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Assessing optimal water quality monitoring network in road construction using 1 

integrated information-theoretic techniques 2 

Mehrdad Ghorbani Mooselu1*, Helge Liltved 2, Mohammad Reza Nikoo3, Atle Hindar 4, Sondre Meland5 3 

Abstract  4 

The environmental impacts of road construction on the aquatic environment necessitate the 5 

monitoring of receiving water quality. The main contribution of the paper is developing a 6 

feasible methodology  for spatial optimization of the water quality monitoring network 7 

(WQMN) in surface water during road construction using the field data. First, using the 8 

Canadian Council of Ministers of the Environment (CCME) method, the water quality index 9 

(WQI) was computed in each potential monitoring station during construction. Then, the 10 

integrated form of the information-theoretic techniques consists of the transinformation 11 

entropy (TE), and the value of information (VOI) were calculated for the potential stations. To 12 

achieve the optimal WQMNs, the Non-dominated Sorting Genetic Algorithm II and III 13 

(NSGA-II, and III) based multi-objective optimization models were developed considering 14 

three objective functions, including i) minimizing the number of stations, ii) maximizing the 15 

VOI in the selected network, and iii) minimizing redundant information for the selected nodes. 16 

Finally, three multi-criteria decision-making models, including Technique for Order 17 

Preference by Similarity to Ideal Solution (TOPSIS), Preference Ranking Organisation Method 18 

for Enrichment Evaluations (PROMETHEE), and Analytical Hierarchy Process (AHP) were 19 

utilized for choosing the best alternative among Pareto optimal solutions considering various 20 

weighing scenarios assigned to criteria. The applicability of the presented methodology was 21 
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assessed in a 22 km long road construction site in southern Norway. The results deliver 22 

significant knowledge for decision-makers on establishing a robust WQMN in surface water 23 

during road construction projects.  24 

 25 

Keywords: Water quality monitoring network, CCME-WQI, Value of information, 26 

Transinformation entropy, NSGA-II and NSGA-III, Multi-criteria decision-making models. 27 

 28 

1. Introduction 29 

Road construction makes physical, chemical, and biological impacts on receiving aquatic 30 

environments. The spatiotemporal impacts of road construction may cause acute alterations 31 

(Vikan and Meland, 2013). Hence, it is vital to assess the receiving water quality during road 32 

construction. Water quality monitoring networks (WQMN) are designed for quantitative data 33 

on the spatiotemporal variation of water quality. The provided information is applied by 34 

decision-makers for reliable assessment of water quality and supporting adopted policies for 35 

protecting the water resources (Alfonso and Price, 2012; Behmel et al., 2016). The importance 36 

of surface water in delivering water demands with adequate quality and the significant 37 

economic burden of the monitoring systems necessitates an optimum design of WQMN. 38 

Optimization of WQMN balances the fiscal burden of monitoring networks while a sufficient 39 

source of qualitative information is provided (Alizadeh et al., 2018; Alilou et al., 2019). This 40 

optimization will allow decision-makers to check deviations from set water quality standards 41 

in national and international water regulations (Pourshahabi et al., 2018a; Maymandi et al., 42 

2018). The design of a robust WQMN is still a debatable topic, in which the selection of optimal 43 

locations for stations is crucial (Alilou et al., 2019).  44 

Several studies focused on the difficulties in determining the sampling objectives, water quality 45 

parameters to be monitored, location of stations (Alilou et al., 2018, and 2019), and variations 46 
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in sampling frequency (Karamouz et al., 2009; Zeng et al., 2016; Khorshidi et al., 2018). The 47 

optimization process is a key step towards a comprehensive monitoring program in which every 48 

element of the existing WQMN is evaluated, and the monitoring objectives are met (Behmel 49 

et al., 2016; Pourshahabi et al., 2018b). Utilizing an optimized monitoring system has been 50 

extensively considered in water resources management owing to their better performance 51 

compared to opinion- and rule-based methods (Khorshidi et al., 2018). A review of previous 52 

studies indicates the lack of knowledge on the optimization of the WQMN in surface water 53 

during road construction. Hence, in this paper, two information-theoretic techniques, including 54 

Value of Information (VOI) and Transinformation Entropy (TE), were integrally (Pourshahabi 55 

et al., 2018a; Khorshidi et al., 2020) used for the optimal design of WQMN in a road 56 

construction project. 57 

Information obtained from stations in receiving streams may provide diverse signals with 58 

different values to the decision-maker. Therefore, an information theory-based method (the 59 

concept of VOI) was applied to design an optimized WQMN with the highest value for 60 

qualitative information from the stations (maximum VOI), which could provide a reasonable 61 

view of the whole system. On the other hand, monitoring networks with the same number of 62 

stations (but separate locations) and comparable VOI, may bring in a different level of 63 

information redundancy. Thus, the TE method was employed for minimizing the mutual 64 

(redundant) information in the selected monitoring network. As an example, the spatial 65 

distance of monitoring stations can affect the TE level in any pair of potential stations. 66 

Therefore, minimizing the TE value would, in this case, result in a monitoring network with a 67 

more spatial distribution of monitoring sites and, subsequently, a better understanding of water 68 

quality variations (Khorshidi et al., 2018). Very few works have been published using the 69 

combination of VOI and TE. In these, optimum sensor placement (Khorshidi et al., 2018) and 70 

optimum WQMN in reservoirs (Pourshahabi et al., 2018; Maymandi et al., 2018) were 71 
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explored. However, the lack of an integrated method, capable of taking the advantages of both 72 

methods in surface water quality is quite apparent. Also, one of the most significant challenges 73 

related to the application of information theory in surface water quality monitoring is related 74 

to the type of applied data for computing prior and posterior probabilities. Therefore, in this 75 

study, using the sampling data from the field, a hybrid form of information-theoretic techniques 76 

was proposed for the optimum design of a WQMN in surface water, and a road construction 77 

project.  78 

The Non-dominated Sorting Genetic Algorithm II and III (NSGA-II and NSGA-III) were then 79 

developed according to three objectives, including 1) minimizing the number of monitoring 80 

stations; 2) minimizing redundant information among monitoring stations; and 3) maximizing 81 

