
Tapping network traffic in Kubernetes

Diving deeper into the footprint, impact and characterization of the
sidecar method with dimensions of volume, scalability, load and stability

SIGBJØRN SKOLEM LEDAAL

SUPERVISOR
Sigurd Brinch & Roger Skjetlein

University of Agder, 2023
Faculty of Engineering and Science
Department of Engineering and Sciences

Obligatorisk gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler, retningslinjer for
bruk av disse og regler om kildebruk. Erklæringen skal bevisstgjøre studentene p̊a deres ansvar og hvilke
konsekvenser fusk kan medføre. Manglende erklæring fritar ikke studentene fra sitt ansvar.

1. Vi erklærer herved at v̊ar besvarelse er v̊art eget arbeid, og at vi ikke har
brukt andre kilder eller har mottatt annen hjelp enn det som er nevnt i
besvarelsen.

Ja

2. Vi erklærer videre at denne besvarelsen:

• Ikke har vært brukt til annen eksamen ved annen avdeling/univer-
sitet/høgskole innenlands eller utenlands.

• Ikke refererer til andres arbeid uten at det er oppgitt.

• Ikke refererer til eget tidligere arbeid uten at det er oppgitt.

• Har alle referansene oppgitt i litteraturlisten.

• Ikke er en kopi, duplikat eller avskrift av andres arbeid eller
besvarelse.

Ja

3. Vi er kjent med at brudd p̊a ovennevnte er å betrakte som fusk og
kan medføre annullering av eksamen og utestengelse fra universiteter og
høgskoler i Norge, jf. Universitets- og høgskoleloven §§4-7 og 4-8 og Forskrift
om eksamen §§ 31.

Ja

4. Vi er kjent med at alle innleverte oppgaver kan bli plagiatkontrollert. Ja
5. Vi er kjent med at Universitetet i Agder vil behandle alle saker hvor det

forligger mistanke om fusk etter høgskolens retningslinjer for behandling av
saker om fusk.

Ja

6. Vi har satt oss inn i regler og retningslinjer i bruk av kilder og referanser
p̊a biblioteket sine nettsider.

Ja

7. Vi har i flertall blitt enige om at innsatsen innad i gruppen er merkbart
forskjellig og ønsker dermed å vurderes individuelt. Ordinært vurderes alle
deltakere i prosjektet samlet.

Nei

Publiseringsavtale

Fullmakt til elektronisk publisering av oppgaven Forfatter(ne) har opphavsrett til oppgaven. Det betyr blant
annet enerett til å gjøre verket tilgjengelig for allmennheten (Åndsverkloven. §2).
Oppgaver som er unntatt offentlighet eller taushetsbelagt/konfidensiell vil ikke bli publisert.

Vi gir herved Universitetet i Agder en vederlagsfri rett til å gjøre oppgaven tilgjengelig
for elektronisk publisering:

Ja

Er oppgaven b̊andlagt (konfidensiell)? Nei
Er oppgaven unntatt offentlighet? Nei

Preface

I would like to thank Roger Skjetlein from Telenor for introducing me to the idea and concept
behind the thesis, and for being a helpful project supervisor, providing insightful comments
along the course of the thesis. In addition, I would like to thank Telenor Security Operation
Center for providing me the opportunity to write this thesis, as well as giving me access to
the resources needed to conduct the research. I must also reach out a thank you to Sigurd
K. Brinch who served as my supervisor from the University of Agder. Lastly, I send out a
collective thank you to all the co-students who have helped me in times of need.

Sigbjørn Ledaal
Grimstad 14.05.2023

ii

Abstract

The rapid increase in cloud usage among organizations has led to a shift in the cybersecurity
industry. Whereas before, organizations wanted traditional security monitoring using stat-
ically placed IDS sensors within their data centers and networks, they now want dynamic
security monitoring of their cloud solutions. As more and more organizations move their
infrastructure and applications to the cloud the need for cybersecurity solutions that can
adapt and transform to meet this new demand is increasing. Although many cloud providers,
provide integrated security solutions, these are dependent on the correct configuration from
the customers, which may rather want to pay a security firm instead. Telenor Security Op-
eration Center is a long contender in the traditional cybersecurity firm space and is looking
to move into IDS monitoring of cloud solutions, more specifically providing network IDS
monitoring of traffic within managed Kubernetes clusters at cloud providers, such as Ama-
zon Web Services Elastic Kubernetes Service. This is to be accomplished by providing all
the desired pods within a cluster their own sidecar container, which acts as a network sniffer
that sends the recorded traffic through vxlan to an external sensor also operating in the
cloud. By doing this, traditional IDS monitoring suddenly becomes available in the cloud,
and is covering a part that is often neglected in cloud environments, and that is monitoring
the internal Kubernetes cluster traffic.

AWS EKS was used as a testing ground for a simulated Kubernetes cluster running sam-
ple applications monitored by the sidecar container. Which is essentially a Python script
sniffing the localhost traffic of the shared network namespace of a Kubernetes pod. This
infrastructure will be generated by a set of Terraform files for automated setup and repro-
ducibility, as well as making use of the gitops tool Fluxcd for syncing Kubernetes manifests.
The solution will also be monitored by a complete monitoring solution in the form of kube-
prometheus-stack which will provide complete insight into performance metrics down at the
container level, through Prometheus and Grafana. Finally, a series of performance tests will
be conducted, using k6s and iperf, automated by Ansible, to gather the performance impact
of the sidecar container.

A series of iperf and k6s tests were conducted against the sidecar container. The k6s test
was run at a data rate of 3 Mb/s and showed that the data rate needed to be higher to
gather useful performance metrics. This is where iperf took over and tested the sidecar
container at data rates of 50,100,250 and 500 Mb/s using a server at the University of Agder
as base. These initial raw performance results showed a max CPU usage of 11.8% of the
Kubernetes node’s 2 vCPU’s. Together with a max memory usage of 14 MB this showed
that the sidecar container does not consume a vast amount of resources. And has the
potential as a scalable and efficient network tapping method in Kubernetes. However, some
anomalies were discovered during the performance testing that revealed undiscovered issues
with the method. One of which was packet anomalies between the number of packets at the
sensor and the number of packets observed by the iperf server at the University of Agder.
Due to the many layers involved in the networking stack for this method, there needs to

iii

be conducted additional research into how these anomalies arise. While also considering
alternative transport methods to vxlan.

Contents

Preface ii

Abstract iv

List of Figures xii

List of Tables xiv

List of Abbreviations xv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem statement and Research questions 2

1.3 Scope and limitations . 2

1.4 Methodology . 3

1.5 Outline . 4

2 Background 5

2.1 The Cloud . 5

2.1.1 Security and Monitoring . 6

2.2 Kubernetes . 7

2.2.1 Networking . 10

2.2.2 Monitoring . 13

2.2.3 Resource allocation and limitation . 14

v

2.3 Amazon Web Services . 14

2.3.1 Elastic Kubernetes Service . 14

2.3.2 Identity Access Management . 14

2.4 IDS monitoring . 15

2.5 VXLAN . 15

2.6 Infrastructure . 16

2.6.1 Terraform . 16

2.6.2 Fluxcd . 17

2.6.3 Ansible . 17

3 Related Work 19

3.1 Traditional IDS monitoring . 19

3.2 IDS in the cloud . 19

3.2.1 Sidecars for Network Monitoring in Kubernetes 21

4 Lab environment and testing approach 24

4.1 AWS . 24

4.1.1 Terraform . 26

4.2 Kubernetes . 27

4.2.1 Fluxcd . 28

4.2.2 The sidecar . 29

4.3 iperf and k6s . 32

4.4 Performance monitoring . 34

4.5 Testing methodology . 35

5 Results 36

5.1 Initial performance test with k6s . 36

5.1.1 k6s: Confluence . 36

5.2 Speed test with iperf . 39

5.2.1 Data rate: 50Mb/s . 40

5.2.2 Data rate: 100Mb/s . 41

5.2.3 Data rate: 250Mb/s . 43

5.2.4 Data rate: 500Mb/s . 44

6 Discussions 46

6.1 Lab environment results . 46

6.1.1 Performance . 46

6.1.2 Anomalies . 46

6.2 Considerations . 47

6.2.1 AWS . 47

6.2.2 Kubernetes . 48

6.3 Final thoughts . 48

7 Conclusions 49

7.1 Future research . 50

Bibliography 51

A Terraform 54

A.1 EKS Cluster . 54

A.1.1 terraform.tf . 54

A.1.2 main.tf . 55

A.1.3 variables.tf . 55

A.1.4 vpc.tf . 56

A.1.5 eks-cluster.tf . 56

A.1.6 ec2.tf . 58

A.1.7 output.tf . 63

B Fluxcd 65

B.1 Kustomizations . 65

B.1.1 sync.yaml . 65

B.1.2 monitoring.yaml . 66

B.1.3 flux-dash.yaml . 66

B.1.4 nginx-controller.yaml . 66

B.1.5 database.yaml . 67

B.1.6 confluence.yaml . 67

B.2 Applications . 68

B.2.1 Kube Prometheus Stack . 68

B.2.2 Flux dashboard . 73

B.2.3 Nginx ingress controller . 74

C The sidecar 88

C.1 Sidecar container . 88

C.1.1 vxlan.py . 88

C.1.2 Dockerfile . 92

D k6s 93

D.1 k6s test file . 93

D.1.1 test.js . 93

E iperf 95

E.1 Data rate results . 95

E.1.1 50 Mb/s . 95

E.1.2 100 Mb/s . 98

E.1.3 250 Mb/s . 100

E.1.4 500 Mb/s . 103

F Ansible 106

F.1 Ansible Playbook . 106

F.1.1 Role: iperf . 106

F.1.2 Role: tcpdump . 107

List of Figures

2.1 Overview of cloud service models [5] . 6

2.2 Overview of the main deployment era’s [11] 8

2.3 Kubernetes components [13] . 9

2.4 Container-to-container and pod-to-pod networking [14] 10

2.5 Pod to service networking [14] . 11

2.6 Service types of a Kubernetes service object [14] 12

2.7 Grafana dashboard cpu usage of Kubernetes node 13

2.8 Overview of a network-based intrusion detection system [27] 15

2.9 Overview of Terraform workflow [30] . 16

3.1 Example threat model of a standard cloud environment [34] 20

3.2 Overview of misuse detection in networks [34] 21

3.3 Overview of methods to monitor network traffic in Kubernetes 22

3.4 Overview of container sidecar [36] . 23

4.1 Overview of the AWS lab environment . 24

4.2 Detailed overview of lab environment . 25

4.3 Overview of the Kubernetes nodes . 27

4.4 Data flow of k6s to Confluence pod . 28

4.5 Overview of data flow in lab environment . 30

4.6 CPU usage per pod on a given node . 34

4.7 CPU usage per container within a single pod 34

xi

5.1 CPU usage within the Confluence pod . 36

5.2 CPU usage viewed from the compute node 37

5.3 Network bandwidth transferred from Confluence pod 37

5.4 Caption . 38

5.5 Caption . 39

5.6 CPU usage of vxlan container during 50 Mbs 40

5.7 Memory usage of vxlan container during 50 Mbs 41

5.8 CPU usage of vxlan container during 100 Mbs 41

5.9 Memory usage of vxlan container during 100 Mbs 42

5.10 CPU usage of vxlan container during 250 Mbs 43

5.11 Memory usage of vxlan container during 250 Mbs 43

5.12 CPU usage of vxlan container during 500 Mbs 44

5.13 Memory usage of vxlan container during 500 Mbs 45

xii

.

List of Tables

2.1 Pandemic Eleven report top threats [10] . 7

2.2 Core concepts in Fluxcd [32] . 17

4.1 t3.large node hardware specifications . 25

4.2 Hardware specifications of the UiA machine 26

5.1 Sidecar container performance at 3 MB/s datarate 39

xiv

Abbreviations

ARP Address Resolution Protocol. 10

AWS Amazon Web Services. iii, xi, 2, 12, 14, 20, 24–27, 47–49

CNI Container Network Interface. 12, 21

CSA Cloud Security Alliance. 6

DDoS Distributed Denial of Service. 1

EC2 Elastic Cloud Compute. 14, 20, 26, 31, 47, 49

EKS Elastic Kubernetes Service. iii, 2, 14, 24, 26, 47, 49

IaaS Infrastructure as a Service. 5, 7

IAM Identity Access Management. 14

IDS Intrusion Detection System. 1, 2, 15, 19–23, 47

PaaS Platform as a service. 5, 7

SaaS Software as a service. 5

TSOC Telenor Security Operation Center. iii, 1–4, 19, 24, 47, 48

VPC Virtual Private Cloud. 14, 20, 25–27, 47, 49

xv

.

Chapter 1

Introduction

1.1 Motivation

Telenor Security Operation Center (TSOC) which is a part of Telenor offers cybersecurity
services such as intrusion detection systems (IDS) and log analysis, as well as defense against
Distributed Denial of Service (DDoS) attacks, to customers. Traditionally, IDS monitoring
consists of having a passive monitoring device within a network, that uses signatures to
match network traffic with known malicious patterns [1]. This deployment method assumes
that a network monitoring device is placed inside a customer’s datacenter and is setup to
passively receive the customer’s traffic. However, a problem arises when the customer’s
network is not limited to a single datacenter, but is located in the cloud. There arises a need
for a solution that can provide IDS protection in cloud environments where it is not possible
for security organizations such as TSOC to physically put a passive monitoring device within
a customer’s network.

The rise of cloud computing has shown an exponential growth in organizations utilizing cloud
providers instead of maintaining their own servers and infrastructure. With surveys showing
that up to 70% of organizations are using two or more cloud providers [2]. Which means
that almost every organization is using at least one cloud provider in some extent [2]. This
has made TSOC look into how IDS monitoring can be achieved in the ever growing cloud
landscape. Nevertheless, the cloud is large, and some areas are higher priorities than others,
with the container orchestration platform Kubernetes being the starting target. Within
Kubernetes, there are pods that run on the nodes within a Kubernetes cluster. A pod is the
smallest unit within Kubernetes, and can contain multiple containers that share storage and
network resources and run in a shared context [3]. And it is within each of these pods that
TSOC want to use a technique called the sidecar pattern to tap the network traffic from
the application containers. The solution is to attach a sidecar container to the application
container within a pod, this sidecar will passively record the network traffic and send it to an
IDS sensor which could exist in another place in the cloud, outside the monitored Kubernetes
cluster. The purpose of this research proposed by TSOC is to research the footprint, impact,
and performance of the sidecar container with dimensions of load and stability.

1

1.2 Problem statement and Research questions

Each pod in a Kubernetes cluster will consume resources from the node it is deployed on.
Best practices recommend that each pod is set with resource limits, which means that the
pod will be stopped if it tries to consume more resources than are set in its limits. These
limitations can also be set per container within a pod, such as on the network tapping sidecar
container. What the resource limit of the sidecar container should be would be difficult to
know without doing a rigorous performance test of the sidecar. Due to the operative nature
of network monitoring setting a too low resource limit would halt the IDS monitoring during
traffic spikes. From this background, the issue that must be addressed is:

What are the performance characteristics of a sidecar container tapping network
traffic in Kubernetes?

Given the plethora of different parameters that could play a part in this research question,
it can be divided into a set of smaller goals to isolate parts of the problem:

1. Setup a lab environment simulating a Kubernetes cluster hosted at a cloud provider.
Including configuration for easy repeatability.

2. Configuration of a monitoring solution that can monitor performance statistics such
as CPU, memory, and network bandwidth of both the compute nodes and the sidecar
container.

3. Conduct a series of performance tests of the sidecar container by generating network
traffic against pods that are monitored.

Knowing the performance characteristics of the network tapping sidecar container puts
TSOC in a better position to further develop IDS monitoring within Kubernetes in the
cloud. The results of the performance test may lead to a change in strategy for the sidecar
pattern.

1.3 Scope and limitations

Given the plethora of choices of cloud providers, this thesis will focus on one of the most
widely used, Amazon Web Services (AWS). This is due to the fact that it is what TSOC had
at hand, while also taking in the cost factor. It is cheaper to pay for a managed Kubernetes
service in the cloud than to procure your own servers, while also eliminating the infrastructure
management of servers. It is also beneficial for the thesis to utilize the same system that
customers are using, such as AWS Elastic Kubernetes Service (EKS). Furthermore, this
thesis is not about Kubernetes itself, and given the complexity of the Kubernetes ecosystem,
choices will be made to ease the testing of the problem statement. And will not dive deep
into Kubernetes internals that may affect the testing. That will be out of scope for this
thesis. It must also be mentioned that AWS and Kubernetes are monumental and complex
tools to learn and even harder to master. Therefore, a substantial amount of this thesis has
been used to learn how to utilize and make use of AWS and Kubernetes to help research the
problem statement.

2

1.4 Methodology

The main research goal of this thesis was to explore the performance impact of tapping net-
work traffic in Kubernetes through the sidecar container pattern. The problem that warrants
solving is how to efficiently monitor network traffic within Kubernetes in the cloud, and the
engineered solution is to utilize sidecar containers. With this background, we are approach-
ing the field of applied research methods. Applied research focuses on understanding the
performance impact of a proposed engineered system that solves a preconceived problem [4,
p. 74]. Within applied research, there are two different research paths: applied experimenta-
tion and applied observational study. While applied experimentation focuses on controlled
tests to determine how well a system performs, applied observational studies observe the
behavior of an engineered system in varying conditions [4, p. 74]. Given the preconceived
problem stated in this thesis, the conditions of an applied observational study apply. The
sidecar container pattern is the engineered solution, and we want to monitor how this system
behaves under different conditions in the cloud. And given the number of parameters that
exist in the cloud and between different cloud providers, it would be next to impossible to
perform controlled experiments as described in applied experimentation.

Within the realm of applied observational studies, there are two subgroups: exploratory stud-
ies and descriptive studies [4, p. 301]. An exploratory study focuses on testing the behavior
of a system, for example, firewall processing speed or cryptographic hashing performance.
On the other hand, a descriptive study explores the results of applying foundational research
[4, p. 301]. We want to explore the performance of a given system, therefore, an exploratory
study aligns with our research goals.

Within applied exploratory studies, there are several ways to explore the behavior of a
system, either through operational bounds testing or through sensitivity analysis [4, p. 301].
The objective of operational bounds testing is simply to test the performance boundaries of
the given system. However, there are different methods of operational bounds testing, which
are:

• Performance testing

• Stress testing

• Load testing

Performance testing is to ensure that the system can tolerate expected loads, while load
testing tries to push the system to its limits. Lastly, stress testing goes beyond the expected
limits of the system to observe how the system behaves at extreme load [4, p. 302]. Given
that TSOC have developed a prototype of the system that will be researched in this thesis,
there are some initial expectations of the performance of the sidecar container. With this
in mind, performance testing seems like the most appropriate starting point to observe for
this thesis. However, TSOC would also be interested in any data gathered on the maximum
load and performance in the extremes for this system.

The testing will be conducted by deploying example applications to the Kubernetes cluster
and attaching the network tap sidecar. Thereafter, using the load testing applications k6s
and iperf, perform a set of tests that will generate traffic. In-depth monitoring of the sidecar
will be observed to see the initial performance of the sidecar. These results will be used to
determine if the sidecar will need to be changed or optimized before being used in a live
operational environment.

3

1.5 Outline

Given the complicated nature of the cloud and its components, the thesis will begin Chapter
2 by giving an introduction to the technologies and systems used to conduct the research.
Chapter 3 will explore relevant research about the thesis topic, but the research conducted
on tapping network traffic from within Kubernetes is limited, hence why TSOC wants this
research conducted. Afterwards, chapter 4 will explore the lab environment and the approach
for testing the sidecar container. The results of the testing are shown in chapter 5, before
being discussed in chapter 6 along with considerations. Lastly, chapter 7 concludes the results
of the performance testing and explores future research that would need to be conducted in
this area.

4

Chapter 2

Background

2.1 The Cloud

Earlier in this thesis, we were introduced to the term the cloud but what is being referenced
when utilizing this term? Where and what is the cloud in general terms? The major cloud
company, Cloudflare defines the cloud as “Servers that are accessed over the Internet, and
the software and databases that run on those servers” [5]. This definition answers some
questions but is not quite enough to answer everything. To elaborate further, Cloudflare
states that the servers in the cloud are located in data centers around the globe. And the
main advantage of this is that companies around the world do not have to manage these
physical servers themselves. The data centers are operated by a cloud provider that manages
all the infrastructure needed and rents out the servers [5]. Another major cloud provider,
Microsoft Azure, describes the cloud as: “The cloud is not a physical entity, but instead
a vast network of remote servers around the world that are hooked together and meant to
operate as a single ecosystem” [6]. And this concept of a single ecosystem is what makes
the cloud appealing to organizations. By providing the power of complex infrastructure
around the globe through renting options, cloud computing has grown to be widely used
among companies around the world. With market research showing that around 90% of
enterprises are using a cloud provider in some form [7]. However, the cloud is not a single
entity but a collection of different services, and there are a plethora of different terms and
definitions of cloud services. Cloud services can be divided into a collection of major service
models, though there are some industry terms that must be defined in order to understand
the differences.

Below is a list of some of the major terms within cloud computing and cloud service models:

• Infrastructure as a Service (IaaS): A customer can rent infrastructure through a
cloud provider and is given direct access to servers without needing to worry about the
management of physical servers themselves [5].

• Platform as a service (PaaS): PaaS cloud providers offer a platform for building
applications to customers. The customer will get everything provided, such as an
operating system, database management, and development tools [5].

• Software as a service (SaaS): In SaaS the cloud provider provides everything to the
customer, even the application itself. The customer rents a piece of software directly
and does not need to worry about the infrastructure behind it [5].

5

• Private Cloud: A private cloud deployment is a piece of infrastructure wholly dedi-
cated to a single organization. The infrastructure could be a single server or a whole
dedicated data center. For organizations that do want to share computing power or
servers with other customers [8].

• Public Cloud: In a public cloud deployment, multiple customers may share the same
physical server and its computing power. The cloud provider rents out different tiers
of computing power, and the data centers share multiple organizations [8].

• Hybrid Cloud: A hybrid cloud deployment involves connecting multiple computing
environments together. This could be connecting a public cloud to an on premise
computing environment and configuring information sharing in such a way that some
data will always be computed in the on premise environment. However, hybrid cloud
deployments can also involve multiple public clouds connected together [8].

