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Abstract

Analytical expressions for the fundamental losses in single junction solar
cells are revised and improved. The losses are, as far as possible, described using
parameters with clear physical interpretations. One important improvement
compared to earlier work is the use of Lambert’s W function, which allows for
analytical expressions for the voltage and current at the maximum power point.
Other improvements include the use of Stefan Boltzmann’s law to describe the
incoming energy flux as well as taking into account the fermionic nature of the
electrons when calculating the thermalization loss. A new expression, which
combines emission, Boltzmann and Carnot losses, is presented. Finally, an
expression which combines all energy losses derived in this work is presented.

1 Introduction
In 1961, Shockley and Queisser published an article where the theoretical efficiency
limits of single-junction solar cells (SC) were studied. They presented a model based
on a detailed particle balance and found a theoretical upper limit of 40.8% [1]. This
Shockley-Queisser (SQ) limit shows that a single-junction solar cell is unable to
convert almost 60% of the incoming solar radiation into useful energy. In order to
understand what happens to this 60% of the total incoming radiation, five different
mechanisms of energy loss were identified and studied in Ref. [2]. There, the au-
thors mathematically modeled the energy losses that are theoretically unavoidable.
These fundamental energy losses are due to: (i) unabsorbed photons, (ii) carriers

1



thermalizing to the bandgap, (iii) radiative emission from the cell and, voltage losses
caused by (iv) the cell having a temperature higher than 0 K and, (v) a mismatch
of the solid angles of absorption and emission of radiation. These five mechanisms
of energy loss are further studied and discussed in section 4.

The expressions derived in Ref. [2] are based on approximations which may lead
to some inaccuracies. In this work, we intend to improve those expressions.

In Ref. [3], exact expressions for both the optimal voltage and current, and conse-
quently the efficiency, were derived by making use of Lambert’s W function. We will
follow this approach and combine it with Refs. [1] and [2] to find compact expressions
for the fundamental losses in solar cells.

Before starting our discussion, let us summarize our strategies to improve the
model presented in Ref. [2]. These will later on be explained in detail:

• Stefan Boltzmann’s law is used to describe the incoming solar radiation.

• Lambert’s W function is used to obtain exact expressions for the maximum
power point voltage and current. Consequently, some of the fundamental losses
are expressed in terms of Lambert’s W function.

• The fermionic nature of electrons and holes is considered in the expression for
the thermalization loss.

• A new expression that combines Carnot, Boltzmann and emission losses is
derived. The derivation consists in computing the difference in output power
when the cell is at 0 K and at a nonzero temperature Tc.

• The new expressions together with the output power account for 100% of the
total incident solar radiation.

2 Conventions and notation
We will follow Shockley and Queisser ’s detailed balance approach [1] and study a
single junction solar cell operating at temperature Tc = 300K. The Sun is assumed
to be a blackbody radiating at temperature Ts = 6000K. The flux of photons with
energy in the interval [E,E + dE] is given by Planck’s law

n(E, T, µ) =
2Fs

c2h3

E2 dE

exp
(
E−µ
kT

)
− 1

, (1)

where µ is the chemical potential, or the splitting of quasi-Fermi levels, of the material
and Fs is a geometrical factor associated with the solid angle in which the cell absorbs
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or emits radiation. Thermal energy emission, such as solar radiation, has a 0 chemical
potential, while in the case of luminescent emission from a solar cell, the chemical
potential is µ = qV , where q is the electron charge and V is the voltage across the
device.

The total electrical current produced by the cell is calculated as the difference
between the absorbed and emitted photons times the electric charge

J = q

∫ ∞

Eg

[n(E, Ts, 0, Fabs)− n(E, Tc, qV, Femi)] dE, (2)

where Fabs and Femi are the geometrical factors associated with absorption and emis-
sion of radiation, respectively. The first term on the right hand-side of Eq. (2) is
known as generation current, JG, while the second is known as recombination current,
JR.

Let us now compute the geometrical factors. Although this is found in textbooks,
we include their derivation here since they are important for the Boltzmann loss. The
geometrical factors arise from integrating over the solid angles of emission, Ωemi, and
absorption, Ωabs with respect to the normal of the cell. We will assume that the cell
emits through and angle θemi and absorbs energy through an angle θX . Defining θ′

as the polar angle with respect to the surface normal, we have

Femi =

∫

Ωemi

cos θ′dΩ =

∫ 2π

0

∫ π
2

0

cos θ′ sin θ′dθ′dϕ = π sin2 θemi, (3)

Fabs =

∫

Ωabs

cos θ′dΩ =

∫ 2π

0

∫ θX

0

cos θ′ sin θ′dθ′dϕ = π sin2 θX . (4)

θX can be expressed in terms of the Sun concentration factor, X, by making
use of the sin θX =

√
X sin θsun, with θsun = 0.267◦ being the angle which the Sun

subtends without any concentrators. Defining Xmax = 1/ sin2 θsun, as the maximum
concentration factor, we can express Fabs as Fabs = π(X/Xmax). With this in mind,
JG can be expressed as

JG(Eg) =
2πq

c2h3

X

Xmax

∫ ∞

Eg

E2

exp
(

E
kTs

)
− 1

dE. (5)

