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a b s t r a c t

This paper investigates the attitude tracking control problem for uncertain nonlinear rigid body
systems, where both inputs and states are quantized. It is common in networked control systems that
sensor and control signals are quantized before they are transmitted via a communication network. An
adaptive backstepping control algorithm is developed for a class of uncertain multiple-input multiple-
output (MIMO) systems where a class of sector bounded quantizers is considered. It is shown that all
the closed-loop signals are ensured uniformly bounded and tracking is achieved. Further, the tracking
errors are shown to converge towards a compact set containing the origin and the set can be made
small by the choice of the quantization parameters and the control parameters. For illustration of the
proposed control scheme, experiments were conducted on a 2 degrees-of-freedom (DOF) helicopter
system.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Quantized control has gained increasing interest during the
ast decades due to the use of information technology in the
evelopment of modern engineering applications, such as digi-
al control systems and networked control systems. A quantizer
aps a continuous signal into a set of discrete values and in-

roduces nonlinear errors that need to be handled. Quantization
s not only inevitable owing to the widespread use of digital
rocessors, but also useful due to the advantage of reducing
ccupation rate of transmission bandwidth in the communication
f signals, see e.g. [1].
The quantized feedback stabilization problem for linear sys-

ems where the dynamics are precisely known, has been consid-
red in [1–4]. In [1], it was shown that a logarithmic quantizer is
he coarsest one to stabilize a single input linear system, where
he number of control values is finite. This work was extended
n [3] to consider stabilization of multiple input linear systems.

Stabilization of nonlinear systems in presence of quantiza-
ion has been investigated in [5–9]. The main results in [1] was
urther extended to single input nonlinear systems in [5], and
or nonlinear uncertain systems in [6–8], where two different
daptive approaches were used in [6,7], while a robust approach
as considered in [8]. If there are uncertainties to the system,
he quantization problem would become more challenging. Since
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exact system parameters are often unknown for real systems,
adaptive control is a useful approach to deal with such uncer-
tainties, where an online estimation of the parameters can be
provided. The work in [7], where a backstepping-based adaptive
control scheme was presented, was further developed in [9] for
the same stabilization problem to consider a hysteresis quan-
tizer, that compared to a logarithmic quantizer has additional
quantization levels to avoid chattering. Tracking control in the
presence of input quantization has been considered in [10–13]
for uncertain nonlinear systems, in [14] for a group of unmanned
aerial vehicles with unknown parameters, in [15] for under-
actuated autonomous underwater vehicles (AUVs), in [16] for a
2 degrees-of-freedom (DOF) helicopter system. The developed
methods in [5–16] all focused on the input quantization problem,
while the controllers were designed by continuous measures of
the state feedback.

Control of uncertain systems with state or output quantization
has been studied in [17–20] using robust or adaptive approaches.
In [17], an adaptive controller was developed for uncertain linear
systems with quantized outputs. In [18], a robust controller for
a linear multiple-input multiple-output (MIMO) uncertain sys-
tem was designed with quantized output measurements. In [19],
the stabilization problem for uncertain nonlinear systems with
quantized states was investigated, and in [20], the attitude track-
ing control problem of rigid bodies with quantized states was
considered, where in [19,20] adaptive backstepping-based control
algorithms were designed.

Although research on quantized control has received much
attention recent years, most work focus on either input or output
quantization. In practice, the control signal sent to the actua-
tor(s) and the signals sent from sensors to the control module
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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eed to be quantized before transmitted due to the use of dig-
tal processors and considering the accuracy of sensors. Also,
or remotely controlled systems, the control signals and sensor
easurements are shared via a common digital network where

he bandwidth might be limited and it is natural to suppose
hat both input and output signals are quantized. Some work
hat considered both input and state quantization are [21–27].
n [21], the quantization effects on remotely controlled single-
nput single-output (SISO) linear systems were studied, where
he stabilization problem was transformed into a robust control
roblem. Sliding mode controllers were developed in [22,23]
or trajectory tracking in the presence of both input and state
uantization, of AUVs in [22], and of mechanical systems in [23].
eural-network based adaptive tracking controllers in presence
f quantization were designed in [24] for uncertain nonholonomic
obile robots, and in [25] for uncertain MIMO nonlinear systems.
daptive backstepping based control schemes were developed
n [26,27], where the attitude tracking control problem for uncer-
ain rigid bodies was investigated in [26], and a class of uncertain
onlinear systems was considered in [27].
This paper investigates the attitude tracking control problem

or a class of uncertain rigid body systems with quantization for
oth inputs and states. The system is modeled as a nonlinear
IMO system, with challenges in controller design due to its
onlinear behavior and uncertain parameters. A quantizer is used
or the signals in order to reduce the communication burden,
nd a new adaptive backstepping based control scheme is de-
eloped to achieve tracking of a given reference signal, where
he tracking error is shown to converge towards a residual. The
roposed control scheme is implemented by experiments on a 2-
OF helicopter system. The main contributions of this paper are
s follows.

• The attitude tracking control problem of uncertain nonlin-
ear rigid body systems is investigated where both inputs
and states are quantized. As far as we are concerned, this
is the first paper that solves this problem with uncertain
parameters and where both inputs and states are quantized
by a class of quantizers, that satisfies the sector bounded
property. A new adaptive backstepping-based controller is
developed and a new approach to stability analysis is pro-
posed. By choosing proper design parameters, all signals in
the closed-loop system are ensured bounded and tracking is
achieved.

• Note that some techniques are presented in [26] to handle
the uniform quantization, where the quantization error is
bounded by a constant. By contrast, a more general quan-
tizer is considered in this paper. Since the quantization
errors depend on the inputs of quantizers, they cannot be
ensured bounded automatically. Several difficulties are in-
troduced both in the control design and stability analysis
for MIMO uncertain systems due to the fact that the quan-
tization errors are not bounded by constants. Instead the
quantization error is linearly dependent on the input to the
quantizer, and is the main challenge to be handled. Other
challenges:

– Only the quantized states can be used to construct the
control input and the virtual controller.