A graphical representation of the main cloud service models can be seen in the figure below:

01010110101010

Figure 2.1: Overview of cloud service models [5]

2.1.1 Security and Monitoring

One of the rising issues with the widespread adoption of the cloud is the cybersecurity aspect.
Many organizations moved their applications and infrastructure to the cloud without proper
knowledge and expertise in how to utilize the security features of the cloud provider. This
has led to a range of cybersecurity incidents where the cloud infrastructure of an organization
has been compromised in some way. In the cloud industry, there is an organization called
the Cloud Security Alliance (CSA) which is a global organization focused on improving and
defining best practices for operating in the cloud computing environment [9]. The CSA
collects expertise from industry leaders, governments, and researchers to provide a forum
where information on how to protect the cloud can be shared in an efficient manner [9].
Further, the CSA releases reports on the top threats against cloud computing environments;
one of these reports is called the Pandemic Eleven and contains the eleven largest threats
against cloud computing [10]. Below is a table of the results from this report:

6

Survey Results Rank Issue Name

1 Insufficient ID, Credential, Access and Key Mgt, Privileged Accounts

2 Insecure Interfaces and APIs

3 Misconfiguration and Inadequate Change Control

4 Lack of Cloud Security Architecture and Strategy

5 Insecure Software Development

6 Unsecure Third Party Resources

7 System Vulnerabilities

8 Accidental Cloud Data Disclosure/ Disclosure

9 Misconfiguration & Exploitation of Serverless & Container Workloads

10 Organized Crime/ Hackers/ APT

11 Cloud Storage Data Exfiltration

Table 2.1: Pandemic Eleven report top threats [10]

As seen in the table above, the top three threats against cloud computing environments are
related to misconfiguration and management of security in the cloud. And these parameters
are under the control of the customer renting the cloud and not the cloud provider them-
selves, although some cloud environments are harder to master than others. And taking into
consideration that it is up to the cloud provider to give easy access to efficient management
tools to properly configure against these vulnerabilities, It must also be noted that when
utilizing IaaS or PaaS, the secure configuration of the applications within these services is
up to the customer. And that involves configuring the appropriate security monitoring for
both the cloud environment and the applications deployed within.

2.2 Kubernetes

Kubernetes is one of the main components of the research in this thesis and is a core com-
ponent of many cloud computing environments. What Kubernetes offers is a “portable,
extensible, open sourced platform for managing containerized workloads and services.” [11].
Kubernetes was developed within Google before becoming open source in 2014 and continues
to be the world’s leading platform to run containerized applications, with over half of the
world’s container organizations using Kubernetes [12]. It is important to note that a full
description of how Kubernetes works is way beyond the scope of this thesis; as such, the
main focus will be on the core components related to the thesis. Next, to understand why
Kubernetes is so popular and game-changing, there is a need to look back in time and look
at the different deployment eras.

Below is an overview of the three main deployment eras as described by Kubernetes them-
selves [11]:

7

Figure 2.2: Overview of the main deployment era’s [11]

The traditional deployment era consisted of running all required applications on the same
physical server, running them all on the same operating system side by side. This type of
deployment did not utilize the resources of the underlying hardware efficiently because a sin-
gle application could use CPU and memory and make the other applications underperform.
There are also issues of dependencies when different applications require different versions
of the same software to be installed on the same operating system [11].

Then, researchers figured out a way to virtualize a machine within a machine by running
multiple virtual servers within a single physical server. The virtual machines are given
a piece of the underlying resources and are completely separate from each other. This
eliminated many of the headaches of the traditional deployment, although these virtual
machines produced a lot of overhead that required a significant portion of the resources of
the physical server [11].

Lastly, in the container deployment era, a solution was found to make applications share
operating systems without worrying about dependency headaches as in the traditional era.
While also eliminating the overhead of an entire virtual machine. The solution was to create
isolated containers that each have a share of the resources of the operating system but
have their own filesystem. They are managed through a container runtime, which is more
lightweight than an entire virtual machine [11].

Now that we have seen what containers are, the question that quickly arose was how to
manage workloads when running hundreds and thousands of containers across several virtual
machines in the cloud or on premise. This is where Kubernetes comes in as a container
orchestration platform. The simplest example of Kubernetes is that if a container goes
down, another one should start and take its place. With Kubernetes, such workflows can
be configured and expanded upon. A starting point for some features that Kubernetes can
offer is as follows [11]:

• Service Discovery and load balancing

• Storage provisioning

• Automated rollouts and rollbacks

• Self-healing

These features and more can be provided through the large community of Kubernetes addons
that enhance the standard Kubernetes experience.

8

To understand how a Kubernetes cluster operates, it may be helpful to have a graphical
representation. An overview of Kubernetes standard components can be viewed in the
following figure [13]:

Figure 2.3: Kubernetes components [13]

There are a variety of unknown terms in the figure above, but each plays a part in the
Kubernetes platform. Firstly, the master node is, as the name suggests, the master of the
cluster; it is responsible for managing the resources and scheduling where workloads should
be run [11]. It is also called the control plane and is where all the control plane components
of Kubernetes live. The control plane consists of:

• kube-apiserver: Exposes the Kubernetes API and is the main frontend for Kubernetes
[11].

• etcd: Key value store for all clustered data [11].

• kube-scheduler: Selects where workloads should be ran based on a variety of param-
eters [11].

• kube-controller-manager: Contains different controllers such as: Node controller,
Job controller, ServiceAccount controller and more [11].

• kubectl: CLI tool to communicate with the API server [11].

There can be multiple master nodes in a cluster, and it is encouraged to have multiple
masters synced in case a master node goes down. The nodes in Figure 2.3 are the compute
nodes where containers are run, although in Kubernetes the smallest component is called a
pod. A pod is a group of containers with shared resources, including the configuration of
how the containers should be run [3]. Some pods only have one container, while others can
have multiple. Often there is a set “main” container, and the others are sidecar containers

9

offering extended functionality to the main container. In addition, each compute node will
need a container runtime, as explained in Figure 2.2. The kubelet in Figure 2.3 is responsible
for running the containers within a pod [11]. Lastly, kubeproxy is the component that allows
network communication within the Kubernetes cluster; it maintains network rules on each
node [11].

2.2.1 Networking

The research conducted in this thesis will be directly impacted by how networking works
within a Kubernetes cluster. As with the main Kubernetes components shown in Figure
2.3, Kubernetes networking is complex and consists of multiple components working in uni-
son. The following figure gives a broad overview of container-to-container and pod-to-pod
networking [14]:

Figure 2.4: Container-to-container and pod-to-pod networking [14]

In Figure 2.4, there is an overview of a single compute node containing two pods. Pod
1 contains two containers, while pod 2 contains a single container. The figure shows the
networking components of how container 1 communicated with container 2 and from pod
1 to pod 2. Inter-container communication is straightforward due to the shared network
namespace attribute of a pod. All containers within a pod share the same localhost due
to being in the same network namespace [15]. On the other hand, in order for pod 1 to
communicate with pod 2, the traffic must reach the root network namespace of the compute
node and have a way to know where pod 2 exists. This is achieved by each node receiving
an IP range that it can allocate to pods [15]. Each pod will have a unique IP address. To
route traffic through the root network namespace, a virtual network interface is connected to
each pod from the root network namespace. This allows traffic to flow between the virtual
interfaces of pod 1 and pod 2 using the Address Resolution Protocol (ARP). Through the

10

virtual interfaces, eth0 of pod 1 can reach eth0 of pod 2 [15].

Pod to service networking

In order to continue the learning journey of Kubernetes networking, there is a new concept
that must be introduced. The service object is a construct in Kubernetes to expose an
application running in a single or multiple pods through a single IP address [15]. Given
the volatile nature of pods, where they are created and destroyed following the load of
the cluster, there needs to be a way for applications to not worry about the changing IP
addresses of pods. This is where services come in. The Kubernetes documentation describes
a service as a way to expose a group of pods over the network [15]. Below is an illustration
of pod-to-service networking [14]:

Figure 2.5: Pod to service networking [14]

In Figure 2.5, there are two compute nodes running two pods each. A service has been
defined that groups pod 3 and pod 4 together as a backend for a virtual IP address in the
service definition. When pod 1 wants to communicate with the virtual IP address for the
service, traffic first reaches the virtual bridge which does not know about the service, then
traffic is filtered by iptables rules created by the kube-proxy agent. These rules tell the
traffic where to find the service with the given virtual IP. The traffic then travels to node
2 and another set of iptables rules load balance the traffic between the two backend pods
3 and 4. The kube-proxy agent maintains the list of where to send traffic for each service
[15]. The reason IPVS is listed besides iptables, is that the cluster owner can choose which
implementation to use. IPVS stands for IP virtual server and is a better performing version
of iptables operating in the kernel space [14].

11

Internet to service networking

The next component of Kubernetes networking is how to route traffic from outside the
cluster to applications running within. There are different service types available to expose
a Kubernetes service, depending on how you want to publish the service. These include
ClusterIP, Loadbalancer and Nodeport [15]. A service of type ClusterIP is published on an
IP address only accessible within the cluster; this is the default behavior of a Kubernetes
service. This service can then be accessed from the outside using an ingress object, which
creates an entrypoint to the cluster with specific routing rules [15]. A more visual overview
of the different service types can be seen in the figure below [14]:

Figure 2.6: Service types of a Kubernetes service object [14]

As mentioned, a service of type ClusterIP will need another object, like an ingress proxy,
for outside traffic to reach it. A service of type Loadbalancer will automatically provision a
load balancer from your cloud provider. For example, a Kubernetes cluster in Amazon Web
Services (AWS) will provision an AWS load balancer for the service. Lastly, a service of type
NodePort will create a mapping between a service and a physical port on each Kubernetes
node [15]. There are other ways to expose Kubernetes applications, but they utilize external
addons that help in routing.

CNI Plugins

The Container Network Interface (CNI) is an integral part of networking in Kubernetes
and is responsible for inserting network interfaces into the network namespace of containers
[16]. The CNI project is made by the Cloud Native Computing Foundation and contains a
variety of specifications and libraries for managing network interfaces in Windows and Linux
containers [17]. There exists a large collection of CNI plugins created by the community
based on the CNI specifications, which can be used in Kubernetes to extend or modify CNI
functionality [16]. Even though many organizations utilize these CNI plugins for extended
functionality, it is out of scope for this thesis, given that the network tapping sidecar container
is made to work with any Kubernetes network plugin.

12

2.2.2 Monitoring

Kubernetes itself offers no recommendations for specifics on how to monitor the Kubernetes
cluster and its resources, but recommends users investigate what type of monitoring solution
is appropriate for their use case [18].

Prometheus and Grafana

Prometheus is one of the leading open-source applications for monitoring and alerting, work-
ing particularly well in unison with microservices and containers [19]. It uses a real-time
time-series database to perform powerful queries and real-time alerting and pairs well with
another open-source monitoring solution called Grafana, which can visualize the data from
Prometheus in powerful dashboards [19]. Prometheus has good support for integrating with
Kubernetes and supports monitoring everything from each compute node to individual con-
tainers within pods [19]. Prometheus does this by using a variety of exporters who gather
metrics and expose them as an http endpoint that Prometheus scrapes on a set interval.

The Prometheus community maintains a project called the Kubernetes Prometheus Stack
which includes an all-you-need package for a complete monitoring solution for Kubernetes.
Including Prometheus, Alertmanager, Grafana and exporters, and pre-defined configuration
and dashboards for Grafana visualizations [19]. The project allows for the simple deployment
of a complete monitoring solution without deep knowledge or configuration of each compo-
nent. An example of a Grafana visualization for the CPU usage of a single Kubernetes
compute node can be viewed below:

Figure 2.7: Grafana dashboard cpu usage of Kubernetes node

The labels on the right of the graph are the names of Kubernetes pods running on this
particular node. Some other metrics that can be viewed with the monitoring stack are
memory, network, storage, and Kubernetes internal metrics.

13

2.2.3 Resource allocation and limitation

The Kubernetes documentation recommends that all containers that are deployed to the
cluster contain specifications about resource requests and limits. These two parameters tell
Kubernetes how many resources the container needs to start and what limitations it should
enforce [20]. These specifications will be used to ensure that the network tapping sidecar
container will not use up the resources of other containers running on the same node.

2.3 Amazon Web Services

Amazon Web Services (AWS) started as a side company to the then e-commerce company
Amazon in 2002 and has since grown to be the world market leader in the cloud market [21].
According to recent statistics AWS holds a 34% of the global cloud market, with industry
competitor Microsoft Azure following behind with 21% [22]. A reason for this market domi-
nance could be the plethora of different services that AWS offers through its cloud services,
with over “200 fully featured services from data centers globally” [23]. This makes AWS
have more services than any other cloud provider and makes their system extremely flexible
and suited for complex use cases. Though this highly flexible environment makes for steep
learning curves for people not familiar with cloud services and secure configuration of them.

2.3.1 Elastic Kubernetes Service

One of the services that AWS provides is the Elastic Kubernetes Service (EKS) which pro-
vides a managed Kubernetes cluster where customers do not need to worry about maintaining
the infrastructure behind the cluster such as nodes and networking [24]. Utilizing the vast
network infrastructure of AWS, an EKS cluster can be scaled to any size and maintain an
availability that is hard to match with on-premise infrastructure. Although the EKS service
utilizes another AWS service to provide the compute nodes for the Kubernetes cluster. AWS
Elastic Cloud Compute (EC2) is used as virtual machines for the nodes. EC2 provides simple
and scalable virtual machines in the cloud, and these are managed as cluster nodes through
EKS. In addition, all these componenets are connected through yet another AWS service,
AWS Virtual Private Cloud (VPC). AWS VPC gives the customer full control of a virtual
private network in the cloud, where subnets can be created in different availability zones
[25]. Then, EC2 instances can be connected to the subnets within the VPC. Next, rules
can be defined for how the different subnets communicate with each other across availability
zones or regions [25]. Detailed information about how these services are configured and used
is beyond the scope of this thesis, and could even be an entire thesis in itself.

2.3.2 Identity Access Management

An essential part that touches everything managed within AWS is the Identity Access Man-
agement (IAM) service. IAM allows users to specify access control rules for every resource
within AWS. Including who can access what resources [26].

14

2.4 IDS monitoring

An Intrusion Detection System’s (IDS) objective is to monitor and detect malicious activity.
There are different kinds of IDSs, some are network-based and others are anomaly-based [1].
An illustrative figure of a network-based IDS can be viewed below [27]:

Figure 2.8: Overview of a network-based intrusion detection system [27]

The purpose of the IDS device is to passively monitor the network traffic without impacting
the system being monitored. It will then generate alerts when malicious traffic is matched,
it does this by using signatures [28]. A collection of known malicious traffic is analyzed and
sorted into signatures that can be deployed in IDS devices to match similar traffic, but this
requires someone else to make a signature first [28]. Therefore, this method of traffic analysis
does not work well against new undetected threats. Though, some IDS systems can be set
up to capture and store all the network traffic that it analyzes, even if there is no match.
This is useful when performing incident response after an attack because old traffic can be
analyzed to detect where an attacker might have had lateral movement before being found.
This thesis will not focus on how the IDS is set up, but more on how the IDS device will
receive the traffic when inside Kubernetes in a cloud environment. Where it is impossible to
physically place your own device within the cloud provider’s network.

2.5 VXLAN

VXLAN stands for Virtual eXtensible Local Area Network and is used to encapsulate network
traffic at layer 2 in the OSI model over a layer 3 network [29]. Typically, layer 2 traffic only
travels within a given Local Area Network (LAN) and is therefore restricted. However,
VXLAN gives the ability to tunnel this layer 2 traffic on top of the already physical LAN
network [29]. It was created out of the need for data center providers to have rapidly scaling
network segmentation that quickly outgrew the 4096 number limit of traditional Virtual
Local Area Networks (VLAN). With the VXLAN technology it is possible to create up to 16
million VXLAN’s [29]. In detail, the layer 2 ethernet frames from the LAN are encapsulated
as layer 3 UDP packets and are tagged with a VXLAN identifier (VNI) to segment the
traffic. Lastly, VXLAN can be implemented in both hardware and software depending on
the device’s capabilities that will be communicating over the VXLAN.

15

2.6 Infrastructure

To conduct the research of this thesis there was a need for a way to manage and configure
the testing infrastructure in a manageable way. The applications chosen for this task were
chosen based on feedback and advice from the thesis supervisors and co-students.

2.6.1 Terraform

Terraform is a tool that allows automated configuration of infrastructure resources using
a JSON-like language called the Hashicorp Configuration Language (HCL) [30]. It is an
“infrastructure as code tool that lets you define both cloud and on-prem resources in human-
readable configuration files that you can version, reuse, and share.” [30]. This is achieved
through the APIs of the infrastructure that is going to be managed, though the APIs are not
accessed directly, but through a provider. A provider defines how the Terraform configuration
is going to be translated into API calls to generate the defined resources [30]. An overview
of the Terraform workflow can be viewed below [30]:

Figure 2.9: Overview of Terraform workflow [30]

The desired resources are defined in Terraform configuration files before executing the plan
command which utilize the chosen provider and generates a list of what resources are going

16

to be created, added, or destroyed [30]. This plan ensures that the user knows what the
configuration will do. The apply command executes the plan and generates the configured
resources using the associated provider. The Terraform community maintains a list of over
1000 providers for different cloud providers and on-prem services [30].

2.6.2 Fluxcd

As a part of the process to automate much of the lab setup for the thesis, Fluxcd was chosen
as a gitops tool to ease deployment of resources to the Kubernetes cluster. Fluxcd is a gitops
tool made to sync Kubernetes manifests from git sources and apply them to a Kubernetes
cluster [31]. In this way, manifests can be checked into version control and users will always
know what version of manifests are deployed to their cluster.

The core concepts of Fluxcd are as follows:

Concept Description

Gitops A specialized way of organizing and managing your infrastructure through the
use of declarative configuration and version control [32]. Infrastructure and
applications are defined in a structured manner and pushed to a Git reposi-
tory.Then an automated process ensures that this declared state is applied to
the target environment [32].

Sources A source is, as the name implies, a source for a repository containing declarative
configuration files [32]. As well as the credentials needed to access the given
source repository. These sources are checked on an interval for changes to be
applied to the target environment [32]. An example of such a source file can be
viewed in listing 21 in appendix B.

Reconciliation Reconciliation is the action of applying the state declared in a ”source” to the
target environment, and making sure that the state stays synchronized between
the live environment and the declared environment [32].

Kustomization The flux kustomize resource is a Kubernetes custom resource that acts as a
collection of Kubernetes resources, that is to be applied to the cluster [32].
This also runs on an interval, meaning that changes are reverted to what is
declared in the ”sources” every 5 min, but you can pause the reconciliation to
stop this [32].

Table 2.2: Core concepts in Fluxcd [32]

Fluxcd includes a variety of extra features, but describing all of those is out of the scope of
this thesis.

2.6.3 Ansible

Ansible is an application that can be used to automate or configure just about anything [33].
It is open-source and made by Red Hat. Some examples of what Ansible can do are configu-
ration of systems, deployment of software, and orchestration of multi-step deployments and
system updates [33]. The application uses SSH for communication with managed systems
and uses a syntax similar to YAML, making it easy for humans to read. One of the main
use cases with Ansible is to create playbooks which is a collection of tasks that are to be
carried out by a given set of hosts. These tasks are module based and can do anything from

17

a simple command to carrying out multi-stage deployment of advanced applications [33].
In Ansible, there exists a control node and a managed node or multiple. The control node
holds the configuration of what Ansible is to do, in playbooks. The only setup needed is
that the control node needs SSH access to the managed nodes [33]. An example task list
can be viewed below:

1 - name: Test on ec2

2 ansible.builtin.command:

3 cmd: touch gg.txt

4 register: iperf_out

5 changed_when: iperf_out.rc != 0

6 delegate_to: ec2-pcap

7 remote_user: ubuntu

Listing 1: Example Ansible task

The configuration above will execute the ”command” module on the host ec2-pcap with the
parameter of touch gg.txt which will create the file gg.txt. The remote user variable tells
Ansible what user has SSH access to the remote host.

18

Chapter 3

Related Work

3.1 Traditional IDS monitoring

It is not in the scope of this thesis to go into depth on research done for traditional IDS
monitoring, but the solution tested in this research is built upon the experience of TSOC as
an IDS service provider.

3.2 IDS in the cloud

Several proposals of IDS monitoring in the cloud have been proposed over the years, using
IDS monitoring together with anomaly-based detections to enable network-based threat
detection in cloud environments [34]. Many of these proposals focus on implementing a
solution that can monitor the entire cloud environment, and not just on a component such
as Kubernetes. The bigger picture cloud threat model includes a substantial amount of
parameters on top of an already complex Kubernetes system. An example model of the
different components in a cloud environment can be viewed in the figure below [34]:

19

Figure 3.1: Example threat model of a standard cloud environment [34]

In figure 3.1 the tenant network is the network of a customer of a cloud service provider.
What is called as the VPC when using AWS. Next, the virtual machines within the compute
servers can be seen as the nodes in the Kubernetes cluster which are represented as AWS
EC2 instances. The management network, controller and compute components are in the
hands of the cloud service provider and are not something the tenant has the capacity to
protect [34].

In cloud environments there are different deployment methods of IDS based on where the
IDS device is placed. The IDS device can be placed within tenant virtual machines using
either anomaly or rule based approaches. These are called knowledge-based approaches,
because they are built upon our already gathered knowledge of attack patterns to detect. In
addition, there exists techniques such as virtual machine introspection and hypervisor based
introspection, they are outside the reach of a cloud tenant [34].

An overview of how a rule based, also called misuse detection, IDS system works can be
viewed below [34]:

20

Figure 3.2: Overview of misuse detection in networks [34]

In figure 3.2, the packet sniffer can be equated with the sidecar container which is used to
sniff traffic within Kubernetes. The traffic is sniffed and then sent to a detection engine
somewhere else which does the processing of the packets.

3.2.1 Sidecars for Network Monitoring in Kubernetes

The main focus area of this thesis is how to achieve the network monitoring mentioned
previously inside containers running in Kubernetes. Achieving passive network monitoring
within containers can be a challenging task, however the security solution company Corelight
have published a series of posts exploring the different options organizations have to setup
passive network monitoring of container workloads [35]. And it must be mentioned that
without intra-container observability you will be left vulnerable to attacks such as remote
code executions, command-and-control communication, lateral movement or file exfiltration
[35]. These threats could be detected by a continuous detection system such as an IDS
device.

The first problem that is encountered when trying to achieve network monitoring of con-
tainers is how to mirror the traffic to a suitable IDS sensor. In Kubernetes there are a few
different ways to get access to the network traffic, which are listed below in rising difficulty
[35]:

• Container Network Interface (CNI): If you are using a CNI or network overlay
that has native support for traffic mirroring its trivial to mirror traffic to a chosen
destination. However, not all implementations of the CNI support traffic mirroring
[35]. And forcing users to change their CNI or network overlay to a supported one is
not a suitable alternative.

