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Abstract — This paper proposes a human-interpretable learning approach for aspect-based
sentiment analysis (ABSA), employing the recently introduced Tsetlin Machines (TMs).
We attain interpretability by converting the intricate position-dependent textual semantics
into binary form, mapping all the features into bag-of-words (BOWs). The binary-form
BOWs are encoded so that the information on the aspect and context words are retained for
sentiment classification. We further adopt the BOWs as input to the TM, enabling learning
of aspect-based sentiment patterns in propositional logic. To evaluate interpretability and
accuracy, we conducted experiments on two widely used ABSA datasets from SemEval
2014: Restaurant 14 and Laptop 14. The experiments show how each relevant feature
takes part in conjunctive clauses that contain the context information for the corresponding
aspect word, demonstrating human-level interpretability. At the same time, the obtained
accuracy is on par with existing neural network models, reaching 78.02% on Restaurant
14 and 73.51% on Laptop 14.
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B.1 Introduction

Sentiment analysis, which identifies people’s opinion on specific topics, is a classic problem in
natural language processing (NLP). Under the umbrella of sentiment analysis, aspect-based senti-
ment analysis (ABSA), which is a fine-grained evaluation framework for sentiment classification
[1], has become a hot research topic [2]. Among various tasks in ABSA, this paper focuses on
the sentiment polarity (positive, neutral, negative) of a target word in given comments or reviews.
For example, let us consider a review: “Certainly not the best sushi in New York, however, it is
always fresh and the place is very clean, sterile”. The target word “sushi” is closely associated
with its context words “not best”, assorting it as a negative polarity. The target word, “place”, is
associated with its context words “clean” and “sterile”, classifying it as a positive sentiment.
Such a complex form of sentiment classification is highly dependent on where the word appears
in the sentence. To address this challenge, several recent approaches to ABSA have been based
on attention mechanisms [3]. Although the accuracy of attention-based ABSA approaches are
progressively improved, the interpretability of these models is still questionable, making them
less trust-worthy. Not surprisingly, little research has been done on ABSA learning techniques
that are interpretable at a human level [4].

Recently, interpretable AI has taken a big leap in industrial application [5]. Indeed, the
scientific community has performed extensive research on ways to interpret neural networks. In a
modern neural network, one can use the fact that the variants of attention [6] assign soft weights
to the input representations, and then extract highly weighted tokens as rationales. However,
these attention weights do not provide faithful explanations for classification [7, 8, 9, 10]. On
the other hand, certain classic models, like Decision Trees, are particularly easy to understand,
yet still compromise on accuracy compared with neural networks. Hence, an effective trade-off
between accuracy and interpretability has still not been achieved.

In this article, we propose a Tsetlin Machine (TM) [11] based ABSA that employs a binary
representation of the input features. The resulting architecture is interpretable and achieves
competitive accuracy compared with state-of-the-art techniques. The ABSA task has two
important inputs: a context word and an aspect word. Such aspect-based classification usually
relies heavily on the position of the aspect word in the context. Such position information can be
easily embedded in the neural network models. However, in TM, as all patterns and outputs are
expressed in bits, learning and classification depend on bit manipulation, making it a challenging
task to embed all the information into binary form. We therefore also aim to propose an extensive
pre-processing approach for the ABSA inputs so that the binary form retains as much useful
information as possible for the classification.

Our main contributions can be summarized as follows:

• We propose a novel pre-processing scheme to convert the ABSA inputs into binary form
with limited information loss.

• We design an interpretable learning architecture using TM. The architecture offers human-
level interpretable results with comparable classification accuracy.

• We employ additional knowledge from SentiWordnet [12] to enhance the accuracy of the
architecture. It provides additional knowledge to the model and has significant impact on
accuracy as explained later.
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The remainder of the paper is organized as follows: We summarize related work in Section 2.
The proposed pre-processing and TM architecture along with its learning process are described
in Section 3. In Section 4, we report the experiment results and the comparisons with state-of-
the-art. The interpretability of trained models is demonstrated in Section 5 before we conclude
this work in Section 6.

