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ABSTRACT
Industrial cooling systems consume large quantities of energy with highly variable power demand. To
reduce environmental impact and overall energy consumption, and to stabilize the power requirements,
it is recommended to recover surplus heat, store energy, and integrate renewable energy production. To
control these operations continuously in a complex energy system, an intelligent energy management
system can be employed using operational data and machine learning. In this work, we have developed
an artificial neural network based technique for modelling operational CO2 refrigerant based industrial
cooling systems for embedding in an overall energy management system. The operating temperature
and pressure measurements, as well as the operating frequency of compressors, are used in developing
operational model of the cooling system, which outputs electrical consumption and refrigerant mass flow
without the need for additional physical measurements. The presented model is superior to a generalized
theoretical model, as it learns from data that includes individual compressor type characteristics. The
results show that the presented approach is relatively precise with a Mean Average Percentage Error
(MAPE) as low as 5 %, using low resolution and asynchronous data from a case study system. The
developed model is also tested in a laboratory setting, where MAPE is shown to be as low as 1.8 %.

1. Introduction
The building and construction sector, including energy

intensive food distribution warehouses, is responsible for al-
most 40 % of total emissions related to energy and process
(IEA, 2019a). Within the built environment, cooling demand
is continually increasing as the weather grows warmer and a
larger part of the worlds population and industrial enterprises
gain access to air conditioning equipment and cooled build-
ing space (IEA, 2019b). The environmental impact of this
trend can mainly be alleviated through a two-fold focus on en-
ergy efficient operation (Li et al., 2020; Zhu et al., 2019) and
use of increasingly viable environmentally friendly refriger-
ants, such as carbon dioxide (CO2), in the Cooling Systems
(CS) (Mohammadi and McGowan, 2019; Sarkar et al., 2004;
Neksa, 2002; Neksa et al., 1998).

Typically, in warehouses and distribution centers, compre-
hensive CSs are responsible for a big portion of the building’s
energy use. CS performance will also be affected by changes
in the operational environment, including weather conditions,
logistical operations, and workforce behavior (Chua et al.,
2010; Sarkar et al., 2004). These effects are enhanced when
dealing with environmentally friendly refrigerants, such as
CO2, that recently have seen an increase in utility due to en-
vironmental concerns (Schmidt et al., 2019). A cost efficient
way to reduce environmental impact in the existing CSs is
through energy efficient operation. This can be achieved in
several ways, depending on the existing energy system design,
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such as optimized interaction with a Thermal Energy Storage
(TES) (Širokỳ et al., 2011), surplus heat recovery (Chua et al.,
2010) and optimized time-of-use with simultaneous access to
local renewable energy resources (Wu and Wang, 2018; Kow
et al., 2018). Implementing an Intelligent Energy Manage-
ment System (IEMS) allows the building operator to automate
the process of continuously choosing actions with the highest
cost-reduction or energy-savings potential (T et al., 2018;
Venayagamoorthy et al., 2016; Wen et al., 2015; Zhao et al.,
2013; Chen et al., 2011). The IEMS takes advantage of the
shift from Human-to-Machine to Machine-to-Machine com-
munication, with access to large quantities of data through
Internet/Intelligence of Things (IoT) components, and can
incorporate the latest developments within Artificial Intelli-
gence (AI) for prediction and control purposes (Hakimi and
Hasankhani, 2020; Wu and Wang, 2018; Manic et al., 2016).
The IEMS can handle various tasks, such as optimized uti-
lization of energy storage options to reduce overall CS energy
consumption (Širokỳ et al., 2011). TES systems can be used
to enhance the CS performance by exploiting available heat-
ing and cooling capacity for optimum operation of energy
storage during high-performance operating conditions. In
a CS, the most important energy efficiency measure is the
Coefficient of Performance (COP). The COP is a ratio of the
useful thermal energy provided compared to the electrical
work required. To determine the thermal component of this
ratio in direct expansion systems that use the refrigerant for
cooling energy distribution, we need an accurate measure of
refrigerant flow.