– Since the virtual controllers are discontinuous after
quantization, the derivative cannot be computed as
is normally done in the standard backstepping proce-
dure. To overcome the difficulty, differentiable virtual
controls are designed by assuming that the system has
no quantization. Their partial derivatives multiplied by
the quantized signals are then utilized to complete the

design of virtual controls.

2

– The effects of both input and state quantization in-
troduces several residual terms that need to be domi-
nated.

• By well establishing the relations between the input sig-
nals and error states and functions of continuous signals
and quantized signals, the stability of the closed-loop sys-
tem equilibrium can be achieved by choosing proper design
parameters.

. Mathematical model and problem statement

.1. Notations

Vectors are denoted by small bold letters and matrices with
apitalized bold letters. The symbol ωc

b,a denotes angular velocity
of frame a relative to frame b, expressed in frame c; Rb

a is the
rotation matrix from frame a to frame b; the cross product op-
erator × between two vectors a and b is written as S(a)b where
S is skew-symmetric; λmax(·) and λmin(·) denotes the maximum
nd minimum eigenvalue of the matrix (·), and ∥ · ∥ denotes
he L2-norm and induced L2-norm for vectors and matrices,
espectively.

.2. Problem statement

For systems where data transmission are transferred through
common communication network, quantization errors are in-

roduced due to the limited communication rate of the network.
or low resolution, these errors cannot be ignored, and must be
onsidered in the analysis and controller design since it will affect
he performance and stability of the system.

We consider a control system as shown in Fig. 1, where the
nputs u(t) and the states ε(t), ω(t) are quantized at the encoder
ide to be sent over a network. The network is assumed noiseless,
o that the quantized signals uQ (t), εQ (t), ωQ (t) are recovered
fter transmission.
The control problem is to design a control law by utilizing only

uantized measurement of the states, so that tracking of a desired
ttitude is achieved.

.3. Rigid body model

The orientation of a rigid body in frame b, relative to an inertial
rame i, can be described by a unit quaternion [28–30], q =

η, ε1, ε2, ε3]
⊤

= [η, ε⊤
]
⊤

∈ S3
= {x ∈ R4

: x⊤x = 1} that
s a complex number, where η = cos(υ/2) ∈ R is the real part
and ε = k sin(υ/2) ∈ R3 is the imaginary part, where υ is the
Euler angle and k is the Euler axis, and S3 is the non-Euclidean
three-sphere. The kinematic and dynamic equations for the rigid
body are defined as

q̇ = T (q)ω, (1)

J ω̇ = −S(ω)(Jω) + Φ(ε, ω)⊤θ + uQ , (2)

where the angular velocity ωb
i,b = ω ∈ R3, the inertia matrix

J ∈ R3×3 is positive definite and invertible, the vector θ ∈ Rn

is unknown and constant, the matrix Φ ∈ Rn×3 are known
nonlinear functions, and where we have

T (q) =
1
2

[
−ε⊤

ηI + S(ε)

]
∈ R4×3. (3)

The matrix I denotes the identity matrix and S(·) is the skew-
symmetric matrix given by

S(ε) =

[ 0 −ε3 ε2
ε3 0 −ε1

]
. (4)
−ε2 ε1 0
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Fig. 1. Control system with input and state quantization over a network.
w
2

w

The orientation between two frames can be described by a rota-
tion matrix given as

R(q) = I + 2ηS(ε) + 2S2(ε), (5)

where R ∈ SO(3) that is a special orthogonal group of order three,
and has the property

SO(3) = {R ∈ R3×3
: R⊤R = I, det(R) = 1}. (6)

The mapping R : S3
→ SO(3) is everywhere a local diffeomor-

phism, but globally two-to-one, where R(q) = R(−q) [31]. The
time derivative of a rotation matrix can be expressed as [30]

Ṙa
b = Ra

bS
(
ωb

a,b

)
= S

(
ωa

a,b

)
Ra

b. (7)

Attitude and angular velocities are assumed to be measurable.

2.4. Quantizer

In this paper, we consider a class of quantizers satisfying the
following inequality [32]

|yQ − y| = |d| ≤ δ|y| + ymin, (8)

where d is the quantization error, and 0 ≤ δ < 1 and ymin > 0
are quantization parameters. If δ = 0, the quantization error will
only depend on ymin, and so the quantization error is bounded by
a constant. When 0 < δ < 1, the quantization error also depends
on the input to the quantizer and is a sector bounded quantizer.

The quantized signals are modeled as

Q (u(t)) = uQ (t), (9)

Q (ε(t)) = εQ (t), Q (ω(t)) = ωQ (t), (10)

where Q (·) is a quantizer, u(t) ∈ R3 are the control inputs,
uQ (t) = [uQ

1 uQ
2 uQ

3 ]
⊤ are the quantized inputs, ε ∈ R3 and

ω ∈ R3 are the measured states, and εQ (t) = [ε
Q
1 ε

Q
2 ε

Q
3 ]

⊤ and
ωQ (t) = [ω

Q
1 ω

Q
2 ω

Q
3 ]

⊤ are the quantized states, where each vector
element satisfies (8) and so

∥uQ
− u∥ = ∥du∥ ≤ ∥δu∥ ∥u∥ + ∥umin∥

∆
= δu∥u∥ + umin, (11)

∥ωQ
− ω∥ = ∥dω∥ ≤ ∥δω∥ ∥ω∥ + ∥ωmin∥

∆
= δω∥ω∥ + ωmin, (12)

∥εQ
− ε∥ = ∥dε∥ ≤ ∥δε∥ ∥ε∥+∥εmin∥≤∥δε∥+∥εmin∥

∆
= δε,

(13)

where in (13), the unity property of the unit quaternion is used.
Most practical quantizers satisfy the property in (8), such as

a uniform-, a logarithmic- and a logarithmic-uniform quantizer,

and will be presented next.

3

Fig. 2. Map of the uniform quantizer Qu(y) for y > 0.