B.2 Related Work

Sentiment analysis operates at three levels: document level, sentence level and aspect level. This
work focuses on aspect level. Most of traditional supervised approaches depend heavily on
handcrafted features to identify the sentiment of a word based on its context [13, 14]. However,
these models fail to capture the semantic relatedness between the aspect word and its context.
This problem gives rise to the attention-based models that are able to capture such a relationship
[15, 6, 16, 17]. Furthermore, it is shown in [18] how an attention layer captures the weightage
of the context words for predicting the sentiment of an aspect word. However, existing models
cannot leverage the syntactic structure of the sentence, thereby making it difficult to distinguish
various sentiments for multiple aspects of the sentence. To address this challenge, the RepWalk
neural network model was recentely proposed [19]. It performs a replicated random walk on a
syntax graph, effectively focusing on the descriptive contextual words.

Despite the fact that neural network-based models with attention, including BERT and
contextualized embedding [6, 20, 21], capture the semantic relatedness among words in the
context, they still lack interpretability. This arguably makes them black box models [22]. Many
applications of attention mechanisms show, however, that a model can interpreted based on
the weight assigned by the attention vector to each input, but they do not provide a faithful
explanation of classification [7, 8]. Many researchers have attempted to replicate human learning
behavior in neural networks [23], but have failed to answer the question of making the learning
interpretable. In order to overcome the issue of interpretability in NLP, we explore the recently
introduced Tsetlin Machine (TM), which recognizes patterns in the form of propositional logic
[11, 24]. TMs have demonstrated promising results in various classification tasks involving
numerical data, image data, text data, and board games [25, 26].

In this paper, we aim to reduce the gap between interpretability and accuracy with a significant
margin on the ABSA task. To the best of our knowledge, this is the first study using TM to
explore how each word in the context includes or excludes themselves to form conjunctive clauses
for sentiment classification. Once the model is trained, clauses in the TM hold the information
about which individual features in the context take part in the sentiment classification of the
aspect word.

B.3 Methodology

B.3.1 Input Binarization

For both datasets, the ABSA tasks have a context word and an aspect word whose polarity is to
be classified. Usually, the sentiment of the aspect word is reflected by its surrounding words in a
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The price is reasonable although the service is poor. price

The price is reasonable although the service is poor. service

Sentence Aspect word

Figure B.1: Representation of an aspect word and its surrounding words.

sentence, as shown in Figure B.1. In this example, the aspect word “price” has positive sentiment
due to the word “reasonable” in the context. Similarly, for “service”, the context word “poor”
describes its negative sentiment. This reveals that the sentiment of aspect words heavily relies on
its position in a sentence and thus position embedding [27] is necessary. Such embedding creates
a probability distribution of the sentence based on the aspect word. Recently, position-aware
modelling has shown promising results on ABSA tasks [28].

Since TM requires binary inputs, to utilize TM for interpretability, the inputs must be
binarized. It is challenging to incorporate the required position-based word relations in binary
form, to allow for ABSA. In particular, since a TM does not employ any world knowledge like
Word2vec [29], Elmo [21] or BERT [20], so as to retain the interpretability of the model, we
reduce the size of vocabulary by replacing the sentiment carrying words with a common token.
Understandably, without pre-trained embeddings, a model cannot find the similarity between two
semantically related words such as “excellent” and “good”. Hence, we adopt Opinion Lexicon
[30], which is a list of English positive and negative sentiment words. In more details, we replace
every possible word in the dataset by the common token “positive” or “negative”, as shown in
Figure B.2. Such external knowledge also helps to reduce the vocabulary size thereby decreasing
the sparsity of BOW representations.

The	price	is	reasonable	although	the	service	is	poor.

The	price	is	positive	although	the	service	is	negative.

Figure B.2: Replacement of sentiment-carrying words with a common sentiment token using
Opinion Lexicon.

Once the vocabulary size is determined, the context word and the aspect word can be
converted into binary form, named as BOWcontext and BOWaspect respectively. Since BOW in
binary form does not consider the frequency of the replaced common tag (i.e., “positive” and
“negative”), it becomes a rough representation of those tokens. In order to determine the location
of these sentiment-carrying tokens, the sentence is split into two parts, divided by the aspect
word. More specifically, we create additional binary vectors LOC1

vec and LOC2
vec, representing
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The	food	is	very	positive	and	the	place	is positive as	well.