VOI in the selected WQMN. Finally, three different multi-criteria decision-making (MCDM) 82 

models, including Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), 83 

Preference Ranking Organisation Method for Enrichment Evaluations (PROMETHEE), and 84 

Analytical Hierarchy Process (AHP) were used to achieve the best alternative on the Pareto-85 

optimal solutions. The paper contributes to filling the knowledge gap in the following cases, 86 

which have not been adequately attended in previous assessments: 87 

1) Computing the prior and posterior probabilities in the information theory based on water 88 

quality data from the field sampling and experimental analyses 89 

2) Application of the Canadian Council of Ministers of the Environment (CCME) Water 90 

Quality Index (WQI) in  surface water for optimization of WQMN during the road 91 

construction project 92 

3) Utilizing NSGA-III for optimization of the WQMN in surface water and road project 93 

4) Proposing a feasible framework consists of a water quality index, an integrated form of 94 

information theory techniques, efficient optimization, and decision-making models for 95 

monitoring network in surface water. 96 
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The feasibility of the proposed framework was assessed over a 22 km length of a new highway 97 

in southern Norway. 98 

 99 

2. Material and Methods 100 

For optimization of the WQMN, a six-step approach (outlined in Fig. 1) is developed by coding 101 

in Matlab ver. R2016b.  102 

 103 

Fig.1 The proposed methodology for optimization of the WQMN in surface water 104 
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 105 

The first step is to select potential stations based on existing datasets. Notably, the dataset 106 

consists of a) pre-construction monitoring and b) monitoring during the construction phase. 107 

However, the methodology is developed based on the latter part, including 42 measurements 108 

for each station. For all stations, the water quality index (step 2), the value of information (step 109 

3), and the transinformation entropy (step 4) are calculated. Thereafter, the NSGA-II and III 110 

based optimization models were developed (step 5), and finally, the best solution was chosen 111 

using the MCDM models (step 6). In the next sub-sections, the applied methods are explained 112 

in more detail. 113 

 114 

2.1 Data collection 115 

The study area was the construction site of the new 22 km long highway (E18) from Arendal 116 

to Tvedestrand in the southern part of Norway (Fig. 2 includes a map of the area). The 117 

construction area consisted of seven catchments (the first digit in the number of stations shows 118 

the number of discharge area, see Fig. 2). There are different main streams and side streams 119 

that are connected. The construction activities (e.g., excavation, drilling, and blasting, 120 

transport, tunnel, and bridge construction) and the resulted runoff is the main source of 121 

pollution in surface water during road construction. Several monitoring stations were 122 

irregularly established on receiving main streams and side streams to assess spatiotemporal 123 

variation of surface water quality due to construction activities (Fig. 2). The location of stations 124 

is not dependent on the hydrological aspects in the catchment. Hence, the water flow in these 125 

streams and the amount of road construction runoff are not the subjects of the proposed 126 

methodology and consequently are not simulated. Samples for analysis were collected 127 

regularly throughout the pre-construction (2015-2016) and construction phase (2017-2019). 128 

The parameters included general water quality parameters (pH, alkalinity, conductivity, Fe, 129 
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Mn, Na, Cl, Ca, Mg, K, Al and SO₄²-), trace elements (As, Ba, Cd, Co, Cr, Cu, Ni, Mo, Pb, Hg, 130 

and Zn), nutrients (NH4-N, NO3-N, total-N, total-P), organic matter parameters (color, 131 

chemical oxygen demand, total organic carbon), particulate matter parameters (suspended 132 

solids and turbidity) and organic micropollutants (polycyclic aromatic hydrocarbons; the 133 

PAH16EPA-group).  134 

 135 

 136 

Fig.2 The E18 highway (Arendal-Tvedestrand) and the established monitoring stations 137 

 138 

Of the time series from all established stations, the stations with relatively complete time series 139 

over the total sampling period were selected, which are shown by green circles in Fig. 2 140 

(hereafter called potential monitoring stations). Reference stations, which were not affected by 141 

road construction activities, were not included as potential monitoring stations. The red circles 142 

in Fig. 2 show both reference stations and the stations with relatively incomplete time series.  143 
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 144 

2.2 Water quality index (WQI)  145 

Monitoring programs provide detailed qualitative data, including many water quality variables, 146 

and it is challenging to evaluate the experienced water quality for sensitive aquatic organisms 147 

(Nikoo et al., 2011). The Canadian Council of Ministers of the Environment (CCME) Water 148 

Quality Index (WQI), see Khan et al., (2005) and Nikoo et al., (2011), is a useful management 149 

tool for producing a meaningful interpretation of qualitative data, i.e. for evaluation of water 150 

quality (Terrado et al., 2010; Nikoo et al., 2011; Munna et al., 2013), classification of water 151 

quality (Boyacioglu 2009; Nikoo and Mahjouri, 2013), and water management (Khan et al., 152 

2005). Since optimization of WQMN given a specific water quality variable may not be 153 

necessarily reliable in terms of other qualitative variables, the CCME-WQI was utilized to get 154 

a more comprehensive view of the water quality in receiving streams. 155 

The CCME index operates according to different end-use objectives and is thereby flexible in 156 

selecting suitable parameters (Nikoo et al., 2011). The index allows site-specific reference 157 

objectives and standards to be integrated into the rankings process (Khan et al., 2005). 158 

Therefore, this index can be developed based on different national water quality criteria and 159 

limits (Nikoo et al., 2011). The CCME-WQI incorporates three variance values (scope, 160 

frequency, and amplitude) to achieve the overall water quality state in the form of a unitless 161 

number between 0 and 100. There are five categories based on the values of CCME-WQI, 162 

including poor (≤44), marginal (45-64), fair (65-79), good (80-94), and excellent (95-100). The 163 

application of the CCME-WQI necessitates water quality guidelines or water quality objectives 164 