2.4.1. Uniform quantizer
A uniform quantizer can be described as [33]

Qu(y) =

{
yi sgn(y), yi − l

2 < |y| ≤ yi + l
2

0, |y| ≤ y0
, (14)

here y0 > 0 and y1 = y0 +
l
2 , yi = yi−1 + l with i =

, 3, . . . , l is the length of the quantization interval and sgn(·)
is the sign function. The uniform quantization Qu(y) is in the set
U = {0, ± yi}. The quantization error is bounded by a positive
constant ymin = max{y0, l/2}, and satisfies (8) with δ = 0. A map
of the uniform quantizer (14) for y > 0 is shown in Fig. 2. The
uniform quantizer has equal quantization levels and is optimal
for uniformly distributed signals.

2.4.2. Logarithmic quantizer
A logarithmic quantizer is defined as [33]

Qlog(y) =

{
yi sgn(y),

yi
1+δ

< |y| ≤
yi

1−δ

0, |y| ≤ ymin,
(15)

here ymin =
y0
1+δ

determines the size of the dead-zone for
Qlog(y), 0 < δ < 1, y0 > 0, yi = ρ(1−i)y0, with i = 1, 2, . . .,
and parameter ρ =

1−δ
1+δ

. The parameter ρ can be regarded as a
measure of the quantization density, where smaller values of ρ
implies that the quantizer is coarser. The quantized signal Qlog(y)
is in the set U = {0, ±yi} and satisfies the property in (8). A map
of the logarithmic quantizer (15) for y > 0 is shown in Fig. 3. The
logarithmic quantizer has unequal quantization levels, and is use-
ful where the signals are more concentrated near the equilibrium
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Fig. 3. Map of the logarithmic quantizer Qlog(y) for y > 0.

Fig. 4. Map of the logarithmic-uniform quantizer Qlu(y) for y > 0.

r have higher resolution around the equilibrium, e.g. for speech
ignal compression, image processing, etc. Several remarks about
he logarithmic quantizer can be found in [7,34,35].

.4.3. Logarithmic-uniform quantizer
A logarithmic-uniform quantizer combines a uniform quan-

izer and a logarithmic quantizer and is defined as [32]

lu(y) =

{
Qlog(yth) + Qu (y − yth) , |y| ≥ yth

Qlog(y) |y| < yth
, (16)

here yth is a positive constant specified by designer denoting
he threshold to switch between the logarithmic and uniform
uantizer. The uniform quantizer, Qu, is defined in (14) and the
ogarithmic quantizer, Qlog, is defined in (15). The quantizer Qlu(y)
akes advantage of a logarithmic quantizer having high resolution
lose to the origin, and switch to a uniform quantizer for higher
alues, and satisfies (8) with δ = 0 and ymin ≥

l
2 . A map of the

ogarithmic-uniform quantizer (16) for y > 0 is shown in Fig. 4.

2.5. Control objective

We want to track a given desired attitude qi,d = qd and a
desired angular velocity ωi

i,d = ωd where the kinematic equation

q̇d = T (qd)ω
d
i,d =

1
[

−ε⊤

d

]
ωd, (17)
2 ηdI − S(εd)

4

is satisfied. The tracking error e, is given by the quaternion
roduct

= q̄i,d ⊗ qi,b =

[
η̃

ε̃

]
=

[
ηdη + ε⊤

d ε
ηdε − ηεd − S(εd)ε

]
∈ S3, (18)

here q̄ = [η − ε⊤
]
⊤ is the inverse rotation given by the

omplex conjugate. If qi,b = qi,d, then e = [±1 0⊤

3 ]
⊤ where

3 is the zero vector of dimension three. Since there exist two
quilibria using the quaternion representation, we conclude that
lobal stability cannot be achieved. Physically e and −e represent
he same attitude, only rotated ±2π about an axis relative to each
ther, but mathematically the two equilibria are distinct.
The relative error kinematics is

˙ = T (e)ωe, (19)

here T (·) is defined in (3), and the angular velocity error

e = ω − Rb
i ωd. (20)

The control objective is to design a control law for u(t) =

(εQ , ωQ ) by utilizing only the quantized states εQ and ωQ to
rive ε̃ and ωe towards zero and where all the signals in the
losed-loop system are uniformly bounded. To achieve the objec-
ive, the following assumptions are imposed.

ssumption 1. The desired attitude, angular velocity and an-
ular acceleration, qd(t), ωd(t) and ω̇d(t) are known, piecewise
ontinuous and bounded, where ∥ ωd(t)∥ < kωd and ∥ ω̇d(t)∥ <

ω̇d ∀t ≥ t0 where kωd , kω̇d > 0.

ssumption 2. The unknown parameter vector θ is bounded by
θ∥ ≤ kθ , where kθ is a positive constant. Also θ ∈ Cθ , where Cθ

s a known compact convex set.

ssumption 3. The function Φ satisfy a locally Lipschitz condi-
ion such that

Φ(x1, y1) − Φ(x2, y2)∥ ≤ L1∥x1 − x2∥ + L2∥y1 − y2∥, (21)

here L1 and L2 are positive constants, and x(·), y(·) ∈ R3 are real
ectors.

ssumption 4. sgn(η̃(t0)) = sgn(η̃(t)) ∀t ≥ t0.

emark 1. These assumptions are reasonable for most practi-
al systems. Assumption 1 ensures that the reference signal is
ounded in t , and is a standard condition for attitude tracking
ontrol problems, see e.g [36–38]. Since the vector θ has constant
ector elements, Assumption 2 holds, knowing the bounds for
ach vector element. Assumption 3 is a fairly mild assumption to
nsure the existence and uniqueness of solutions for the system
2) and applies for a broad class of practical systems, where
imilar assumptions are made in e.g [19,27]. By Assumption 4,
he equilibrium point that initially are closest is chosen and kept
hroughout the tracking maneuver.