The	food	is	very	positive	and	the is	positive	as	well.

Figure B.3: 3-bit input feature representing the location of common sentiment-carrying tokens:
negative, no sentiment, and positive.

Input	vector	=

n n 3 3 3 3dimension

Figure B.4: Construction of binary input by concatenating all the pre-processed features.

the location of the common tokens. The dimension of LOC1
vec and LOC2

vec is three (the 1st

bit: negative, the 2nd bit: no sentiment, the 3rd bit: positive) as shown in Figure B.3. LOC1
vec

represents the presence of the common tokens “positive” or “negative” in the first part. If there
are no sentiment tags, this is represented by “no sentiment”. Similarly, LOC2

vec represents the
presence of the common tokens in the second part.

After the pre-processing of inputs, we use SentiWordNet to obtain the sentiment score (SC) of
the 1st part and the 2nd part of the split sentence. This involvement of such additional knowledge
enrich the input information. We adopt the sentiment score in a 3-D binary form for each part of
the sentence. The SC vector SC1

vec for the 1st part of the context is given by Eq. (B.1). Similarly,
vector SC2

vec is utilized for the second part of the context.

SC1
vec =


[0, 0, 1](positive), if SC > 0,

[1, 0, 0](negative), if SC < 0,

[0, 1, 0](no sentiment), if SC = 0.

(B.1)

After processing all these binary representations, we concatenate them all to make a final input
vector of size (2n+ 12) as shown in Figure B.4.

B.3.2 The Tsetlin Machine Based ABSA

TM is a recent classification method that manipulates expressions in propositional logic based
on a team of Tsetlin Automata (TA) [11]. TA is a fixed structure deterministic automaton that
learns the optimal action from a set of actions suggested by the environment. In TM, each input
bit corresponds to two TAs, i.e., TA and TA’. TA controls the original bit of the input sample
whereas TA’ controls its negation. Here we use TA to represent a general Tsetlin automata that
can be a TA or a TA’. Each TA corresponds to one literal. A literal here indicates an input bit or
its negation. For example, if the bit represents the word “food”, TA controls “food” itself and
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Action 1 Action 2

Penatly Reward

Figure B.5: The two-action TA and its transition in TM.

The food is very positive and the place is positive as well.

0, 1, 0, 0, 1, 0, ....,  0, 0, 1, 0, 0, 0, 1, ...., 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1

Figure B.6: TA team forms a Clause Cj
i by either including or excluding the input features.

then TA’ handles “not food”. Any TA employed by a TM has two actions with 2N states in total,
as shown in Figure B.5. When it operates in states from 1 to N , action “exclude” is selected
while action “include” is adopted for states from N + 1 to 2N . For each iteration, a TA performs
“include” or “exclude” based on the current state. This in turn triggers a reward or penalty. If a
reward is received, the TA moves to the deeper side of the action whereas if it obtains a penalty,
it moves towards the center and eventually jumps to the other side of the action. Clearly, a TA,
through its actions, decides whether to include or exclude its corresponding literal.

TM has a novel game theoretic strategy that regulates a decentralized team of TAs. This
strategy guides the TAs to learn an arbitrarily complex propositional formula by including or
excluding certain literals. More specifically, the included literals, by the operation of conjunc-
tion, formulate clauses. Each clause, after training, is expected to capture a sub-pattern. The
overall pattern is decided by summing up the output of all clauses for any unknown input. The
architecture for ABSA using TM is shown in Figs. B.6 and B.7.

Let us consider the input feature as a vector with a vocabulary size of n words, which is
represented in BOW as Xs = [x1, x2, x3, ···, xn, ···, x2n, x2n+1, x2n+2, ···, x2n+12] with xk∈{0,1}
and k ∈ {1, . . . , 2n + 12}. Here, [x2n+1, x2n+2, x2n+3] and [x2n+4, x2n+5, x2n+6] represent
LOC1

vec and LOC2
vec respectively. Similarly, [x2n+7, x2n+8, x2n+9] and [x2n+10, x2n+11, x2n+12]

represent SC1
vec and SC2

vec respectively. Let q be the number of classes (q = 3 in ABSA task:
positive, neutral and negative). If a pattern has m sub-patterns, the pattern can be captured using
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Argmax
Operator

y

Figure B.7: (a). The sum of the votes for the clauses offers a score for a particular class. (b).
Argmax operator decides the output class based on the score of the clauses in each class.

