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Let X be a Banach space, Σ be a σ-algebra, and m : Σ → X be a (countably 
additive) vector measure. It is a well known consequence of the Davis-Figiel-
Johnson-Pełczyński factorization procedure that there exist a reflexive Banach 
space Y , a vector measure m̃ : Σ → Y and an injective operator J : Y → X
such that m factors as m = J ◦ m̃. We elaborate some theory of factoring vector 
measures and their integration operators with the help of the isometric version 
of the Davis-Figiel-Johnson-Pełczyński factorization procedure. Along this way, we 
sharpen a result of Okada and Ricker that if the integration operator on L1(m) is 
weakly compact, then L1(m) is equal, up to equivalence of norms, to some L1(m̃)
where Y is reflexive; here we prove that the above equality can be taken to be 
isometric.
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1. Introduction

Let throughout (Ω, Σ) be a measurable space, X be a real Banach space, and m : Σ → X be a countably 
additive vector measure (not identically zero). Let us agree that m being a vector measure automatically 
means that m is countably additive and defined on some σ-algebra of subsets of some set.

The range of m, i.e., the set R(m) := {m(A) : A ∈ Σ} is relatively weakly compact by a classical result 
of Bartle, Dunford and Schwartz (see, e.g., [12, p. 14, Corollary 7]). So, the Davis-Figiel-Johnson-Pełczyński 
(DFJP) factorization method [10] applied to the closed absolute convex hull aco(R(m)) of R(m) ensures 
the existence of a reflexive Banach space Y and an injective operator J : Y → X such that J(BY ) ⊇ R(m). 
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Accordingly, m factors as m = J ◦ m̃ for some map m̃ : Σ → Y which turns out to be a vector measure as 
well (cf., [27, Theorem 2.1(i)]). In commutative diagram form:

Σ m

m̃

X

Y

J

Note that the vector measure m̃ need not have finite variation although m has finite variation. Indeed, if m
does not have a Bochner derivative with respect to |m|, then neither does m̃ (since J is an operator) and 
so m̃ does not have finite variation, because Y has the Radon-Nikodým property and m̃ is |m|-continuous 
(by the injectivity of J). However, if m has finite variation and a Bochner derivative with respect to |m|, 
then m factors via a vector measure of finite variation taking values in a separable reflexive Banach space. 
This result is implicit in the proof of [28, Theorem 5.2] and we include it as Theorem 3.8 for the reader’s 
convenience.

The previous way of factoring m is equivalent to applying the DFJP method to the (weakly compact) 
integration operator on the Banach lattice L∞(m), i.e.,

I(∞)
m : L∞(m) → X, I(∞)

m (f) :=
∫
Ω

f dm,

because one has aco(R(m)) ⊆ I
(∞)
m (BL∞(m)) ⊆ 2aco(R(m)) (see, e.g., [12, p. 263, Lemma 3(c)]). But there 

is still another approach which is based on factoring the integration operator on the (larger) Banach lattice 
L1(m) of all real-valued m-integrable functions defined on Ω, i.e.,

Im : L1(m) → X, Im(f) :=
∫
Ω

f dm.

Note, however, that Im need not be weakly compact and so in this case the DFJP method gives a factor-
ization through a non-reflexive space. The DFJP factorization was already applied to Im in [23] and [27]. 
Okada and Ricker showed that if Im is weakly compact, then there exist a reflexive Banach space Y , a 
vector measure m̃ : Σ → Y and an injective operator J : Y → X such that m = J ◦ m̃ and L1(m) = L1(m̃)
with equivalent norms (see [23, Proposition 2.1]).

In this paper we study the factorization of vector measures and their integration operators with the help 
of the isometric version of the DFJP procedure developed by Lima, Nygaard and Oja [19] (DFJP-LNO for 
short).

The paper is organized as follows. In Section 2 we include some preliminaries on spaces of integrable 
functions with respect to a vector measure and their integration operators, as well as on the DFJP-LNO 
method.

In Section 3 we obtain some results on factorization of integration operators that are a bit more general 
than applying the DFJP factorization procedure directly.

In Section 4 we present our main results. Theorem 4.1 collects some benefits of applying the DFJP-
LNO factorization to I(∞)

m . Thus, one gets a reflexive Banach space Y , a vector measure m̃ : Σ → Y with 
‖m‖(Ω) = ‖m̃‖(Ω) and an injective norm-one operator J : Y → X such that I(∞)

m = J ◦ I
(∞)
m̃ . Moreover, 

the special features of the DFJP-LNO factorization also provide the following interpolation type inequality:

‖I(∞)
m̃ (f)‖2 ≤ C‖m‖(Ω)‖f‖L∞(m)‖I(∞)

m (f)‖ for all f ∈ L∞(m), (1.1)
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where C > 0 is a universal constant. As a consequence, I(∞)
m̃ factors through the Lorentz space L2,1(‖m‖)

associated to the semivariation of m (Proposition 4.3).
Theorem 4.5 gathers some consequences of the DFJP-LNO method when applied to Im. In this case, one 

gets a factorization as follows:

L1(m)
Im

Im̃

X

Y

J

where Y is a (not necessarily reflexive) Banach space, m̃ : Σ → Y is a vector measure and J is an injective 
norm-one operator. Now, the equality

L1(m) = L1(m̃)

holds with equal norms. Moreover, an inequality similar to (1.1) is the key to prove that m̃ has finite variation 
(resp., finite variation and a Bochner derivative with respect to it) whenever m does. As a particular case, 
we get the isometric version of the aforementioned result of Okada and Ricker (Corollary 4.7).