(Mahagamage and Manage, 2014). Hence, in this study, the water quality regulations set by 165 

the discharge permit for the construction phase of E18 Arendal-Tvedestrand, released by the 166 

Environment Department of Agder County, Norway, was applied for every single station (see 167 

Table A1). In this permit, regarding the location of stations, each one has specific limits for 168 
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water quality parameters. More information related to CCME-WQI is presented in Appendix 169 

1. 170 

The CCME-WQI was applied to determine the water quality at the potential monitoring stations 171 

based on five categories (excellent, good, fair, marginal, poor), as prior and posterior 172 

probabilities and define the "Value Matrix" that shows the cost (value or damage) of decision-173 

makers' act given the various states in each station.  174 

 175 

2.3 Value of information (VOI) 176 

The VOI technique was developed by Grayson (1960) to evaluate the importance of obtained 177 

new information in the decision-making process. Over the past few decades, the VOI technique 178 

has been widely used for time-series analysis in water-related topics, including optimal 179 

monitoring network in reservoirs (Maymandi et al., 2018), design of groundwater quality 180 

monitoring networks (Hosseini and Kerachian, 2017), designing contamination warning 181 

system (Roberts et al., 2009; Khorshidi et al., 2018), and impact assessment and flood 182 

monitoring (Verkade and Werner, 2011; Alfonso and Price, 2012; and Alfonso et al., 2016).  183 

Each monitoring station might have different states (e.g., excellent, good, fair, marginal, and 184 

poor) and can contribute with relevant water quality information (message) to other stations. 185 

Each message (of water quality from each station) affects the decision about the state of the 186 

system, and if it is true or false, the message can be of value or damage, respectively. Therefore, 187 

by measuring at a potential monitoring station, prior probabilities could be corrected (using 188 

Baye's theorem). The VOI theory evaluates the importance of new information and updates the 189 

earlier probability, p(sሻ, about the state of a system (Alfonso and Price, 2012; Pourshahabi et 190 

al., 2018a). In Bayes' theorem, the posterior (updated) probability considering the new 191 

information is represented as Eq. 1 (Khorshidi et al., 2018): 192 
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P(s|mሻ =
P(m|sሻ. P(sሻ

P(mሻ
 (1) 

where, 193 

p(sሻ Earlier probability for being in state "s", 

p(mሻ Probability for receiving message "m", (given new data), 

p(m|s) Conditional probability of receiving the message "m" when the system is in state 

"s", 

p(s|m) The posterior (updated) probability for state of system following the delivery of 

message "m" (given new data). 

When new information appears, if the message "m" from station "𝑖" is sent for the decision-194 

maker to sense the state "s"  in station "𝑗", the VOI of the station "𝑖" for this process is calculated 195 

by Eq. 2 (Alfonso and Price, 2012): 196 

𝑉𝑂𝐼(𝑖,𝑗ሻ = ∑ 𝑝(𝑚ሻ [𝑚𝑎𝑥
𝑎

(∑ 𝐶(𝑎, 𝑠ሻ𝑝(𝑠 |𝑚ሻሻ −

𝑠

𝑚𝑎𝑥
𝑎

(∑ 𝐶(𝑎, 𝑠ሻ𝑝(𝑠ሻሻ

𝑠

]

𝑚

 (2) 

Where, 𝐶(𝑎, 𝑠ሻ shows the value (cost) of the action"𝑎" chosen among available alternatives to 197 

coupe up with the state "s"  in the monitoring station "j". The action "𝑎" is valued by its distance 198 

to the state "s". The closer it is to "s", the more valuable the action "𝑎" is (Pourshahabi et al., 199 

2018a). The 𝐶(𝑎, 𝑠ሻ is defined through the "Value Matrix", in which arrays are the differences 200 

between the mid values of five categories in CCME-WQI (see section 2.2), and show the cost 201 

(value or damage) of each action regarding the various states in potential stations. The arrays 202 

of "Value Matrix" have an active role in computing the 𝑉𝑂𝐼𝑖,𝑗. Hence, the matrix should be 203 

determined based on a valid standard, which in this study is CCMW-WQI. The applied "Value 204 

Matrix" is presented in Table 1. 205 
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 206 

Table 1 The "Value matrix" for calculation of the 𝑉𝑂𝐼𝑖,𝑗 207 

 
𝐶(𝑎, 𝑠ሻ, (the cost (damage) of action 𝑎, when the station has the state of "s") 

Poor Marginal Fair Good Excellent 

Poor 1 -32.5 -50 -65 -75 

Marginal -32.5 1 -17.5 -32.5 -42.5 

Fair -50 -17.5 1 -15 -25 

Good -65 -32.5 -15 1 -10.5 

Excellent -75 -42.5 -25 -10.5 1 

Raws: Decision-maker's actions and Columns: stations' states  208 

 209 

Because all arrays in Table 1 show damage, they are negative values. The rows represent the 210 

activities (𝑎) of decision-maker according to their belief about the water quality at the 211 

monitoring station, and columns indicate the various states of the monitoring station (𝑠), that 212 

may occur. For example, if the water quality at the station 𝑖 is in "Good" condition (WQI value 213 

80-94, and the mid-value of this category is 87) and the decision-maker declares it to be "Poor" 214 

(WQI value 0-44 and the mid-value of this category is 22), this wrong decision will lead to (87-215 

22=65) 65 units of damage (cost) in the scale of CCME-WQI. Considerably, the arrays on the 216 

matrix diameter, are set to one instead of zero, to keep the probabilities multiplied by the matrix 217 

diameters and play their role in VOI calculation. 218 

 219 

2.4 Transinformation entropy (TE) 220 

The core idea behind the theory of entropy is the evaluation of the information content for a 221 

series of data (Shannon 1948). In this method, TE quantifies the mutual (redundant) 222 

information between two variables (or dataset) (Pourshahabi et al., 2018b). The entropy method 223 

can also predict the probabilities of possible water quality levels at upstream stations based on 224 

observed variation in quality levels of a downstream location (Karamouz et al., 2009). Different 225 

functional forms of this method have also been effectively utilized for qualitative analyses, 226 

management, and network design in groundwater (Mogheir et al., 2009; Masoumi and 227 
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Kerachian, 2010; Owlia et al., 2011; Mondal and Singh, 2012; Alizadeh and Mahjouri, 2017; 228 