q ×m conjunctive clauses Cj
i , 1 ≤ j ≤ q, 1 ≤ i ≤ m:

Cj
i =

∧
k∈Iji

xk

 ∧

∧
k∈Īji

¬xk

 , (B.2)

where Iji and Īji are non-overlapping subsets of the input variable indices, I ij, Ī ij ⊆ {1, · · · , 2n+

12}, I ij ∩ Ī ij = ∅. The subsets decide which of the input variables take part in the clause, and
whether they are negated or not. The indices of input variables in I ij represent the literals that are
included as is, while the indices of input variables in Ī ij correspond to the negated ones. Among
m clauses in each class, clauses with odd indexes are assigned to positive polarity (+) whereas
those with even indices are assigned to negative polarity (-). The clauses with positive polarity
vote for the target class and those with the negative vote against it.

f j(Xs) = Σm−1
i=1,3,...C

j
i (Xs)− Σm

i=2,4,...C
j
i (Xs). (B.3)

For q number of classes, the final output y is given by the argmax operator to classify the
input based on the highest sum of votes, as shown in Eq. (B.4).

y = argmaxj
(
f j(Xs)

)
. (B.4)

B.3.3 The Learning Process of TM Based ABSA

In this section, we will detail the learning process of TM for the ABSA task. We explain the
learning process with a walk-through of a specific sample context: “The food is very good and
the place is clean as well”, using the aspect word “place” whose sentiment is to be predicted.
The context is first changed to “The food is very positive and the place is positive as well.”
For ease of explanation, we use the text word as a feature instead of the index in its binary
form. For additional features, we will use the index of the binary input so as to differentiate
the features that take part in classification. The indexes for additional features are LOC1

vec =
[2n + 1, 2n + 2, 2n + 3], LOC2

vec = [2n + 4, 2n + 5, 2n + 6]. Since the sentiment scores for
both the first part of the context (“The food is very good and the”) and that for the second part
(“is clean as well”) are greater than zero, we have SC1

vec =[2n+ 7, 2n+ 8, 2n+ 9]= [0,0,1], and
SC2

vec = [2n+ 10, 2n+ 11, 2n+ 12]= [0,0,1], according to Eq. (B.1).
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Exclude Include IncludeExclude

1 2 101 102 200

foodc

positivec
2n+12veryc

wellc

placea
placec

2n+3wellc

thec

placea
2n+12

100 1 2 101 102 200100

Figure B.8: TAs with 100 states per action that learn whether to exclude or include a specific
word (or its negation), location of common token (or its negation) and the sentiment score
information (or its negation) in a clause at time step 1.

Exclude Include IncludeExclude

foodc

positivec

2n+12
veryc
wellc

placea

placec

2n+3wellc

thec

placea

2n+12

positivec
1 2 101 102 200100 1 2 101 102 200100

Figure B.9: TAs with 100 states per action that learn whether to exclude or include a specific
word (or its negation), location of common token (or its negation) and the sentiment score
information (or its negation) in a clause at time step t.

Figures B.8, B.9, and B.10 show the learning process of the ABSA task with the TM model.
The subscripts c and a in the figures represent the word from context and aspect respectively. The
TA or TA’ that received reward will move away from the center while those that received penalty
will move towards the center. In this way, the TA (or TA’) can be trained to either “include” or
“exclude” a word (or its negation), helping the clauses, which are composed by the literals, learn
different subpatterns. Consequently, the TM, composed by clauses, will gradually converge
to the intended pattern. The feedback (reward or penalty) given to the TM follows two types:
Type I and Type II feedback. Based on these feedback types, rewards or penalties are fed to the
TA for the training samples. Type I Feedback is activated when a given input feature is either
correctly assigned to the target sentiment (true positive) or mistakenly ignored (false negative).
This feedback provides two countering effects: (1) involving more literals from the sample to
refine the clauses; (2) trimming of the clauses by a factor specificity s that makes all clauses
eventually evaluate to 1. The s-parameter is also responsible for avoiding overfitting. Type II
Feedback is activated when an input feature is wrongly assigned to the target sentiment (false
positive). It is responsible for introducing literals that make the clause evaluate to false, every
time a false positive occurs. Type I Feedback and Type II Feedback are summarized in Tables
B.1 and B.2 respectively.