Installing flow measuring equipment in existing CO2 re-
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frigerant, direct expansion CSs is a costly and complicated
operation. The complexity and risk increases when the CS
operates on multiple temperature levels with separate distri-
bution systems. The most logical option for performance
evaluation then becomes a theoretical calculation based on
available operational data. In Zou and Xie (2017), a simpli-
fied model for COP modelling of a water source heat pump
is suggested. Sun et al. (2017) proposes a general simulation
model based on graph theory that utilizes accurate mathe-
matical models of individual components, such as the Li
(2013) suggested approach to variable speed compressors,
to model refrigerant flow. Kim et al. (2018) conducted a
case study of variable refrigerant flow simulation, tailored for
building energy modelling, where the focus was calibration
of a CS model to the U.S. DOE’s EnergyPlus software. Zhu
et al. (2013) proposes a generic model for variable refrigerant
flow in air conditioning systems with multiple evaporators
intended for simulation of performance and control analy-
sis. None of the aforementioned studies propose models for
multi-stage compression CS. Adaptation and implementation
of the proposed methods would also require quite extensive
knowledge of refrigeration technology and specific system
design. Future IEMS systems might be dependant upon a
realistic simulated environment to enable training of sophis-
ticated Reinforcement Learning agents (Schrittwieser et al.,
2019; Silver et al., 2018) that can adapt to and learn from op-
erational data. A robust method that allows for cost effective,
real-world implementation in complex, industrial scale, CO2direct expansion CS is needed. Since industrial scale CSs
have to be specifically designed and built for each use case,
a general calculation will be quite inaccurate. Intellectual
Property (IP) rights tied to the individual components in the
CS can also restrict options for full access to precise perfor-
mance data. Some industrial CS suppliers provide access to
web-based software designed for product selection and sim-
ple, static performance calculation, but the details necessary
to build a more robust theoretical calculation model are not
shared. An open, accurate, scalable, and reliable method for
theoretical COP calculation is therefore needed.

Within the field of AI, anArtificial Neural Network (ANN)
is a particularly powerful tool for hidden function approx-
imation. ANNs trained on limited experimental data were
successfully used for COP calculation in Esena et al. (2008).
In Opalic et al. (2019) we showed that ANNs trained to model
the electrical power utilized by Bitzer, a widely utilized com-
pressor manufacturer, 4CSL12K compressors give highly
accurate results, with an MSE of 0.08%, when compared to
results attained from Bitzer software.

In this paper, we expand our scope by using ANNs to
model all Bitzer compressors in a large and fully operational
CO2-based CS. To further examine the usefulness and real-
world application of this approach, we compare electrical
power measurements of a case study CS to the summed cal-
culations of an ensemble of ANNs that each model a com-
pressor type featured in the CS. We also verify our method by
comparing our calculations to measurements from a compa-
rable laboratory CS. We train the ANNs using available data

collected from the compressor manufacturer’s web-based
software. The ANN training algorithm adjusts the weighting
of the input parameters, as well as the weighted connections
between neurons, to expertly fit the labeled training data. Af-
ter we define the appropriate input and output parameters,
our approach only requires limited knowledge of refrigera-
tion technology and system design to be implemented in an
operational setting. In CSs with access to a limited amount
of desired performance measures, our approach can be used
to supplement and enhance the value of the existing data. In
such installations, the overlap between measurements and
calculations can also be used to discover inconsistencies be-
tween theoretical and actual performance. To the best of our
knowledge, our approach to linking theory and practice in
multi-stage, CO2 refrigeration technology using ANNs hasnot been attempted before. The proposed method is both
practically feasible and useful in evaluating the energy per-
formance of CO2-based cooling installations. Owners and
operators can use our ANN model ensemble approach for
quality assurance of CO2-based CSs.

We have designed our approach to:
• independently model the parts of the CS that interact
with the TES at any given time, such that we can use
the efficiency of this isolated part of the CS as input to
an algorithm that optimizes the use of the TES;

• have a more accurate performance measure than what
is currently available;

• create a data set that enables the development of CS
future performance prediction models by applying our
method to historical CS data;

• be able to calculate historical values of available ex-
cess heat, whereas what is currently known is only the
amount of heat that was reclaimed and used;

• investigate to what extent ANNs can model complex
scenarios consisting of several cooling compressors in
a multi-stage CS – especially including transcritical
conditions for CO2.