Keum et al., 2017; Hosseini and Kerachian, 2017), reservoirs (Lee et al., 2014; Nikoo et al., 229 

2016; Maymandi et al., 2018), rivers (Jha and Singh, 2008; Karamouz et al., 2009; Mahjouri 230 

and Kerachian, 2011; Memarzadeh et al., 2013; Pourshahabi et al., 2018a, b), and rainfall and 231 

streamflow monitoring networks (Krstanovic 1992a, b; Stosic et al., 2017). 232 

A new monitoring station provides more qualitative information and consequently reduces the 233 

uncertainty in the water quality evaluation. The additional value of each new station may vary, 234 

however. TE can show the redundant information in a WQMN, which is mainly because of 235 

spatiotemporal correlation among the qualitative variables. Therefore, TE is efficiently 236 

applicable to the optimization of WQMN design (Karamouz et al., 2009). In the proposed 237 

framework, the concept of TE is employed to achieve the amount of mutual information 238 

between stations and help to identify essential and unnecessary stations. In most of the 239 

WQMNs, many qualitative variables are measured, which their time series have non-normal 240 

(asymmetrical) probability distribution function and necessitates applying the discrete form of 241 

entropy theory for evaluating the efficiency of the monitoring system. (Memarzadeh et al., 242 

2013; Alizadeh et al., 2018).  There are different basic ways to measure information according 243 

to entropy, including marginal, joint, conditional, and transinformation entropies. (Karamouz 244 

et al., 2009). Given a discrete random variable 𝑥, the marginal entropy is defined by 𝐻(𝑥ሻ as 245 

Eq. 3: 246 

𝐻(𝑥ሻ = ∑ 𝑝(𝑥𝑖ሻ 𝑙𝑜𝑔 𝑝(𝑥𝑖ሻ

𝑁

𝑖=1

 (3) 

Where 𝑁 characterizes the number of events such as 𝑥𝑖 with the probability of  𝑝(𝑥𝑖ሻ (𝑖 =247 

 1, . . . , 𝑁ሻ. The joint (total) entropy for two independent random variables (e.g., 𝑥 and 𝑦) is the 248 
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probability of accruing both of them simultaneously and expressed as the sum of their marginal 249 

entropies. 250 

𝐻(𝑥, 𝑦ሻ  =  𝐻(𝑥ሻ  +  𝐻(𝑦ሻ (4) 

Conditional entropy of 𝑥 given 𝑦 is the uncertainty remaining in 𝑥 when 𝑦 is known, and vice 251 

versa: 252 

𝐻(𝑥│𝑦ሻ = 𝐻(𝑥, 𝑦ሻ − 𝐻(𝑦ሻ (5) 

Transinformation entropy calculates the mutual (redundant) information between each pair of 253 

stations (e.g., 𝑥 and 𝑦) and is calculated by the following equation (Pourshahabi et al., 2018a, 254 

b) (Khorshidi et al., 2020): 255 

𝑇𝐸(𝑥, 𝑦ሻ = − ∑ ∑ 𝑝(𝑥𝑖 , 𝑦𝑗) 𝑙𝑛 [
𝑝(𝑥𝑖, 𝑦𝑗)

𝑝(𝑥𝑖ሻ𝑝(𝑦𝑗)
]

𝑛

𝑗=1

𝑛

𝑖=1

 (6) 

where, 256 

𝑛 The number of stations 

𝑝(𝑥𝑖ሻ The occurrence probability of 𝑥𝑖, 

𝑝(𝑦𝑗) The occurrence probability of 𝑦𝑗, 

𝑝(𝑥𝑖 , 𝑦𝑗) The joint probability for 𝑥𝑖 and 𝑦𝑗. 

In this study, the amount of transformed information was determined for each pair of potential 257 

monitoring stations. 258 

 259 

2.5 Optimization models 260 

The NSGA-II (Deb et al., 2002) algorithm utilizes non-dominant sorting, and crowded 261 

comparison approaches in a single-objective form of the genetic algorithm to evaluate variety 262 
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between non-dominated options. On the other hand, the Non-Dominating Sorting Genetic 263 

Algorithm III (NSGA-III) is a multi-objective algorithm with the basic structure similar to the 264 

NSGA-II, which maintains diversity based on reference points (Deb & Jain, 2014). NSGA-III 265 

does not require additional parameters compare to NSGA-II and eliminates the weaknesses of 266 

NSGA-II considering the lack of uniform diversity and absence of lateral diversity preserving 267 

operator among the current best non dominated solutions (Deb & Jain, 2014; Jain & 268 

Deb, 2014).  269 

The NSGA-II and III based optimization models were developed according to the three 270 

following objectives: i) minimizing the number of potential monitoring stations (𝑈1 ), ii) 271 

maximizing the VOI in the selected network (𝑈2 ), and iii) minimizing redundant information 272 

among the selected stations (𝑈3 ). Hence, VOI and TE were determined for all pairs of potential 273 

stations in a WQMN and resulted in two square matrices, in which the arrays in 𝑖𝑡ℎ row and 274 

𝑗𝑡ℎ column define 𝑉𝑂𝐼𝑖,𝑗 and 𝑇𝐸𝑖,𝑗, respectively. Accordingly, the optimization models were 275 

formulated as in Eqs. (7-10) to achieve an optimal WQMN. 276 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑈1 = ∑ 𝜌𝑖