Let us consider an example: a clause C1
1 = [foodc∧¬positivec∧placec∧(2n+3)∧¬(2n+12)]

that is formed at time step t = 1, as shown in Figure B.8. Here, the time step indicates the
instant the clause is updated during training iterations. The clause is composed by a combination
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Clause formed and its learning in each stepInput
features

Clause
Output

Feedback I

Feedback I

Feedback I

Feedback I

Feedback
type

Pred Class
for true

class = 1
time

Figure B.10: The illustration of the clause update until reaching to an intended pattern at time
step t.

Input
Clause 1 0
Literal 1 0 1 0

Include Literal
P(Reward) s−1

s
NA 0 0

P(Inaction) 1
s

NA s−1
s

s−1
s

P(Penalty) 0 NA 1
s

1
s

Exclude Literal
P(Reward) 0 1

s
1
s

1
s

P(Inaction) 1
s

s−1
s

s−1
s

s−1
s

P(Penalty) s−1
s

0 0 0

Table B.1: The Type I Feedback.

of literals that are “included” by its associated TAs. At the current step, the excluded literals
in this case (i.e, 2n+ 12, placea, thec, wellc) are controlled by TA, and the negated literals (i.e,
placea, veryc, wellc) are governed by TA’. Clearly, this clause evaluates to 0, thereby contributing
to predict class 0 despite the true class being 1, as shown in Figure B.10. This indeed triggers
the Type I feedback. With Type I feedback, the reward or penalty for each literals is decided by
Table B.1. Since the literal ¬positivec is included, its feature is 0 (¬1) and the clause output is
0. Therefore, it receives penalty for being included with the probability of 1

s
, making it slowly

move towards the center and eventually jumping to the side with action “exclude”. Similarly,
the literal ¬(2n + 12) also receives the penalty with probability 1

s
, making it slowly moving

towards the center, as well, eventually jumping to exclude action. Once this happens, the clause
C1

1 becomes [foodc ∧ placec ∧ (2n + 3)] as shown in time step t = 2 that outputs 1, making
a prediction of class 0 as depicted in Figure B.10. Table B.1 shows if the clause output is 1,
the literals are of value 1, and the actions of the literals are “excluded”, such literals obtain
inaction or penalty with probability 1

s
or s−1

s
respectively, making them slowly move towards
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Input
Clause 1 0
Literal 1 0 1 0

Include Literal
P(Reward) 0 NA 0 0

P(Inaction) 1.0 NA 1.0 1.0

P(Penalty) 0 NA 0 0

Exclude Literal
P(Reward) 0 0 0 0

P(Inaction) 1.0 0 1.0 1.0

P(Penalty) 0 1.0 0 0

Table B.2: The Type II Feedback.

the center and eventually jump to “include” action. Once it happens, the clause becomes C1
1

= [foodc ∧ positivec ∧ placec ∧ (2n+ 3) ∧ (2n+ 12)] as shown in time step t = 3. Based on
reward and penalty, TM reaches to the intended pattern at time step t by the arrangement of
literals controlled by their respective TAs, as shown in Figure B.9. The final clause is given
by C1

1 = [foodc ∧ positivec ∧ placec ∧ (2n + 3) ∧ placea ∧ (2n + 12)]. The clause will still
obtain Type I feedback when more training samples are given and they reinforce the true positive
occurrences until the sum of the votes by these clauses reaches a threshold parameter T .

The overall training and testing processes of TM-based ABSA are summarized in Algorithm
1 and Algorithm 2 respectively. For conciseness, we present, in Algorithm 1, the training
procedure for the clauses with positive polarity, i.e., the clauses with odd index number. Clearly,
the feedback types for the negative ones are just opposite. The complete training approach of a
TM can be found in [11].

Once the class is predicted, we can explore its clauses for interpretability. The clauses that
are triggered (i.e., Cj

i (Xs,te) = 1) are explored and their literals are converted into the original
words for interpretation with the help of the additional information like LOC1

vec, LOC2
vec, SC

1
vec,

or SC2
vec.

