RF approximation to avoid the curse of dimensionality in
learning nonlinear VAR models. We approximate shift-invariant Gaussian kernels
using a fixed number of random Fourier features. The major contributions of this
paper are i) formulation of a kernel-based optimization framework in the function
space, ii) reformulation of i) to a parametric optimization using RF approximation,
and iii) an online algorithm to estimate the sparse nonlinear VAR coefficients us-
ing COMID updates. We provide numerical results showing the proposed method
outperforms the state-of-the-art topology identification algorithms.

B.2 Kernel Representation

Consider a multi-variate time series with N nodes. Let yn[t] be the value of time
series at time t = 0, 1, . . . , T − 1 observed at node 1 ≤ n ≤ N . A P -th order non-
linear VAR model assuming additive functional dependencies can be formulated as

yn[t] =
N∑

n′=1

P∑
p=1

a
(p)
n,n′f

(p)
n,n′(yn′ [t− p]) + un[t], (B.1)

where f (p)
n,n′ is the function that encodes the nonlinear causal influence of the p-lagged

data at node n′ on the node n, a(p)n,n′ is the corresponding entry of the graph adja-
cency matrix, and un[t] is the observation noise. Considering the model (B.1), topol-
ogy identification can be defined as the estimation of the functional dependencies{
a
(p)
n,n′f

(p)
n,n′(.)

}P

p=1
for n = 1, 2, . . . , N from the observed time series {yn[t]}Nn=1.

We assume that the functions f (p)
n,n′ in (B.1) belong to a reproducing kernel Hilbert

space (RKHS):

H(p)
n′ :=

{
f
(p)
n,n′ | f (p)

n,n′ (y) =
∞∑
t=0

β
(p)
n,n′,t κ

(p)
n′ (y, yn′ [t− p])

}
, (B.2)





where κ(p)
n′ : R×R → R is the kernel associated with the Hilbert space. The kernel

measures the similarity between data points y and yn′ [t − p]. Referring to (B.2),
evaluation of the functional f (p)

n,n′ at y can be represented as the linear combination
of the similarities between y and the data points {yn′ [t− p]}t=∞

t=0 , with weights β(p)
n,n′,t.

The inner product, ⟨κ(p)n′ (y, x1), κ
(p)
n′ (y, x2)⟩ :=

∑∞
t=0 κ

(p)
n′ (y[t], x1)κ

(p)
n′ (y[t], x2), is defined

in the Hilbert space using kernels with reproducible property ⟨κ(p)n′ (y, x1), κ
(p)
n′ (y, x2)⟩ =

κ
(p)
n′ (x1, x2). Such a Hilbert space with the reproducing kernels is termed as RKHS and

the inner product induces a norm, ∥f (p)
n,n′∥2H(p)

n′
=
∑∞

t=0

∑∞
t′=0 β

(p)
n,n′,t β

(p)
n,n′,t′ κ

(p)
n′ (yn[t], yn[t

′]).

We refer to [37] for further reading on RKHS.
For a particular node n, the estimates of

{
f
(p)
n,n′ ∈ H(p)

n′

}
n′,p

are obtained by solving the

functional optimization problem:

{
f̂
(p)
n,n′

}
n′,p

= arg min{
f
(p)

n,n′∈H
(p)

n′

} 1

2

T−1∑
τ=P

[
yn[τ ]−

N∑
n′=1

P∑
p=1

a
(p)
n,n′f

(p)
n,n′(yn′ [τ − p])

]2
. (B.3)

It is to be noted that in (B.3), the functions {f (p)
n,n′} belong to the RKHS defined in

(B.2), which is an infinite dimensional space. However, by resorting to the Representer
Theorem [38], the solution of (B.3) can be written using a finite number of data samples:

f̂
(p)
n,n′ (yn′ [τ − p]) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)κ

(p)
n′ (yn′ [τ − p]), yn′ [t− p]) . (B.4)

Notice that the number of coefficients required to express the function increases with the
number of data samples. In the recent works [61], [21], this problem is solved by using a
time window to fix the number of data points, resulting in suboptimality. However, in this
work in align with [42] and [43], we use RF approximation to tackle the dimensionality
growth.

B.3 Random Feature Approximation
To invoke RF approximation, we assume the kernel to be shift-invariant, i.e., it satisfies
the property κ

(p)
n′ (yn′ [τ − p]), yn′ [t− p]) = κ

(p)
n′ (yn′ [τ − p])− yn′ [t− p]). Bochner’s theo-

rem [30] states that every shift-invariant kernel can be represented as an inverse Fourier
transform of a probability distribution. Hence the kernel evaluation can be expressed as

κ
(p)
n′ (yn′ [τ − p]), yn′ [t− p]) =

∫
π
κ
(p)

n′
(v) ejv(yn′ [τ−p]−yn′ [t−p])dv

= Ev[e
jv(yn′ [τ−p]−yn′ [t−p])], (B.5)

where π
κ
(p)

n′
(v) is the probability density function which depends on type of the kernel, and

v is the random variable associated with it. If sufficient amount of iid samples {vi}Di=1 are
collected from the distribution π

κ
(p)

n′
(v), the real ensemble mean in (B.5) can be expressed

as a sample mean:

κ̂
(p)
n′ (yn′ [τ − p]), yn′ [t− p]) =

1

D

D∑
i=1

ejvi(yn′ [τ−p])−yn′ [t−p]), (B.6)





irrespective of the distribution π
κ
(p)

n′
(v). Note that the unbiased estimate of kernel evalu-

ation in (B.6) involves a summation of fixed D number of terms. In general, computing
the probability distribution corresponding to a kernel is a difficult task. In this work the
kernel under consideration is Gaussian; for a Gaussian kernel kσ with variance σ2, it is
well known that the Fourier transform is a Gaussian with variance σ−2. Considering the
real part of (B.6), which is also an unbiased estimator, (B.5) can be approximated as

κ̂
(p)
n′ (yn′ [τ − p], yn′ [t− p]) = zv (yn′ [τ − p])⊤ zv (yn′ [t− p]) , (B.7)

where zv(x) =
1√
D
[sin v1x, . . . , sin vDx, cos v1x, . . . , cos vDx]

⊤. (B.8)

Subsisting (B.7) in (B.4), we obtain a fixed dimension (2D terms) approximation of
the function f̂

(p)
n,n′ :

ˆ̂f
(p)
n,n′ (yn′ [τ − p])) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)zv (yn′ [τ − p])⊤ zv (yn′ [t− p])

= θ
(p)
n,n′

⊤
zv (yn′ [τ − p]) , (B.9)

where θ
(p)
n,n′

⊤
=
∑p+T−1

t=p β
(p)
n,n′,(t−p)zv (yn′ [τ − p])⊤ = [θ

(p)
n,n′,1, . . . , θ

(p)
n,n′,2D] ∈ R2D. For

the sake of clarity, in the succeeding steps, we define the following notation:

α
(p)
n,n′ = [α

(p)
n,n′,1, . . . , α

(p)
n,n′,2D]

⊤ ∈ R2D, (B.10)

zv (yn′ [τ − p]) = [z
(p)
n′,1 (τ) , . . . z

(p)
n′,2D (τ)]⊤ ∈ R2D, (B.11)

where α
(p)
n,n′,d = θ

(p)
n,n′,da

(p)
n,n′ . The functional optimization (B.3) is reformulated as a

parametric optimization problem using (B.9):{
α̂
(p)
n,n′,d

}
n′,p,d

= arg min{
α
(p)

n,n′,d

}Ln
(
α
(p)
n,n′,d

)
, (B.12)

where

Ln
(
α
(p)
n,n′,d

)
:=

T−1∑
τ=P

1

2

[
yn[τ ]−

N∑
n′=1

P∑
p=1

2D∑
d=1

α
(p)
n,n′,d z

(p)
n′,d (τ)

]2
. (B.13)

For convenience, optimization parameters
{
α
(p)
n,n′,d

}
and

{
z
(p)
n′,d (τ)

}
are stacked in

the lexicographic order of the indices p, n′, and d to obtain the vectors αn ∈ R2PND

and zτ ∈ R2PND, respectively, and (B.12) is rewritten as

α̂n = argmin
αn

Ln (αn) , (B.14)

where Ln(αn) =
1

2

T−1∑
τ=P

[
yn[τ ]−α⊤

nzτ

]2
(B.15)

Now, in order to avoid overfitting, we propose a regularized optimization framework:

α̂n = argmin
αn

Ln (αn) + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2, (B.16)





where λ ≥ 0 is the regularization parameter and α
(p)
n,n′ = (α

(p)
n,n′,1, α

(p)
n,n′,2, . . . , α

(p)
n,n′,2D) ∈

R2D. The second term in (B.16) is a group-lasso regularizer, which promote a group-
sparse structure in α

(p)
n,n′ , supported by the assumption that most of the real world

dependencies are sparse in nature.
However, notice that the batch formulation in (B.16) has some significant limita-

tions: i) requirement of complete batch of data points before estimation, ii) inability
to track time varying topologies, and iii) explosive computational complexity when
T is large even if RF approximation is used. To mitigate these problems, we adopt
an online optimization strategy, which is explained in the following section.

B.4 Online Topology Estimation

In this case, we replace the batch loss function Ln(αn) in (B.16) with the stochastic
(instantaneous) loss function lnt (αn) =

1
2
[yn[t]−α⊤

nzt]
2:

α̂n = argmin
αn

lnt (αn) + λ
N∑

n′=1

P∑
p=1

∥α(p)
n,n′∥2. (B.17)

Notice that the sparsity promoting group lasso regularizer is non-differentiable. The
use of online subgradient descent (OSGD) is not advisable in this situation as it
linearizes the entire objective function and fails to provide sparse iterates. To avoid
this limitation of OSGD, we use the composite objective mirror descent (COMID)
[39] algorithm which resembles the nature of proximal methods, hence improving
convergence. The online COMID update can be written as

αn[t+ 1] = argmin
αn

J
(n)
t (αn), (B.18)

where J
(n)
t (αn) ≜ ∇ℓnt (αn[t])

⊤ (αn −αn[t])

+
1

2γt
∥αn −αn[t]∥22 + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2. (B.19)

In (B.19) αn[t] ∈ R2PND denotes the estimate of αn at time t. The first term in
equation (B.19) is the gradient of the loss function lnt (αn), the second and third
term are Bergman divergence and sparsity promoting regularizer respectively. The
Bregman divergence is included to improve the stability of algorithm from adver-
saries by constraining αn[t + 1] to be close to αn[t]. The Bregman divergence
B(αn,αn[t]) =

1
2
∥αn − αn[t]∥22 chosen in such a way that the COMID update has

a closed form solution [40] and γt is the corresponding step size. The gradient in
(B.19) is evaluated as

vn[t] := ∇ℓnt (αn[t]) = zt

(
α⊤

nzt − yn[t]
)

(B.20)

Expanding the objective function in (B.19) and omitting the constants leads to the
following formulation:





J
(n)
t (αn) ∝

α⊤
nαn

2γt
+α⊤

n

(
vn[t]−

1

γt
αn[t]

)
+ λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2

=
N∑

n′=1

P∑
p=1

[
α

(p)⊤

n,n′ α
(p)
n,n′

2γt
+α

(p)⊤

n,n′

(
v
(p)
n,n′ [t]−

1

γt
α

(p)
n,n′ [t]

)
+ λ∥α(p)

n,n′∥2
]
. (B.21)

A closed form solution for (B.18) using (B.21) is obtained via the multidimensional
shrinkage-thresholding operator [41]:

α
(p)
n,n′ [t+ 1] =

(
α

(p)
n,n′ [t]− γtv

(p)
n,n′ [t]

)
×[

1− γtλ

∥α(p)
n,n′ [t]− γtv

(p)
n,n′ [t]∥2

]
+

, (B.22)

where [x]+ = max {0, x}. The first term α
(p)
n,n′ [t] − γtv

(p)
n,n′ [t] in (B.22) forces the

stochastic gradient update of α(p)
n,n′ in a way to descend instantaneous loss function

lnt (αn) and the second term in (B.22) enforces group sparsity of α(p)
n,n′ . Note that

the close form solution (B.22) is separable in n′ and p.
The proposed algorithm, termed as Random Feature based Nonlinear Topology

Identification via Sparse Online learning (RF-NLTISO), is summarized in Algo-
rithm 6.

Algorithm 6: RF-NLTISO Algorithm

Result: α
(p)
n,n′ , for n, n′ = 1, .., N and p = 1, .., P

Store {yn[t]}Pt=1,
Initialize λ, γ, D (heuristically chosen) and kernel parameters depending
on the type of the kernel.

for t = P, P + 1, . . . do
Get data samples yn[t], ∀n and compute zτ

for n = 1, . . . , N do
compute vn[t] using (B.20)
for n′ = 1, . . . , N do

compute α
(p)
n,n′ [t+ 1] using (B.22)

end
end

end

B.5 Experiments

We compare the performance of the proposed algorithm, RF-NLTISO, with the the
state-of-the-art online topology estimation algorithms. Experiments shown in this





section are conducted using 1) synthetic datasets with topologies having different
transition patterns and 2) real datasets collected from Lundin’s offshore oil and
Gas platform. For the performance comparison, we choose TIRSO [48] and NL-
TISO [21] algorithms, which are the state-of-the-art counterparts of RF-NLTISO,
to the best of our knowledge. TIRSO is developed based on a linear VAR model
assumption, whereas NL-TISO, a kernel-based topology estimation algorithm, is
developed for nonlinear VAR models. Although a kernel-based functional stochastic
gradient based algorithm [61] is also available, its performance has been shown to
be inferior compared to NL-TISO [21].

B.5.1 Experiments using Synthetic Data

B.5.1.1 Topology with switching edges

We generate a multi-variate time series using nonlinear VAR model (B.1) with N =

5, P = 2. An initial random graph with edge probability of 0.1 is generated and the
graph adjacency coefficients a

(p)
n,n′ are drawn from a Uniform distribution U(0, 1).

After every 1000 samples, one of the active (non-zero) edge disappears and another
one appears randomly, which brings an abrupt change in the graph topology. The
nonlinearity in (B.1) is introduced using a Gaussian kernel with variance 0.01 and
the kernel coefficients are chosen randomly from a zero mean Gaussian distribution
with variance 30. Note that the initial P data samples are generated randomly
and rest of the data is generated using the model (B.1). The coefficients

{
α

(p)
n,n′ [t]

}
are estimated using the proposed RF-NLTISO algorithm with a Gaussian kernel
having variance 0.1 and number of random features D = 50. The hyper-parameters
λ and γ are heuristically chosen as 0.1 and 1000, respectively. To visualize causal
relationships, we compute the ℓ2 norms b

(p)
n,n′ [t] = ∥α(p)

n,n′ [t]∥2 and arrange them in
a matrix similar to the graph adjacency matrix. A similar strategy is adopted for
the NL-TISO and the TIRSO algorithms. The normalized version of true and the
estimated dependencies at various time samples are shown in Fig. B.1, where in
each subplot, the 5 × 5 dependency matrices corresponding to p = 1 and 2 are
concatenated, resulting in a 10 × 5 size matrix. We normalized the coefficients by
dividing each coefficients with highest value of coefficient in a pseudo adjacency
matrix. From the Fig. B.1, it is clear that RF-NLTISO is able to perform equal or
better compared to NL-TISO algorithm and clearly outperforms TIRSO.

Next we conduct the same experiments using RF-NLTISO with different numbers
of random feature (D ∈ {10, 30, 50}). These experiments are repeated 1000 times
to find probability of miss detection (PMD) and false alarm (PFA), which we define
as

PMD[t] ≜

∑
n̸=n′

∑P
p=1 E

[
⊮{∥b̂(p)n,n′ [t]∥2 < δ}⊮{

∥∥αn,n′
∥∥
2
≥ δ}

]
∑

n̸=n′
∑P

p=1 E
[
⊮{
∥∥αn,n′

∥∥
2
≥ δ}

] ,

PFA[t] ≜

∑
n̸=n′

∑P
p=1 E

[
⊮{∥b̂(p)n,n′ [t]∥2 > δ}⊮{

∥∥αn,n′
∥∥
2
≤ δ}

]
∑

n̸=n′
∑P

p=1 E
[
⊮{
∥∥αn,n′

∥∥
2
≤ δ}

] . (B.23)
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Figure B.1: Causal dependencies estimated using different algorithms compared
with the true dependency.
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From Figs. B.2 and B.3, it is observed that for the given choices of D, PMD is better
for RF-NLTISO compared to NL-TISO; however, NL-TISO is performing better in
terms of PFA. Both the figures show an overshoot at the topology-switching time
instances. It is also observed that for the proposed algorithm, PMD decreases with
D, whereas PFA increases with D, which in turn suggests a tuning for D for an
effective trade-off between PFA and PMD.

B.5.1.2 Slowly varying topology

We compare the performance of RF-NLTISO with the state-of-the-art algorithms
using a slowly varying graph topology. The same experiment setup as discussed in
B.5.1.1 is adopted with the following more slowly time varying topology:

a
(p)
n,n′ [t+ 1] = a

(p)
n,n′ [t] + 0.01 sin(0.03 ∗ t) (B.24)

The normalized values of one of the active edges is plotted in Fig. B.4. The figure
also shows the normalized values of the corresponding estimated coefficients (̂b(p)n,n′ [t]

for NL-TISO and RF-NLTISO and â
(p)
n,n′ [t] for TIRSO ). From the figure, it can be

observed that the RF-NLTISO estimates are closer to the true value compared to
the estimates from the other two algorithms. In this example, the quality of TIRSO
estimates lags considerably behind the kernel-based algorithms due to the fact that
the underlying VAR model is nonlinear.

B.5.2 Experiments using Real Data

This section is dedicated to experiments using real data collected from Lundin’s
offshore oil and gas (O&G) platform Edvard-Grieg1. We have a multi-variate time
series with 24 nodes; and the nodes corresponds to various temperature (T), pressure
(P), or oil-level (L) sensors. The sensors are placed in the separators of decantation
tanks that separate oil, gas, and water. The time series are obtained by uniformly
sampling the sensor readings with a sampling rate of 5s. We assume that hidden
logic dependencies are present in the network due to various physical connections
and various control actuators. The data obtained from the network is normalized
by making it a zero mean unit variance signal, before applying the algorithm. The
causal dependencies are learned using RF-NLTISO with D = 10, 50, 100 and a Gaus-
sian kernel having a variance of 0.1 and with hyper parameter values λ = 0.1 and
γ = 10. The signal is reconstructed using the estimated dependencies. Fig. B.6
shows the mean squared error (MSE), defined as MSE(t) = E((yn(t)− ŷn(t))

2) for
a particular sensor n = 8, of RF-NLTISO estimates in comparison with other algo-
rithms. We observe that the RF-NLTISO estimates with random feature number
D ≥ 50 show better MSE performance compare to NL-TISO. The causality graph
estimated by RF-NLTISO is shown in Fig. B.7.

One of the main attractiveness of RF-NLTISO is that even though it is a kernel-
based algorithm, it has a fixed computational complexity throughout the online

1https://www.lundin-energy.com/
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Figure B.7: Causality graph in oil and gas plant estimated by RF-NLTISO. P, T, L
represent pressure, temperature, and oil level sensors, respectively.
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Figure B.8: Comparison of computation time of kernel-based algorithms.

Figure B.9: Real data.

iterations. To demonstrate this, in Fig. B.8, we plot the computation time required
to estimate the coefficients at each time instant by NL-TISO and RF-NLTISO with
different values of D. The experiment is conducted in a machine with processor
2.4 GHz 8-core Intel Core i9 and 16GB 2667 MHz DDR4 RAM. Fig. B.8 shows
that the computation time of NL-TISO increases considerably with time but that
of RF-NLTISO remains more or less constant for a particular value of D.





B.6 Conclusion

We propose a kernel-based online topology identification method for interconnected
networks of time-series with additive nonlinear dependencies. In this work, the curse
of dimensionality associated with kernel representation is tackled using random fea-
ture approximation. Assuming that the real-world dependencies are sparse, we use
composite objective mirror decent update to estimate the online sparse causality
graph. The effectiveness of the proposed algorithm is illustrated through experi-
ments conducted on synthetic and real data, which shows that the algorithm out-
performs the state-of-the-art competitors. We devote the convergence and stability
analysis of the proposed algorithm to our future work.
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Sparse Online Learning with Kernels
using Random Features for Estimat-
ing Nonlinear Dynamic Graphs

R. Money, J. Krishnan, B. Beferull-Lozano

Abstract: Online topology estimation of graph-connected time se-
ries is challenging in practice, especially because the causal dependencies
between the time-series in many real-world scenarios are nonlinear. In
this paper, we propose an online kernel-based algorithm for graph topol-
ogy estimation. The algorithm also performs a Fourier-based Random
feature approximation to tackle the curse of dimensionality associated
with the kernel representations. Exploiting the fact that the real-world
networks often exhibit sparse topologies, we propose a group-Lasso based
optimization framework, which is solved using an iterative composite ob-
jective mirror descent method, yielding an online algorithm with fixed
computational complexity per iteration. We provide theoretical guaran-
tees for the proposed algorithm and prove that the algorithm can achieve
sublinear dynamic regret under certain reasonable assumptions. The ex-
periments on real and synthetic data show that the proposed method
outperforms its state-of-the-art competitors.

