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Abstract

In this article, the adaptive attitude-tracking problem of a rigid body is investig-
ated, where the input and output are transmitted via a network. To reduce the
communication burden in a network, a quantizer is introduced in both uplink and
downlink communication channels. An adaptive backstepping-based control scheme
is developed for a class of multiple-input and multiple-output (MIMO) rigid body
systems. The proposed control algorithm can overcome the difficulty to proceed
with the recursive design of virtual controls with quantized output vector and a
new approach to stability analysis is developed by constructing a new compensation
scheme for the effects of the vector output quantization and input quantization.
It is shown that all closed-loop signals are ensured uniformly bounded and the
tracking errors converge to a compact set containing the origin. Experiments on a
2 degrees-of-freedom helicopter system illustrate the effectiveness of the proposed
control scheme.

Nomenclature

d(·) Quantization error related to (·).

e Tracking error, quaternion.

f i
g Gravitational force, expressed in i frame.

g Gravitational acceleration.

g(q) Moment caused by the gravitational force.

G Error kinematics matrix.
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I Identity matrix.

J Inertia matrix about the origin o, decomposed in the b frame.

k(·) Positive constant related to (·).

k Euler axis.

l Length of quantization interval.

m Mass of the rigid body.

q Attitude.

qa,b Unit quaternion q in b frame relative to a frame.

rb
g Distance from the origin to the center of mass, decomposed in the b frame.

Rb
a Rotation matrix from frame a to frame b.

R Number of bits.

S(a)b Cross product operator × between two vectors a and b, where S is skew-
symmetric.

T ,Ψ,Φ Known nonlinear functions of q and ω.

u Control input.

V Lyapunov function candidate.

τd External disturbance.

δ(·) Maximum bounded value for d(·).

ε Imaginary parts of a unit quaternion.

η Real part of a unit quaternion.

θ Unknown constant vector.

λmax(·) Maximum eigenvalue of the matrix (·).

λmin(·) Minimum eigenvalue of the matrix (·).

υ Euler angle.

ω Angular velocity.

ωc
b,a Angular velocity of frame a relative to frame b, expressed in frame c.
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Rn Set of real numbers, dimension n.

S3 The non-Euclidean three-sphere.

(·)Q Quantized signal of (·).

∥·∥ The L2-norm and induced L2-norm for vectors and matrices, respectively.

Vectors are denoted by small bold letters and matrices with capitalized bold letters.

C.1 Introduction

Attitude control of rigid bodies has been widely addressed in the literature, see e.g.
[1–9], and with applications in marine systems in [10], unmanned aerial vehicles
(UAVs) in [11], helicopters in [12], underwater vehicles in [13], and other robotic
systems. Rigid body systems are utilized in numerous important applications such as
transportation [14], inspection [15], search and rescue [16] and remote sensing [17]. In
[6], a robust adaptive controller is proposed for the attitude tracking problem of rigid
bodies in the presence of uncertain parameters and where the attitude is represented
by rotation matrices. In [7], an adaptive attitude tracking controller is developed
for rigid body systems in the presence of unknown inertia and gyro-bias. In [8], an
adaptive controller is proposed for a leader-following attitude consensus problem
for multiple rigid body systems subject to jointly connected switching networks in
the presence of uncertain parameters. In [9], an adaptive backstepping controller is
proposed for the trajectory tracking of a rigid body with unknown mass and inertia
based on dual-quaternions. Chen et al. [11] proposed a robust nonlinear controller
for quadrotor UAVs, which combines the sliding-mode control technique and the
backstepping control technique. In [12], adaptive backstepping control is proposed
for pitch and yaw control of a 2 degrees-of-freedom (DOF) helicopter system. Yan
and Yu [13] investigated the sliding mode tracking control of underwater vehicles.

Quantized control has attracted considerable attention in recent years, due to its
theoretical and practical importance in practical engineering, where digital processors
are widespread used and signals are required to be quantized and transmitted via a
common network to reduce the communication burden. However, most of the works
on quantized feedback control are concerned with either input quantization [18–25]
or state quantization [26, 27].

In practice, it is common that both the inputs and the states of rigid bodies
are quantized due to actuator and sensor limitations. Control of rigid bodies with
quantized signals is a potential problem and has received attention with a demand
on stability and reliability. For example, the remote control of a group of vehicles or
robots, where the signals are transmitted over a shared network using quantization
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techniques. Attitude stabilization with input quantization is investigated in [28]
using a fixed-time sliding mode control. Trajectory tracking control for autonomous
underwater vehicles with the effect of quantization is investigated in [13] using a
sliding mode controller, where the considered systems are completely known. In [29],
adaptive tracking control is proposed for underactuated autonomous underwater
vehicles with input quantization.

Uncertainties and non-linearities always exist in many practical systems. Research
on adaptive control of rigid bodies with either input quantization or state quantization
using backstepping technique has received attention, see for examples, [29–31]. In
[30], an adaptive backstepping control scheme with quantized inputs is presented
for a 2 DOF helicopter system, considering a uniform quantizer. In [29], adaptive
backstepping is investigated for tracking control for under-actuated autonomous
underwater vehicles with input quantization. An adaptive backstepping controller is
proposed for formation tracking control for a group of UAVs with quantized inputs
in [31]. Actually, the above cited attitude control approaches do not consider the
problem which takes both the input quantization and state quantization into account.