2. Preliminaries

By an operator we mean a continuous linear map between Banach spaces. The topological dual of a Banach 
space Z is denoted by Z∗. We write BZ to denote the closed unit ball of Z, i.e., BZ = {z ∈ Z : ‖z‖ ≤ 1}. 
The absolute convex hull (resp., closed absolute convex hull) of a set S ⊆ Z is denoted by aco(S) (resp., 
aco(S)).

Our source for basic information on vector measures is [12, Chapter I]. The symbol |m| stands for the 
variation of m, while its semivariation is denoted by ‖m‖. We write x∗m to denote the composition of 
x∗ ∈ X∗ and m. A set A ∈ Σ is said to be m-null if ‖m‖(A) = 0 or, equivalently, m(B) = 0 for every B ∈ Σ
with B ⊆ A. The family of all m-null sets is denoted by N (m). A control measure of m is a non-negative 
finite measure μ on Σ such that m is μ-continuous, i.e., N (μ) ⊆ N (m); if μ is of the form |x∗m| for some 
x∗ ∈ X∗, then it is called a Rybakov control measure. Such control measures exist for any vector measure 
(see, e.g., [12, p. 268, Theorem 2]).

2.1. L1-spaces of vector measures and integration operators

A suitable reference for basic information on L1-spaces of vector measures is [24, Chapter 3]. A Σ-
measurable function f : Ω → R is called weakly m-integrable if 

∫
Ω |f | d|x∗m| < ∞ for every x∗ ∈ X∗. In this 

case, for each A ∈ Σ there is 
∫
A
f dm ∈ X∗∗ such that

(∫
A

f dm
)
(x∗) =

∫
A

f d(x∗m) for all x∗ ∈ X∗.

By identifying functions which coincide m-a.e., the set Lw
1 (m) of all weakly m-integrable functions forms a 

Banach lattice with the m-a.e. order and the norm

‖f‖Lw
1 (m) := sup

x∗∈BX∗

∫
|f | d|x∗m|.
Ω
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Given any Rybakov control measure μ of m, the space Lw
1 (m) embeds continuously into L1(μ), i.e., the 

identity map Lw
1 (m) → L1(μ) is an injective operator. From this embedding one gets the following well 

known property:

Fact 2.1. Let (fn) be a sequence in Lw
1 (m) which converges in norm to some f ∈ Lw

1 (m). Then there is a 
subsequence (fnk

) which converges to f m-a.e.

A Σ-measurable function f : Ω → R is said to be m-integrable if it is weakly m-integrable and 
∫
A
f dm ∈

X for all A ∈ Σ. The closed sublattice of Lw
1 (m) consisting of all m-integrable functions is denoted by L1(m). 

The Banach lattice L1(m) is order continuous and has a weak order unit (the function χΩ). The following 
result of Curbera (see [8, Theorem 8]) makes the class of L1(m)-spaces extremely interesting: if E is an order 
continuous Banach lattice with a weak order unit, then there exists an E-valued positive vector measure m

such that L1(m) and E are lattice isometric. (A vector measure taking values in a Banach lattice E is said 
to be positive if its range is contained in the positive cone of E.)

We write sim Σ to denote the set of all simple functions from Ω to R. Just as for scalar L1-spaces, sim Σ
is a norm-dense linear subspace of L1(m). Note that 

∫
Ω χA dm = m(A) and ‖χA‖L1(m) = ‖m‖(A) for all 

A ∈ Σ.
Any m-essentially bounded Σ-measurable function f : Ω → R is m-integrable. By identifying functions 

which coincide m-a.e., the set L∞(m) of all m-essentially bounded Σ-measurable functions is a Banach 
lattice with the m-a.e. order and the m-essential sup-norm. Of course, L∞(m) is equal to the usual space 
L∞(μ) for any Rybakov control measure μ of m (because N (μ) = N (m) in that case). It is known (see, 
e.g., [24, Proposition 3.31]) that:

(i) if g ∈ L∞(m) and f ∈ L1(m), then fg ∈ L1(m) and

‖fg‖L1(m) ≤ ‖f‖L1(m)‖g‖L∞(m);

(ii) the identity map α∞ : L∞(m) → L1(m) is an (injective) weakly compact operator with ‖α∞‖ =
‖m‖(Ω).

The following formula for the norm on L1(m) will also be useful (see, e.g., [24, Lemma 3.11]):

Fact 2.2. For every f ∈ L1(m) we have

‖f‖L1(m) = sup
g∈BL∞(m)

∥∥∥
∫
Ω

fg dm
∥∥∥ = sup

g∈BL∞(m)∩sim Σ

∥∥∥
∫
Ω

fg dm
∥∥∥.

