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Abstract – This paper presents a model-based fault diagnosis method to detect

sensor faults in permanent magnet synchronous motor (PMSM) drives based on structural

analysis technique. The structural model is built based on the dynamic model of the

PMSM in matrix form, including unknown variables, known variables, and faults. The

Dulmage–Mendelsohn (DM) decomposition is applied to evaluate the redundancy of the

model and obtain redundant testable sub-models. These testable redundant sub-models

are used to form residuals to observe the system state, and distinguish between healthy

and faulty conditions.This work investigates faults in eleven sensors in a PMSM drive,

thus nine structured residuals are designed to detect and isolate the investigated faults,

which are applied to the system at different time intervals. Finally, the effectiveness of

the proposed diagnostic approach is experimentally validated on an in-house setup of

inverter-fed PMSMs.

D.1 Introduction

Permanent Magnet Synchronous Motors (PMSMs) are widely used in many high-performance

drive applications including robotic systems, transportation, and offshore industries. Their

key features of higher efficiency, power density, and controlability make them more at-

tractive than other motors [1, 2]. Since controlling PMSM drives must rely on different

sensors to achieve their goals and ensure full functionality of the overall system, condition

monitoring of these sensors is necessary to guarantee the high reliability [3, 4].

Extensive research work has been conducted in diagnosis of sensor faults in an electric

drive system [5–7]. Most of these techniques are observer-based to investigate faults

in different combinations of sensors involved in the system by comparing the measured

signals with corresponding estimated ones. For instance, observer-based speed and load

torque sensor faults have been investigated in [6], while an adaptive observer has been

employed to detect speed, dc bus voltage, and current faults by estimating sensor signals

values [7]. Although these proposed observers have been proven to be effective in early

detection of sensor faults, isolating faults may become quite challenging, especially when

multiple sensors are involved in the system. Thus, structural analysis was proposed as an

alternative model-based approach for detecting and isolating multiple faults in a complex

system [8]. The theoretical basis of structural analysis technique has been studied and

well developed in the literature [9–11]. So far, structural analysis are implemented on

different systems including automotive engine [12], hybrid vehicle [13], and electric drive
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system with eight sensors [8], but the existing works only focus on limited fault types

and vehicles alone. It is important to extend this approach to deal with faults in PMSM

drives in hash environments, like offshore industry, where the fault context might not only

have higher number of sensor faults, but also higher fault diversity, i.e, dc capacitors, or

dc link.

This paper presents a model-based fault detection and isolation methodology based

on structural analysis for investigating eleven sensor faults in PMSMs, being applied to a

more generalized electric drive system and motor’s structure where many different sensors

are required for condition-monitoring of the system. The required measurements include

three-phase voltage and current sensors, DC bus voltage and current sensors, motor’s an-

gular velocity and position, and load torque. To build a structure model, a combination

of healthy dynamic mathematical models of PMSM both in abc and dq frames including

all the aforementioned sensors is employed, and specific terms related to each fault are

added to the corresponding equations. These added terms include the deviations in the

measured signals of each sensor caused by dc offsets, gain change, amplitude imbalance,

and generally any sort of mismeasurement appearing in the corresponding equations. Fur-

thermore, the analytical redundancy of the model is determined based on the motor and

drive system’s structural model. This redundant model is then subdivided into smaller

over-determined testable subsystems, in which the faults are detected, and isolated. The

novelty of this study is that not only more sensors are considered and therefore, more

measurements, equations, and redundancy are added to the system but also, the effect

of dc bus voltage and current as well as load torque sensors is taken into consideration,

making the diagnostic system more effective to detect any faults. To observe the pres-

ence of faults, nine sequential residuals are designed and implemented from which certain

combination of these residuals can be employed to isolate each fault. Finally, the effec-

tiveness of the proposed model is validated on a experimental setup of inverter-fed PM

synchronous motors.

