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Abstract

We consider the Navier-Stokes system in three dimensions perturbed by a transport
noise which is sufficiently smooth in space and rough in time. The existence of a weak
solution was proved in [26], however, as in the deterministic setting the question of
uniqueness remains a major open problem. An important feature of systems with
uniqueness is the semigroup property satisfied by their solutions. Without uniqueness,
this property cannot hold generally. We select a system of solutions satisfying the
semigroup property with appropriately shifted rough path. In addition, the selected
solutions respect the well accepted admissibility criterium for physical solutions,
namely, maximization of the energy dissipation. Finally, under suitable assumptions on
the driving rough path, we show that the Navier-Stokes system generates a measurable
random dynamical system. To the best of our knowledge, this is the first construction
of a measurable single-valued random dynamical system in the state space for an
SPDE without uniqueness.

Keywords: Navier-Stokes equations; rough paths; random dynamical system.

MSC2020 subject classifications: 60H15; 60L20; 60L50; 35Q30; 37H10.

Submitted to EJP on April 29, 2021, final version accepted on June 22, 2022.

*The financial support by the German Science Foundation DFG through the Research Unit FOR 2402 is
greatly acknowledged. This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 949981).

†Friedrich-Schiller-Universität Jena. E-mail: jorge@cardona.co
‡Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany.
E-mail: hofmanova@math.uni-bielefeld.de

§Department of Mathematical Sciences, University of Adger, Norway.
E-mail: torstein.nilssen@uia.no

¶Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld.
E-mail: nrana@math.uni-bielefeld.de

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/22-EJP813
https://ams.org/mathscinet/msc/msc2020.html
mailto:jorge@cardona.co
mailto:hofmanova@math.uni-bielefeld.de
mailto:torstein.nilssen@uia.no
mailto:nrana@math.uni-bielefeld.de


RDS generated by 3D NSE with transport noise

1 Introduction

By now, the question of generating a random dynamical system by an Itô-type
Stochastic Differential Equation (SDE) is well settled under natural assumptions on
the coefficients implying in particular uniqueness, refer to [1, 15] for details. The crucial
step consists in proving the stochastic flow property by using the Kolmogorov continuity
theorem [30, Section 1.4] about the existence of a continuous random field with a finite-
dimensional parameters range. Upon establishing the flow property, the existence of a
random dynamical system induced by solution to considered SDE follows as derived in
[35].

Unfortunately, it is in general not possible to extend the Kolmogorov continuity
theorem to an infinite-dimensional parameter range and to obtain stochastic flows for
Itô-type stochastic PDEs (SPDEs). The main issue here is that the solution to an Itô-type
SPDE is defined almost surely where the exceptional set depends on the initial condition.
Nevertheless, it is possible to obtain a stochastic flow, and in particular a random
dynamical system, for Itô-type SPDEs driven by special noises provided uniqueness can
be shown, refer to [16] for details. For instance, if the SPDE is driven by either additive
noise or linear multiplicative noise, then it can be transformed into a random evolution
equation. If additionally uniqueness can be proved for the transformed system then it is
possible to construct the associated stochastic flow and to generate a random dynamical
system. In the context of 2D stochastic Navier-Stokes equations, which has a unique
global solution, this approach has been used successfully by Crauel and Flandoli [10] in
bounded domain and Brzeźniak and Li [8] in an unbounded domain.

Due to non-uniqueness of global solutions to stochastic Navier-Stokes equations in
three space dimensions, the above method fails. One way to overcome this difficulty,
as given by Sell in [36], is to replace the state space by the phase space consisting of
full trajectories of solutions of the equation. By modifying the Sell concept, Flandoli
and Schmalfuss [19] were able to work with single-valued cocycles and proved the
global existence of a random attractor for 3D stochastic Navier-Stokes equation with
a multiplicative white noise. Another way to talk about a random dynamical system
generated by an SPDE, which is not known to have a unique global solution, was
established in [32], where the authors introduced a set-valued stochastic semiflow and a
set-valued random dynamical system. In particular, by generalizing the idea of Ball [4]
to the stochastic setting, they found a certain attracting set that depends on the random
parameter and concluded the existence of a random attractor for the 3D Navier-Stokes
equations driven by white noise.

As described above briefly, for some very specific structure of the noise driving an
SPDE, a suitable transformation of the equation into a pathwise evolution equation
allows to prove the existence of a random dynamical system. This forces us to rethink
and consider a pathwise approach to construct solutions of an SPDE such that they
satisfy the cocycle property. Recently, various techniques have been derived to give
a pathwise meaning to the solutions of SPDEs by exploiting the ideas of Lyons’ rough
paths theory [31] in one way or other. However, there are very few results that explore
the pathwise properties of the solutions to study the long time behavior of stochastic
flows. For example, in [22, 23] the authors deal with random dynamical systems for
SPDEs driven by a fractional Brownian motion with Hurst parameter H ∈ (1/2, 1) and
H ∈ (1/3, 1/2]. The proof relies on the definition of a pathwise stochastic integral
based on the Riemann-Liouville fractional derivatives. Using regularizing properties of
analytic semigroups, the authors in [25] proved the existence of a unique global solution
to infinite-dimensional parabolic rough evolution equations and investigated random
dynamical systems for such equations. Existence of a unique random attractor applicable
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RDS generated by 3D NSE with transport noise

for a large class of SPDEs perturbed by Brownian motion, fractional Brownian motion
and Lévy-type noise is shown in [24]. The results obtained in [24] are based on the
variational approach to SPDE. Recently, the authors in [27], defined an intrinsic notion
of solution based on ideas from the rough path theory and studied the well-posedness of
2D Navier-Stokes equations in an equivalent vorticity formulation. They derive rough
path continuity of the equation and show that for a large class of driving signals, the
system generates a continuous random dynamical system.

To the best of our knowledge, all the rough PDEs (RPDEs) considered so far to
investigate the induced random dynamical system proved to have a unique global
solution. However, from the point of view of applications there is a huge number of
physically relevant systems where uniqueness is either unknown or not even valid. Such
examples appear for instance in fluid dynamics and are represented by the iconic example
of the Navier-Stokes system. Nevertheless, despite the theoretical difficulties, the Navier-
Stokes system and related fluid dynamics equations are widely used in practice and
count as a reliable basis for modeling and simulations. From the mathematics point of
view, it is therefore essential to study such models, which are not known to have unique
global solutions, and to develop methods to investigate their long time behavior.

Taking a step in this direction, we study the existence of a random dynamical system
induced by solutions of a system of Navier-Stokes equations on the three-dimensional
torus T3 subject to a rough transport noise. The noise arises from perturbing the
transport advecting velocity field by a space-time dependent noise and is, at least
formally, energy conservative. The rough path philosophy of splitting analysis from
probability, as well as a Wong-Zakai stability result are the key ingredients of our
construction. For the first time, we are able to construct a measurable single-valued
random dynamical system in the state space for an SPDE without uniqueness. Our proof
relies on a selection procedure and is direct, benefiting from the rough path theory
rather than a transformation into a random PDE.

The system of interest governs the evolution of the velocity field u : R+ × T3 → R3

and the pressure p : R+ × T3 → R of an incompressible viscous fluid and reads as

∂tu+ (u− ȧ) · ∇u+∇p = ∆u,

∇ · u = 0,

u(0) = u0 ∈ L2(T3;R3).

(1.1)

Here ȧ is the (formal) derivative in time of a function a = at(x) : R+ × T3 → R3 which
can have the following factorization:

at(x) = σk(x)zkt =

K∑
k=1

σk(x)zkt , (1.2)

where we adopt the convention of summation over repeated indices k ∈ {1, . . . ,K}. We
also assume that for all k ∈ {1, . . . ,K}, the vector fields σk : T3 → R3 are bounded,
divergence-free, and twice-differentiable with uniformly bounded first and second deriva-
tives. The driving signal z is assumed to be a RK -valued α-Hölder path for some
α ∈

(
1
3 ,

1
2

]
which can be lifted to a geometric rough path Z = (Z,Z), see Section 2.4 for

precise assumptions.
The system (1.1), (1.2) was studied recently in [26] within the framework of un-

bounded rough drivers as introduced in [2] and further developed in [14] and other
works, e.g. [17]. The authors in [26] introduced a suitable notion of weak solution
to (1.1) and proved existence, see [26, Theorem 2.13]. The proof relies on a Galerkin ap-
proximation in combination with uniform energy estimates of the solution as well as the
corresponding remainder terms and a compactness argument. However, it turns out that
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RDS generated by 3D NSE with transport noise

this notion of solution is not suitable for the construction of a random dynamical system.
More precisely, as the kinetic energy of weak solutions is only lower semicontinuous,
the so-called energy sinks appear and cannot be avoided. Consequently, at the time of
each energy sink, the actual energy of the system is not controlled by the energy of the
solution. This is a problem since in a random dynamical system the future evolution after
each time t has to be fully determined by the value of the solution at t.

Inspired by [5, 6, 7], we overcome this issue by including an auxiliary variable, i.e.
the energy E, as a part of the solution. Accordingly, a weak solution in our context
actually consists of a triple [u, p,E] of the fluid velocity and the pressure together with
the energy. In addition, the Navier-Stokes system (1.1), (1.2) needs to be supplemented
by a suitable form of an energy inequality. As usual, see for e.g. [26, Section 4.1.2], the
pressure can be recovered from the velocity so we do not specify it in our results or in
the definition of a solution, see Definition 2.5. Including the energy as an additional
datum may seem a bit superfluous at first sight, but it is indispensable in order to obtain
the semigroup property for every time. Otherwise one would only obtain a statement
for a.e. time as in [5, 18]. We refer to Remark 3.10 and to [28, Section 6] for a further
discussion of this issue.

The first main result of the current paper can be stated as follows, see Theorem 3.9
for the precise formulation.

Theorem 1.1. The Navier-Stokes equation (1.1)-(1.2) admits a semiflow selection in the
class of weak solutions, that is, there is a measurable mapping

U : [u0, E0,Z] 7→ [u,E],

which assigns to every initial condition [u0, E0] and a rough path Z one solution trajectory
[u,E] so that the following semigroup property holds true

U{u0, E0,Z}(t1 + t2) = U{U{u0, E0,Z}(t1), Z̃t1}(t2), for any t1, t2 ≥ 0,

where Z̃t1(·) denotes the shifted rough path Z̃t1(·) := Z(t1 + ·)1.