. Controller design

In this section we will design adaptive feedback control laws
or the rigid body using backstepping technique in [39]. Since the
esign of an adaptive controller with quantized signals is based
n the design with continuous measurement of the signals, we
tart by the case of continuous signals before proceeding to the
ase of quantized signals.
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.1. Continuous signals

We here consider the case that the signals are not quantized.
irst, introducing a change of coordinates

1± =

[
1 ∓ η̃

ε̃

]
, (22)

z2 = ωe − α, (23)

here z1± is an error vector, which shifts the equilibria to the
origin [40], where z1+ is for the positive equilibrium point when
η̃(t0) ≥ 0, and z1− is for the negative equilibrium point when
η̃(t0) < 0, and where α is a virtual controller chosen as

α = −C1Gz1± ∈ R3, (24)

here C1 ∈ R3×3 is a positive definite matrix and

G(e)⊤ ∆
=

[
±ε̃⊤

η̃I + S(ε̃)

]
∈ R4×3. (25)

emark 2. By introducing the change of coordinates z1± we
re avoiding that one of the mathematical representations of a
iven attitude is left unstable. The initial condition of η̃ given by
ssumption 4 is also helpful in the control strategy, where we
hoose a target equilibrium point before we start the maneuver.
f we were considering that only one of the equilibria was stable,
he other would be unstable. Then, if we initially were close to
he unstable equilibrium point, we would need a large rotation
o reach the stable equilibrium point. We are thus avoiding the
roblem of unwinding since we now are regulating towards the
losest equilibrium point, i.e the equilibrium point which requires
he shortest rotation and thus minimizing the path length.

emark 3. By choosing a target equilibrium point prior to the
maneuver we will minimize the path length, but not necessarily
the input energy. If there is an initial velocity in the opposite
direction to the desired rotation it might be more efficient to
converge towards the equilibrium that is further away to save
energy [40].

For ease of notation we now denote z1 = z1±. The derivative
of (22)–(23), inserting the dynamics from (2) is given as

ż1 =
1
2
G⊤ωe = −

1
2
G⊤C1Gz1 +

1
2
G⊤z2, (26)

J ż2 = − S(ω)(Jω) + Φ⊤θ + uQ
+ J

(
S(ω)Rb

i ωd − Rb
i ω̇d − α̇

)
,

(27)

here the derivative of (24) is

˙ = ∓
1
2
C1 [η̃I + S(ε̃)]ωe, (28)

where we have used that Gz1 = ±ε̃. Since the inputs are not
quantized, we have uQ

= u, and an adaptive controller and
parameter update law can be designed as

u = − Gz1 − C2z2 − Φ⊤θ̂ + S(Rb
i ωd)(Jω)

+ S(α)(Jω) − J
(
S(ω)Rb

i ωd − Rb
i ω̇d − α̇

)
, (29)

˙̂
θ = ΓΦz2, (30)

here C2 ∈ R3×3,Γ ∈ Rn×n are positive definite matrices, and
he vector θ̂ is the estimated value of θ. A Lyapunov function
andidate is chosen as

(z1, z2, θ̃, t) = z⊤z1 +
1
z⊤Jz2 +

1
θ̃

⊤

Γ−1θ̃, (31)
1 2 2 2
5

where θ̃ = θ − θ̂ is the unknown parameter error. By inserting
(29)–(30) in the derivative of (31) yields

V̇ = − z⊤

1 G
⊤C1Gz1 + z⊤

1 G
⊤z2 + z⊤

2

[
−S(ω)(Jω) + Φ⊤θ + u

+J
(
S(ω)Rb

i ωd − Rb
i ω̇d − α̇

)]
− θ̃

⊤

Γ−1 ˙̂
θ

= − z⊤

1 G
⊤C1Gz1 − z⊤

2

[
S(ω − α − Rb

i ωd)(Jω)
]
− z⊤

2 C2z2
= − z⊤

1 G
⊤C1Gz1 − z⊤

2 C2z2, (32)

here we have used the fact that z⊤

2 S(z2) = 0. Then it fol-
ows that asymptotic tracking is achieved and all signals in the
losed-loop system are uniformly bounded.

.2. Quantized signals

Now we consider the case that both the inputs and the states
re quantized, and satisfy the sector bounded property in (8).
ince only the quantized states εQ , ωQ are measured, the quan-
ized value of η is calculated as
Q

= ±

√
1 − (εQ )⊤εQ , (33)

here the quantized attitude is given by qQ
= [ηQ , (εQ )⊤]

⊤.

emark 4. The value of ηQ can be calculated based on the value
f εQ and knowledge of the sign of η(t0) and the assumption of
ign continuity of η(t) based on derivative. If we are close to, or
t η = 0, we might end up with (εQ )⊤εQ > 1, and a scaling is
eeded to ensure we have a unit quaternion.

The quantization error of the quaternion can be expressed as

q = q̄i,b ⊗ qi,Q =

[
dη

d ε̄

]
=

[
ηηQ

+ ε⊤εQ

ηεQ
− ηQε − S(ε)εQ

]
, (34)

here d ε̄ is bounded by ∥d ε̄∥ ≤ kεδε from (13) and where kε > 1
s a positive constant, and dη is bounded from the unity property
f unit quaternion. If qQ

= q and there is no quantization error,
hen dq = [1 0 0 0]⊤. The tracking error with the quantized value
f the unit quaternion is given by

Q
=

[
η̃Q

ε̃Q

]
=

[
ηdη

Q
+ ε⊤

d εQ

ηdε
Q

− ηQεd − S(εd)εQ

]
, (35)

nd can also be described by

Q
= qd,b ⊗ qb,Q = e ⊗ dq

∆
=

[
η̃Q

ε̃ + d ε̃

]
, (36)

here the value of d ε̃ depends on the quantization error that is
ounded by (13), and if there is no quantization error, d ε̃ = 0.
he adaptive controller and parameter update law are designed
s
Q (t) = u(t) + du(t), (37)

u = − GQ zQ1 − C2zQ2 − (ΦQ )⊤θ̂ + S(RQ
i ωd)(JωQ )

+ S(αQ )(JωQ ) − J
(
S(ωQ )RQ

i ωd − RQ
i ω̇d − ᾱQ )