𝑀𝑃

𝑖=1

 (7) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑈2 = ∑ max
𝑖

( 𝜌𝑖 × 𝑉𝑂𝐼𝑖,𝑗

∀𝑗

ሻ (8) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑈3 = ∑ ∑ (
𝑇𝐸(𝑖,𝑗ሻ − 𝑇𝐸𝑚𝑖𝑛(𝑖ሻ

𝑇𝐸𝑚𝑎𝑥(𝑖ሻ − 𝑇𝐸𝑚𝑖𝑛(𝑖ሻ
∀𝑗≠𝑖

ሻ

𝑀𝑃

𝑖=1

 (9) 

∑ 𝜌𝑖 =

𝑀𝑃

𝑖=1

𝑀𝑜𝑝𝑡 (10) 

where: 277 

https://www.tandfonline.com/doi/full/10.1080/23311916.2016.1269383
https://www.tandfonline.com/doi/full/10.1080/23311916.2016.1269383
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𝑈𝑖  The values for the utility functions of the objectives, 

𝑀𝑜𝑝𝑡 The optimized number of monitoring stations, 

𝑀𝑃 The number of potential monitoring stations, 

𝜌𝑖 

Binary variable (0 if potential station 𝑖 is not selected as a monitoring station, 

otherwise 1), 

𝑉𝑂𝐼𝑖,𝑗 Value of information in 𝑖𝑡ℎ station for detecting the state of 𝑗𝑡ℎ monitoring station, 

𝑇𝐸𝑖,𝑗 The transinformation entropy between station 𝑖 and station 𝑗. 

𝑇𝐸min (𝑖,𝑗ሻ The minimum transinformation entropy between station 𝑖 and other stations 

𝑇𝐸max (𝑖,𝑗ሻ The maximum transinformation entropy between station 𝑖 and other stations 

 278 

The characteristics of the best structure for the NSGA-II and III algorithms, including 279 

population size and the number of generations, were achieved over a sensitivity analysis. The 280 

optimization models deliver the Pareto front (trade-off curve) between objectives (Alizaseh et 281 

al., 2017; Mooselu et al., 2020), which consists of the right answers for the optimization 282 

problem. So, the MCDMs (next paragraph) are required for the decision-maker to get the best 283 

solution. 284 

 285 

2.6 Multi-criteria decision-making models 286 

In this study, three MCDM models, including TOPSIS (Hwang and Yoon, 1981), 287 

PROMETHEE (Mareschal et al., 1984), and AHP (Saaty 1988) were utilized to reach the best 288 

WQMN among the alternatives on the trade-off curve. Besides, to evaluate the effects of 289 

weighing scenarios on results, different weighting scenarios were assigned to objectives by 290 

experts. 291 
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TOPSIS model attends the alternatives' distance from ideal and negative-ideal solutions, which 292 

both are achieved by normalizing the alternatives in the decision matrix and then weighing 293 

them based on the assigned weights to decision criteria. The best solution in this method has 294 

the lowest distance from the ideal solution (Mooselu et al., 2019). Also, PROMETHEE, as a 295 

flexible and straightforward decision-making model, is extensively applied in water resources 296 

management (Kuang et al., 2015; Pourshahabi et al., 2018a; Sapkota et al., 2018; Mooselu et 297 

al., 2019). PROMETHEE focuses on pairwise comparison in the ranking process. In this study, 298 

complete ranking (PROMETHEE-II) was employed, which ranks a set of alternatives 𝐴 =299 

{𝑎1, 𝑎2, . . . , 𝑎𝑛} given a set of criteria Z= {𝑧1, 𝑧2, . . . , 𝑧𝑚} in four steps (Zhang et al., 2009). 300 

First, the weighting of the criteria by expert's opinions that show their relative importance 301 

compared to one another. Then, preference function is adopted that conveys the priority of each 302 

pair of alternatives (e.g.,  𝑎𝑖, 𝑎𝑗) in comparison to each other based on a single criterion such 303 

as 𝑧𝑖. In this study, the "V-shape with indifference preference function" was utilized, which 304 

provides a sensible pairwise comparison between alternatives. In the third step, for any pair in 305 

the set of alternatives (𝐴) the global preference index, 𝜋(𝑎𝑖, 𝑎𝑗ሻ, is defined and indicates the 306 

preference of 𝑎𝑖over 𝑎𝑗. The higher value for 𝜋(𝑜𝑖, 𝑜𝑗ሻ, the more preference of 𝑎𝑖 compared to 307 

𝑎𝑗. In the final step named outranking flows, for ranking the 𝑎𝑖 among other alternatives in the 308 

set of alternatives (𝐴), the positive outranking flow or 𝜑+(𝑎𝑖ሻ (the values of preference of 𝑎𝑖) 309 

and negative outranking flow or 𝜑−(𝑎𝑖ሻ (not preferring of 𝑎𝑖 over the other alternatives) have 310 

to be computed. The alternative with the highest value of the net outranking flow (𝜑(𝑎𝑖ሻ =311 

𝜑+(𝑎𝑖ሻ- 𝜑−(𝑎𝑖ሻሻ is selected as the best solution. More applications and information about 312 

PROMETHEE are provided by (Pourshahabi et al., 2018a; Mooselu et al., 2019). 313 

AHP is a suitable method for multi-objective analyses in discrete mode, which can enter 314 

qualitative and quantitative factors (criteria) in the decision model. It derives priorities among 315 

criteria and alternatives and simplifies preference ratings among decision criteria using 316 
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pairwise comparisons (Satty 1988). The basic procedure in AHP consists of three steps, 317 

including 1) Developing the scores for each decision alternative for each criterion 2) 318 

Determining the weights of criteria and 3) Calculating the weighted average rating for each 319 

decision alternative. The details of AHP is presented in (Satty 1988). 320 

 321 

3. Results and discussion 322 

The CCME-WQI was computed for all potential monitoring stations and for all time steps 323 

during the construction period (2017-2019). The states of the potential monitoring stations in 324 

two different random time steps are presented in Fig. 3.  325 

 326 

  
(a) (b) 