A fundamental tool in the study of the space L1(m) is the integration operator Im : L1(m) → X, which 
is the canonical map defined by

Im(f) :=
∫
Ω

f dm for all f ∈ L1(m).

Note that ‖Im‖ = 1 (see, e.g., [24, p. 152]). We may of course also look at the integration operator defined 
on L∞(m), i.e., the composition

I(∞)
m := Im ◦ α∞ : L∞(m) → X, I(∞)

m (f) =
∫
Ω

f dm for all f ∈ L∞(m).

The operator I(∞)
m is thus weakly compact and ‖I(∞)

m ‖ = ‖m‖(Ω).
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2.2. The isometric version of the Davis-Figiel-Johnson-Pełczyński procedure

Let us quickly recall the main construction and results from [10] together with the extra information 
obtained in [19].

Let K ⊆ BX be a closed absolutely convex set and fix a ∈ (1, ∞). For each n ∈ N, define the bounded 
absolutely convex set

Kn := anK + a−nBX

and denote by ‖ · ‖n the Minkowski functional defined by Kn, i.e.,

‖x‖n := inf{t > 0 : x ∈ tKn} for all x ∈ X.

Note that each ‖ · ‖n is an equivalent norm on X. The following statements now hold:

(i) XK := {x ∈ X :
∑∞

n=1 ‖x‖2
n < ∞} is a Banach space equipped with the norm

‖x‖K :=

√√√√ ∞∑
n=1

‖x‖2
n.

(ii) The identity map JK : XK → X is an operator with ‖JK‖ ≤ 1
f(a) and K ⊆ f(a)BXK

, where

f(a) :=

√√√√ ∞∑
n=1

(
an

a2n + 1

)2

.

(iv) J∗∗
K is injective (equivalently, J∗

K(X∗) is norm-dense in X∗
K).

(v) For each x ∈ K we have

‖x‖2
K ≤

(1
4 + 1

2 ln a

)
‖x‖. (K2)

(vi) JK is a norm-to-norm homeomorphism when restricted to K.
(vii) JK is a weak-to-weak homeomorphism when restricted to BXK

.
(viii) XK is reflexive if and only if K is weakly compact.

Given a Banach space Z and a (non-zero) operator T : Z → X, the previous procedure applied to 
K := 1

‖T‖T (BZ) gives a factorization

Z
T

TK

X

XK

JK

(2.1)

where TK is an operator with ‖TK‖ ≤ f(a)‖T‖. The following statements hold:

(ix) XK is reflexive if and only if T is weakly compact if and only if TK is weakly compact if and only if 
JK is weakly compact.
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(x) T is compact if and only if TK is compact if and only if JK is compact. In this case, XK is separable.

Let ā be the unique element of (1, ∞) such that f(ā) = 1. When the previous method is performed with 
a = ā, we have ‖TK‖ = ‖T‖ and ‖JK‖ = 1, and (2.1) is called the DFJP-LNO factorization of T .

2.3. An observation on strong measurability

The next lemma will be needed in the proof of Theorem 4.5.

Lemma 2.3. Let K ⊆ BX be a closed absolutely convex set and a ∈ (1, ∞). Let G : Ω → X be a function 
with G(Ω) ⊆ K, F : Ω → XK be the function such that JK ◦F = G, and μ be a non-negative finite measure 
on Σ. If G is strongly μ-measurable, then so is F .

Proof. Since G is strongly μ-measurable, there is E ∈ Σ with μ(Ω \ E) = 0 such that G(E) is separable. 
Since G(E) ⊆ K, we have F (E) ⊆ f(a)BXK

(by (ii)). The separability of G(E) and (vi) imply that 
F (E) is separable. On the other hand, y∗ ◦ F is μ-measurable for every y∗ ∈ J∗

K(X∗) (i.e., G is scalarly 
μ-measurable) and so the norm-density of J∗

K(X∗) in X∗
K (property (iv)) implies that F is scalarly μ-

measurable. An appeal to Pettis’ measurability theorem (see, e.g., [12, p. 42, Theorem 2]) ensures that F
is strongly μ-measurable. �
Remark 2.4. The strong μ-measurability of a Banach space-valued function h defined on a finite measure 
space (Ω, Σ, μ) is characterized as follows: for each ε > 0 and each A ∈ Σ with μ(A) > 0 there is B ⊆ A, 
B ∈ Σ with μ(B) > 0, such that ‖h(ω) −h(ω′)‖ ≤ ε for all ω, ω′ ∈ B (this is folklore, see [5, Proposition 2.2]
for a sketch of proof). This characterization and the inequality

‖x− x′‖2
K ≤

(1
2 + 1

ln a

)
‖x− x′‖ for all x, x′ ∈ K

(which follows from (K2) and the absolute convexity of K) can be combined to give another proof of 
Lemma 2.3.

3. General factorization results

The following lemma is surely folklore to experts in vector measure theory, but as its proof requires some 
tools we provide a proof for the reader’s convenience.

Lemma 3.1. Let Y be a Banach space, Γ ⊆ Y ∗ be a norm-dense set, and ν : Σ → Y be a map such that y∗ν
is countably additive for every y∗ ∈ Γ. Then ν is a countably additive vector measure.