C.1 Introduction

Many practical networks such as large scale cyber-physical systems (CPS), finan-
cial networks, brain networks, etc., generate multivariate time series data. In such
systems, the time series are interdependent and it is possible to represent the depen-
dencies in the form of graphs, or we can say that the multivariate time series is graph
connected. Some of these dependencies are often imperceptible by direct inspection.
Inferring and exploiting the hidden graph structure of data can have a significant
impact in many application fields. For instance, it can contribute to developing
better control actions in CPS [65], explainable analysis in brain networks [66], and
better forecast in financial time series [67], to name a few.

Real-world networks often exhibit time-delayed and directed dependencies be-
tween their components. For instance, consider an example of an oil and gas pro-
cessing platform, as shown in Fig. C.1. The system consists of wells and separators.
The raw oil is extracted from the well and is separated as oil, water, and gas in the
separators. It is a highly dynamic and complex system with hundreds of sensors and
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Figure C.1: Schematic of processing stages in an oil and gas platform.

actuators. If an event occurs in a well, its effect will be reflected in the separators
after a delay. Similarly, the oil level in separator-2 depends on the pressure that is
controlled by an actuator in separator-3. The data acquired from such a system form
a multivariate time series, possibly having many directed time-lagged interactions,
which can be represented using a graph structure. Any information related to these
dependencies is highly beneficial since it helps to predict the evolution of sensor vari-
ables in the near future and the appropriate control actions in advance. Although
a scenario related to the oil and gas platform is adopted here for illustration, such
interactions have a vital role in many important networks, such as brain data, the
stock market, and smart water networks (SWN), to name a few. Hereafter, we use
the term topology identification to denote the estimation of such dependencies.

A significant challenge associated with the aforementioned real-world graph-
connected networks is the non-stationary nature of the causal dependencies. There
is extensive research on the field of online learning [68], [69], which outperforms clas-
sical batch solutions in terms of both computational complexity and ability to track
changes. Such methods can be exploited and applied to topology identification in
order to mitigate the problem of time varying dependencies. For instance, [48] pro-
poses a sparse online solution for topology identification using proximal updates,
whereas [49] introduces a prediction-correction algorithm based on a time-varying
convex optimization framework that exhibits an intrinsic temporal-regularization of
the graph topology.

In addition to the non-stationary nature, real-world systems such as the one
shown in Fig. C.1, are further complicated due to the nonlinear nature of the de-
pendencies. In CPSs such as Oil and Gas platforms or SWNs, this nonlinearity may
arise from control mechanisms of the actuator, nonlinear liquid flows (see, e.g., [70]),
saturation of tanks, etc. Similarly, the interactions in stock market networks and
network structured data related to brain imaging techniques, such as electroen-





cephalography (EEG), electrocorticography (ECoG), positron emission tomography
(PET), etc., also exhibit a high level of nonlinearities [13]. In such applications,
topology estimation based on simple linear models [48], [49] is inadequate, since
many of the inherent nonlinear interactions within the system are discarded.

An effective way to deal with the nonlinearity is by invoking kernel machines,
which can approximate any nonlinear continuous function, provided enough training
samples are available. For instance, in [11], a novel topology identification algorithm
based on the nonlinear structural vector auto-regressive (SVAR) model using kernels
is proposed. On the other hand, deep neural networks (DNNs) are powerful alter-
natives to kernels for modelling nonlinear interactions.Nonlinear dependencies are
estimated in [71] using a temporal convolutional neural network and an attention
mechanism, while [10] uses a vector autoregressive (VAR) model with an invertible
neural network approach to capture dependencies, and [9] applies a group-Lasso reg-
ularizer on neural weights to obtain sparse nonlinear dependencies. Although the
above-mentioned kernel- and DNN-based methods are powerful tools to model the
nonlinear dependencies, their batch-based (offline) nature makes them unsuitable for
real-time applications that require online topology estimation with every new data
sample to track changes in the system. In addition, such batch-based approaches
also suffer from a high computational complexity since the algorithm must process
the entire data batch together.

The above discussion motivates the need for algorithms that can learn nonlinear
and dynamic topologies. Kernels are an ideal choice in this regard due to their inter-
pretability and capability to learn functions online [21,72,73]. In kernel frameworks,
the data points are transformed into a function space, where a linear relationship
exists between them. However, working in a function space has some limitations
in the context of online topology identification. First, the standard online convex
optimization techniques cannot be readily used as the dimension of optimization
variables is not fixed, and it increases with every new data sample. Second, the
number of parameters required to express the function increases with the number of
data samples, and the computational complexity becomes prohibitive at some point,
which is typically known as the curse of dimensionality [74]. This dimensionality
growth is circumvented in [21] by discarding the past data samples using a forget-
ting window. However, such an approach can lead to suboptimal function learning
because it discards data samples without assessing their significance in representing
the functions to be learned.

Sparse kernel dictionaries and random feature (RF) approximation are two pop-
ular techniques for tackling the curse of dimensionality associated with kernels. A
parsimonious online learning algorithm for kernels has been developed in [64] using
a functional stochastic gradient descent (FSGD) method featured by sparse function
subspace projections. This is achieved by learning sparse kernel dictionaries using
the kernel orthogonal matching pursuit (KOMP) technique. Despite its reported
benefits [64] in terms of model complexity compared to RF-based techniques, the
sparse FSGD method in [64] has two limitations that render it an unfitting choice for
online topology identification of multivariate time series: i) the algorithm need to in-





clude several KOMP sub-iterations for every time series at each time instant, which
results in high computational complexity, not being suitable for online algorithms,
particularly when the number of time series exceeds a few hundred, as it is typical
in real-world networks such as the one shown in Fig. C.1, and ii) in a multivariate
setting with N time series, the FSGD derivation in [64] results in identical functional
dependencies between a time series n and all other time series n′ = 1, 2, . . . , N (as ob-
served in [61]), which prevents distinguishing the different functional dependencies.
In [75], an alternative approach to reduce the dimensionality growth of the kernel
method for multivariate topology inference is presented, which involves learning a
sparse kernel dictionary based on coherence criteria. Nevertheless, this algorithm’s
convergence guarantees assume that optimal parameters (representing the topology)
do not change over time, which is impractical for time-varying systems.

On the other hand, the RF approximation approach not only addresses the prob-
lem of kernel dimensionality growth but also provides greater mathematical flexi-
bility for modelling and learning the nonlinear interaction among multivariate time
series, in addition to enabling a theoretical analysis. RF approximation was orig-
inally proposed in [16], and the idea has recently gained popularity in large-scale
machine learning problems [42, 43, 76]. In addition to providing a computational
boost in large-scale data sets, RF allows working in fixed lower dimensional spaces,
which is very convenient for many online convex optimization routines. It has been
shown that the RF approximation in kernels can be also used to understand neural
networks [77], [78], and some researchers have shown equivalence in function approx-
imation between neural networks and RF approximations [77]. Multiple Random
Fourier features can be also utilized to initialize the learning process, and the best
one can be kept to avoid overfitting [79,80].

In this work, we propose a kernel-based online nonlinear topology identification
algorithm using RF approximation. We assume that the dependencies of the system
can be modelled using nonlinear additive sparse model. Notice that the sparsity
assumption is not restrictive, since the interactions in real-world systems are often
sparse due to the dominant local interactions. In fact, this prior information helps
to avoid overfitting during learning. The proposed algorithm estimates nonlinear
topologies in an online manner by generating sparse iterates at each time instant,
using a proximal optimization technique known as Composite objective mirror de-
scent (COMID). The algorithm features incremental updates to the model upon the
arrival of new data samples, making it suitable for applications characterized by
topology drifts [81, 82]. Through a combination of theoretical guarantees based on
dynamic regret analysis and multiple numerical evidence, we show the effectiveness
of our algorithm in tracking the changes in topology.

The main contributions of this work are listed below:
(i) This paper proposes an online algorithm with fixed computational complexity

per iteration for nonlinear topology estimation. The proposed algorithm is termed
Random feature based nonlinear topology identification via recursive sparse online
learning (RFNL-TIRSO). This work is significantly different from our previous work
in [22], where we used an instantaneous loss function, which is susceptible to noise





and converges slowly. RFNL-TIRSO replaces the instantaneous loss function with
an average running loss inspired by recursive least square (RLS) formulation, and
compared to [22], it significantly improves convergence speed and robustness to the
input noise.

(ii) We also provide theoretical guarantees regarding the convergence of RFNL-
TIRSO, whereas no such theoretical guarantees were provided in [22]. The paper
derives an upper bound for dynamic regret of RFNL-TIRSO based on strong convex-
ity of the RLS loss function. Dynamic regret characterizes the tracking capability
of an online algorithm [83], and we achieve a sublinear dynamic regret under cer-
tain assumptions that are reasonable in real-world applications. Our dynamic regret
analysis includes three key elements: an online kernel-based nonlinear algorithm, a
non-differentiable objective function, and a model with multiple decoupled functions
representing topological connections to enable interpretable topology identification.
None of the existing related analyses [32,84–89] provides a complete coverage of all
these three elements.

(iii) The performance of the proposed algorithm is tested with extensive exper-
iments using both real and synthetic data. The algorithm estimates interpretable
topologies using time series data collected from the sensors of an oil and gas plant.
In addition to the CPS applications, we also demonstrate the capability of our al-
gorithm in detecting epileptic seizure events using EEG signals.

The rest of the paper is organized as follows: Section C.2 presents the system
model, kernel formulation, and random feature approximation. In Appendix C.3,
we develop the RFNL-TIRSO algorithm. Theoretical analysis of RFNL-TIRSO is
performed in Appendix C.4 and the numerical results are provided in Appendix C.5.
Section C.6 concludes the paper.

Notations: Bold lowercase and uppercase letters denote column vectors and ma-
trices, respectively. The operators ∇, (.)⊤, E, Λmax(.), Λmin(.), < ., . > respec-
tively denote gradient, transpose, expectation, maximum eigen value, minimum
eigen value, and inner product operators. The symbols 1N and IN represent all-
one vector of dimension N and identity matrix of dimension N ×N , respectively.

C.2 Nonlinear topology identification

C.2.1 System Model

Consider a collection of N sensors (nodes) generating a multi-variate time series
denoted by y[t] ∈ RN , where t = 0, 1, . . . , T − 1 denotes the time index. We assume
that the dynamics of the sensor network can be captured by a P -th order VAR
model with additive nonlinear functional dependencies:

yn[t] =
N∑

n′=1

P∑
p=1

f
(p)
n,n′(yn′ [t− p]) + un[t], (C.1)

where yn[t] is the value of time series at time t observed at node 1 ≤ n ≤ N , f (p)
n,n′

is a nonlinear function that captures the causal influence of the p-lagged data point





of node n′ on node n, and un[t] is the process noise, which is assumed to be zero
mean i.i.d. random process. With respect to model (C.1), we define topology
identification as the estimation of the functional dependencies

{
f
(p)
n,n′(.)

}P

p=1
, ∀n, n′,

from the observed time series {yn′ [t]}Nn′=1.

C.2.2 Kernel representation

Assume that the functions f (p)
n,n′ in (C.1) belong to a reproducing kernel Hilbert space

(RKHS):

H(p)
n′ :=

{
f
(p)
n,n′ | f (p)

n,n′ (y) =
∞∑
t=p

β
(p)
n,n′,(t−p) κ

(p)
n′ (y, yn′ [t− p])

}
, (C.2)

where κ
(p)
n′ : R× R → R is a positive definite kernel, which characterizes the RKHS.

The kernel is a function measuring the similarity between the data points y and
yn′ [t−p]. The expression (F.2) follows from the fact that any function in RKHS can
be expressed as an infinite combination of kernel evaluations [15], i.e., the function
f
(p)
n,n′(y) can be expressed as the linear combination of the similarities between y and

the data points {yn′ [t− p]}t=∞
t=p , with weights β(p)

n,n′,(t−p). Here, we consider a Hilbert
space with the inner product ⟨κ(p)n′ (y, x1), κ

(p)
n′ (y, x2)⟩ :=

∑∞
t=0 κ

(p)
n′ (y[t], x1)κ

(p)
n′ (y[t], x2)

using kernels with reproducible property ⟨κ(p)n′ (y, x1), κ
(p)
n′ (y, x2)⟩ = κ

(p)
n′ (x1, x2). Such a

Hilbert space with the reproducing kernels is termed as RKHS, and the inner prod-
uct induces the RKHS norm, ∥f (p)

n,n′∥2H(p)

n′
=
∑∞

t=0

∑∞
t′=0 β

(p)
n,n′,t β

(p)
n,n′,t′ κ

(p)
n′ (yn[t], yn[t

′]).

We refer to [37] for further reading on RKHS.
The required causal dependencies

{
f
(p)
n,n′ ∈ H(p)

n′

}
n′,p

at a particular node n can
be obtained by solving the following non-parametric optimization problem in batch
form, considering all the samples at once:

{
f̂
(p)
n,n′

}
n′,p

= arg min{
f
(p)

n,n′∈H
(p)

n′

} 1

2

T−1∑
τ=P

[
yn[τ ]

−
N∑

n′=1

P∑
p=1

f
(p)
n,n′(yn′ [τ − p])

]2
+ λ

N∑
n′=1

P∑
p=1

Ω(||f (p)
n,n′ ||H(p)

n′
). (C.3)

For a non-decreasing function Ω, the solution of (F.3), denoted as
{
f̂
(p)
n,n′

}
n′,p

can be
obtained in terms of finite kernel evaluation by invoking the Representer Theorem
[38]:

f̂
(p)
n,n′(yn′ [τ − p])=

p+T−1∑
t=p

β̂
(p)
n,n′,(t−p) κ

(p)
n′ (yn′ [τ − p],yn′ [t− p]) . (C.4)

Although the solution (F.4) entails only a finite number (equal to T ) of kernel
evaluations, its computational complexity becomes prohibitively high for a large
value of T . This is a major drawback associated with the kernel formulations, which
is commonly referred to as the curse of dimensionality. In alignment with [43], [72],
we use RF approximation to solve the curse of dimensionality.





C.2.3 RF approximation

From Appendix C.2.2, we remark that the RKHS is characterized by an inner prod-
uct. Resorting to the theory of RF approximation, the inner product can be ex-
pressed in a random Fourier space, which facilitates the approximation of an RKHS
function to a function in a fixed low dimensional space, thereby preventing the di-
mensionality growth. In addition to tackling the curse of dimensionality, working on
a fixed low dimensional space will enable us to use the standard convex optimization
tools to solve the topology identification.
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Figure C.2: RKHS parameters (left) and fixed-size RF parameters (right). The Lasso
groups of RF parameters are indicated in different colours.

The RF approximation requires that the kernel defining the RKHS should be
shift invariant, i.e., κ(p)n′ (yn′ [τ − p], yn′ [t− p]) = κ

(p)
n′ (yn′ [τ − p]− yn′ [t− p]). There are

many popular kernels that are shift invariant, such as the Laplacian, the Cauchy, and
the Gaussian kernels. By the Bochner’s Theorem [30], every shift-invariant kernel
can be expressed as an inverse Fourier transform of a probability density function.
Following this theorem, the kernel evaluation can be expressed as

κ
(p)
n′ (yn′ [τ − p], yn′ [t− p])

=

∫
R
π
κ
(p)

n′
(v) ejv(yn′ [τ−p]−yn′ [t−p])dv

= Ev[e
jv(yn′ [τ−p]−yn′ [t−p])], (C.5)

where E is the expectation operation, π
κ
(p)

n′
(v) is the probability density function

corresponding to the kernel under consideration, and v is the random variable as-
sociated with the probability density function. Using a sufficient amount of i.i.d.
samples {vi}Di=1 from the distribution π

κ
(p)

n′
(v), we can approximate the expectation

in (F.5) as a sample mean (weak law of large numbers):

κ̂
(p)
n′ (yn′ [τ − p], yn′ [t− p]) =

1

D

D∑
i=1

ejvi(yn′ [τ−p]−yn′ [t−p]), (C.6)

irrespective of the distribution π
κ
(p)

n′
(v). Notice that (F.6) is an unbiased estimator

of the kernel evaluation in (F.5) [54]. Finding the probability distribution which
is the inverse Fourier transform of a kernel is a difficult task in general. However,





for a Gaussian kernel with variance σ2, the Fourier transform is also a Gaussian
with variance σ−2. Hence, in this work, we restrict our choice of kernel to Gaus-
sian kernels. Further, the real part of (F.6) is also an unbiased estimator of the
kernel evaluation [42], and (F.5) can be expressed in vector form using only the real
components as

κ̂
(p)
n′ (yn′ [τ − p], yn′ [t− p]) = z

(p)
v,n′(τ)

⊤z
(p)
v,n′(t), (C.7)

where z
(p)
v,n′(τ) =

1√
D

[
sin (v1yn′ [τ − p]) , . . . , sin (vDyn′ [τ − p]) ,

cos (v1yn′ [τ − p]) , . . . , cos (vDyn′ [τ − p])

]⊤
. (C.8)

Substitute (C.7) in (F.4) to obtain an approximation of the function f̂
(p)
n,n′ in a fixed

dimension (2D):

ˆ̂
f
(p)
n,n′ (yn′ [τ − p])) =

p+T−1∑
t=p

β̂
(p)
n,n′,(t−p)z

(p)
v,n′(τ)

⊤z
(p)
v,n′(t)

= α
(p)
n,n′

⊤z
(p)
v,n′(τ), (C.9)

where α
(p)
n,n′ =

∑p+T−1
t=p β̂

(p)
n,n′,(t−p)z

(p)
v,n′(t). For the sake of simplicity, we define the

following notations:

α
(p)
n,n′ = [α

(p)
n,n′,1, . . . , α

(p)
n,n′,2D]

⊤ ∈ R2D, (C.10)

z
(p)
v,n′(τ) = [z

(p)
v,n′,1 (τ) , . . . z

(p)
v,n′,2D (τ)]⊤ ∈ R2D, (C.11)

z
(p)
v,n′,k (τ) =

{
sin(v

k
yn′ [τ − p]), if k ≤ D

cos(v
k−D

yn′ [τ − p]), otherwise.

The functional optimization (F.3) can be reformulated as a parametric optimiza-
tion problem using (F.8). First, we define the parametric form of the loss function
in (F.3):

Ln
(
α

(p)
n,n′

)
:=

T−1∑
τ=P

1

2

[
yn[τ ]−

N∑
n′=1

P∑
p=1

α
(p)
n,n′

⊤
z
(p)
v,n′ (τ)

]2
, (C.12)

which can be expanded in terms of RF components as

Ln
(
α
(p)
n,n′,d

)
:=

T−1∑
τ=P

1

2

[
yn[τ ]−

N∑
n′=1

P∑
p=1

2D∑
d=1

α
(p)
n,n′,d z

(p)
v,n′,d (τ)

]2
.

For convenience, the variables
{
α
(p)
n,n′,d

}
and

{
z
(p)
v,n′,d (τ)

}
are stacked in the lexico-

graphic order of the indices p, n′, and d to obtain the vectors αn ∈ R2PND and
zv(τ) ∈ R2PND, respectively, and loss function can be compactly rewritten as:

Ln(αn) =
1

2

T−1∑
τ=P

[
yn[τ ]−α⊤

n zv(τ)

]2
. (C.13)





Following [43], the original regularization term in (F.3) can be converted to an
equivalent parametric form as:

Ω(||f (p)
n,n′ ||H(p)

n,n′
)

= Ω

(
p+T−1∑
τ=p

p+T−1∑
t=p

β̂
(p)
n,n′,(τ−p) β̂

(p)
n,n′,(t−p) k

(p)
n′ (yn(τ), yn(t))

)

= Ω

(
p+T−1∑
τ=p

p+T−1∑
t=p

β̂
(p)
n,n′,(τ−p)β̂

(p)
n,n′,(t−p)z

(p)
v,n′(τ)

⊤z
(p)
v,n′(t)

)
.

= Ω(||α(p)
n,n′ ||2). (C.14)

The function Ω in (C.14) is chosen to be Ω(.) = |.|, where |.| represents the absolute
value function, in order to promote the group sparsity of α(p)

n,n′ [11]. Such regularizers
are typically known as group-Lasso regularizers (see, Fig. C.2 for a visual represen-
tation of the Lasso groups). Note that the function |.| is non-decreasing, thereby
satisying the regularization criteria to apply the Representer Theorem. Using (F.11)
and (C.14), a parametric form of (F.3) can be constructed as follows:

{α̂n}n′ = arg min
{αn}

Ln (αn) + λ
N∑

n′=1

P∑
p=1

||α(p)
n,n′ ||2. (C.15)

Although the topology can be estimated by solving (F.10), this approach has several
drawbacks since it is a batch formulation, meaning that (F.10) requires the entire
batch of the time series samples yn[t], t = 0, 1, . . . , T − 1 from all the nodes. In
addition, the batch formulation is not useful when the data is available in a stream-
ing manner and cannot be used to track the instantaneous time-varying topologies
of non-stationary systems. Moreover, since the batch optimization computes the
solutions using an entire batch of data, the computational complexity can often be-
come prohibitively high, especially when batch size is huge. Hence, motivated by
the above factors, we propose an online topology estimation strategy with a lower
computational complexity in the following section.