• Container sidecars: Container sidecars are small lightweight containers that are
deployed in the same pod and exist in the same network namespace as each container
[35]. This gives it easy access to all packets in and out of the container. Although
this method requires creating a suitable sniffing program within the sidecar container.
Another positive side of this solution is that it is completely agnostic to the Kubernetes
environment such as CNI’s and network overlays since it operates at the container level
[35].

21

• Host agents: Host agents are deployed directly on the Kubernetes node and tap
into the virtual network interface created for each namespace. This method also has
observability down to the pod-to-pod level but not inside containers [35]. The downside
to this method is that it requires special access to the node itself and some Kubernetes
cloud deployments may not allow this.

A visualized overview of the above-mentioned methods can be viewed in the figure below
[35]:

Figure 3.3: Overview of methods to monitor network traffic in Kubernetes

This thesis will focus on method 2, using container sidecars, though the Corelight sensor can
be exchanged for any IDS capable device. A more detailed overview of how the container
sidecar method works can be viewed in the figure below [36]:

22

Figure 3.4: Overview of container sidecar [36]

It must be mentioned that the IDS sensor
does not have to exist in a pod in the
Kubernetes cluster, it can exist anywhere
that the container sidecar can send the
vxlan packets.

23

Chapter 4

Lab environment and testing
approach

This chapter will give an overview of the cloud lab environment used to conduct the testing
needed for answering the thesis questions. While also diving into how, and what type of
tests are needed for the results to be relevant for TSOC’s use case.

4.1 AWS

The lab environment will consist of a managed AWS EKS cluster that will run example
applications with the sidecar container, as well as a collection of monitoring applications for
the gathering of metrics. In addition, there must exist a machine that can act as the sensor
which will receive the captured network traffic. Lastly, there must be a way to generate
network traffic to watch the impact it will have on the sidecar container. A simple overview
of the general setup can be viewed in the figure below:

Figure 4.1: Overview of the AWS lab environment

In figure 4.1 there is a simplified overview of the components within the lab environment.
However, to better understand the workflow that is happening beneath will require a venture
deeper into the details. The figure shown below shows the individual components that are a

24

part of the general workflow during usage of the sidecar container, though it does not reflect
every use case.

Figure 4.2: Detailed overview of lab environment

In the figure above most of the components of the lab are illustrated, although it must
be mentioned that Grafana and Prometheus are themselves running as pods within the
Kubernetes cluster. But the figure shows how Prometheus gathers performance metrics
from both the Kubernetes API and directly from the compute nodes, allowing for a granular
view of metrics in the associated Grafana dashboards. The figure 4.2 also depicts the traffic
simulation between an application container and the iperf host which is just a normal
virtual machine residing in a rack at University of Agder. This connection will simulate
traffic load using iperf, which will be explained later. Lastly, the overview shows the VXLAN
flow from the sidecar container to the sensor. Every component except for the iperf host

exists within the AWS VPC.

Moreover, the hardware specification of the nodes used can be viewed in the table below:

EKS Node

Instance Type: t3.large

OS: Amazon Linux 2

CPU:
2 vCPU
Up to 3.1 GHz Intel Xeon Scalable processor

Memory: 8 GB

Network performance: Up to 5 Gbps

Storage: Amazon Elastic Block Storage

Table 4.1: t3.large node hardware specifications

25

The instance type viewed in the table is one of several instance types that can be chosen for
compute nodes in a managed EKS cluster. The different types are for different needs and
can vary in size from 1 GB of memory to several 100 GBs based on customer needs. Below
is the same hardware specification table but for the UiA server:

UiA Machine

OS: Ubuntu Server

CPU:
2xIntel(R) Xeon(R) CPU
E5-2650 v4 @ 2.20GHz

Memory: 230 GB

Network Performance: 4x10GB SFP+

Storage: 10 TB Raid 5

Table 4.2: Hardware specifications of the UiA machine

As viewed above the hardware specification on the UiA machine are a huge overkill for the
task, but it is sure that it will not be the bottleneck of the lab environment.

4.1.1 Terraform

Most of the infrastructure used in the lab environment was provisioned using Terraform to
enable an easily reproducible setup and for easier management of taking the lab up and down
when needed. The Terraform files used can be found in appendix A and contain the necessary
configuration to generate a standard 3 node Kubernetes EKS cluster, and a standalone EC2
instance within the same VPC. The files also configure IP address whitelisting restricting ssh
access of the EC2 instance from the outside world. Furthermore, the configuration was made
easier by taking use of premade AWS modules for Terraform which are driven by community
contribution and significantly simplifies how much Terraform code is needed to get a working
EKS cluster. It is in listing 18 in appendix A that the most important parameters are set
such as:

• cluster version: 1.23 Defines what version of Kubernetes should be used.

• eks managed node groups: Object that contains information such as:

– instance types: [”t3.large”] What AWS instance type should be used for the
nodes in the cluster.

– min size, max size, desired size: Specifies minimum and maximum number of
nodes for scaling purposes, while also setting baseline number of nodes.

– ami type: AL2 What operating system or Amazon Machine Image should be
used on the nodes

Another important part of using Terraform is to manage the state files which tells Ter-
raform what is the current status of the controlled environment. If changing computers
and state files are not reachable, the new computer could make unexpected changes to the
controlled environment. Therefore state files should be in an universally reachable place,
defined through a backend such as AWS s3 block storage. The following lines from listing 14
in appendix A configures Terraform to store the state files inside AWS s3 and is reachable
from anywhere, given that you have the needed AWS api access keys:

26

1 backend "s3" {

2 bucket = "ssl-tf-states"

3 key = "new/terraform.tfstate"

4 region = "eu-west-1"

5 }

Listing 2: Terraform AWS s3 state backend configuration

4.2 Kubernetes

As mentioned in the previous section the Kubernetes cluster consists of 3 compute nodes
seperated into three different AWS availability zones in their eu-west-1 data center in Ireland.
This is for redundancy incase something occurs to a single AWS zone, and which means that
the AWS VPC has the following configuration:

Figure 4.3: Overview of the Kubernetes nodes

The further configuration of the Kubernetes cluster is done through Fluxcd and its ability
to orchestrate the deployment of manifests to the Kubernetes cluster. The manifests can be
viewed in B.

In general application pods within Kubernetes are exposed first through a Kubernetes ser-
vice, then through an ingress controller which allows the outside world to ask for applications
running within the pods. This is the same process as described in figure 2.6 and is not shown
as components in figure 4.2. The actual service type and ingress used can be wildly different
from cluster to cluster and is dependent on the choice of the cluster owner, which in this case
is the Nginx ingress controller. The initial test done in the lab environment is done using a
Confluence instance and k6s, with data flow as follows:

There are many components involved in the data flow, but given that the sidecar container
operates within the pod level it makes it possible for us to partially ignore what service type
and ingress is used given that the sidecar will see the traffic either way.

27

Figure 4.4: Data flow of k6s to Confluence pod

4.2.1 Fluxcd

The manifests used to configure Fluxcd can be found in appendix B and contains the config-
uration of where Fluxcd can locate Kubernetes manifests and sync them to the Kubernetes
cluster. A kustomization in Fluxcd is simply a pointer to a folder where a collection of
manifests can be found. One of the main components of this lab setup is the monitoring
component, which was implemented through the kube prometheus stack project [37]. The
project contains a premade collection of manifests for a complete monitoring solution within
Kubernetes based on Prometheus and Grafana. Since the project has created a helm chart
for installation, it was quite easy to use Fluxcd to sync the chart into the cluster. A helm
chart is a recipe for installing a collection of Kubernetes manifests [38]. The main Fluxcd
components used is the HelmRelease and HelmRepository files below, both of which are also
found in appendix B:

1 apiVersion: source.toolkit.fluxcd.io/v1beta2

2 kind: HelmRepository

3 metadata:

4 name: prometheus-community

5 spec:

6 interval: 120m

7 type: default

8 url: https://prometheus-community.github.io/helm-charts

Listing 3: Helm repository for kube prometheus stack

1 apiVersion: helm.toolkit.fluxcd.io/v2beta1

2 kind: HelmRelease

3 metadata:

4 name: kube-prometheus-stack

5 spec:

6 interval: 5m

7 chart:

8 spec:

9 version: "45.6.x"

10 chart: kube-prometheus-stack

11 sourceRef:

28

12 kind: HelmRepository

13 name: prometheus-community

14 interval: 60m

15 install:

16 crds: Create

17 remediation:

18 retries: 2

19 upgrade:

20 crds: CreateReplace

21 valuesFrom:

22 - kind: ConfigMap

23 name: prom-values

Listing 4: Helm release for kube prometheus stack

The HelmRepository just tells Fluxcd where to find the specified helm chart and how often
to look for updates. Next, the HelmRelease specifies how Fluxcd should install the specified
helm chart, with parameters such as version, update strategy and update interval. By default
helm cannot update custom resources definitions, but Fluxcd can using crds: Create. At
the bottom of the HelmRelease is also specification on what values should be applied to the
helm chart. The full values can be viewed in appendix B.

Even though Fluxcd is mainly CLI based, there exists a UI interface that can be deployed to
get a more visual approach to what is happening inside Fluxcd and the reconciliation status
of the different applications. The files to configure this UI can be viewed in appendix B in
listing 31.

4.2.2 The sidecar

The sidecar container that is to be capturing network traffic and sending it to the sensor
is simply a python script written using socket programming. It opens a socket that listens
to all traffic within the local network namespace of the pod that it is attached to and does
some intelligent filtering. The filtering selects which packets should be packed in vxlan and
sent to sensor and which packets to drop. For example, the sidecar should not record its own
traffic to the sensor. The current iteration of vxlan.py in appendix C in listing 34 is based
on corelight’s example vxlan.py from their Kubernetes sidecar monitoring blog posts [36].

An example Kubernetes manifest running with the sidecar container can look as follows:

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: nginx-deployment

5 labels:

6 app: nginx

7 spec:

8 replicas: 2

9 selector:

10 matchLabels:

11 app: nginx

29

12 template:

13 metadata:

14 labels:

15 app: nginx

16 spec:

17 containers:

18 - name: nginx

19 image: nginx:1.14.2

20 ports:

21 - containerPort: 80

22 - image:

108759891166.dkr.ecr.eu-west-1.amazonaws.com/sidecartap:vxlan↪→

23 name: vxlan

24 imagePullPolicy: "Always"

25 env:

26 - name: VNI

27 value: "499"

28 - name: INTERFACE

29 value: eth0

30 - name: SENSOR

31 value: 10.0.125.177 # 10.0.125.177 is gwlb endpoint

The above manifest will create a basic nginx container with an attached sidecar container
that will capture the traffic and send it to the IP address set at SENSOR value. When this
manifest has been deployed, the data flow will look as follows:

Figure 4.5: Overview of data flow in lab environment

The image above shows that the manifest has created two replicas of the given pod across
two nodes, Node 1 and Node 2. In addition, the sidecar container has been set up to
send captured traffic to IP 10.0.125.177 on port 4789 (default VXLAN port) which is a

30

standalone EC2 instance. This data flow will be similar to other monitored containers, as
the sidecar container is just an extra container within the pod. In addition, the metrics of
both the containers, the pod and the node itself are monitored by Prometheus and Grafana.

vxlan.py

This section will describe how vxlan is used in the sidecar container, the script running inside
the container is mostly based on Corelight’s work as described in section 3. The following
lines of python code is all that is needed to setup VXLAN:

1 vxlan = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

2 ...

3 # VXLAN header

4 vxlanHeader = struct.pack('!L', 0x08000000)

5 vxlanHeader += struct.pack('!L', vni << 8)

6 ...

7 vxlan.sendto(vxlanHeader+data, (sensorAddr, 4789))

Listing 5: VXLAN setup inside vxlan.py

The code above creates a new UDP socket that can be used to send packets through python.
Since VXLAN is just a normal IP packet encapsulated with a header, an IP header with a
given identifier is created to encapsulate the captured network data. A seen in the last line
of code, the data is just appended to the VXLAN header and sent to the sensor at port 4789.

Next, the lines of code that do the actual network tapping is seen below:

1 sniff = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.ntohs(3)) #

ETH_P_ALL↪→

2 sniff.bind((interface, 0))

3 ...

4 while True:

5 (data, _) = sniff.recvfrom(65535)

6

7 sensorAddr = sensor.ip()

8 if not sensorAddr:

9 continue

10

11 ipPacket = data[14:]

12 ipHeaderLength = (struct.unpack('B', bytes([data[0]]))[0] & 0x0f) * 4

13

14 srcIP = ipPacket[12:16]

15 dstIP = ipPacket[16:20]

16 protocol = ipPacket[9]

17

18 if protocol in [6, 17] and len(ipPacket) >= ipHeaderLength+3:

19 srcPort = struct.unpack('!H',

ipPacket[ipHeaderLength+0:ipHeaderLength+2])[0]↪→

20 dstPort = struct.unpack('!H',

ipPacket[ipHeaderLength+2:ipHeaderLength+4])[0]↪→

21

31

22 # Not our own traffic on UDP/4789 to sensor

23 if protocol == 17 and dstPort == 4789 and dstIP == sensorAddr:

24 continue

25

26 if protocol == 17:

27 data = ipPacket[ipHeaderLength+8:]

28 if data[:len(vxlanHeader)] == vxlanHeader:

29 continue

30

31 if protocol == 17:

32 continue

33

34 print('Got %s byte%s from %s:%s to %s:%s proto %s (VXLAN %s->%s)' %

(len(data), len(data) != 1 and 's' or '',

socket.inet_ntoa(srcIP), srcPort, socket.inet_ntoa(dstIP),

dstPort, protocol, socket.inet_ntoa(ipAddr), sensorAddr))

↪→

↪→

↪→

Listing 6: Python code to bind a sniffing interface socket

This code also creates a python socket, listening for any raw IP packets at the given interface.
Given that the sidecar container shares a network namespace with the other containers in
the pod, the above sniffing interface will observe all the traffic to the other containers. The
rest of the python code is the running operation of the script. It operates in an eternal
while loop and receives 65535 bytes before it unpacks the raw bytes and does some simple
filtering before sending the packets to the sensor. For example, the code ignores its own
UDP packets to the sensor. Lastly, the print statement is there for debugging purposes and
to show current status of the script.

4.3 iperf and k6s

iperf and k6s are the tools that will be used to generate traffic that will test the sidecar
container. There is no setup needed to utilize the iperf tool, it just needs to be installed
on the client and a server. In this lab environment, the client will be an Ubuntu container
running inside Kubernetes, that is monitored by the sidecar container. The server will be the
a virtual machine that is placed in a rack at the University of Agder (UiA). The commands
needed to get started with iperf is as simple as:

iperf3 -s # On the server, the UiA machine

iperf3 -c 128.39.145.94 # On the client, Ip of the UiA machine

This will generate a TCP connection between the server and the client that will try to utilize
all the available bandwidth to test IP performance. However, it is unlikely that a real life
application will utilize the entire bandwidth, therefore iperf allows us to specify the data rate
that it will use in the test. By using iperf -b bitrate/s it lets us choose the data rate
of the simulated network traffic. Then view the Grafana dashboards to see the performance
metrics of the vxlan container. As well doing packet capture at the UiA machine to make
comparisons between the observed traffic at sensor and what the UiA machine received.

In the other end k6s is a tool built to create performance test against web applications. In

32

this lab it will be used to simulate users interacting with an Atlassian Confluence instance.
And it is as simple to setup as iperf, it just needs to be installed then it can run custom
Javascript files using the k6s binary. The code used can be viewed in appendix D in listing
36.

Ansible

The system explained above with iperf and packet capture has been automated using Ansible
to minimize human error and for making it easier to reproduce. An Ansible playbook
called deploy_iperf.yml has been created that manages everything from deploying the
Kubernetes components to starting the iperf test on the UiA machine. The code for the
playbook can be viewed below:

1 ---

2

3 - name: Ansible k8s playbook

4 hosts: localhost

5 roles:

6 - iperf

7

8 - name: Start pcap

9 hosts: ec2-pcap

10 remote_user: ubuntu

11 vars:

12 cap_file: pcap_{{ ansible_date_time['epoch'] }}.pcap

13 dest_folder: "/tmp"

14 pod_ip: "{{ hostvars['localhost']['iperf_pod_list']['resources'][0]

15 ['status']['podIP'] }}"

16 pod_name: "{{ hostvars['localhost']['iperf_pod_list']['resources'][0]

17 ['metadata']['name'] }}"

18 dur_in_sec: 12

19 roles:

20 - tcpdump

Listing 7: Ansible playbook for load testing

The above playbook will first execute the iperf role which can be viewed in appendix F in
listing 41. This role interacts with Kubernetes and deploys the Ubuntu container, along
with the sidecar container, and installs the iperf application. Next, the pcap playbook is run
with the role of tcpdump, which can be viewed in appendix F in listing 42. This role starts
the iperf test with a given data rate and time against the UiA machine that is running an
iperf server with iperf -s. The role also starts packet capture on the sensor and pulls the
captured traffic file down for further analysis. Which also can be compared to the captured
traffic from the UiA machine.

33

4.4 Performance monitoring

Performance monitoring is done by using Prometheus to collect metrics and visualizing them
in Grafana dashboards for analysis. As mentioned in the problem statement one of the pain
points that needs investigating is the cpu and memory footprint of the vxlan container when
traffic hits the monitored container. If the sidecar container consumes too much resources
of the Kubernetes node it may not be a viable network monitor alternative. Within the
Kube Prometheus stack project there exists two premade dashboards that contain relevant
visualizations for these parameters. And that is Compute Resources / Node (Pods) and
Compute Resources / Pod. The first dashboard shows resource usage on a single node by pod,
showing what pods are currently using in CPU and memory. The second dashboard shows
resource usage by containers within a single pod, while also including network bandwidth
and I/O operations. Below is an example image of CPU usage from each dashboard:

Figure 4.6: CPU usage per pod on a given node

Figure 4.7: CPU usage per container within a single pod

34

Metric collection

The metric collection in this lab environment is facilitated by the Kube Prometheus stack,
and is therefore built upon Prometheus gathering metrics both from the Kubernetes API
and the compute nodes themselves. Therefore will the configuration values of Prometheus
play a part in how the metrics are to be interpreted in Grafana. Since Grafana can only show
what data that Prometheus provides. The configuration values of the Prometheus instance
can be viewed below:

1 prometheus:

2 enabled: true

3 prometheusSpec:

4 replicas: 1

5 replicaExternalLabelName: "replica"

6 ruleSelectorNilUsesHelmValues: false

7 serviceMonitorSelectorNilUsesHelmValues: false

8 podMonitorSelectorNilUsesHelmValues: false

9 probeSelectorNilUsesHelmValues: false

10 retention: 7d

11 scrapeInterval: 10s

12 enableAdminAPI: true

13 walCompression: true

Listing 8: Configuration values of Prometheus in Kube Prometheus Stack helm chart

The important parameter from this configuration is scrape interval since this number de-
scribes what will be the granularity of the data viewed in the Grafana dashboards. It means
that every 10 seconds, Prometheus will scrape its configured targets such as the Kubelet API
metrics, which expose the metrics of the running containers, such as the sidecar container.

By default, Grafana does not need any additional configuration when used in this deployment
as it comes with a detailed set of dashboards covering all the metrics that are of interest in
this project. Although, one must vary of staleness in Grafana, which is where Grafana will
try to fill out a graph if it has not gotten data from Prometheus for some time.

4.5 Testing methodology

As previously mentioned in the introduction, there will be conducted a series of performance
test against the sidecar to gather a grasp on the computational performance. The testing will
consist of an initial k6s load test as well as a series of tests using iperf. The performance tests
using iperf have been automated using Ansible and provides a stable testing platform with
repeatability. Which gives time to observe CPU and memory metrics within the Grafana
dashboards. Also, the use of iperf allows us to generate a connection to a remote host from a
monitored container and simulate traffic at a given data rate and observe the sidecar metrics.

35

Chapter 5

Results

This chapter will summarize the findings of the performance tests done on the sidecar con-
tainer. By looking at the sidecar performance both in speed tests and in simulated user
traffic environments, we will get an initial grasp on the performance impact and footprint of
the sidecar.

5.1 Initial performance test with k6s

5.1.1 k6s: Confluence

The configured Confluence instance in Kubernetes can be viewed in the manifest files in
appendix B, which contains the necessary manifests to get Confluence running in Kubernetes
and synced through Fluxcd. The first k6s test done against Confluence can be viewed below:

Figure 5.1: CPU usage within the Confluence pod

The graph shows the CPU usage within the Confluence pod, which contains two containers,
vxlan and Confluence itself. It is the vxlan container CPU usage that is of interest here since

36

it shows how it was impacted by the influx of user traffic generated by the k6s test. We can
also take a look at the usage graphs of the Kubernetes node itself:

Figure 5.2: CPU usage viewed from the compute node

As seen in the images above, its the Confluence container itself that is consuming the most
CPU, and the usage of the sidecar container is marginal in comparison. However, this data
does not say much if we do not take a look at how much traffic was actually generated.
Below is a graph of the network bandwidth usage during the test:

Figure 5.3: Network bandwidth transferred from Confluence pod

The traffic peaked at around 3 MB/s which is a relatively small amount of traffic, and may
give reason as to why the vxlan container did not struggle to capture this traffic. Below is
also a graph of the memory usage of the Confluence pod:

37

Figure 5.4: Caption

38

Given that Confluence is a Java application it uses quite a bit more memory than the vxlan
container. The tiny blue line showing the vxlan memory usage peaks at around 15 MB which
is nothing compared to the almost 3 GB used by Confluence. Lastly, the following image
shows the result of the k6s test itself:

Figure 5.5: Caption

The interesting stats here are that the test lasted for 15 minutes and that k6 received around
854 MB of data. This can be compared to the data received by the sensor, which received
also received around 850 MB of traffic. Meaning that the user traffic was captured and sent
to the sensor.