To prove this result we adapt to the rough path setting the selection procedure
introduced in [9] and further generalized in [5, 6, 7]. The key property which then
permits to deduce the existence of a measurable random dynamical system is the rough
path stability in the spirit of a Wong-Zakai approximation result, see Theorem 3.3.
Indeed, this permits to go back to probability and consider random driving rough paths
which satisfy a suitable cocycle property as introduced in [3]. An example is a fractional
Brownian motion with Hurst parameter H > 1

3 . This brings us to the second main result
of this paper. See Theorem 4.4 for details and a precise formulation.

Theorem 1.2. Under the assumption that the driving path Z is an α-Hölder rough path
cocycle, see [3], the Borel measurable map

Φ : (t, ω, [u0, E0]) 7→ U{u0, E0,Z(ω)},

is a measurable random dynamical system over a measurable metric dynamical system
(Ω,F ,P, (θt)t∈T), that is, it satisfies the cocycle property, which roughly states that

Φ(t+ s, ω) = Φ(t, θsω) ◦ Φ(s, ω) ∀s, t ∈ T, ω ∈ Ω.

We note that the possibility of changing measurability of the random dynamical
system above into its continuity remains a major open question. Indeed, this corresponds
to continuity with respect to the initial condition, which in the deterministic setting has

1With a slight abuse of notation we write Z(t1 + ·) for the 2-index map (Z,Z)t1+·,t1+·.
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not been proved so far. In the stochastic setting, on the other hand, the probabilistic
counterpart, i.e. the Feller property, was established only under the assumption that the
noise is additive and sufficiently non-degenerate, see [12, 18].

The organization of the paper is as follows. In Section 2, we introduce our notation
and provide the required definitions with the notion of weak solution used in the paper.
In Section 3, we introduce the concept of a semiflow selection in terms of the two state
variables: the velocity and the energy. We also analyze the properties (compactness, shift
invariance and continuation) of the solution set and prove the existence of a semiflow
selection, refer to Theorem 3.9. Section 4 is devoted to the existence of a random
dynamical system, Theorem 4.4, which is a central result of this paper. We conclude
the paper with Appendix A where we state all the required a priori estimates from [26,
Section 3] and state a compact embedding lemma which is helpful in the proof of the
crucial sequential stability result, see Theorem 3.3.

2 Notation

In this section we fix the notation which is used throughout the paper. Since we
intend to construct a semiflow for weak solutions to (1.1) whose existence is proven in
[26], to avoid any notational confusion, we closely follow [26, Section 2] and only state
the required definitions and their properties.

We write a . b if there exists a positive constant C such that a ≤ Cb. If the constant
C depends only on the parameters p1, . . . , pn, we write C(p1, . . . , pn) and .p1,...,pn , re-
spectively, instead of C and .. Let T := [0,∞). We let N to be the set of natural numbers.
Let T3 denotes the three dimensional flat torus.

For given Banach spaces V1 and V2, the space of continuous linear operators from
V1 to V2 will be denoted by L(V1, V2). Note that L(V1, V2) is endowed with the operator
norm which we denote by | · |L(V1,V2). For a given σ-finite measure space (X,X , µ),
separable Banach space V with norm | · |V , and p ∈ [1,∞], we denote by Lp(X;V ) the
Bochner space of strongly-measurable and Lp-integrable functions f : X → V . For a
given Hilbert space H and T > 0, we let L2

TH = L2([0, T ];H) and L∞T H = L∞([0, T ];H).
Moreover, we set L2 = L2(T3;R3). We use subscript “loc” to point out that the elements
restricted to any bounded interval J belong to the space with domain J . For instance,
by L∞loc(T;R) we understand the set of all µ-equivalence-classes of strongly-measurable
functions f : T → R such that f |J ∈ L∞(J ;R) for every bounded J ⊂ T. We write
CTH = C([0, T ];H) to denote the Banach space of continuous functions from [0, T ] to H,
endowed with the supremum norm in time. Moreover, if H is subject to weak topology,
then we write C([0, T ];Hw).

Let S be the Fréchet space of infinitely differentiable periodic complex-valued func-
tions with the usual set of seminorms. Let S ′ be the continuous dual space of S endowed
with the weak-star topology. In extension of these, we write S′ = (S ′)d for the set of
continuous linear functions from S = (S)d to C endowed with the weak-star topology.

For a given β ∈ R, the Hilbert space Wβ,2 is defined as

Wβ,2 := (I −∆)−
β
2 L2 = {f ∈ S′ : (I −∆)

β
2 f ∈ L2},

with inner product

(f, g)β := ((I −∆)
β
2 f, (I −∆)

β
2 g)L2 , f, g ∈Wβ,2,

and induced norm | · |β. For notational simplicity, when β = 0 we omit the index in the
inner product, i.e. (·, ·) := (·, ·)0. Let

H0 :=
{
f ∈W0,2 : ∇ · f = 0

}
.

EJP 27 (2022), paper 88.
Page 5/27

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP813
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


RDS generated by 3D NSE with transport noise

2.1 Helmholtz–Leray projection

We denote the Helmholtz–Leray projection by P : S′ → S′, which is well-known
in the study of Navier-Stokes equation, see [38], and let Q = I − P . It follows that
P,Q ∈ L(Wβ,2,Wβ,2) and that the operator norms of P and Q are bounded by one for
all β ∈ R.

By setting
Hβ := PWβ,2 and Hβ

⊥ := QWβ,2,

it can be showed that for all β ∈ R, see for e.g. [34, Lemma 3.7],

Wβ,2 = Hβ ⊕Hβ
⊥,

where
Hβ =

{
f ∈Wβ,2 : ∇ · f = 0

}
,

Hβ
⊥ = {g ∈Wβ,2 : 〈f, g〉−β,β = 0, ∀f ∈ H−β}.

The following part of this subsection will shed light on the construction of the
unbounded rough drivers associated with (1.1). Let σ : T3 → R3 be twice differentiable
and divergence-free. Moreover, assume that the derivatives of σ up to order two are
bounded uniformly by a constant M0.

Let A1 := σ ·∇ and A2 := (σ ·∇)(σ ·∇). It follows that there is a constant M (depends
on M0, β) such that

|A1|L(Wβ+1,2,Wβ,2) ≤M, ∀β ∈ [0, 2], |A2f |L(Wβ+2,2,Wβ,2) ≤M, ∀β ∈ [0, 1].

We ask the reader to see [33] for such estimates on the whole space, but they can easily
be adapted to the periodic setting as required in the current paper.

Since P ∈ L(Wβ,2,Hβ) and Q ∈ L(Wβ,2,Hβ
⊥) for all β ∈ R, both of which have

operator norm bounded by 1, we have

|PA1|L(Hβ+1,Hβ) ≤M, ∀β ∈ [0, 2], (2.1)

|PA2|L(Hβ+2,Hβ) ≤M, ∀β ∈ [0, 1], (2.2)

and hence (PA1)∗ ∈ L((Hβ)∗, (Hβ+1)∗) for β ∈ [0, 2] and (PA2)∗ ∈ L((Hβ)∗, (Hβ+2)∗) for
β ∈ [0, 1].

To analyze the convective term, we employ the following notation and bounds. Owing
to [38, Lemma 2.1] adapted to fractional norms, the trilinear form defined by

b(u, v, w) :=

∫
T3

((u · ∇)v) · w dx =

3∑
i,j=1

∫
T3

uiDiv
jwj dx,

satisfies
b(u, v, w) .β1,β2,β3 |u|β1 |v|β2+1|w|β3 , (2.3)

for every β1, β2, β3 ∈ R+ such that

β1 + β2 + β3 ≥
3

2
, if βi 6=

3

2
for all i ∈ {1, 2, 3},

β1 + β2 + β3 >
3

2
, if βi =

3

2
for some i ∈ {1, 2, 3}.

Furthermore, for all u ∈ Hβ1 and (v, w) ∈ Wβ2+1,2 ×Wβ3,2 such that β1, β2, β3 sat-
isfy (2.3), we have

b(u, v, w) = −b(u,w, v) and b(u, v, v) = 0. (2.4)
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For β1, β2, and β3 that satisfy (2.3) and any given (u, v) ∈ Wβ1,2 ×Wβ2+1,2, we define
B(u, v) ∈W−β3,2 by

〈B(u, v), w〉−β3,β3
= b(u, v, w), ∀w ∈Wβ3,2.

In last, we define BP := PB and note that

BP := PB : Wβ1,2 ×Wβ2+1,2 → H−β3 ,

for β1, β2, and β3 that satisfy (2.3). We set

B(u) = B(u, u), and BP (u) := BP (u, u).

2.2 Smoothing operators

Motivated by [2], we also need a family of self-adjoint smoothing operators (Jη)η∈(0,1]

such that for all β ∈ R and γ ∈ R+,

|(I − Jη)f |β . ηγ |f |β+γ and |Jηf |β+γ . η−γ |f |β . (2.5)

For a construction of one such family, we refer [26, Section 2.2].

2.3 Rough path theory

For a given interval I ⊂ R, we set

∆I := {(s, t) ∈ I2 : s ≤ t}, ∆
(2)
I := {(s, θ, t) ∈ I3 : s ≤ θ ≤ t}.

For a path f : I → RK we define its increment as δfst := ft − fs,∀s, t ∈ I and for a
two-index map g : ∆I → R, we define the second order increment operator

δgsθt := gst − gθt − gsθ, ∀(s, θ, t) ∈ ∆
(2)
I .

Let α > 0 and J be a bounded interval in R. We denote by Cα2 (J ;RK) the closure of
the set of smooth 2-index maps g : ∆J → RK with respect to the Hölder coefficient

[g]α,J := sup
s,t∈∆J ,s 6=t

|gst|
|t− s|α

<∞.