C.3 Online learning

To formulate an an online optimization framework, we replace the batch loss function
Ln(αn) in (F.10) with a stochastic (instantaneous) loss function ℓnt (αn) =

1
2
[yn[t]−

α⊤
nzv(t)]

2:

α̂n = arg min
αn

ℓnt (αn) + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2. (C.16)

The loss function lnt (αn) in (C.16) is analogous to a Least Mean Square (LMS)
formulation. However, notice that the estimates of LMS are prone to observation
noise and can be unstable in practice. To avoid this problem, we formulate (C.16)





in a recursive least square (RLS) sense, which further provides necessary stability
in addition to faster convergence:

ℓ̃nt (αn) = µ
t∑

τ=P

γt−τℓnτ (αn). (C.17)

In (F.12), we replace the instantaneous loss with a running average loss using an
exponential window. The parameter γ ∈ (0, 1) is the forgetting factor of the window,
and µ = 1 − γ is set to normalize the exponential weighting window. We expand
the RLS loss function as follows:

ℓ̃nt (αn) =
1

2
µ

t−1∑
τ=P

γt−τ
(
y2n[τ ] +α⊤

n zv(τ)zv(τ)
⊤αn − 2yn[τ ]zv(τ)

⊤αn

)
(C.18)

=
1

2
µ

t−1∑
τ=P

γt−τy2n[τ ] +
1

2
α⊤

nΦ[t]αn − rn[t]
⊤αn, (C.19)

where

Φ[t] = µ
t∑

τ=P

γt−τzv(τ)zv(τ)
⊤, (C.20)

rn[t] = µ
t∑

τ=P

γt−τyn[τ ]zv(τ). (C.21)

As in a typical RLS formulation, these quantities can be updated recursively as
Φ[t] = γΦ[t− 1] + µzv(t)zv(t)

⊤ and rn[t] = γrn[t− 1] + µyn[t]zv(t). The gradient
of the loss function can be obtained as

∇ℓ̃nt (αn) = Φ[t]αn − rn[t]. (C.22)

Finally, using the RLS loss function, the topology can be estimated by solving

argmin
αn

ℓ̃nt (αn) + λ
N∑

n′=1

P∑
p=1

∥α(p)
n,n′∥2. (C.23)

The cost function in (F.16) consists of a differentiable loss function and a non-
differentiable group-Lasso regularizer.The online subgradient descent (OSGD) or
the mirror descent (MD) method can be used to solve (F.16) online. However, these
methods work by linearizing the entire objective function in (F.16) using a subgra-
dient of it. If the group-Lasso regularizer is linearized, its ability to induce sparsity
is compromised, resulting in non-sparse estimates. Hence, we choose an alternate
optimization technique known as composite objective mirror descent (COMID) [39],
a modified version of the MD algorithm, in which the differentiable part of the
objective function is linearized, whereas the regularizer is kept intact. The online





COMID updates can be written as

αn[t+ 1] = argmin
αn

J
(n)
t (αn), (C.24)

where J
(n)
t (αn) ≜ ∇ℓ̃nt (αn[t])

⊤ (αn −αn[t])

+
1

2at
∥αn −αn[t]∥22 + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2, (C.25)

where αn[t] ∈ R2PND is the estimate of αn at time t. The objective function J
(n)
t

in (C.25) consists of 3 parts: (i) gradient of loss function given by (F.18), (ii) a
Bregman divergence term with at as the step size, and (iii) a sparsity enforcing
group-Lasso regularizer. The Bregman divergence [40] improves the stability of the
online algorithms by constraining the value of the new estimate αn[t+1] within the
proximity of the previous estimate αn[t]. The Bregman divergence B(αn,αn[t]) =
1
2∥αn − αn[t]∥22 is selected in such a way that the optimization problem (E.17) has
a closed form solution [40]. For notational convenience, we denote the gradient in
(C.25) as

vn[t] := ∇ℓ̃nt (αn[t]). (C.26)

The objective function in (C.25) is expanded by omitting the constants leading
to the following formulation:

J
(n)
t (αn) ∝

α⊤
nαn

2at
+α⊤

n

(
vn[t]−

1

at
αn[t]

)
+ λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2

=
N∑

n′=1

P∑
p=1

[
α

(p)
n,n′

⊤
α

(p)
n,n′

2at
+α

(p)
n,n′

⊤
(
v
(p)
n,n′ [t]−

1

at
α

(p)
n,n′ [t]

)
+ λ∥α(p)

n,n′∥2
]
. (C.27)

A closed form solution for (E.17) using (C.27) can be obtained via the multidimen-
sional shrinkage-thresholding operator [41]:

α
(p)
n,n′ [t+ 1] =

(
α

(p)
n,n′ [t]− atv

(p)
n,n′ [t]

)
×
[
1− atλ

∥α(p)
n,n′ [t]− atv

(p)
n,n′ [t]∥2

]
+

, (C.28)

where [x]+ = max {0, x}. The first part α
(p)
n,n′ [t] − γtv

(p)
n,n′ [t] in (C.28) forces the

stochastic gradient update of α(p)
n,n′ in a way to descend the recursive loss function

ℓ̃nt (αn), and the second part in (C.28) enforces group sparsity of α(p)
n,n′ . This closed-

form expression estimates the required dependency between the time series yn and
the p-th time lagged value of time series yn′ at time instant t + 1, in terms of the
parameter vector α

(p)
n,n′ [t+ 1]. We name the proposed algorithm as Random feature

based nonlinear topology identification via recursive sparse online learning (RFNL-
TIRSO), which is shown in Algorithm 8.





Algorithm 7: RFNL-TIRSO Algorithm

Result:
{
α

(p)
n,n′

}
n,n′,p

Store {yn[t]}Pt=1,
Initialize λ > 0, at > 0, θ > 0, D, σn and Φ(P − 1) = θI2PND

for t = P, P + 1, . . . do
Get data samples yn[t], ∀n and compute zv(t)

Φ[t] = γΦ[t− 1] + µzv(t)zv(t)
⊤

for n = 1, . . . , N do
rn[t] = γrn[t− 1] + µyn[t]zv(t)

compute vn[t] using (F.18), (D.29)
for n′ = 1, . . . , N do

compute α
(p)
n,n′ [t+ 1] using (C.28)

end
end

end

C.4 Theoretical results

The performance analysis and convergence guarantee of RFNL-TIRSO are presented
in this section using dynamic regret. Regret is a popular metric to measure the
performance of an online algorithm [90]. Despite being originally developed for static
learning problems, numerous online algorithms involving dynamic regret analysis
have been developed [32,84–86] to solve problems in a dynamic environment; however
all of them belong to the class of linear algorithms. Moreover, [84–86] assume
differentiable objective functions, and hence they cannot be leveraged in RFNL-
TIRSO. Dynamic regret bounds for nonlinear algorithms are proposed in [87–89].
In [87], the problem under consideration is limited to positive functions, whereas our
problem formulation does not have such a limitation. The regret analysis presented
in [88] differs significantly from the proposed method for several reasons. First,
the objective function used in [88] must be differentiable, while in our proposed
method, the regularizer is non-differentiable. Second, in contrast to [88], the regret
analysis in the proposed method involves multiple decoupled functions representing
interpretable topological connections. Although [89] provides a logarithmic regret
bound using second-order information, the objective function under consideration is
differentiable. Our theoretical analysis is based on the following assumptions:

• A1 : Bounded samples: For all the time series samples, there exists By > 0

such that {|yn[t]|2}n,t ≤ By ≤ ∞.

• A2 : Shift-invariant kernels: kernels used are shift-invariant, i.e., k(xi, xj) =

k(xi − xj).

• A3 : Bounded minimum eigenvalue of Φ[t]: There exists ρl > 0 such that
Λmin(Φ[t]) > ρl, where Λmin(.) denotes the minimum eigenvalue.





• A4 : Bounded maximum eigenvalue of Φ[t]: There exists L > 0 such that
Λmax(Φ[t]) < L < ∞, where Λmax(.) denotes the maximum eigenvalue.

A1 is reasonable in practice as the signals from real-world applications are
bounded. A2 is always true for typical kernels like Gaussian, Laplacian, etc. Since
Φ(t) is a sum of rank one matrices formed using feature vectors, A3 will hold as
long as the feature vectors are linearly independent. This is quite a reasonable as-
sumption in practice when a sufficient amount of data is available. Note that A3 is
important for the strong convexity assumption of the loss function, which is used in
the following sections. A4 can be obtained by combining A1 and the fact that the
sum of eigenvalues of Φ[t] is equal to its trace.

C.4.1 Dynamic Regret Analysis

Dynamic regret is a popular metric to quantify the performance of online algorithms
in a dynamic environment [83]. As a preliminary step to the regret analysis, we define
the optimum RKHS and RF coefficients.

Optimum RKHS coefficients : Using the batch form solution (F.4), which
exploits the Representer Theorem, a parametric autoregressive representation at
time t can be obtained as

ŷn[t] = β̂⊤
nκt, (C.29)

where β̂n ∈ RNPt and κt ∈ RNPt are respectively obtained by stacking the variables
β̂
(p)
n,n′,(τ−p) and the kernel evaluations in (F.4) along the lexicographic order of the

indices n′,p, and the time index up to t. The optimum RKHS coefficients β∗
n[t] for

each node n at time t can be obtained by solving

β∗
n[t] = argmin

β̂n

hn
t (β̂n), (C.30)

where the cost function hn
t (β̂n) in (C.30) is composed of two terms: hn

t (β̂n) =

ℓ̃nt (β̂n) +ωn(β̂n), where ℓ̃nt (.) is the RLS loss function defined in (F.12) with instan-
taneous losses computed as ℓnt (β̂n) =

1
2
[yn[t]− β̂⊤

nκt]
2, and ωn(.) is the group-Lasso

regularizer defined as ωn(β̂n) = λ
∑N

n′=1

∑P
p=1 ∥β̂

(p)
n,n′∥2.

Optimum RF coefficients : Following the same procedure, we define the op-
timum RF coefficients α∗

n[t] at time t > P as

α∗
n[t] = argmin

αn

hn
t (αn), (C.31)

where hn
t (αn) = ℓ̃nt (αn) + ωn(αn), and ℓ̃nt (.) is the RLS loss defined in (F.12) and

ωn(αn) = λ
∑N

n′=1

∑P
p=1 ∥α

(p)
n,n′∥2. It should be noticed that the optimum RF co-

efficients α∗
n[t] is different from the RFNL-TIRSO estimate αn[t] obtained by the

computationally light COMID algorithm, as RFNL-TIRSO only makes one COMID
update per time instant.





Dynamic Regret : Dynamic Regret is defined as the cumulative sum of the
difference between the estimated cost function and the optimal cost function over
all time instants. In our framework, it can be expressed as

Rn[T ] =
T−1∑
t=P

[
hn
t (αn[t])− hn

t (β
∗
n[t])

]
. (C.32)

Our aim is to find a theoretical bound for Rn[T ]. Since our online algorithm works
in the RF space, we perform the regret analysis with reference to the optimal cost
function in the RF space, i.e., hn

t (α
∗
n[t]). Notice that this is without loss of generality

because there is a one-to-one mapping. Adding and subtracting hn
t (α

∗
n[t]) in (F.27)

yields

Rn[T ] = Rrf
n [T ] + ξn[T ], (C.33)

where Rrf
n [T ] =

∑T−1
t=P (hn

t (αn[t])− hn
t (α

∗
n[t])) is the regret with respect to optimal

cost in RF space and ξn[T ] =
∑T−1

t=P (hn
t (α

∗
n[t])− hn

t (β
∗
n[t])) is the cumulative RF

approximation error caused by the dimensionality reduction.

C.4.1.1 Bounding the regret w.r.t. optimal cost function in RF space

Lemma 2 bounds Rrf
n(T ).

Theorem 1. Under the assumptions of A1, A3, A4, and letting at =
1
L
, the dynamic

regret of RFNL-TIRSO (Algorithm 8) w.r.t. the optimal cost function in the RF
space satisfies

Rrf
n (T ) ≤

((
1 +

L

ρl

)√
2PNDBy + λ

√
PN

)
×(

∥α∗
n[P ]∥2 +Wn(T )

)
,

where Wn(T ) =
∑T−1

t=P ∥α∗
n[t]−α∗

n[t− 1]∥2.

Proof: See Appendix C.7.
From Lemma 2, it can be readily seen that if Wn(T ) is sublinear, then the regret
will also be sublinear.

C.4.1.2 Bounding the cumulative RF approximation error

Lemma 3 provides a bound for ξn(T ).

Theorem 2. Under assumptions A1 and A2, there exists ϵ ≥ 0 such that the cu-
mulative approximation error ξn[T ] of RFNL-TIRSO (Algorithm 8) satisfies

ξn(T ) ≤ ϵLhTC.

Proof: See Appendix C.8.
Finally, we bound the dynamic regret Rn(T ) using Lemma 2 and Lemma 3.





Theorem 3. Under the assumptions of A1, A2, A3, and A4, the dynamic regret
Rn(T ) of RF-NLTIRSO (Algorithm 8) satisfies

Rn(T ) ≤
((

1 +
L

ρl

)√
2PNDBy + λ

√
PN

)
×(

∥α∗
n[P ]∥2 +Wn(T )

)
+ϵLhTC.

Proof: Theorem 4 can be directly and readily proved by substituting Lemma 2
and Lemma 3 in (F.30). Notice that if we have setting ϵ = O( 1√

T
), this results in

a dynamic regret of O(Wn(T )+
√
T ).In such cases, the dynamic regret is sublinear,

if Wn(T ) is sublinear. Ideally, an online algorithm must obtain a sublinear dynamic
regret, which implies that Rn(T )/T → 0 as T → ∞, or in the worst case, a linear
regret which implies Rn(T )/T → constant, where constant is known as the steady
state error. Notice that in our case, this steady state error when Wn(T ) is sublinear
is ϵLfC. If ϵ is small, the resulting study state error will also be small. As shown in
appendix B , we can make ϵ sufficiently small by increasing the number of random
features D by trading off with complexity [16].

C.5 Experimental results

Figure C.3: True topology plotted against topology estimated using various al-
gorithms for g(x) = g1(x). In each subfigure, the x-axis corresponds to nodes
n = 1, . . . , 10, and the y-axis corresponds to nodes n = 1, . . . , 10 for time lags
p = 1, . . . , 4. The edge values are indicated by the colour code.
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Figure C.4: Function g1.
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Figure C.5: Function g2.
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Figure C.6: Function g3.
Figure C.7: Receiver-Operating Curve for each of the realization of the nonlinear
function g(x).





In this section, we analyze the performance of RFNL-TIRSO using extensive
numerical experiments. We choose TIRSO [48], RFNL-TISO [22] and PDIS [75,91],
as the state-of-the-art competitors to compare the performance of RFNL-TIRSO. It
is to be remarked that TIRSO is an online topology algorithm designed by assuming
linear VAR models. TIRSO is selected in order to show the advantages of the pro-
posed nonlinear algorithm RFNL-TIRSO, compared to its linear counterpart. The
second algorithm RFNL-TISO is an online nonlinear topology estimation algorithm
designed by considering an instantaneous loss function. Based on the discussions in
Appendix C.3, RFNL-TIRSO is expected to show better performance compared to
RFNL-TISO since it incorporates an RLS-based loss function. The third algorithm,
PDIS [75, 91], is a recent online nonlinear topology identification algorithm using
dictionaries of kernel functions based on partial-derivative-imposed sparsity. To the
best of our knowledge, these three algorithms are the best benchmarks to compare
the performance of RFNL-TIRSO, and although some other batch-based algorithms
are available [11], [9], [10], they are not comparable to our algorithm, since they are
offline algorithms.

The per node computational complexity of RFNL-TIRSO, RFNL-TISO, and
TIRSO, are in the order of O

(
N2P 2D2

)
, O
(
NPD

)
, and O

(
N2P 2

)
, respectively.

Although RFNL-TIRSO is computationally heavier than the competitors, it pro-
vides robustness, and theoretical performance guarantees, which is not the case
for the competing algorithms and which we demonstrate through several numerical
experiments in this section.

Experiments shown in this section are conducted using both synthetic and real
data sets. The synthetic dataset includes graph-connected time series data generated
by assuming different topology transition patterns to highlight the ability of the
online algorithms to track non-stationary topologies. The real data sets include (i)
time seires data collected from the Lundin’s offshore oil and Gas platform1 and (ii)
Epileptic seizure data [92].

C.5.1 Experiments using Synthetic Data Sets

C.5.1.1 Piecewise stationary topology

We generate a multivariate time series using a nonlinear VAR model (C.1) with
N = 10, P = 4. The nonlinear function in (C.1) is taken as f

(p)
n,n′(x) = a

(p)
n,n′(x)g(x),

where g(x) is a nonlinear function and a
(p)
n,n′(x) ∈ {0, 1}. The experiments are con-

ducted with three different realizations of g(x): g1(x) = 0.25 sin(x2) + 0.25 sin(2x) +

0.5 sin(x), g2(x) = 0.25 cos(x2) + 0.25 cos(2x) + 0.5 cos(x), and with a Gaussian kernel,
i.e., g3(x) = (1/

√
2π)exp(−x2/2). We refer to a

(p)
n,n′ as an edge, and a

(p)
n,n′(.) = 0/1

means that the p-th time-lagged dependency between n and n′ is disabled/enabled.
A graph-connected time series is generated by restricting the number of active edges
to be 30% of the total available edges. Further, we introduce abrupt changes in the
topology after every 1000 time step by randomly cutting off 30% of the available

1https://www.lundin-energy.com/





active edges. Notice that the initial P data samples are generated randomly, and
the rest of the data are generated using model (C.1). The hyperparameters of all the
algorithms used in the experiments are tuned heuristically to get the maximum area
under the receiver operating curve, which is explained below. The hyperparameter
settings for RFNL-TIRSO are (σn, λ, at) = (2.5, 0.01, 0.1/Λmax(ϕ[t])), for g1 and g2,
and (1, 0.01, 0.1/Λmax(ϕ[t])) for g3. The top row of Fig. C.3 contains the true edges{
a
(p)
n,n′

}
at different time steps, which are arranged in matrices of size N × N , for

p = 1, 2, . . . , P , and stacked vertically, resulting in matrices of size NP×N . The esti-
mated dependencies

{
â
(p)
n,n′

}
using different algorithms are shown in the bottom rows.

After computing the normalized ℓ2 norms b
(p)
n,n′ [t] = ∥α(p)

n,n′ [t]∥2/(maxn′∥α(p)
n,n′ [t]∥2), the

presence of an edge is detected using a threshold δ as âpn,n′ = 1{b(p)n,n′ [t] < δ}, where
1 {x} = 1/0, if x is true/false. It is clear from Fig. C.3 that the estimates of RFNL-
TISO are very close to the ground truth, and they outperform others.

A numerical comparison of the performances of the algorithms is made using the
probability of false alarm (PFA) and the probability of detection (PD). The proba-
bility of false alarm (PFA) refers to the probability that the algorithm reports the
presence of a dependency in the network that is not actually present. On the other
hand, the probability of detection(PD), refers to the probability that the algorithm
detects a dependency that is truly present in the network. In our experiment, we
assume there is a presence of a detected edge from the p − th time-lagged value of
n′ − th sensor to the present value of the n − th sensor if the value of coefficient
b
(p)
n,n′ [t] is greater than a threshold δ ∈ [0, 1], and define PFA and PD as

PD[t] ≜ 1−

∑
n̸=n′

∑P
p=1 E

[
1{b(p)n,n′ [t] < δ}1{an,n′ = 1}

]
∑

n̸=n′
∑P

p=1 E[1{an,n′ = 1}]
,

PFA[t] ≜

∑
n̸=n′

∑P
p=1 E

[
1{b(p)n,n′ [t] > δ}1{an,n′ = 0}

]
∑

n̸=n′
∑P

p=1 E
[
1{an,n′ = 0}

] , (C.34)

where 1 {x} = 1/0, if x is true/false and δ is a threshold. From (C.34), it is clear
that when δ = 0, both PD and PFA become one. With an increase in δ, both PD

and PFA decrease, eventually reaching zero when δ equals one.
The Receiver-Operating curve (ROC) of the different algorithms at time t = 990

is plotted in Fig. C.7 by varying δ from 0 to 1, with PFA in the x-axis and PD

in the y-axis. The area under the ROC curve (AUC) is computed to evaluate the
performance of the algorithm. A topology identification algorithm with a high AUC
value is characterized by by a high PD and low PFA, indicating that it can accurately
identify network topologies while minimizing the occurrence of false positives. From
Fig. C.7, it can be observed that the area under ROC (AUC) of the RFNL-TIRSO
is substantially better than TIRSO and slightly better than RFNL-TISO for all
three nonlinearity functions. These observations are more evident from Table F.1,
where the computed AUC values are tabulated. We further analyze the AUC of
RFNL-TIRSO for different RF space dimensions, i.e., D ∈ {20, 30, 50}, at different
time instants in Table C.2, for the nonlinear function g(x) = g1(x). As expected,
the AUC increases with D and the number of data samples. A similar AUC trend





as in Table C.2 was obtained for the other two nonlinear functions g1 and g2.