Preliminary summary

Based on the data above there is the following summary for the vxlan container after the
initial k6s test:

Data Rate CPU usage MEM usage

3 MB/s 0,06 15 MB

Table 5.1: Sidecar container performance at 3 MB/s datarate

5.2 Speed test with iperf

The initial test with k6s showed that there is a need to generate more user traffic for the
vxlan container to capture. This is where iperf comes in and allows for testing at different
data rates. The testing will be conducted at the following data rates: 50Mb/s, 100 Mb/s,
250Mb/s and 500Mb/s. The time that the data rate will stay at the given data rate is set
to 2 minutes to allow the metrics to populate Prometheus so that the Grafana dashboard
will provide an appropriate estimation of the sidecar container metrics. The Grafana graphs
below were gathered by viewing the pod that the Ansible automation deployed and the
following output from Ansible:

39

1 TASK [tcpdump : Debug info] ok: [ec2-pcap] => {

2 "hostvars['localhost']['iperf_pod_list']['resources'][0]['status']

3 ['podIP']": "10.0.123.138"

4 }

5

6 TASK [tcpdump : Debug info2] ok: [ec2-pcap] => {

7 "hostvars['localhost']['iperf_pod_list']['resources'][0]

8 ['metadata']['name']": "iperf-test-1-6fbbbc9d68-wtgtc"

9 }

Listing 9: Ansible output for viewing pod

5.2.1 Data rate: 50Mb/s

Below is a summary given from the iperf application after the 50Mb/s speed test is done:

1 [ID] Interval Transfer Bitrate Retr

2 [6] 0.00-120.00 sec 715 MBytes 50.0 Mbits/sec 28 sender

3 [6] 0.00-120.04 sec 715 MBytes 50.0 Mbits/sec receiver

Listing 10: iperf results for 50mbs

This shows that 715MB was transferred during the test at 50Mb/s. The performance metrics
of the vxlan container during this test can be viewed in the image below:

Figure 5.6: CPU usage of vxlan container during 50 Mbs

The CPU usage graph peaks at a CPU usage of 0.045, this number is a relative number
related to the number of logical cores on the compute node. Given that these compute nodes
have 2 logical cores, a CPU usage of 0.045 is the same as 0.045

2
= 2.25% CPU usage. If we

look at figure 5.7 it shows that the memory usage of the vxlan container stays at a steady
14MB during the entire test and is outclassed by the standard Ubuntu container.

40

Figure 5.7: Memory usage of vxlan container during 50 Mbs

5.2.2 Data rate: 100Mb/s

Below is the summary from iperf for the 100Mb/s speed test:

1 [ID] Interval Transfer Bitrate Retr

2 [6] 0.00-120.00 sec 1.40 GBytes 100 Mbits/sec 0 sender

3 [6] 0.00-120.04 sec 1.40 GBytes 100 Mbits/sec receiver

Listing 11: iperf results for 100mbs

This shows that 1.4GB of data was transferred during the 100Mb/s test. As with the 50Mb/s
we take a look at the performance metrics of the vxlan container:

Figure 5.8: CPU usage of vxlan container during 100 Mbs

41

Figure 5.9: Memory usage of vxlan container during 100 Mbs

The CPU usage graph peaks at a value of 0.081 which can be translated into a percentage
as such 0.081

2
= 4.05%. It is approximately a doubling in CPU usage while the data rate

was doubled, which makes an interesting connection. In addition, the memory usage graph
shows around the same value as during the 50Mb/s test, with the vxlan container staying at
around 14MB of memory usage during the entire test.

42

5.2.3 Data rate: 250Mb/s

Below is the summary from iperf for the 250Mb/s speed test:

1 [ID] Interval Transfer Bitrate Retr

2 [6] 0.00-120.00 sec 3.49 GBytes 250 Mbits/sec 0 sender

3 [6] 0.00-120.04 sec 3.49 GBytes 250 Mbits/sec receiver

Listing 12: iperf results for 250mbs

The results show that around 3.5GB of data was transferred during the 2 min long test
duration at 250Mb/s. Furthermore, below is the performance metrics of the vxlan container
at 250Mb/s:

Figure 5.10: CPU usage of vxlan container during 250 Mbs

Figure 5.11: Memory usage of vxlan container during 250 Mbs

43

The CPU usage peaked at 0.16 which can be translated to 0.16
2

= 8% of CPU usage. Again,
a doubling of CPU usage by doubling the data rate. And going the same direction as the
last two data rates, the memory usage stays at a comfortable 14MB.

5.2.4 Data rate: 500Mb/s

Last is the iperf results of the 500Mb/s data rate test:

1 [ID] Interval Transfer Bitrate Retr

2 [6] 0.00-120.00 sec 6.98 GBytes 500 Mbits/sec 15 sender

3 [6] 0.00-120.04 sec 6.98 GBytes 500 Mbits/sec receiver

Listing 13: iperf results for 500mbs

During this test, a total of 7GB was transferred at 500Mb/s. The figures below show the
performance metrics of the vxlan container at this data rate:

Figure 5.12: CPU usage of vxlan container during 500 Mbs

In this last speed test the CPU usage peaked at a value of 0.236 which can be viewed as
0.236
2

= 11.8% of CPU usage. This time the data rate doubled but the CPU usage only
climbed by 4\%. Which is a 50\% increase. And following the rest of the results, the memory
usage stayed at the mark of 14MB.

44

Figure 5.13: Memory usage of vxlan container during 500 Mbs

45

Chapter 6

Discussions

The discussion chapter will bring up the finding of the results chapter, and discuss what
these results may indicate about the problem statement. As well as addressing issues with
the results, and choices done in this lab environment that may have impacted the research.

6.1 Lab environment results

6.1.1 Performance

The initial user traffic test with confluence showed that the vxlan container operates at a low
usage of both CPU and memory when traffic is low and does not compete with larger web
applications for the resources. Though, the initial k6 test with Confluence showed that there
was a need for larger traffic volume to get more sensible performance metrics of the vxlan
container. The performance results with iperf showed that, even at speeds such as 500 Mb/s

the vxlan container did not consume more than 0.236
2

= 11.8% of the CPU of the compute
node (2 vCPU). In addition, memory usage stayed at a comfortable 14 MB regardless of
data rate. However, this CPU usage may be too high for some depending on how strict the
resource limits are, as to not disturb existing applications. The conclusion that can be drawn
from the performance testing alone is that the sidecar container has potential in terms of
CPU and memory footprint to scale in Kubernetes.

6.1.2 Anomalies

An troubling question that arose from TSOC towards the end of the thesis was to find if
there was any indications of potential packet loss in the sidecar monitoring solution, given
that the vxlan traffic is sent using the UDP protocol. Which does not guarantee that packets
reach their destination. If the solution shows to have too large of a packet loss, it will not
be a reliable source for IDS monitoring.

As this was introduced towards the end of the project, a simple solution was tested. By
comparing the captured network traffic at the UiA machine with the one captured at the
sensor. One could possibly look at the number of packets transferred and see if the two hosts
have observed an equal amount of packets.

46

Using the 50Mb/s test as an example we have the following numbers:

• Sensor: 62 687 packets

• UiA machine: 66 217 packets

In addition, the numbers from the 100Mb/s test:

• Sensor: 105 241 packets

• UiA machine: 121 581 packets

The numbers from the 50Mb/s test gives an estimated packet loss of 5.3\% while the other
gives an estimated 13\%. For an IDS solution these numbers are a on the high end and could
lead to missing important malicious traffic. However, it is not for certain that this packet
loss is real and to be taken as is, it is not even certain that there is packet loss, it could
be counting packets in different way on the other side. Just by summarizing how tall the
network stack that is operating, gives an overhead that is on the ridiculous end. There is
a python application being interpreted to machine code within a docker container within a
network and processor namespace created by the Kubernetes kubelet. On top of this the
compute node is an EC2 instance within AWS in its own VPC that is communicating out
to the UiA machine. The number of layers between the vxlan.py python code and what is
captured by the sensor is staggering. And it is outside the scope of this thesis to gather
enough information to find out where the networking stack could have problems. This thesis
has focused on the performance metrics and impact of the sidecar container. A final anecdote
to this problem is that a person with enough knowledge to know every component of this
stack would be the most wanted cloud engineer in the world.

6.2 Considerations

There is a plethora of decisions that had to be taken in this research to be able to test the
problem statement, without drowning in research about decisions that were far away from
the main problem. And these choices were based on previous experience with the products
as well as input from various sources at TSOC and co-students. Though, some of the choices
could have hidden implications on the testing given the complex nature of both AWS EKS
and Kubernetes itself.

6.2.1 AWS

AWS was chosen due to being the testing platform used at TSOC, making it easier to
compare results, as well as receiving help in case of struggles. However, learning AWS is
no short feat for someone not experienced with cloud providers. Meaning that a substantial
amount of the research time has gone into learning and experimenting with AWS and its
EKS and EC2 services. As well as making Terraform and Ansible files to setup the entire
infrastructure in a reproducible manner, making it easier for follow up testing.

47

6.2.2 Kubernetes

Helper applications

In addition to learningg AWS, the research also demanded a deep dive into Kubernetes
networking to understand how the sidecar container was going to achieve network capture.
Though, Kubernetes is not just a single application, it is a tool for container orchestration
with a plethora of plugins for additional features, such as monitoring and DevOps. And
those plugins must be chosen by the cluster owner. In this research, the solution was to use
kube-prometheus-stack given that Prometheus and Grafana are one of the most widely used
monitoring solutions for Kubernetes and the stack provides a full monitoring setup with sane
default configuration. In addition, Fluxcd was chosen as a gitops tool to create a streamlined
and automated process of deploying the Kubernetes manifests that would become the testing
environment. Lastly, Ansible was chosen due to being a familiar tool, as well as being used
at TSOC.

6.3 Final thoughts

The end of the results showed that the performance impact of the sidecar container as a
tapping method is not in the extremes. With a max CPU usage of 11\% at a data rate of
500Mb/s, the sidecar method has potential, based only on performance metrics, to scale as
a network tapping method within Kubernetes. However, anomalies that appeared during
testing showed that is it easier said than done to efficiently send packets through a networking
stack taller than most. This has revealed a need for more in-depth research into how the
traffic traverses the network stack before it ends up at the sensor. Given the discrepancy
between the sensor and the UiA machine in packet numbers, among other signs.

48

Chapter 7

Conclusions

The first goal of the thesis was to establish a lab environment simulating a Kubernetes
cluster hosted at a cloud provider. While also including configuration for easy repeatability
for the setup. This has been achieved by utilizing AWS’s managed Kubernetes service,
Elastic Kubernetes Service. Together with a set of Terraform files which can be viewed in
appendix A. The Terraform files configure a Virtual Private Cloud with a 3 node Kubernetes
cluster, while also creating a standalone EC2 instance to act as the network sensor. Since the
Terraform files utilize premade AWS Terraform modules, the infrastructure is created using
sane defaults and removes our need to fine-tune every parameter. Next, there was a need for
a complete monitoring solution for the now-created Kubernetes cluster. This was achieved
through the kube-prometheus-stack project, which is a collection of Kubernetes manifests
for a setup containing Prometheus, Grafana, Alertmanager, and Node exporter, with sane
configuration defaults. To further match the goal of easy repeatability, Fluxcd was used for
automatic syncing of Kubernetes manifests from a Git repository into the cluster. Which
made it easy to deploy all applications to any cluster where Fluxcd was configured.

The next part was to create Ansible automation playbooks that could perform the perfor-
mance tests against the sidecar container in an efficient and productive manner. By utilizing
premade Ansible modules to interact with Kubernetes, playbooks were made to deploy an
Ubuntu container with the iperf speed test application. While also starting packet capture
at the sensor and the speed test target. Which was a machine located at the University of
Agder. The playbooks finished by gathering the captured traffic and the iperf log in a local
directory for further analysis. The initial performance test used k6s against a Confluence
instance which showed a need for higher data rates. Where iperf came in as a perfect solution
to test data rates up to 500Mb/s.

In conclusion, there has been created a reproducible infrastructure in AWS using Terraform,
together with automatic deployment of Kubernetes manifests using Fluxcd. While providing
a full monitoring solution through the kube-prometheus-stack. Then, k6s and iperf, and
Ansible were used to conduct a series of performance tests against the vxlan container,
showing that CPU and memory usage stayed at sane levels and are not the bottleneck of the
current solution. Furthermore, the performance testing showed that there exist anomalies
in the solution that needs further investigation before this solution is to be brought into a
production environment.

49

7.1 Future research

During the research a couple of issues arose that needs to be investigated further before the
current sidecar container solution is to be trusted and reliable in production. Firstly, the
issue of packet anomalies between the traffic observed at the sensor and the traffic observed
by the UiA machine. As mentioned in the previous section, this will require a larger project
given the complex nature of the networking stack. There should also be research looking
into alternatives for vxlan.py as the sidecar container script, using more efficient languages
such as Rust or C. Which may enable higher data rates or fewer anomalies. Lastly, it should
be looked into whether there could be alternatives to using vxlan as the way to transport
the network traffic out.

50

Bibliography

[1] What is an Intrusion Detection System (IDS)? Check Point Software. url: https://www.
checkpoint.com/cyber-hub/network-security/what-is-an-intrusion-detection-

system-ids/ (visited on 04/06/2023).

[2] Checkpoint. “2022 Cloud Security Report”. In: Cybersecurity Insiders (2022), p. 23. url:
https://pages.checkpoint.com/2022-cloud-security-report.html.

[3] Pods. Kubernetes. url: https://kubernetes.io/docs/concepts/workloads/pods/ (vis-
ited on 04/06/2023).

[4] Thomas W. Edgar and David O. Manz. Research methods for cyber security. Cambridge, MA:
Syngress, an imprint of Elsevier, 2017. 404 pp. isbn: 978-0-12-805349-2.

[5] What is the cloud? — Cloud definition. Cloudflare. url: https://www.cloudflare.com/
learning/cloud/what-is-the-cloud/ (visited on 12/10/2022).

[6] What is the Cloud - Definition — Microsoft Azure. url: https : / / azure . microsoft .
com/en-us/resources/cloud-computing-dictionary/what-is-the-cloud (visited on
04/07/2023).

[7] 451 Research - What’s on the Mind of Cloud-Focused CTOs in 2018? url: https : / /

go.451research.com/what- is- on- mind- of- cloud- focused- CTOs.html (visited on
12/10/2022).

[8] Understanding cloud computing. url: https://www.redhat.com/en/topics/cloud (visited
on 12/10/2022).

[9] Cloud Security Alliance. About. CSA. url: https://cloudsecurityalliance.org/about/
(visited on 04/08/2023).

[10] Cloud Security Alliance. Top Threats to Cloud Computing Pandemic Eleven. 2022. url:
https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-

pandemic-eleven/.

[11] Kubernetes.Overview. Kubernetes. url: https://kubernetes.io/docs/concepts/overview/
(visited on 04/08/2023).

[12] Datadog. 9 insights on real world container use. 9 insights on real world container use. 0.
url: https://www.datadoghq.com/container-report/ (visited on 12/10/2022).

[13] Andrew J. Younge. Fig. 1: Kubernetes Components. The Kubernetes setup has at least three...
ResearchGate. url: https://www.researchgate.net/figure/Kubernetes-Components-
The- Kubernetes- setup- has- at- least- three- components- kublet- daemon_fig1_

336889240 (visited on 04/08/2023).

[14] A visual guide to Kubernetes networking fundamentals — Opensource.com. url: https :
//opensource.com/article/22/6/kubernetes-networking-fundamentals (visited on
12/11/2022).

[15] Services, Load Balancing, and Networking. Kubernetes. url: https://kubernetes.io/
docs/concepts/services-networking/ (visited on 04/08/2023).

51

https://www.checkpoint.com/cyber-hub/network-security/what-is-an-intrusion-detection-system-ids/
https://www.checkpoint.com/cyber-hub/network-security/what-is-an-intrusion-detection-system-ids/
https://www.checkpoint.com/cyber-hub/network-security/what-is-an-intrusion-detection-system-ids/
https://pages.checkpoint.com/2022-cloud-security-report.html
https://kubernetes.io/docs/concepts/workloads/pods/
https://www.cloudflare.com/learning/cloud/what-is-the-cloud/
https://www.cloudflare.com/learning/cloud/what-is-the-cloud/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-the-cloud
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-the-cloud
https://go.451research.com/what-is-on-mind-of-cloud-focused-CTOs.html
https://go.451research.com/what-is-on-mind-of-cloud-focused-CTOs.html
https://www.redhat.com/en/topics/cloud
https://cloudsecurityalliance.org/about/
https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-pandemic-eleven/
https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-pandemic-eleven/
https://kubernetes.io/docs/concepts/overview/
https://www.datadoghq.com/container-report/
https://www.researchgate.net/figure/Kubernetes-Components-The-Kubernetes-setup-has-at-least-three-components-kublet-daemon_fig1_336889240
https://www.researchgate.net/figure/Kubernetes-Components-The-Kubernetes-setup-has-at-least-three-components-kublet-daemon_fig1_336889240
https://www.researchgate.net/figure/Kubernetes-Components-The-Kubernetes-setup-has-at-least-three-components-kublet-daemon_fig1_336889240
https://opensource.com/article/22/6/kubernetes-networking-fundamentals
https://opensource.com/article/22/6/kubernetes-networking-fundamentals
https://kubernetes.io/docs/concepts/services-networking/
https://kubernetes.io/docs/concepts/services-networking/

[16] Kedar Vijay Kulkarni. A brief overview of the Container Network Interface (CNI) in Kuber-
netes. Enable Sysadmin. Publisher: Red Hat, Inc. Section: Enable Sysadmin. url: https:
//www.redhat.com/sysadmin/cni-kubernetes (visited on 04/10/2023).

[17] Cloud Native Computing Foundation. CNI. CNI. url: https://www.cni.dev/ (visited on
04/10/2023).

[18] Tools for Monitoring Resources. Kubernetes. Section: docs. url: https://kubernetes.
io / docs / tasks / debug / debug - cluster / resource - usage - monitoring/ (visited on
04/10/2023).

[19] Tigera. Prometheus Kubernetes. Tigera. url: https://www.tigera.io/learn/guides/
prometheus-monitoring/prometheus-kubernetes/ (visited on 04/10/2023).

[20] Resource Management for Pods and Containers. Kubernetes. Section: docs. url: https:
//kubernetes.io/docs/concepts/configuration/manage- resources- containers/

(visited on 04/10/2023).

[21] Ron Miller. How AWS came to be. TechCrunch. July 2, 2016. url: https://techcrunch.
com/2016/07/02/andy-jassys-brief-history-of-the-genesis-of-aws/ (visited on
04/10/2023).

[22] Rahul Kumar. AWS Market Share 2023: How Far It Rules the Cloud Industry? Section:
Uncategorized. Sept. 20, 2022. url: https://www.wpoven.com/blog/aws-market-share/
(visited on 04/10/2023).

[23] What is AWS. Amazon Web Services, Inc. url: https://aws.amazon.com/what-is-aws/
(visited on 04/10/2023).

[24] Managed Kubernetes Service – Amazon EKS – Amazon Web Services. Amazon Web Services,
Inc. url: https://aws.amazon.com/eks/ (visited on 04/10/2023).

[25] Logically Isolated Virtual Private Cloud—Amazon VPC – Amazon Web Services. Amazon
Web Services, Inc. url: https://aws.amazon.com/vpc/ (visited on 04/10/2023).

[26] AWS IAM — Identity and Access Management — Amazon Web Services. Amazon Web
Services, Inc. url: https://aws.amazon.com/iam/ (visited on 04/10/2023).

[27] Eric Conrad, Seth Misenar, and Joshua Feldman. “Chapter 7 - Domain 7: Security oper-
ations”. In: Eleventh Hour CISSP® (Third Edition). Ed. by Eric Conrad, Seth Misenar,
and Joshua Feldman. Syngress, Jan. 1, 2017, pp. 145–183. isbn: 978-0-12-811248-9. doi:
10.1016/B978- 0- 12- 811248- 9.00007- 3. url: https://www.sciencedirect.com/
science/article/pii/B9780128112489000073 (visited on 04/10/2023).

[28] What is an Intrusion Detection System? Palo Alto Networks. url: https://origin-www.
paloaltonetworks.com/cyberpedia/what-is-an-intrusion-detection-system-ids

(visited on 04/10/2023).

[29] Juniper. What is VXLAN? — Juniper Networks US. url: https://www.juniper.net/us/
en/research-topics/what-is-vxlan.html (visited on 06/01/2023).

[30] What is Terraform — Terraform — HashiCorp Developer. What is Terraform — Terraform
— HashiCorp Developer. url: https://developer.hashicorp.com/terraform/intro
(visited on 04/10/2023).

[31] Flux. Flux Documentation. url: https://fluxcd.io/flux/ (visited on 04/10/2023).

[32] Flux. Core Concepts. Core Concepts. Section: flux. url: https : / / fluxcd . io / flux /

concepts/ (visited on 05/09/2023).

[33] Red Hat. How Ansible works. How Ansible Works. url: https : / / www . ansible . com /
overview/how-ansible-works (visited on 06/01/2023).

[34] Preeti Mishra et al. “Intrusion detection techniques in cloud environment: A survey”. In:
Journal of Network and Computer Applications 77 (Jan. 1, 2017), pp. 18–47. issn: 1084-
8045. doi: 10.1016/j.jnca.2016.10.015. url: https://www.sciencedirect.com/
science/article/pii/S1084804516302417 (visited on 04/23/2023).

52

https://www.redhat.com/sysadmin/cni-kubernetes
https://www.redhat.com/sysadmin/cni-kubernetes
https://www.cni.dev/
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-usage-monitoring/
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-usage-monitoring/
https://www.tigera.io/learn/guides/prometheus-monitoring/prometheus-kubernetes/
https://www.tigera.io/learn/guides/prometheus-monitoring/prometheus-kubernetes/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://techcrunch.com/2016/07/02/andy-jassys-brief-history-of-the-genesis-of-aws/
https://techcrunch.com/2016/07/02/andy-jassys-brief-history-of-the-genesis-of-aws/
https://www.wpoven.com/blog/aws-market-share/
https://aws.amazon.com/what-is-aws/
https://aws.amazon.com/eks/
https://aws.amazon.com/vpc/
https://aws.amazon.com/iam/
https://doi.org/10.1016/B978-0-12-811248-9.00007-3
https://www.sciencedirect.com/science/article/pii/B9780128112489000073
https://www.sciencedirect.com/science/article/pii/B9780128112489000073
https://origin-www.paloaltonetworks.com/cyberpedia/what-is-an-intrusion-detection-system-ids
https://origin-www.paloaltonetworks.com/cyberpedia/what-is-an-intrusion-detection-system-ids
https://www.juniper.net/us/en/research-topics/what-is-vxlan.html
https://www.juniper.net/us/en/research-topics/what-is-vxlan.html
https://developer.hashicorp.com/terraform/intro
https://fluxcd.io/flux/
https://fluxcd.io/flux/concepts/
https://fluxcd.io/flux/concepts/
https://www.ansible.com/overview/how-ansible-works
https://www.ansible.com/overview/how-ansible-works
https://doi.org/10.1016/j.jnca.2016.10.015
https://www.sciencedirect.com/science/article/pii/S1084804516302417
https://www.sciencedirect.com/science/article/pii/S1084804516302417

[35] Vijit Nair. Deeper visibility into Kubernetes environments with network monitoring. Dec. 4,
2022. url: https : / / corelight . com / blog / deeper - visibility - into - kubernetes -
environments-with-network-monitoring (visited on 04/23/2023).