D.2 Structural Analysis for PMSM and Drive Sys-

tem

Structural analysis is a mathematical algorithm that extracts the analytic redundant

relations (ARRs) of a system based on the mathematical equations describing its dynamic

[11, 14]. This structural model is initiated by an incidence matrix in which each row

connects an equation to the corresponding unknown variables, known variables, and faults.

Next, the rows and columns are rearranged in a way to form a diagonal structure - called

Dulmage–Mendelsohn (DM) decomposition - to obtain the analytic redundancy of the

system. After finding the exact determined part of the system, in which the number

of equations is equal to the number of variables, the other part of the system is an

analytic redundant part. This redundant part is used to identify several smaller over-

constrained subsystems, being called set of ARRs. Depending on the fault signature of

this set of ARRs, each considered fault might be detected or even isolated. Subsequently,

several diagnostic tests are designed to inform the presence of each fault. This study





Figure D.1: Modeling diagram of PMSM and drive system.

presents a structural analysis of a PMSM and drive system containing sensor faults,

and diagnostic tests are proposed for sensor detection and isolation. Fig. D.1 shows the

modeling diagram of the PMSM and drive system components containing sensor faults,

whereas the parameters are defined in the following section.

D.2.1 Mathematical Model of PMSM Drive

The mathematical model of a PMSM and drive system with sensor faults is described by

equations e1 − e11 as shown in Eq. (D.1), where va, vb, and vc are the stator three phase

voltages. Inside the PMSM block, vd and vq are the obtained using e1 − e2. Through

e3 − e4, id and iq are obtained which are needed for electromagnetic torque Te calculation

in e9 and consequently, angular speed ωm calculation in e10. Feedback currents, ia, ib,

and ic, are obtained through e5 − e7. In addition, λm is the flux produced by PMs; Rs

is the stator phase resistance; Ld and Lq are the dq inductances; vdc and idc are the dc

bus voltage and current; ηinv is the inverter’s efficiency; TL is the load torque; θe is the

electric angular position; p is the number of pole pairs; J is the rotor inertia, and b is the





viscous damping coefficient.

e1 :vd =
2

3
[va cos θe + vb cos (θe − 2π/3)

+ vc cos (θe + 2π/3)]

e2 :vq = −2

3
[va sin θe + vb sin (θe − 2π/3)

+ vc sin (θe + 2π/3)]

e3 :
did
dt

=
1

Ld

[vd −Rsid + pωmLqiq]

e4 :
diq
dt

=
1

Lq

[vq −Rsiq − pωmLdid − pωmλm]

e5 :ia = id cos θe − iq sin θe (D.1)

e6 :ib = id cos (θe − 2π/3)− iq sin (θe − 2π/3)

e7 :ic = id cos (θe + 2π/3)− iq sin (θe + 2π/3)

e8 :vdcidcηinv = vaia + vbib + vcic

e9 :Te =
3

2
p[(Ld − Lq)id + λm]iq

e10 :
dωm

dt
=

1

J
(Te − bωm − TL)

e11 :
dθe
dt

= pωm

The known variables y in the structural model include three-phase voltages (yva , yvb , yvc),

three-phase currents (yia , yib , yic), dc bus voltage and current (yvdc , yidc), electric angular

position (yθe), angular speed (yωm), and load torque (yTL
). Since these known variables

come from sensor measurements, corresponding fault terms f are added to the equations,

i.e., yva , yvb , yvc , yia , yib , yic , yvdc , yidc , yθe , yωm , and yTL
, resulting in 11 measurements

and faults in total (shown in Eq. (D.2).).

m1 : yva = va + fva m7 : yvdc = vdc + fvdc
m2 : yvb = vb + fvb m8 : yidc = idc + fidc
m3 : yvc = vc + fvc m9 : yθe = θe + fθe
m4 : yia = ia + fia m10 : yωm = ωm + fωm

m5 : yib = ib + fib m11 : yTL
= TL + fTL

m6 : yic = ic + fic

(D.2)

In addition, the mathematical model of PMSM includes 4 differential constraints of

unknown variables, which are shown in Eq. (D.3).