Table C.1: AUC for different algorithms.

AUC g1 g2 g3

RFNL− TIRSO 0.9914 0.9949 0.9543

RFNL− TISO 0.9741 0.9817 0.9317

TIRSO 0..4967 0.5 .5123

Table C.2: AUC curve for different values of D.

AUC t = 990 t = 1990 t = 2990

D = 20 0.9500 0.9762 0.9732

D = 30 0.9568 0.9827 0.9835

D = 50 0.9721 0.9887 0.9901

C.5.1.2 Lorenz graph

We also present experiments with synthetic data sets generated using the Lorenz
graph [93]. We consider a discretized version of the Lorenz graph involving 3 time
series exhibiting the following nonlinear dependencies:y1[t+ 1]

y2[t+ 1]

y3[t+ 1]

 = 0.01

 10(y2[t]− y1[t])

y1[t](28− y3[t])− y2[t]

y1[t]y2[t]− 8
3
y3[t]

+
y1[t]

y2[t]

y3[t]

 (C.35)

Compared to the causality model used in C.5.1.1, the Lorenz graph model (C.35)
involves only order one (P = 1) time lag dependencies among the nodes. More-
over, note that (C.35) involves nonadditive nonlinear interactions among the nodes,
which is different from the VAR assumption in (C.1). The performance of the
RFNL-TIRSO and the PDIS [91] algorithms are compared in this section, whereas
TIRSO is omitted since the algorithm implementation assumes P > 1. To ensure a
fair comparison, we follow exactly the same experiment set up as in [91], in which,
the performance is measured using the edge identification error rate (EIER), de-
fined as EIER = ∥A−Â∥0

N(N−1)
× 100, where A is the true dependency matrix and Â is

the estimated dependency matrix. For RFNL-TIRSO, Â is computed using b
(1)
n,n′ .

The hyperparameters are tuned heuristically to obtain minimum EEIR resulting in
a setting (σn, λ, at) = (1, .3, 1/(tΛmax(ϕ[t]))). The estimated and true binary adja-
cency matrix (excluding self-dependencies) are shown in Fig. C.11, and the EIER
till t = 1750 is plotted in Fig. C.12. We remark that although the PDIS algorithm
is designed by assuming nonadditive nonlinear interactions, its performance lags be-
hind the proposed RFNL-TIRSO algorithm, which assumes additive nonlinearities.





This is because the RFNL-TIRSO algorithm employs an RLS loss function, which
results in an improved convergence speed compared to the LMS loss used in PDIS.
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Figure C.11: Lorenz graph detection using RFNL-TIRSO: (a) True Binary dependency,
(b) Estimated dependency, (c) Binary estimated dependency by stetting threshold as .5.
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Figure C.12: EIER performance for the Lorenz graph experiment.





C.5.1.3 Numerical Evaluation of Dynamic Regret

A theoretical bound of the dynamic regret Rn[T ]=Rrf
n [T ]+ξn[T ] has been derived in

Appendix C.4.1. In this section, using experiments conducted on synthetic data, we
numerically compute the dynamic regret of RFNL-TIRSO w.r.t. the optimal cost
in the RF space, defined as Rrf

n [t]=
∑t−1

τ=P (hnτ (αn[τ ])−hnτ (α
∗
n[τ ])), for t = 1, . . . , 1000.

This allows validating experimentally our theoretical results. Here, αn[τ ] is the RF
coefficient estimated using RFNL-TIRSO at time τ , and α∗

n[τ ] is the optimum RF
coefficient, computed using a standard gradient descent algorithm until convergence.
We remark that the estimation of α∗

n[τ ] involves very high computational complexity
compared to that of αn[τ ]. In Fig. C.13, we plot Rrf

n [t] and its rate of change w.r.t.
time Rrf

n [t]/t. In this experiment, we used the same data generation mechanism
involving the nonlinear dependencies g1 and g2, as explained in C.5.1.1, having
topology change points at t = 250 and t = 500. Figure C.13 shows that Rrf[t] is
sublinear w.r.t. t and Rrf[t]/t is negligibly small, which is in agreement with the
theoretical results stated in Lemma 2. We note that a numerical evaluation of the
second component of the dynamic regret ξn[t] is a daunting, complex process since
it involves finding the optimal parameters in a high dimensional RKHS. However, as
shown in (C.67) we remark that ξn[t]/t is theoretically bounded by the value ϵLfC,
where ϵ is a user-controlled parameter. ξn[t]/t can be made small, yielding a value
of Rn[t]/t that can be upper bounded by a small constant for t → ∞.
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Figure C.13: Regret w.r.t. optimal cost function in RF space. Vertical lines indicate the
topology change points.

C.5.2 Experiments using Real Data Sets

C.5.2.1 Oil and Gas Platform Data

This section is dedicated to experiments using real data collected from Lundin’s
Offshore Oil and Gas (O and G) platform Edvard-Grieg2. We collected multivariate

2https://www.lundin-energy.com/





time series data from 24 nodes (numbered as n = 1, 2, . . . , 24.) of the plant corre-
sponding to various temperature (T), pressure (P), and oil-level (L) sensors. The
sensors are placed in the separators of decantation tanks separating oil, gas and
water. The time series are obtained by uniformly sampling the sensor readings with
a sampling rate of 5 seconds. We assume that the hidden logic dependencies are
present in the network due to the various existing physical connections and control
actuators. The data obtained from the sensors are preprocessed by normalizing
them to zero mean unit variance signals.

Figure C.14: Causality graph estimated using RFNL-TIRSO for Oil and Gas platform.

The dependencies are learned using RFNL-TIRSO (D = 10), RFNL-TISO, and
TIRSO by assuming a VAR model of order P =12. A Gaussian kernel having a
variance of 1 is used in all the experiments with hyperparameter setting λ = 0.1 and
step size at=1/Λmax(ϕ[t]) (tuned to obtain minimum NMSE). The estimated de-
pendencies are visualized in Fig. C.14 using the ℓ2 norms ∥αn,n′ [t]∥2. RFNL-TIRSO
identifies interpretable connections; for instance, two pressure sensors in the same
separator are connected, and the oil level in separator-1 is connected to the pressure
variation in separator-2. Further, as expected, most of the identified interactions are
local (e.g., interactions inside a separator), with very few long-distance interactions
(e.g., interactions between two separators). The strong local interactions among
variables such as temperature, pressure, and oil level inside a container are directly
linked to fluid dynamics of the oil and gas in the closed chamber as dictated by
the differential equations governing these variables [94]. However, various control
mechanisms governing the whole oil and gas platform and the physical connections
across different chambers can also cause some longer-distance non-trivial interac-
tions, although they will not typically be as predominant as the local interactions.
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Figure C.15: NMSE comparison: data from the Oil and Gas platform.

For instance, the primary inlet separator and the electrostatic coalescer can interact
despite not being physically connected. When there are changes in the oil level
within the coalescer, it can affect the head of the system, leading to changes in
the pressure and oil level within the primary inlet separator that operates based on
gravity.

We wish to note that the estimated dependencies can be interpreted as an ab-
stract graph representation of various physics-based equations describing the space-
temporal variation of the signals. Ground truth dependencies are not available in
this experiment, and evaluating the estimated graph using the underlying differen-
tial physics-based equations governing the space-time system is a tedious procedure
that is beyond the scope of this study. However, we demonstrate the ability of the
algorithms to learn causal dependencies based on the accuracy of time series fore-
casting using the learned VAR model. A good prediction accuracy implies that the
estimated causal dependencies are close to the underlying unknown real dependen-
cies. As a side note, we highlight that the time series forecasting is a challenging
problem having enormous applications in various fields such as finance engineer-
ing, traffic forecast, sensor network etc. The prediction accuracy is computed using
normalized mean squared error (NMSE):

NMSE (T) =
∑T

t=1(yn[t+ tstep]− ŷn[t+ tstep])
2∑T

t=1(yn[t+ tstep])2
, (C.36)

where ŷn[t + tstep] is the estimate of the time series generated by the nth node at
time instant t+ tstep based on the VAR model learned at time t. Figure C.15 shows
the NMSE of the estimated signals corresponding to a particular sensor n = 8 using
various algorithms. We discard the PDIS algorithm in this experiment since it is not
designed for signal prediction. NMSE is calculated according to (C.36) with tstep =

12, which refers to one minute ahead prediction. For RFNL-TIRSO and TIRSO,





we conduct the experiments by varying the forgetting factor γ ∈ {0.1, 0.5, 0.7, 0.98}.
We note that the best NMSE of the RFNL-TIRSO algorithm is obtained at γ = .98,
and it outperforms all the competitors. It is interesting to observe that as γ reduces,
the performance of RFNL-TIRSO becomes close to RFNL-TISO, as expected from
(F.12). Additionally, we plot the dynamic regret and cumulative variation of the
optimal parameter estimates in Fig. C.16, which shows that our algorithm is able
to track the topology even if the optimal topology is changing.
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Figure C.16: Rate of change of regret and path length: data from Edvard-Grieg Oil and
Gas platform.
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Figure C.17: NMSE with different learning rate at: data from Edvard-Grieg Oil and Gas
platform.

In section Appendix C.4, we show that the RFNL-TIRSO converges if the learn-
ing rate is less than 1/L, where L is the upper bound of Λmax(ϕ[T ]). The perfor-
mance of RFNL-TIRSO under various learning rates is shown in Fig. C.17. Intu-
itively as the learning rate increases, RFNL-TIRSO converges faster; and when the
learning rate is increased beyond 1/L, convergence is not guaranteed, as evidenced
in Fig. C.17. Note that if the data has high variance, the value of Λmax(ϕ[T ]) will be





obviously high, necessitating the use of a lower learning rate to ensure the algorithm
convergence.

C.5.2.2 Epileptic data set

The dataset used for this experiment [92] is collected from the Children’s Hospital
Boston, and it consists of EEG recordings from pediatric subjects with intractable
seizures. Subjects were monitored during several days following withdrawal of anti-
seizure medication to characterize their seizures and assess their candidacy for sur-
gical intervention. The electrode positions and the nomenclature used during the
EEG recordings were based on the well known International 10-20 system stan-
dard. All signals were sampled at 64 samples per second, and there is a total of
23 Channels: FP1:F7, F7:T7, T7:P7, P7:O1, FP1:F3, F3:C3, C3:P3, P3:O1, FP2:F4,
F4:C4, C4:P4, P4:O2, FP2:F8, F8:T8, T8:P8, P8:O2, FZ:CZ, CZ:PZ, P7:T7, T7:FT9,
FT9:FT10, FT10:T8, and 2T8:P8, which measures the potential difference between
the corresponding electrodes.

Figure C.18: Estimated brain topology for the subjects P1 and P2 during various
stages of seizure.

The estimated brain topology using RFNL-TIRSO (P = 2, D = 20) at various
time instants (before the seizure, during a seizure, after seizure), visualized using
the ℓ2 norms ∥αn,n′ [t]∥2, are shown in Fig. C.18. It is observed that the estimated
topologies before and after the seizure are very similar, with connections concen-
trated across certain brain regions. However, during the seizure, the topologies get
more disrupted, which agrees with the observations in [95]. This disruption can be
attributed to an increase in pathogenic neural discharge during the seizure [96].

The brain can be divided into several regions, namely, temporal, frontal, occip-
ital, parietal and central. Epilepsies are generally classified according to the region
of the brain where they originate, with common classifications including temporal
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Figure C.19: Subject: P1, Category: Temporal Lobe Epilepsy.
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Figure C.20: Subject: P2, Category: Frontal Lobe Epilepsy.

Figure C.21: Activation levels in ‘T’ and ‘F’ regions of the brain.

lobe (TL) epilepsy and frontal lobe (FL) epilepsy [97]. In TL epilepsy, more inter-
region connections will originate from the temporal region, whereas in FL epilepsy,
such connections are originated from the frontal region. To showcase this, we next
present an experiment with the brain data of P1 and P2, respectively, belonging to





the TL and FL epilepsy categories [98]. To measure the activity level of different
brain regions, we group all the channels connected to the ‘temporal’ region into one
group (group-T) and the ‘frontal’ region into another group (group-F). Note that
all the connections between the ‘frontal’ and the ‘temporal’ regions are excluded in
this experiment. We define the activation level of a group as the sum of the de-
grees of all the nodes belonging to the group divided by the total number of nodes
present in the group, where the degree of a node refers to the total number of edges
connected to the node. The activation level of each group for P1 and P2 are shown
in Fig. C.19 and Fig. C.20, respectively. From the figures, it is observed that for P1
and P2, the activation levels of group-T and group-F, respectively, spike first, and
then the activation spreads across the other brain region. These observations align
with the characteristics of TL and FL epilepsies.

C.6 Conclusion

An online nonlinear topology identification algorithm termed RFNL-TIRSO is pro-
posed in this paper. The multivariate time series data received in sequential form
are processed online to estimate time-varying nonlinear dependencies. It has been
proven that RFNL-TIRSO follows a sublinear dynamic regret, which guarantees the
tracking capability of the algorithm in dynamic environments. The performance of
RFNL-TIRSO is evaluated using real and synthetic data sets, and the algorithm
outperforms the state-of-the-art online topology estimation methods.

C.7 Proof of Lemma 2

In this section, we derive a theoretical upper bound for Rrf
n(T ). Since the function

hn
t is convex

Rrf
n(T ) =

T−1∑
t=P

[
hn
t (αn[t])− hn

t (α
∗
n[t])

]
(C.37)

≤
T−1∑
t=P

∇hn
t (αn[t])

⊤(αn[t]−α∗
n[t]).

Apply Cauchy-Schwarz inequality on right hand side to get

Rrf
n(T ) =

T−1∑
t=P

[
hn
t (αn[t])− hn

t (α
∗
n[t])

]

≤
T−1∑
t=P

∥∇hn
t (αn[t])∥2 ∥αn[t]−α∗

n[t]∥2. (C.38)

The optimality gap of any proximal gradient descent algorithm with an objective
function having 1) a strongly convex and Lipschitz smooth loss function and 2) a
Lipschitz continuous regularizer is derived in [32]. We can show that RFNL-TIRSO





is a proximal gradient descent algorithm by following the proofs provided in [48].
Hence, the cumulative optimality gap is bounded as

T−1∑
t=P

∥αn[t]−α∗
n[t]∥2 = ∥α∗

n[P ]∥2+Wn(T ), (C.39)

where Wn(T ) =
∑T−1

t=P ∥α∗
n[t]−α∗

n[t−1]∥2 is the path length, which is a measure of cu-
mulative variation of the optimality gap. Next, we bound for the term ∥∇hnt (αn[t])∥2
in (C.38).

Lemma 1. Under the assumptions A1, A3 and A4,

∥∇hn
t (αn[t])∥2 ≤

((
1 +

L

ρl

)√
2PNDBy + λ

√
PN

)
.

Proof : The cost function consists of a differentiable loss function ℓ̃nt and a non-
differentiable regularizer ωn. We introduce the notation un to denote a subgradient
of the regularizer ωn(αn[t]). The gradient of the entire cost function can be bounded
by bounding the gradient of these two terms:

∥∇hn
t (αn[t])∥2 ≤ ∥∇ℓ̃nt (αn[t])∥2 + ∥un∥2. (C.40)

The term ∥∇ℓ̃nt (αn[t])∥2 is bounded in Lemma 1.2 using Lemma 1.1, and the
term ∥un∥2 is bounded in Lemma 1.3.

Lemma 1.1. Under assumptions A1 and A3

∥αn[t+ 1]∥2 ≤ (1− atρl)∥αn[t]∥2 + at
√

2PNDBy.

Proof: From Lemma 7 in [48] we have,

∥αn[t+ 1]∥2 ≤ (1− atρl)∥αn[t]∥2 + at∥rn[t]∥2. (C.41)

Using (F.15), we can bound ∥rn[t]∥2 as

∥rn[t]∥2 = ∥µ
t∑

τ=P

γt−τyn[τ ]zv(τ)∥2

≤ µ∥
t∑

τ=P

γt−τyn[τ ]12PND∥2 (C.42)

≤ µ
√
2PNDByγ

t

t∑
τ=P

(
1

γ
)τ (C.43)

=
√
2PNDBy(1− γt−P+1) (C.44)

≤
√
2PNDBy. (C.45)

Inequality (C.42) is obtained by replacing the RF vector (sinusoidal components)
with an all-one vector having a higher norm, (C.43) is obtained using the assumption
A1, (C.44) follows from u = 1 − γ, and (C.45) follows from γ ≤ 1. Lemma 1.1 is
proved by substituting (C.45) in (C.41).





Lemma 1.2. Under assumptions A1, A3, and A4, the RFNL-TIRSO algorithm
with step size parameter at =

1
L

satisfies

∥∇ℓ̃nt (αn[t])∥2 ≤
(
1 +

L

ρl
)
√

2PNDBy.

Proof: Invoke Lemma 1.1, set at = a, and let δ = (1 − aρl) and 0 ≤ δ ≤ 1, to
get

∥αn[t+ 1]∥2 ≤ δ∥αn[t]∥2 + at
√

2PNDBy (C.46)

The bound of ∥αn[t + 1]∥2 in terms of the norm of the initial estimate ∥αn[P ]∥2 is
obtained by t− P + 1 recursion of (C.46):

∥αn[t+ 1]∥2 ≤ δt−P+1∥αn[P ]∥2 + a
√

2PNDBy

t−P∑
i=0

δi

=
a
√

2PNDBy(1− δt−P+1)

1− δ
(C.47)

≤
a
√
2PNDBy

1− (1− aρl)
) =

1

ρl

√
2PNDBy (C.48)

In (C.47), we assumed that the RF coefficients are initialized with zeros, i.e., αn[P ] =

02PND.
Using (C.48) and (C.45), we can bound gradient:

∥∇ℓ̃nt (αn[t])∥2 = ∥ϕ[t]αn[t]− rn[t]∥2 (from (F.18))

≤ ∥ϕ[t]αn[t]∥2 + ∥rn[t]∥2
≤ Λmax(ϕ[t])∥αn[t]∥2 + ∥rn[t]∥2 (C.49)

= L

√
2PNDBy

ρl
+
√

2PNDBy (C.50)

≤
(
1 +

L

ρl

)√
2PNDBy (C.51)

Inequality (C.49) holds since spectral norm of ϕ[t] = Λmax(ϕ[t]), whereas (C.50) is
obtained by combining the Assumption A4, (C.48), and (C.45). Next, we bound
∥un∥2.

Lemma 1.3. The norm of a subgradient of the regularizer can be bounded as

∥un∥2 ≤ λ
√
PN.

Proof: To prove Lemma 1.3, we apply Lemma 2.6 from [68] which states that
every subgradient of ωn(.) is bounded by its Lipschitz continuity parameter Lωn . In
the following, we show that Lωn = λ

√
PN . Lipschitz continuity of ωn means there

exists Lωn > 0 such that

|ωn(a)− ωn(b)| ≤ Lωn∥a− b∥2 (C.52)





for all real a and b. From the group-Lasso regularizer, we have

ωn(xn) = λ
N∑

n′=1

P∑
p=1

∥x(p)
n,n′∥2. (C.53)

Expanding the left-hand side of (C.52) using (C.53) yields

|ωn(an)− ωn(bn)| (C.54)

= λ
∣∣∣ N∑
n′=1

P∑
p=1

∥a(p)
n,n′∥2 −

N∑
n′=1

P∑
p=1

∥b(p)n,n′∥2
∣∣∣ (C.55)

= λ
∣∣∣ N∑
n′=1

P∑
p=1

∥a(p)
n,n′∥2 − ∥b(p)n,n′∥2

∣∣∣ (C.56)

≤ λ

N∑
n′=1

P∑
p=1

∣∣∣∥a(p)
n,n′∥2 − ∥b(p)n,n′∥2

∣∣∣ (C.57)

≤ λ
N∑

n′=1

P∑
p=1

∥a(p)
n,n′ − b

(p)
n,n′∥2 (C.58)

≤ λ
√
PN∥an − bn∥2. (C.59)

In the above derivation, inequality (C.57) follows from the triangle inequality, in-
equality (C.58) from the reverse triangle inequality and (C.59) from the basic in-
equality ∥q∥1 ≤

√
M∥q∥2, q ∈ RM . From (C.59), we obtain the required Lipschitz

parameter to be λ
√
PN .

Substitute the bounds of ∥∇lnt (αn[t])∥2 given by Lemma 1.2 and ∥un∥2 given
by Lemma 1.3 in (C.40) to complete the proof of Lemma 1. Finally, the proof of
Lemma 2 can be completed by substituting Lemma 1 and (C.39) in (C.38).