We organize this article in the following manner. Section
2 describes the components of a real-world advanced ware-
house and logistical center that includes a case study cooling
system, as well as the data collection process for model de-
velopment. We present our CS model ANN architecture in
Section 3. Section 4 is our discussion of results and imple-
mentation. Lastly, we present our conclusions and suggest
future research efforts in Section 5.

2. System structure and configuration
We based our work on information and data collected

from a warehouse and food distribution center near Stavanger
in Norway, completed in the fall of 2017. The main compo-
nent of the warehouse energy system is an industrial CO2refrigerant CS consisting of three separate cooling plants cir-
culating liquid CO2 to evaporators in the frozen and chilled
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Table 1
Warehouse dimensions and temperatures.

Area Size Operating temperature

Dry storage, office space, etc. 19,000 m2 18-22°C
Frozen 3,000 m2 -20°C
Chilled 3,500 m2 0-4 °C
Chilled distribution 3,500 m2 0-4 °C

Table 2
Components’ specifications.

Component Capacity Unit of measurement

PV - photovoltaic power generation 1,000 [kWp]
LBS - lithium-ion battery system 460/200 [kWh/kW]
TES - thermal energy storage 300/300 [m3/kWtℎermal]
CS - cooling system 1,140 [kWtℎermal]

food storages. The CS also produces chilled water for cooling
of the remaining building areas, including food storage, office
space, and support areas. The architecture of the case-study
cooling plant examined in this study is shown in Fig. 2. An
additional back-up and peak-load cooling machine also pro-
vides chilled water for ventilation and server cooling. CS
surplus heat is recovered and utilized to heat tap water, to
keep the ground beneath the frozen storage frost-free and
to supply the non-cooled areas of the building with heating
energy when needed. If there is insufficient excess heat avail-
able, the operating pressure of the CS is increased to satisfy
the heating demand, up to a predefined maximum pressure
level. Recovered heat can also be stored in a TES for future
use, mainly to reduce the need for the electrical boiler at peak
heating demand.

The warehouse also exhibits a considerable photovoltaic
(PV) power generation plant, a lithium-ion battery system
(LBS), and a buried and insulated 300 m3 firewater tank
connected to a heat exchanger that is utilized as a TES. An
electrical boiler is employed for back-up and peak demand
heating. Table 1 contains a list of the operational tempera-
ture range in the various warehouse areas, whereas Fig. 1
and Table 2 visualizes and lists the main components of the
warehouse energy system. The PV plant supplies A/C power
directly to the main switchboard. If demand is sufficient, all
the PV energy is utilized in the building. Otherwise, energy
is stored in the LBS, converted to thermal energy and stored
in the TES or exported to the main grid. In addition to storing
surplus solar energy, the LBS is used for power peak reduc-
tion. Thermal energy in the form of chilled or heated water
can be stored in the TES, represented by the purple arrow in
Fig. 1. The IEMS tasked to control the energy storage sys-
tems applies proven machine learning algorithms to predict
PV power generation, as well as the future demand for ther-
mal and electrical energy. An optimization algorithm then
employs the predictions to calculate the most cost-effective
hourly schedule for charging and discharging.

The IEMS controls the TES in two separate seasonal

modes of operation, Heat Energy Storage (HES) and Cold
Energy Storage (CES). It employs CES mode from around
March to November, and HES for the remainder of the year.
Natural reduction of the cooling demand occurs as outside
temperature decreases towards the winter season. As a result,
surplus heat available for recovery is no longer able to sustain
the warehouse’s overall demand for heating. However, by
storing heating energy reclaimed from the CS in advance, the
load on the electric boiler can be severely reduced, which in
turn reduces the consumption of energy and the cost of peak
power.

In CES mode, the IEMS attempts to balance two main
strategies:

1. Storing surplus electricity generated by the PV instal-
lation in the CES through energy conversion.

2. Producing and storing chilled water at high COP con-
ditions.

When the IEMS applies strategy number one, the CS
converts surplus electricity to chilled water for storage in the
CES at a temperature range between 7°C and 15°C. In the
evening, when the natural reduction of power output from the
PV-plant occurs, the IEMS may choose to discharge the CES
and thereby reducing power requirements for the CS. The
second strategy involves optimizing the production of cool-
ing energy by decoupling it from the consumption through
the CES. The IEMS optimization algorithm accomplishes
this through the utilization of cooling demand predictions,
weather predictions, and table base COP values.