In this article, we aim to solve the attitude tracking of uncertain nonlinear rigid
body systems with both input and output quantization. The system is modeled
as a nonlinear multiple-input-multiple-output (MIMO) system, with challenges in
controller design due to its nonlinear behavior, its cross coupling effect between
inputs and outputs, and with uncertainties both in the model and the parameters.
A uniform quantization is used for signals in order to reduce the communication
burden. A new backstepping based adaptive controller and a new approach to
stability analysis are proposed. The full state vector is considered in the stability,
that is often forgotten for quaternion based attitude control, where the scalar part
of the quaternion is left out. The proposed method is tested on a 2 DOF helicopter
system from Quanser. It is analytically shown how the choice of quantization level
affects the tracking performance, where a higher quantization level increases the
tracking error. The experiments on the helicopter system illustrate the proposed
scheme.

With aforementioned features, the main contributions of this paper are summar-
ized as follows.

• As far as we are concerned, this is the first work which solves the adaptive
control problem for rigid body systems with unknown parameters and with both
input and output quantization, where a bounded type of quantizer is considered,
meanwhile guaranteeing that the attitude error and velocity error will converge
to a compact set. Compared with [24] where only input quantization is
considered, and [27] where only state quantization is considered, this research
studies both input and output quantization problem. The main challenge is that
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the designed controller and virtual controls can only utilize quantized states and
both the effects of input and output quantization introduce numerous residual
terms that need to be dominated. Additionally, the quantization causes discrete
phenomenons which complicates the controller design and stability analysis.
To overcome this difficulty, differentiable virtual controls are firstly designed
by assuming that the system has no quantization. Their partial derivatives
multiplied by the quantized signals are then utilized to complete the design of
virtual controls for the case with quantized input and output.

• Compared to backstepping control of single-input-single-output (SISO) systems
with either input or state quantization in [23–25, 27, 32], this paper considers
MIMO uncertain systems with both input and output quantization. The
challenge is that the control problem becomes more complicated for MIMO
systems due to the coupling among various inputs and outputs. It becomes
even more difficult to deal with when there exist uncertain parameters in the
coupling matrix and both inputs and outputs are quantized. To overcome the
difficulty, a new backstepping based adaptive controller and a new approach
to stability analysis are proposed, where the effects of both output and input
quantization are compensated for.

C.2 Rigid Body Dynamical Model and Problem
Formulation

C.2.1 Attitude Dynamics

The attitude of a rigid body can be represented by e.g. Euler angles in [13, 30],
(modified) Rodrigues parameters, rotation matrices in [3, 6] or quaternions in [4,
7, 9], where each representation has different properties. Any three-parameter
representations have some kind of singularity, where e.g. Euler angles (roll-pitch-yaw)
have kinematic singularities since it is not possible to describe the angular velocity for
all angles, and with the potential problem of gimbal lock. Practical applications are
often represented by unit quaternions, since this has a nonsingular parameterization.
With a desire of a singularity-free representation of the attitude, which is important
for agile systems, unit quaternions are used in this paper.

We describe the orientation of a rigid body in the body frame b, relative to
an inertial frame i, by a unit quaternion, q = [η, ε1, ε2, ε3]⊤ = [η, ε⊤]⊤ ∈ S3 =
{x ∈ R4 : x⊤x = 1}, that is a complex number, where η = cos(υ/2) ∈ R and
ε = k sin(υ/2) ∈ R3. Considering a fully actuated rigid body, the equations of
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motion for the attitude dynamics are defined as

q̇ = T (q)ω, (C.1)

Jω̇ = Ψ(q,ω) + Φ(ω)θ + Bu, (C.2)

where the angular velocity ωb
i,b = ω ∈ R3, the inertia matrix J = diag(Jx, Jy, Jz) ∈

R3×3 and is positive definite, the unknown constant vector θ ∈ R3, the control
allocation matrix B ∈ R3×3, the control input u ∈ R3, and where

T (q) = 1
2

 −ε⊤

ηI + S(ε)

 ∈ R4×3, (C.3)

Ψ(q,ω) = −S(ω)(Jω) − g(q) ∈ R3, (C.4)

Φ(ω) = diag(−ω) ∈ R3×3, (C.5)

g(q) = −S(rb
g)Rb

if
i
g, (C.6)

where f i
g = [0 0 −mg]⊤, and the matrix S(·) is the skew-symmetric matrix given by

S(ε) =


0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0

 . (C.7)

If rb
g = 0 =⇒ g(q) = 0 and the rotation is about the center of mass. In applica-

tions, such as underwater vehicle dynamics, the equations of motion is described by
a rotation about a point o, that is not the center of mass [33].
The orientation between two frames can be described by a rotation matrix given as

R(q) = I + 2ηS(ε) + 2S2(ε), (C.8)

and the rotation matrix R ∈ SO(3) that is a special orthogonal group of order 3,
and has the property

SO(3) = {R ∈ R3×3 : R⊤R = I, det(R) = 1}. (C.9)

The derivative of a rotation matrix can be expressed as [33]

Ṙa
b = Ra

b S(ωb
a,b) = S(ωa

a,b)Ra
b . (C.10)

Attitude and angular velocities are assumed to be measurable after quantization,
and for the control allocation matrix it is assumed that det(B) ̸= 0, i.e. the matrix
is invertible.
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Figure C.1: Control system with quantization over a network.