Note that, since the zero element is gst = 0 for all (s, t) ∈ ∆J , we infer that [g]α,J is
actually a norm on Cα2 (J ;RK). Note that with this definition, the space Cα2 (J ;RK) is
Polish. By Cα(J ;RK) we denote the closure of the set of smooth paths f : J → RK

w.r.t. the semi-norm [δf ]α,J . By Cα2,loc(T;RK) we denote the space of 2-index maps
g : ∆T → RK such that the restriction of g on every bounded interval J ⊂ T, which we
denote by g|∆J

, belongs to Cα2 (J ;RK).
Next, we present the definition of an α-Hölder rough path. A detailed exposition of

rough path theory can be found in [20].

Definition 2.1. Let K ∈ N and α ∈
(

1
3 ,

1
2

]
. An α-Hölder rough path is a pair

Z = (Z,Z) ∈ Cα2,loc(T;RK)× C2α
2,loc(T;RK×K), (2.6)

such that for every bounded interval J in T

(Z|∆J
,Z|∆J

) ∈ Cα2 (J ;RK)× C2α
2 (J ;RK×K), (2.7)

and satisfies the Chen’s relation

δZsθt = Zsθ ⊗ Zθt, ∀(s, θ, t) ∈ ∆
(2)
J .
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An α-Hölder rough path Z = (Z,Z) is said to be geometric if the restriction Z|J
can be obtained as the limit in the product topology of a sequence of rough paths
{(Zn,Zn)}n∈N ⊂ Cα2 (J ;RK)× C2α

2 (J ;RK×K) such that for each n ∈ N,

Znst := δznst and Znst :=

∫ t

s

δznsθ ⊗ dznθ ,

for some smooth path zn : J → RK , where the iterated integral is understood in the
Riemann sense.

We denote by Cαg (T;RK) the set of all geometric α-Hölder rough paths and endow it
with the product topology.

For given bounded interval J ⊂ R and (Z,Z) ∈ Cα2 (J ;RK) × C2α
2 (J ;RK×K), let us

further set

||Z||α,J := sup
s,t∈∆J ,s6=t

|Zst|
|t− s|α

, ||Z||2α,J := sup
s,t∈∆J ,s6=t

|Zst|
|t− s|2α

,

and
|||Z|||α,J := ||Z||α,J + ||Z||2α,J .

Note that ||| · |||α,J is a norm on Cα2 (J ;RK)× C2α
2 (J ;RK×K).

We also need to deal with finite p-variation spaces. To introduce them let P(J) denote
the set of all partitions of a bounded interval J and let V be a Banach space with norm
| · |V . A function g : ∆J → V is said to have finite p-variation for some p > 0 on J if

|g|p−var;J;V := sup
(ti)∈P(J)

(∑
i

|gtiti+1
|pV

) 1
p

<∞,

and we denote by Cp−var
2 (J ;V ) the set of all continuous functions with finite p-variation

on J equipped with the seminorm | · |p−var;J;V . We denote by Cp−var(J ;V ) the set of all
paths z : J → V such that δz ∈ Cp−var

2 (J ;V ).
A two-index map ω : ∆J → [0,∞) is called a control if

• it is continuous on ∆J ;

• it attains zero on diagonal i.e., for all s ∈ J , ω(s, s) = 0;

• it is superadditive i.e., for all (s, θ, t) ∈ ∆
(2)
J , ω(s, θ) + ω(θ, t) ≤ ω(s, t).

If for a given p > 0, g ∈ Cp−var
2 (J ;V ), then it is well-known that the 2-index map

ωg : ∆J → [0,∞) defined by
ωg(s, t) := |g|pp−var;[s,t],

is a control, see [21, Proposition 5.8]. Moreover, in such situation, |gst|V ≤ ωg(s, t)
1
p for

all (s, t) ∈ ∆J .
One can equivalently define a semi-norm on Cp−var

2 (J ;V ) as, see [26, Section 2.3],

|g|p−var;[s,t] = inf{ω(s, t)
1
p : |guv|V ≤ ω(u, v)

1
p for all (u, v) ∈ ∆[s,t]}. (2.8)

Motivated by (2.8), we define a local version of the p-variation spaces.

Definition 2.2. Given an interval J = [a, b] for some a, b ∈ T, a control $ on ∆J , and a
positive real number L, we denote by Cp−var

2,$,L(J ;V ) the space of continuous two-index

maps g : ∆J → V for which there exists at least one control ω such that |gst|V ≤ ω(s, t)
1
p

for every (s, t) ∈ ∆J which gives $(s, t) ≤ L.
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We define a semi-norm on this space by

|g|p−var,$,L;J

:= inf
{
ω(a, b)

1
p : ω is a control s.t. |gst|V ≤ ω(s, t)

1
p , ∀(s, t) ∈ ∆J with $(s, t) ≤ L

}
.

By Cp−var
2,$,L,loc(T;V ) we mean the set of continuous two-index maps g : ∆T → V such that

for every bounded interval J ⊂ T the restriction g|∆J
belongs to Cp−var

2,$,L(J ;V ).

Observe that, since the rough perturbation in (1.1) is (unbounded) operator valued,
it is necessary to use the notion of unbounded rough drivers, which can be seen as
operator valued rough paths with values in a suitable space of unbounded operators, see
[2]. In what follows, by scale we mean a family (Eβ , | · |β)β∈R+ of Banach spaces such
that Eγ+β is continuously embedded into Eβ for γ ∈ R+. For β ∈ R+, we denote by E−β

the topological dual of Eβ , and note that, in general, E−0 6= E0.

Definition 2.3. Let α ∈
(

1
3 ,

1
2

]
and a bounded interval J ⊂ T be given. A continuous

unbounded α-rough driver with respect to the scale (Eβ , | · |β)β∈R+
, is a pair A = (A1, A2)

of 2-index maps such that there exists a control ωA on J such that for every (s, t) ∈ ∆J ,

|A1
st|L(E−β ,E−(β+1)) ≤ (ωA(s, t))α for β ∈ [0, 2],

|A2
st|L(E−β ,E−(β+2)) ≤ (ωA(s, t))2α for β ∈ [0, 1], (2.9)

and the Chen relation holds true, that is,

δA1
sθt = 0, δA2

sθt = A1
θtA

1
sθ, ∀(s, θ, t) ∈ ∆

(2)
J . (2.10)

2.4 Definition of weak solution

In this section, we define a notion of a weak solution to (1.1) and (1.2).
Let z ∈ Cαloc(T;RK) be such that it can be lifted to a continuous geometric α-Hölder

rough path Z = (Z,Z) ∈ Cαg,loc(T;RK) for some α ∈
(

1
3 ,

1
2

]
. For each k ∈ {1, . . . ,K},

assume that σk : T3 → R3 is twice differentiable and divergence-free. Moreover, assume
that for all k ∈ {1, . . . ,K}, σk and its derivatives up to order two are bounded uniformly.

Applying the Leray projection P : Wα,2 → Hα and gradient projection Q : Wα,2 →
Hα
⊥, defined in Section 2.1, separately to (1.1) with (1.2) yields

∂tu+ P [(u · ∇)u] = ∆u+ P [(σk · ∇)u]żkt , (2.11)

∇p+Q[(u · ∇)u] = Q[(σk · ∇)u]żkt . (2.12)

By setting

π :=

∫ ·
0

∇pr dr,

and integrating the system (2.11)-(2.12) over [s, t] and then iterating the equation into
itself we obtain, see [26, Section 2.5] for a complete derivation,

δust +

∫ t

s

P [(ur · ∇)ur] dr =

∫ t

s

∆urdr + [AP,1st +AP,2st ]us + uP,\st , (2.13)

δπst +

∫ t

s

Q[(ur · ∇)ur)] dr = [AQ,1st +AQ,2st ]us + uQ,\st , (2.14)

where

AP,1st ϕ := P [(σk · ∇)ϕ]Zkst, AP,2st ϕ := P [(σk · ∇)P [(σi · ∇)ϕ]]Zi,kst ,

AQ,1st ϕ := Q[(σk · ∇)ϕ]Zkst, AQ,2st ϕ := Q[(σk · ∇)P [(σi · ∇)ϕ]]Zi,kst .
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Remark 2.4. As shown in [26, Section 4.1.2], the pressure term π can be uniquely
determined by the velocity u. Hence, we only concentrate on the construction of the
random dynamical system associated to (2.11).

To define the considered notion of a weak solution which is suitable for semiflow
selection, let us first define the set of admissible initial data

D :=

{
[x, e] ∈ H0 ×R+ :

1

2
|x|20 ≤ e

}
.

Note that D is a closed convex subset of H0 ×R+. Recall that T = [0,∞).

Definition 2.5 (Weak solution). Given [u0, E0] ∈ D and a geometric α-Hölder rough path

Z = (Z,Z) ∈ Cα2,loc(T;RK)× C2α
2,loc(T;RK×K), for some α ∈

(
1

3
,

1

2

]
, (2.15)

we say that a pair [u,E] is a weak solution of (2.11) if

1. u : T→ H0 is a weakly continuous function and u ∈ L2
loc(T;H1) ∩ L∞loc(T;H0);

2. E : T→ R+ satisfies E(t) = 1
2 |ut|

2
0 a.e. t ∈ T;

3. E(t) is a non-increasing function of t. In the variational form we write this as
E(0−) = E(0) and

[Eψ]
t=τ2+
t=τ1− −

∫ τ2

τ1

E∂tψ dt+

∫ τ2

τ1

ψ

∫
T3

|∇ut|2 dx dt ≤ 0, (2.16)

for every 0 ≤ τ1 ≤ τ2 and ψ ∈ C1
c (T) with ψ ≥ 0;

4. the remainder uP,\ : ∆T → H−3 which is defined, for all φ ∈ H3, and (s, t) ∈ ∆T by

uP,\st (φ) := δust(φ) +

∫ t

s

[(∇ur,∇φ) +BP (ur)(φ)] dr − us([AP,1,∗st +AP,2,∗st ]φ),

(2.17)

satisfy

uP,\ ∈ C
p
3−var
2,$,L,loc(T;H−3), (2.18)

for some control $ and L > 0.