d1 :
did
dt

= d
dt
(id) d2 :

diq
dt

= d
dt
(iq)

d3 :
dθe
dt

= d
dt
(θe) d4 :

dωm

dt
= d

dt
(ωm)

(D.3)

D.2.2 Structural Model and Analytical Redundancy of the PMSM

The structural model of PMSM drive with sensor faults is obtained based on the defined

mathematical model in Eqs. (D.1)-(D.3), as shown in Fig. D.2. The incidence matrix





Figure D.2: PMSM drive structural model.

contains 26 rows, representing the 11 defined equations in Eq. (D.1), 11 measured known

variables in Eq. (D.2), and the 4 differential constraints of unknown variables as shown

in Eq. (D.3). The columns of the incidence matrix are subdivided into three groups of

unknown variables, known variables, and faults, and each equation is connected to its

relevant constraint in any of the three groups through each row. As shown in Fig. D.2,

the differentiated and integrated variable relations are indicated by ”D” and ”I” signs,

respectively.

For a fault to be detectable and then isolable , it should lie in the structurally over-

determined part of the structural model, where there are more equations than unknown

variables [10]. To accomplish this, DM decomposition tool is employed to evaluate the

redundancy of the model. This is done by restructuring the structural model into an

upper triangle shape by rearranging the rows and the columns of the incidence matrix.

Fig. D.3 shows the DM decomposition for PMSM and drive system structural model,

where the analytic redundant part of the system is expressed containing all the faults.

D.3 Diagnostic Test Design

This section presents the procedure of designing diagnostic tests for sensor faults in PMSM

and drive system. First, the analytic redundant part is divided into smaller redundant

subsystems, and then sequential residuals are derived to detect each fault.

D.3.1 Finding Testable Sub-Models

The analytic redundant part of the system is subdivided into efficient redundant testable

sub-models, called Minimal Structurally Over-determined (MSO) sets, as proposed in

[9]. The studied PMSM drive renders 20 unknown variables, 11 known variables, 11 fault
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Figure D.3: DM decomposition for PMSM and drive system.

variables, and 26 equations including 4 differential constraints, resulting in the degree of

redundancy 6 and 1525 MSO sets. Since the number of MSO sets increases exponentially

in the degree of redundancy, Minimal Test Equation Support (MTES) sets is used instead,

allowing for significantly reducing computational complexity without reducing the possible

diagnosis performance [15]. The reason is that MTES sets are obtained in a way that

the effect of faults is considered. In other terms, MTES sets are subsets of MSO sets, in

which the effect of faults is visible. Here, the degree of redundancy for MTES sets is 1,

and the algorithm yields 168 MTES sets. Next, different combinations of MTES sets are

acquired, and the one that yields an acceptable value for diagnosability index (mD) [16], is

chosen to form residuals. Fig. D.4 shows the selected MTES sets found for the considered

system, and the equations that are used in each MTES set for which diagnosability index,

are obtained as mD = 4.45. Fig. D.5 shows the signature matrix of MTES sets, indicating

which faults appear in each MTES set. It is observed that the distance between any two

faults (D(Vfi , Vfj)) in this selection is more than 2, except D(fvdc , fidc) are 0. This means

that all the faults except fvdc and fidc are isolable.

MTES1 includes only fθe and fωm fault terms. It means that it can be used for either

angular position or speed measurement faults. MTES3 contains fib , fic , fθe , and fTL
fault

terms, therefore, it can be used to detect load torque measurement fault. MTES153 con-

tain fva , fvb , fvc , fvdc , fidc , and fθe fault terms, and by calculating the three-phase currents

based on these measurements, fvdc and fidc measurement faults can be detected. Each

of the MTES146, MTES57, and MTES112 sets contain two of the phase-voltages, two of

the phase currents, and angular position, thus, they can be used in forming the residu-

als to detect fva , fvb , and fvc measurement faults. Subsequently, each of the MTES165,

MTES160, and MTES156 sets contain the three-phase voltages, one of the phase currents,
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and angular position, therefore, they can be used in forming the residuals to detect fia ,

fib , and fic measurement faults.