C.2.2 Problem Statement

We consider a control system as shown in Fig. C.1, where the outputs ε,ω and input
u are quantized at the encoder side to be sent over the network. It is noted that
q = [η, ε⊤]⊤. To reduce the communication burden, we have limited the feedback
part of the quaternion to only contain ε, as η can be reconstructed due to the unity
of the quaternion. The network is assumed noiseless, so that the quantized output
signals εQ,ωQ are recovered and sent to the controller, and the quantized input
signal uQ(t) is recovered and sent to the plant.

Only the quantized output εQ,ωQ are measured, and the quantized value of η is
calculated as

ηQ = ±
√

1 − (εQ)⊤εQ, (C.11)

to ensure that the property of unit quaternion, (qQ)⊤qQ = 1, is fulfilled, where the
quantized attitude is given by qQ = [ηQ, (εQ)⊤]⊤.

Remark 1. If the state variable η is quantized and sent over the network, we can not
ensure that qQ is a unit quaternion, and a correction/scaling will be needed to ensure
this. Since ηQ can be calculated based on the value of εQ and knowledge of the sign
of η(t0) and the assumption of sign continuity of η(t) based on derivative, we can do
the calculation after the network communication. This will also save bandwidth by
sending less data over the network.

Remark 2. If we are close to, or at η = 0, we might end up with (εQ)⊤εQ > 1, and
a scaling is needed to ensure we have a unit quaternion.

Let qi,d = qd, ωi
i,d = ωd, be the desired attitude and angular velocity. The

control objective is to design a control law for u(t) = u(qQ,ωQ) by utilizing only
quantized outputs qQ(t) and ωQ(t) to ensure that qQ(t) → qd(t) and ωQ(t) → ωQ

i,d(t)
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as t → ∞, where the kinematic equation

q̇d = T (qd)ωd
i,d = 1

2

 −ε⊤
d

ηdI − S(εd)

ωd, (C.12)

is satisfied, and where all the signals in the closed-loop system are uniformly bounded.
To achieve the objective, the following assumptions are imposed.

Assumption 1. The desired attitude qd(t), the desired angular velocity ωd(t) and
the desired angular acceleration ω̇d(t) are known, piecewise continuous and bounded
functions, that is, there exist kωd

, kω̇d
> 0 such that ∥ωd(t)∥ < kωd

and ∥ω̇d(t)∥ <
kω̇d

∀t ≥ t0.

Assumption 2. The unknown parameter vector θ is bounded by ∥θ∥ ≤ kθ, where kθ

is a positive constant. Also θ ∈ Cθ, where Cθ is a known compact convex set.

C.2.3 Quantizer

The quantizer considered in this paper has the following property

|yQ − y| ≤ δy, (C.13)

where y is a scalar signal and δy > 0 denotes the quantization bound. A uniform
quantizer is chosen, which has intervals of fixed length and is defined as follows:

yQ =

 yi sgn(y), yi − l
2 < |y| ≤ yi + l

2

0, |y| ≤ y0
, (C.14)

where y0 > 0, y1 = y0 + l
2 , yi+1 = yi + l, l > 0 is the length of the quantization

interval, sgn(y) is the sign function. The uniform quantization yQ ∈ U = {0,±yi},
and a map of the quantization for yi > 0 is shown in Fig. C.2. Clearly, the property
in (C.13) is satisfied with δy = max{y0,

l
2}.

When a vector is quantized, we have

yQ =
[
yQ

1 yQ
2 · · · yQ

n

]⊤
, (C.15)

and so each vector element is bounded by (C.13), and we have ∥yQ − y∥ = ∥dy∥ ≤
∥δy∥ ∆= δy.

Other bounded quantizers such as hysteresis-uniform quantizer and logarithmic-
uniform quantizer as presented in [27] can also be considered.

Remark 3. Communication in a network only has to occur when the quantization
levels change. Thus, a higher value for length of the quantization intervals requires
less data transmission.
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Figure C.2: Map of the uniform quantizer for y > 0.

C.3 Controller Design

In this section we will design adaptive feedback control laws for the rigid body using
backstepping technique.

C.3.1 Without Quantization

We first consider the case that the output and input are not quantized. For our
model, two steps are included, where the control signal is designed in the last step.
We begin with a change of coordinates to the error variables. The tracking error e is
defined by the quaternion product

e = q̄i,d ⊗ qi,b =
η̃
ε̃

=
 ηdη + ε⊤

d ε

ηdε − ηεd − S(εd)ε

 ∈ S3, (C.16)

where q̄ = [η − ε⊤]⊤ is the inverse rotation given by the complex conjugate. If
qi,b = qi,d then e = [±1 0⊤

3 ]⊤, where 0⊤
3 is the zero vector of dimension three. Because

there exist two different equilibria using quaternion coordinates, global stability can
not be achieved, even though e and −e represent the same physical attitude [2]. We
include one further assumption as follows.

Assumption 3. We assume that sgn(η̃(t0)) = sgn(η̃(t)) ∀t ≥ t0.