[36] AI Smith. Sidecars for Network Monitoring in Kubernetes — Corelight. Apr. 21, 2023. url:
https://corelight.com/blog/sidecars-for-network-monitoring (visited on 04/23/2023).

[37] Prometheus Community. kube-prometheus-stack. GitHub. url: https://github.com/prometheus-
community/helm-charts (visited on 05/10/2023).

[38] Helm. Charts. Charts. url: https://helm.sh/docs/topics/charts/ (visited on 05/10/2023).

53

https://corelight.com/blog/deeper-visibility-into-kubernetes-environments-with-network-monitoring
https://corelight.com/blog/deeper-visibility-into-kubernetes-environments-with-network-monitoring
https://corelight.com/blog/sidecars-for-network-monitoring
https://github.com/prometheus-community/helm-charts
https://github.com/prometheus-community/helm-charts
https://helm.sh/docs/topics/charts/

Appendix A

Terraform

This appendix includes the Terraform files used to provision the lab environment.

A.1 EKS Cluster

A.1.1 terraform.tf

1 terraform {

2 required_providers {

3 aws = {

4 source = "hashicorp/aws"

5 version = "~> 4.57.1"

6 }

7

8 random = {

9 source = "hashicorp/random"

10 version = "3.1.0"

11 }

12

13 }

14

15 backend "s3" {

16 bucket = "ssl-tf-states"

17 key = "new/terraform.tfstate"

18 region = "eu-west-1"

19 }

20

21 required_version = "~> 1.4.0"

22

23 }

Listing 14: terraform.tf

54

A.1.2 main.tf

1 provider "kubernetes" {

2 host = module.eks.cluster_endpoint

3 cluster_ca_certificate =

base64decode(module.eks.cluster_certificate_authority_data)↪→

4 }

5

6 provider "aws" {

7 region = var.region

8 }

9

10 provider "tls" {

11 proxy {

12 from_env = true

13 }

14 }

15

16 data "aws_availability_zones" "available" {}

17

18 locals {

19 cluster_name = "dev-eks-${random_string.suffix.result}"

20 }

21

22 locals {

23 tags = {

24 Environment = "dev"

25 Terraform = "true"

26 Owner = "ssl"

27 }

28 }

29

30 resource "random_string" "suffix" {

31 length = 8

32 special = false

33 }

Listing 15: main.tf

A.1.3 variables.tf

1 variable "region" {

2 description = "AWS region"

3 type = string

4 default = "eu-west-1"

5 }

6

Listing 16: variables.tf

55

A.1.4 vpc.tf

1 module "vpc" {

2 source = "terraform-aws-modules/vpc/aws"

3 version = "3.14.2"

4

5 name = local.cluster_name

6

7 cidr = "10.0.0.0/16"

8 azs = slice(data.aws_availability_zones.available.names, 0, 3)

9

10 private_subnets = ["10.0.120.0/24", "10.0.122.0/24", "10.0.123.0/24"]

11 public_subnets = ["10.0.124.0/24", "10.0.125.0/24", "10.0.126.0/24"]

12

13 enable_nat_gateway = true

14 single_nat_gateway = true

15 enable_dns_hostnames = true

16

17 public_subnet_tags = {

18 "kubernetes.io/cluster/${local.cluster_name}" = "shared"

19 "kubernetes.io/role/elb" = 1

20 }

21

22 private_subnet_tags = {

23 "kubernetes.io/cluster/${local.cluster_name}" = "shared"

24 "kubernetes.io/role/internal-elb" = 1

25 }

26

27 tags = local.tags

28 }

Listing 17: vpc.tf

A.1.5 eks-cluster.tf

1 module "eks" {

2 source = "terraform-aws-modules/eks/aws"

3 version = "18.30.2"

4

5 cluster_name = local.cluster_name

6 cluster_version = "1.23"

7

8 vpc_id = module.vpc.vpc_id

9 subnet_ids = module.vpc.private_subnets

10

11 eks_managed_node_group_defaults = {

12 ami_type = "AL2_x86_64"

13

14 attach_cluster_primary_security_group = true

15

56

16 # Disabling and using externally provided security groups

17 create_security_group = false

18 }

19

20 cluster_endpoint_private_access = true

21 cluster_endpoint_public_access = true

22

23 # Workaround for the multiple sg and the use of lb

24 node_security_group_tags = {

25 "kubernetes.io/cluster/${local.cluster_name}" = null

26 }

27

28 cluster_timeouts = {

29 create = "60m"

30 }

31

32 ## IAM stuff fails in eks module due to apply failure

33

34 #manage_aws_auth_configmap = true

35 #create_aws_auth_configmap = true

36

37 #aws_auth_users = [

38 # {

39 # userarn = "arn:aws:iam::108759891166:user/fdfdf"

40 # username = "fdfdf"

41 # groups = ["system:masters"]

42 # }

43 #]

44

45 #aws_auth_accounts = ["108759891166"]

46

47 eks_managed_node_groups = {

48 one = {

49 name = "1-${local.cluster_name}"

50

51 instance_types = ["t3.large"]

52

53 min_size = 2

54 max_size = 5

55 desired_size = 3

56

57 pre_bootstrap_user_data = <<EOF

58 echo 'dev eks security tenant'

59 echo -e "ssh-ed25519

AAAAC3NzaC1lZDI1NTE5AAAAIAzFV4ibarFBjk6a2T18stB7Ldvl/G4jdEvGTyJkfDtu

ubuntu@ip-10-0-125-177" >> /home/ec2-user/.ssh/authorized_keys

↪→

↪→

60 EOF

61

62 vpc_security_group_ids = [

63 aws_security_group.node_group_one.id

64]

65 }

57

66 }

67

68 tags = local.tags

69

70 }

71 echo 'dev eks security tenant'

72 echo -e "ssh-ed25519

AAAAC3NzaC1lZDI1NTE5AAAAIAzFV4ibarFBjk6a2T18stB7Ldvl/G4jdEvGTyJkfDtu

ubuntu@ip-10-0-125-177" >> /home/ec2-user/.ssh/authorized_keys

↪→

↪→

73 EOF

74

75 vpc_security_group_ids = [

76 aws_security_group.node_group_one.id

77]

78 }

79 }

80

81 tags = local.tags

82

83 }

Listing 18: eks-cluster.tf

A.1.6 ec2.tf

1 resource "aws_key_pair" "ssl" {

2 key_name = "ssl-key"

3 public_key = "ssh-ed25519

AAAAC3NzaC1lZDI1NTE5AAAAIG+3uD4MYXGGNaEbi7aNzUzM9MkDJ1CFamjcbSEREqKU

ssl@DESKTOP-B8E1F3O"

↪→

↪→

4 }

5

6

7 module "ec2_instance" {

8 source = "terraform-aws-modules/ec2-instance/aws"

9 version = "~> 4.3"

10

11 name = "ssl-pcaprecv"

12

13 ami = "ami-015423a987dafce81"

14 instance_type = "t2.micro"

15 key_name = aws_key_pair.ssl.key_name

16 monitoring = true

17 vpc_security_group_ids = [aws_security_group.ssl-pcaprecv.id,

aws_security_group.vxlan.id]↪→

18 subnet_id = module.vpc.public_subnets[1]

19

20 associate_public_ip_address = true

21

22 user_data = <<EOF

58

23 #!/bin/bash

24 echo "Copying the SSH Key Of work laptop to the server"

25 echo -e "ssh-ed25519

AAAAC3NzaC1lZDI1NTE5AAAAIAsbx4n/ZJDQPg6jN9e4a8j7wmNFCWiWmuR3vUNFQCdZ

user@master" >> /home/ubuntu/.ssh/authorized_keys

↪→

↪→

26 echo -e "ssh-ed25519

AAAAC3NzaC1lZDI1NTE5AAAAIIc9538igE7sOQDoWmbpWQcNMv36v6WiC3/RZ9XNrm7U

ssl@LAPTOP-4FN6FO9H" >> /home/ubuntu/.ssh/authorized_keys

↪→

↪→

27 EOF

28

29 tags = local.tags

30 }

31

32 # Allow ssh for debug

33 resource "aws_security_group" "ssl-pcaprecv" {

34 name_prefix = "ssl-pcaprecv"

35 vpc_id = module.vpc.vpc_id

36

37 ingress {

38 from_port = 22

39 to_port = 22

40 protocol = "tcp"

41 cidr_blocks = ["10.0.0.0/8", "46.212.46.18/32", "212.4.46.194/32",

"178.232.19.174/32"]↪→

42 }

43

44 egress {

45 from_port = 0

46 to_port = 0

47 protocol = "-1"

48 cidr_blocks = ["0.0.0.0/0"]

49 ipv6_cidr_blocks = ["::/0"]

50 }

51

52 tags = local.tags

53

54 }

55

56 # Allow vxlan for debug

57 resource "aws_security_group" "vxlan" {

58 name_prefix = "ssl-pcaprecv-vxlan"

59 vpc_id = module.vpc.vpc_id

60

61 ingress {

62 from_port = 4789

63 to_port = 4789

64 protocol = "udp"

65 cidr_blocks = ["10.0.0.0/8"]

66 }

67

68 tags = local.tags

69 }

59

70

71

72 # resource "aws_security_group" "allow_ssh" {

73 # name = "allow_ssh"

74 # description = "Allow ssh inbound traffic"

75

76 # # using default VPC

77 # vpc_id = module.vpc.vpc_id

78

79 # ingress {

80 # description = "TLS from VPC"

81

82 # # we should allow incoming and outoging

83 # # TCP packets

84 # from_port = 22

85 # to_port = 22

86 # protocol = "tcp"

87

88 # # allow all traffic

89 # cidr_blocks = ["0.0.0.0/0"]

90 # }

91 # egress {

92 # from_port = 0

93 # to_port = 0

94 # protocol = "-1"

95 # cidr_blocks = ["0.0.0.0/0"]

96 # }

97

98 # tags = {

99 # Name = "allow_ssh"

100 # }

101 # }

102

103 # resource "aws_eip" "ip-test-env" {

104 # instance = "${aws_instance.ssl_pcap_recv.id}"

105 # vpc = true

106 # }

107

108 # resource "aws_internet_gateway" "test-env-gw" {

109 # vpc_id = "${module.vpc.vpc_id}"

110 # tags {

111 # Name = "test-env-gw"

112 # }

113 # }

114

115 # resource "aws_route_table" "route-table-test-env" {

116 # vpc_id = "${module.vpc.vpc_id}"

117 # route {

118 # cidr_block = "0.0.0.0/0"

119 # gateway_id = "${aws_internet_gateway.test-env-gw.id}"

120 # }

121 # tags {

60

122 # Name = "test-env-route-table"

123 # }

124 # }

125

126 # resource "aws_route_table_association" "subnet-association" {

127 # subnet_id = "${module.vpc.private_subnets[2]}"

128 # route_table_id = "${aws_route_table.route-table-test-env.id}"

129 # }

130

131 #!/bin/bash

132 echo "Copying the SSH Key Of work laptop to the server"

133 echo -e "ssh-ed25519

AAAAC3NzaC1lZDI1NTE5AAAAIAsbx4n/ZJDQPg6jN9e4a8j7wmNFCWiWmuR3vUNFQCdZ

user@master" >> /home/ubuntu/.ssh/authorized_keys

↪→

↪→

134 echo -e "ssh-ed25519

AAAAC3NzaC1lZDI1NTE5AAAAIIc9538igE7sOQDoWmbpWQcNMv36v6WiC3/RZ9XNrm7U

ssl@LAPTOP-4FN6FO9H" >> /home/ubuntu/.ssh/authorized_keys

↪→

↪→

135 EOF

136

137 tags = local.tags

138 }

139

140 # Allow ssh for debug

141 resource "aws_security_group" "ssl-pcaprecv" {

142 name_prefix = "ssl-pcaprecv"

143 vpc_id = module.vpc.vpc_id

144

145 ingress {

146 from_port = 22

147 to_port = 22

148 protocol = "tcp"

149 cidr_blocks = ["10.0.0.0/8", "46.212.46.18/32", "212.4.46.194/32",

"178.232.19.174/32"]↪→

150 }

151

152 egress {

153 from_port = 0

154 to_port = 0

155 protocol = "-1"

156 cidr_blocks = ["0.0.0.0/0"]

157 ipv6_cidr_blocks = ["::/0"]

158 }

159

160 tags = local.tags

161

162 }

163

164 # Allow vxlan for debug

165 resource "aws_security_group" "vxlan" {

166 name_prefix = "ssl-pcaprecv-vxlan"

167 vpc_id = module.vpc.vpc_id

168

61

169 ingress {

170 from_port = 4789

171 to_port = 4789

172 protocol = "udp"

173 cidr_blocks = ["10.0.0.0/8"]

174 }

175

176 tags = local.tags

177 }

178

179

180 # resource "aws_security_group" "allow_ssh" {

181 # name = "allow_ssh"

182 # description = "Allow ssh inbound traffic"

183

184 # # using default VPC

185 # vpc_id = module.vpc.vpc_id

186

187 # ingress {

188 # description = "TLS from VPC"

189

190 # # we should allow incoming and outoging

191 # # TCP packets

192 # from_port = 22

193 # to_port = 22

194 # protocol = "tcp"

195

196 # # allow all traffic

197 # cidr_blocks = ["0.0.0.0/0"]

198 # }

199 # egress {

200 # from_port = 0

201 # to_port = 0

202 # protocol = "-1"

203 # cidr_blocks = ["0.0.0.0/0"]

204 # }

205

206 # tags = {

207 # Name = "allow_ssh"

208 # }

209 # }

210

211 # resource "aws_eip" "ip-test-env" {

212 # instance = "£{aws_instance.ssl_pcap_recv.id}"

213 # vpc = true

214 # }

215

216 # resource "aws_internet_gateway" "test-env-gw" {

217 # vpc_id = "£{module.vpc.vpc_id}"

218 # tags {

219 # Name = "test-env-gw"

220 # }

62

221 # }

222

223 # resource "aws_route_table" "route-table-test-env" {

224 # vpc_id = "£{module.vpc.vpc_id}"

225 # route {

226 # cidr_block = "0.0.0.0/0"

227 # gateway_id = "£{aws_internet_gateway.test-env-gw.id}"

228 # }

229 # tags {

230 # Name = "test-env-route-table"

231 # }

232 # }

233

234 # resource "aws_route_table_association" "subnet-association" {

235 # subnet_id = "£{module.vpc.private_subnets[2]}"

236 # route_table_id = "£{aws_route_table.route-table-test-env.id}"

237 # }

238

Listing 19: ec2.tf

A.1.7 output.tf

1 output "cluster_id" {

2 description = "EKS cluster ID"

3 value = module.eks.cluster_id

4 }

5

6 output "cluster_endpoint" {

7 description = "Endpoint for EKS control plane"

8 value = module.eks.cluster_endpoint

9 }

10

11 output "cluster_security_group_id" {

12 description = "Security group ids attached to the cluster control plane"

13 value = module.eks.cluster_security_group_id

14 }

15

16 output "region" {

17 description = "AWS region"

18 value = var.region

19 }

20

21 output "cluster_name" {

22 description = "Kubernetes Cluster Name"

23 value = local.cluster_name

24 }

25

26 output "aws_auth_configmap_yaml" {

27 description = "Formatted yaml output for base aws-auth configmap

containing roles used in cluster node groups/fargate profiles"↪→

63

28 value = module.eks.aws_auth_configmap_yaml

29 }

30

31 output "vpc" {

32 description = "VPC id"

33 value = module.vpc.vpc_id

34 }

35

36 output "public_ip" {

37 description = "Public IP of ec2 instance"

38 value = module.ec2_instance.public_ip

39 }

Listing 20: output.tf

64

Appendix B

Fluxcd

This appendix includes the configuration and manifests for Fluxcd

B.1 Kustomizations

B.1.1 sync.yaml

1 # This manifest was generated by flux. DO NOT EDIT.

2 ---

3 apiVersion: source.toolkit.fluxcd.io/v1

4 kind: GitRepository

5 metadata:

6 name: flux-system

7 namespace: flux-system

8 spec:

9 interval: 1m0s

10 ref:

11 branch: main

12 secretRef:

13 name: flux-system

14 url: ssh://git@github.com/Siggert75/sidecar-manifests

15 ---

16 apiVersion: kustomize.toolkit.fluxcd.io/v1

17 kind: Kustomization

18 metadata:

19 name: flux-system

20 namespace: flux-system

21 spec:

22 interval: 10m0s

23 path: ./aws-cluster

24 prune: true

25 sourceRef:

26 kind: GitRepository

27 name: flux-system

65

Listing 21: Baseline sync configuration generated by Flux bootstrap

B.1.2 monitoring.yaml

1 apiVersion: kustomize.toolkit.fluxcd.io/v1beta2

2 kind: Kustomization

3 metadata:

4 name: confluence

5 namespace: flux-system

6 spec:

7 interval: 30m

8 path: ./apps/confluence

9 prune: true

10 sourceRef:

11 kind: GitRepository

12 name: flux-system

13 timeout: 5m0s

14 suspend: false

15 wait: true

Listing 22: Kustomization for monitoring manifests

B.1.3 flux-dash.yaml

1 ---

2 apiVersion: kustomize.toolkit.fluxcd.io/v1beta2

3 kind: Kustomization

4 metadata:

5 name: fluxcd-dash

6 namespace: flux-system

7 spec:

8 interval: 30m

9 path: ./apps/flux-dash

10 prune: true

11 sourceRef:

12 kind: GitRepository

13 name: flux-system

14 timeout: 5m0s

15 suspend: false

16 wait: true

Listing 23: Kustomization for Fluxcd dashboard manifests

B.1.4 nginx-controller.yaml

1 ---

2 apiVersion: kustomize.toolkit.fluxcd.io/v1beta2

66

3 kind: Kustomization

4 metadata:

5 name: nginx-controller

6 namespace: flux-system

7 spec:

8 interval: 30m

9 path: ./apps/nginx-controller

10 prune: true

11 sourceRef:

12 kind: GitRepository

13 name: flux-system

14 timeout: 5m0s

15 suspend: false

16 wait: true

Listing 24: Kustomization for nginx ingress controller manifests

B.1.5 database.yaml

1 ---

2 apiVersion: kustomize.toolkit.fluxcd.io/v1beta2

3 kind: Kustomization

4 metadata:

5 name: postgresdb

6 namespace: flux-system

7 spec:

8 interval: 30m

9 path: ./apps/database

10 prune: true

11 sourceRef:

12 kind: GitRepository

13 name: flux-system

14 timeout: 5m0s

15 suspend: false

16 wait: true

Listing 25: Kustomization for postgres database manifests

B.1.6 confluence.yaml

1 ---

2 apiVersion: kustomize.toolkit.fluxcd.io/v1beta2

3 kind: Kustomization

4 metadata:

5 name: confluence

6 namespace: flux-system

7 spec:

8 interval: 30m

67

9 path: ./apps/confluence

10 prune: true

11 sourceRef:

12 kind: GitRepository

13 name: flux-system

14 timeout: 5m0s

15 suspend: false

16 wait: true

Listing 26: Kustomization for confluence manifests

B.2 Applications

B.2.1 Kube Prometheus Stack

kustomization.yaml

1 apiVersion: kustomize.config.k8s.io/v1beta1

2 kind: Kustomization

3 namespace: monitoring

4 resources:

5 - namespace.yaml

6 - repository.yaml

7 - release.yaml

8 - ingress.yaml

9 configMapGenerator:

10 - name: prom-values

11 files:

12 - values.yaml=values.yaml

13 configurations:

14 - kustomizeconfig.yaml

Listing 27: Kubernetes kustomization for kube prometheus stack

repository.yaml

1 apiVersion: source.toolkit.fluxcd.io/v1beta2

2 kind: HelmRepository

3 metadata:

4 name: prometheus-community

5 spec:

6 interval: 120m

7 type: default

8 url: https://prometheus-community.github.io/helm-charts

9 #type: oci

10 #url: oci://ghcr.io/prometheus-community/charts

68

Listing 28: Fluxcd helm repository for kube prometheus stack

release.yaml

1 apiVersion: helm.toolkit.fluxcd.io/v2beta1

2 kind: HelmRelease

3 metadata:

4 name: kube-prometheus-stack

5 spec:

6 interval: 5m

7 chart:

8 spec:

9 version: "45.6.x"

10 chart: kube-prometheus-stack

11 sourceRef:

12 kind: HelmRepository

13 name: prometheus-community

14 #verify:

15 # provider: cosign

16 interval: 60m

17 install:

18 crds: Create

19 remediation:

20 retries: 2

21 upgrade:

22 crds: CreateReplace

23 valuesFrom:

24 - kind: ConfigMap

25 name: prom-values

Listing 29: Fluxcd helm release for kube prometheus stack

values.yaml

1 fullnameOverride: prometheus

2

3 defaultRules:

4 create: true

5 rules:

6 alertmanager: true

7 etcd: true

8 configReloaders: true

9 general: true

10 k8s: true

11 kubeApiserverAvailability: true

12 kubeApiserverBurnrate: true

13 kubeApiserverHistogram: true

69

14 kubeApiserverSlos: true

15 kubelet: true

16 kubeProxy: true

17 kubePrometheusGeneral: true

18 kubePrometheusNodeRecording: true

19 kubernetesApps: true

20 kubernetesResources: true

21 kubernetesStorage: true

22 kubernetesSystem: true

23 kubeScheduler: true

24 kubeStateMetrics: true

25 network: true

26 node: true

27 nodeExporterAlerting: true

28 nodeExporterRecording: true

29 prometheus: true

30 prometheusOperator: true

31

32 alertmanager:

33 fullnameOverride: alertmanager

34 enabled: true

35 ingress:

36 enabled: false

37

38 grafana:

39 enabled: true

40 fullnameOverride: grafana

41 forceDeployDatasources: false

42 forceDeployDashboards: false

43 defaultDashboardsEnabled: true

44 defaultDashboardsTimezone: utc+1

45 imageRenderer:

46 enabled: true

47 serviceMonitor:

48 enabled: true

49 admin:

50 existingSecret: grafana-admin-credentials

51 userKey: admin-user

52 passwordKey: admin-password

53

54 kubeApiServer:

55 enabled: true

56

57 kubelet:

58 enabled: true

59 serviceMonitor:

60 metricRelabelings:

61 - action: replace

62 sourceLabels:

63 - node

64 targetLabel: instance

65

70

66 kubeControllerManager:

67 enabled: true

68 endpoints: # ips of servers

69 - 10.0.120.222

70 - 10.0.122.69

71 - 10.0.123.247

72

73 coreDns:

74 enabled: true

75

76 kubeDns:

77 enabled: false

78

79 kubeEtcd:

80 enabled: true

81 endpoints: # ips of servers

82 - 10.0.120.222

83 - 10.0.122.69

84 - 10.0.123.247

85 service:

86 enabled: true

87 port: 2381

88 targetPort: 2381

89

90 kubeScheduler:

91 enabled: true

92 endpoints: # ips of servers

93 - 10.0.120.222

94 - 10.0.122.69

95 - 10.0.123.247

96

97 kubeProxy:

98 enabled: true

99 endpoints: # ips of servers

100 - 10.0.120.222

101 - 10.0.122.69

102 - 10.0.123.247

103

104 kubeStateMetrics:

105 enabled: true

106

107 kube-state-metrics:

108 fullnameOverride: kube-state-metrics

109 selfMonitor:

110 enabled: true

111 prometheus:

112 monitor:

113 enabled: true

114 relabelings:

115 - action: replace

116 regex: (.*)

117 replacement: $1

71

118 sourceLabels:

119 - __meta_kubernetes_pod_node_name

120 targetLabel: kubernetes_node

121

122 nodeExporter:

123 enabled: true

124 serviceMonitor:

125 relabelings:

126 - action: replace

127 regex: (.*)

128 replacement: $1

129 sourceLabels:

130 - __meta_kubernetes_pod_node_name

131 targetLabel: kubernetes_node

132

133 prometheus-node-exporter:

134 fullnameOverride: node-exporter

135 podLabels:

136 jobLabel: node-exporter

137 extraArgs:

138 - --collector.filesystem.mount-points-exclude=^/(dev|proc|sys|

139 var/lib/docker/.+|var/lib/kubelet/.+)($|/)

140 - --collector.filesystem.fs-types-exclude=^(autofs|binfmt_misc|bpf

|cgroup2|configfs|debugfs|devpts|devtmpfs|fusectl|hugetlbfs|iso9660

|mqueue|nsfs|overlay|proc|procfs|pstore|rpc_pipefs|securityfs|

selinuxfs|squashfs|sysfs|tracefs)$

↪→

↪→

↪→

141 service:

142 portName: http-metrics

143 prometheus:

144 monitor:

145 enabled: true

146 relabelings:

147 - action: replace

148 regex: (.*)

149 replacement: $1

150 sourceLabels:

151 - __meta_kubernetes_pod_node_name

152 targetLabel: kubernetes_node

153 resources:

154 requests:

155 memory: 512Mi

156 cpu: 250m

157 limits:

158 memory: 2048Mi

159

160 prometheusOperator:

161 enabled: true

162 prometheusConfigReloader:

163 resources:

164 requests:

165 cpu: 200m

166 memory: 50Mi

72

167 limits:

168 memory: 100Mi

169

170 prometheus:

171 enabled: true

172 prometheusSpec:

173 replicas: 1

174 replicaExternalLabelName: "replica"

175 ruleSelectorNilUsesHelmValues: false

176 serviceMonitorSelectorNilUsesHelmValues: false

177 podMonitorSelectorNilUsesHelmValues: false

178 probeSelectorNilUsesHelmValues: false

179 retention: 7d

180 scrapeInterval: 10s

181 enableAdminAPI: true

182 walCompression: true

183

184 thanosRuler:

185 enabled: false

Listing 30: Helm values for kube prometheus stack

B.2.2 Flux dashboard

HelmRepository and HelmRelease

1 ---

2 apiVersion: source.toolkit.fluxcd.io/v1beta2

3 kind: HelmRepository

4 metadata:

5 annotations:

6 metadata.weave.works/description: This is the source location for the

Weave GitOps↪→

7 Dashboard's helm chart.

8 labels:

9 app.kubernetes.io/component: ui

10 app.kubernetes.io/created-by: weave-gitops-cli

11 app.kubernetes.io/name: weave-gitops-dashboard

12 app.kubernetes.io/part-of: weave-gitops

13 name: ww-gitops

14 namespace: flux-system

15 spec:

16 interval: 1h0m0s

17 type: oci

18 url: oci://ghcr.io/weaveworks/charts

19 ---

20 apiVersion: helm.toolkit.fluxcd.io/v2beta1

21 kind: HelmRelease

22 metadata:

73

23 annotations:

24 metadata.weave.works/description: This is the Weave GitOps Dashboard.

It provides↪→

25 a simple way to get insights into your GitOps workloads.

26 name: ww-gitops

27 namespace: flux-system

28 spec:

29 chart:

30 spec:

31 chart: weave-gitops

32 sourceRef:

33 kind: HelmRepository

34 name: ww-gitops

35 interval: 1h0m0s

36 values:

37 adminUser:

38 create: true

39 passwordHash:

$2a$10$3U4Liyd4QOWIs6ev7q6C.OO5EOcnsjEsCJCZ6jUzMuKXyhl7FYQ1y↪→

40 username: admin

41

42

Listing 31: Fluxcd helm release and helm repository for the Fluxcd dashboard

B.2.3 Nginx ingress controller

deployment.yaml

1 ---

2 apiVersion: apps/v1

3 kind: Deployment

4 metadata:

5 labels:

6 app.kubernetes.io/component: controller

7 app.kubernetes.io/instance: ingress-nginx

8 app.kubernetes.io/name: ingress-nginx

9 app.kubernetes.io/part-of: ingress-nginx

10 app.kubernetes.io/version: 1.6.4

11 name: ingress-nginx-controller

12 namespace: ingress-nginx

13 spec:

14 minReadySeconds: 0

15 revisionHistoryLimit: 10

16 selector:

17 matchLabels:

18 app.kubernetes.io/component: controller

19 app.kubernetes.io/instance: ingress-nginx

20 app.kubernetes.io/name: ingress-nginx

74

21 template:

22 metadata:

23 labels:

24 app.kubernetes.io/component: controller

25 app.kubernetes.io/instance: ingress-nginx

26 app.kubernetes.io/name: ingress-nginx

27 spec:

28 containers:

29 - args:

30 - /nginx-ingress-controller

31 - --publish-service=$(POD_NAMESPACE)/ingress-nginx-controller

32 - --election-id=ingress-nginx-leader

33 - --controller-class=k8s.io/ingress-nginx

34 - --ingress-class=nginx

35 - --configmap=$(POD_NAMESPACE)/ingress-nginx-controller

36 - --validating-webhook=:8443

37 - --validating-webhook-certificate=/usr/local/certificates/cert

38 - --validating-webhook-key=/usr/local/certificates/key

39 env:

40 - name: POD_NAME

41 valueFrom:

42 fieldRef:

43 fieldPath: metadata.name

44 - name: POD_NAMESPACE

45 valueFrom:

46 fieldRef:

47 fieldPath: metadata.namespace

48 - name: LD_PRELOAD

49 value: /usr/local/lib/libmimalloc.so

50 image: registry.k8s.io/ingress-nginx/controller:v1.6.4@sha256:

51 15be4666c53052484dd2992efacf2f50ea77a78ae8aa21ccd91af6baaa7ea22f

52 imagePullPolicy: IfNotPresent

53 lifecycle:

54 preStop:

55 exec:

56 command:

57 - /wait-shutdown

58 livenessProbe:

59 failureThreshold: 5

60 httpGet:

61 path: /healthz

62 port: 10254

63 scheme: HTTP

64 initialDelaySeconds: 10

65 periodSeconds: 10

66 successThreshold: 1

67 timeoutSeconds: 1

68 name: controller

69 ports:

70 - containerPort: 80

71 name: http

72 protocol: TCP

75

73 - containerPort: 443

74 name: https

75 protocol: TCP

76 - containerPort: 8443

77 name: webhook

78 protocol: TCP

79 readinessProbe:

80 failureThreshold: 3

81 httpGet:

82 path: /healthz

83 port: 10254

84 scheme: HTTP

85 initialDelaySeconds: 10

86 periodSeconds: 10

87 successThreshold: 1

88 timeoutSeconds: 1

89 resources:

90 requests:

91 cpu: 100m

92 memory: 90Mi

93 securityContext:

94 allowPrivilegeEscalation: true

95 capabilities:

96 add:

97 - NET_BIND_SERVICE

98 drop:

99 - ALL

100 runAsUser: 101

101 volumeMounts:

102 - mountPath: /usr/local/certificates/

103 name: webhook-cert

104 readOnly: true

105 dnsPolicy: ClusterFirst

106 nodeSelector:

107 kubernetes.io/os: linux

108 serviceAccountName: ingress-nginx

109 terminationGracePeriodSeconds: 300

110 volumes:

111 - name: webhook-cert

112 secret:

113 secretName: ingress-nginx-admission

Listing 32: Deployment manifest for Nginx ingress controller

Supporting manifests for Nginx ingress controller

1 ---

2 apiVersion: v1

3 data:

4 allow-snippet-annotations: "true"

76

5 kind: ConfigMap

6 metadata:

7 labels:

8 app.kubernetes.io/component: controller

9 app.kubernetes.io/instance: ingress-nginx

10 app.kubernetes.io/name: ingress-nginx

11 app.kubernetes.io/part-of: ingress-nginx

12 app.kubernetes.io/version: 1.6.4

13 name: ingress-nginx-controller

14 namespace: ingress-nginx

15 ---

16 apiVersion: networking.k8s.io/v1

17 kind: IngressClass

18 metadata:

19 labels:

20 app.kubernetes.io/component: controller

21 app.kubernetes.io/instance: ingress-nginx

22 app.kubernetes.io/name: ingress-nginx

23 app.kubernetes.io/part-of: ingress-nginx

24 app.kubernetes.io/version: 1.6.4

25 name: nginx

26 spec:

27 controller: k8s.io/ingress-nginx

28 ---

29 apiVersion: batch/v1

30 kind: Job

31 metadata:

32 labels:

33 app.kubernetes.io/component: admission-webhook

34 app.kubernetes.io/instance: ingress-nginx

35 app.kubernetes.io/name: ingress-nginx

36 app.kubernetes.io/part-of: ingress-nginx

37 app.kubernetes.io/version: 1.6.4

38 name: ingress-nginx-admission-create

39 namespace: ingress-nginx

40 spec:

41 template:

42 metadata:

43 labels:

44 app.kubernetes.io/component: admission-webhook

45 app.kubernetes.io/instance: ingress-nginx

46 app.kubernetes.io/name: ingress-nginx

47 app.kubernetes.io/part-of: ingress-nginx

48 app.kubernetes.io/version: 1.6.4

49 name: ingress-nginx-admission-create

50 spec:

51 containers:

52 - args:

53 - create

54 - --host=ingress-nginx-controller-admission,ingress-nginx-

55 controller-admission.$(POD_NAMESPACE).svc

56 - --namespace=$(POD_NAMESPACE)

77

57 - --secret-name=ingress-nginx-admission

58 env:

59 - name: POD_NAMESPACE

60 valueFrom:

61 fieldRef:

62 fieldPath: metadata.namespace

63 image: registry.k8s.io/ingress-nginx/kube-webhook-certgen:

64 v20220916-gd32f8c343@sha256:

65 39c5b2e3310dc4264d638ad28d9d1d96c4cbb2b2dcfb52368fe4e3c63f61e10f

66 imagePullPolicy: IfNotPresent

67 name: create

68 securityContext:

69 allowPrivilegeEscalation: false

70 nodeSelector:

71 kubernetes.io/os: linux

72 restartPolicy: OnFailure

73 securityContext:

74 fsGroup: 2000

75 runAsNonRoot: true

76 runAsUser: 2000

77 serviceAccountName: ingress-nginx-admission

78 ---

79 apiVersion: batch/v1

80 kind: Job

81 metadata:

82 labels:

83 app.kubernetes.io/component: admission-webhook

84 app.kubernetes.io/instance: ingress-nginx

85 app.kubernetes.io/name: ingress-nginx

86 app.kubernetes.io/part-of: ingress-nginx

87 app.kubernetes.io/version: 1.6.4

88 name: ingress-nginx-admission-patch

89 namespace: ingress-nginx

90 spec:

91 template:

92 metadata:

93 labels:

94 app.kubernetes.io/component: admission-webhook

95 app.kubernetes.io/instance: ingress-nginx

96 app.kubernetes.io/name: ingress-nginx

97 app.kubernetes.io/part-of: ingress-nginx

98 app.kubernetes.io/version: 1.6.4

99 name: ingress-nginx-admission-patch

100 spec:

101 containers:

102 - args:

103 - patch

104 - --webhook-name=ingress-nginx-admission

105 - --namespace=$(POD_NAMESPACE)

106 - --patch-mutating=false

107 - --secret-name=ingress-nginx-admission

108 - --patch-failure-policy=Fail

78

109 env:

110 - name: POD_NAMESPACE

111 valueFrom:

112 fieldRef:

113 fieldPath: metadata.namespace

114 image: registry.k8s.io/ingress-nginx/kube-webhook-certgen:

115 v20220916-gd32f8c343@sha256:

116 39c5b2e3310dc4264d638ad28d9d1d96c4cbb2b2dcfb52368fe4e3c63f61e10f

117 imagePullPolicy: IfNotPresent

118 name: patch

119 securityContext:

120 allowPrivilegeEscalation: false

121 nodeSelector:

122 kubernetes.io/os: linux

123 restartPolicy: OnFailure

124 securityContext:

125 fsGroup: 2000

126 runAsNonRoot: true

127 runAsUser: 2000

128 serviceAccountName: ingress-nginx-admission

129 ---

130 apiVersion: v1

131 kind: Namespace

132 metadata:

133 labels:

134 app.kubernetes.io/instance: ingress-nginx

135 app.kubernetes.io/name: ingress-nginx

136 name: ingress-nginx

137 ---

138 apiVersion: rbac.authorization.k8s.io/v1

139 kind: Role

140 metadata:

141 labels:

142 app.kubernetes.io/component: controller

143 app.kubernetes.io/instance: ingress-nginx

144 app.kubernetes.io/name: ingress-nginx

145 app.kubernetes.io/part-of: ingress-nginx

146 app.kubernetes.io/version: 1.6.4

147 name: ingress-nginx

148 namespace: ingress-nginx

149 rules:

150 - apiGroups:

151 - ""

152 resources:

153 - namespaces

154 verbs:

155 - get

156 - apiGroups:

157 - ""

158 resources:

159 - configmaps

160 - pods

79

161 - secrets

162 - endpoints

163 verbs:

164 - get

165 - list

166 - watch

167 - apiGroups:

168 - ""

169 resources:

170 - services

171 verbs:

172 - get

173 - list

174 - watch

175 - apiGroups:

176 - networking.k8s.io

177 resources:

178 - ingresses

179 verbs:

180 - get

181 - list

182 - watch

183 - apiGroups:

184 - networking.k8s.io

185 resources:

186 - ingresses/status

187 verbs:

188 - update

189 - apiGroups:

190 - networking.k8s.io

191 resources:

192 - ingressclasses

193 verbs:

194 - get

195 - list

196 - watch

197 - apiGroups:

198 - coordination.k8s.io

199 resourceNames:

200 - ingress-nginx-leader

201 resources:

202 - leases

203 verbs:

204 - get

205 - update

206 - apiGroups:

207 - coordination.k8s.io

208 resources:

209 - leases

210 verbs:

211 - create

212 - apiGroups:

80

213 - ""

214 resources:

215 - events

216 verbs:

217 - create

218 - patch

219 - apiGroups:

220 - discovery.k8s.io

221 resources:

222 - endpointslices

223 verbs:

224 - list

225 - watch

226 - get

227 ---

228 apiVersion: rbac.authorization.k8s.io/v1

229 kind: Role

230 metadata:

231 labels:

232 app.kubernetes.io/component: admission-webhook

233 app.kubernetes.io/instance: ingress-nginx

234 app.kubernetes.io/name: ingress-nginx

235 app.kubernetes.io/part-of: ingress-nginx

236 app.kubernetes.io/version: 1.6.4

237 name: ingress-nginx-admission

238 namespace: ingress-nginx

239 rules:

240 - apiGroups:

241 - ""

242 resources:

243 - secrets

244 verbs:

245 - get

246 - create

247 ---

248 apiVersion: rbac.authorization.k8s.io/v1

249 kind: ClusterRole

250 metadata:

251 labels:

252 app.kubernetes.io/instance: ingress-nginx

253 app.kubernetes.io/name: ingress-nginx

254 app.kubernetes.io/part-of: ingress-nginx

255 app.kubernetes.io/version: 1.6.4

256 name: ingress-nginx

257 rules:

258 - apiGroups:

259 - ""

260 resources:

261 - configmaps

262 - endpoints

263 - nodes

264 - pods

81

265 - secrets

266 - namespaces

267 verbs:

268 - list

269 - watch

270 - apiGroups:

271 - coordination.k8s.io

272 resources:

273 - leases

274 verbs:

275 - list

276 - watch

277 - apiGroups:

278 - ""

279 resources:

280 - nodes

281 verbs:

282 - get

283 - apiGroups:

284 - ""

285 resources:

286 - services

287 verbs:

288 - get

289 - list

290 - watch

291 - apiGroups:

292 - networking.k8s.io

293 resources:

294 - ingresses

295 verbs:

296 - get

297 - list

298 - watch

299 - apiGroups:

300 - ""

301 resources:

302 - events

303 verbs:

304 - create

305 - patch

306 - apiGroups:

307 - networking.k8s.io

308 resources:

309 - ingresses/status

310 verbs:

311 - update

312 - apiGroups:

313 - networking.k8s.io

314 resources:

315 - ingressclasses

316 verbs:

82

317 - get

318 - list

319 - watch

320 - apiGroups:

321 - discovery.k8s.io

322 resources:

323 - endpointslices

324 verbs:

325 - list

326 - watch

327 - get

328 ---

329 apiVersion: rbac.authorization.k8s.io/v1

330 kind: ClusterRole

331 metadata:

332 labels:

333 app.kubernetes.io/component: admission-webhook

334 app.kubernetes.io/instance: ingress-nginx

335 app.kubernetes.io/name: ingress-nginx

336 app.kubernetes.io/part-of: ingress-nginx

337 app.kubernetes.io/version: 1.6.4

338 name: ingress-nginx-admission

339 rules:

340 - apiGroups:

341 - admissionregistration.k8s.io

342 resources:

343 - validatingwebhookconfigurations

344 verbs:

345 - get

346 - update

347 ---

348 apiVersion: rbac.authorization.k8s.io/v1

349 kind: RoleBinding

350 metadata:

351 labels:

352 app.kubernetes.io/component: controller

353 app.kubernetes.io/instance: ingress-nginx

354 app.kubernetes.io/name: ingress-nginx

355 app.kubernetes.io/part-of: ingress-nginx

356 app.kubernetes.io/version: 1.6.4

357 name: ingress-nginx

358 namespace: ingress-nginx

359 roleRef:

360 apiGroup: rbac.authorization.k8s.io

361 kind: Role

362 name: ingress-nginx

363 subjects:

364 - kind: ServiceAccount

365 name: ingress-nginx

366 namespace: ingress-nginx

367 ---

368 apiVersion: rbac.authorization.k8s.io/v1

83

369 kind: RoleBinding

370 metadata:

371 labels:

372 app.kubernetes.io/component: admission-webhook

373 app.kubernetes.io/instance: ingress-nginx

374 app.kubernetes.io/name: ingress-nginx

375 app.kubernetes.io/part-of: ingress-nginx

376 app.kubernetes.io/version: 1.6.4

377 name: ingress-nginx-admission

378 namespace: ingress-nginx

379 roleRef:

380 apiGroup: rbac.authorization.k8s.io

381 kind: Role

382 name: ingress-nginx-admission

383 subjects:

384 - kind: ServiceAccount

385 name: ingress-nginx-admission

386 namespace: ingress-nginx

387 ---

388 apiVersion: rbac.authorization.k8s.io/v1

389 kind: ClusterRoleBinding

390 metadata:

391 labels:

392 app.kubernetes.io/instance: ingress-nginx

393 app.kubernetes.io/name: ingress-nginx

394 app.kubernetes.io/part-of: ingress-nginx

395 app.kubernetes.io/version: 1.6.4

396 name: ingress-nginx

397 roleRef:

398 apiGroup: rbac.authorization.k8s.io

399 kind: ClusterRole

400 name: ingress-nginx

401 subjects:

402 - kind: ServiceAccount

403 name: ingress-nginx

404 namespace: ingress-nginx

405 ---

406 apiVersion: rbac.authorization.k8s.io/v1

407 kind: ClusterRoleBinding

408 metadata:

409 labels:

410 app.kubernetes.io/component: admission-webhook

411 app.kubernetes.io/instance: ingress-nginx

412 app.kubernetes.io/name: ingress-nginx

413 app.kubernetes.io/part-of: ingress-nginx

414 app.kubernetes.io/version: 1.6.4

415 name: ingress-nginx-admission

416 roleRef:

417 apiGroup: rbac.authorization.k8s.io

418 kind: ClusterRole

419 name: ingress-nginx-admission

420 subjects:

84

421 - kind: ServiceAccount

422 name: ingress-nginx-admission

423 namespace: ingress-nginx

424 ---

425 apiVersion: v1

426 automountServiceAccountToken: true

427 kind: ServiceAccount

428 metadata:

429 labels:

430 app.kubernetes.io/component: controller

431 app.kubernetes.io/instance: ingress-nginx

432 app.kubernetes.io/name: ingress-nginx

433 app.kubernetes.io/part-of: ingress-nginx

434 app.kubernetes.io/version: 1.6.4

435 name: ingress-nginx

436 namespace: ingress-nginx

437 ---

438 apiVersion: v1

439 kind: ServiceAccount

440 metadata:

441 labels:

442 app.kubernetes.io/component: admission-webhook

443 app.kubernetes.io/instance: ingress-nginx

444 app.kubernetes.io/name: ingress-nginx

445 app.kubernetes.io/part-of: ingress-nginx

446 app.kubernetes.io/version: 1.6.4

447 name: ingress-nginx-admission

448 namespace: ingress-nginx

449 ---

450 apiVersion: v1

451 kind: Service

452 metadata:

453 annotations:

454 # service.beta.kubernetes.io/aws-load-balancer-type: "external"

455 # service.beta.kubernetes.io/aws-load-balancer-nlb-target-type:

"instance"↪→

456 # service.beta.kubernetes.io/aws-load-balancer-scheme:

"internet-facing"↪→

457 service.beta.kubernetes.io/aws-load-balancer-backend-protocol: tcp

458

service.beta.kubernetes.io/aws-load-balancer-cross-zone-load-balancing-enabled:

"true"

↪→

↪→

459 service.beta.kubernetes.io/aws-load-balancer-type: nlb

460 service.beta.kubernetes.io/aws-load-balancer-name:

"sidecartap-nginx-lb"↪→

461 labels:

462 app.kubernetes.io/component: controller

463 app.kubernetes.io/instance: ingress-nginx

464 app.kubernetes.io/name: ingress-nginx

465 app.kubernetes.io/part-of: ingress-nginx

466 app.kubernetes.io/version: 1.6.4

467 name: ingress-nginx-controller

85

468 namespace: ingress-nginx

469 spec:

470 externalTrafficPolicy: Local

471 ipFamilies:

472 - IPv4

473 ipFamilyPolicy: SingleStack

474 ports:

475 - appProtocol: http

476 name: http

477 port: 80

478 protocol: TCP

479 targetPort: http

480 - appProtocol: https

481 name: https

482 port: 443

483 protocol: TCP

484 targetPort: https

485 selector:

486 app.kubernetes.io/component: controller

487 app.kubernetes.io/instance: ingress-nginx

488 app.kubernetes.io/name: ingress-nginx

489 type: LoadBalancer

490 ---

491 apiVersion: v1

492 kind: Service

493 metadata:

494 labels:

495 app.kubernetes.io/component: controller

496 app.kubernetes.io/instance: ingress-nginx

497 app.kubernetes.io/name: ingress-nginx

498 app.kubernetes.io/part-of: ingress-nginx

499 app.kubernetes.io/version: 1.6.4

500 name: ingress-nginx-controller-admission

501 namespace: ingress-nginx

502 spec:

503 ports:

504 - appProtocol: https

505 name: https-webhook

506 port: 443

507 targetPort: webhook

508 selector:

509 app.kubernetes.io/component: controller

510 app.kubernetes.io/instance: ingress-nginx

511 app.kubernetes.io/name: ingress-nginx

512 type: ClusterIP

513 ---

514 apiVersion: admissionregistration.k8s.io/v1

515 kind: ValidatingWebhookConfiguration

516 metadata:

517 labels:

518 app.kubernetes.io/component: admission-webhook

519 app.kubernetes.io/instance: ingress-nginx

86

520 app.kubernetes.io/name: ingress-nginx

521 app.kubernetes.io/part-of: ingress-nginx

522 app.kubernetes.io/version: 1.6.4

523 name: ingress-nginx-admission

524 webhooks:

525 - admissionReviewVersions:

526 - v1

527 clientConfig:

528 service:

529 name: ingress-nginx-controller-admission

530 namespace: ingress-nginx

531 path: /networking/v1/ingresses

532 failurePolicy: Fail

533 matchPolicy: Equivalent

534 name: validate.nginx.ingress.kubernetes.io

535 rules:

536 - apiGroups:

537 - networking.k8s.io

538 apiVersions:

539 - v1

540 operations:

541 - CREATE

542 - UPDATE

543 resources:

544 - ingresses

545 sideEffects: None

Listing 33: Supporting manifests for Nginx ingress controller

87

Appendix C

The sidecar

C.1 Sidecar container

C.1.1 vxlan.py

1 #!/usr/bin/env python3

2

3 import fcntl

4 import os

5 import re

6 import requests

7 import socket

8 import struct

9 import sys

10 import threading

11 import time

12

13 class Sensor():

14 def __init__(self):

15 self.sensor = os.environ.get('SENSOR')

16 if not self.sensor:

17 raise ValueError('$SENSOR is not set')

18

19 self.ipMatch =

'.'.join(['(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)']*4)↪→

20 self.isAddr = re.match('\A%s\Z' % self.ipMatch, self.sensor)

21

22 self.lastUpdated = None

23 self.addr = None

24

25 self.mutex = threading.Lock()

26

27 def ip(self):

28 if self.isAddr:

29 return self.sensor

30

88

31 if self.lastUpdated and time.time() - self.lastUpdated < 60 and

self.addr:↪→

32 return self.addr

33

34 with self.mutex:

35 self.addr = None

36

37 serviceAccountDirectory =

'/var/run/secrets/kubernetes.io/serviceaccount'↪→

38 with open(os.path.join(serviceAccountDirectory, 'token'), 'r')

as fd:↪→

39 k8stoken = fd.read().strip()

40

41 # Get metadata about all containers

42 metadata = requests.get('https://kubernetes.default.svc.

43 cluster.local/api/v1/pods',

verify=os.path.join(serviceAccountDirectory, 'ca.crt'),

headers={'Authorization': 'Bearer %s' % k8stoken}).json()

↪→

↪→

44

45 for pod in metadata['items']:

46 if pod['metadata']['labels'].get('run') == self.sensor:

47 print(pod['status'])

48 self.addr = pod['status'].get('podIP')

49

50 if not re.match('\A%s\Z' % self.ipMatch, self.addr):

51 # Possible temporary failure

52 print('pod %s IP address not found' % self.sensor)

53 else:

54 self.lastUpdated = time.time()

55

56 print(self.addr)

57 return self.addr

58

59 def main():

60 interface = os.environ.get('INTERFACE')

61 if not interface:

62 print('$INTERFACE is not set')

63 return 1

64

65 try:

66 sensor = Sensor()

67 except ValueError as e:

68 print(str(e))

69 return 1

70

71 vni = os.environ.get('VNI')

72 if not vni:

73 print('$VNI is not set')

74 return 1

75

76 try:

77 vni = int(vni, 16)

89

78 except ValueError:

79 print('$VNI is not parsable as hexadecimal')

80 return 1

81

82 if vni & 0xff000000:

83 print('$VNI should be no greater than 0xffffff')

84 return 1

85

86 ipAddr = fcntl.ioctl(socket.socket(socket.AF_INET, socket.SOCK_DGRAM),

0x8915, struct.pack('256s', interface.encode('ascii')))[20:24] #

SIOCGIFADDR

↪→

↪→

87

88 sniff = socket.socket(socket.AF_PACKET, socket.SOCK_RAW,

socket.ntohs(3)) # ETH_P_ALL↪→

89 sniff.bind((interface, 0))

90

91 vxlan = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

92

93 # VXLAN header

94 vxlanHeader = struct.pack('!L', 0x08000000)

95 vxlanHeader += struct.pack('!L', vni << 8)

96

97 # Packet number setup

98 def getconn():

99 connected = False

100 while not connected:

101 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

102 try:

103 s.connect((os.getenv("PACKET_HOST", "127.0.0.1"), 4444))

104 connected = True

105 return s

106 except socket.error:

107 print("Lost connection")

108 time.sleep(2)

109 s = getconn()

110 hostname = socket.gethostname()

111 ## getting the IP address using socket.gethostbyname() method

112 ip_address = socket.gethostbyname(hostname)

113 s.sendall(f"IP:{ip_address}".encode())

114 s.recv(1024)

115 s.sendall(b"Sending packet numbers")

116 s.recv(1024)

117

118 while True:

119 (data, _) = sniff.recvfrom(65535)

120

121 sensorAddr = sensor.ip()

122 if not sensorAddr:

123 continue

124

125 ipPacket = data[14:]

126 ipHeaderLength = (struct.unpack('B', bytes([data[0]]))[0] & 0x0f) *

4↪→

90

127

128 srcIP = ipPacket[12:16]

129 dstIP = ipPacket[16:20]

130 protocol = ipPacket[9]

131

132 if protocol in [6, 17] and len(ipPacket) >= ipHeaderLength+3:

133 srcPort = struct.unpack('!H',

ipPacket[ipHeaderLength+0:ipHeaderLength+2])[0]↪→

134 dstPort = struct.unpack('!H',

ipPacket[ipHeaderLength+2:ipHeaderLength+4])[0]↪→

135

136 # Not our own traffic on UDP/4789 to sensor

137 if protocol == 17 and dstPort == 4789 and dstIP == sensorAddr:

138 continue

139

140 # Not traffic to redis

141 if socket.inet_ntoa(dstIP) == "172.20.205.187":

142 print(f"Dropping dstIP => {socket.inet_ntoa(dstIP)}")

143 continue

144

145 if socket.inet_ntoa(srcIP) == "172.20.205.187":

146 print(f"Dropping SRC => {socket.inet_ntoa(srcIP)}")

147 continue

148

149 if protocol == 17:

150 data = ipPacket[ipHeaderLength+8:]

151 if data[:len(vxlanHeader)] == vxlanHeader:

152 continue

153

154 if protocol == 17:

155 continue

156

157 print('Got %s byte%s from %s:%s to %s:%s proto %s (VXLAN

%s->%s)' % (len(data), len(data) != 1 and 's' or '',

socket.inet_ntoa(srcIP), srcPort, socket.inet_ntoa(dstIP),

dstPort, protocol, socket.inet_ntoa(ipAddr), sensorAddr))

↪→

↪→

↪→

158

159 vxlan.sendto(vxlanHeader+data, (sensorAddr, 4789))

160

161 s.sendall(b"1")

162 s.recv(1024)

163

164 if __name__ == '__main__':

165 sys.exit(main())

Listing 34: Python script running network capture

91

C.1.2 Dockerfile

1 FROM python:3.9.12-slim

2

3 RUN pip install requests

4

5 COPY vxlan.py /vxlan.py

6 RUN chmod 755 vxlan.py

7

8 CMD ["/vxlan.py"]

Listing 35: Dockerfile for vxlan.py

92

Appendix D

k6s

D.1 k6s test file

D.1.1 test.js

1 import http from 'k6/http';

2 import { check, group, sleep } from 'k6';

3

4 export const options = {

5 stages: [

6 { duration: '5m', target: 20 }, // simulate ramp-up of traffic from 1

to 100 users over 5 minutes.↪→

7 { duration: '10m', target: 20 }, // stay at 100 users for 10 minutes

8 { duration: '5m', target: 0 }, // ramp-down to 0 users

9],

10 thresholds: {

11 'http_req_duration': ['p(99)<3000'], // 99% of requests must complete

below 1.5s↪→

12 },

13 };

14

15 const BASE_URL = 'https://confluence.amonguslab.net';

16

17

18 export function setup() {

19 const login_url = `${BASE_URL}/dologin.action`;

20

21 const payload = JSON.stringify({

22 os_username: 'admin',

23 os_password: 'oTG82D#ZKp7P42EvtLsusYhz%',

24 login: "Log+in",

25 os_destination: "/index.action"

26 });

27

28 const params = {

29 headers: {

93

30 'Content-Type': 'application/json'

31 }

32 };

33

34

35 const res = http.post(login_url, payload, params);

36

37

38 check(res, {

39 'has cookie jsessionid': (r) => r.cookies.JSESSIONID.length > 0,

40 });

41

42 const jar = http.cookieJar();

43

44 jar.set(BASE_URL, 'JSESSIONID', res.cookies.JSESSIONID.value, {

45 domain: BASE_URL,

46 path: '/',

47 secure: true,

48 });

49

50

51

52 return jar;

53

54 }

55

56 export default (jar) => {

57 const url = `${BASE_URL}/display/MAS/Master`;

58

59 const res = http.get(url, { jar });

60

61 check(res, {

62 'has status 200': (r) => r.status === 200

63 })

64

65

66

67 // let checkRes = check(res, {

68 // "Homepage body size is 612 bytes": (r) => r.body.length === 612,

69 // "Homepage welcome header present": (r) => r.body.indexOf("Welcome

to nginx!") !== -1↪→

70 // });

71

72 sleep(1);

73 };

74

75

Listing 36: Javascript code for k6s test.js

94

Appendix E

iperf

E.1 Data rate results

E.1.1 50 Mb/s

1 Connecting to host 128.39.145.94, port 5201

2 [6] local 10.0.123.138 port 46822 connected to 128.39.145.94 port 5201

3 [ID] Interval Transfer Bitrate Retr Cwnd

4 [6] 0.00-1.00 sec 6.06 MBytes 50.8 Mbits/sec 0 1.73 MBytes

5 [6] 1.00-2.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

6 [6] 2.00-3.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

7 [6] 3.00-4.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

8 [6] 4.00-5.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

9 [6] 5.00-6.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

10 [6] 6.00-7.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

11 [6] 7.00-8.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

12 [6] 8.00-9.00 sec 6.00 MBytes 50.4 Mbits/sec 0 1.73 MBytes

13 [6] 9.00-10.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

14 [6] 10.00-11.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

15 [6] 11.00-12.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

16 [6] 12.00-13.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

17 [6] 13.00-14.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

18 [6] 14.00-15.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

19 [6] 15.00-16.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

20 [6] 16.00-17.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

21 [6] 17.00-18.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

22 [6] 18.00-19.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

23 [6] 19.00-20.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

24 [6] 20.00-21.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

25 [6] 21.00-22.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

26 [6] 22.00-23.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

27 [6] 23.00-24.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

28 [6] 24.00-25.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

29 [6] 25.00-26.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

30 [6] 26.00-27.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

31 [6] 27.00-28.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

95

32 [6] 28.00-29.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

33 [6] 29.00-30.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

34 [6] 30.00-31.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

35 [6] 31.00-32.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

36 [6] 32.00-33.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

37 [6] 33.00-34.00 sec 5.88 MBytes 49.2 Mbits/sec 0 1.73 MBytes

38 [6] 34.00-35.00 sec 6.00 MBytes 50.4 Mbits/sec 0 1.73 MBytes

39 [6] 35.00-36.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

40 [6] 36.00-37.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

41 [6] 37.00-38.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

42 [6] 38.00-39.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

43 [6] 39.00-40.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

44 [6] 40.00-41.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

45 [6] 41.00-42.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

46 [6] 42.00-43.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

47 [6] 43.00-44.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

48 [6] 44.00-45.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

49 [6] 45.00-46.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

50 [6] 46.00-47.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

51 [6] 47.00-48.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

52 [6] 48.00-49.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

53 [6] 49.00-50.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

54 [6] 50.00-51.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

55 [6] 51.00-52.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

56 [6] 52.00-53.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

57 [6] 53.00-54.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

58 [6] 54.00-55.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

59 [6] 55.00-56.00 sec 5.88 MBytes 49.3 Mbits/sec 28 1.73 MBytes

60 [6] 56.00-57.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

61 [6] 57.00-58.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

62 [6] 58.00-59.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

63 [6] 59.00-60.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

64 [6] 60.00-61.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

65 [6] 61.00-62.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

66 [6] 62.00-63.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

67 [6] 63.00-64.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

68 [6] 64.00-65.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

69 [6] 65.00-66.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

70 [6] 66.00-67.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

71 [6] 67.00-68.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

72 [6] 68.00-69.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

73 [6] 69.00-70.00 sec 6.00 MBytes 50.2 Mbits/sec 0 1.73 MBytes

74 [6] 70.00-71.00 sec 6.00 MBytes 50.5 Mbits/sec 0 1.73 MBytes

75 [6] 71.00-72.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

76 [6] 72.00-73.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

77 [6] 73.00-74.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

78 [6] 74.00-75.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

79 [6] 75.00-76.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

80 [6] 76.00-77.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

81 [6] 77.00-78.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

82 [6] 78.00-79.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

83 [6] 79.00-80.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

96

84 [6] 80.00-81.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

85 [6] 81.00-82.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

86 [6] 82.00-83.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

87 [6] 83.00-84.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

88 [6] 84.00-85.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

89 [6] 85.00-86.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

90 [6] 86.00-87.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

91 [6] 87.00-88.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

92 [6] 88.00-89.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

93 [6] 89.00-90.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

94 [6] 90.00-91.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

95 [6] 91.00-92.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

96 [6] 92.00-93.00 sec 6.00 MBytes 50.2 Mbits/sec 0 1.73 MBytes

97 [6] 93.00-94.00 sec 5.88 MBytes 49.4 Mbits/sec 0 1.73 MBytes

98 [6] 94.00-95.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

99 [6] 95.00-96.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

100 [6] 96.00-97.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

101 [6] 97.00-98.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

102 [6] 98.00-99.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

103 [6] 99.00-100.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

104 [6] 100.00-101.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

105 [6] 101.00-102.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

106 [6] 102.00-103.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

107 [6] 103.00-104.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

108 [6] 104.00-105.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

109 [6] 105.00-106.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

110 [6] 106.00-107.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

111 [6] 107.00-108.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

112 [6] 108.00-109.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

113 [6] 109.00-110.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

114 [6] 110.00-111.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

115 [6] 111.00-112.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

116 [6] 112.00-113.00 sec 5.88 MBytes 49.1 Mbits/sec 0 1.73 MBytes

117 [6] 113.00-114.00 sec 6.00 MBytes 50.5 Mbits/sec 0 1.73 MBytes

118 [6] 114.00-115.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

119 [6] 115.00-116.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

120 [6] 116.00-117.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

121 [6] 117.00-118.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

122 [6] 118.00-119.00 sec 5.88 MBytes 49.3 Mbits/sec 0 1.73 MBytes

123 [6] 119.00-120.00 sec 6.00 MBytes 50.3 Mbits/sec 0 1.73 MBytes

124 -

125 [ID] Interval Transfer Bitrate Retr

126 [6] 0.00-120.00 sec 715 MBytes 50.0 Mbits/sec 28

sender↪→

127 [6] 0.00-120.04 sec 715 MBytes 50.0 Mbits/sec

receiver↪→

128

129 iperf Done.

Listing 37: iperf test result 50 Mb/s

97

E.1.2 100 Mb/s

1 Connecting to host 128.39.145.94, port 5201

2 [6] local 10.0.123.138 port 41706 connected to 128.39.145.94 port 5201

3 [ID] Interval Transfer Bitrate Retr Cwnd

4 [6] 0.00-1.00 sec 11.9 MBytes 100 Mbits/sec 0 1.86 MBytes

5 [6] 1.00-2.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

6 [6] 2.00-3.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

7 [6] 3.00-4.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

8 [6] 4.00-5.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

9 [6] 5.00-6.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

10 [6] 6.00-7.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

11 [6] 7.00-8.00 sec 11.9 MBytes 99.7 Mbits/sec 0 1.86 MBytes

12 [6] 8.00-9.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

13 [6] 9.00-10.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

14 [6] 10.00-11.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

15 [6] 11.00-12.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

16 [6] 12.00-13.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

17 [6] 13.00-14.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

18 [6] 14.00-15.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

19 [6] 15.00-16.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

20 [6] 16.00-17.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

21 [6] 17.00-18.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

22 [6] 18.00-19.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

23 [6] 19.00-20.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

24 [6] 20.00-21.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

25 [6] 21.00-22.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

26 [6] 22.00-23.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

27 [6] 23.00-24.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

28 [6] 24.00-25.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

29 [6] 25.00-26.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

30 [6] 26.00-27.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

31 [6] 27.00-28.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

32 [6] 28.00-29.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

33 [6] 29.00-30.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

34 [6] 30.00-31.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

35 [6] 31.00-32.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

36 [6] 32.00-33.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

37 [6] 33.00-34.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

38 [6] 34.00-35.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

39 [6] 35.00-36.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

40 [6] 36.00-37.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

41 [6] 37.00-38.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

42 [6] 38.00-39.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

43 [6] 39.00-40.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

44 [6] 40.00-41.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

45 [6] 41.00-42.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

46 [6] 42.00-43.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

47 [6] 43.00-44.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

48 [6] 44.00-45.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

49 [6] 45.00-46.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

50 [6] 46.00-47.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

98

51 [6] 47.00-48.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

52 [6] 48.00-49.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

53 [6] 49.00-50.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

54 [6] 50.00-51.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

55 [6] 51.00-52.00 sec 11.9 MBytes 99.7 Mbits/sec 0 1.86 MBytes

56 [6] 52.00-53.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

57 [6] 53.00-54.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

58 [6] 54.00-55.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

59 [6] 55.00-56.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

60 [6] 56.00-57.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

61 [6] 57.00-58.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

62 [6] 58.00-59.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

63 [6] 59.00-60.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

64 [6] 60.00-61.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

65 [6] 61.00-62.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

66 [6] 62.00-63.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

67 [6] 63.00-64.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

68 [6] 64.00-65.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

69 [6] 65.00-66.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

70 [6] 66.00-67.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

71 [6] 67.00-68.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

72 [6] 68.00-69.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

73 [6] 69.00-70.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

74 [6] 70.00-71.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

75 [6] 71.00-72.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

76 [6] 72.00-73.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

77 [6] 73.00-74.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

78 [6] 74.00-75.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

79 [6] 75.00-76.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

80 [6] 76.00-77.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

81 [6] 77.00-78.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

82 [6] 78.00-79.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

83 [6] 79.00-80.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

84 [6] 80.00-81.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

85 [6] 81.00-82.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

86 [6] 82.00-83.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

87 [6] 83.00-84.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

88 [6] 84.00-85.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

89 [6] 85.00-86.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

90 [6] 86.00-87.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

91 [6] 87.00-88.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

92 [6] 88.00-89.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

93 [6] 89.00-90.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

94 [6] 90.00-91.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

95 [6] 91.00-92.00 sec 12.0 MBytes 100 Mbits/sec 0 1.86 MBytes

96 [6] 92.00-93.00 sec 11.9 MBytes 99.8 Mbits/sec 0 1.86 MBytes

97 [6] 93.00-94.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

98 [6] 94.00-95.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

99 [6] 95.00-96.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

100 [6] 96.00-97.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

101 [6] 97.00-98.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

102 [6] 98.00-99.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

99

103 [6] 99.00-100.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

104 [6] 100.00-101.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

105 [6] 101.00-102.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

106 [6] 102.00-103.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

107 [6] 103.00-104.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

108 [6] 104.00-105.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

109 [6] 105.00-106.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

110 [6] 106.00-107.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

111 [6] 107.00-108.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

112 [6] 108.00-109.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

113 [6] 109.00-110.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

114 [6] 110.00-111.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

115 [6] 111.00-112.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

116 [6] 112.00-113.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

117 [6] 113.00-114.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

118 [6] 114.00-115.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

119 [6] 115.00-116.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

120 [6] 116.00-117.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

121 [6] 117.00-118.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

122 [6] 118.00-119.00 sec 12.0 MBytes 101 Mbits/sec 0 1.86 MBytes

123 [6] 119.00-120.00 sec 11.9 MBytes 99.6 Mbits/sec 0 1.86 MBytes

124 -

125 [ID] Interval Transfer Bitrate Retr

126 [6] 0.00-120.00 sec 1.40 GBytes 100 Mbits/sec 0

sender↪→

127 [6] 0.00-120.04 sec 1.40 GBytes 100 Mbits/sec

receiver↪→

128

129 iperf Done.