C.8 Proof of Lemma 3

The cumulative approximation error due to the RF approximation is

ξn[T ] ≤
∣∣∣∣T−1∑
t=P

[
hn
t (α

∗
n[t])− hn

t (β
∗
n[t])

]∣∣∣∣. (C.60)

Using the triangle inequality,

ξn[T ] ≤
T−1∑
t=P

∣∣∣hn
t (α

∗
n[t])− hn

t (β
∗
n[t])

∣∣∣
≤

T−1∑
t=P

Lh

∣∣∣∣∣
N∑

n′=1

P∑
p=1

t+p−1∑
t′=P

β
(p)∗
n,n′,(t′−p)z

(p)
v,n′(t)

⊤
z
(p)
v,n′(t

′)

− β
(p)∗
n,n′,(t′−p)k

(p)
n′ (yn′ [t− p], yn′ [t′ − p])

∣∣∣∣ (C.61)





≤
T−1∑
t=P

Lh

N∑
n′=1

P∑
p=1

t+p−1∑
t′=p

∣∣∣∣β(p)∗
n,n′,(t′−p)

∣∣∣∣×∣∣∣∣z(p)
v,n′(t)

⊤
z
(p)
v,n′(t)− k

(p)
n′ (yn′ [t− p], yn′ [t′ − p])

∣∣∣∣. (C.62)

Inequality (C.61) is obtained from the Lipschitz continuity of the cost function
(Lh > 0 is the Lipschitz continuity parameter) and (C.62) follows from Cauchy-
Schwarz inequality. As shown in [16], it can be proved that for a given shift-invariant
kernel k(p)

n′ (assumption A2), the approximation error due to the random Fourier
approximation is bounded by

sup
yn(t)

∣∣∣∣z(p)
v,n′(t)

⊤
z
(p)
v,n′(t)− k

(p)
n′ (yn′ [t− p], yn′ [t′ − p])

∣∣∣∣ ≤ ϵpn′ (C.63)

with a probability given by 1 − 28(σp
n′/ϵ

p
n′)2 exp(−Dϵpn′/12). Here, ϵpn′ ≥ 0 is a

constant and σp
n′ is the variance of random feature vector norm. Using (C.63),

ξn[T ] ≤
T−1∑
t=P

Lh

N∑
n′=1

P∑
p=1

t+p−1∑
t′=P

∣∣∣∣β(p)∗
n,n′,(t′−p)

∣∣∣∣ϵpn′ . (C.64)

Let ϵ = max ϵpn′ , which leads to

ξ(T ) ≤
T−1∑
t=P

Lhϵ
N∑

n′=1

P∑
p=1

t+p−1∑
t′=P

∣∣∣∣β(p)∗
n,n′,(t′−p)

∣∣∣∣ (C.65)

≤
T−1∑
t=P

ϵLhC (C.66)

≤ ϵLhTC, (C.67)

where C is a constant and (C.66) follows from the assumption A1: since yn(t) is
bounded, the optimal parameters should also be bounded.
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Online Joint Nonlinear Topology Iden-
tification and Missing Data Imputa-
tion over Dynamic Graphs

R. Money, J. Krishnan, B. Beferull-Lozano

Abstract: Extracting causal graph structures from multivariate
time series, termed topology identification, is a fundamental problem in
network science with several important applications. Topology identifi-
cation is a challenging problem in real-world sensor networks, especially
when the available time series are partially observed due to faulty com-
munication links or sensor failures. The problem becomes even more
challenging when the sensor dependencies are nonlinear and nonstation-
ary. This paper proposes a kernel-based online framework using random
feature approximation to jointly estimate nonlinear causal dependencies
and missing data from partial observations of streaming graph-connected
time series. Exploiting the fact that real-world networks often exhibit
sparse topologies, we propose a group lasso-based optimization frame-
work for topology identification, which is solved online using alternating
minimization techniques. The ability of the algorithm is illustrated using
several numerical experiments conducted using both synthetic and real
data.

D.1 Introduction

Data analytics on complex networked systems such as large-scale sensor networks,
social networks, brain networks, etc., have gained much research attention in the
last decade. Most such complex networks generate data in the form of multivariate
time series, which are often interdependent. These dependencies can be represented
in the form of a graph. Representing and processing data on graph structures have
become increasingly important due to diverse range of applications, such as data
compression, denoising, change point detection, etc. Often, such dependencies are
not directly observable and must be inferred. Identification of causal graph structure
from multivariate time series is termed topology identification, which is a challenging
task due to the nonstationary and nonlinear nature of the dependencies.

It is essential to have sufficient and good quality data when solving a topology
identification problem; however, data might not be fully observable in many real-
world situations. Sensor networks, for instance, transmit data captured by sensors





through communication channels to an end-user for processing. These networks
are susceptible to data loss due to sensor failures or communication impairments,
making it challenging to identify the topology. A practically significant algorithm for
topology identification must be (i) capable of working online to handle nonstationary
dependencies, (ii) capable of recognizing nonlinear dependencies, and (iii) capable
of dealing with noisy and incomplete observations.

Online linear topology identification is fairly well studied in the literature [1,48].
In [48], an optimization problem is formulated by taking into account the sparse
nature of real-world dependencies and solving the problem using composite objective
mirror descent (COMID), and in [1], a time-varying convex optimization framework
has been used for topology identification. Recently, several works on nonlinear
topology identification have been proposed [9–11,21,22,36], among which [21,22,36]
propose online solutions for nonlinear topology identification problems, whereas [11]
and [9] propose batch solutions using kernel and neural networks, respectively.

While the aforementioned works demonstrate promising results in topology es-
timation, all assume complete data availability with no sensor failures or commu-
nication issues. A joint linear topology identification and missing data imputation
using block coordinate descent and Kalman smoothing have been recently proposed
in [18]. Similarly, [6] proposes a computationally light approach using inexact prox-
imal gradient descent. However, [18] and [6] assume linear causality, which does not
make sense for most real-world time series.

In this paper, we propose an online nonlinear topology identification algorithm
accounting for missing data by solving a group lasso-based optimization framework.
Considering the well-established underlying theory and the ability to carry out on-
line training, kernels are used to model nonlinearity, which are approximated using
random features [16] to control the computational complexity. To the best of our
knowledge, this is the first attempt to address jointly (i) nonlinearity, (ii) nonsta-
tionarity, and (iii) missing data in topology identification.

D.2 Problem formulation

D.2.1 Nonlinear topology identification

A P -th order nonlinear vector autoregressive (VAR) process with N number of nodes
can be expressed as

yn[t] =
N∑

n′=1

P∑
p=1

f
(p)
n,n′(yn′ [t− p]) + un[t], (D.1)

where yn[t] is the observation of the n-th time series at time t, f (p)
n,n′(.) encodes the

causal influence of p-th time-lagged value of n′-th time series on n-th time series,
and un[t] is the observation noise. The nonlinear VAR model is a suitable model
owing to the fact that the causal dependencies in the real world are time-lagged in
nature. Moreover, the VAR model implies the famous causality hypothesis proposed
by Granger [99], under certain assumptions [63].





D.2.1.1 Kernel representation

We assume that the function in (D.1) belongs to a reproducing kernel Hilbert space
(RKHS):

H(p)
n′ :=

{
f
(p)
n,n′ | f (p)

n,n′ (y) =
∞∑
t=p

β
(p)
n,n′,t κ

(p)
n′ (y, yn′ [t− p])

}
, (D.2)

where κ
(p)
n′ (., .) is a positive definite function that measures the similarity between

its arguments, and is termed kernel. Every positive definite kernel is associated to
a RKHS with inner product ⟨κ(p)n′ (y, x1), κ

(p)
n′ (y, x2)⟩ :=

∑∞
t=0 κ

(p)
n′ (y[t], x1)κ

(p)
n′ (y[t], x2)

and it satisfies the reproducing property ⟨κ(p)n′ (y, x1), κ
(p)
n′ (y, x2)⟩ = κ

(p)
n′ (x1, x2), thus

thereby inducing the RKHS norm ∥f (p)
n,n′∥2H(p)

n′
=
∑∞

t=0

∑∞
t′=0 β

(p)
n,n′,t β

(p)
n,n′,t′ κ

(p)
n′ (yn[t], yn[t

′]).

As any function in the RKHS can be expressed as an infinite combinations of kernel
evaluations, f (p)

n,n′ can be expressed as (D.2), with β
(p)
n,n′,t being the weight associated

with each kernel evaluation. A functional optimization problem can be formulated
to obtain the required causal dependency for a given node n:{

f̂
(p)
n,n′

}
n′,p

= arg min{
f
(p)

n,n′∈H
(p)

n′

} 1

2

T−1∑
τ=P

[
yn[τ ]−

N∑
n′=1

P∑
p=1

f
(p)
n,n′(yn′ [τ − p])

]2
+λ

N∑
n′=1

P∑
p=1

Ω

(
||f (p)

n,n′ ||H(p)

n′

)
, (D.3)

where
∑N

n′=1

∑P
p=1Ω

(
||f (p)

n,n′ ||H(p)

n′

)
is the regularizer and λ is the hyperparemter

associated with it. If Ω(.) is nondecreasing, the solution of (D.3) can be expressed
with a finite number of kernel evaluations using Representer Theorem [38]:

f̂
(p)
n,n′ (yn′ [τ − p]) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)κ

(p)
n′ (yn′ [τ − p], yn′ [t− p]) . (D.4)

Here, the number of kernel evaluations required is equal to the number of data
samples. As the number of data samples increases, the number of optimization
variables increases, which is commonly known as the curse of dimensionality in
kernel formulations. We use the random feature (RF) approximation to mitigate
this problem.

D.2.1.2 RF approximation

RF approximation addresses the curse of dimensionality by restricting the kernel
evaluations to an approximate fixed lower-dimensional Fourier space. Furthermore,
linear optimization techniques are easier to use in random Fourier space than in
infinite-dimensional RKHS. We use shift-invariant kernels to facilitate RF approx-
imation, i.e., κ

(p)
n′ (yn′ [τ ], yn′ [t]) = κ

(p)
n′ (yn′ [τ ]− yn′ [t]). According to Bochner’s theo-

rem [30], a shift invariant kernel can be represented using an inverse Fourier trans-
form of a probability distribution:

κ
(p)
n′ (yn′ [τ − p], yn′ [t− p]) =

∫
π
κ
(p)

n′
(v) ejv(yn′ [τ−p]−yn′ [t−p])dv

= Ev[e
jv(yn′ [τ−p]−yn′ [t−p])], (D.5)





where E is the expectation operator, π
κ
(p)

n′
(v) is the kernel specific probability density

function (pdf) and v is the random variable corresponding to the pdf. With sufficient
number of i.i.d. samples {vi}Di=1, the expectation in (D.5) can be replaced with
sample mean:

κ̂
(p)
n′ (yn′ [τ − p], yn′ [t− p])=

1

D

D∑
i=1

ejvi(yn′ [τ−p]−yn′ [t−p]). (D.6)

Note that (D.6) is an unbiased estimator of the kernel evaluation with a fixed num-
ber D of terms [43]. For a Gaussian kernel with variance σ2, the inverse Fourier
transform can be shown to be also a Gaussian with variance σ−2. Using this informa-
tion, the real part of (D.6), which is also an unbiased estimator of kernel evaluation,
can be expressed as

κ̂
(p)
n′ (yn′ [τ − p], yn′ [t− p]) = z

(p)
v,n′ [τ ]

⊤z
(p)
v,n′ [t], (D.7)

where, z
(p)
v,n′ [τ ] =

1√
D

[
sin (v1yn′ [τ − p]) , . . . , sin (vDyn′ [τ − p]) ,

cos (v1yn′ [τ − p]) , . . . , cos (vDyn′ [τ − p])

]⊤
. (D.8)

A fixed dimensional (2D) approximation of the function f̂
(p)
n,n′ is readily obtained by

substituting (D.7) in (D.4):

˜̂
f
(p)
n,n′ (yn′ [τ − p]) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)z

(p)
v,n′ [τ ]

⊤z
(p)
v,n′ [t]

= α
(p)
n,n′

⊤z
(p)
v,n′ [τ ], (D.9)

where α
(p)
n,n′ =

∑p+T−1
t=p β

(p)
n,n′,(t−p)z

(p)
v,n′ [t]. The following notations are introduced to

simplify the formulations:

α
(p)
n,n′ = [α

(p)
n,n′,1, . . . , α

(p)
n,n′,2D]

⊤ ∈ R2D, (D.10)

z
(p)
v,n′ [τ ] = [z

(p)
v,n′,1[τ ], . . . z

(p)
v,n′,2D[τ ]]

⊤ ∈ R2D, (D.11)

z
(p)
v,n′,k[τ ] =

{
sin(v

k
yn′ [τ − p]), if k ≤ D

cos(v
k−D

yn′ [τ − p]), otherwise.

The functional optimization (D.3) is reformulated as a parametric optimization prob-
lem using (D.9):

{
α̂

(p)
n,n′

}
n′,p

= arg min{
α

(p)

n,n′

}Ln
(
α

(p)
n,n′

)
+ λ

N∑
n′=1

P∑
p=1

Ω(||α(p)
n,n′ ||2), (D.12)

where

Ln
(
α

(p)
n,n′

)
:=

T−1∑
τ=P

1

2

[
yn[τ ]−

N∑
n′=1

P∑
p=1

α
(p)
n,n′

⊤ z
(p)
v,n′ [τ ]

]2
, (D.13)





which can be expanded in terms of RF components as

Ln
(
α
(p)
n,n′,d

)
:=

T−1∑
τ=P

1

2

[
yn[τ ]−

N∑
n′=1

P∑
p=1

2D∑
d=1

α
(p)
n,n′,d z

(p)
v,n′,d[τ ]

]2
. (D.14)

For convenience, the parameters {α(p)
n,n′,d} and {z(p)v,n′,d[τ ]} are stacked in the lexico-

graphic order of the indices p, n′, and d to obtain the vectors αn ∈ R2PND and
zv[τ ] ∈ R2PND, respectively, which allows to rewrite the loss function as

Ln(αn) =
1

2

T−1∑
τ=P

[
yn[τ ]−α⊤

nzv[τ ]

]2
. (D.15)

D.2.2 Missing data

To formulate the topology identification problem with missing data and noisy obser-
vation, we assume that only a subset of the nodes is observed. The motif of missing
data is represented by the masking vector m[t] ∈ RN , where mn[t], n = 1, ..., N , are
i.i.d Bernoulli random variables. The observed vector signal ỹ[t] at time t is given
by

ỹ[t] = m[t]⊙ (y[t] + e[t]), (D.16)

where y[t] = [y1[t], ..., yn[τ ]]⊤ ∈ RN and e[t] ∈ RN are the original signal and
observation noise in vector form and ⊙ represents the element wise multiplication.

D.2.3 Nonlinear topology identification with missing data

A batch formulation for the joint topology identification and missing data imputa-
tion can be formulated similarly to [18] and [6] as follows:

{α̂, ŷ[τ ]}τ=T−1
τ=P = arg min

α,y[τ ]

T−1∑
τ=P

1

2
∥y[τ ]−α⊤zv[τ ]∥22

+ λ
N∑

n′=1

2D∑
d=1

∥αn,n′,d∥2+
T−1∑
τ=P

ν

2Mτ
∥ỹ[τ ]−m[τ ]⊙ y[τ ]∥22, (D.17)

where α = [α⊤
1 , . . . ,α

⊤
N ] ∈ R2PND × RN , Mτ is cardinality of m[τ ], and ν is a

hyperparameter that regulates the signal reconstruction part.

D.3 Joint online estimation of nonlinear topology
and missing data

Note that zν depends on P previous values of all the N time series. Hence the
required online estimation strategy should estimate P previous values of the time





series along with the instantaneous values:

{α̂, ŷ[t], {ŷ[τ ]}t−1
τ=t−P} =

argmin
α,y[t]

{y[τ ]}t−1
τ=t−P

ℓt
(
α,y[t], {y[τ ]}t−1

τ=t−P

)
+λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2, (D.18)

where the non decreasing function Ω(.) = |.| and the loss function is defined as

ℓt
(
α,y[t], {y[τ ]}t−1

τ=t−P

)
=

1

2
∥y[t]−α⊤zv[t]∥22 +

ν

2Mt

∥ỹ[t]−m[t]⊙ y[t]∥22. (D.19)

We relax the formulation (D.18) since it is computationally expensive as well as
nonconvex. We assume that {ŷ[τ ]}t−1

τ=t−P are independent realizations of random
variables {y[τ ]}t−1

τ=t−P [6] and obtain a new loss function:

ℓ̃t (α,y[t]) =
1

2
∥y[t]−α⊤zv[t]∥22

+
ν

2Mt

∥ỹ[t]−m[t]⊙ y[t]∥22. (D.20)

Now the loss function is convex and separable across n. Hence the optimization
problem for a node can be expressed as

{α̂n, ŷn[t]}=argmin
αn,yn[t]

ℓnt (αn, yn[t])+λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2, (D.21)

whereℓnt (αn, yn[t])=
1

2

[
yn[t]−α⊤

n zv[t]

]2
+

ν

2Mt
(ỹn[t]−mn[t]yn[t])

2. (D.22)

We use the alternating minimization method in which (D.21) is solved by alter-
nating between two sub-problems that are convex and have closed-form solutions.
Since the optimization problem with respect to yn[t] (the signal reconstruction prob-
lem) is quadratic, a closed-form solution can be obtained. The second optimization
problem with respect to αn (topology identification) is in a form similar to the one
discussed in [22], where it is solved in a closed form using composite objective mirror
descent (COMID) method.

D.3.1 Signal reconstruction

The signal reconstruction problem can be formulated as

ŷn[t] = argmin
yn[t]

ℓnt (αn, yn[t]) . (D.23)

The solution of (D.23) is obtained by finding the zero derivative point of the objective
function:

ŷn[t] =
νmn[t]ỹn[t]

Mt + νmn[t]
+

kn[t]Mt

νmn[t] +Mt

, (D.24)

where kn[t] = α⊤
nzv[t]. Let νmn[t]

Mt+νmn[t]
= qn[t], then,

ŷn[t] = qn[t]ỹn[t] + [1− qn[t]]kn[t]. (D.25)





D.3.2 Topology identification
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Figure D.1: True edges (a(p)n,n′) and estimated weights (̂b(p)n,n′) for various missing data
scenarios.
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Figure D.3: Results: Experiment using synthetic data.

We use the estimates {ŷn[τ ]}tτ=t−P obtained using (D.25) to find the topology.
This sub-problem can be formulated as

α̂n = arg min
αn

ℓnt (αn) + λ
N∑

n′=1

P∑
p=1

∥α(p)
n,n′∥2. (D.26)

where ℓnt (αn) =
1
2
[ŷn[t]−α⊤

nzv[t]]
2. The convex objective function in (D.26) contains

two terms: a smooth loss function and a non-smooth regularizer. Such problems
can be solved efficiently using COMID methods [22]. The online COMID update is





given by

αn[t+ 1] = argmin
αn

J
(n)
t (αn), (D.27)

where J
(n)
t (αn) ≜ ∇ℓnt (αn[t])

⊤[αn −αn[t]]

+
1

2γt
∥αn −αn[t]∥22 + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2. (D.28)

In (D.28), αn[t] ∈ R2PND is the estimate of αn at time t. The objective function
J
(n)
t (.) consists of three terms: (i) gradient of the loss function, (ii) Bregman di-

vergence ∥αn − αn[t]∥22 chosen such that the optimization problem (D.28) has a
closed-form solution (γt is the step size associated with the divergence), and (iii) a
sparsity promoting group lasso regularizer. Note that the Bregman divergence term
increases stability of the online algorithm by enforcing the next iterate αn[t+ 1] to
be closer to current iterate αn[t]. The gradient in (D.28) is evaluated as

vn[t] := ∇ℓnt (αn[t]) = zv[t][α
⊤
nzv[t]− ŷn[t]]. (D.29)

A closed-form solution for (D.27) is obtained via the multidimensional shrinkage-
thresholding operator:

α
(p)
n,n′ [t+ 1] = [α

(p)
n,n′ [t]− γtv

(p)
n,n′ [t]]×[

1− γtλ

∥α(p)
n,n′ [t]− γtv

(p)
n,n′ [t]∥2

]
+

, (D.30)

where [x]+ = max {0, x}. The above solution is a product of two terms: first
term minimizes the loss function ℓnt (αn) and the second term enforces sparsity on
the updates. The proposed algorithm for jointly estimating the topology and the
missing data is summarized in Algorithm 8.

Algorithm 8:

Result:
{
α

(p)
n,n′ [t+ 1]

}
n,n′,p

, ŷ[t]

Initialize {yn[t]}Pt=1,
{
α

(p)
n,n′ [P ]

}
n,n′,p

as all-ones vector, λ, kernel parameters, γ, D, ν

(heuristically chosen)
for t = P, P + 1, . . . do

Get data observation vector ỹn[t] and masking vector m[t], compute zv[t]

for n = 1, . . . , N do
compute ŷn[t] using (D.25)
compute vn[t] using (D.29)
for n′ = 1, . . . , N do

compute α
(p)
n,n′ [t+ 1] using (D.30)

end
end

end





D.4 Experiment

In this section, we test the capability of our algorithm using both synthetic and real
data. We generate graph-connected time series with known topologies and varying
levels of missing data for synthetic data experiments, whereas, in the second part,
we use real data from Lundin’s offshore oil and gas platform1. The ℓ2 norms of
the estimated weights (̂b(p)n,n′ [t] := ∥α(p)

n,n′ [t]∥2) are used to visualize the dependencies
among the time series. For all the experiments, we used Gaussian reproducing kernel
k with variance σ2

k = 5.