The IEMS currently uses a simplified approach with a
provided table of COP values to evaluate performance at
given ambient temperature and operating conditions. Future
COP values can then be estimated using weather predictions.
The COP table is a rough metric that does not supply the opti-
mization algorithm with quantitative input, such as expected
cooling production at the separate CS stages and total avail-
able excess heat. Also, the Building Management System
(BMS) provides a general CO2 CS model that calculates all
the necessary parameters, but with unsatisfactory accuracy.
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Figure 1: The warehouse energy system.

We, therefore, suggest an ANN approach to calculate
compressor mass flow and electricity consumption. Calculat-
ing cooling capacity instead of mass flowwould be preferable.
However, due to unavailability of cooling capacity data for
all the compressors, we use mass flow as an alternative ap-
proach. We have developed models for all the compressors
in the cooling system. Two models have been developed for
each transcritical compressor so that we use separate models
of the same compressor for calculations in the subcritical and
transcritical operational modes. The compressors are semi-
hermetic reciprocating compressors manufactured by Bitzer
GmbH, with one frequency-controlled compressor at each
stage. Fig. 2 shows the placement of all the compressors in a
simplified cooling system architecture. There are two pres-
sure stages of compression as well as parallel compressors to
handle flash gas in the receiver and chilled water production.
The compressors for the frozen storage areas are displayed in
the bottom left, with the cold storage compressors in the top

left and the parallel compressors in the top right. Fig. 2 also
displays mass flow direction and the most crucial CS compo-
nents. It can be noted that the CO2 based cooling system is a
highly complex part of the energy system in the considered
technologically advanced warehouse. Fig. 2 is an element of
Fig. 1.

The website of the manufacturer was used to collect data
(Bitzer-GmbH, 2019). Theoretical values for cooling capac-
ity (Q), electrical power (P), electrical current (I) or mass
flow (ṁ), which can all be substituted for the parameter y
in Eqs. 1 and 2, can then be separately calculated by using
the appropriate constants ci,∀i ∈ 1, 2, ..10 in the following
polynomials (according to EN 12900:2013), for subcritical
pressure conditions

ysc = c1 + c2to + c3tc + c4t2o + c5totc + c6t
2
c + c7t

3
o+

c8tct2o + c9tot
2
c + c10t

3
c ,
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Figure 2: On-site cooling plant architecture.

(1)
and, for transcritical pressure
ytc = c1 + c2to + c3pHP + c4t2o + c5topHP + c6p

2
HP+

c7t3o + c8pHP t
2
o + c9top

2
HP + c10p

3
HP .

(2)
In Eqs. (1) and (2), to (°C) is representing tempera-

ture of evaporation and tc (°C) is the condensation tempera-
ture, whereas pHP [bar] is the discharge pressure of the com-
pressors at transcritical operating conditions where pHP >
73.77[bar]. The constants c1 through c10 depend on suction
gas temperature (SGT, °C) and compressor operating fre-
quency (CF, Hz) for subcritical operating conditions, while
gas cooler outlet temperature (GOT, °C) must also be selected
for transcritical operation. Separate and independent sets of
constants are used to calculate Q (kWtℎermal), P (kW), I (A)
or ṁ (kg/h) when used with Eqs. (1) and (2). Constants for
P and ṁ were collected in 5 degree steps for SGT and GOT
within each compressors defined operational range, and 5
Hz steps for CF between 70 and 30 Hz. P and ṁ example
values were then calculated and labelled appropriately using
integers for to, tc and pHP , resulting in data sets ranging fromapproximately 10 000 to 100 000 training examples for each
compressor model.

Finally, we can determine cooling production, available
excess heat, and the COP of any part of the system through
calculations. For example, ṁ can be used to calculate cooling
load with the enthalpy difference equation

Qc =
ṁΔℎc
3600

, (3)

where Δℎc (kJ/kg) is the specific enthalpy difference of therefrigerant between the outlet and inlet of a specific evap-
oration stage. Pressure and temperature of the subcooled
liquid refrigerant before the expansion device (evaporator
inlet conditions), along with the pressure and temperature
of the superheated gas (evaporator outlet conditions), are
measured. Specific enthalpy at the inlet and outlet of the
evaporation stage is therefore known and can be used to cal-
culate the specific enthalpy difference. We can then calculate
the COPc of a single, or multiple, compressor(s) using Eq.
(4)

COPc =
Qc
P
. (4)

3. ANN approach design and configuration
We chose the appropriate ANN design for compressor

modelling by analyzing the Bitzer software and the avail-
able data. Clearly, in Eqs. (1) and (2), we can observe the
characteristics of a polynomial function. Even though the
relationship between the input variables and the constants
ci, ∀i ∈ 1, 2, ..10 are unknown, Eqs. (1) and (2) provide
important information which we consider an indication of
the hidden function we are attempting to approximate with
ANNs.