B.4 Experiment Results

B.4.1 Datasets

The datasets are obtained from SemEval-2014 Task 4. The task has two domain-specific datasets,
namely, Restaurant 14 (res14) and Laptop 14 (lap14). These datasets are provided with training
and testing data. The statistics of the two datasets is shown in Table B.3. The code and the
datasets are available online1.

1https://github.com/rohanky/tm_absa
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Algorithm 1 Training Process of TM based ABSA
Require: Given Input = [Context sentence, Aspect Word, Sentiment Score]

1: Pre-processed Input = Concat(BOWcontext, BOWaspect, LOC1
vec, LOC2

vec, SC
1
vec, SC

2
vec)

2: Final Input: Xs,tr = [x1, · · · , xn, · · · , x2n, · · · , x2n+12] and y ▷ y is the label of the input
sample

3: Output: trained TM.
4: for Each training sample do
5: ŷ = TM(Xs,tr, T , s) ▷ Current sentiment estimate for the input sample
6: if y = 1 then:
7: for each clause Cj

i with odd index do
8: Use Type I Feedback(Xs,tr, ŷ, T , Cj

i , s) to update all Tsetlin automata in Cj
i .

9: end for
10: else ▷ if y = 0

11: for each clause Cj
i with odd index do

12: Use Type II Feedback(Xs,tr, ŷ, T , Cj
i , s) to update all Tsetlin automata Cj

i .
13: end for
14: end if
15: end for
16: return Trained TM.

Algorithm 2 Testing Process of TM based ABSA
Require: Given Input = Xs,te

1: Output: predicted class
2: f j(Xs,te)= 0, for all j
3: for all j do ▷ For all classes
4: for all i in class j do ▷ For all clauses in this class
5: f j(Xs,te) = f j(Xs,te)+(−1)i+1Cj

i (Xs,te)

6: end for
7: end for
8: return argmaxjf

j(Xs,te)

B.4.2 Baselines

In our experiment, we evaluate the proposed method and compare it with related approaches for
ABSA as baselines.

• ContextAvg averages the word embedding to form a context embedding [16].

• LSTM uses the last hidden vector of the LSTM for classification [31].

• TD-LSTM utilizes two LSTMs to learn the language model from the left and the right
contexts of the aspect [16].

• ATAE-BiLSTM is an attention-based LSTM with Aspect Embedding model [32].
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Dataset Positive Negative Neutral Total
res14 (train) 2164 807 637 3608
res14 (test) 728 196 196 1120
lap14 (train) 994 870 464 2238
lap14 (test) 341 128 169 638

Table B.3: The statistics of SemEval-2014 dataset.

• MemNet integrates the content and the position of the aspect word into a deep neural
network [16].

• RAM is a multi-layer architecture where each layer consists of attention-based aggregation
of word features and a GRU cell [33].

• IAN is an Interactive Attention Network model that calculates the attention weights of the
word in its sentiment and aspect interactively [3].

• PRET+MULT uses two approaches of transfer knowledge from document level using
pretraining and multitask training [34].

• HCSN proposes a Human-like Semantic Cognition network for the ABSA task, motivated
by the human beings’ reading cognitive process [23]. We show that performance of our
proposed scheme is quite similar to this technique with high interpretability.

• TNet employs a CNN layer instead of attention layer to extract features from the trans-
formed word representations originated from a bi-directional RNN layer [35].

• AGDT is an Aspect-Guided Deep Transition model that uses the given aspect to direct the
sentence encoding from scratch with specially designed deep transition architecture. This
model generates the aspect-based sentence representation and hence predicts sentiment
more accurately [36].

B.4.3 Results

In our experiment, the main selling-point of the architecture is transparent learning and inter-
pretability rather than accuracy. Better accuracy may be achieved when grid search is adopted.
As we have used the integer weighted TM [37], the parameters available are the number of
clauses, the threshold T , and the specificity s, which are configured as 700, 90 × 100, and 15

respectively for both datasets. For pre-processing of text, we substitute the short form to its full
form, such as “isn’t” to “is not”. Additionally, we stem the words to reduce the vocabulary size
created due to spelling mistakes and variants of words2. The remaining pre-processing procedure
has already been explained before. We train the TM model on both the datasets for 100 epochs
each.