D.4.1 Experiments using Synthetic data

The data used in this experiment are generated using nonlinear VAR model de-
scribed in (D.1) with N = 10, P = 4 and random Gaussian noise with mean 0 and
variance 0.01. The nonliner function in (D.1) is taken as f (p)

n,n′(x) = a
(p)
n,n′(x)g(x), ∀n, n′, p,

where g(x) = 0.25 sin(x2) + 0.25 sin(2x) + 0.5 sin(x) and a
(p)
n,n′(x) ∈ {0, 1}. We term a

(p)
n,n′

as edge and when a
(p)
n,n′ = 0, it disables the dependencies between the nodes n and

n′ for the time lag p. Furthermore, a(p)n,n′(x) = 0, when g(x) = 0. The time series
are initialized randomly using samples drawn from uniform distribution U(0, 1). To
bring time variance in the topology, 30% of the active edges are made to disappear
after every 1000 time stamps, and new equal number of different edges are made
active. To simulate various missing data scenarios, we generate different masks
m[t] ∀ t, whose samples are drawn from Bernoulli distribution with probabilities
0.95, 0.75, 0.65, corresponds to 5%, 25%, 35% of missing data respectively.

In Fig. D.1, we compare the true edges a
(p)
n,n′ and estimated causal weights b̂

(p)
n,n′

at three different time instants having different edge patterns. The edges and the
estimated weights are arranged in a matrix form of size N × N for p = 1, 2, . . . , P

and are stacked in Fig. D.1, such that the resulting matrices are of size NP×N . The
estimated weights are normalized and hard-thresholded to 0 or 1 to have the best
match with the edges. It can be observed in Fig. D.1 that for 5% of missing data,
the proposed algorithm estimates most of the edges accurately, and as the num-
ber of missing data increases, the estimation accuracy decreases. The ROC curve
corresponding to the time stamp t = 990 is plotted in Fig. D.2 by computing the
probability of detection (PD) and the probability of false alarm (PFA). Figure D.2
shows that the areas under all the three curves are close to 1, indicating the char-
acteristics of a good ROC curve. It can also be observed that the area under the
curve deviates more from 1 as the number of missing data increases. Also, the ROC
curve for a recent online linear topology estimation algorithm termed TIRSO [48]
is included in Fig. D.2. Note that TIRSO’s ROC is computed based on full data;
even then, its performance significantly lags behind the proposed algorithm. Intu-
itively, JSTIRSO [6], the extension to TIRSO that accounts for missing data, should
also perform inferiorly to the proposed algorithm. These observations illustrate how

1https://www.lundin-energy.com/





effectively the proposed algorithm identifies nonlinear topologies compared to its
linear counterparts.

D.4.2 Experiments using Real data

We use real data from Lundin’s oil and gas plant, consisting of time series recorded
from multiple pressure (P), temperature (T), and oil level (L) sensors from system20

of the plant. The system20 is a plant section where oil, gas, and water are separated
from the well extracts. There are 24 sensors in total recording 24 time series, sampled
at intervals of 5s. Below, we examine two different missing data scenarios.

D.4.2.1 Missing data due to limited communication capacity

Assume that only a subset of the sensor values can be transmitted at each timestamp
due to the limited capacity of the communication channel. We randomly select 8 out
of the 24 sensors (∼ 33.33%) at each time stamp and jointly estimate the topologies
and the missing data. The true and observed time series of a sensor, along with
the reconstructed values, are shown in Fig. D.4, which shows that the proposed
algorithm reconstructs the signal even with a high amount of missing data. Since the
ground truth dependencies are unavailable, we compare the dependencies estimated
from the partial observations with that from a full observation in Fig. D.5, which
shows that the algorithm can estimate most of the dependencies from the partial
observations.

D.4.2.2 Missing data due to sensor failure

Here we consider the case where the recording from a particular sensor is missing for
a certain period of time due to a sensor failure. In the experiment, time series from
sensor-2 are masked from time instant t = 4000 to t = 4200, which constitutes about
16 minutes of data. Figure D.6 shows that the proposed algorithm reconstructs
sensor-2 signals accurately during the missing data interval without having access
to any information from sensor-2. This clearly showcases the advantage of exploiting
causal dependencies in missing data imputations.

Conclusion
This paper presents a novel algorithm for joint nonlinear topology identification and
missing data imputation. The nonlinear causal dependencies are modeled using a
computationally light kernel formulation based on random feature approximations.
Experiments on real and synthetic data have demonstrated the effectiveness of the
proposed algorithm under various missing data scenarios.
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Figure D.5: Causality graph estimated for oil and gas platform (Only the significant
edges are shown).
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Online Edge Flow Imputation on Net-
works

R. Money, J. Krishnan, B. Beferull-Lozano, E. Isufi

Abstract: An online algorithm for missing data imputation for
networks with signals defined on the edges is presented. Leveraging the
prior knowledge intrinsic to real-world networks, we propose a bi-level
optimization scheme that exploits the causal dependencies and the flow
conservation, respectively via (i) a sparse line graph identification strat-
egy based on a group-Lasso and (ii) a Kalman filtering-based signal recon-
struction strategy developed using simplicial complex (SC) formulation.
The advantages of this first SC-based attempt for time-varying signal im-
putation have been demonstrated through numerical experiments using
EPANET models of both synthetic and real water distribution networks.

E.1 Introduction
Multivariate time series analysis is paramount in sensor, brain, and social networks,
to name a few. Data generated from such interdependent systems can be repre-
sented as a time-varying graph, in which the recorded signals may be linked to the
nodes [100, 101], or the edges [102], depending on the task at hand. Many applica-
tions including anomaly detection [103], time series forecasting [104], and missing
data imputation [6] can benefit from learning and exploiting the graph structure.
Among these applications, it is worth paying special attention to the missing data
imputation [6, 18, 19] since many real-world systems are partially observed because
of Re.g., sensor or communication failure, or simply the impossibility to have sen-
sors in all locations. This paper focuses on time-varying data imputation on the
edges of networks, such as water or traffic networks, referred to as flow-based net-
works . While there are methods for imputing data at the nodes [6,18,19,105,106],
extending them to flow-based networks is not immediate.

Imputation in flow-based networks can benefit from simplicial complex (SC) for-
mulations [45,107], using algebraic tools from Hodge theory [108], [109] to encapsu-
late the adjacencies among the flow signals, e.g., the flow conservation in the network.
In addition to this spatial information that SC encapsulates, one can also exploit the
temporal priors, such as causal dependencies among the signals [1–4,11,21–23]. The
flow signals are mostly interdependent in real-world systems, and their dependencies
are often time-lagged in nature and cannot be observed physically. For instance, the
flow in a pipe of a water network can influence the flow in another non-directly con-





Figure E.1: Causal influence of (t − 1)-th flows on t-th flows, represented using a
line graph.

nected pipe in a time-lagged way. Similarly, a traffic block on a road can causally
affect the traffic on another road. In such real-world networks, imputation can be
enhanced by exploiting causal interactions between the flows. Imputation strate-
gies utilizing both spatial and temporal dependencies have not been explored in
flow-based networks.

This paper proposes a data imputation algorithm exploiting the spatio-temporal
priors related to flow conservation and causal dependencies among flows. The al-
gorithm learns a line graph connecting the flows, which stands in for an abstract
representation of the time-lagged causal dependencies, as illustrated in Fig. E.1.
One major challenge here is that a batch-based offline strategy is impractical in
applications requiring real-time imputation of streaming flows. The proposed strat-
egy learns a line graph in an online fashion. Using the learned line graph at each
time step, a flow-conservation-based Kalman filter estimates the missing flows from
streaming partial observations. The main contributions of this work are:

1. A method to estimate sparse causal dynamic dependencies among flows. This
is achieved via a vector autoregressive model and a group-Lasso-based opti-
mization framework. The latter is solved in an online fashion via composite
objective mirror descent.

2. A Kalman-filter-based data imputation technique for streaming flows by ex-
ploiting the learned causality and the flow conservation devised via simplicial
complexes.

3. The proposed algorithm can impute permanently unobserved flows, benefiting
from the joint exploitation of the flow conservation and the causal dependen-
cies.

To the best of our knowledge, this is the first work that considers multivariate time
series data over simplicial complex. This work opens the door to the exploitation of
learned line graphs and adjacency relationships among the time-varying signals over
simplices (e.g., edge flows), which is useful in various applications such as forecasting,
control strategy design, and change point detection.





E.2 Preliminaries

Consider a physically connected network G ≜ (V , E), where V and E denote the sets
of nodes and edges with cardinalities V ≜ |V| and E ≜ |E|, respectively. We consider
a flow-based network, for example, a water network with nodes as junctions, edges
as pipes, and water flows as signals on the edges.

E.2.1 Modelling Flow Conservation in a Simplicial Complex

Given the set of nodes V , a k-simplex Sk is a subset of V having k + 1 distinctive
elements [34], [35]. A simplicial complex (SC) of order K, denoted as ΨK , is a set
of k-simplices for k=0, 1 . . . , K such that a simplex Sk∈ΨK only if all of its subsets
also belong to ΨK . The typical low-order simplices, named after their geometrical
shapes, are nodes (0-simplex), edges defined by two nodes (1-simplex), and triangles
defined by three nodes (2-simplex). Let the number of k-simplices in ΨK be Nk.
The proximities between different k-simplices in an SC can be represented using an
incidence matrix Bk ∈ RNk−1×Nk , k ≥ 1, where the row and the column indices of
Bk correspond to (k − 1)- and k-simplices, respectively. The structure of an SC is
encoded by Hodge Laplacians, constructed using Bk’s as

Lk =


Bk+1B

⊤
k+1, for k = 0,

B⊤
k Bk +Bk+1B

⊤
k+1, for 1 ≤ k ≤ K − 1,

B⊤
KBK , for k = K,

(E.1)

where L0 is the graph Laplacian. The higher-order Laplacians Lk, for 1≤k≤K−1,
consist of two terms: i) the lower Laplacian, Ll

k≜B
⊤
k Bk, which encodes the adjacen-

cies w.r.t. next-low-order simplices; and ii) the upper Laplacian, Lu
k ≜ Bk+1B

⊤
k+1,

which encodes the adjacencies w.r.t. next-high-order simplices.
In a SC, k-simplex signals are mappings from k-simplices to the real set R.

The 0-simplex, 1-simplex, and 2-simplex signals reside on the nodes, edges, and
triangles, respectively. For flow-based networks, we consider 1-simplex signals or
simply the flow signals. The flow signal at time t between two nodes i and j is
defined as f(i,j)[t] = −f(j,i)[t], ∀ (i, j) ∈ E. We stack the flows into a vector f̃ [t] =

[f1[t] f2[t] . . . fE [t]]
⊤. The node-to-edge incidence matrix B1 ∈ RV×E has entries

B1(m,n) = 1, if the flow n is leaving the node m, −1 if entering the node m, and
0 if the flow is not connected to m. According to the flow conservation principle,
the sum of flows entering and leaving a node is zero, i.e., B1f̃ [t] = 0 ∈ RV [20]. The
first-order lower Laplacian Ll

1, can be used to model the flow conservation since it
describes the relationship among the edges incidenting on a node, which is given by

∥B1f̃ [t]∥22 = f̃ [t]⊤B⊤
1 B1f̃ [t] = f̃ [t]⊤Ll

1f̃ [t] = 0. (E.2)

One can also exploit the edge-to-triangle relationship of flows using B2, but we do
not consider it since there is no contextual prior associated with B2.

E.2.2 Modelling Causal Dependencies using Line Graphs

We also take advantage from the fact that flows in a real-world network exhibit
causal interactions. We construct a dynamic line graph connecting the flows using





a P -th order dynamic VAR model to describe the time-lagged causal dependencies
among the flows:

f̃ [t] =
P∑

p=1

[
Ã(p)[t]f̃ [t− p] + b(p)[t]

]
+ u[t], (E.3)

where Ã(p)[t] ∈ RE×E is the unknown weighted adjacency matrix of the line graph
that captures the influence of the p-th time-lagged vector flow on the vector flow at
time t, and u[t] is the process noise, Rwhich is assumed to be temporarily white and
zero mean. The term b(p)[t] ∈ RE is the bias component, which makes the model
slightly different from a standard VAR model. We include the bias term since
the normalization of the flow signals, which is a requirement for the subsequent
formulation, cannot easily be achieved for permanently unobserved flows. Using
an augumented matrix A(p)[t] = [Ã(p)[t] b(p)[t]] ∈ RE×E+1 and the signal vector
f [t] = [f̃ [t]⊤; 1]⊤ ∈ RE+1, (E.3) can be compactly written as

f [t] =
P∑

p=1

A(p)[t]f [t− p] + u[t]. (E.4)

E.3 Problem formulation

Assume that at a particular time t, only a subset of flows is observable. The observed
flow vector is fo[t] = M[t]f [t] ∈ RE+1, where M[t] ∈ R(E+1)×(E+1) is a diagonal masking
matrix, with M(n, n)[t] = 0 if the n-th flow is missing and M(n, n)[t] = 1, otherwise.
In this setting, some flows can be permanently unobserved. The goal is to find in
an online fashion both a sequence of line graphs {A(p)[t]}p,t, representing the causal
dependencies between flows and the original signal f [t] from the partial observation
fo[t].

E.4 Online estimation of the line graph and data

A naive one-step optimization strategy to estimate A(p)[t] and f [t] leads to nonconvex
formulations that are difficult to solve [6]. Hence, we propose a bi-level optimization
problem with the following steps: i) signal reconstruction- missing flows are esti-
mated using the observed flows by assuming a known line graph topology; and ii)
line graph identification- line graph is estimated using the reconstructed signals.

E.4.1 Signal Reconstruction

Assume that we have an estimate at time t of the topology Â(p)[t], ∀p and estimates
of P previous flow values {f̂ [t−p]}Pp=1. We propose a Kalman-filtering-based strategy
for signal reconstruction, and to facilitate the formulation, the available data are
arranged as





ÂS [t]≜


Â(1:P )[t]︸ ︷︷ ︸
E × P (E + 1)

IP (E + 1)− E 0︸︷︷︸
(P (E + 1)− E)× E

,CS [t]≜


M[t]︸︷︷︸

(E + 1)× (E + 1)

0︸︷︷︸
(E + 1)× (P − 1)(E + 1)

0︸︷︷︸
(P − 1)(E + 1)× (E + 1)

I(P − 1)(E + 1)

,

yS [t] ≜ [fo[t]
⊤; f̂ [t− 1 : t− P + 1]⊤]⊤, (E.5)

f̂S [t] ≜ [f̂ [t]⊤; f̂ [t− 1]⊤; . . . ; f̂ [t− P + 1]⊤]⊤,

where Â(1:P )[t] = [Â(1)[t], . . . , Â(P )[t]] and IN denotes N×N identity matrix. A state-
space representation capturing the VAR relationships (E.15) and the missing data
modelling is

f̂S [t] = ÂS [t]f̂S [t− 1] + vt, (E.6)

yS [t] = CS [t]f̂S [t] +wt, (E.7)

where f̂S [t] ∈ RP (E+1) is current state vector, ÂS [t] ∈ RP (E+1)×P (E+1) is the state
transition matrix and yS [t] ∈ RP (E+1), and CS ∈ RP (E+1)×P (E+1) are the observed
signal and the observation matrix, respectively. The process noise vt and the ob-
servation noise wt are assumed zero-mean Gaussian. The optimal estimates of f̂S [t]
can be obtained using a Kalman filter (KF) [33].

1) Prediction:

f̂St|t−1 = ÂS [t]f̂St−1|t−1, (E.8)

Pt|t−1 = ÂS [t]Pt−1|t−1Â
S [t]

⊤
+Qt, (E.9)

where t|t− 1 refers to the estimate at time t given the observation up to t− 1, Pt|t−1 ∈
R(E+1)P×(E+1)P is the prediction error covariance matrix and Qt ∈ R(E+1)P×(E+1)P ,
the noise covariance matrix.
2) Update: The KF update of the state vector can be expressed as convex opti-
mization problem [46], [47]:

minimize
f̂S
t|t,wt

w⊤
t Rt

−1wt+(f̂St|t − f̂St|t−1)
⊤P−1

t|t−1(f̂
S
t|t − f̂St|t−1),

subject to yS [t] = CS [t]f̂St|t +wt. (E.10)

Solving (E.10) yields the standard KF update equation:

f̂St|t = f̂St|t−1 +Kt(y
S [t]−CS [t]f̂St|t−1). (E.11)

The covariance matrix can be updated as

Pt|t = Pt|t−1 −KtC
S [t]Pt|t−1. (E.12)





where Kt =Pt|t−1C
S [t]⊤(CS [t]Pt|t−1C

S [t]⊤+Rt)
−1 is the Kalman gain and Rt is the

covariance matrix of the observation noise.
3) Flow-conservation update: The KF update problem (E.10), penalized with
the flow conservation (E.2), can be written as

minimize
f̂S
t|t,wt

w⊤
t Rt

−1wt + (f̂St|t − f̂St|t−1)
⊤P−1

t|t−1(f̂
S
t|t − f̂St|t−1)

+ µf̂St|t[t]
⊤Lf̂St|t[t],

subject to yS [t] = CS [t]f̂St|t +wt, (E.13)

where

L =

[
L̃l
1 0(E + 1)× (P − 1)(E + 1)

0(P − 1)(E + 1)× (E + 1) 0(P − 1)(E + 1)× (P − 1)(E + 1)

]
,

with L̃l
1=[Ll

1 0E ;0
⊤
E 0] ∈ R(E+1)×(E+1), the Laplacian Ll

1 padded with zero vector
0E ∈ RE to nullify the bias component in f [t] and µ is a hyperparameter. We regu-
larize flow conservation instead of imposing it as a constraint, based on the assump-
tion that the flow conservation is not strictly satisfied in real-world networks. The
optimization problem (E.13) is quadratic with a closed-form solution (see, E.7.1):

f̂St|t =(CS [t]
⊤
R−1

t CS [t] +P−1
t|t−1 + 2µL)−1×

(CS [t]
⊤
Rt

−1yS [t] +P−1
t|t−1f̂

S
t|t−1), (E.14)

E.4.2 Line Graph Identification

The element-wise version of (E.15) for the nth flow is

fn[t] =

E+1∑
n′=1

P∑
p=1

a
(p)
n,n′ [t]fn′ [t− p] + un[t], (E.15)

where a
(p)
n,n′ [t] ∈ R represents the influence of the p-th time-lagged value of flow

n′ on flow n. For notational convenience, we stack the elements of a
(p)
n,n′ [t] in the

lexicographic order of the indices p, and n′ to obtain an[t] ∈ R(E+1)P and also stack
the same elements along index p to obtain an,n′ [t] ∈ RP . Assuming flows are known,
the online topology identification can be formulated as [23,48]

ân[t] = arg min
an∈R(E+1)P

ℓnt (an) + λ
E+1∑
n′=1

∥an,n′∥2, (E.16)

where ℓnt (an) =
1
2
[fn[t]− a⊤

n f̂
S [t− 1]]2 is the instantaneous loss function for a node

n and λ is a hyperparameter. The second term is a group-lasso regularizer added in
line with the assumption that the real-world dependencies are sparse.

In general, proximal algorithms can solve objective functions of the form (E.16)
having a differentiable loss function and a non-differentiable regularizer. Following





Figure E.2: Schematic representation of the proposed algorithm.
[48], we use online composite objective mirror descent (COMID), which is effective
and comes with convergence guarantees. The online COMID update is

ân[t+ 1] = arg min
an∈R(E+1)P

J
(n)
t (an), (E.17)

where J
(n)
t (an) ≜ ∇ℓnt (ân[t])

⊤ (an − ân[t])

+
1

2γt
∥an − ân[t]∥22 + λ

E+1∑
n′=1

∥an,n′∥2. (E.18)

Equation (E.18) has the gradient of the loss ℓnt (an) as the first term, and the
Bregman divergence and sparsity-promoting regularizer as the second and the third
terms, respectively. Bregman divergence makes the algorithm more stable by con-
straining ân[t+1] to be close to ân[t] and it is chosen to be B(an, ân[t]) =

1
2∥an−ân[t]∥22

so that the COMID update has a closed-form solution [40] and γt > 0 is the corre-
sponding step size. The gradient in (E.18) is evaluated as

vn[t] ≜ ∇ℓnt (ân[t]) = f̂S [t− 1]
(
a⊤
n f̂

S [t− 1]− fn[t]
)

(E.19)

The optimization problem is separable across nodes and a closed-form solution for
(E.17) is obtained via the multidimensional shrinkage-thresholding operator [41]:

ân,n′ [t+1]=
(
ân,n′ [t]−γtvn,n′ [t]

)[
1− γtλ

∥ân,n′ [t]−γtvn,n′ [t]∥2

]
+

, (E.20)

where [x]+ = max {0, x}. A schematic representation of the proposed algorithm
is shown in Fig. F.1. The computational complexity of the algorithm is mainly
contributed by (E.14), and it is of order O

(
P 3(E + 1)3

)
.