Remark 4. Assumption 3 is imposed to avoid the problem when the attitude error
is close to E = {e ∈ S3 : η̃ = 0}.
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The relative error kinematics is

ė = T (e)ωe, (C.17)

where T (·) is defined in (C.3) and the angular velocity error is

ωe = ω − Rb
iωd. (C.18)

Following the backstepping design procedure, the change of coordinates are introduced
as

z1± =
1 ∓ η̃

ε̃

 , z2 = ωe − α, (C.19)

where z1+ is the equilibrium point when η̃(t0) ≥ 0 and z1− is the equilibrium point
when η̃(t0) < 0 and where α is a virtual controller designed in step 1 as

α = −C1Gz1±, (C.20)

where C1 ∈ R3×3 is a positive definite matrix and

G(e)⊤ ∆=
 ±ε̃⊤

η̃I + S(ε̃)

 ∈ R4×3,

ż1± = 1
2G⊤ωe = −1

2G⊤C1Gz1± + 1
2G⊤z2. (C.21)

For ease of notation we denote z1 = z1± further in the paper. In step 2, the final
controller u(t) and parameter update law ˙̂

θ are designed as

u = B−1
[

− Gz1 − C2z2 − Φθ̂ − Ψ − J
(
S(ω)Rb

iωd − Rb
i ω̇d − α̇

)]
, (C.22)

˙̂
θ = ΓΦz2, (C.23)

where C2 ∈ R3×3 and Γ ∈ R3×3 are positive definite matrices. We choose a Lyapunov
function candidate as

V (z1, z2, θ̃, t) = z⊤
1 z1 + 1

2z⊤
2 Jz2 + 1

2 θ̃⊤Γ−1θ̃, (C.24)

where θ̂ is the estimated value of θ, and the unknown parameter error is θ̃ = θ − θ̂.
The derivative of V can be computed as

V̇ = z⊤
1 G⊤z2 − z⊤

1 G⊤C1Gz1 + z⊤
2

[
Φθ + Ψ + Bu + J

(
S(ω)Rb

iωd − Rb
i ω̇d − α̇

)]
− θ̃⊤Γ−1 ˙̂

θ
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= − z⊤
1 G⊤C1Gz1 − z⊤

2 C2z2. (C.25)

By applying the LaSalle-Yoshizawa theorem [34], it follows that all signals are
uniformly bounded and asymptotic tracking is achieved as (z1(t), z2(t)) → (0,0) as
t → ∞. The angular velocity error and the angular velocity are bounded by

∥ωe∥ ≤ ∥z2∥ + λmax(C1)∥G∥∥z1∥ ≤
[
1 + λmax(C1)

]
∥z∥

∆= kωe∥z∥, (C.26)

∥ω∥ ≤ ∥ωe + Rb
iωd∥ ≤ kωe∥z∥ + ∥Rb

i∥∥ωd∥

≤ kωe∥z∥ + kωd
, (C.27)

where z = [z⊤
1 , z

⊤
2 ]⊤.

C.3.2 Quantized Input and Output

When the outputs ε and ω and input u are quantized with the property (C.13), we
have

|εk
Q − εk| ≤ δεk

, k = 1, 2, 3, (C.28)

|ωk
Q − ωk| ≤ δωk

, k = 1, 2, 3, (C.29)

|uQ
k − uk| ≤ δuk

, k = 1, 2, 3. (C.30)

The quantization error of the quaternion can be expressed as

dq = q̄i,b ⊗ qi,Q =
dη

dε

 =
 ηηQ + ε⊤εQ

ηεQ − ηQε − S(ε)εQ

 , (C.31)

where dε is the quantization error and bounded by ∥dε∥ ≤ kε∥δε∥ from (C.28) and
where kε > 1 is a positive constant, and dη is bounded from the unity property of
unit quaternion. If qQ = q and there is no quantization error, then dq = [1 0 0 0]⊤.
The tracking error with the quantized value of the unit quaternion, eQ, is given by

eQ =
η̃Q

ε̃Q

 =
 ηdη

Q + ε⊤
d εQ

ηdεQ − ηQεd − S(εd)εQ

 , (C.32)

and can also be described by

eQ = qd,b ⊗ qb,Q = e ⊗ dq =
 η̃dη − ε̃⊤dε

dηε̃ + η̃dε + S(ε̃)dε


=
 η̃Q

ε̃ + (dη − 1)ε̃ + η̃dε + S(ε̃)dε

 ∆=
 η̃Q

ε̃ + dε̃

 , (C.33)
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where the value of dε̃ depends on the quantization error that is bounded by (C.28).
If there is no quantization error, dε̃ = 0.
The quantized angular velocity ωQ is expressed as

ωQ = ω + dω, (C.34)

where dω is the quantization error and is bounded by ∥dω∥ ≤ ∥[δω1 δω2 δω3 ]⊤∥ =
∥δω∥ ∆= δω from (C.29).
To propose a suitable control scheme, the quantized input uQ(t) is decomposed into
two parts

uQ(t) =u(t) + du(t), (C.35)

where du is the quantization error of the input, which is bounded by ∥du∥ ≤
∥[δu1 δu2 δu3]⊤∥ = ∥δu∥ ∆= δu, from (C.30).
The adaptive controller is designed as

uQ(t) = Q(u), (C.36)

u(t) =B−1
[
− GQzQ

1 −C2z
Q
2 −ΦQθ̂−ΨQ−J

(
S(ωQ)RQ

i ωd−RQ
i ω̇d−ᾱQ

)]
, (C.37)