In the considered ANN approach design and configu-
ration, the patterns are discovered by such a function via
training the ANN employing a hyperbolic tangent (tanh) ac-
tivation function (Opalic et al., 2019; Cybenko, 1989). We,
therefore, use the most suited neural network architecture
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Figure 3: ANN model architectures: a) Subcritical operation, b) Transcritical operation, c) Subcritical and frequency controlled,
d) Transcritical and frequency controlled.

found in (Opalic et al., 2019), namely using one hidden layer
(HL) containing 45 neurons. Fully connected ANNs are con-
figured to calculate P and ṁ by feed-forwarding input data
through the neurons in the HL as shown in Fig. 3. We have
trained compressor models for subcritical operating condi-
tions with data sets generated with Eq. (1), while Eq. (2) was
utilized to generate the data sets for the transcritical operation
model training. The Adam optimizer (Kingma and Ba, 2014)
has been applied to update the weights of the neural networks
during training. The training continued until model learning
converged by using the early-stop method in the Keras (Chol-
let et al., 2015) programming library, with the "patience"
parameter set to 150 epochs.

We set the training optimizer to update the trainable pa-
rameters after each training batch, consisting of 100 training
examples. We have used Mean Squared Error (MSE) as the
loss function while MSE andMean Average Percentage Error
(MAPE) were used as model accuracy metrics.

The models are programmed using Python 3.6 and Keras
(Chollet et al., 2015). We divided the data sets into training
and validation data through randomization and a factor of 0.9
to 0.1, respectively. We normalized the input values by mean
(�) subtraction and adjusting for variance (�2). The resulting
values of � and �2 calculated on the training data set {Xi}were then employed to also adjust the validation data set.

We finally assembled the individually trained models in
accordance with the design of the case-study CS shown in
Fig. 2. Operational data from the cooling system was gath-
ered in order to compare the aggregated output of the ANN
models for running compressors to the metered power input.
In addition to to, tc , PHP , SGT, CF and GOT, compressor
operating status for each compressor was collected. For ev-
ery timestep, our algorithm utilizes the operational data to

determine which compressors are operational, the CF of the
frequency controlled compressors, and whether the CS pres-
sure level exceeds the transcritical threshold. The data for the
active compressors, in the appropriate operational mode, is
then selected and sorted into the format shown in Fig. 3, and
fed into the input layers of the selected models. The resulting
model output is finally summed for each separate stage of
compression and compared to the metered power input to the
CS.

However, none of the data is temporally synchronized.
Accordingly, the raw data had to be processed and aligned in
order for comparisons to be made. The data processing intro-
duces an error source that has to be taken into account when
observing the results. Also, a third-party BMS, utilizing se-
rial bus communication for data gathering, is responsible for
collecting the power measurements and operational data from
the cooling system. The BMS only timestamps the data when
it is received. There is no timestamp for when the data was
requested or when the cooling system controller received the
request (the actual time of measurement). This lack of clarity
adds another layer of uncertainty to the temporal accuracy
and integrity of the raw data. By request, the BMS operator
increased the frequency of data collection in June 2019 in
order to increase input data quality.

An analysis of the raw data also shows that even when
measured power input drops to zero, the BMS will still show
active compressors, and accordingly, the models will predict
the individual compressor power usage. Therefore, we have
removed all data points with a power measurement of zero
in the data cleaning process.

An alternative research approach would have been to
structure the training data so that a single model could be
used to predict the aggregated output. We only briefly consid-
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Table 3
Training and validation MSE for all models. Separate models for frequency controlled (FC)
compressors and transcritical (TC) operation.