Proof. By the Orlicz-Pettis theorem (see, e.g., [12, p. 22, Corollary 4]), in order to prove that ν is countably 
additive it suffices to show that y∗ν is countably additive for every y∗ ∈ Y ∗. Since Γ separates the points 
of Y , ν is finitely additive and has bounded range, by the Dieudonné-Grothendieck theorem (see, e.g., [12, 
p. 16, Corollary 3]). Fix y∗ ∈ Y ∗. Let (Bn) be a disjoint sequence in Σ and fix ε > 0. We can choose y∗0 ∈ Γ
such that |y∗(ν(A)) − y∗0(ν(A))| ≤ ε for all A ∈ Σ. Since y∗0ν is countably additive, there is n0 ∈ N such 
that |y∗0(ν(

⋃
n≥n1

Bn))| ≤ ε for every n1 ≥ n0. It follows that |y∗(ν(
⋃

n≥n1
Bn))| ≤ 2ε for every n1 ≥ n0. 

This shows that y∗ν is countably additive. �
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Remark 3.2.

(i) In Lemma 3.1 we do not really need that Γ is norm-dense. It suffices that Γ is what one could call a 
Rainwater set, i.e., a set with the following property: if (yn) is a bounded sequence in Y and there is 
y ∈ Y with y∗(yn) → y∗(y) for every y∗ ∈ Γ, then yn → y weakly. See the proof of [15, Proposition 2.9]. 
The most general known Rainwater sets are (I)-generating sets, in particular James boundaries like 
the extreme points of BY ∗ ; see [22] for the fact that (I)-generating sets are Rainwater (this was proved 
independently by Kalenda, private communication) and [17, Theorem 2.3] for the deep result that James 
boundaries are (I)-generating.

(ii) If Y contains no isomorphic copy of �∞, then the assertion of Lemma 3.1 holds for any set Γ ⊆ Y ∗

which separates the points of Y , by a result of Diestel and Faires [11] (cf., [12, p. 23, Corollary 7]).

The following lemma is essentially known (see, e.g., [24, Lemma 3.27]). We add an estimate for the norm 
of the inclusion operator.

Lemma 3.3. Suppose that m factors as

Σ m

m̃

X

Y

J

where Y is a Banach space, m̃ is a countably additive vector measure and J is an injective operator. Then:

(i) N (m) = N (m̃).
(ii) L1(m̃) embeds continuously into L1(m) with norm ≤ ‖J‖, i.e., the identity map L1(m̃) → L1(m) is 

an injective operator with norm ≤ ‖J‖.
(iii) I

(∞)
m = J ◦ I(∞)

m̃ .

Proof. (i) The equality N (m) = N (m̃) follows at once from the injectivity of J .
(ii) If h is any m̃-integrable function, then h is m-integrable and the equality J(

∫
Ω h dm̃) =

∫
Ω h dm holds 

(see, e.g., [24, Lemma 3.27]). Therefore, for each f ∈ L1(m̃), we can apply Fact 2.2 twice to get

‖f‖L1(m) = sup
g∈BL∞(m)

∥∥∥
∫
Ω

fg dm
∥∥∥ = sup

g∈BL∞(m)

∥∥∥J(
∫
Ω

fg dm̃
)∥∥∥ ≤ ‖J‖ sup

g∈BL∞(m)

∥∥∥
∫
Ω

fg dm̃
∥∥∥ = ‖J‖‖f‖L1(m̃).

(iii) follows from the density of sim Σ in L∞(m) and the equality m = J ◦ m̃. �
Remark 3.4. In the setting of the previous lemma:

|m|(A) ≤ ‖J‖|m̃|(A) for all A ∈ Σ.

In particular, m has finite variation whenever m̃ does. The converse fails in general, as we pointed out in 
the introduction.

Combining Lemmata 3.1 and 3.3 leads to a factorization result for I(∞)
m that applies to the DFJP 

factorization procedure:
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Corollary 3.5. Suppose that I(∞)
m factors as

L∞(m)
I(∞)
m

T

X

Y

J

where Y is a Banach space, T and J are operators and J∗(X∗) is norm-dense in Y ∗. Define m̃ : Σ → Y by 
m̃(A) := T (χA) for all A ∈ Σ. Then:

(i) m̃ is a countably additive vector measure and m = J ◦ m̃.
(ii) N (m) = N (m̃).
(iii) L1(m̃) embeds continuously into L1(m) with norm ≤ ‖J‖.
(iv) T = I

(∞)
m̃ .

Proof. (i) follows from Lemma 3.1 applied to Γ := J∗(X∗) and the countable additivity of m. (ii) and (iii) 
follow from Lemma 3.3, since J is injective. Finally, (iv) is a consequence of the continuity of both T and 
I
(∞)
m̃ , the density of sim Σ in L∞(m), and the fact that 

∫
Ω h dm̃ = T (h) for every h ∈ sim Σ. �

An isometric version of our next result was proved in [20, Lemma 6]. We include a similar proof for the 
sake of completeness.

Lemma 3.6. Let Y be a Banach space and m̃ : Σ → Y be a countably additive vector measure with N (m) =
N (m̃). Suppose that there is a constant D > 0 such that ‖f‖L1(m) ≤ D‖f‖L1(m̃) for every f ∈ sim Σ. Then 
L1(m̃) embeds continuously into L1(m) with norm ≤ D.