, (38)
˙̂
θ = Proj{ΓΦQ zQ2 }, (39)

here Proj{·} is the projection operator given in [39] and where

zQ1 =

[
1 ∓ η̃Q

ε̃Q

]
, (40)

zQ2 = ωQ
e − αQ , (41)

(eQ )⊤ =

[
±(ε̃Q )⊤

η̃Q I + S(ε̃Q )

]
, (42)

αQ
= − C1GQ zQ1 = ∓C1ε̃

Q
, (43)

Q Q Q
Φ = Φ(ε , ω ), (44)
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ᾱQ ∆
= ∓

1
2
C1

[
η̃Q I + S(ε̃Q )

]
ωQ

e , (45)

ωQ
e = ωQ

− RQ
i ωd, (46)

RQ
i = RQ

b R
b
i , (47)

here RQ
b is the rotation due to the quantization error. The

rojection operator is ensuring that the estimates are nonzero
nd within known bounds, that is ∥θ̂∥ ≤ kθ . A function ᾱQ is used
n (45), which is designed as if the states were not quantized. See
.g. [remark 7] in [19] for a note about this design.

. Stability analysis

To analyze the closed-loop stability, we first establish some
reliminary results as stated in the following Lemmas, and with
roofs provided in Appendix A–Appendix D, respectively. The re-
ults in this section are applicable for the quantizers satisfying the
ector bounded property in (8), including the uniform quantizer
n Section 2.4.1, the logarithmic quantizer in Section 2.4.2, and
he logarithmic-uniform quantizer in Section 2.4.3.

emma 1. The virtual control law α, the output ω and angular
elocity error ωe are bounded by the following inequalities:

∥α∥ ≤ λmax(C1), (48)

ωe∥ ≤ λmax(C1) + ∥z∥, (49)

∥ω∥ ≤ kω + ∥z∥, (50)

here z = [z⊤

1 , z⊤

2 ]
⊤, and

kω
∆
= λmax(C1) + kωd . (51)

Lemma 2. The effects of state quantization are bounded by the
following inequalities:

(i) ∥RQ
i − Rb

i ∥ ≤ δεkR, (52)

(ii) ∥GQ zQ1 − Gz1∥ ≤ δεkε, (53)

(iii) ∥αQ
− α∥ ≤ δεkα, (54)

(iv) ∥ωQ
− ω∥ ≤ δωkω + ωmin + δω∥z∥, (55)

(v) ∥ωQ
e − ωe∥ ≤ δεkRkωd + δωkω + ωmin + δω∥z∥, (56)

(vi) ∥zQ2 − z2∥ ≤ δεkz2 + δωkω + ωmin + δω∥z∥, (57)

(vii) ∥ᾱQ
−α̇∥ ≤ δεkᾱ1 + δωkᾱ2 + ωminkᾱ3 + λmax(C1)2

+(λmax(C1) + δω)∥z∥, (58)

(viii) ∥ΦQ
− Φ∥ ≤ δεL1 + δωL2kω + ωminL2 + δωL2∥z∥, (59)

where

kR
∆
= 2kε + 2k2εδε, (60)

kα
∆
= λmax(C1)kε, (61)

kz2
∆
= kRkωd + kα, (62)

kᾱ1
∆
=

1
2
λmax(C1)kRkωd , (63)

ᾱ2
∆
=

1
2
λmax(C1)kω, (64)

ᾱ3
∆
=

1
2
λmax(C1), (65)

re positive constants.

emma 3. The effect of input quantization is bounded by the
ollowing inequality:

uQ
− u∥ ≤ δ

(
δ k +δ k +ω k +k

)
+u
u ε u1 ω u2 min u3 u4 min k

6

+δu
(
δεku5 + δωku6 +ku7

)
∥z∥, (66)

where

ku1
∆
=kε + λmax(C2)kz2 + kθL1 + λmax(J )kα (δωkω + ωmin + kω)

+ λmax(J )kᾱ1 , (67)

u2
∆
=λmax(C2)kω + L2kωkθ

+ λmax(J )
(
2kωdkω + λmax(C1)kω + kᾱ2

)
, (68)

u3
∆
=λmax(C2)+L2kθ +λmax(J )

(
2kωd +λmax(C1)+kᾱ3

)
, (69)

u4
∆
=1 + kθ (1 + kω) + λmax(J )

(
2kωdkω + λmax(C1)kω + kω̇d

)
+

3
2
λmax(J )λmax(C1)2, (70)

u5
∆
=λmax(J )kα, (71)

u6
∆
=λmax(C2)+L2kθ +λmax(J )

(
2kωd +δεkα+λmax(C1)+1

)
, (72)

u7
∆
=λmax(C2)+kθ +λmax(J )

(
2kωd +

5
4
λmax(C1)

)
, (73)

re positive constants.

emma 4. The following inequality holds:
1
2
λmin(C1)z⊤

1 z1 ≤ z⊤

1 G
⊤C1Gz1. (74)

By using the properties of Lemmas 1 and 2, we can show the
ollowing inequalities,

(ω)(Jω) − S(RQ
i ωd)(JωQ ) − S(αQ )(JωQ )

≤ S(ω)(Jω) − S(Rb
i ωd)(Jω) − S(α)(Jω)

+ λmax(J )
[
(δεkRkωd + δεkα)∥ωQ

∥ + (kωd + ∥α∥)∥dω∥
]

≤ S(z2)(Jω)+λmax(J )
[
(kωd +λmax(C1))(δωkω + ωmin+δω∥z∥)

+ (δεkRkωd + δεkα)(δωkω + ωmin + δω∥z∥ + kω + ∥z∥)
]

∆
= S(z2)(Jω)+δεkT1 +δωkωkT2 +ωminkT2 +

(
δεkT3 +δωkT2

)
∥z∥,

(75)

here

T1
∆
= λmax(J )

(
kRkωd + kα

)
(kω + δωkω + ωmin) , (76)

T2
∆
= λmax(J )

(
kωd + λmax(C1)

)
, (77)

T3
∆
= λmax(J )