The next result gives existence of a weak solution to (2.11) for any initial data and a
rough transport perturbation. Even though the energy inequality (2.16) was not included
in the corresponding definition of weak solution in [26], it can be verified that it is
satisfied by the solutions constructed in [26, Theorem 2.13]. The necessary ideas are
also discussed in the proof of stability in Theorem 3.3 below.

Theorem 2.6. [26, Theorem 2.13] For a given initial data [u0, E0] ∈ D, a geometric
α-Hölder rough path Z, for some α ∈

(
1
3 ,

1
2

]
, there exists a weak solution to (2.11), in the

sense of Definition 2.5, which satisfies,

1

2
|ut|20 +

∫ t

0

|∇ur|20 dr ≤
1

2
|u0|20 ≤ E0, ∀t ∈ T. (2.19)

Remark 2.7. Given [u0, E0] ∈ D and a geometric α-Hölder rough path Z, if [u,E] is a
weak solution of (2.11), then we can always consider that 1

2 |ut|
2
0 ≤ E(t−) for all t ∈ T.

Moreover, we will write {[u,E](t); t ∈ T} and {[ut, E(t−)]; t ∈ T} instead [u,E] if we want
to give information about the time scale.
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3 Semiflow selection

Throughout this section, we continue our pathwise analysis and let

Z = (Z,Z) ∈ Cαg,loc(T;RK) , α ∈
(

1

3
,

1

2

]
,

be a continuous geometric α-Hölder rough path. Randomness is only going to reappear
in Section 4 below. We consider the following separable metric space as the trajectory
space

X := Cloc(T; H−1)× L1
loc(T;R). (3.1)

For data [x, e] ∈ D, we introduce the solution set

U [x, e,Z] :=

{
[u,E] ∈ X

∣∣∣ [u,E] is a weak solution to (2.11) perturbed by Z
with initial data [x, e]

}
.

In order to fulfill the criterion of maximal energy dissipation, and following [6], for a
fixed initial data and a rough path, we focus on a subclass of weak solutions consisting of
the ones which minimize the total energy. To define this subclass we introduce a partial
relation ≺ as follows: if [ui, Ei], i = 1, 2, are two weak solutions to (2.11) perturbed
by the same rough path Z and starting from the same initial data [u0, E0], we write
[u1, E1] ≺ [u2, E2] iff

E1(t±) ≤ E2(t±) for every t ∈ T \ {0}.

Definition 3.1 (Admissible weak solution). We say that a weak solution [u,E] to (2.11)
perturbed by Z starting from the initial data [u0, E0] is admissible if it is minimal with
respect to the relation ≺. Specifically, if

[ũ, Ẽ] ≺ [u,E],

where [ũ, Ẽ] is another weak solution to (2.11) driven by path Z and starting from [u0, E0],
then

E = Ẽ on T.

We can now define a semiflow selection to (2.11).

Definition 3.2 (Semiflow selection). A semiflow selection in the class of weak solutions
for the problem (2.11) is a Borel measurable mapping

U : D× Cαg,loc(T;RK)→ X,

U {u0, E0,Z} ∈ U [u0, E0,Z] for any [u0, E0,Z] ∈ D× Cαg,loc(T;RK),

which enjoys the following semigroup property:

U {u0, E0,Z} (t1 + t2) = U
{
U{u0, E0,Z}(t1), Z̃t1

}
(t2),

for any [u0, E0] ∈ D and any t1, t2 ∈ T, where Z̃t1(·) := Z(t1 + ·) = (Z,Z)t1+·,t1+·.

Observe that Z̃t1(·) defined above is again a rough path, in particular, Chen’s relation
holds true.

3.1 Sequential stability

In this subsection we address the issue of sequential stability which will allow us to
show the compactness of the set U [u0, E0,Z] as well as the required measurability of
the semiflow selection. It is also essential for proving the measurability of the random
dynamical system constructed in Section 4.

Given T > 0, we let ∆T := ∆[0,T ] and ∆
(2)
T = ∆

(2)
[0,T ].
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Theorem 3.3. Let {ZN = (ZN ,ZN )}N∈N be a sequence of geometric α-Hölder rough
paths such that ZN converges to some α-Hölder rough path Z = (Z,Z) in the product
topology on Cα2,loc(T;RK) × C2α

2,loc(T;RK×K). Suppose that {[uN0 , EN0 ]}N∈N ⊂ D is a
sequence of initial data and that there exists a positive real number E , such that

EN0 ≤ E , (3.2)

for every N ∈ N. Let [uN , EN ] ∈ U [uN0 , E
N
0 ,Z

N ], N ∈ N, be a family of associated weak
solutions. Then

1. there exist [u0, E0] ∈ D and a subsequence, indexed again by N , such that

uN0 → u0 weakly in H0, EN0 → E0. (3.3)

2. for the subsequence of solutions {[uN , EN ]}N∈N, corresponding to the data {[uN0 ,
EN0 ],ZN}N∈N from part (a), there exists a weak solution [u,E] such that the follow-
ing hold

uN → u in Cloc(T;H−1),

EN (t)→ E(t) for any t ∈ T and in L1
loc(T;R).

Proof of Theorem 3.3. First observe that the convergences in (3.3) follow immediately
from the fact that EN0 , in particular |uN0 |20, are uniformly bounded in N by E . Let us fix
an arbitrary time T > 0. Notice that to prove the Theorem 3.3, it is sufficient to prove all
the required results on [0, T ].

Observe that due to convergence ZN → Z in the mentioned product topology, for
every ε > 0, there exists an N0 := N0(ε) ∈ N such that

|||ZN − Z|||α,[0,T ] < ε, for all N ≥ N0.

Consequently, the reverse triangle inequality yields, for all N ≥ N0,

|||ZN |||α,[0,T ] < ε+ |||Z|||α.

Since the above holds for every ε > 0, we fix ε = 1 and get

|||ZN |||α,[0,T ] ≤ max{|||Z|||α,[0,T ] + 1, |||Z1|||α,[0,T ], · · · , |||ZN0 |||α,[0,T ]} =: R.

Let us set
ωZ(s, t) := (t− s)R1/α, (s, t) ∈ ∆T . (3.4)

Then, it is easy to show that ωZ is a control and we have

|ZNst | ≤ (ωZ(s, t))α, |ZNst| ≤ (ωZ(s, t))2α, ∀(s, t) ∈ ∆T . (3.5)

To move further, let us define

AN,1st φ := P [(σk · ∇)φ]ZN,kst ,

AN,2st φ := P [(σk · ∇)P [(σj · ∇)φ]]ZN,j,kst . (3.6)

Next we claim that, for β ∈ [0, 2],

|AN,1st |L(Hβ+1,Hβ) ≤M(ωZ(s, t))α, for β ∈ [0, 2], (3.7)

|AN,2st |L(Hβ+2,Hβ) ≤M(ωZ(s, t))2α, for β ∈ [0, 1], (3.8)
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where M is introduced in Section 2.1. We will only prove (3.7), since the proof of (3.8) is
similar. Observe that, for β ∈ [0, 2], estimates (3.5) and (2.1) give

|AN,1st |L(Hβ+1,Hβ) ≤ |PA1|L(Hβ+1,Hβ)|ZNst | ≤M(ωZ(s, t))α.

Similarly we can get the inequality in (3.8). Hence, by Definition 2.3, the {(AN,1st , AN,2st )}N
is a family of unbounded rough drivers, with

ωAN (s, t) := M1/αωZ(s, t),

on the scale (Hβ)β∈R+
which is uniformly bounded in N .

Now, we prove the convergences in part (b). The case when the sequence of rough
paths does not depend on N is proven [26, Theorem 4.1]. We still include the whole idea
here with more details for the completion.

First observe that, without loss of generality, we may assume that the same control
$ and constant L > 0 works for each element of sequence {uN}N≥1 in the Definition 2.5.
Since, for every N ∈ N, 1

2 |u
N
0 |20 ≤ E and corresponding uN satisfies the energy inequal-

ity (2.19), we get that the sequence {uN}N≥1 is uniformly bounded in L2
TH1 ∩ L∞T H0, an

application of Banach-Alaoglu theorem yields a subsequence, which we will index again
as {uN}N≥1, that converges weakly in L2

TH1 and weak-* in L∞T H0.
To obtain a further subsequence that converges strongly in L2

TH0 ∩ CTH−1, thanks
to Lemma A.4, it is sufficient to show that there exist controls ω and ω̄ and L̄, κ > 0,
independent of N , such that |δuNst|−1 ≤ ω(s, t) for all (s, t) ∈ ∆T with ω̄(s, t) ≤ L̄.

Let φ ∈ H1. Decomposition of δuNst into a smooth and non-smooth part using Jη

(defined in Section 2.2) for some η ∈ (0, 1], yields

|δuNst(φ)| ≤ |δuNst(Jηφ)|+ |δuNst((I − Jη)φ)|. (3.9)

By applying (2.5) and (2.19) we estimate the second term in above as

|δuNst((I − Jη)φ)| . |uN |L∞T H0 |(I − Jη)φ|0 . η|uN0 |0|φ|1 ≤ η
√
E|φ|1. (3.10)

For the first term on the right hand side of (3.9), by letting

µNt (φ) := −
∫ t

0

[
(∇uNr ,∇φ) +BP (uNr )(φ)

]
dr, φ ∈ H1,

(2.17) gives that for all (s, t) ∈ ∆T ,

δuNst = δµNst +AN,1st us +AN,2st us + uP,\,Nst , (3.11)

where the equality holds in H−3. Consequently, we get

|δuNst(Jηφ)| ≤ |uP,\,Nst (Jηφ)|+ |δµNst(Jηφ)|+ |uNs (AN,1,∗st Jηφ)|+ |uNs (AN,2,∗st Jηφ)|. (3.12)

We estimate each term of (3.12) separately as follows:
1) By Lemma A.1 we infer that there is a positive constant L̃, depending only on p

(i.e., independent of N ), such that for all (s, t) ∈ ∆T with $(s, t) ≤ L and M1/αωZ(s, t) =

ωAN (s, t) ≤ L̃, the following inequality is true

ωP,\,N (s, t) .p |uN |
p
3

L∞T H0ωAN (s, t) + (1 + |uN |L∞T H0)
2p
3 (t− s)

p
3ωAN (s, t)