Compressor model Training MSE Validation MSE

Bitzer 4CSL12K 2,97E-05 2,48E-05
Bitzer 4CSL12K FC 2,37E-05 1,60E-05
Bitzer 4CTC30K 3,90E-05 3,17E-05
Bitzer 4CTC30K TC 7,79E-06 4,57E-06
Bitzer 4DTC25K 1,84E-05 2,01E-05
Bitzer 4DTC25K TC 6,20E-06 2,89E-06
Bitzer 4FTC30K 6,76E-05 6,50E-05
Bitzer 4FTC30K FC 2,68E-05 1,74E-05
Bitzer 4FTC30K FC TC 1,28E-05 7,85E-06
Bitzer 4FTC30K TC 1,54E-05 1,09E-05
Bitzer 4JTC15K 1,87E-05 1,34E-05
Bitzer 4JTC15K FC 2,34E-05 1,82E-05
Bitzer 4JTC15K FC TC 2,19E-05 1,54E-05
Bitzer 4JTC15K TC 7,26E-06 6,91E-06

ered this alternative as such an approach would have included
removing known information and system boundaries from
the training process only to have the information, hopefully,
relearned by the single model. Also, we would have removed
the advantage in our chosen approach of being able to model
separate stages in the cooling system, while transfer learn-
ing by reusing already trained compressor models in other
cooling systems would have been more difficult.

There is no flow measuring equipment in the case-study
CS that can be used to verify the accuracy of the aggregated
model. Therefore, we also tested our method with data from
an ongoing experiment at the Norwegian University of Sci-
ence and Technology (NTNU) laboratory CS. The NTNU
CS has a very similar design to the case-study CS, while also
measuring the flow of CO2 through each compressor stage
and the individual electrical power input of each compressor.
The compressors in the NTNU CS parallel stage, consisting
of a Bitzer 2KTE-7K-40S (Inverter driven), Bitzer 2KTE-
7K-40S (set to fixed speed) and Bitzer 4JTC-15K-40S (fixed
speed), were modeled using our previously described ANN
configuration approach. Part of the pressure and temperature
sensors in the NTNUCS are connected to Danfoss controllers
which sample and log the data in 5-second intervals. Mass
flow meters, temperature sensors, and active power consump-
tion meters for the compressors are connected to National
Instruments Hardware, and the data is logged by LabVIEW
software with a sampling time of 1 second. LabVIEW soft-
ware also handles information coming from the inverters
(frequency, power, etc.), connected by Modbus, with a 5 sec-
ond sampling time. NTNU researchers finally synchronize
all the data in MATLAB with in-house software.

4. Results and implementation plan
4.1. Results analysis

In this paper, we attempt to model the compressors in an
operational, industrial CS using ANNs. We trained the ANNs
with data generated by calculating power input and mass flow

of Bitzer CO2 CS compressors using polynomials, subject to
openly available constants, for subcritical and transcritical
conditions. The difference between training and validation
error, as shown in Table 3, is minimal in all cases. Therefore,
we could likely have used a more significant part of the data
sets for training without risk of overfitting. Table 3 lists
the training and validation MSE results for each compressor
model. Table 3 shows that the models are highly accurate
when compared to training and validation data sets generated
with Eq. (1) and (2) and can therefore be expected to give
very similar results to the hidden ground-truth theoretical
models.

Table 4 shows results for aggregated model output com-
pared to metered power input to the case study CS every
month from January 2019 to July 2019. We observe an in-
crease in aggregated model predictive accuracy compared to
power measurements in June and July, which is likely due to
the increased data collection frequency implemented in the
BMS. Fig. 4 and 5 show monthly plots for the worst (April)
and best (July) months. Making any visual distinction be-
tween these months is difficult, but an apparent trend in both
months is that the largest discrepancies between predicted
and actual power input exists in the lower spectrum of power
usage. Sudden drops in measured power input, not reflected
in the CS BMS data, is a probable cause of this trend. It
is therefore likely that there is an error in the raw CS data
connected to sudden drops in power input, perhaps due to
sudden switches between compressors or a rapid decrease in
cooling demand when local evaporator set-point temperature
conditions are met. We find further evidence of this when
examining the differences between MSE and MAPE in TC
or SC operation during warmer or colder months. Table 4
shows that the MSE and MAPE in transcritical operating
conditions are higher than in subcritical operation for Jan-
uary through May, while the opposite is true in June and July.
Since heat is reclaimed from the CS and used for heating
purposes, pressure is increased in the winter months when
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Table 4
Monthly MSE and MAPE comparison from January 2019 to July 2019. Separate columns for
subcritical (SC) and transcritical (TC) operating conditions.