D.3.2 Sequential Residuals for Detecting the Faults

In this section, 9 sequential residuals (R1 −R9) are derived based on the selected MTES

sets. These residuals aim to detect all the considered faults and a combination of them

can be used to isolate each fault.

1. R1: MTES1 is used for deriving R1 based on m9 in Eq. (D.2):

m9 : R1 = yθe − θe (D.4)

And the sequence of deriving θe is as follows:

SV :θe = θstate

m10 :yωm = ωm (D.5)

e11 :
dθe
dt

= pωm

Where θstate is a state variables (SV) and will be updated after R1 is calculated

using integral form of d3 in Eq. (D.3).

2. R2: MTES3 is used for deriving R2 based on m11 in Eq. (D.2):

m11 : R2 = yTL
− TL (D.6)

To calculate TL, e9 and e10 must be used as shown inMTES3 equation sets Fig. D.4.

Knowing that θe is obtained directly from measurement, ωm and dωm

dt
can be easily

calculated using the sequence of d3, e11, and d4. Then ib and ic measurements are

used to calculate id and iq from e6 and e7 as follows:

id =
−2√
3
[ib sin (θe +

2π

3
)− ic sin (θe −

2π

3
)]

iq =
−2√
3
[ib cos (θe +

2π

3
)− ic cos (θe −

2π

3
)] (D.7)

3. R3: MTES153 is used for deriving R3 based on e8 in Eq. (D.2):

e8 : R3 = vdcidcηinv − vaia − vbib − vcic (D.8)

where all the variables come from the measurements.

4. R4: MTES146 is used for deriving R4 based on m1 in Eq. (D.2):

m1 : R4 = yva − va (D.9)

To calculate va, θe is obtained directly from measurement, and ωm is subsequently

calculated using the sequence of d3 and e11. Similar to Eq. (D.7), two current

measurements (ia and ib) are used to calculate id and iq but this time from e5 and

e6. Then
did
dt

and diq
dt

are obtained from d1 and d2 and used in e3 and e4 to form vd
and vq. Finally, va is calculated from e1 and e2 as follows:

va = vd cos θe − vq sin θe (D.10)





5. R5 and R6 follow similar procedure mentioned for R4 to find the difference be-

tween measured and calculated phase b and phase c voltages based on MTES57 and

MTES112, respectively.

6. R7: MTES165 is used for deriving R7 based on based on m4 in Eq. (D.2):

m4 : R7 = yia − ia (D.11)

To calculate ia, θe is obtained directly from measurement, and ωm is subsequently

calculated using the sequence of d3 and e11. Then the measured values of va, vb, and

vc are used in e1 and e2 to get to vd and vq. Next,
did
dt

and diq
dt

are obtained from d1
and d2 and finally ia is calculated from e5 as follows:

ia = id cos θe − iq sin θe (D.12)

7. R8 and R9 follow similar procedure mentioned for R7 to find the difference between

measured and calculated phase b and phase c currents based on MTES160 and

MTES156, respectively.

D.4 Experiments and Results

The proposed diagnostic method is validated through experimental results in this section.

Fig. D.6 shows the experimental setup, where two identical PMSMs are mechanically

coupled to form a motor-generator set. A torque transducer is placed in between the

motors to measure the load torque, which can be varied through resistive load of the

generator. The motor is controlled by an inverter and the sensors are powered by a low

voltage dc supply. Finally, a dSpace MicrolabBox is used to control the motor and collect

the sensor data. The parameters of studied PMSMs are listed in Table D.1.

A ramp speed reference was applied on the motor to test the residual responses under

nominal operating conditions of 1200 rpm. Fig. D.7 shows the speed reference and the

motor’s speed during the time of the operation.