(
kRkωd + kα

)
(1 + δω) , (78)

nd

S(ω)Rb
i −S(ωQ )RQ

i ∥

≤ ∥ω∥δεkR + ∥dω∥

δεkωkR+δωkω + ωmin + (δεkR + δω) ∥z∥. (79)

e now state our main result in the following theorem.

heorem 1. Consider the closed-loop adaptive system consisting
f the plant (26)–(27), the quantized inputs and states (9)–(10) sat-
sfying (11)–(13), the adaptive controller (37)–(38), the parameter
pdate law (39) and Assumptions 1–4. If the gain matrices C1 and
2 and quantization parameters are chosen to satisfy

c0
2

− δV2 ≥ k > 0, (80)

where c0 = min{
1
2λmin(C1), λmin(C2)}, k is a positive constant, and

V2 = δεkV1+δωkV2+δu
(
δεku5 +δωku6 +ku7

)
+λmax(J )λmax(C1), (81)

here
∆
= k + λ (J )k k , (82)
V1 T3 max R ωd
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i

V

k

k

k

V2
∆
= λmax(C2) + kT2 + λmax(J )

(
kωd + 1

)
+ kΦ4 , (83)

then, all signals in the closed-loop system are ensured to be uniformly
bounded. The L2-norm of the error states is ultimately bounded by

∥z(t)∥ ≤

√
δQ

k
, (84)

here

δQ =
1
2c0

δ2V1 + δV0 , (85)

V0 =δεkΦ1 + δωkωkΦ2 + ωminkΦ2 , (86)

V1 = δεkV3 +δωkV4 +ωminkV5 + δu
(
δεku1 +δωku2 +ωminku3 + ku4

)
+umin + λmax(J )λmax(C1)2, (87)

V3
∆
=λmax(C2)kz2 +kε+kT1+λmax(J )

(
kωkRkωd+kRkω̇d +kᾱ1

)
+kΦ3 ,

(88)

V4
∆
=kω

(
λmax(C2) + kT2 + λmax(J )kωd

)
+ λmax(J )kᾱ2 + kΦ5 , (89)

V5
∆
=λmax(C2) + kT2 + λmax(J )kωd + λmax(J )kᾱ2 + kΦ4 . (90)

racking of a given reference signal is achieved, with a bounded
rror.

roof. We choose a Lyapunov function candidate

(z1, z2, θ̃, t) = z⊤

1 z1 +
1
2
z⊤

2 Jz2 +
1
2
θ̃

⊤

Γ−1θ̃. (91)

y following the control design in (37)–(39), the derivative of (91)
s given as
˙ = − z⊤

1 G
⊤C1Gz1 + z⊤

1 G
⊤z2 + z⊤

2

[
−S(ω)(Jω) + Φ⊤θ + uQ

+ J
(
S(ω)Rb

i ωd − Rb
i ω̇d − α̇

)]
− θ̃

⊤

Γ−1 ˙̂
θ

≤ − z⊤

1 G
⊤C1Gz1 − z⊤

2 C2zQ2 + z⊤

2

(
Gz1 − GQ zQ1

)
+ z⊤

2

[
−S(ω)(Jω) + S(RQ

i ωd)(JωQ ) + S(αQ )(JωQ )
]

+ z⊤

2 J
[
S(ω)Rb

i − S(ωQ )RQ
i

]
ωd

+ z⊤

2 J
(
RQ

i − Rb
i

)
ω̇d + z⊤

2 J (ᾱ
Q

− α̇)

+ z⊤

2 du +
[
z⊤

2 (Φ
⊤θ − (ΦQ )⊤θ̂) − θ̃

⊤

ΦQ zQ2
]
. (92)

The last terms in (92) satisfy

z⊤

2 (Φ
⊤θ − (ΦQ )⊤θ̂) − θ̃

⊤

ΦQ zQ2
=θ⊤

Φz2 − θ⊤
ΦQ z2 + θ̃

⊤

ΦQ z2 − θ̃
⊤

ΦQ zQ2
≤∥θ∥ ∥Φ − ΦQ

∥ ∥z2∥ + ∥θ̃∥ ∥ΦQ
∥ ∥z2 − zQ2 ∥

≤kθ∥Φ − ΦQ
∥ ∥z∥+kθ (1 + ∥ω∥+∥Φ − ΦQ

∥)∥z2 − zQ2 ∥

≤δεkΦ1 + δωkωkΦ2 + ωminkΦ2

+
(
δεkΦ3 + δωkΦ5 + ωminkΦ4

)
∥z∥ + δωkΦ4∥z∥

2, (93)

where the properties from Lemmas 1–2 are used, and where

kΦ1
∆
= kθL1

(
δεkz2 + δωkω + ωmin

)
+ (kθ + kθkω) kz2 , (94)

Φ2
∆
= kθL2

(
δεkz2 + δωkω + ωmin

)
+ (kθ + kθkω) , (95)

Φ3
∆
= kθL1 (1 + δω) + kθkz2 , (96)

Φ4
∆
= kθ (1 + L2 + L2δω) , (97)

kΦ5
∆
= kΦ2 + kωkΦ4 . (98)

By using the properties from Lemmas 1–4 together with (75), (79)
and (93) and using Young’s inequality, we have

V̇ ≤ − c ∥z∥2
+ δ + δ ∥z∥ + δ ∥z∥2
0 V0 V1 V2

7

Fig. 5. Quanser Aero helicopter system connected with computer.

≤ −

( c0
2

− δV2

)
∥z∥2

+
1
2c0

δ2V1 + δV0

≤ − k∥z∥2
+ δQ < 0, ∀∥z∥ >

√
δQ /k. (99)

This shows that the ultimate bound for z(t) satisfies (84) un-
der condition (80). Since z is bounded, then by Lemma 2, zQ
is bounded. Then the estimated parameter vector θ̂ is ensured
bounded by the projection operator (39). Since z is bounded, then
by Lemmas 1–3 and the property of unity of the unit quaternion,
all signals in the closed loop are ensured bounded. □

Remark 5. The quantization parameters should be chosen to
guarantee the stability and control performances of the attitude
tracking control system, and (80) give some insight to this. Since
both the control signals and the states are shown to be bounded,
the required number of quantization levels are finite and only
a finite number of quantization levels are required to stabilize
the system. It can be observed from (85)–(87) that the upper
bound of the errors in the sense of (84) can be decreased if
the quantization parameters δ(·), ωmin and umin are decreased,
while all design parameters C (·) are kept unchanged. The choice of
quantization parameters will depend on the application and the
available data-rate for the communication network.