Since the output sentiment label has imbalanced training samples, we use two evaluation
metrics: Accuracy and Macro-F1 [38]. Following most of the related studied within the ABSA

2In this work, we adopt the Porter Stemmer.
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Methods
Restaurant 14 Laptop 14

Accuracy Macro-F1 Accuracy Macro-F1
ContextAvg 71.5 58.0 61.5 53.9
LSTM 74.3 63.0 66.5 60.1
TD-LSTM 75.6 64.5 68.1 63.9
ATAE-BiLSTM 77.6 65.3 68.7 64.2
MemNet 76.9 66.4 68.9 62.8
RAM 78.5 68.5 72.1 68.4
IAN 78.6 NA 72.1 NA
PRET+MULT 79.1 69.7 71.2 67.5
HCSN 77.8 70.2 76.1 72.5
TNet 80.79 70.84 76.01 71.47
AGDT 78.85 NA 71.50 NA

TM based ABSA
78.02 67.85 73.51 70.82
(76.40 ± 1.0) (64.01 ± 0.8) (71.47 ± 0.9) (67.48 ± 1.5)

Table B.4: Experiment results of various approaches for SemEval-2014 dataset. The upper
results show the best reproducible accuracy and lower ones represent the mean and standard
deviation of the last 50 epochs when running the model for five times.

task, we report the best reproducible results by running the ABSA TM for 100 epochs, as shown
in Table B.4. We have reported the highest reproducible accuracy along with its mean and
standard deviation obtained during 5 experiments. As we can see, Context2vec and LSTM
perform quite poorly as they do not consider the aspect information when deciding the sentiment
polarity. However, due to the consideration of left and right context information, TD-LSTM
performs slightly better than LSTM. The variants of attention perform consistently better than
LSTM and TD-LSTM. This is due to the fact that attention captures important information with
regard to the aspect word. Other methods like RAM and MemNet perform slightly better because
of the integrated memory in sentiment modeling. Another kind of the neural network-based
model is HCSN. HCSN utilizes a human-being-like cognitive network for ABSA, which is
motivated by the principles of human beings’ reading cognitive processes. Its pre-reading, active
reading, and post-reading technique mimics the human behavior, which is then fed to the GRU
network. As interesting as it seems, the involvement of the neural network still brings this
below human-level interpretation on what drives the model to make the decision. Our model,
which offers a transparent view of the learning process, obtains quite similar or higher accuracy
compared to HCSN and PRET+MULT techniques. However, the TNet architecture with a CNN
layer, which extracts salient features from transformed word representation, achieves higher
accuracy compared to TM. AGDT is a model that uses Aspect guided GRU along with Max
pooling to obtain Aspect Concatenated Embedding. It obtains quite similar accuracy compared
to TM on Restaurant 14, whereas accuracy is lower on Laptop 14. Note that we do not use
any pre-trained word2vec or glove embedding for TM and our model still performs better than
LSTM, TD-LSTM as well as attention based BilSTM for both datasets. The Macro-F1 score
shows that TM does not only greedily learn a particular class but also creates a set of features for
each and every class. Even though the performance of our proposed model does not outperform
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the state-of-the-arts models, it reaches to comparable accuracy and Macro-F1 with transparent
learning and interpretable prediction.

In addition to the above comparisons, we demonstrate here the necessity of including
both LOCs and SCs vectors. First we only used the LOCs in the model and observed that
the accuracy of the model reaches 76.51%. Secondly, we replaced LOCs with SCs and the
performance of the model decreased to 75%. This shows that both vectors add useful information
when employed together thereby reaching the stated accuracy of 78.02%.