˙̂
θ = Proj{ΓΦQzQ

2 }, (C.38)

where Proj{·} is the projection operator given in [34], and

zQ
1 =

1 ∓ η̃Q

ε̃Q

 , (C.39)

zQ
2 = ωQ

e − αQ, (C.40)

G(eQ)⊤ =
 ±(ε̃Q)⊤

η̃QI + S(ε̃Q)

 , (C.41)

αQ = −C1G
QzQ

1 = ∓C1ε̃
Q, (C.42)

ΨQ = − S(ωQ)(JωQ) − g(qQ), (C.43)

ΦQ = diag(−ωQ), (C.44)

g(qQ) = − S(rb
g)RQ

i f i
g, (C.45)

ᾱQ ∆= ∓1
2C1

[
η̃QI + S(ε̃Q)

]
ωQ

e , (C.46)

ωQ
e = ωQ − RQ

i ωd, (C.47)

RQ
i = RQ

b Rb
i , (C.48)
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where RQ
b is the rotation due to the quantization error. It is noted that the following

manipulation is used in (C.42).

GQzQ
1 =±ε̃Q−η̃Qε̃Q+ε̃Qη̃Q+(S(ε̃)Q)⊤ε̃Q =±ε̃Q. (C.49)

Remark 5. The projection operator Proj{·} in (C.38) ensures that the estimates
and estimation errors are nonzero and within known bounds, that is ∥θ̂∥ ≤ kθ and
∥θ̃∥ ≤ kθ, and has the property −θ̃⊤Γ−1Proj(τ ) ≤ −θ̃⊤Γ−1τ , which are helpful to
guarantee the closed-loop stability.

Remark 6. Only the quantized output can be used in the designed controller. Since
the quantized output is used in the design of the virtual controller αQ in (C.42), the
derivative of the virtual controller is discontinuous and can not be used in the design
of the controller. Instead, a function ᾱQ is used in (C.46), which is designed as if
the output is not quantized.

C.4 Stability Analysis

To analyze the closed-loop system stability, we first establish some preliminary results
as stated in the following lemma.

Lemma 1. The effects of output quantization are bounded by the following inequalit-
ies:

(i) ωQ
e ≤ ωe + δωe , (C.50)

(ii) zQ
2 ≤ z2 + δz2 , (C.51)

(iii) ∥Gz1 − GQzQ
1 ∥ ≤ δz1 , (C.52)

(iv) ∥RQ
i − Rb

i∥ ≤ δR, (C.53)

(v) ∥Ψ−ΨQ∥ ≤ δΨ1 + δΨ2∥z∥, (C.54)

(vi) ∥S(ω)Rb
i −S(ωQ)RQ

i ∥≤ δS1 + δS2∥z∥, (C.55)

(vii) ∥ᾱQ−α̇∥ ≤ δᾱ1 + δᾱ2∥z∥, (C.56)

(viii) ∥Φ − ΦQ∥ ≤ δω. (C.57)

Proof: With the use of (C.8), (C.31), (C.34), (C.47), and (C.48), we have

ωQ
e = ω + dω − RQ

b Rb
iωd

≤ ωe +
([

2dηS(dε) − 2S2(dε)⊤
]
Rb

iωd + δω

)
≤ ωe +

(
2kε

[
S(δε) + S2(δε)

]
Rb

iωd + δω

)
∆= ωe + δωe . (C.58)
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Using (C.28), (C.40), (C.42), and (C.50), we have

zQ
2 ≤ ωe + δωe±C1ε̃

Q

≤ ωe + δωe − α±C1dε̃

≤ z2 + (δωe + C1kεδε) ∆= z2 + δz2 . (C.59)

From the definition in (C.33) and the fact that Gz1 = ±ε̃ and GQzQ
1 = ±ε̃Q, it is

shown that

∥Gz1 − GQzQ
1 ∥ = ∥±ε̃ − (±ε̃Q)∥ ≤ ∥dε̃∥ ≤ ∥kεδε∥

∆= δz1 . (C.60)

By using (C.31) and (C.48) and the property of (C.8) and (C.9), we have

∥RQ
i − Rb

i∥ = ∥RQ
b Rb

i − Rb
i∥ = ∥(RQ

b − I)Rb
i∥

≤ ∥−2dηS(dε) + 2S2(dε)⊤∥∥Rb
i∥

≤ 2
[
kε∥δε∥ + k2

ε∥δε∥2
]

∆= δR. (C.61)

Using (C.4), (C.13), (C.31), (C.34), (C.43), (C.45), and (C.48), together with the
property of (C.8) and Assumption 1, we have

∥Ψ − ΨQ∥ ≤ ∥−S(ω)(Jω)+S(ω+dω)(J(ω+dω))+S(rb
g)Rb

if
i
g −S(rb

g)RQ
i f i

g∥

≤
[
λmax(J)

(
2kωd

∥δω∥ + ∥δω∥2
)