Remark 6. A logarithmic quantizer has a better resolution close
to zero. Since we are considering a tracking problem where the
states are quantized and not the error states, this would also
imply that the error from quantization will be larger if the ref-
erence signal is far from the origin. For tracking of a reference
signal further away from the equilibrium, one option is to use
a logarithmic-uniform quantizer, described in Section 2.4.3, for
the state signals. For the stability analysis, this only imply that
δω = 0, and the value of δε is smaller, which again implies that
the error signals will converge towards a smaller compact set.

Remark 7. Time-delays in the communication channels have
significant effects in networked control systems, where the pres-
ence of delays may result in a poor performance and can also
lead to instability, see e.g. [4,34]. Extending present results to
handle both quantization and time-delay is nontrivial, and is an
interesting problem to investigate further.
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Table 1
Helicopter parameters.
Symbol Value Units

J diag(0.0218, 0.0217, 0.0218) kgm2

m 1.075 kg
g 9.81 m/s2

Rg
b [0 0 − 0.0038]⊤ m

5. Experimental results

To illustrate the presented adaptive control scheme, we im-
lemented the controller on the Quanser Aero helicopter system,
hown in Fig. 5. This is a two-rotor laboratory equipment for
light control-based experiments. With a horizontal position of
he main thruster and a vertical position of the tail thruster, this
esembles a helicopter with two propellers driven by two DC
otors. The helicopter is a MIMO system with 2 DOF, and can

otate around two axes where each input affects both rotational
irections. The dynamic equation for the helicopter model is
efined as

ω̇ = −S(ω)(Jω) + Φ(ε, ω)⊤θ + uQ
− g(q) + τg , (100)

where g(q) = −S(rbg )R
b
i f

i
g ∈ R3, rbg = [xg yg zg ]⊤ is the distance

from the origin to the center of mass, f ig = [0 0 − mg]
⊤, m is

he mass of the rigid body, and g is the gravitational acceleration.
he torque g(q) is caused by the gravitational force, because
he rotation of the helicopter is not about the center of mass.
e assume that this torque can be compensated for directly by
easurements of q, where τg = g(q), and is not sent over the
etwork. The mathematical model is then described by (1)–(2),
nd the system receives the driving toques τ = uQ

+ τg . The
parameters used for simulation and experiments are shown in
Table 1, where Φ = diag(−ω), the initial states and estimated
parameters were chosen as q(t0) = [1 0 0 0]⊤, ω(t0) = [0 0 0]⊤

and θ̂(t0) = [0 0.0070 0.0095]⊤, where t0 defines the start of
experiment, and the design parameters were set to C1 = 0.3I ,
C2 = 0.15I and Γ = 0.02I . The quantization parameters were
chosen as δεi = δωi = 0.02, ε0i = ω0i = 0.005 i = 1, 2, 3 for the
states, and δui = 0.05, u0i = 0.0055 i = 1, 2, 3 for the inputs.
or the chosen values, Eq. (80) holds. The term Φ(ω)⊤θ in the
ynamical model of the practical setup relates to viscous damping
n the system. The true values of the damping coefficients θ are
ot known, and the update law (39) for the estimated values does
ot provide convergence towards the true values. The objective
n the experiment was to track a given sinusoidal signal for
he attitude, where rd = 0, pd = 20π/180 sin(0.1π t + π/2),
d = 20π/180 sin(0.05π t + π/2), given in Euler angles, that
as converted to a quaternion, and also to track the angular
elocities as given in (17), while the inputs sent to the helicopter
nd the measured states sent to the controller were quantized.
he initial value for the desired attitude was qd(t0) = [0.9698, −

.0302, 0.1710, 0.1710]⊤ and so initially we have a tracking er-
or eQ (t0) = [0.9698, 0.0302, −0.1710, −0, 1710]⊤, see Eq. (35).
ince sgn(η̃Q (t0)) ≥ 0, we choose the positive equilibrium point
40) for our maneuver.

Figs. 6–10 show the attitude εQ , the angular velocity ωQ ,
he error in attitude ε̃Q , the error in angular velocity ω

Q
e , and

he inputs uQ , respectively. The dotted lines show the desired
eference signals, while measured values from experiments on
he helicopter system are shown with a solid line. The same
xperiment was also conducted with continuous measurements
f the inputs and the states with results given in Figs. 11–13
8

Fig. 6. Attitude εQ from experiment with quantization.

Fig. 7. Angular velocity ωQ from experiment with quantization.

Fig. 8. Tracking error ε̃Q from experiment with quantization.

Fig. 9. Angular velocity error ω
Q
e from experiment with quantization.
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w
v

∥

w

Fig. 10. Inputs uQ from experiment with quantization.

Fig. 11. Tracking error ε̃ from experiment without quantization.

Fig. 12. Angular velocity error ωe from experiment without quantization.

Fig. 13. Inputs u from experiment without quantization.

showing the error in attitude ε̃, the error in angular velocity ωe,
and the inputs u, respectively.

For both cases, the inputs and the states are shown to be
bounded, and tracking is achieved with a bounded tracking error.
The total tracking error was defined as

ztrack =

∫ tf
(ε̃Q )⊤ε̃Q dτ , (101)
t0

9

Table 2
Tracking error with and without quantization.
ztrack ×10−4 State

Continuous Quantized

Input Continuous 311 315
Quantized 318 320

where t0 and tf define start and end of experiment, respectively.
The experiments were run for 50 s and results are provided in
Table 2, and is an average of three runs for each case. The tracking
error is increased by introducing quantization as expected. As the
results show, a good performance can be maintained by intro-
ducing quantization, while at the same time the communication
burden over a network can be decreased.