E.5 Experimental Results

We use flow data from a real water network and a synthetic network, both generated
using the EPANET software. The flow signals are the hourly sampled volume of
water in m3/h. A demand-driven model is used to generate data such that the water
flows meet the time-varying water demands at the nodes. We compare the results
with the state-of-the-art algorithms Graph-based Semi-supervised learning for Edge
Flows (FlowSSL) [20] and Joint Signal and Topology Identification via Recursive
Sparse Online learning (JSTIRSO) [6]. FlowSSL exploits the flow conservation of
the flows, whereas JSTIRSO uses a causal graph structure to impute the missing
data. We compare the algorithms via the normalized mean squared error (NMSE):

NMSEn(T ) =

∑T
t=1(fn(t)− f̂n(t))

2∑T
t=1 fn(t)

2
. (E.21)
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Figure E.3: Physical graph.
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Figure E.4: Time varying random missing-flow patterns.
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Figure E.5: Permanently unobserved flows.
Figure E.6: Synthetic Water Network Topology.





A total of 125 data samples are generated, and the initial 25 samples are used to
tune the hyperparameters of all the algorithms to achieve the lowest NMSE averaged
across all edges via grid search. The line graph is initialized with random values
drawn from N (0, 1). The NMSEs are averaged over 50 runs of experiments.

E.5.1 Synthetic Water Network

A water distribution model, shown in E.3, is simulated, which consists of 1 reservoir,
9 pipes, and 8 nodes. Below, we examine two types of missing data patterns with
the hyperparameter setting (µ, λ) = (0.5, 0.1).

E.5.1.1 Random variation in missing-flows

We assume that 10%, 20%, and 30% of randomly chosen flows are missing at each
time instant. NMSEs are plotted in Appendix E.4.2, which shows that the proposed
method is better than the competitors because, unlike them, it takes full advantage
of the flow conservation and causal dependencies. Going beyond 30% of missing data
results in very high NMSEs by all algorithms, and is not included in Appendix E.4.2
to maintain the legibility.

E.5.1.2 Permanently unobserved flows

We consider flow-3 and flow-5 are permanently missing. The NMSEs for both the
missing flows are shown in E.5. The proposed method provides better imputation
performance compared to FlowSSL [20], whereas JSTIRSO [6] fails to reconstructs
the missing signal since it does not exploit the flow conservation.

E.5.2 Cherry Hills Water Networks

Cherry Hills is a real water network consisting of 40 pipes and 36 nodes [110]. We
assume a reference flow direction as in Fig. E.7, and the hyperparamters are tuned to
(µ, λ) = (50, 0.04). We examine four different scenarios in which 20%, 30%, 40%, and
50% of the flows are randomly missing at each time stamp. The average NMSEs
computed from the estimates of random missing flows are plotted in Fig. E.11,
where the proposed method outperforms the other two algorithms, especially with
a significant margin for the 50% missing case. NMSEs of all algorithms is very
high when more than 50% of flows are missing. The experiment is repeated with
15%, 20%, and 25% of permanently missing flows, and the results are plotted in
Fig. E.10, where the proposed algorithm outperforms the competitors in all the
cases.

One instance of the learned line graph (T=100, p=3) is shown in Fig. E.8. We
wish to note that the line graph is an abstract graph induced by the various physics-
based equations describing the space-temporal variation of the flows. Although one
could attempt to analyse the line graph using the underlying differential equations
governing the space-time system, this is a daunting complex process, which is beyond





the scope of this study. However, a good prediction implies necessarily that the data-
driven line graph is close to the unknown real graph. To demonstrate the importance
of the learned line graph, we repeat the Kalman prediction using a random line graph
without considering any relation to the data. NMSEs obtained for permanently
missing flows at t=100, using random and learned line graphs, are 1.08 and 0.06,
respectively. Similar results were obtained for all the other experiments highlighting
the role of the learned line graph.

Figure E.7: Cherry Hills Flows.

Figure E.8: Estimated Line Graph.
Figure E.9: Cherry Hills Water Network.
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Figure E.10: Permanently Missing Flows.
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Figure E.11: Randomly Missing Flows.

Figure E.12: Cherry Hills Water Network:NMSE.

E.6 Conclusion

We proposed a novel missing data imputation scheme for flow-based networks. The
proposed algorithm comprises a simplicial-complex-based Kalman filter and a group-
lasso-based optimization strategy to take advantage of the flow conservation and
causal dependency of real-world networks. This study paves the way for exploring
higher order connectivity in real-life networks using simplicial complexes.





E.7 Supplementary Material

E.7.1 Derivation of Flow-Conservation-based Kalman Filter

The optimization problem (E.13) is a convex quadratic optimization problem that
yields flow-conservation-based Kalman updates. We adopt a similar strategy as fol-
lowed in [47] to obtain a closed-form solution. We first reformulate the problem
(E.13) by substituting the constraint wt = yS [t]−CS [t]f̂St|t in the objective function:

minimize
f̂S
t|t

(yS [t]−CS [t]f̂St|t)
⊤
Rt

−1(yS [t]−CS [t]f̂St|t)

+(f̂St|t − f̂St|t−1)P
−1
t|t−1(f̂

S
t|t − f̂St|t−1)

⊤ + µ(f̂St|t)
⊤Lf̂St|t, (E.22)

where

L︸︷︷︸
P (E + 1)× P (E + 1)

≜


L̃l

1︸︷︷︸
(E + 1)× (E + 1)

0︸︷︷︸
(E + 1)× (P − 1)(E + 1)

0︸︷︷︸
(P − 1)(E + 1)× (E + 1)

0︸︷︷︸
(P − 1)(E + 1)× (P − 1)(E + 1)

 .

Next, we differentiate the objective function with respect to f̂St|t and equate to 0

to find the optimum f̂St|t:

−2CS [t]⊤R−1
t (yS [t]−CS [t]f̂St|t)

+ 2P−1
t|t−1(f̂

S
t|t − f̂St|t−1) + 2µLf [t] = 0 (E.23)

=⇒ f̂St|t =(CS [t]
⊤
R−1CS [t] +P−1

t|t−1 + 2µL)−1×

(CS⊤
R−1YS [t] +P−1

t|t−1f̂
S
t|t−1), (E.24)

which is the required flow-conservation-based Kalman filter solution.
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Scalable and Privacy-aware Online Learn-
ing of Nonlinear Structural Equation
Models

R. Money, J. Krishnan, B. Beferull-Lozano, E. Isufi

Abstract: An online topology estimation algorithm for nonlinear
structural equation models (SEM) is proposed in this paper, address-
ing the nonlinearity and the non-stationarity of real-world systems. The
nonlinearity is modeled using kernel formulations, and the curse of dimen-
sionality associated with the kernels is mitigated using random feature
approximation. The online learning strategy uses a group-lasso-based
optimization framework with a prediction-corrections technique that ac-
counts for the model evolution. The proposed approach has three proper-
ties of interest. First, it enjoys node-separable learning, which allows for
scalability in large networks. Second, it offers privacy in SEM learning
by replacing the actual data with node-specific random features. Third,
its performance can be characterized theoretically via a dynamic regret
analysis, showing that it is possible to obtain a linear dynamic regret
bound under mild assumptions. Numerical results with synthetic and
real data corroborate our findings and show competitive performance
w.r.t. state-of-the-art alternatives.

F.1 INTRODUCTION

Structural Equation Models (SEM) are a prevalent tool to model interactions in real-
world networks due to their simplicity and ability to express instantaneous directed
relationships between interacting entities [111–113]. The advantages of SEM over
simple correlation-based models lie in leveraging the directionality, which is key
to many applications, such as modeling the functional connectivity between brain
regions [114] and interactions in financial networks [115], to name a few. SEM
modeling and its topology estimation are challenging because real-life networks are
large, dynamic, and comprise nonlinear interactions, as well as leveraging directly
node-specific data may raise privacy concerns [111].

Although SEM-based topology estimation has been explored in literature, most
of the approaches are developed for stationary linear systems and provide offline
(batch-based) solutions [116, 117]. Modeling time-varying systems call for online
optimization strategies, which can be classified into time-unstructured and time-





structured methods [50, 118]. The former update the model only when a new data
sample arrives [68], whereas the latter first predict the model based on its evolution
and then correct the prediction when the new data sample is available [119]. The
time-structured algorithms are expected to perform better since they take advantage
of the prior related to the model evolution but typically have a slightly higher com-
putational cost. A SEM-based online topology estimation has been proposed in [8],
but it adopts the time-unstructured strategy and fails to exploit the model evolu-
tion; hence, suboptimal. On the other hand, [118] and [1] propose time-structured
online SEM learning strategies, but the models are restricted to linear interactions.
Moreover, the node operations of these algorithms are computationally expensive,
and they assume symmetric interactions of the network data, which destroys SEM’s
directionality features.

Aiming to overcome the above challenges, we propose an online topology learn-
ing algorithm for nonlinear and directed SEM using a time-structured optimiza-
tion framework. The nonlinearity is tackled using kernel methods, and the curse
of dimensionality of kernels is mitigated through random feature (RF) approxi-
mation. Kernel techniques are conventionally used for nonlinear topology estima-
tion [11,21,27] and help transform the problem into an amenable form. Instead, RF
is typically used to reduce the complexity of nonlinear models as well as to ensure
that connectivity is inferred without revealing nodal attributes [22,36,42,43,76,120].
Through a series of design choices and theoretical derivations, we show how kernels
and RFs can be incorporated into the online nonlinear SEM model and show that
the proposed algorithm has the following four properties:

1. Sparse model evolution: The proposed SEM learning strategy uses a prediction-
correction approach to model the SEM evolution. Exploiting the fact that
real-world networks exhibit sparse directed interactions, we introduce a group-
lasso-based regularizer to learn sparse models.

2. Scalability: The proposed algorithm is separable across the nodes with a fixed
computational complexity per iteration, thereby facilitating scalability in large
graphs.

3. Privacy: The node separability and the random features avoid sharing the true
data, thus, ensuring node privacy.

4. Convergence Guarantee: A dynamic regret analysis of the proposed algorithm
is conducted, guaranteeing convergence, and showing the role played by the
different components of the proposed method.

Numerical experiments on synthetic data and real data from neuroscience and
finance corroborate the above contributions and show superior performance to com-
peting alternatives.

The rest of the paper is organized as follows. Section F.2 presents the nonlinear
SEM, kernel formulation, and random feature approximation. Appendix F.3 devel-
ops an online strategy for learning the nonlinear SEM using a prediction-correction





algorithm. The dynamic regret analysis of the proposed algorithm is performed in
Appendix F.4, and the numerical results are provided in F.5. F.6 concludes the
paper. All proofs are collected in the Appendix.

F.2 Problem formulation

Consider N interdependent time series, and let yn[t] be the value of the n-th time
series at time t. A nonlinear SEM with no exogenous variables models the depen-
dencies among these time series as

yn[t] =
N∑

n′=1,n′ ̸=n

fn,n′(yn′ [t]) + un[t], n = 1, . . . , N, (F.1)

where fn,n′(·) encodes the nonlinear influence of n′-th time series on n-th time series,
and un[t] is the observation noise [14]. For example, in the context of brain networks,
yn[t] represents the electroencephalogram (EEG) recorded at the n-th node (sensor)
at time t, and fn,n′(·) encodes the functional connectivity between the nodes n and n′.

Kernel representation. The nonlinear structure in (F.1) allows modeling a broader
range of problems, but at the same time makes it more difficult to analyse and model
the time series interactions. A typical way to approach these challenges is to con-
sider the nonlinear function in (F.1) belonging to a reproducing kernel Hilbert space
(RKHS):

Hn′ :=

{
fn,n′(·) | fn,n′

(
yn[t

′]
)
=

∞∑
t=0

βn,n′,t κn′
(
yn[t

′], yn′ [t]
)}

, (F.2)

where κn′(·, ·) is a positive definite kernel function, measuring the similarity between
its arguments. Every positive definite kernel has an associated RKHS characterized
by the inner product: ⟨κn′(y, x1), κn′(y, x2)⟩ :=

∑∞
t=0 κn′(y[t], x1)κn′(y[t], x2). RKHS

kernels satisfy the reproducing property ⟨κ(p)
n′ (y, x1), κn′(y, x2)⟩ = κn′(x1, x2), and

induces a norm ∥fn,n′∥2Hn′ =
∑∞

t=0

∑∞
t′=0 βn,n′,t βn,n′,t′ κn′(yn[t], yn[t

′]). It is possible
to express any function in RKHS as an infinite sum of kernel evaluations weighted
by βn,n′,t [11].

For a node n, the functional dependency can be obtained by solving{
f̂n,n′

}
n′
= arg min

{fn,n′∈Hn′}
1

2

T−1∑
τ=0

[
yn[τ ]−

N∑
n′=1,n′ ̸=n

fn,n′(yn′ [τ ])

]2

+λ

N∑
n′=1,n′ ̸=n

Ω
(
||fn,n′||Hn′

)
, (F.3)

where Ω(·) is a regularizing function with the hyperparameter λ > 0. We consider
Ω(x) = |x| to induce a sparse SEM model. In (F.3), the function fn,n′(·) belongs
to the RKHS, which is an infinite dimensional space [cf. (F.2)]. However, for non-
decreasing regularizing functions such as Ω(x) = |x|, x ≥ 0, the solution of (F.3) can
be expressed with a finite number of parameters using the Representer Theorem [38]:

f̂n,n′ (yn′ [τ ]) =
T−1∑
t=0

βn,n′,t κn′(yn′ [τ ], yn′ [t]) . (F.4)





As the number of data samples increases, the number of kernel evaluations in (F.4)
and the parameters required to express the function also increase. We overcome this
curse of dimensionality using random feature (RF) approximation.

RF approximation. RF approximation limits the kernel evaluations to a fixed
lower-dimensional Fourier space for kernels with a shift-invariant property, i.e.,
κn′ (yn′ [τ ], yn′ [t]) = κn′ (yn′ [τ ]− yn′ [t]); thus, preventing the dimensionality growth.
According to Bochner’s theorem [30], an inverse Fourier transform of a probability
distribution can represent a shift-invariant kernel:

κn′ (yn′ [τ ], yn′ [t]) =

∫
R
πκn′ (v) e

jv(yn′ [τ ]−yn′ [t])dv

= Ev

[
ejv(yn′ [τ ]−yn′ [t])

]
, (F.5)

where πκn′ (v) is the kernel-specific probability density function (pdf), v is the ran-
dom variable associated to the pdf, and E[·] is the expectation operator. Given a
sufficient number D of i.i.d. samples {vi}Di=1 drawn from distribution πκn′ (v), the
expectation is estimated by the sample mean:

κ̂n′ (yn′ [τ ], yn′ [t])=
1

D

D∑
i=1

ejvi(yn′ [τ ]−yn′ [t]). (F.6)

Finding the probability distribution which is the inverse Fourier transform of a kernel
is a difficult task in general. However, choosing a Gaussian kernel with variance σ2

avoids this difficulty since its Fourier transform is also a Gaussian with variance σ−2.
This allows writing the real part of (F.6) as

κ̂n′ (yn′ [τ ], yn′ [t]) = zv,n′ [τ ]⊤zv,n′ [t], where zv,n′ [τ ] =
1√
D

[
sin (v1yn′ [τ ]) , . . . , sin (vDyn′ [τ ]) ,

cos (v1yn′ [τ ]) , . . . , cos (vDyn′ [τ ])

]⊤
. (F.7)

A fixed dimensional (2D) representation of the function f̂n,n′(·) is obtained by sub-
stituting (C.7) into (F.4):

˜̂
fn,n′ (yn′ [τ ]) =

T−1∑
t=0

βn,n′,tzv,n′ [τ ]⊤zv,n′ [t]

= αn,n′
⊤zv,n′ [τ ], (F.8)

where αn,n′ =
∑T−1

t=0 βn,n′,tzv,n′ [t]. Using (F.8), we can reformulate the non-parametric
problem (F.3) into a parametric optimization problem:

{α̂n,n′}n′= arg min
{αn,n′}

1

2

T−1∑
τ=0

[
yn[τ ]−

N∑
n′=1,n′ ̸=n

αn,n′
⊤zv,n′ [τ ]

]2

+λ
N∑

n′=1,n′ ̸=n

||αn,n′||2, (F.9)

The regularizer in (F.9) is a group-lasso regularizer to enforce sparsity in the RF
coefficient αn,n′ ∈ R2D. For brevity, we stack the vectors αn,n′ and zv,n′ [t] along
the index n′ = 1, . . . , N, n′ ̸= n to form αn ∈ R2(N−1)D and zn[t] ∈ R2(N−1)D, and





compactly write (F.9) as

α̂n = argmin
αn

Ln (αn) + λ
N∑

n′=1,n′ ̸=n

||αn,n′||2, (F.10)

whereLn(αn) =
1

2

T−1∑
τ=0

[
yn[τ ]−α⊤

nzn[τ ]

]2
. (F.11)

Solving problem (F.10) requires access to all the batch of time series {yn[τ ]}T−1
τ=0

which may be practically infeasible as they evolve over time and, at the same time,
it is computationally demanding. Targeting real-world nonstationary systems with
streaming data, we develop an online strategy enhanced by prediction correction
mechanisms [119] that exploit the nonlinear SEM evolution. However, the group-
lasso regularizer, required to enforce sparse dependencies is non-differentiable, mak-
ing the deployment of prediction-correction methods not straightforward.

F.3 Time-varying solution

F.3.1 Online loss function

Following online optimization, we replace the batch loss in (F.11) with a recursive
least square loss (RLS) using an exponential window:

ℓ̃nt (αn) = µ
t∑

τ=0

γt−τℓnτ (αn). (F.12)

where ℓnτ (αn) =
1
2
[yn[τ ]− α⊤

nzn[τ ]]
2 is the instantaneous loss function, γ ∈ (0, 1) is

the forgetting factor of the window, and µ = 1 − γ normalizes the window. The
RLS loss function can be expanded as

ℓ̃nt (αn) =
1

2
µ

t∑
τ=0

γt−τ
(
y2n[τ ] +α⊤

nzn[τ ]zn[τ ]
⊤αn

− 2yn[τ ]zn[τ ]
⊤αn

)
=
1

2
µ

t∑
τ=0

γt−τy2n[τ ] +
1

2
α⊤

nΦn[t]αn − r⊤
nαn, (F.13)

where

Φn[t] = µ

t∑
τ=0

γt−τzn[τ ]zn[τ ]
⊤, (F.14)

rn[t] = µ

t∑
τ=0

γt−τyn[τ ]zn[τ ]. (F.15)

The new optimization problem using the RLS loss becomes

argmin
αn

ℓ̃nt (αn) + λ
N∑

n′=1,n′ ̸=n

∥αn,n′∥2. (F.16)

The objective function in (F.16) has a differentiable loss but a non-differentiable
regularizer. We solve it using composite objective mirror descent (COMID) [39]





with the online updates:

α(1)
n [t+ 1] = argmin

αn

[
∇αℓ̃

n
t (αn[t])

⊤(αn−αn[t])

+
1

2νt
∥αn−αn[t]∥22 + λ

N∑
n′=1,n′ ̸=n

∥αn,n′∥2
]
, (F.17)

where α
(1)
n [t+1] denotes the one-step COMID descent of αn[t], νt the step size, and

∇αℓ̃
n
t (αn[t]) the gradient of ℓ̃nt (αn[t]) w.r.t. αn, which can be computed from (F.13)

as
∇αℓ̃

n
t (αn[t]) = Φn[t]αn − rn[t]. (F.18)

In an online setting, the parameters Φn[t] and rn[t] can be estimated recursively as
Φn[t] = γΦn[t− 1] + µzv[t]zn[t]

⊤ and rn[t] = γrn[t− 1] + µyn[t]zn[t] [cf. (F.14) and
(F.15)].

The COMID update (F.17) can be solved in closed-form for each lasso group
αn,n′ ∈ αn [cf. (F.9)] using the multidimensional shrinkage thresholding operator
(MSTO) [41]:

α
(1)
n,n′ [t+ 1] = (αn,n′ [t]− νtvn,n′)×[

1− νtλ

∥αn,n′ [t]− νtvn,n′∥2

]
+

, (F.19)

where [v⊤
n,1,v

⊤
n,2, . . . ,v

⊤
n,N ]

⊤ ≜ ∇αℓ̃
n
t (αn[t]) and [x]+ = max {0, x}. The MSTO

solution (F.19) involves a one-step COMID update. For brevity of the succeeding
formulation, we represent the K-step version of (F.19) as

α(K)
n [t+ 1] = MSTO(K)(ℓ̃nt (αn[t]), νt, λ), (F.20)

which computes the K-step descent update of αn,n′ [t] as in (F.19), for n′ = 1, . . . , N, n′ ̸=
n, for the loss function ℓ̃nt (·) with the parameters νt and λ, and stacks them to form
α

(K)
n [t+ 1].