+ ∥rb
g∥δRmg

]
+
[
2λmax(J)∥δω∥kωe

]
∥z∥

∆= δΨ1 + δΨ2∥z∥. (C.62)

By using (C.8), (C.27), (C.31), (C.34), (C.48) and (C.61), we have

∥S(ω)Rb
i −S(ωQ)RQ

i ∥ ≤ ∥−S(ω)[−2dηS(dε)+2S2(dε)⊤]Rb
i −S(dω)RQ

i ∥

≤ ∥ω∥δR+∥δω∥

≤ (kωd
δR+δω) + (kωeδR)∥z∥ ∆= δS1 + δS2∥z∥. (C.63)

By using (C.20), (C.26) (C.42), (C.46), and (C.50), we have

∥ᾱQ − α̇∥ = ∥1
2C1

[
∓[η̃QI + S(ε̃Q)]ωQ

e − [∓[η̃I + S(ε̃)]]ωe

]
∥

≤ 1
2λmax(C1)

(
2∥ωe∥ + ∥δωe∥

)
≤ λmax(C1)(

1
2∥δωe∥ + kωe∥z∥) ∆= δᾱ1 + δᾱ2∥z∥. (C.64)

From (C.5), (C.34) and (C.44), we have

∥Φ − ΦQ∥ ≤ ∥diag(−ω) − diag(−ω − dω)∥ ≤ ∥δω∥ = δω. (C.65)
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We state our main results in the following theorem.

Theorem 1. Considering the closed-loop adaptive system consisting of the plant
(C.1)-(C.2) with output and input quantization satisfying the bounded properties
(C.28)-(C.30), the adaptive controller (C.36)-(C.37), the update law (C.38) and
Assumptions 1-3. If the gain matrices C1 and C2 and quantization parameters δε,
δω and δu are chosen to satisfy

c0

2 − δV1 ≥ k > 0, (C.66)

where c0 is the minimum eigenvalue of C0 = min{G⊤C1G,C2}, k is a positive
constant, and δV1 is defined as

δV1 = δΨ2 + δS2λmax(J)kωd
+ δᾱ2λmax(J), (C.67)

then, all signals in the closed loop system are ensured to be uniformly bounded. The
error signals will converge to a compact set, i.e.,

∥z(t)∥ ≤
√
δQ

k
, (C.68)

where

δQ = δθ1 + 1
2c0

δ2
V2 , (C.69)

δθ1 = kθδω∥δz2∥ + kθ∥δz2∥kωd
, (C.70)

δV2 = λmax(C2)∥δz2∥ + δz1 + δΨ1 + δS1λmax(J)kωd
+ δRλmax(J)kω̇d

+ δᾱ1λmax(J)

+ δθ2 + δBu, (C.71)

δθ2 = kθδω + kθkωe∥δz2∥. (C.72)

Proof: Consider the Lyapunov function candidate

V (z, θ̃, t) = z⊤
1 z1 + 1

2z⊤
2 Jz2 + 1

2 θ̃⊤Γ−1θ̃. (C.73)

Following (C.36)-(C.38), the derivative of (C.73) is given as

V̇ = z⊤
1 G⊤z2−z⊤

1 G⊤C1Gz1+z⊤
2

[
Φθ + Ψ + BuQ +J

(
S(ω)Rb

iωd − Rb
i ω̇d − α̇

)]
− θ̃⊤Γ−1 ˙̂

θ

≤ − z⊤
1 G⊤C1Gz1 − z⊤

2 C2z
Q
2 + z⊤

2 (Gz1 − GQzQ
1 ) + z⊤

2 (Ψ − ΨQ)

+ z⊤
2 J(S(ω)Rb

i − S(ωQ)RQ
i )ωd + z⊤

2 J
(
RQ

i − Rb
i

)
ω̇d + z⊤

2 J(ᾱQ − α̇)

+ z⊤
2 Bdu +

[
z⊤

2 (Φθ − ΦQθ̂) − θ̃⊤ΦQzQ
2

]
. (C.74)
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Using (C.30), the term containing the quantization error from the input in (C.74)
satisfies

z⊤
2 Bdu ≤∥z2∥∥B∥δu ≤ δu∥B∥∥z∥ ∆= δBu∥z∥. (C.75)

By using (C.5), (C.34), (C.38), (C.44), (C.51), (C.27) and Assumption 2, the last
terms in (C.74) satisfy the inequality

z⊤
2 (Φθ − ΦQθ̂) − θ̃⊤ΦQzQ

2 = θ⊤Φz2 − θ⊤ΦQz2 + θ̃⊤ΦQz2 − θ̃⊤ΦQzQ
2

≤ ∥θ∥∥Φ − ΦQ∥∥z2∥ + ∥θ̃∥∥ΦQ∥∥z2 − zQ
2 ∥

≤ kθδω∥z∥+kθ(∥ω∥+∥δω∥)∥δz2∥

≤ (kθδω∥δz2∥+kθ∥δz2∥kωd
)+(kθδω+kθkωe∥δz2∥)∥z∥

∆= δθ1 + δθ2∥z∥. (C.76)

By using Young’s inequality, the properties in Lemma 1, (C.75), (C.76) and Assump-
tion 1, (C.74) becomes