Proof. Consider sim Σ as a linear subspace of L1(m̃). By the assumptions, the identity map i : sim Σ →
L1(m) is well-defined, linear and continuous, with norm ‖i‖ ≤ D. Since sim Σ is dense in L1(m), we can 
extend i to an operator

j : L1(m̃) → L1(m)

with ‖j‖ = ‖i‖ ≤ D. We claim that j(f) = f for every f ∈ L1(m̃). Indeed, choose a sequence (fn) in sim Σ
such that ‖fn − f‖L1(m̃) → 0. By passing to a subsequence, we can assume that fn → f m̃-a.e. (Fact 2.1). 
Since j is an operator and j(fn) = fn for all n ∈ N, we have ‖fn − j(f)‖L1(m) → 0. Another appeal 
to Fact 2.1 allows us to extract a further subsequence (fnk

) such that fnk
→ j(f) m-a.e. It follows that 

j(f) = f . �

The following result first appeared as [23, Lemma 2.2] (with a different and simpler proof in [27, 
Lemma 3.1]), but under the extra assumption that Y contains no isomorphic copy of �∞ (in order to 
prove the first part of (iii) below). In addition to removing this unnecessary condition, we also provide 
explicit estimates for the norm of the identity as a Banach lattice isomorphism between L1(m) and L1(m̃).
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Theorem 3.7. Suppose that Im factors as

L1(m)
Im

T

X

Y

J

where Y is a Banach space, T and J are operators and J is injective. Define m̃ : Σ → Y by m̃(A) := T (χA)
for all A ∈ Σ. Then:

(i) m̃ is a countably additive vector measure and m = J ◦ m̃.
(ii) N (m) = N (m̃).
(iii) L1(m̃) = L1(m) with equivalent norms. In fact, we have

‖T‖−1‖f‖L1(m̃) ≤ ‖f‖L1(m) ≤ ‖J‖‖f‖L1(m̃) for every f ∈ L1(m).

(iv) T = Im̃.

Proof. (i) Clearly, m̃ is finitely additive. Now, its countable additivity follows from that of m and the 
inequality ‖m̃(A)‖ ≤ ‖T‖‖χA‖L1(m) = ‖T‖‖m‖(A), for all A ∈ Σ. The equality m = J ◦ m̃ is obvious.

Lemma 3.3 implies (ii) and the fact that any f ∈ L1(m̃) belongs to L1(m), with ‖f‖L1(m) ≤ ‖J‖‖f‖L1(m̃).
On the other hand, observe that for any h ∈ sim Σ we have 

∫
Ω h dm̃ = T (h). Now, given any f ∈ sim Σ, 

an appeal to Fact 2.2 yields

‖f‖L1(m̃) = sup
g∈BL∞(m)∩sim Σ

∥∥∥
∫
Ω

fg dm̃
∥∥∥ = sup

g∈BL∞(m)∩sim Σ
‖T (fg)‖

≤ ‖T‖ sup
g∈BL∞(m)∩sim Σ

‖fg‖L1(m) ≤ ‖T‖‖f‖L1(m).

It follows that for every f ∈ sim Σ we have

‖T‖−1‖f‖L1(m̃) ≤ ‖f‖L1(m) ≤ ‖J‖‖f‖L1(m̃). (3.1)

We can now apply Lemma 3.6 twice to conclude that L1(m) = L1(m̃) and that (3.1) holds for every 
f ∈ L1(m).

Finally, (iv) follows from the continuity of both T and Im̃, the density of sim Σ in L1(m̃), and the fact 
that 

∫
Ω h dm̃ = T (h) for every h ∈ sim Σ. �

3.1. An observation on vector measures with a Bochner derivative with respect to its variation

It is known that m has finite variation and a Bochner derivative with respect to |m| if and only if I(∞)
m

is nuclear (see, e.g., [12, p. 173, Theorem 4]). Recall that an operator T from a Banach space Z to X is 
said to be nuclear if there exist sequences (z∗n) in Z∗ and (xn) in X with 

∑
n∈N ‖z∗n‖‖xn‖ < ∞ such that 

T (z) =
∑

n∈N z∗n(z)xn for all z ∈ Z.

Theorem 3.8. If m has finite variation and a Bochner derivative with respect to |m|, then there exist a 
separable reflexive Banach space Y , a countably additive vector measure m̃ : Σ → Y having finite variation 
and an injective compact operator J : Y → X such that m = J ◦ m̃.
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Proof. Since I(∞)
m is a nuclear operator, it can be factored as I(∞)

m = V ◦ U , where U : L∞(m) → �1 is 
a nuclear operator and V : �1 → X is a compact operator (see, e.g., [13, Proposition 5.23]). Now, we can 
consider the DFJP factorization of V to obtain the commutative diagram

L∞(m)
I(∞)
m

U

X

�1
T

V

Y

J

where Y is a separable reflexive Banach space, T and J are compact operators and J∗(X∗) is norm-dense 
in Y ∗. By Corollary 3.5, the map m̃ : Σ → Y defined by m̃(A) := (T ◦ U)(χA) for all A ∈ Σ is a countably 
additive vector measure such that N (m) = N (m̃), m = J ◦ m̃ and I(∞)

m̃ = T ◦ U . Since U is nuclear, the 
same holds for I(∞)

m̃ , and so m̃ has finite variation. �
4. DFJP-LNO factorization of integration operators

The following theorem collects some consequences of the DFJP-LNO factorization when applied to I
(∞)
m .