1
12

.p M
1/α|uN |

p
3

L∞T H0ωZ(s, t) +M1/α(1 + |uN |L∞T H0)
2p
3 (t− s)

p
3ωZ(s, t)

1
12 , (3.13)
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where ωP,\,N (s, t) := |uP,\,N |
p
3
p
3−var;[s,t];H−3 . Since uP,\,N is the remainder, (2.18) followed

by (2.5) and (3.13) yield

|uP,\,εst (Jηφ)| ≤ ωP,\,N (s, t)
3
p |Jηφ|3

.p η
−2M

3
pα

[
|uN |

p
3

L∞T H0ωZ(s, t) + (1 + |uN |L∞T H0)
2p
3 (t− s)

p
3ωZ(s, t)

1
12

] 3
p |φ|1

. η−2
[√
E(ωZ(s, t))

3
p + (1 + E)(t− s)(ωZ(s, t))

1
4p

]
|φ|1. (3.14)

2) Let us set ωµN (s, t) :=
∫ t
s
(1 + |uNr |1)2 dr. Since uN ∈ L2

TH1, we infer that ωµ is a
control. Using (2.3) and the the Cauchy-Schwartz inequality we deduce that

|δµst|−3 ≤ sup
|φ|3≤1

∫ t

s

[|(∇ur,∇φ)|+ |BP (ur)(φ)|] dr

≤ sup
|φ|3≤1

|φ|3
∫ t

s

|∇ur|0 dr +

∫ t

s

|ur|21 dr .
∫ t

s

(
1 + 2|ur|1 + |ur|21

)
dr = ωµ(s, t).

Then, by using (2.5) and (2.19) we obtain

|δµNst(Jηφ)| . η−2ωµN (s, t)|φ|1 = η−2

[∫ t

s

(1 + |uNr |1)2 dr

]
|φ|1 . η−2(t− s)(1 + E)|φ|1.

(3.15)

3) By applying (3.7) followed by (2.5) and (2.19) we yield, with α = 1
p ,

|uNs (AN,1,∗st Jηφ)| .M |uN |L∞T H0(ωZ(s, t))
1
p |Jηφ|1 . |uN0 |0(ωZ(s, t))

1
p |φ|1

≤
√
E(ωZ(s, t))

1
p |φ|1. (3.16)

4) Again by using (3.8) with (2.5) and (2.19) we get

|uεs(A
N,2,∗
st Jηφ)| .M |uN |L∞T H0(ωZ(s, t))

2
p |Jηφ|2 . η−1|uN0 |0(ωZ(s, t))

2
p |φ|1

≤ η−1
√
E(ωZ(s, t))

2
p |φ|1. (3.17)

So by substituting (3.10), (3.14)-(3.17) into (3.12), for each φ ∈ H1 we have

|δuNst(φ)| . η−2
[√
E(ωZ(s, t))

3
p + (1 + E)(t− s)(ωZ(s, t))

1
4p

]
|φ|1 + η−1(t− s)(1 + E)|φ|1

+
√
E(ωZ(s, t))

1
p |φ|1 + η−1

√
E(ωZ(s, t))

2
p |φ|1 + η

√
E|φ|1.

Let us set η := (ωZ(s, t))
1
p + (t− s)

1
p . Observe that we can choose M such that η ∈ [0, 1).

Indeed, since L̃ is fixed and ωZ(s, t) defines as in (3.4), we can choose M large enough

such that the inequalities (2.1)-(2.2), the relation ωZ(s, t) ≤ L̃
M1/α <

1
2 and (t− s)

1
p < 1

2

hold true for all (s, t) ∈ ∆T with ω̄(s, t) ≤ L̄.
Consequently, we infer that

|δuNst|−1 .M,E (1 + |u0|0)2(ωZ(s, t)
1
p + (t− s)1− 2

p ). (3.18)

Since for p ≥ 2, and κ > 0

ωZ(s, t)
1
p + (t− s)1− 2

p .p,κ
(
ωZ(s, t)

κ
p + (t− s)κ(1− 2

p )
) 1
κ

,

by choosing κ which satisfy

κ ≥ p and κ ≥ p

p− 2
,
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we deduce that
ω̃(s, t) := ωZ(s, t)

κ
p + (t− s)κ(1− 2

p ),

is a control.
Hence, due to Compactness Lemma A.4, there is a subsequence of {uN}N∈N, which

we continue to denote by {uN}N∈N, converging strongly to an element u in CTH−1 ∩
L2
TH0.

Now recall that δuNst := uNt − uNs and, from Definition 2.5,

δuNst +

∫ t

s

Bp(u
N
r ) dr =

∫ t

s

∆uNr dr + [AN,1st +AN,2st ]uNs + uP,\,Nst , (3.19)

where AN,1st and AN,2st are defined as in (3.6).
Our goal now is to prove that u is a weak solution to (2.11). The idea is to pass the

limit in (3.19) tested against some φ ∈ H3 as N tends to∞.
For the terms with operators AN,i, i = 1, 2, observe that

|(uNs , A
N,i,∗
st φ)− (us, A

i,∗
st φ)| ≤ |uNs − us|−1|AN,i,∗st φ|1 + |uNs − us|0|(A

N,i,∗
st −Ai,∗st )φ|0.

(3.20)

The first term in the r.h.s of (3.20) goes to 0 as N →∞ because uN → u in CTH−1. To
estimate the second term in (3.20) we proceed as follows: bound (2.1) yield

|(AN,1,∗st −A1,∗
st )φ|0 ≤ |P [σk · ∇]|L(H1,H0)|φ|1|ZN,kst − Zkst| .M |φ|1|ZNst − Zst|. (3.21)

Similarly, the estimate (2.2) gives

|(AN,2,∗st −A2,∗
st )φ|0 ≤ |P [(σk · ∇)P [σj · ∇]]|L(H2,H0)|φ|2|ZN,i,kst −Zi,kst | .M |φ|2|ZNst −Zst|.

(3.22)

So, since ZN → Z in Cα2,loc(T;RK) and ZN → Z in C2α
2,loc(T;RK×K), from (3.21)-(3.22)

we infer that, for i = 1, 2,

|(uNs , A
N,i,∗
st φ)− (us, A

i,∗
st φ)| → 0 as N →∞. (3.23)

Further, using the Hölder inequality, the strong convergence in L2
TH0 of {uN}ε>0 and

trilinear estimate (2.3), we find∣∣∣∣∫ t

s

[
BP (ur)(φ)−BP (uNr )(φ)

]
dr

∣∣∣∣
≤
∣∣∣∣∫ t

s

BP (ur − uNr , ur)(φ) dr

∣∣∣∣+

∣∣∣∣∫ t

s

BP (uNr , ur − uNr )(φ) dr

∣∣∣∣
.
∫ t

s

|ur − uNr |0|ur|0 dr|φ|3 +

∫ t

s

|ur − uNr |0|uNr |0 dr|φ|3

≤ |φ|3
(∫ t

s

|ur − uNr |20 dr
)1/2

[(∫ t

s

|ur|20 dr
)1/2

+

(∫ t

s

|uNr |20 dr
)1/2

]
→ 0,

as N → ∞. Finally, using the Hölder inequality, the strong convergence in L2
TH0 of

{uN}ε>0 we have∣∣∣∣∫ t

s

[∆uNr −∆ur](φ) dr

∣∣∣∣
≤ |∆φ|0

∫ t

s

|uNr − ur|0 dr ≤ |∆φ|0
(∫ t

s

|ur − uNr |20 dr
)1/2

|t− s|1/2 → 0,
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as N →∞.
Hence, since we have shown that all of the terms in equation (3.19) converge

when applied to φ, the remainder uP,\,Nst (φ) converges to some limit uP,\st (φ). Since

|uP,\|
p
3
p
3−var;[s,t];H−3 is equal to the infimum over all controls satisfying |uP,\st |−3 ≤ ωP,\(s, t)

3
p ,

by above convergence results and (3.13) we obtain

|uP,\st |−3 ≤ sup
|φ|3≤1

|(uP,\st − u
P,\,N
st )(φ)|+ sup

|φ|3≤1

|uP,\,Nst (φ)|,

where, as in (3.14),

|uP,\,Nst (φ)| .
[
E(ωZ(s, t))

3
p + (1 + E)(t− s)(ωZ(s, t))

1
4p

]
|φ|3.

So, by taking the limit N →∞ we get that

|uP,\st |−3 .
[
E(ωZ(s, t))

3
p + (1 + E)(t− s)(ωZ(s, t))

1
4p

]
.

Hence, uP,\ ∈ C
p
3−var
2,$,L ([0, T ]; H−3) for some control $ depending only on ωZ and L > 0

depending only on p.
Next, we prove that u ∈ CTH0

w. Recall that u ∈ L∞T H0 ∩ CTH−1. Let φ ∈ H0. Since
H1 is dense in H0, there exists a sequence {φn}n∈N ⊂ H1 such that |φn − φ|0 → 0 as
n→∞. Then

|〈ut − us, φ〉|0 ≤ 2|u|L∞T H0 |φ− φn|0 + |〈ut − us, φn〉|0.

Since u ∈ CTH−1 and φn ∈ H1, |〈ut − us, φn〉|0 → 0 as s→ t. Consequently,

lim
s→t
|〈ut − us, φ〉|0 ≤ 2|u|L∞T H0δ,

for any δ > 0. So lims→t us(φ) = ut(φ),∀φ ∈ H0.
Now note that, since EN is non-increasing, for every T > 0 and any partition 0 = t0 <

t1 < · · · < tn = T we have

n−1∑
i=0

|EN (ti+1)− EN (ti)| ≤ E .

Consequently, we get that its total variation is uniformly bounded. Hence by the Helly
selection theorem there exists a subsequence of {EN}N∈N, which we index again by N ,
and a function E : T→ R+ locally of bounded variation such that

EN (t)→ E(t) for any t ∈ T and in L1
loc(0,∞).