V̇ ≤ −z⊤
1 G⊤C1Gz1−z⊤

2 C2z2 + λmax(C2)∥δz2∥∥z∥ + δz1∥z∥ + δΨ1∥z∥ + δΨ2∥z∥2

+ δS1λmax(J)kωd
∥z∥ + δS2λmax(J)kωd

∥z∥2+δRλmax(J)kω̇d
∥z∥+δBu∥z∥

+δᾱ1λmax(J)∥z∥ + δᾱ2λmax(J)∥z∥2+δθ1 +δθ2∥z∥

≤ − c0∥z∥2 + δθ1 + δV2∥z∥ + δV1∥z∥2

≤ − (c0

2 − δV1)∥z∥2 + δθ1 + 1
2c0

δ2
V2

≤ − k∥z∥2 + δQ < 0, ∀∥z∥ >
√
δQ/k. (C.77)

From (C.73) and (C.77) and by applying the LaSalle-Yoshizawa theorem, it follows
that z1, z2 and θ̃ are bounded and satisfy (C.68) under condition (C.66). From
(C.37) and Lemma 1, it follows that the control input u, where only the quantized
output is measured, also is bounded. Thus, all signals in the closed loop system
are bounded. Tracking of the desired reference signal is achieved, with a bounded
tracking error given in (C.68).

Remark 7. The value of δQ depends on the quantization parameters, and higher
values of the quantization intervals will increase δQ. If there is no quantization,
δQ = 0. In principle, the quantization level can be chosen arbitrarily as long as the
inequality (C.66) is satisfied, where δV1 depends on the quantization parameters δω

and δε, and c0 depends on the control design parameters. Therefore, (C.66) provides
some insights on how to choose these quantization parameters.

Next, we consider the case where external disturbances τd, assumed unknown
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but bounded by ∥τd∥ ≤ kτd
, are present to the system, and the attitude dynamics

are described by

Jω̇ = Ψ(q,ω) + Φ(ω)θ + Bu + τd. (C.78)

Corollary 1. Let Assumptions 1-3 hold. Consider the closed-loop adaptive system
consisting of the plant (C.1), (C.78) with output and input quantization satisfying
the bounded properties (C.28)-(C.30), the adaptive controller (C.36)-(C.37) and
the update law (C.38). Choosing the gain matrices C1 and C2 and quantization
parameters δε, δω and δu to satisfy (C.66), all signals in the closed loop system are
ensured to be uniformly bounded. The error signals will converge to a compact set,
i.e.,

∥z(t)∥ ≤
√
δQdist

k
, (C.79)

where

δQdist = δθ1 + 1
2c0

(δV2 + kτd
)2. (C.80)

The proof follows along the same lines as the proof of Theorem 1.

Remark 8. The proposed control method considered in this paper needs information
of all system states, which is reasonable for rigid body systems where the attitude and
the angular velocity are measured by sensors. If some states are not available, an
observer will be needed. Another limitation is that only a bounded type of quantizer
is considered in this paper, where the quantization error is bounded. The proposed
method can be extended to compensate for unbounded quantization error caused by
the logarithmic or hysteresis quantizers.

C.5 Experimental Results

The proposed controller was tested on the Quanser Aero helicopter system, shown
in Fig. C.3. This is a two-rotor laboratory equipment for flight control-based
experiments. The setup has a horizontal position of the main thruster and a vertical
position of the tail thruster, which resembles a helicopter with two propellers driven
by two DC motors. This is a MIMO system with 2 DOF, and the helicopter can
rotate around two axes where each input affects both rotational directions. The body
fixed coordinate frame is visualized in Fig. C.3, and the inertial frame is coinciding
with the body frame when q = [±1 0 0 0]⊤. The mathematical model is described
by (C.1) and (C.2), and the parameters used for simulation and experiments are
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Figure C.3: Quanser Aero helicopter system with body coordinate frame.

Table C.1: Helicopter Parameters.

Symbol Value Units
J diag(0.0218, 0.0217, 0.0218) kgm2

m 1.075 kg
g 9.81 m/s2

rg
b [0 0 − 0.0038]⊤ m

B

1 0 0
0 0.0011 0.0011
0 −0.0014 0.00176

 Nm/V

shown in Table C.1. The initial states and estimated parameters were chosen as
q(t0) = [1 0 0 0]⊤, ω(t0) = [0 0 0]⊤ and θ̂(t0) = [0 0.0070 0.0095]⊤, where t0 defines
the start of experiment, and the design parameters were set to C1 = 0.3I, C2 = 0.15I

and Γ = 0.02I.

The objective was to track a sinusoidal signal where rd = 0, pd = 40π/180 sin(0.1πt),
yd = 100π/180 sin(0.05πt), given in Euler angles, that was converted to a quaternion,
and also to track the angular velocities as given in (C.12), and see how the system
was affected by quantization of the output and the input. The inputs have limits
of ± 24 V. The length of the quantization interval for the outputs were chosen as
lεk

= lωk
= 2/(2R − 1), k = 1, 2, 3, and for the inputs luk

= 48/(2R − 1), k = 1, 2, 3,
where R is number of bits transmitted in the communication. The system was tested
with different values for R. The performance of the proposed control system was
also tested subject to an external disturbance, where we set a fan to blow wind at
the helicopter system.
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Figure C.4: Error in attitude ε̃, from experiment, without quantization.
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Figure C.5: Angular velocity error ωe, from experiment, without quantization.