Theorem 4.1. Let us consider the DFJP-LNO factorization of I(∞)
m , as follows

L∞(m)
I(∞)
m

T

X

Y

J

Let m̃ : Σ → Y be the countably additive vector measure defined by m̃(A) := T (χA) for all A ∈ Σ (see 
Corollary 3.5). Then:

(i) Y is reflexive.
(ii) L1(m̃) embeds continuously into L1(m) with norm ≤ 1.
(iii) ‖m̃‖(Ω) = ‖m‖(Ω).
(iv) There is a universal constant C > 0 such that

‖I(∞)
m̃ (f)‖2 ≤ C‖m‖(Ω)‖f‖L∞(m)‖I(∞)

m (f)‖ for every f ∈ L∞(m). (4.1)

In particular, ‖m̃(A)‖2 ≤ C‖m‖(Ω)‖m(A)‖ for all A ∈ Σ.

Proof. The DFJP-LNO factorization is done by using the set

K := 1
‖m‖(Ω)I

(∞)
m (BL∞(m)),

so that T = TK , J = JK , ‖T‖ = ‖I(∞)
m ‖ = ‖m‖(Ω) and ‖J‖ = 1. Since K is weakly compact, Y is reflexive. 

Statements (ii) and (iii) follow from Corollary 3.5, bearing in mind that ‖I(∞)
m̃ ‖ = ‖m̃‖(Ω). Finally, (iv) 

follows from inequality (K2), which implies ‖I(∞)
m̃ (g)‖2 ≤ C‖m‖(Ω)‖I(∞)

m (g)‖ for every g ∈ BL∞(m). �
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Remark 4.2. In the setting of Theorem 4.1:

(i) |m|(A) ≤ |m̃|(A) for all A ∈ Σ (because ‖J‖ = 1).
(ii) R(m) is relatively norm-compact if and only if I(∞)

m is compact. In this case, R(m̃) is relatively norm-
compact (because the restriction J |K is a norm-to-norm homeomorphism and R(m) ⊆ ‖m‖(Ω)K) and 
Y is separable.

(iii) L1(m̃) is weakly sequentially complete because Y contains no isomorphic copy of c0, see [8, Theorem 3]
(cf., [3,25]). In general, L1(m) is not weakly sequentially complete, so the equality L1(m̃) = L1(m) can 
fail.

An operator T from a Banach space Z to X is said to be (2, 1)-summing if 
∑

n∈N ‖T (zn)‖2 < ∞ for 
every unconditionally convergent series 

∑
n∈N zn in Z. A glance at inequality (4.1) reveals that I(∞)

m̃ is (2, 1)-
summing whenever I(∞)

m is 1-summing, which in turn is equivalent to saying that m has finite variation (see, 
e.g., [12, Corollary 4, p. 164]).

On the other hand, a result of Pisier [26] (cf., [13, Theorem 10.9]) characterizes (2, 1)-summing operators 
from a C(K) space (like L∞(m)) to a Banach space as those operators which factor through a Lorentz space 
L2,1(μ) for some regular Borel probability on K, via the canonical map from C(K) to L2,1(μ); the hardest 
part of this result consists in obtaining an inequality similar to (4.1).

Inequality (4.1) and the easier part of Pisier’s argument can be combined to obtain that I(∞)
m̃ can be 

extended to L2,1(|m|) whenever m has finite variation. In fact, I(∞)
m̃ can always be extended to the Lorentz 

type space L2,1(‖m‖) associated to the semivariation of m, no matter whether m has or not finite variation. 
We include this result in Proposition 4.3 below. Its proof is omitted since it can be done just by imitating 
some parts of the proof of [13, Theorem 10.9]. Let us recall that L2,1(‖m‖) is the set of all (m-a.e. equivalence 
classes of) Σ-measurable functions f : Ω → R for which

‖f‖L2,1(‖m‖) := 2
∞∫
0

√
‖m‖f (t) dt < ∞,

where ‖m‖f is the distribution function of f with respect to ‖m‖, defined by ‖m‖f (t) := ‖m‖({ω ∈ Ω :
|f(ω)| > t}) for all t > 0. The linear space L2,1(‖m‖) is a Banach lattice when equipped with a certain norm 
which is equivalent to the quasi-norm ‖ ·‖L2,1(‖m‖). In general, L∞(m) ⊆ L2,1(‖m‖) ⊆ L1(m) with continuous 
inclusions. Note that if m has finite variation, then the Lorentz space L2,1(|m|) embeds continuously into 
L2,1(‖m‖). The Lorentz spaces associated to the semivariation of a vector measure were introduced in [16]
and studied further in [4].