But since {uN}N∈N converges strongly to u in L2
TH0, we infer that E(t) = 1

2 |ut|
2
0 for a.e.

t ∈ T.
Hence, [u,E] is a solution of (2.11) in the sense of Definition 2.5 and the proof of

Theorem 3.3 is complete.

3.2 Shift invariance and continuation property

Here we prove the remaining two main ingredients for the construction of a semiflow,
the shift invariance property and the continuation property of the set of solutions.

For w ∈ X, we define the positive shift operator ST ◦ w as

ST ◦ w(t) := w(T + t), t ≥ 0.
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Lemma 3.4 (Shift invariance property). Let [u0, E0] ∈ D, Z be a geometric α-Hölder
rough path defined on T, and [u,E] ∈ U [u0, E0,Z]. Then we have

ST ◦ [u,E] ∈ U [u(T ), E , Z̃T ],

for any T > 0, and any E ≥ E(T+). Here we recall the notation Z̃T (t) := Z(t + T ) for
t ≥ 0.

Proof of Lemma 3.4. Let us fix T > 0. Based on the definition of ST , we need to show
that

(ST ◦ [u,E])(t) = {[ut+T , E(t+ T )]; t ≥ 0} =: {[ũt, Ẽ(t)]; t ≥ 0} ∈ U [u(T ), E , Z̃].

Firstly, we observe that since u ∈ U [u0, E0,Z] it holds ũ ∈ L2
loc(T; H1) ∩ L∞loc(T; H0). Next,

since E(t) is a non-increasing function of t and satisfies (2.16), we have[
Ẽ(t)ψ(t)

]t=τ2+

t=τ1−
−
∫ τ2

τ1

Ẽ(t)∂tψ(t) dt+

∫ τ2

τ1

ψ

∫
T3

|∇ũt|2 dx dt ≤ 0, 0 ≤ τ1 ≤ τ2,

for every ψ ∈ C1
c (T) with ψ ≥ 0.

Observe that, since E ≥ E(T+), [u(T ), E ] ∈ D due to (2.19). Moreover, (2.17) gives

uP,\(s+T )(t+T )(φ) = ut+T (φ)− us+T (φ) +

∫ t+T

s+T

[(∇ur,∇φ) +BP (ur)(φ)] dr

− us+T ([AP,1,∗(s+T )(t+T ) +AP,2,∗(s+T )(t+T )]φ)

= ũt(φ)− ũs(φ) +

∫ t

s

[(∇ũr̃,∇φ) +BP (ũr̃)(φ)] dr̃

− ũs([AP,1,∗(s+T )(t+T ) +AP,2,∗(s+T )(t+T )]φ). (3.24)

But, since under the notation Z̃st = Z(s+T )(t+T ) and Z̃st = Z(s+T )(t+T ), we have

AP,1(s+T )(t+T ) = P [(σk · ∇)ϕ]Z̃kst = ÃP,1st ,

and

AP,2(s+T )(t+T ) = P [(σk · ∇)P [(σl · ∇)ϕ]]Z̃l,kst = ÃP,2st .

Hence, for (s, t) ∈ ∆T ,

uP,\(s+T )(t+T )(φ) = ũt(φ)− ũs(φ) +

∫ t

s

[(∇ũr̃,∇φ) +BP (ũr̃)(φ)] dr̃

− ũs([ÃP,1,∗st + ÃP,2,∗st ]φ) =: ũP,\st (φ). (3.25)

To finish the proof of Lemma 3.4, it remains to show that for every τ > 0, ũP,\ ∈
C
p
3−var
2,$,L ([0, τ ]; H−3). But this we have since there exits a control w̃\ such that

‖ũP,\st ‖−3 ≤ c(w̃\(s, t))
3
p , ∀(s, t) ∈ ∆τ .

Indeed, since uP,\ ∈ C
p
3−var
2,$,L ([0, τ ]; H−3), there exits a control w\ such that, for every

φ ∈ H3, we have

|ũP,\st (φ)| = |uP,\(s+T )(t+T )(φ)| ≤ c‖φ‖H3(w\(s+ T, t+ T ))
3
p .

Hence, by setting w̃\(s, t) := w\(s+ T, t+ T ), we get ‖ũP,\st ‖−3 ≤ c(w̃\(s, t))
3
p ,∀(s, t) ∈ ∆τ

and finishes the proof of Lemma 3.4.
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For w1, w2 ∈ X and T > 0 we define the continuation operator ω1 ∪T ω2 by

w1 ∪T w2(τ) :=


w1(τ) for 0 ≤ τ ≤ T,

w2(τ − T ) for τ > T.

Lemma 3.5 (Continuation property). Let [u0, E0] ∈ D, Z be an α-Hölder rough path, and

[u,E] ∈ U [u0, E0,Z], [ũ, Ẽ] ∈ U [u(T ), E , Z̃] for some E ≤ E(T−).

Then
[u,E] ∪T [ũ, Ẽ] ∈ U [u0, E0,Z].

Proof of Lemma 3.5. Since the initial energy for [ũ, Ẽ] is less or equal to E(T−), we
have that the energy of the solution [u,E] ∪T [ũ, Ẽ] indeed remains non-increasing on T
and bounded by E0 from above.

Let us set v := [u,E] ∪T [ũ, Ẽ]. It remains to show that, for every τ > 0,

vP,\ ∈ C
p
3−var
2,$,L,loc(T; H−3),

where

vP,\st (φ) := vt(φ)− vs(φ) +

∫ t

s

[(∇vr,∇φ) +BP (vr)(φ)] dr

− vs([AP,1,∗st +AP,2,∗st ]φ).

For this we will prove that there exists a control ωP,A,u,\ such that

‖vP,\st ‖H−3 . (ωP,A,u,\(s, t))
3
p , ∀s < t. (3.26)

Recall that, by definition of solution, for every s < t,

uP,\st (φ) = ut(φ)− us(φ) +

∫ t

s

[(∇vr,∇φ) +BP (ur)(φ)] dr

− us([AP,1,∗st +AP,2,∗st ]φ),

and

ũP,\st (φ) = ũt(φ)− ũs(φ) +

∫ t

s

[(∇ũr,∇φ) +BP (ũr)(φ)] dr

− ũs([ÃP,1,∗st + ÃP,2,∗st ]φ),

where

AP,1st = P [(σk · ∇)]Zkst =: P1,kZ
k
st, AP,2st = P [(σk · ∇)P [(σl · ∇)]]Zl,kst =: P2,l,kZ

l,k
st

ÃP,1st = P1,kZ̃
k
st, ÃP,2st = P2,l,kZ̃

l,k
st .

Note that the only interesting case is s < T < t because if s < t ≤ T or s < t ∈ (T,∞)

then only one out of u or ũ is active. Since uT (φ) = ũ0(φ), for s < T < t and φ ∈ H3, we
have

δvst(φ) = δũ0(t−T )(φ) + δusT (φ)

= ũ0([ÃP,1,∗0(t−T ) + ÃP,2,∗0(t−T )]φ)−
∫ t−T

0

[(∇ũr,∇φ) +BP (ũr)(φ)] dr + ũP,\0(t−T )(φ)
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+ us([A
P,1,∗
sT +AP,2,∗sT ]φ)−

∫ T

s

[(∇ur,∇φ) +BP (ur)(φ)] dr + uP,\sT (φ)

= uT ([AP,1,∗Tt +AP,2,∗Tt ]φ)−
∫ t

s

[(∇vr,∇φ) +BP (vr)(φ)] dr + ũP,\0(t−T )(φ)

+ us([A
P,1,∗
sT +AP,2,∗sT ]φ) + uP,\sT (φ).

Let us first observe that, since us = vs, due to Chen’s relation Zl,kst −Z
l,k
sT−Z

l,k
T t = ZlsT⊗ZkTt,

[AP,1Tt +AP,2Tt ]uT + [AP,1sT +AP,2sT ]us

= P1,kuTZ
k
Tt + P2,l,kuTZ

l,k
T t + P1,kusZ

k
sT + P2,l,kusZ

l,k
sT

= P1,kδusTZ
k
Tt + P2,l,kδusTZ

l,k
T t + P1,kusZ

k
st + P2,l,kus(Z

l,k
st − ZlsT ⊗ ZkTt)

= [AP,1st +AP,2st ]vs +AP,1Tt δusT +AP,2Tt δusT −A
P,1
Tt A

P,1
sT us.

Consequently,

vP,\st (φ) = δvst(φ) +

∫ t

s

[(∇vr,∇φ) +BP (vr)(φ)] dr − vs([AP,1,∗st +AP,2,∗st ]φ)

= vs([A
P,1,∗
st +AP,2,∗st ]φ) + δusTA

P,1,∗
Tt φ+ δusTA

P,2,∗
Tt φ− usAP,1,∗Tt AP,1,∗sT φ

+ ũP,\0(t−T )(φ) + uP,\sT (φ)− vs([AP,1,∗st +AP,2,∗st ]φ)

= δusTA
P,2,∗
Tt φ+AP,1,∗Tt [δusT − usAP,1,∗sT ]φ+ ũP,\0(t−T )(φ) + uP,\sT (φ).

With α = 1
p , estimate (2.9) and Lemmata A.1-A.3 we obtain

‖vP,\st ‖H−3 ≤ ‖δusT ‖H−1‖AP,2,∗Tt ‖L(H−1,H−3) + ‖δusT − usAP,1,∗sT ‖H−2‖AP,1,∗Tt ‖L(H−2,H−3)

+ (ωũ,\(0, t− T ))
3
p + (ωu,\(s, T ))

3
p

≤ (ωA(s, t))
2
p (ωu(s, t))

1
p + (ω\(s, t))

2
p (ωA(s, t))

1
p + (ω̃\(s, t))

3
p + (ωu,\(s, t))

3
p

≤ (ωA,u(s, t))
3
p + (ωA,\(s, t))

3
p + (ω̃\(s, t))

3
p + (ωu,\(s, t))

3
p ,

where we have used [21, Exercise 1.9 part (iii)] to conclude that

ωA,u := (ωA(s, t))
2
3 (ωu(s, t))

1
3 and ωA,\ := (ω\(s, t))

2
3 (ωA(s, t))

1
3 ,

are controls. Hence, by setting ωP,A,u,\ := ωA,u + ωA,\ + ω̃\ + ωu,\ we finish the proof of
Lemma 3.5.