After reaching the nominal speed, the measurement faults are applied at different time

intervals. To cover all the possible measurement errors, different measurement errors have

been applied including dc offset values for current sensors, speed and torque sensors, gain

change for voltage sensors, and imbalance in angle measurement. At t = 1 − 2s, there

appears a +0.2rad/s offset in ωm measurement; at t = 3− 4s, there is a +1N.m offset in

TL measurement; at t = 5− 6s, the inverter has a +2% gain increase in vdc measurement;

at t = 7− 8s, the inverter has a +0.04A offset in idc measurement; at t = 10− 11s, there

appears a +4% gain change in va measurement;at t = 12−13s, there is a +4% gain change

in vb measurement;at t = 14 − 15s, appears a +4% gain change in vc measurement;at

t = 17 − 18s, there is a +2A offset in ia measurement;at t = 19 − 20s, there is a +2A

offset in ib measurement;at t = 21 − 22s, there is a +2A offset in ib measurement; and

finally at t = 23−24s, there is a +0.01 amplitude imbalance in θe measurement. Fig. D.8

shows the sequence of applied sensor faults.

The residual responses for the sensor faults are obtained after the motor reaches steady-

state condition i.e. constant 1200 rpm of speed and 14 N.m of load torque (t = 5 − 25s





Figure D.6: Experimental setup.

Table D.1: Parameters of PM Synchronous Motor

Symbol Parameter Value Unit

Vdc Rated dc bus voltage 320 V

Is Rated rms phase current 5.9 A

Tout Output Torque 14 N.m

ns Rated speed 1200 rpm

Rs Phase resistance 1.125 Ω

Lq, Ld Q and D axes inductances 8.75 mH

J Rotor inertia 13.558 kg.cm2

b Rotor damping factor 0.00295 N.m.s/rad

λm Flux linkage of PMs 0.1554 Web

p Pole-pairs 4
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Figure D.8: Sequence of of faults.

in Fig. D.7). All the residual responses are filtered using a low-pass filter for better

demonstration and shown in Fig. D.9. For t = 0− 1s, the motor is operating in healthy

mode and all the residuals remain averagely zero (neglecting the noise) since the signal

values from the measurement and the calculations in each residual are similar. When the

first fault i.e. fωm occurs, only R1 is affected and obtains a non-zero value. similarly when

fTL
occurs next, only R2 is affected and obtains a non-zero value. The inverter faults fvdc

and fidc appear next and trigger R3 at different time intervals. when the phase-a voltage

fault fva occurs at t = 10 − 11s, residuals [R3, R4, R6, R7, R8, R9] are triggered as

expected in fault signature matrix (Fig. D.5). Similarly, fvb and fvc trigger residuals [R3,

R4, R5, R7, R8, R9] and residuals [R3, R5, R6, R7, R8, R9], respectively. Next one is the

phase-a current fault fia which occurs at t = 17− 18s and residuals [R3, R4, R6, R7] are

triggered. Similarly, fib and fic trigger residuals [R2, R3, R4, R5, R8] and residuals [R2,

R3, R5, R6, R9], respectively.

As shown in Fig. D.9, all faults are detectable and each fault can trigger at least one

of the designed residuals R1 − R9. The faults fωm , fTL
, fvdc , and fidc only trigger one

residual during their presence and therefore, very easy to be isolated. The rest trigger

multiple but unique combinations of residuals. Based on this, the behavior and response

of specific combinations of residuals can be used as the ground for detection and isolation

of these faults in the PMSM and drive system.
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Figure D.9: Response of residuals.





D.5 Conclusion

This paper presents a method to detect and isolate sensor faults in a PMSM drive based

on structural analysis. Not only are more sensor faults investigated compared to previous

studies, but also the dc bus voltage and current are involved in the system. Structural

analysis is employed to obtain the redundant part of the PMSM drive using DM decom-

position. 9 sequential residuals are derived based on the fault terms that appear in each

of the MTES sets to detect and isolate 11 faults in the sensors including voltage, current,

load torque, speed, and angular position sensors. The proposed model is implemented

experimentally and the behavior of residuals during mentioned faults are investigated in

different time intervals. The experimental results show that residuals are able to efficiently

detect and isolate faults in the laboratory test, proving the effectiveness of this diagnostic

approach.
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