 Fig. 3 The CCME-WQI values in all potential monitoring stations for a) Oct.2017, and b) Nov.2018  327 
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This figure clearly shows that a single station could have different states in various time steps, 328 

depending on different reasons such as weather situation (e.g., sampling conducted after a rain 329 

episode or after a longer dry period), and the type of activity being performed at the station. 330 

Hence, these issues will affect the water quality, and consequently, the prior probabilities 331 

resulting from CCME-WQI. Given the five categories in CCME-WQI (poor, marginal, fair, 332 

good, excellent), the value matrix was calculated, which is highly influential on the final results 333 

of the VOI method. Accordingly, VOI and TE were computed for all pairs of the potential 334 

monitoring stations, and the results were two square matrices (44×44) of 𝑉𝑂𝐼𝑖,𝑗 and 𝑇𝐸𝑖,𝑗.  335 

Fig. 4a provides a graphical interpretation for 𝑉𝑂𝐼𝑖,𝑗, in which the normalized values of VOI 336 

in station 4.4 (𝑉𝑂𝐼4.4,𝑗ሻ for detecting the state of all other potential monitoring stations is 337 

mapped. Besides, Fig. 4b demonstrates the redundancy of information given station 4.4 against 338 

all other potential monitoring stations (𝑇𝐸4.4,𝑗). Figure 4 clearly shows the concept of spatial 339 

distribution for TE and VOI given each monitoring station (here, station 4.4). 340 

 341 
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(a) (b) 

Fig. 4 The spatial distribution of normalized a) VOI, and b) TE values given station 4.4 342 

 343 

𝑇𝐸𝑖,𝑗 is measured between an origin station (𝑖) and a goal station (𝑗) and shows that how much 344 

information from station 𝑗 is achievable by the station 𝑖. The closer the values of normalized 345 

𝑇𝐸𝑖,𝑗 to 1, the more accessible the information of the station 𝑗 through station 𝑖. By moving 346 

away from station 4.4, the VOI obtained from this station to determine the quality status of 347 

other stations will be reduced.  The spatial distribution of TE in station 4.4 shows that for other 348 

stations in the same catchment area (e.g., 4.1, 4.2, 4.21, and 4.3), the amount of mutual 349 

information is more than other stations.  350 
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After that, running the optimization models for three objectives led to the trade-off curves 351 

composed of 27 and 18 optimal solutions for NSGA-II and NSGA-III, which are the best match 352 

for the selected objectives (Fig. 5).  353 

 354 

  

Pareto optimal solutions of NSGA-II model Pareto optimal solutions of NSGA-III model 

Fig. 5 The Pareto optimal solutions resulted from the optimization models 355 

 356 

NSGA-II uses crowding distance to keep uniform coverage of Pareto solutions, while NSGA-357 

III takes advantage of the reference point mechanism as its selection operator to look at the 358 

solution space and preserve diversity (Deb & Jain, 2014). Comparing the results of the 359 

optimization models, the NSGA-II based optimization model provides optimal solutions with 360 

higher VOI and broader range for the number of stations in the WQMN. In contrast, NSGA-361 

III based optimization model delivers more solutions with a minimum value of redundant 362 

information. From a decision-making perspective, it seems that NSGA-II is more applicable 363 

since it can offer more optimized alternatives to decision-makers. The values of normalized 364 

transinformation entropy in some of the optimal solutions (both NSGA-II and III) were zero. 365 

It is mainly because the third objective function of the optimization model is defined to 366 

https://www.tandfonline.com/doi/full/10.1080/23311916.2016.1269383
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minimize the summation of the normalized TE values between the selected stations in the 367 

optimized network (Eq. 9). Consequently, by selecting the minimum values for 𝑇𝐸𝑖,𝑗, the final 368 

value of this objective function would be zero. Therefore, the optimal solutions (selected set of 369 

stations) meet the objective of the problem (minimizing the redundancy between stations). 370 

However, the outlier point in the Pareto-front of NSGA-II model shows the optimal solutions 371 

that have a different value of 𝑇𝐸𝑖,𝑗. Both optimization models showed acceptable performance 372 

by providing the solutions that meet the selected criteria. The optimum alternative on the 373 

Pareto-front space was obtained by three different MCDM models, including TOPSIS, 374 

PROMETHEE, and AHP, for different weighing scenarios, which are assigned to criteria based 375 

on experts' opinions. In fact, the weighting scenarios show the priority of objectives in order to 376 

achieve optimum WQMN. Table 2 shows various weighing scenarios and corresponding 377 

solutions selected by TOPSIS and PROMETHEE models. Due to TE values in optimal 378 

solutions, which in the majority of the optimal solution is zero and shows the high performance 379 

of the model in minimizing the transinformation entropy, in most of the listed weighing 380 

scenarios, the assigned weight to this objective was adopted less than other two objectives. 381 

Table 2 Different weighing scenarios and selected solution by MCDM models 382 

Weighing 

scenario 

The weights of objectives*  
 Selected solution on the Pareto of 

NSGA-II 

 Selected solution on the Pareto of 

NSGA-III 

W**
1 W2 W3  TOPSIS PROMETHEE AHP  TOPSIS PROMETHEE AHP 

1 0.40 0.10 0.50  4 11 14  1 9 9 

2 0.30 0.10 0.60  2 10 4  1 3 3 

3 0.45 0.10 0.45  4 18 18  1 6 12 

4 0.35 0.30 0.35  14 18 18  15 9 15 

5 0.30 0.20 0.50  14 7 4  1 9 9 

6 0.40 0.20 0.40  4 18 18  1 9 9 

7 0.50 0.10 0.40  14 18 18  1 9 9 

8 0.60 0.10 0.30  14 6 7  1 5 8 

9 0.50 0.20 0.30  14 8 4  1 9 3 

10 0.30 0.40 0.30  14 18 18  15 9 9 
*Objectives: 1) the number of stations, 2) the VOI, and 3) normalized TE. Wi ** is the assigned weight to the ith objective 383 