Proposition 4.3. In the setting of Theorem 4.1, I(∞)
m̃ factors as

L∞(m)

I
(∞)
m̃

I(∞)
m

i

X

L2,1(‖m‖) S
Y

J

where i is the identity operator and S is an operator. In particular, if m has finite variation, then I(∞)
m̃ can 

be extended to the Lorentz space L2,1(|m|).
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Remark 4.4. Suppose that X is a Banach lattice. If we apply the DFJP-LNO method to the closed convex 
solid hull K0 of 1

‖m‖(Ω)I
(∞)
m (BL∞(m)), then we get a factorization as

L∞(m)
I(∞)
m

TK0

X

YK0

JK0

where YK0 is a Banach lattice and both JK0 and J∗
K0

are interval preserving lattice homomorphisms (imitate 
the proof of [1, Theorem 5.41]). Moreover:

(i) The statements of Theorem 4.1, Remark 4.2(i)-(ii) and Proposition 4.3 also hold for this factorization, 
with the exception that YK0 need not be reflexive.

(ii) YK0 is reflexive whenever X has the property that the solid hull of any relatively weakly compact set 
is relatively weakly compact. This happens if either X contains no isomorphic copy of c0 (see, e.g., [1, 
Theorems 4.39 and 4.60]) or X is order continuous and atomic, see [7, Theorem 2.4].

(iii) m̃ is positive and YK0 is reflexive whenever m is positive. Indeed, in this case an easy computation 
shows that [−m(Ω), m(Ω)] is the solid hull of R(m) and that

K0 = 1
‖m‖(Ω) [−m(Ω),m(Ω)].

Now, from [14, Theorem 2.4] it follows that K0 is L-weakly compact and so it is weakly compact (see, 
e.g., [21, Proposition 3.6.5]).

(iv) In general, Y ∗
K0

contains no isomorphic copy of c0, because I(∞)
m is weakly compact (imitate the proof 

of [1, Theorem 5.43]).

We next apply the DFJP-LNO factorization procedure to Im. The following theorem gathers some con-
sequences of it.

Theorem 4.5. Let us consider the DFJP-LNO factorization of Im, as follows

L1(m)
Im

T

X

Y

J

Let m̃ : Σ → Y be the countably additive vector measure defined by m̃(A) := T (χA) for all A ∈ Σ (see 
Theorem 3.7). Then:

(i) L1(m̃) = L1(m) with equal norms, i.e.,

‖f‖L1(m) = ‖f‖L1(m̃) for all f ∈ L1(m).

In particular, ‖m‖(A) = ‖m̃‖(A) for all A ∈ Σ.
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(ii) There is a universal constant C > 0 such that

‖Im̃(f)‖2 ≤ C‖f‖L1(m)‖Im(f)‖ for every f ∈ L1(m). (4.2)

In particular, ‖m̃(A)‖2 ≤ C‖m‖(A)‖m(A)‖ for all A ∈ Σ.
(iii) |m|(A) ≤ |m̃|(A) ≤

√
C|m|(A) for all A ∈ Σ. Therefore, m̃ has finite (resp., σ-finite) variation 

whenever m does.
(iv) If m has finite variation and a Bochner derivative G with respect to |m|, then m̃ has a Bochner 

derivative F̃ with respect to |m̃| and

∫
Ω

‖F̃‖2 d|m̃| ≤ C

∫
Ω

‖G‖ d|m|.

Proof. The factorization is done by using the set K := Im(BL1(m)), so that T = TK , J = JK and ‖T‖ =
‖J‖ = 1.

(i) follows from Theorem 3.7, while (ii) is consequence of inequality (K2), which in this case reads as 
‖Im̃(g)‖2 ≤ C‖Im(g)‖ for every g ∈ BL1(m), where we write C := 1

4 + 1
2 ln ā and ā is as in Subsection 2.2.

(iii) Fix A ∈ Σ. The inequality |m|(A) ≤ |m̃|(A) follows at once from the fact that ‖J‖ = 1. On the other 
hand, the inequality |m̃|(A) ≤

√
C|m|(A) is obvious if |m|(A) is infinite, so we assume that |m|(A) < ∞. 

Now, given finitely many pairwise disjoint A1, . . . , An ∈ Σ with Ai ⊆ A, we have

n∑
i=1

‖m̃(Ai)‖2

|m|(Ai)
≤

n∑
i=1

‖m̃(Ai)‖2

‖m‖(Ai)
(ii)
≤ C

n∑
i=1

‖m(Ai)‖ ≤ C|m|(A) (4.3)

(with the convention 0
0 = 0) and so the Cauchy-Schwarz inequality yields

n∑
i=1

‖m̃(Ai)‖ ≤
( n∑

i=1

‖m̃(Ai)‖2

|m|(Ai)

)1/2
·
( n∑

i=1
|m|(Ai)

)1/2 (4.3)
≤

√
C|m|(A).

This shows that |m̃|(A) ≤
√
C|m|(A).