Month MSE MSE TC MSE SC MAPE MAPE TC MAPE SC

January 112.3 120.7 104.1 15.8 % 14.9 % 16.7 %
February 102.8 106.9 101.7 15.4 % 12.4 % 16.2 %
March 90.7 112.0 85.4 14.7 % 13.8 % 14.9 %
April 145.7 187.9 136.3 18.3 % 18.7 % 18.2%
May 88.0 130.9 79.7 16.3 % 18.3 % 15.9 %
June 44.2 34.6 45.5 12.0 % 6.1 % 12.8 %
July 38.8 31.1 42.6 10.1 % 5.8 % 12.3 %
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Figure 4: April 2019 - Aggregated model output compared with metered power input to CS.

the heating distribution system requests more energy concur-
rently with or caused by drops in cooling demand. Inversely,
during the summer months, pressure increases are usually
caused by an increase in ambient temperature and cooling
demand. Therefore, the conditions likely to cause the most
significant discrepancies occur most often in TC operation
in the colder parts of the year and SC operation during the
summer, possibly leading to the observable differences in TC
and SC MSE and MAPE in Table 4.

Since the monthly plots are quite hard to read due to a
large number of data points, we include plots of a single ran-
dom day in April and July in Fig. 6 and 7. These plots show
the importance of the increased quality of the aggregated
model input data. Fig.6 indicates a temporal displacement
between the aggregated model output and the power mea-
surements when compared to Fig. 7.

Due to the jitters in time for the input data, the model out-
put and the power measurements are not precisely temporally
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Figure 5: July 2019 - Aggregated model output compared with metered power input to CS.
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Figure 6: 2019-04-10, 24 hours - Aggregated model output compared with metered power input to CS.
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Figure 7: 2019-07-16, 24 hours - Aggregated model output compared with metered power input to CS.

aligned. To illustrate and compare the results accordingly,
we introduced an offset � in the time domain to align the two
data series. In more detail, we shift P (t) by � ∈ [−10, 10]
to find the maximum output of max� ∑tM(t)P (t + �). In
this way, we can probably achieve a more appropriate time

alignment.
The maximum was found at � = −2. Adjusting accord-

ingly reduces the MSE in April from 145.7 to 50.5 and the
MAPE from 18.3 % to 10.1 %. For 2019-04-10 in Fig. 6 the
MSE was reduced from 133.3 to 29.4 and MAPE from 12.8
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Figure 8: 2019-04-10, 24 hours - Aggregated model output compared with metered power input to CS, adjusted for � = −2.
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Figure 9: 2019-08-22 to 2019-08-26 - Aggregated model output compared with metered power input to CS and BMS calculated
values.
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Figure 10: 2019-08-25 - Aggregated model power calculation compared with metered power input (inverter) at the NTNU
laboratory CS.

% to 5.5 %, results shown in Fig. 8.
We also compare our aggregated model to BMS calcu-

lations. BMS calculation parameters were first adjusted to
maximize accuracy on 2019-08-22. Results for 2019-08-22