Listing 38: iperf test result 100 Mb/s

E.1.3 250 Mb/s

1 Connecting to host 128.39.145.94, port 5201

2 [6] local 10.0.123.138 port 49576 connected to 128.39.145.94 port 5201

3 [ID] Interval Transfer Bitrate Retr Cwnd

4 [6] 0.00-1.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

5 [6] 1.00-2.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

6 [6] 2.00-3.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

7 [6] 3.00-4.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

8 [6] 4.00-5.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

9 [6] 5.00-6.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

10 [6] 6.00-7.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

11 [6] 7.00-8.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

12 [6] 8.00-9.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

13 [6] 9.00-10.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

14 [6] 10.00-11.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

15 [6] 11.00-12.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

16 [6] 12.00-13.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

100

17 [6] 13.00-14.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

18 [6] 14.00-15.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

19 [6] 15.00-16.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

20 [6] 16.00-17.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

21 [6] 17.00-18.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

22 [6] 18.00-19.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

23 [6] 19.00-20.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

24 [6] 20.00-21.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

25 [6] 21.00-22.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

26 [6] 22.00-23.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

27 [6] 23.00-24.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

28 [6] 24.00-25.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

29 [6] 25.00-26.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

30 [6] 26.00-27.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

31 [6] 27.00-28.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

32 [6] 28.00-29.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

33 [6] 29.00-30.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

34 [6] 30.00-31.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

35 [6] 31.00-32.00 sec 29.8 MBytes 249 Mbits/sec 0 2.68 MBytes

36 [6] 32.00-33.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

37 [6] 33.00-34.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

38 [6] 34.00-35.00 sec 29.8 MBytes 249 Mbits/sec 0 2.68 MBytes

39 [6] 35.00-36.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

40 [6] 36.00-37.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

41 [6] 37.00-38.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

42 [6] 38.00-39.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

43 [6] 39.00-40.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

44 [6] 40.00-41.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

45 [6] 41.00-42.00 sec 29.8 MBytes 249 Mbits/sec 0 2.68 MBytes

46 [6] 42.00-43.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

47 [6] 43.00-44.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

48 [6] 44.00-45.00 sec 29.6 MBytes 248 Mbits/sec 0 2.68 MBytes

49 [6] 45.00-46.00 sec 30.0 MBytes 252 Mbits/sec 0 2.68 MBytes

50 [6] 46.00-47.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

51 [6] 47.00-48.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

52 [6] 48.00-49.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

53 [6] 49.00-50.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

54 [6] 50.00-51.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

55 [6] 51.00-52.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

56 [6] 52.00-53.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

57 [6] 53.00-54.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

58 [6] 54.00-55.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

59 [6] 55.00-56.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

60 [6] 56.00-57.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

61 [6] 57.00-58.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

62 [6] 58.00-59.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

63 [6] 59.00-60.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

64 [6] 60.00-61.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

65 [6] 61.00-62.00 sec 29.8 MBytes 249 Mbits/sec 0 2.68 MBytes

66 [6] 62.00-63.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

67 [6] 63.00-64.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

68 [6] 64.00-65.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

101

69 [6] 65.00-66.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

70 [6] 66.00-67.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

71 [6] 67.00-68.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

72 [6] 68.00-69.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

73 [6] 69.00-70.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

74 [6] 70.00-71.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

75 [6] 71.00-72.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

76 [6] 72.00-73.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

77 [6] 73.00-74.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

78 [6] 74.00-75.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

79 [6] 75.00-76.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

80 [6] 76.00-77.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

81 [6] 77.00-78.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

82 [6] 78.00-79.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

83 [6] 79.00-80.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

84 [6] 80.00-81.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

85 [6] 81.00-82.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

86 [6] 82.00-83.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

87 [6] 83.00-84.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

88 [6] 84.00-85.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

89 [6] 85.00-86.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

90 [6] 86.00-87.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

91 [6] 87.00-88.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

92 [6] 88.00-89.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

93 [6] 89.00-90.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

94 [6] 90.00-91.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

95 [6] 91.00-92.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

96 [6] 92.00-93.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

97 [6] 93.00-94.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

98 [6] 94.00-95.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

99 [6] 95.00-96.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

100 [6] 96.00-97.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

101 [6] 97.00-98.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

102 [6] 98.00-99.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

103 [6] 99.00-100.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

104 [6] 100.00-101.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

105 [6] 101.00-102.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

106 [6] 102.00-103.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

107 [6] 103.00-104.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

108 [6] 104.00-105.00 sec 29.8 MBytes 249 Mbits/sec 0 2.68 MBytes

109 [6] 105.00-106.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

110 [6] 106.00-107.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

111 [6] 107.00-108.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

112 [6] 108.00-109.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

113 [6] 109.00-110.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

114 [6] 110.00-111.00 sec 29.8 MBytes 249 Mbits/sec 0 2.68 MBytes

115 [6] 111.00-112.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

116 [6] 112.00-113.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

117 [6] 113.00-114.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

118 [6] 114.00-115.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

119 [6] 115.00-116.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

120 [6] 116.00-117.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

102

121 [6] 117.00-118.00 sec 29.8 MBytes 249 Mbits/sec 0 2.68 MBytes

122 [6] 118.00-119.00 sec 29.8 MBytes 250 Mbits/sec 0 2.68 MBytes

123 [6] 119.00-120.00 sec 29.9 MBytes 251 Mbits/sec 0 2.68 MBytes

124 -

125 [ID] Interval Transfer Bitrate Retr

126 [6] 0.00-120.00 sec 3.49 GBytes 250 Mbits/sec 0

sender↪→

127 [6] 0.00-120.04 sec 3.49 GBytes 250 Mbits/sec

receiver↪→

128

129 iperf Done.

Listing 39: iperf test result 250 Mb/s

E.1.4 500 Mb/s

1 Connecting to host 128.39.145.94, port 5201

2 [6] local 10.0.123.138 port 60062 connected to 128.39.145.94 port 5201

3 [ID] Interval Transfer Bitrate Retr Cwnd

4 [6] 0.00-1.00 sec 31.3 MBytes 263 Mbits/sec 14 1.72 MBytes

5 [6] 1.00-2.00 sec 41.4 MBytes 347 Mbits/sec 0 1.74 MBytes

6 [6] 2.00-3.00 sec 41.9 MBytes 351 Mbits/sec 0 1.76 MBytes

7 [6] 3.00-4.00 sec 41.8 MBytes 350 Mbits/sec 0 1.78 MBytes

8 [6] 4.00-5.00 sec 42.0 MBytes 352 Mbits/sec 0 1.79 MBytes

9 [6] 5.00-6.00 sec 42.9 MBytes 360 Mbits/sec 0 1.81 MBytes

10 [6] 6.00-7.00 sec 43.5 MBytes 365 Mbits/sec 0 1.88 MBytes

11 [6] 7.00-8.00 sec 45.5 MBytes 382 Mbits/sec 0 1.96 MBytes

12 [6] 8.00-9.00 sec 47.6 MBytes 400 Mbits/sec 0 2.07 MBytes

13 [6] 9.00-10.00 sec 50.6 MBytes 425 Mbits/sec 0 2.21 MBytes

14 [6] 10.00-11.00 sec 54.2 MBytes 455 Mbits/sec 0 2.38 MBytes

15 [6] 11.00-12.00 sec 58.9 MBytes 494 Mbits/sec 0 2.59 MBytes

16 [6] 12.00-13.00 sec 62.9 MBytes 527 Mbits/sec 0 2.73 MBytes

17 [6] 13.00-14.00 sec 62.6 MBytes 525 Mbits/sec 0 2.73 MBytes

18 [6] 14.00-15.00 sec 63.0 MBytes 528 Mbits/sec 0 2.73 MBytes

19 [6] 15.00-16.00 sec 62.6 MBytes 525 Mbits/sec 0 2.73 MBytes

20 [6] 16.00-17.00 sec 62.4 MBytes 523 Mbits/sec 0 2.73 MBytes

21 [6] 17.00-18.00 sec 62.9 MBytes 527 Mbits/sec 0 2.73 MBytes

22 [6] 18.00-19.00 sec 62.9 MBytes 527 Mbits/sec 0 2.73 MBytes

23 [6] 19.00-20.00 sec 62.4 MBytes 524 Mbits/sec 0 2.73 MBytes

24 [6] 20.00-21.00 sec 63.0 MBytes 528 Mbits/sec 0 2.73 MBytes

25 [6] 21.00-22.00 sec 63.0 MBytes 528 Mbits/sec 0 2.73 MBytes

26 [6] 22.00-23.00 sec 63.0 MBytes 528 Mbits/sec 0 2.73 MBytes

27 [6] 23.00-24.00 sec 62.2 MBytes 522 Mbits/sec 0 2.73 MBytes

28 [6] 24.00-25.00 sec 59.5 MBytes 499 Mbits/sec 1 257 KBytes

29 [6] 25.00-26.00 sec 48.8 MBytes 409 Mbits/sec 0 2.10 MBytes

30 [6] 26.00-27.00 sec 52.2 MBytes 438 Mbits/sec 0 2.27 MBytes

31 [6] 27.00-28.00 sec 55.0 MBytes 461 Mbits/sec 0 2.40 MBytes

32 [6] 28.00-29.00 sec 57.6 MBytes 483 Mbits/sec 0 2.50 MBytes

33 [6] 29.00-30.00 sec 60.6 MBytes 509 Mbits/sec 0 2.58 MBytes

34 [6] 30.00-31.00 sec 62.2 MBytes 522 Mbits/sec 0 2.64 MBytes

103

35 [6] 31.00-32.00 sec 62.6 MBytes 525 Mbits/sec 0 2.68 MBytes

36 [6] 32.00-33.00 sec 62.9 MBytes 528 Mbits/sec 0 2.71 MBytes

37 [6] 33.00-34.00 sec 62.6 MBytes 525 Mbits/sec 0 2.73 MBytes

38 [6] 34.00-35.00 sec 63.0 MBytes 528 Mbits/sec 0 2.73 MBytes

39 [6] 35.00-36.00 sec 63.0 MBytes 528 Mbits/sec 0 2.73 MBytes

40 [6] 36.00-37.00 sec 62.9 MBytes 527 Mbits/sec 0 2.73 MBytes

41 [6] 37.00-38.00 sec 62.4 MBytes 523 Mbits/sec 0 2.73 MBytes

42 [6] 38.00-39.00 sec 63.0 MBytes 528 Mbits/sec 0 2.73 MBytes

43 [6] 39.00-40.00 sec 63.0 MBytes 528 Mbits/sec 0 2.73 MBytes

44 [6] 40.00-41.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

45 [6] 41.00-42.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

46 [6] 42.00-43.00 sec 62.4 MBytes 523 Mbits/sec 0 2.75 MBytes

47 [6] 43.00-44.00 sec 62.8 MBytes 526 Mbits/sec 0 2.75 MBytes

48 [6] 44.00-45.00 sec 62.1 MBytes 521 Mbits/sec 0 2.75 MBytes

49 [6] 45.00-46.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

50 [6] 46.00-47.00 sec 62.5 MBytes 524 Mbits/sec 0 2.75 MBytes

51 [6] 47.00-48.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

52 [6] 48.00-49.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

53 [6] 49.00-50.00 sec 63.0 MBytes 529 Mbits/sec 0 2.75 MBytes

54 [6] 50.00-51.00 sec 62.9 MBytes 527 Mbits/sec 0 2.75 MBytes

55 [6] 51.00-52.00 sec 62.8 MBytes 526 Mbits/sec 0 2.75 MBytes

56 [6] 52.00-53.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

57 [6] 53.00-54.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

58 [6] 54.00-55.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

59 [6] 55.00-56.00 sec 62.8 MBytes 526 Mbits/sec 0 2.75 MBytes

60 [6] 56.00-57.00 sec 62.1 MBytes 521 Mbits/sec 0 2.75 MBytes

61 [6] 57.00-58.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

62 [6] 58.00-59.00 sec 62.4 MBytes 523 Mbits/sec 0 2.75 MBytes

63 [6] 59.00-60.00 sec 63.0 MBytes 529 Mbits/sec 0 2.75 MBytes

64 [6] 60.00-61.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

65 [6] 61.00-62.00 sec 62.8 MBytes 526 Mbits/sec 0 2.75 MBytes

66 [6] 62.00-63.00 sec 62.8 MBytes 526 Mbits/sec 0 2.75 MBytes

67 [6] 63.00-64.00 sec 62.5 MBytes 524 Mbits/sec 0 2.75 MBytes

68 [6] 64.00-65.00 sec 62.9 MBytes 527 Mbits/sec 0 2.75 MBytes

69 [6] 65.00-66.00 sec 62.9 MBytes 527 Mbits/sec 0 2.75 MBytes

70 [6] 66.00-67.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

71 [6] 67.00-68.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

72 [6] 68.00-69.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

73 [6] 69.00-70.00 sec 62.6 MBytes 525 Mbits/sec 0 2.75 MBytes

74 [6] 70.00-71.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

75 [6] 71.00-72.00 sec 62.4 MBytes 523 Mbits/sec 0 2.75 MBytes

76 [6] 72.00-73.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

77 [6] 73.00-74.00 sec 62.9 MBytes 527 Mbits/sec 0 2.75 MBytes

78 [6] 74.00-75.00 sec 62.8 MBytes 526 Mbits/sec 0 2.75 MBytes

79 [6] 75.00-76.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

80 [6] 76.00-77.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

81 [6] 77.00-78.00 sec 63.0 MBytes 528 Mbits/sec 0 2.75 MBytes

82 [6] 78.00-79.00 sec 62.4 MBytes 523 Mbits/sec 0 2.75 MBytes

83 [6] 79.00-80.00 sec 62.8 MBytes 526 Mbits/sec 0 2.75 MBytes

84 [6] 80.00-81.00 sec 60.0 MBytes 503 Mbits/sec 0 2.75 MBytes

85 [6] 81.00-82.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

86 [6] 82.00-83.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

104

87 [6] 83.00-84.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

88 [6] 84.00-85.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

89 [6] 85.00-86.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

90 [6] 86.00-87.00 sec 59.5 MBytes 499 Mbits/sec 0 2.75 MBytes

91 [6] 87.00-88.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

92 [6] 88.00-89.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

93 [6] 89.00-90.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

94 [6] 90.00-91.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

95 [6] 91.00-92.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

96 [6] 92.00-93.00 sec 59.5 MBytes 499 Mbits/sec 0 2.75 MBytes

97 [6] 93.00-94.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

98 [6] 94.00-95.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

99 [6] 95.00-96.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

100 [6] 96.00-97.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

101 [6] 97.00-98.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

102 [6] 98.00-99.00 sec 59.5 MBytes 499 Mbits/sec 0 2.75 MBytes

103 [6] 99.00-100.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

104 [6] 100.00-101.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

105 [6] 101.00-102.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

106 [6] 102.00-103.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

107 [6] 103.00-104.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

108 [6] 104.00-105.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

109 [6] 105.00-106.00 sec 59.5 MBytes 499 Mbits/sec 0 2.75 MBytes

110 [6] 106.00-107.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

111 [6] 107.00-108.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

112 [6] 108.00-109.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

113 [6] 109.00-110.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

114 [6] 110.00-111.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

115 [6] 111.00-112.00 sec 59.5 MBytes 499 Mbits/sec 0 2.75 MBytes

116 [6] 112.00-113.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

117 [6] 113.00-114.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

118 [6] 114.00-115.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

119 [6] 115.00-116.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

120 [6] 116.00-117.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

121 [6] 117.00-118.00 sec 59.5 MBytes 499 Mbits/sec 0 2.75 MBytes

122 [6] 118.00-119.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

123 [6] 119.00-120.00 sec 59.6 MBytes 500 Mbits/sec 0 2.75 MBytes

124 -

125 [ID] Interval Transfer Bitrate Retr

126 [6] 0.00-120.00 sec 6.98 GBytes 500 Mbits/sec 15

sender↪→

127 [6] 0.00-120.04 sec 6.98 GBytes 500 Mbits/sec

receiver↪→

128

129 iperf Done.

Listing 40: iperf test result 500 Mb/s

105

Appendix F

Ansible

F.1 Ansible Playbook

F.1.1 Role: iperf

1 ---

2

3 - name: Create a master-test namespace

4 kubernetes.core.k8s:

5 state: present

6 definition:

7 api_version: v1

8 kind: Namespace

9 name: "master-test" # defining the namespace

10 metadata:

11 name: "master-test"

12 register: iperf_out

13

14 # - name: Print debug

15 # ansible.builtin.debug:

16 # var: iperf_out

17

18 - name: Deploy iperf pod with standard vxlan to Kubernetes

19 kubernetes.core.k8s:

20 state: present

21 namespace: "master-test"

22 src: unbuffer.yml

23

24 # Create iperf deployment then wait for it to run and get ip then start

tcpdump on↪→

25 - name: Wait until iperf-test-1 is up

26 kubernetes.core.k8s_info:

27 api_version: v1

28 kind: Pod

29 namespace: "master-test"

30 label_selectors:

106

31 - app = iperf-test-1

32 register: iperf_pod_list

33 until: iperf_pod_list|json_query('resources[*].status.phase')|unique ==

["Running"]↪→

34

35 - name: Search for all Pods labelled app=iperf2

36 kubernetes.core.k8s_info:

37 kind: Pod

38 label_selectors:

39 - app = iperf-test-1

40 register: iperf_pod_list

41

42 - name: Print podip

43 ansible.builtin.debug:

44 var: iperf_pod_list.resources[0].status.podIP

45

46 - name: Install iperf3 part 1

47 kubernetes.core.k8s_exec:

48 namespace: master-test

49 pod: "{{ iperf_pod_list.resources[0].metadata.name }}"

50 container: iperf-test-1

51 command: apt update

52 register: iperf_out

53 changed_when: iperf_out.rc != 0

54

55 - name: Install iperf3 part 2

56 kubernetes.core.k8s_exec:

57 namespace: master-test

58 pod: "{{ iperf_pod_list.resources[0].metadata.name }}"

59 container: iperf-test-1

60 command: apt install iperf3 -y

61 register: iperf_out

62 changed_when: iperf_out.rc != 0

Listing 41: Tasks for the iperf role

F.1.2 Role: tcpdump

1 ---

2

3 - name: Debug info

4 ansible.builtin.debug:

5 var:

hostvars['localhost']['iperf_pod_list']['resources'][0]['status']['podIP']↪→

6

7 - name: Debug info2

8 ansible.builtin.debug:

9 var:

hostvars['localhost']['iperf_pod_list']['resources'][0]['metadata']['name']↪→

10

107

11 - name: Pause until you can verify updates to an application were

successful↪→

12 ansible.builtin.pause:

13

14 - name: Start tcpdump

15 ansible.builtin.command:

16 cmd: >

17 sudo tcpdump -G {{ dur_in_sec }} -W 1 -i enX0 -s 0

18 -w {{ dest_folder }}/{{ pod_ip }}_{{ cap_file }} not port 22 and host

19 {{ pod_ip }}

20 register: tcpdump_real_out

21 async: 180

22 poll: 0

23

24 # - name: Press enter to start iperf3

25 # ansible.builtin.pause:

26

27 # 128.39.145.94

28

29 - name: Start iperf3 against uia server

30 kubernetes.core.k8s_exec:

31 namespace: master-test

32 pod: "{{ pod_name }}"

33 container: iperf-test-1

34 command: iperf3 -c 128.39.145.94 -b 1000000000 -t 10

35 register: tcpdump_command_status

36 delegate_to: localhost

37

38 - name: Check iperf

39 ansible.builtin.debug:

40 var: tcpdump_command_status

41 when: tcpdump_command_status.rc != 0

42

43 - name: Check tcpdump finished

44 ansible.builtin.async_status:

45 jid: "{{ tcpdump_real_out.ansible_job_id }}"

46 register: tcpdump_job_result

47 until: tcpdump_job_result.finished

48 retries: 100

49 delay: 5

50

51 - name: Compress capture file

52 ansible.builtin.command:

53 cmd: "sudo gzip {{ pod_ip }}_{{ cap_file }}"

54 chdir: "{{ dest_folder }}"

55 register: tcpdump_out

56 changed_when: tcpdump_out.rc != 0

57

58 - name: Change file permission

59 ansible.builtin.command:

60 cmd: sudo chmod 755 {{ dest_folder }}/{{ pod_ip }}_{{ cap_file }}.gz

61 register: tcpdump_out

108

62 changed_when: tcpdump_out.rc != 0

63

64 - name: Copy logs to /tmp/ansible/

65 ansible.builtin.fetch:

66 src: "{{ dest_folder }}/{{ pod_ip }}_{{ cap_file }}.gz"

67 dest: /tmp/ansible/

68 flat: true

69

70 - name: Decompress locally

71 ansible.builtin.command:

72 cmd: "gzip -d {{ pod_ip }}_{{ cap_file }}.gz"

73 chdir: /tmp/ansible

74 register: tcpdump_out

75 changed_when: tcpdump_out.rc != 0

76 delegate_to: localhost

77

78 # - name: Remove files from remote server

79 # ansible.builtin.command:

80 # cmd: sudo rm -rf {{ dest_folder }}/{{ cap_file }}.gz

81 # register: tcpdump_out

82 # changed_when: tcpdump_out.rc != 0

83

Listing 42: Tasks for the tcpdump role

109

	Preface
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Problem statement and Research questions
	Scope and limitations
	Methodology
	Outline

	Background
	The Cloud
	Security and Monitoring

	Kubernetes
	Networking
	Monitoring
	Resource allocation and limitation

	Amazon Web Services
	Elastic Kubernetes Service
	Identity Access Management

	IDS monitoring
	VXLAN
	Infrastructure
	Terraform
	Fluxcd
	Ansible

	Related Work
	Traditional IDS monitoring
	IDS in the cloud
	Sidecars for Network Monitoring in Kubernetes

	Lab environment and testing approach
	AWS
	Terraform

	Kubernetes
	Fluxcd
	The sidecar

	iperf and k6s
	Performance monitoring
	Testing methodology

	Results
	Initial performance test with k6s
	k6s: Confluence

	Speed test with iperf
	Data rate: 50Mb/s
	Data rate: 100Mb/s
	Data rate: 250Mb/s
	Data rate: 500Mb/s

	Discussions
	Lab environment results
	Performance
	Anomalies

	Considerations
	AWS
	Kubernetes

	Final thoughts

	Conclusions
	Future research

	Bibliography
	Terraform
	EKS Cluster
	terraform.tf
	main.tf
	variables.tf
	vpc.tf
	eks-cluster.tf
	ec2.tf
	output.tf

	Fluxcd
	Kustomizations
	sync.yaml
	monitoring.yaml
	flux-dash.yaml
	nginx-controller.yaml
	database.yaml
	confluence.yaml

	Applications
	Kube Prometheus Stack
	Flux dashboard
	Nginx ingress controller

	The sidecar
	Sidecar container
	vxlan.py
	Dockerfile

	k6s
	k6s test file
	test.js

	iperf
	Data rate results
	50 Mb/s
	100 Mb/s
	250 Mb/s
	500 Mb/s

	Ansible
	Ansible Playbook
	Role: iperf
	Role: tcpdump