F.3.2 Prediction-Correction Algorithm

Although we can follow a time-unstructured learning strategy by directly using
(F.20), such an approach discards the model evolution and leads to a suboptimal
solution. Problem (F.16) features a strongly convex time-varying loss function and a
properly convex regularizer, and such an optimization problem can be solved online
using time-structured optimization methods that account for the model evolution.
We follow the prediction-correction strategy as proposed in [119].
Prediction. The first step is to predict at time t, the yet unobserved loss function
ℓ̃nt+1 (αn) using Taylor series expansion:

ℓ̃n,prt+1 (αn) = αn
⊤∇ααℓ̃

n
t (αn)αn + [∇αℓ̃

n
t (αn[t])

+∇tαℓ̃
n
t (αn[t])−∇ααℓ̃

n
t (αn[t])αn[t]]

⊤αn (F.21)
In addition to the gradient computed in (F.18), prediction (F.21) requires computing
the Hessian ∇ααℓ̃

n
t (αn[t]) and the partial derivative of ∇αℓ̃

n
t (αn[t]) w.r.t. time

∇tαℓ̃
n
t (αn[t]) which have the forms

∇ααℓ̃
n
t (αn[t]) = Φn[t], (F.22)

∇tαℓ̃
n
t (αn[t])=(Φn[t]−Φn[t−1])α−(rn[t]−rn[t−1]). (F.23)





Algorithm 9: Proposed Algorithm
Result: {αn,n′}n,n′

Initialize λ > 0, νt > 0, D, σn, P and C
for t = 1, 2, . . . do

Get data samples yn[t], ∀n and compute zn[t], ∀n
for n = 1, . . . , N do

Φn[t] = γΦn[t− 1] + µzn[t]zn[t]
⊤

rn[t] = γrn[t− 1] + µyn[t]zn[t]

compute ℓ̃n,prt+1 (αn) using (F.21)
compute αpr

n [t+ 1] using (F.24)
compute αn[t+ 1] using (F.26)

end
end

The group-lasso regularizer is a time-invariant function and just performs the thresh-
olding operation in (F.19), irrespective of the time indices. Hence, it does not require
prediction. Using the predicted loss (F.21) in place of (F.16), we predict the RF
coefficients as

αpr
n [t+ 1] = MSTO(P )(ℓ̃n,prt+1 (αn[t]), νt, λ), (F.24)

where αpr
n [t + 1] denotes the P -step COMID descent of αn[t] under the predicted

loss. The gradient of the predicted loss involved in the MSTO operation (F.24) can
be obtained from (F.21) as

∇αℓ̃
n,pr
t+1 (αn[t]) =(2Φn[t− 1]−Φn[t− 2])αn

+ 2rn[t− 1]− rn[t− 2]. (F.25)
Correction. At time t+1, the loss ℓ̃nt+1(·) [cf. the one appearing in (F.16)] becomes
available, and the predicted RF coefficients αpr

n [t+1] are corrected via C-step COMID
descents:

αn[t+ 1] = MSTO(C)(ℓ̃nt+1(α
pr
n [t+ 1]), νt, λ), (F.26)

A pseudocode of the proposed prediction-correction algorithm is provided in
Algorithm 9. The computational complexity of the proposed algorithm is mainly
contributed by the gradient evaluation steps (F.25) and (F.18); and it is of order
O
(
N2D2

)
per node.

F.4 Dynamic Regret

To characterize the performance of the proposed online algorithm, we analyse its
dynamic regret [83], which characterizes the distance of the online loss function from
the optimal counterpart in each time instant. The regret analysis is derived under
the following mild assumptions:

A1) Bounded time series: there exists By > 0 such that {|yn[t]|2}n,t ≤ By ≤ ∞,

A2) Shift-invariant kernels: the kernels are shift-invariant, i.e., k(xi, xj) = k(xi −
xj).





A3) Bounded minimum eigenvalue of Φn[t] : There exists ρl > 0 such that Λmin(Φn[t]) ≥
ρl, ∀t, where Λmin(·) is the minimum eigenvalue operator.

A4) Bounded maximum eigenvalue: there exists L > 0 such that 2Λmax(Φn[t]) <

L < ∞, ∀t, where Λmax(·) is the maximum eigenvalue operator.

Dynamic regret is defined as the sum of differences between the online estimated
cost function and optimal cost function:

Rn[T ] =
T−1∑
t=0

[
hn
t (αn[t], zn[t])− hn

t (β
∗
n[t],κn[t])

]
, (F.27)

where αn[t] collects the estimated RF coefficients [cf. (F.26)] and zn[t] is the RF
features; and β∗

n[t] ∈ R(N−1)t and κn[t] are the optimal coefficients and the kernel-
based features in RKHS, respectively. The function hn

t (·, ·) is defined as

hn
t (w,x) =

1

2
[yn[t]−w⊤x]2 + λ

N∑
n′=1

∥wn,n′∥2, (F.28)

which is related to (F.10) by replacing the cumulative loss by an instantaneous loss.
We also define the optimal RF coefficients α∗

n[t] as
α∗

n[t] = argmin
αn

hn
t (αn, zn[t]). (F.29)

Adding and subtracting hn
t (α

∗
n[t], zn[t]) in (F.27) gives

Rn[T ] =
T−1∑
t=0

(hn
t (αn[t], zn[t])− hn

t (α
∗
n[t], zn[t]))︸ ︷︷ ︸

Rrf
n [T ]

+
T−1∑
t=0

(hn
t (α

∗
n[t], zn[t])− hn

t (β
∗
n[t],κn[t]))︸ ︷︷ ︸

ξn[T ]

, (F.30)

where Rrf
n [T ] is the regret w.r.t. optimal cost in RF space and ξn[T ] is the cumulative

error in RF approximation. Dynamic regret can be bounded by bounding Rrf
n [T ] and

ξn[T ].

Theorem 4. Under assumptions A1, A2, A3, and A4, the dynamic regret Rn(T )

satisfies

Rn(T ) ≤
((

1 +
L

2ρl

)√
2(N − 1)DBy + λ

√
N − 1

)
×

T
(
q(P+C)∥α∗

n[0]∥2 + q(P+C)d+ q(P+C+1)l
)
+ϵηLhT,

where η > 0 is a constant, Lh is the Lipschitz continuity parameter of function
hn
t (·, ·), d is the maximum temporal variation in the optimal solution ∥α∗

n[t]−α∗
n[t−

1]∥2, and l is the maximum error in the optimal prediction ∥α∗
n[t] − αpr∗

n [t]∥2 with
αpr∗

n [t] the optimum prediction at time t. The quantity q ∈ (0, 1) is the contraction
coefficient, and its value for various optimization techniques is provided in [51].

Proof : See Appendix F.7.
The dynamic regret bound in Theorem 4 is linear in time, which implies that

limt→∞Rn(T )/T = constant, where constant is the steady state error, which de-
pends on l = ∥α∗

n[t] − αpr∗
n [t]∥2, d = ∥α∗

n[t] − α∗
n[t − 1]∥2, and the constant ϵ ≥ 0.





This means that if d and l are low (slowly varying systems), it is possible to have
a very low bound for the asymptotic Rn(T )/T by controlling ϵ in the expense of
model complexity.

F.5 Numerical Experiments

This section compares the proposed algorithm with competing alternatives using
both synthetic data from Erdös-Rényi graph models and real data from epileptic
seizure and financial time series. We compare the proposed approach with the
following alternatives:

• Pro-SEM: the time-unstructured linear time-varying SEM from [8], based on
a proximal online gradient framework;

• TV-SEM: the time-structured linear time-varying SEM from [49];

• MSTO: A nonlinear SEM by merely performing a one-step multidimensional
shrinkage thresholding [cf. (21)] without any prediction-correction steps.

The first two alternatives are considered as baselines as they have also shown superior
performance to other online learning strategies in the respective papers. Instead,
the third alternative is considered to highlight the importance of the proposed time-
structured strategy.

In all experiments, the proposed algorithm has one-step prediction (P = 1)
and one-step correction (C = 1). Wherever the SEM topologies are plotted for
visualization, we use the normalized ℓ2 norms of the RF coefficients as the topology
estimates, defined as bn,n′ [t] := ∥αn,n′ [t]∥2/(maxm ∥αn,m[t]∥2).

F.5.1 Synthetic data

In this experiment, we consider simulated data from a slowly-varying SEM model.
We generate graph-connected time series using the following nonlinear SEM model:

y[t] = 0.1(I−W[t])−1u[t] + 0.1 sin((I−W[t])−1u[t]), (F.31)
where y[t] ∈ R5 is the signal at time t, u[t] ∼ N (0, 0.1), I ∈ R5×5 is the identity
matrix, and the operator sin(·) acts element-wise to introduce non-linearities. The
matrix W[t] ∈ R5×5 is constructed such that it attributes slowly-evolving model
dynamics to (F.31), and is of the form:

W[t+ 1] = W[t] + 0.001 sin(0.01t)W[t], (F.32)
where W[0] ∈ R5×5 is constructed using an Erdös-Rényi random graph with diagonal
entries zero1.

Our synthetic data set consists of 100 multi-variate time series, generated using
(F.31), each having T = 5000 signal samples. Out of the 100 multi-variate time
series, 20 are used to tune the hyperparameter of all the algorithms based on a grid

1We choose a small Erdös-Rényi graph of size 5 × 5 to corroborate the dynamic regret, which
involves high computational complexity.





500 1000 1500 2000 2500 3000 3500 4000 4500
T

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

M
S

E

10
-3

Proposed
MSTO
Pro-SEM
TV-SEM

Figure F.1: MSE comparison on the synthetic data set.
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Figure F.2: Dynamic regret in RF space.

search for the best model fitness. The model fitness is measured via Mean Squared
Error (MSE), defined as

MSE[T ] =
∑T−1

t=0 ∥y[t]− ŷ[t]∥22
NT

, (F.33)
where ŷ[t] ∈ R5 is the signal estimated using the learned SEM model. The hyperpa-
rameter values of the algorithm are (σn, λ, γ, νt) = (5, 0.0009, 0.98, 2/max{Λmax(Φn[t])}n)
and the RF count is D = 5. The MSEs averaged across the remaining 80 multi-
variate time series are plotted in Fig. F.1, which shows that the proposed method
outperforms all alternatives. This is because the alternatives do not exploit the evo-
lution of the model or cannot learn non-linearities, whereas the proposed algorithm
features both.

Dynamic Regret. In Fig. F.2, we plot the rate of change of the dynamic regret
w.r.t. optimal cost function in RF space Rrf

n [T ]/T . The convergence of Rrf[T ]/T is
evident from Fig. F.2, which supports our theoretical analysis in Theorem 4. We
wish to note that a numerical evaluation of the second component of the dynamic
regret ξn[T ] is a daunting, complex process since it involves finding the optimal
parameters in a high dimensional RKHS. However, ξn[T ]/T is upper bounded by
the value ϵηLh [cf. Lemma 3], where ϵ is a user-controlled parameter. By setting ϵ

to be very small, the rate of change of the overall dynamic regret Rn[T ]/T can be
made closer to Rrf[T ]/T , when T → ∞.





F.5.2 Real data: Epileptic seizure

In this experiment, we examine the functional connectivities among different brain
regions via learned SEM topologies using an EEG dataset. Our goal is to distin-
guish between the normal and epileptic dynamics in the brain networks. We use
an EEG dataset of children with intractable seizures collected from the Children’s
Hospital, Boston [92]. The data set consists of multivariate time series of potential
differences between electrodes inserted in the brain. There are a total of 23 times
series measuring EEG activities in different brain regions. We fit this data using
different algorithms and test their capability to distinguish the pre-seizure and the
seizure events. We measure the performance via the Maximum Mean Discrepancy
(MMD) of the distribution of nodal degrees, which is a standard approach used to
measure the distance between two graphs [121,122]. The MMD is defined as

MMD2(p1||p2) =Ex,y∼p1

[
k(x,y)

]
+ Ex,y∼p2

[
k(x,y)

]
− 2Ex∼p1,y∼p2

[
k(x,y)

]
(F.34)

where k(x,y) is the radial basis kernel function computing the distance between
x and y, and MMD2 measures the distance between distributions p1 and p2. In
this experiment, p1 and p2 correspond to the distributions of nodal degrees for the
pre-seizure and seizure events, respectively.

We used the proposed method with the RF count D = 5 along with the hyper-
parameters (σn, λ, γ, νt) = (1, 0.1, .98, 2/max{Λmax(Φn[t])}), obtained using a grid
search for the best MMD. The hyperparameters of other algorithms are also tuned
using the same strategy.

Table F.1 compares the MMD of the different algorithms using the seizure data
from two subjects, S1 and S2. The MMD of the proposed algorithm is an order-
one magnitude higher compared to alternatives, which highlights that the proposed
algorithm distinguishes the seizure and the pre-seizure events better. This is due to
the fact that the functional connectivities in brain are highly nonlinear [11], and all
alternatives, except MSTO, discard the nonlinear components in the connectivity.
MSTO, on the other hand, can accommodate the non-linearities; however, it does
not take advantage of the brain connectivity evolution, and is at the second place
in the comparison.

A snapshot of the estimated graph topology before seizure and after seizure is
shown in Fig. F.3 and Fig. F.4, respectively. Before the seizure, the connections are
concentrated across certain regions, and during the seizure, they get more disrupted,
which agrees with the observations in [95]. The reason for the disrupted topology is
the increase in pathogenic neural discharge during seizure [96].

We further compare the per-node computational complexity of the proposed
method and the time-structured benchmark TV-SEM. The experiment is conducted
in a machine with specifications: 2.4 GHz 8-core Intel Core i9 and 16GB 2667

MHz DDR4 RAM . In Fig. F.6, we plot the cumulative computation time of the
prediction and the correction steps, where it can be observed that the proposed
model performs the prediction and the correction much faster. The shorter com-
putation time stems from the node separability feature, which the TV-SEM does
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Figure F.5: Snapshots of estimated topologies: (a) before seizure, (b) during seizure.

not have. The other alternatives are not considered in Fig. F.6 since they are time-
unstructured algorithms that do not take advantage of the model evolution, and
hence, are faster than the time-structured methods.
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Figure F.6: Comparison of cumulative computational time on epileptic data.

F.5.3 Financial time series

We consider financial time series belonging to three categories: airline industry, oil
industry, and cryptocurrency, which are listed in Table F.2. The data set includes





Table F.1: Maximum Mean Discrepancy for node degree on EEG data.

MMD S1 S2

Proposed 0.0532 0.0550

TV-SEM 0.0037 0.0038

Pro-SEM 0.0032 0.0013

MSTO 0.0067 0.0070

Table F.2: Categorized list of financial times series.

Groups Stocks

Group-1 Delta Air Lines (DAL), Air Canada (AC), Air France (AF),
(Airlines) United Airlines (UAL), American Airlines (AAL).

Group-2 British Petroleum (BP), ConocoPhillips (COP),
(Oil) Chevron (CVX), Shell (SHEL), ExxonMobil (XOM).

Group-3 Bitcoin (BTC), Dogecoin (DOGE),
(Crypto) Ripple (XRP), Cardano (ADA), Ethereum (ETH).

Table F.3: Clustering coefficients of stock groups under COVID and post-COVID
market dynamics, computed using (F.35).

Algorithm Airlines Oil Crypto

COVID Proposed 0.45 0.54 .54

TV-SEM 0.45 0.44 0.45

Pro-SEM 0.23 0.33 0.00

MSTO 0.38 0.45 0.40

post-COVID Proposed 0.81 0.80 1.00

TV-SEM 0.60 0.40 0.44

Pro-SEM 0.20 0.42 1.00

MSTO 0.63 0.54 1.00

15 time series of 879 samples each, which are the closing price values of the stocks
from 01-06-2019 to 14-10-2022, including the COVID-19 outbreak. The pandemic
had a serious impact on world economy, affecting the natural dynamics of the stock
market. A high dip in the S&P 500 index was observed around 25-02-2020 to 25-
06-2020, which we mark as the pandemic period. Our goal in this experiment is
to identify clusters in the data using the learned SEM topologies and examine the





variations in the clusters during and after the pandemic. Since the stock groups
in Table F.2 are formed by selecting the stocks from similar industries, they are
expected to show stronger intra-group dependencies than intergroup dependencies,
under the normal market conditions [123].

Figure F.7: Estimated SEM topology on 05-05-2020 (during COVID).

Figure F.8: Estimated SEM topology on 08-12-2021 (after COVID).

Let Vi = 1, 2, 3, denote the set of nodes corresponding to the stocks in each group.
We measure the performance via the clustering coefficient ρi that computes the ratio
of the number of edges within group-i to the total number of edges connected to
group-i members:

ρi =

∑
n∈Vi

1(bn,n′ > δ|n′ ∈ Vi)∑
n∈Vi

1(bn,n′ > δ) +
∑

n′∈Vi
1(bn,n′ > δ)

, (F.35)

where δ is a threshold selected to consider the strongest 2N edges for clustering; and
1(·) is an indicator function defined as 1(x) = 1, when x is true, and 0, otherwise.
A high value of ρi indicates that intra-group interactions in group-i are stronger
compared to its intergroup interactions. The first 20% of the data samples are
used to tune the hyperparameter for the lowest MSE resulting in (σn, λ, γ, νt) =

(1, 1, .98, 2/max{Λmax(Φn[t])}) and RF count for the experiment is D = 10.
Table F.3 lists the clustering coefficients of the three groups, averaged across 80

days, randomly sampled from the COVID and post-COVID intervals. As expected,
the clustering is more predominant with post-COVID market dynamics than with
the COVID market dynamics. The proposed method identifies better such clusters
compared with the alternatives. The MSTO algorithm is next in the comparison.
This observation is supported by the fact that the interactions among the financial





time series are complex [124], which cannot be effectively modeled using the linear
Pro-SEM and TV-SEM. It is further interesting to note here as the crypto cluster
is much easier identified in the post-COVID period. This follows the intuition that
the airline and oil sectors have more financial transactions between them, whereas
cryptocurrencies are exchanged only with each other.

Further, the SEM topologies estimated using the proposed algorithm for a COVID-
affected market day and a post-COVID day are shown in Fig. F.7 and Fig. F.8,
respectively. In line with the expectation, more intra-group market interactions can
be observed in Fig. F.8, whereas these interactions get disrupted in Fig. F.7.

F.6 Conclusion

This paper proposed an online algorithm to learn the nonlinear structural equation
model (SEM), targeting the streaming data from real-world systems with nonlin-
ear dynamics. The proposed method leverages the kernel formulation with random
feature approximation to obtain a low-dimensional representation of the nonlin-
ear dynamics. The algorithm uses a prediction-correction strategy equipped with
a group-lasso-based optimization framework, solved via composite object mirror
descent. Unlike the state-of-the-art algorithms, the proposed method offers data
privacy at the network node through node separability and random features. In ad-
dition, the proposed online problem is separable across nodes, improving scalability
in large graphs. A dynamic regret analysis has been derived to ensure the theo-
retical guarantee of the algorithm. Using synthetic, epileptic, and financial data,
we demonstrated that the SEM topology learned using the proposed model fits the
data better and can distinguish between the changes in the system dynamics with
less computational complexity compared to the state-of-the-art alternatives.

F.7 Proof of Theorem 4

Theorem 4 provides an upper bound for the dynamic regret Rn(T ) = Rrf
n(T )+ξn(T ).

We prove the theorem by bounding Rrf
n(T ) and ξn(T ) using the following two lemmas.

Lemma 2. Under assumptions A1, A3, and A4, and letting νt =
2
L
, the dynamic

regret w.r.t. the optimal cost function in the RF space is upper bounded by

Rrf
n (T ) ≤

((
1 +

L

2ρl

)√
2(N − 1)DBy + λ

√
N − 1

)
×

T
(
∥α∗

n[0]∥2 + q(P+C)d+ q(P+C+1)l
)
.

Proof : The Cauchy-Schwarz inequality allows us to bound Rrf
n [T ] by bounding

the cumulative optimality gap
∑T−1

t=0 ∥αn[t] − α∗
n[t]∥2 and the gradient of the loss

function ∥∇ℓ̃nt (αn[t])∥2 [32].
The bound for optimality gap is given by Proposition-1 in [118]:

∥αn[t]−α∗
n[t]∥2 ≤ qC(qP∥αn[t− 1]−

α∗
n[t− 1]∥2 + qPd+ (1 + qP )l) (F.36)





Since q < 1, we can express cumulative error in terms of the initial optimal solution
α∗

n[0]. Setting αn[0] = 0, we bound the cumulative optimality gap as
T−1∑
t=0

∥αn[t]−α∗
n[t]∥2 ≤Tq(P+C)∥α∗

n[0]∥2

+ Tq(P+C)d+ Tq(P+C+1)l (F.37)
The gradient of the loss is bounded by following Lemma 1.2 in [36]:

∥∇ℓ̃nt (αn[t])∥2≤
((

1 +
L

2ρl

)√
2(N − 1)DBy+λ

√
N − 1

)
(F.38)

The claim can be then proved by adding (F.37) and (F.38).

Lemma 3. Under assumptions A1 and A2, there exists a constant ϵ ≥ 0 such that
the cumulative approximation error ξn[T ] satisfies

ξn(T ) ≤ ϵηLhT.

Proof : The proof follows from Theorem 2 in [36].
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