C.5.1 Results

The results from test without quantization are shown in Figs. C.4–C.6, showing the
error in attitude ε̃, the error in angular velocity ωe, and the input u, respectively.
From Figs. C.4 and C.5, tracking of the desired reference signals are achieved and
the tracking errors are bounded. The value of ε̃(·) is within [−0.02 + 0.02], that
corresponds to an error of about ±0.04 rad or ±2.3 deg in Euler angles. The input
signal in Fig. C.6 is also bounded.

The system was then tested with quantized output and input. We tested with
different values for R, and plots for quantization levels chosen as R = 8 for the output,
and R = 6 for the input, are shown in Figs. C.7–C.11, showing the outputs qQ and
ωQ, the error in attitude ε̃Q, the error in angular velocity ωQ

e and the input uQ,
respectively. The desired states are shown with a dotted line, and measured values
from tests on the helicopter model are shown with a solid line. The results show that
tracking is achieved and that all signals are uniformly bounded, in accordance with
the findings of Theorem 1.

Next, an external disturbance was added to the system in form of wind, where
the input and outputs were quantized. Figs. C.12–C.14 show the attitude error ε̃Q,
the angular velocity error ωQ

e and the input uQ, respectively. As can be seen from
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Figure C.6: Inputs u2 and u3 from experiment, without quantization.
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Figure C.7: Attitude qQ from experiment with quantization.
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Figure C.8: Angular velocity ωQ from experiment with quantization.
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Figure C.9: Error in attitude ε̃Q from experiment with quantization.
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Figure C.10: Angular velocity error ωQ
e from experiment with quantization.
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Figure C.11: Inputs uQ
2 and uQ

3 from experiment with quantization.
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Figure C.12: Error in attitude ε̃Q from experiment with external disturbance.
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Figure C.13: Angular velocity error ωQ
e from experiment with external disturbance.

the plots, the errors in attitude and angular velocity are kept close to zero during
tracking of the reference signals in presence of an external disturbance.
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Figure C.14: Inputs uQ
2 and uQ

3 from experiment with external disturbance.
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Table C.2: Tracking error for different quantization levels

ztrack ×10−4 Output εQ, ωQ with ls = 2/(2R − 1)

Input
uQ

with
lu = 48/(2R − 1)

R 8 9 10 cont.
6 49 51 38 38
7 43 40 37 40
8 45 40 39 45
9 45 40 40 43
10 47 40 39 38

cont 43 35 34 35

Table C.3: Total energy use for different quantization levels

utotal Output εQ, ωQ with ls = 2/(2R − 1)

Input
uQ

with
lu = 48/(2R − 1)

R 8 9 10 cont.
6 8042 8168 7884 7945
7 7881 7935 7897 8023
8 8095 7895 7898 8017
9 8055 7857 7959 8034
10 8121 7970 7892 7899

cont 8147 7854 7767 7980

C.5.2 Comparing Results

To compare the results with and without quantization, the total tracking error, ztrack,
and the total use of energy, utotal, were measured, where

ztrack =
∫ tf

t0
(ε̃Q)⊤ε̃Qdτ, utotal =

∫ tf

t0
(uQ)⊤uQdτ, (C.81)

where t0 and tf define start and end of experiment, respectively. The experiments
were run for 50 s. The tracking error and total use of energy for different values of
R are shown in Tables C.2 and C.3.

From Table C.2, it is observed that for higher quantization levels, the tracking
error increases. This is according to the findings of Theorem 1. For high values of R,
i.e. for small quantization intervals, the system does not show a big difference in
performance compared to when using continuous signals. A lower value for R is also
possible, and will require less data transmission, but with the cost of higher tracking
error, and also with more chattering for the input. The system is more affected by
quantization of the output than of the input in terms of tracking error. Table C.4
compares the tracking error and total use of energy when an external disturbance
was added. The quantization levels were chosen as R = 8 for the output, and R = 6
for the input. From this experiment, the tracking error increased when a disturbance
was introduced, in accordance with the findings of Corollary 1, and also the total use
of energy increased. By choosing a small quantization interval, the communication
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Table C.4: Tracking error and total use of energy with and without external disturb-
ance

No disturbance External disturbance
ztrack ×10−4 utotal ztrack ×10−4 utotal

Continuous signals 35 7980 97 9241
Quantized signals 49 8042 119 9699

burden over a network can be reduced, and still achieve a good performance.

C.6 Conclusion

In this article, an adaptive backstepping control scheme is developed for attitude
tracking using quaternions where the output and the input are quantized. The
quantizer considered satisfies a bounded condition and so the quantization error is
bounded. The full state is considered in the stability analysis, and with the use
of constructed Lyapunov functions, all signals in the closed loop system are shown
to be uniformly bounded and also tracking of a given reference signal is achieved.
Experiments on a 2-DOF helicopter system supports the proof, where a uniform
quantizer is tested for the system. As illustrated in the experiment, it is possible
to reduce the communication burden over the network by including quantization,
where a suitable quantization level must be chosen, depending on the performance
requirement for the application.
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