to 2019-08-26 are plotted in Fig. 9. Aggregated model cal-
culation MSE on this sample is 41.7, while the MSE for the
BMS calculation is 206.2. Similarly, our model calculation
MAPE is 8.5 % compared to 20.1 % for the BMS calculation.
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Figure 11: 2019-08-25 - Aggregated model flow output compared with measured flow at the NTNU laboratory CS.
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Finally, we use data, collected through sensor networks,
from an ongoing NTNU CS experiment to validate our ap-
proach in a laboratory setting. Measurements of power and
flow in the ongoing experiment are compared to the outputs
of our aggregated ANN model. The NTNU experiment was
conducted in transcritical operating conditions, with pressure
ranging from 74.9 bar to 98.3 bar. Results are plotted in Fig.
10 and 11. We obtain a MAPE of 3.13 % when comparing the
output from the ANNs with measurements from the power
meters, whereas using measurements from the inverter for
the frequency controlled compressor reduces MAPE to 1.87
%. Measurements from the power meters includes the power
consumption of the inverter as well as power conversion
losses. The increased accuracy, when using measurements
in the inverter, suggests that the aforementioned losses are
not included in the Bitzer software (Bitzer-GmbH, 2019) cal-
culations. The result for the ANN flow output compared to
NTNU CS measurements is 1.76 % MAPE. These results
show that the presented method is accurate, when given syn-
chronized data with a low sampling time period. Our results
also suggest that the underlying ground truth mathematical
function for each compressor type could possibly be unknown
to the compressor manufacturer. The form that the available
data is given in, combined our highly accurate results in a
laboratory setting, suggest that the values for the constants
could be based on empirical testing of each compressor. If
this is the case, our approach could also be a useful way for
the compressor manufacturer to easily encode all their labo-
ratory data in neural networks that can be employed in their
own calculation software.
4.2. Implementation in the operational setting

Industrial CSs are very power intensive and produce large
amounts of surplus heat that is often discarded. In the case
study warehouse, excess heat from the CS can be effectively
used or stored in the TES to reduce the need for additional
heating supplied by the electrical boiler, as described in Fig.
1. Chilled water can be produced and stored in the TES dur-
ing periods of favorable CS operating conditions and low
energy prices, or access to surplus solar energy that would
otherwise be exported to the main grid at a severely reduced
energy price. The IEMS can facilitate energy management
and reduction of the operational demands in an intelligent
way to reduce energy cost and environmental impact. To opti-
mize CS and TES interaction, the time-varying performance
of the CS is required. The presented ANN model is currently
being implemented and configured to supply the IEMS with
compressor power consumption and refrigerant mass flow.
Our software has been installed at a dedicated local server
and communicates directly with the BMS through an Appli-
cation Programming Interface (API) developed by the BMS
provider, utilizing the JSON-RPC 2.0 protocol. The IEMS
then collects live data as needed from the BMS through a
local gateway setup.

Historical data generated with our ANN ensemble has
also been supplied to the IEMS provider to allow develop-
ment of predictive models of CS performance. The perfor-

mance prediction model is developed with machine learning
tools and will be utilized as input to the IEMS optimization
algorithm. The output of the presented aggregated ANN
model will improve the performance of the smart warehouse
IEMS by increasing the quality of its necessary input data.
The energy management system operator will also use these
measures for quality assurance and performance evaluation
through visualization in the Building Energy Management
System.

5. Conclusions
Industrial cooling systems are responsible for a consid-

erable amount of the buildings total energy use and environ-
mental impact. To reduce energy consumption and conserve
the environment, it is recommended to recover and store sur-
plus heat, and optimize system operation for utilizing it in
coordination with intermittent renewable energy production.
These tasks have to be managed intelligently in a complex en-
ergy system with dynamic operation of various sub-systems
/ components. In this work, we have presented ANN model
of an operational CO2-based industrial cooling sub-systemof a complex warehouse energy system. The operating tem-
perature and pressure measurements, as well as the operating
frequency of frequency-controlled compressors, are used in
developing the operational model. The output of the model
is electrical consumption and refrigerant mass flow for the
compression process. The presented technique is relatively
superior to a general theoretical model, both in terms of ac-
curacy, flexibility, cost effectiveness, and implementability
in the real-world application.

The developed model has MAPE in the range of 5 % to
12 % in the operational case-study cooling system. The pre-
sented results also indicate that the accuracy can be drastically
improved with increased quality of data collection frequency
in the operational measurement, supported by a MAPE of
1.87 % and 1.76 % in a comparable laboratory CS, for power
and flow respectively. The accuracy of the presented ANN
flow calculations is promising from a practical standpoint,
and can be implemented through Machine-to-Machine com-
munication using IoT related devices.

The developed modelling of the cooling system is cur-
rently being implemented in the case study energy system
(Fig. 1). The energy system operator has already noticed
improvement in the performance calculation accuracy. The
energy system operator will also use these embedded mea-
sures for quality assurance and performance evaluation of the
building energy management system. Implementation of our
approach in current, and future RL, IEMS solutions should
be explored. Additional training of the developed models,
based on increasing amounts of operational data, could also
be further examined.
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