3.3 General ansatz

Let us fix a rough path Z. In summary, so far we have shown the existence of a
set–valued mapping

D× Cαg,loc(T;RK)→ 2X, [u0, E0,Z] 7→ U [u0, E0,Z], (3.27)

which enjoys the following properties:

(A1) Compactness: For any [u0, E0,Z] ∈ D × Cαg,loc(T;RK), the set U [u0, E0,Z] is a
non–empty compact subset of X. Indeed, the compactness is equivalent to the
weak sequential stability of the solution set which we get from Theorem 3.3. Non-
emptiness of U [u0, E0,Z] follows from Theorem 2.6.

(A2) Measurability: The mapping (3.27) is Borel measurable, where the range of U is
endowed with the Hausdorff metric. Indeed, since U [u0, E0,Z] is a compact subset
of the separable metric space X, the Borel measurability of U is equivalent to the
measurability with respect to the Hausdorff metric on the subspace of compact
sets in 2X. Whence, it is sufficient to apply the following Stroock and Varadhan
Lemma with Y = D and X = X.
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Lemma 3.6. [37, Lemma 12.1.8]

Let Y be a metric space and B its Borel σ-field. Let y 7→ Ky be a map of Y into
Comp(X) for some separable metric space X, with Comp(X) the set of all the
compact subsets of X. Suppose for any sequence yn 7→ y and xn ∈ Kyn , it is true
that xn has a limit point x in Ky. Then the map y 7→ Ky is a Borel map of Y into
Comp(X).

(A3) Shift invariance: For any [u,E] ∈ U [u0, E0,Z], we have

ST ◦ [u,E] ∈ U [u(T ), E(T−), Z̃T ] for any T > 0,

where Z̃T (t) := ST ◦ Z(t) for all t ≥ 0.

(A4) Continuation: If T > 0, and [u,E] ∈ U [u0, E0,Z], [ũ, Ẽ] ∈ U [u(T ), E(T−), Z̃T ], then

[u,E] ∪T [ũ, Ẽ] ∈ U [u0, E0,Z].

3.4 Selection sequence

Notice that, the idea for the construction of the selection is to make the set U [u0, E0,Z]

smaller and smaller by choosing the arguments of minima of particular functionals. More
precisely, following the arguments presented in [5, 6, 9], we consider the following family
of Krylov functionals, see [29],

Iλ,F [u,E] =

∫ ∞
0

e−λtF (u(t), E(t))dt, λ > 0,

where F : H−1 ×R→ R is a bounded and continuous functional.
Given functional Iλ,F and a set-valued mapping U , we define a selection mapping

Iλ,F ◦ U by

Iλ,F ◦ U [u0, E0,Z]

= {[u,E] ∈ U [u0, E0,Z] | Iλ,F [u,E] ≤ Iλ,F [ũ, Ẽ] for all [ũ, Ẽ] ∈ U [u0, E0,Z]}. (3.28)

In other words, the selection is choosing arguments of minima of the functional Iλ,F .
Observe that, since Iλ,F is continuous on X and the set U [u0, E0,Z] is compact in X, set
Iλ,F ◦ U [u0, E0,Z] is non-empty. Our next result says that the set Iλ,F ◦ U enjoys the
general ansatz if U does. Recall that the perturbation rough path Z is fixed.

Proposition 3.7. Let λ > 0 and F be a bounded continuous functional on H−1 ×R. Let
the multivalued mapping (3.27) have the properties (A1)–(A4). Then the map Iλ,F ◦ U
enjoys (A1)–(A4) as well.

Proof of Proposition 3.7. Since the analysis here is pathwise, we observe that com-
pared to the proof of [6, Proposition 5.1] the existence of Z in the system does not
create any extra difficulty. Consequently, the proof follows step by step the lines of [6,
Proposition 5.1]. Let us only spell out the proof of the measurability (A2), since this is of
great importance for the measurability of the random dynamical system in Section 4.

(A2) Let K ⊂ 2X be the subspace of all the compact subsets of X. Note that the map

D× Cαg,loc(T;RK)→ 2X, [u0, E0,Z] 7→ Iλ,F ◦ U [u0, E0,Z], (3.29)

takes values in K. Moreover, it is the composition of the Borel measurable
map (3.27) and the map defined using the continuous functional Iλ,F

K → K, K 7→ Iλ,F [K] := arg min
K

Iλ,F . (3.30)

Hence, (3.29) is Borel measurable since (3.30) is Borel measurable due to [37,
Lemma 12.1.7].
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Next, we consider the functional I1,β where

β(u,E) = β(E), β : R→ R smooth, bounded, and strictly increasing.

We also recall the following characterization of minimality w.r.t ≺, introduced in Defini-
tion 3.1.

Lemma 3.8. [6, Lemma 5.2] Suppose that [u,E] ∈ U [u0, E0,Z] satisfies∫ ∞
0

exp(−t)β(E(t)) dt ≤
∫ ∞

0

exp(−t)β(Ẽ(t)) dt,

for any [ũ, Ẽ] ∈ U [u0, E0,Z]. Then [u,E] is ≺ minimal, meaning, admissible.

Finally, we have all in hand to present the first main result of the present paper.

Theorem 3.9. The Navier-Stokes equation (2.11) admits a semiflow selection U in the
class of weak solutions in the sense of Definition 3.2. Moreover, we have that U{u0, E0,Z}
is admissible in the sense of Definition 3.1, for any [u0, E0,Z] ∈ D× Cαg,loc(T;RK).

Proof of Theorem 3.9. First note that by (3.28) it is clear that the new selection I1,β ◦U
from U contains only admissible solutions for any [u0, E0,Z] ∈ D× Cαg,loc(T;RK).

Next, we choose a countable basis {en}n∈N in L2, and a countable set {λk}k∈N which
is dense in (0,∞). We consider a countable family of functionals,

Ik,0[u,E] =

∫ ∞
0

e−λktβ(E(t))dt,

Ik,n[u,E] =

∫ ∞
0

e−λktβ

(∫
T3

u(t, ·) · endx
)
dt.

The functionals are well defined since u(t, ·) ∈ H−1(T3;R3) for all t. Let {(k(j), n(j))}∞j=1

be an enumeration of the countable set

(N× {0}) ∪ (N×N).

We define
U j := Ik(j),n(j) ◦ · · · ◦ Ik(1),n(1) ◦ I1,β ◦ U , j = 1, 2, . . . ,

and

U∞ :=

∞⋂
j=1

U j .

Next, we claim that the set-valued mapping

D× Cαg,loc(T;RK)→ 2X, [u0, E0,Z] 7→ U∞[u0, E0,Z], (3.31)

enjoys the properties (A1)–(A4). Indeed:

(A1) Let us take [u0, E0,Z] ∈ D×Cαg,loc(T;RK). Recall that, from Proposition 3.7, the set
I1,β ◦ U [u0, E0,Z] is compact. Since the sets U j [u0, E0,Z] are nested:

I1,β ◦ U [u0, E0,Z] ⊇ U1[u0, E0,Z] ⊇ · · · ⊇ Uj [u0, E0,Z] ⊇ . . . .

by iterating the procedure of Proposition 3.7, we get that, for each j ∈ N,
U j [u0, E0,Z] is compact.

Since X is a Hausdorff space and U∞[u0, E0,Z] is a closed subset of I1,β◦U [u0, E0,Z],
we infer that U∞[u0, E0,Z] is compact. Moreover, by Proposition 3.7 we know that,
for each j ∈ N, U j [u0, E0,Z] is non-empty. Thus, due to the Cantor intersection
theorem we have that U∞[u0, E0,Z] 6= ∅.
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(A2) Since the intersection of measurable set–valued maps is measurable, the map (3.31)
is measurable.

(A3) In order to prove the shift invariance property, let [u0, E0,Z] ∈ D × Cαg,loc(T;RK)

and [u,E] ∈ U∞[u0, E0,Z]. Thus, [u,E] ∈ U j [u0, E0,Z] for every j ∈ N. Due to
Proposition 3.7, we know that I1,β ◦ U satisfies the shift invariance property, that is,
if [u,E] ∈ I1,β ◦ U [u0, E0,Z], then

ST ◦ [u,E] ∈ I1,β ◦ U [u(T ), E(T−), Z̃], for all T > 0.

By iterating this procedure we obtain that the shift invariance property holds for
every U j . This means that for

[u,E] ∈ Uj [u0, E0,Z] = Ik(j),n(j) ◦ · · · ◦ Ik(1),n(1) ◦ I1,β ◦ U [u0, E0],

we have
ST ◦ [u,E] ∈ Uj [u(T ), E(T−), Z̃], for all j and all T > 0.

Thus
ST ◦ [u,E] ∈ U∞[u(T ), E(T−), Z̃], for all T > 0.

(A4) In order to prove the continuation property, let T > 0, [u,E] ∈ U∞[u0, E0,Z] and

[ũ, Ẽ] ∈ U∞[u(T ), E(T−), Z̃].

Then, we have

[u,E] ∈ Uj [u0, E0,Z], and [ũ, Ẽ] ∈ Uj [u(T ), E(T−), Z̃], j ∈ N.

By Proposition 3.7, we have that I1,β ◦ U satisfies the continuation property, and
iterating this procedure we obtain that this property holds for every U j . This means
that

[u,E] ∪T [ũ, Ẽ] ∈ Uj [u0, E0,Z] for all j and all T > 0.

Thus
[u,E] ∪T [ũ, Ẽ] ∈ U∞[u0, E0,Z] for all T > 0.

Next, we claim that for every [u0, E0,Z] ∈ D × Cαg,loc(T;RK) the set U∞ is a singleton,
i.e., there exists U{u0, E0,Z} ∈ X such that

U∞[u0, E0,Z] =
{
U{u0, E0,Z}

}
. (3.32)

To prove this, first observe that by (3.28), for any [u1, E1], [u2, E2] ∈ U∞[u0, E0,Z],

Ik(j),n(j)[u
1, E1] = Ik(j),n(j)[u

2, E2], j ∈ N.