(iv) Let G : Ω → X be a Bochner derivative of m with respect to |m|. Then there is E ∈ Σ with 
|m|(Ω \ E) = 0 such that

G(E) ⊆ H :=
{ m(A)
|m|(A) : A ∈ Σ, |m|(A) > 0

}
⊆ aco

({ m(A)
‖m‖(A) : A ∈ Σ, ‖m‖(A) > 0

})
⊆ K

(see, e.g., [18, Lemma 2.3] or [6, Lemma 3.7]). We can assume without loss of generality that E = Ω. Let 
F : Ω → Y be the function satisfying J◦F = G (bear in mind that J is injective and that G(Ω) ⊆ K ⊆ J(Y )). 
Then F is strongly |m|-measurable (by Lemma 2.3). Note that F is bounded (we have F (Ω) ⊆ K ⊆ BY ) 
and so F is Bochner integrable with respect to |m|. Since J is injective, we have 

∫
A
F d|m| = m̃(A) for all 

A ∈ Σ.
Note that |m| and |m̃| have the same null sets, hence F is strongly |m̃|-measurable as well. Since F is 

bounded, it is Bochner integrable with respect to |m̃|. On the other hand, let ϕ be the Radon-Nikodým 
derivative of |m| with respect to |m̃|. Then 0 ≤ ϕ ≤ 1 |m̃|-a.e. (because |m|(A) ≤ |m̃|(A) for all A ∈ Σ) 
and, therefore, the product F̃ := ϕF : Ω → Y is Bochner integrable with respect to |m̃|, with integral ∫

F̃ d|m̃| =
∫

F d|m| = m̃(A) for all A ∈ Σ.

A A
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Finally, by (K2) and the inclusion G(Ω) ⊆ K, we have ‖F (ω)‖2 ≤ C‖G(ω)‖ for every ω ∈ Ω, so that

∫
Ω

‖F̃‖2 d|m̃| =
∫
Ω

ϕ2‖F‖2 d|m̃| =
∫
Ω

ϕ‖F‖2 d|m| ≤
∫
Ω

‖F‖2 d|m| ≤ C

∫
Ω

‖G‖ d|m|,

as we wanted to prove. �
Remark 4.6. In the setting of Theorem 4.5, the following statements hold:

(i) If R(m) is relatively norm-compact, then so is R(m̃) (because J |K is a norm-to-norm homeomorphism 
and R(m) ⊆ ‖m‖(Ω)K).

(ii) If Im is compact, then J and Im̃ are compact as well.
(iii) If Im is completely continuous, then so is Im̃. This is also an immediate consequence of the fact that J |K

is a norm-to-norm homeomorphism. It was proved in [27, Lemma 3.2(ii)] for the DFJP factorization, 
with a rather more complicated proof, under the additional assumption that Y contains no isomorphic 
copy of �∞.

(iv) If m has finite variation, then the 2-variation of m̃ with respect to |m| is finite and less than or equal 
to 

√
C|m|(Ω). This is a consequence of inequality (4.3).

We arrive at the isometric version of [23, Proposition 2.1] which we already mentioned in the introduction.

Corollary 4.7. Suppose that Im is weakly compact. Then there exist a reflexive Banach space Y , a countably 
additive vector measure m̃ : Σ → Y and an injective operator J : Y → X such that m = J ◦ m̃ and 
L1(m) = L1(m̃) with equal norms.

Suppose that Im is weakly compact. It is known that:

(i) If m has finite variation, then the composition of Im and the continuous embedding of L1(|m|) into L1(m)
(see, e.g., [24, Lemma 3.14]) is a weakly compact operator and so it is representable (see, e.g., [12, p. 75, 
Theorem 12]). Hence m admits a Bochner derivative with respect to |m|.

(ii) If m has σ-finite variation, then R(m) is relatively norm-compact, see [2, Corollary 3.11] (cf., [9, 
Claim 2]).

The previous statements can be improved as follows.

Corollary 4.8. Suppose that Im is weakly compact.

(i) If m has finite variation, then it admits a Bochner derivative with respect to any control measure.
(ii) If m has σ-finite variation, then it admits a strongly measurable Pettis integrable derivative with respect 

to any control measure.

Proof. Let us consider a factorization of Im as in Theorem 4.5. Since Im is weakly compact, Y is reflexive. 
Observe that m and m̃ have the same control measures, because N (m) = N (m̃). Let μ be a control 
measure of both m and m̃. If m has finite (resp., σ-finite) variation, then the same holds for m̃. By the 
Radon-Nikodým property of Y , m̃ has a Bochner (resp., strongly measurable Pettis) derivative with respect 
to μ, say F : Ω → Y . The composition J ◦F is then a Bochner (resp., strongly measurable Pettis) derivative 
of m with respect to μ. �
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Remark 4.9. Suppose that X is a Banach lattice. As in Remark 4.4, we can apply the DFJP-LNO procedure 
to the closed convex solid hull K0 of Im(BL1(m)) to obtain a factorization

L1(m)
Im

TK0

X

YK0

JK0

where YK0 is a Banach lattice and both JK0 and J∗
K0

are interval preserving lattice homomorphisms. The 
statements of Theorem 4.5 and Remark 4.6 also hold for this factorization. If Im is weakly compact, then: 
(i) Y ∗

K0
contains no isomorphic copy of c0 (imitate the proof of [1, Theorem 5.43]), and (ii) YK0 is reflexive 

whenever X has the property that the solid hull of any relatively weakly compact set is relatively weakly 
compact.
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