6. Conclusion

An adaptive backstepping control design has been developed
for attitude tracking of rigid body systems with uncertain param-
eters and with quantization of both inputs and states. Since there
exist two equilibria using unit quaternions, a target equilibrium
point is chosen before starting the maneuver, and thus one is
regulated to the closest equilibrium point. This will avoid the
problem of unwinding. A class of sector bounded quantizers has
been considered, which introduce quantization errors that are
linearly dependent on the inputs to the quantizers. All signals
in the closed loop system are shown to be uniformly bounded
and tracking of a given reference signal is achieved. The tracking
performance is also established and can be improved by appro-
priately adjusting design parameters. The choice of quantization
parameters directly affects the size of the equilibrium set, and
this relationship is shown in the analysis. Experiments on a 2-DOF
helicopter system illustrate the proposed control scheme.
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Appendix A. Proof of Lemma 1

From (24) we have

∥α∥ ≤ λmax(C1)∥ε̃∥ ≤ λmax(C1), (A.1)

here ∥ε̃∥ ≤ 1. From (20), (23) and Assumption 1, the angular
elocity error and angular velocity satisfy

ωe∥ ≤ ∥z2 + α∥ ≤ λmax(C1) + ∥z∥, (A.2)

∥ω∥ ≤ ∥ωe + Rb
i ωd∥ ≤ λmax(C1) + kωd + ∥z∥ ∆

= kω + ∥z∥, (A.3)

here z = [z⊤, z⊤
]
⊤. □
1 2
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ppendix B. Proof of Lemma 2

By using (34) and (47) and the property of (5) and (6), we have

RQ
i − Rb

i ∥ = ∥RQ
b R

b
i − Rb

i ∥ = ∥(RQ
b − I)Rb

i ∥

≤ ∥−2dηS(d ε̄)+2S2(d ε̄)⊤∥ ∥Rb
i ∥

≤ δε

(
2kε + 2k2εδε

) ∆
= δεkR. (B.1)

rom the definition in (36) and the fact that Gz1 = ±ε̃ and
Q zQ1 = ±ε̃Q , it is shown that

GQ zQ1 − Gz1∥ = ∥(±ε̃Q ) − (±ε̃)∥ ≤ ∥d ε̃∥ ≤ δεkε. (B.2)

rom (24), (43) and (53) we have

αQ
−α∥= ∥(−C1GQ zQ1 ) − (−C1Gz1)∥≤λmax(C1)kεδε

∆
= δεkα.

(B.3)

rom (12) and (50) we have

ωQ
− ω∥ ≤ δω∥ω∥ + ωmin ≤ δωkω + ωmin + δω∥z∥. (B.4)

ith the use of (46), (47) and (55) we have

ωQ
e − ωe∥ = ∥ωQ

− RQ
i ωd − (ω − Rb

i ωd)∥

≤ δεkRkωd + δωkω + ωmin + δω∥z∥. (B.5)

sing (23), (41), (54) and (56), we have

zQ2 − z2∥ ≤ ∥ωQ
e − αQ

− (ωe − α)∥
≤ δε(kRkωd + kα) + δωkω + ωmin + δω∥z∥
∆
= δεkz2 + δωkω + ωmin + δω∥z∥. (B.6)

y using (28), (45), (49) and (56), we have

ᾱQ
−α̇∥ = ∥

1
2
C1

[
∓[η̃Q I + S(ε̃Q )]ωQ

e − [∓[η̃I + S(ε̃)]]ωe
]
∥

≤
1
2
λmax(C1)

(
2∥ωe∥ + δεkRkωd + δωkω + ωmin + δω∥z∥

)
∆
= δεkᾱ1 + δωkᾱ2 + ωminkᾱ3 + λmax(C1)2

+(λmax(C1) + δω)∥z∥. (B.7)

From Assumption 3, the unity property of unit quaternion and
rom (55) we have

ΦQ
−Φ∥ ≤ L1∥εQ

−ε∥ + L2∥ωQ
−ω∥

≤ δεL1 + δωL2kω + ωminL2 + δωL2∥z∥. □ (B.8)

ppendix C. Proof of Lemma 3

The norm of the control input u in (38) satisfies the following
nequality

u∥ =∥ − GQ zQ1 − C2zQ2 − (ΦQ )⊤θ̂ + S(RQ
i ωd)(JωQ )

+ S(αQ )(JωQ ) − J
(
S(ωQ )RQ

i ωd − RQ
i ω̇d − ᾱQ

)
∥

≤ 1 + δεkε + λmax(C2)
(
δεkz2 +δωkω+ωmin+δω∥z∥+∥z2∥

)
+ kθ (δεL1 + δωL2kω + ωminL2 + δωL2∥z∥ + ∥ε∥ + ∥ω∥)

+ λmax(J )
(
2kωd + ∥α∥ + δεkα

)
∥ωQ

∥

+ λmax(J )
(
kω̇d + ∥ᾱQ

∥
)

∆
=δεku1 +δωku2 +ωminku3 +ku4 +δεku5∥z∥+δωku6∥z∥+ku7∥z∥,

(C.1)

here we have used the properties from Lemmas 1 and 2. Then

uQ
− u∥ ≤δu∥u∥ + umin

≤δu
(
δεku1 +δωku2 +ωminku3 +ku4

)
+umin

+δ
(
δ k + δ k +k

)
∥z∥. □ (C.2)
u ε u5 ω u6 u7

10
ppendix D. Proof of Lemma 4

We use the property

≤ (1 ∓ η̃)2 ≤ (1 − η̃)(1 + η̃) = ε̃⊤ε̃, (D.1)

hat holds by Assumption 4. Then

1 ∓ η̃)2 + ε̃⊤ε̃ ≤ 2ε̃⊤ε̃ (D.2)
1
2
z⊤

1 z1 ≤ ε̃⊤ε̃ (D.3)

1
2
λmin(C1)z⊤

1 z1 ≤ ε̃⊤C1ε̃ = z⊤

1 G
⊤C1Gz1. □ (D.4)
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