 384 
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As can be seen, for the results of the NSGA-II, if the objective function 1 (number of 385 

monitoring stations) receives more importance (e.g., weighing scenarios of 7, 8, and 9), 386 

TOPSIS selects solution #14 with 33 monitoring stations, while PROMETHEE and AHP pick 387 

three different solutions. When the first and third objective functions have the same importance 388 

(e.g., weighing scenarios of 3, 4, 6, and 10), PROMETHEE and AHP certainly chose the 389 

solution #18 with 28 monitoring stations, and TOPSIS has two different choices (solutions #14 390 

and #4). If the experts prioritize the VOI as the most significant objective (e.g., weighing 391 

scenarios of 1, 2, and 5), all MCDM models deliver different solutions, depending on the 392 

assigned weights. Finally, solution #14, and #18 were recognized as the preferable solutions 393 

by MCDM models, respectively. For the Pareto optimal solutions of the NSGA-III based 394 

optimization model, the performance of MCDMs was different from that for the NSGA-II 395 

based model. In most of the weighing scenarios, TOPSIS selected solution #1 with 30 stations 396 

in the network, while PROMETHEE, as well as AHP, picked the solution #9 with 29 stations. 397 

The objective values in the selected solutions are presented in Table 3.  398 

 399 

Table 3 The objective values of the selected alternative by MCDM models 400 

Optimization 

model 

Solution 

number  

The value of objectives 

No. of  

stations 

Value of 

information (Eq. 8) 

Normalized transinformation 

entropy (Eq. 9) 

NSGA-II 
14 33 963.80 0.29 

18 28 962.70 0.00 

NSGA-III 
1 30 955.56 0.00 

9 29 954.08 0.00 

 401 

The selected solutions provided the optimum WQMN during road construction, with the 402 

optimum number of stations and minimum redundant information among stations, while 403 

maximizing the value of information for the monitoring stations in WQMN. This network 404 

facilitates the situation for decision-makers to update their judgment about the quality of water 405 
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in the road construction area. As an example, the selected WQMNs from the solutions of the 406 

NSGA-II model (solutions #14 and #18) are presented in Fig. 6. 407 

 408 

  

(a) (b) 

Fig. 6 The selected monitoring networks from NSGA-II model a) solution #14, b) #18, (the 409 

first digit of the station labels shows the catchment area) 410 

 411 

It is vivid that both WQMNs have a reasonable spatial distribution over the seven catchment 412 

areas, which provides a reliable evaluation of the impact of road construction activities on 413 

receiving streams. However, the reference stations were not considered in selected stations, 414 

and only affected potential stations were attended. In order to analyze the selected solutions 415 

based on provided VOI and TE, the union of the 𝑉𝑂𝐼𝑖 curves in the selected WQMNs, and TE 416 

among the selected stations in both optimum solutions (#14 and #18), are presented in Fig. 7 417 

a,b and Fig. 7 c,d, respectively. 418 
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 419 

Fig. 7 The union of the 𝑉𝑂𝐼𝑖 curves for solution number 14 (a) and 18 (c), and TE for 420 

solution number 14 (b) and 18 (d). 421 
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 422 

The best state of the monitoring system regarding the value of information is achieved by 423 

having all the potential stations in the final WQMN. Maximizing the value of VOI guarantees 424 

that the selected WQMN (with fewer stations) is approached to having the monitoring station 425 

in all potential points. However, the locations of the selected stations could have different 426 

distributions. Therefore, minimizing the TE secures that the selected stations have the best 427 

spatial distribution over the catchment areas. 428 

As shown, both solutions have almost the same status in satisfying the objectives (𝑉𝑂𝐼𝑖 and 429 

TE). Consequently, the same situation given 𝑉𝑂𝐼𝑖 and TE provides a suitable condition for the 430 

decision-maker to confidently select the best solution based on the number of stations. Hence, 431 

solution # 18, with 28 stations distributed in all seven catchment areas, is the final WQMN. 432 

With the same logic for the selected WQMNs from the NSGA-III, solution # 9, with 29 well-433 

distributed stations, is the ultimate solution. The optimized WQMNs are the cost-effective 434 

solutions (with fewer monitoring stations) in comparison with the current monitoring program 435 

while provides reliable information on the water quality along the construction site. 436 

 437 

4 Summary and Conclusion 438 

This study proposed an applicable methodology for spatial multi-objective optimization of 439 

WQMN during a road construction project. Included are the CCME-WQI, the information-440 

theoretic approaches (VOI and TE), NSGA-II and III, and MCDM models. The approach was 441 

applied to a monitoring program consisting of 44 potential monitoring stations in seven 442 

catchment areas, which received runoff from the construction of a 22 km long E18 highway in 443 

southern Norway. CCME-WQI was determined considering qualitative parameters in the time 444 

series dataset over the construction period. There were three main objectives, including i) 445 

minimizing the number of monitoring stations, ii) maximizing the value of information among 446 
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stations, and iii) minimizing TE (redundant information) in the selected WQMN. Accordingly, 447 

the NSGA-II and NSGA-III based optimization models were utilized to achieve the Pareto-448 

front of optimal solutions. Then, given different weighting scenarios (selected by experts' 449 

opinion) for objective functions, the best solution was found using the TOPSIS, PROMETHEE, 450 

and AHP multi-criteria decision-making methods. The application of the proposed 451 

methodology for optimizing WQMN during road construction provides feasible knowledge 452 

regarding the surface water quality and contributes to filling the information gap in utilizing 453 

CCME-WQI, a hybrid VOI-TE method, and NSGA-III, for optimization of the WQMN during 454 

the road construction project. 455 

The resulting extent of measurements has minimum redundancy and maximum value for the 456 

decision-making process. Having optimized the spatial part of WQMN (the distribution of 457 

monitoring stations), a temporal optimization and selection of an optimal sampling frequency 458 

could be the next steps. Besides, the Bayesian Maximum Entropy (BME) method (Hosseini 459 

and Kerachian, 2017) can be applied to get a reliable spatiotemporal fit of WQI. Also, the 460 

uncertainty in determining the WQI could be analyzed by interval number programming 461 