Since the integrals Ik(j),n(j) can be seen as Laplace transforms

F (λk) =

∫ ∞
0

e−λktf(t)dt,

of the functions

f ∈
{
β(E), β

(∫
T3

u · endx
)}

,

the Lerch theorem [11, Theorem 2.1] implies that

β(E1(t)) = β(E2(t)),

EJP 27 (2022), paper 88.
Page 22/27

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP813
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


RDS generated by 3D NSE with transport noise

β

(∫
T3

u1(t, ·) · endx
)

= β

(∫
T3

u2(t, ·) · endx
)
,

for all n ∈ N and for a.e. t ∈ (0,∞). As β is strictly increasing, we must have

E1(t−) = E2(t−), 〈u1(t, ·),en〉L2 = 〈u2(t, ·),en〉L2 ,

for all n ∈ N and for a.e. t ∈ (0,∞). Since {en}n∈N form a basis in L2, we deduce that

u1 = u2, and E1 = E2 a.e. on (0,∞).

Due to (3.32), measurability of U follows from (A2) for U∞. While the semigroup property
follows from (A3). Indeed, for t1, t2 ≥ 0 it holds

U{u0, E0,Z}(t1 + t2) = St1 ◦ U{u0, E0,Z}(t2) = U{U{u0, E0,Z}(t1), Z̃t1}(t2),

where Z̃t1(t2) := Z(t1 + t2). This completes the proof of Theorem 3.9.

Remark 3.10. It is important to highlight that one can introduce a new selection,
associated with the considered Navier-Stokes equation (2.11), defined only in terms of
the initial velocity. However, in this case we can only achieve that, for each rough path
Z, the semigroup property holds almost everywhere in time. The proof of this argument
in our framework is similar to [5, Section 5], where the author proves this claim for the
compressible Navier-Stokes system without any perturbation.

4 Random dynamical system

Based on the semiflow selection from the previous section we investigate the existence
of a random dynamical system for Navier-Stokes equation (2.11).

Let (Ω,F) be a measurable space. A family θ = (θt)t∈T of maps from Ω to itself is
called a measurable dynamical system provided

1. (t, ω) 7→ θtω is B(T)⊗F/F -measurable, where B(T) is the Borel σ-algebra of T,

2. θ0 = IdΩ,

3. θs+t = θt ◦ θs for all s, t ∈ T.

If P is a probability measure on (Ω,F) that is invariant under θ, i.e. P ◦ θ−1
t = P for all

t ∈ T, we call the quadruple (Ω,F ,P, θ) a measurable metric dynamical system.
The following is taken from L. Arnold’s book, see [1, Definition 1.1.1].

Definition 4.1. A measurable random dynamical system (MRDS) on a measurable
space (X,X ), over a metric dynamical system (Ω,F ,P, (θt)t∈T) with time T is a mapping

Φ : T× Ω×X → X, (t, ω, x) 7→ Φ(t, ω, x),

i) Measurability: Φ is (B(T)⊗F ⊗ X )/X measurable.

ii) Cocycle property: The mappings Φ(t, ω) ..= Φ(t, ω, ·) : X → X form a cocycle over θ,
i.e. they satisfy

Φ(0, ω) = idX ∀ω ∈ Ω, (4.1a)

Φ(t+ s, ω) = Φ(t, θsω) ◦ Φ(s, ω) ∀s, t ∈ T, ω ∈ Ω. (4.1b)

Remark 4.2. If the mapping Φ in Definition 4.1 does not depend on ω, then the dynamics
on X is independent of the underlying dynamical system on Ω, and Φ(t) satisfies the
semigroup property.
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Let us fix a measurable metric dynamical system (Ω,F ,P, (θt)t∈T). As defined in [3,
Section 2], for α ∈

(
1
3 ,

1
2

]
, we say that a measurable map

Z = (Z,Z) : Ω→ Cα2,loc(T;RK)× C2α
2,loc(T;RK×K),

is a geometric α-Hölder rough path cocycle provided Z(ω) is a geometric α-Hölder rough
path and the following cocycle property is satisfied

Zs,s+t(ω) = Z0,t(θsω), Zs,s+t(ω) = Z0,t(θsω),

holds true for every s, t ∈ T and ω ∈ Ω.
For the sake of completeness we include the following simple observation regarding

the shift-property of an α-Hölder rough path.

Lemma 4.3. Let Z = (Z,Z) be a geometric α-Hölder rough path cocycle for some
α ∈

(
1
3 ,

1
2

]
. For every 0 ≤ s ≤ t, h > 0 and ω ∈ Ω, we have Zs+h,t+h(ω) = Zs,t(θhω) and

Zs+h,t+h(ω) = Zs,t(θhω).

Finally, we have all in hand to formulate and prove the second main result of the
present paper.

Theorem 4.4. Assume that, for given measurable metric dynamical system (Ω,F ,P, θ),
the driving rough path Z = (Z,Z) is a geometric α-Hölder rough path cocycle for some
α ∈

(
1
3 ,

1
2

]
. Then the Navier-Stokes system (2.11) generates a measurable random

dynamical system on D.

Proof of Theorem 4.4. Given the random rough path Z and the semiflow U constructed
in Section 3 we define

ϕ : Ω×D→ ClocH
0
w × L1

loc(T), (ω, [u0, E0]) 7→ U{u0, E0,Z(ω)}.

By the definition of a rough path cocycle, this map factorizes as

(ω, [u0, E0]) 7→ (u0, E0,Z(ω)) 7→ U{u0, E0,Z(ω)},

hence it is well-defined and measurable due to Theorem 3.9. This is the point where
the Wong-Zakai stability in the rough path setting becomes essential. Notice that, since
ϕ(ω, [u0, E0]) ∈ U∞[u0, E0,Z(ω)], we can evaluate it pointwise with respect to t ∈ T.

We claim that

Φ : T× Ω×D→ D, (t, ω, [u0, E0]) 7→ ϕ(ω, [u0, E0])(t), (4.2)

is a measurable random dynamical system. To prove the claim, first observe that the
map Φ is well-defined. Next, it is clear that the measurability of Φ can be deduced if we
show that for given ω ∈ Ω and [u0, E0] ∈ D,

T→ D, t 7→ ϕ(ω, [u0, E0])(t) is measurable.

But this is indeed the case, because if [u,E] = ϕ(ω, [u0, E0]) then T → H0, t 7→ ut, is
weakly continuous and the measurability of T→ R+, t 7→ E(t−), is a consequence of the
Lebesgue differentiation theorem, since

E(t−) = lim
h→0

1

h

∫ t+h

h

E(s) ds.

It remains to verify the cocycle property of Φ. In view of the definition of Φ, the
semiflow property of U as well as Lemma 4.3, we infer for all t, s ∈ T, ω ∈ Ω

Φ(t+ s, ω)([u0, E0]) = ϕt+s(ω)([u0, E0]) = U{u0, E0,Z(ω)}(t+ s)

= U{U{u0, E0,Z(ω)}(s), Z̃s(ω)}(t)
= U{U{u0, E0,Z(ω)}(s),Z(θsω)}(t)
= ϕt(θsω) ◦ ϕs(ω)([u0, E0]) = Φ(t, θsω) ◦ Φ(s, ω)([u0, E0]),
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which completes the proof.

A A priori estimate and compactness

Here we state, without proof, all the required a priori estimates from [26, Section 3].
Let us fix any T > 0 and assume that u is the first component of a weak solution to (2.11)
according to Definition 2.5.

Lemma A.1. [26, Lemma 3.1] For (s, t) ∈ ∆T such that $(s, t) ≤ L, let ωP,\(s, t) :=

|uP,\|
p
3
p
3−var;[s,t];H−3 . Then there is a constant L̃ > 0, depending only on p and d, such that

for all (s, t) ∈ ∆T with $(s, t) ≤ L and ωA(s, t) ≤ L̃,

ωP,\(s, t) .p |u|
p
3

L∞T H0ωA(s, t) + ωµ(s, t)
p
3 (ωA(s, t)

1
3 + ωA(s, t)

2
3 ), (A.1)

and
ωP,\(s, t) .p |u|

p
3

L∞T H0ωA(s, t) + (1 + |u|L∞T H0)
2p
3 (t− s)

p
3ωA(s, t)

1
12 . (A.2)

Lemma A.2. [26, Lemma 3.3] Solution u belongs to Cp−var([0, T ];H−1) and there is a
constant L̃ > 0, depending only on p and d, such that for all (s, t) ∈ ∆T with $(s, t) ≤ L,
ωA(s, t) ≤ L̃, and ωP,\(s, t) ≤ L̃, it holds that

ωu(s, t) .p (1 + |u|L∞T H0)p(ωP,\(s, t) + ωµ(s, t)p + ωA(s, t)),

where ωu(s, t) := |u|p
p−var;[s,t];H−1 .

Lemma A.3. [26, Lemma 3.4] The remainder u] is in C
p
2−var
2 ([0, T ];H−2) and there is a

constant L̃ > 0, depending only on p and d, such that for all (s, t) ∈ ∆T with $(s, t) ≤ L,
ωA(s, t) ≤ L̃, and ωP,\(s, t) ≤ L̃, it holds that

ω](s, t) .p (1 + |u|L∞T H0)
p
2 (ωP,\(s, t) + ωµ(s, t)

p
2 + ωA(s, t)),

where ω](s, t) := |u]|
p
2
p
2−var;[s,t];H−2 .

The following compact embedding result is useful in the proof of Sequential Stability
Theorem 3.3.

Lemma A.4. [26, Lemma A.2] Let ω and $ be a controls on [0, T ] and L, κ > 0. Let

X = L2
TH

1 ∩
{
g ∈ CTH−1 : |δgst|−1 ≤ ω(s, t)κ, ∀(s, t) ∈ ∆T with $(s, t) ≤ L

}
be endowed with the norm

|g|X = |g|L2
TH

1 + sup
t∈[0,T ]

|gt|−1 + sup

{
|δgst|−1

ω(s, t)κ
: (s, t) ∈ ∆T s.t. $(s, t) ≤ L

}
.

Then X is compactly embedded into CTH
−1 and L2

TH
0.
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