To compare the performance of TM with classical interpretable models such as Logistic
Regression (LR), we use our preprocessed BOW as input to LR. We observed that the TM
performs better than LR in terms of accuracy. LR obtains the accuracy of 75.38% as compared
with TM’s 78.02% on the Restaurant 14 dataset. Indeed, those two approaches operate based
on different concepts. LR is trained by adjusting weights and bias. TMs, on the other hand,
relates words using propositional logic to represent a class. Employing propositional logic for
knowledge representation provides rules rather than a mathematical computation. This crucial
difference between a rule-based approach and regression methods is explored in [39]. One can
analyze why a LR model assigns a particular class to an input by inspecting the weights and bias.
However, assigning them meanings requires understanding of the mathematical computation that
LR carries out. Since TM creates a list of patterns for a particular class based on the interaction of
aspect words and the sentiment words in the context, its conjunctive clauses hold information of
words in a rule-based form. It is well-known that evaluating a conjunctive clause is particularly
easy for humans, making them natively interpretable and easier to explain than LR.

B.5 Interpretability and Analysis

B.5.1 Characteristics of Clauses

In this section, we will explain one phenomenon of a TM after training with the datasets. When
analyzing the clauses after training, we noticed that the TM employs more negated literals to
form a clause. This is a bit counter intuitive as there should be, intuitively, more literals in their
original forms than their negations in a clause. To explain this behavior, let us study two general
sentences having positive sentiments for aspect word “laptop”:

• This laptop is in excellent condition.

• Battery life of this laptop is better compared to other brands.

In this example, we assume a vocabulary containing both positive and negative sentiment words
of size 6, V = [excellent, bad, condition, worst, costly, better, laptop]. When literals in their
original forms are utilized to compose a clause, the two sentences require two clauses to follow
the sentiment, i.e., C1 = [laptop ∧ excellent ∧ condition] and C2 = [battery ∧ better ∧
laptop∧others]. On the contrary, when negated form of literals are employed, only one clause is
sufficient to satisfy the sentiment in both sentences: C1 = [laptop ∧ ¬bad ∧ ¬worst ∧ ¬costly].
As the negation is a more efficient way to represent a pattern in NLP, the trained TM employs
naturally more negated literals to form a clause.
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Looks AND nice AND (not other words in the
vocabulary) looks positive

horribly AND feel AND (not other words in the
vocabulary) feel negative

Looks nice, but has a horribly cheap feel.

Figure B.11: Interpretation of a randomly selected sample from ABSA task.

B.5.2 A Case Study for Interpretability

In this case study, we demonstrate the interpretable result from trained model. We randomly
select a sentence from the dataset as an example and demonstrate its literals that are responsible
to form the clause. The selected sentence is “Looks nice, but has a horribly cheap feel.” with
a aspect word “looks” whose sentiment prediction of TM is positive. The sentence after pre-
processing becomes “Looks positive, but has a negative negative feel.” Among various clauses
that are triggered by the given input, we randomly select a clause for interpretation. The clause
is given by:

• Cj
i = positive ∧ (2n+ 6) ∧ ¬(words not in the sentence and aspect).

The above clause can be interpreted as: the aspect word “looks” has positive sentiment
because it has words “positive” and it lies in the second part of the sentence (indicated by 2n+6,
i.e., LOC2

vec = [0, 0, 1]) when split from aspect word “looks”. Similarly, if the aspect word in the
sentence is “feel” then its sentiment is predicted to be negative and a randomly selected clause is:

• Cj
i = negative ∧ (2n+ 1) ∧ ¬(words not in the sentence and aspect).

This clause means that the sentiment is negative because it has words like “negative” and it lies
in the first part of the sentence (indicated by 2n + 1, i.e LOC1

vec = [1, 0, 0]) when split from
aspect word “feel”. In both the cases, ¬(words not in the sentence and aspect) represents the
words in negated form that are presented in the input features. Finally, reversing back all the
information and binarization to the original form of the words, we can obtain interpretation that
shows the influence of words in the classification as in Figure B.11.

B.6 Conclusions

In this paper, we aim to reduce the gap between the interpretability and the accuracy of aspect
based sentiment analysis (ABSA) by employing the recently introduced Tsetlin Machine (TM).
Our proposed model embeds the aspect-based inputs into binary form for classifying the sen-
timent of a particular word in a sentence. Such binary representations are then fed to a TM
architecture where the learning process is transparent, which gives a clear picture of what actually
drives the TM to learn the particular sentiment for a given input. Additionally, we show the
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involvement of words carrying the sentiment for the aspect words in the case study. In short, the
proposed model successfully provides an human-interpretable learning approach on ABSA task
with comparable accuracy.
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