(Nikoo et al., 2013; Nikoo et al., 2016). CCME WQI needs the same time series for all 462 

qualitative parameters in each assessment, which in practice leads to a decrease in the number 463 

of parameters examined. Hence, the results of this study (using the CCME index) could be 464 

compared with other water quality indices such as the EU Water Framework Directive (WFD) 465 

or leachate pollution index (LPI). 466 

 467 
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 472 

Appendix 1. CCME-WQI 473 

CCME-WQI was developed to facilitate the process of transmitting the qualitative data into 474 

qualitative information and then knowledge (Khan 2005). This index combines three measures 475 

of variance (scope; frequency; amplitude) to indicate the overall water quality as follow:  476 

– Scope (𝐹1): the number of variables that violate the standards 477 

𝐹1= (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 
ሻ × 100 1A 

– Frequency (𝐹2): the number of times that violation happens 478 

𝐹2= (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑒𝑑 𝑡𝑒𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠
ሻ × 100 2A 

– Amplitude (𝐹3): the magnitude of the violation. In order to compute 𝐹3 , first, the excursion, 479 

which is the number of times by which an individual concentration is greater than (or less than), 480 

the water quality objective must be determined as follow: 481 

when 𝑖𝑡ℎ test value must not exceed the respective guideline (objective): 482 

𝐸𝑥𝑐𝑢𝑟𝑠𝑖𝑜𝑛𝑖= (
𝑓𝑎𝑖𝑙𝑒𝑑 𝑡𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒𝑖

𝑔𝑢𝑖𝑑𝑒𝑙𝑖𝑛𝑒𝑖
ሻ − 1 3A 

when 𝑖𝑡ℎ test value must not fall below the respective guideline (objective): 483 

𝐸𝑥𝑐𝑢𝑟𝑠𝑖𝑜𝑛𝑖= (
𝑔𝑢𝑖𝑑𝑒𝑙𝑖𝑛𝑒𝑖

𝑓𝑎𝑖𝑙𝑒𝑑 𝑡𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒𝑖
ሻ − 1 4A 

Then, the Normalized Sum of Excursions (NSE) is calculated by Eq. 5A.  484 

𝑁𝑆𝐸 =
∑ 𝑒𝑥𝑐𝑢𝑟𝑠𝑖𝑜𝑛𝑖

𝑛
𝑖=1  

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠
 5A 

After that, by scaling the NSE to the range of 0–100 (Eq. 6A), the amplitude (𝐹3) is 485 

calculated: 486 

𝐹3= (
𝑁𝑆𝐸

0.01𝑁𝑆𝐸+0.01
ሻ × 100 6A 

Finally, the CCME-WQI is achieved by utilizing Eq. 7A: 487 
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𝐶𝐶𝑀𝐸𝑊𝑄𝐼 = 100 − (
√𝐹1

2 + 𝐹2
2 + 𝐹3

2

1.732
ሻ 

7A 

The computed values of CCME-WQI are then transformed into rankings through the index 488 

categorization schema, which makes five categories of poor (0-44), marginal (45-64), fair (65-489 

79), good (80-94), and excellent (95-100). 490 

In this study, considering the length of the time series for the measured parameters, four 491 

parameters including Fe (iron), Turbidity, Suspended Solids (SS), and pH, which had a complete 492 

time series during the construction period were selected for the rest of analysis. The water quality 493 

regulations set by the discharge permit for the construction phase of E18 Arendal-Tvedestrand, 494 

released by the Environment Department of Agder County, Norway, was applied for every single 495 

station (see Table A1). 496 

Table A1 The water quality objectives in different stations 497 

Catchment 
Station 

ID 

Water quality objectives  
Catchme

nt 

Station 

ID 

Water quality objectives 

Fe 

(µg/l) 
pH 

SS 

(mg/l) 

Turbidity 

(FNU) 

 Fe 

(µg/l) 
pH 

SS 

(mg/l) 

Turbidity 

(FNU) 

1 

1.10 500 7.5 100 2  

5 

5.30 500 7.5 100 4 

1.11 900 8 100 8  5.40 500 7.5 100 4 
1.20 500 7.5 100 2  5.50 500 7.5 100 4 

1.21 900 8 100 8  5.51 900 8 100 4 

1.22 900 8 100 8  5.54 900 8 100 4 

2 

2.11 500 7.5 100 4  5.55 900 8 100 4 
2.21 500 7.5 100 4  5.56 900 8 100 4 

2.41 900 8 100 2  5.98 500 7.5 100 6 

2.46 500 7.5 100 5  5.99 500 7.5 100 6 

2.50 500 7.5 100 5  

6 

6.01 900 8 100 8 

3 

3.10 500 7.5 100 5  6.02 900 8 100 8 
3.20 500 7.5 100 4  6.10 500 7.5 100 4 

3.30 500 7.5 100 5  6.20 500 7.5 100 4 

3.31 900 8 100 4  6.40 500 7.5 100 4 
3.32 500 8 100 4  6.43 900 7.5 100 4 

3.41 900 8 100 4  6.44 900 7.5 100 1 

4 

4.10 500 7.5 100 2  AF01-V 900 8 100 8 

4.20 500 7.5 100 2  

7 

7.30 500 7.5 100 4 

4.21 500 7.5 100 2  7.50 500 8 100 4 
4.30 500 7.5 100 2  7.60 500 8 100 4 

4.40 500 7.5 100 1  7.7B 500 7.5 100 4 

5 5.20 500 7.5 100 4  7.80 500 8 100 4 

 498 

CCME-WQI was calculated for 42 measurements in each station. The result was a matrix of 499 

42×44, which applied for computing the value of information and the transinformation entropy. 500 

 501 
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