It is possible to simplify Eq. (1). When E−µ >> kT , the exponential term in the
denominator becomes dominant. Hence, we can neglect the -1. This is called Boltz-
mann’s approximation and is valid in the regime of useful bandgaps (Eg ≥ 0.5 eV for
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the normal conditions experienced by solar cells). We will use this approximation to
express JR as

JR(Eg) ≈
2q

c2h3
Femi

∫ ∞

Eg

E2 exp

(
− E

kTc

)
exp

(
µ

kTc

)
dE = J0(Eg) exp

(
qV

kTc

)
, (6)

where J0 is known as the dark saturation current. Unless otherwise stated, we will
assume in the following that the cell emits radiation in a hemisphere, i.e., Femi = π.
Finally in this section, we want to point out that Boltzmann’s approximation should
not be used when calculating JG since kTs is large compared to the photon energies
in question.

3 Optimal power out efficiency
The efficiency of the solar cell is given by:

η =
V J

Pin
, (7)

where Pin = σT 4
S , with σ being the Stefan-Boltzmann constant. The optimal effi-

ciency is found by differentiating η(V ) with respect to the voltage, equating to zero
and solving for V . The achieved limiting efficiency receives the name of Shockley-
Queisser (SQ) limit and is 40.8%. In Fig. 1, the optimal efficiency as a function of
the bandgap, Eg, is presented for Sun concentration factors, X = Xmax and X = 1.
The limiting efficiencies are 40.8% and 30.9%, respectively.

In Ref. [3], it was shown that an analytical expression for the optimal voltage,
Vopt, can be obtained by making use of Lambert’s W function, defined as z = W(zez),
to solve ∂(JV )

∂V
= 0. The obtained optimal voltage then is

Vopt =
kTc

q

(
W

(
e
JG
J0

)
− 1

)
. (8)

An expression for the optimal current, Jopt, was found by plugging Eq. (8) into
Eq. (2). The obtained expression is

Jopt = JG(Eg)


1− 1

W
(
eJG
J0

)


 , (9)
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Figure 1: Power out efficiency as a function of the bandgap for different Sun concen-
tration factors.

where they made use of W(z) exp[W(z)] = z to simplify the expression. The optimal
power out efficiency then is found by plugging Eqs. (8) and (9) into Eq. (7). We then
have

η(Eg) =
kTc

q


W

(
e
JG
J0

)
− 2 +

1

W
(
eJG
J0

)


 JG. (10)

A comparison between the efficiencies obtained in Ref. [3] and in Ref. [2] is pre-
sented in Fig 2. We notice a difference between the maxima of both efficiencies. The
efficiency calculated with the approximations used in Ref. [2] has its maximum at
39.2%, while Ref. [3] yields a maximum of 40.8%, as expected from the Shockley-
Queisser limit [1]. As we mentioned in section 2, Boltzmann approximation should
not be used to calculate JG. In Ref. [2], it was done in order to find a compact
expression for the optimal voltage. A large drawback of using Boltzmann’s approxi-
mation to calculate JG was that the achieved power out efficiency and, later on, the
intrinsic losses were slightly lower than they should be.

4 Intrinsic losses
From Fig 2, we clearly see that more than half of the incoming solar radiation is not
converted into useful energy for the cell. Intrinsic losses for idealized single junction
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Figure 2: Power out efficiency as a function of the energy gap at maximum Sun
concentration factor. Ref. [3] makes use of an expression for the efficiency that relies
in fewer approximations than the one derived in Ref. [2]. This results into a higher
efficiency.

solar cells are unavoidable and presented in this section. Five mechanisms of energy
loss have previously been discussed in Ref. [2]. In this section, we will revise them
and propose new analytical expressions with the purpose of describing them more
accurately.

4.1 Thermalization

Let us start by considering the energy loss due to thermalization. If an electron ab-
sorbs a high-energetic photon, it will acquire an energy way higher than the bandgap.
Through strong interactions with lattice phonons, the overexcited electrons will ther-
malize to the edge of the conduction band, i.e., they will emit their energy excess as
heat and relax to an energy of E = Eg. This process of energy loss is described in
Ref. [2] by

LTherm =

∫ ∞

Eg

(E − Eg) · n(E, Ts, 0, Fabs) dE. (11)

After relaxing to the bandgap, electrons should distribute according to Fermi-
Dirac statistics, which means that their mean energy will be a little above Eg. Ac-
cording to the literature (e.g. in Ref. [4]), the internal energy of the electrons is given
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by ∫∞
0

EF (E)D(E) dE∫∞
0

F (E)D(E) dE
=

3

2
kTc, (12)

where F (E) is the Fermi-Dirac distribution and D(E) is the density of states for the
electrons. It should be noted that the internal energy of the electrons is equal to
3
2
kTc only when their dispersion relation is parabolic [4]. The same argument should

apply to holes in the VB and, therefore, the mean energy of an electron-hole pair is
Eg + 3kTc.

The average energy of the exciting photons is given by

EG =
q

JG

∫ ∞

Eg

E · n(E, Ts, 0, Fabs) dE, (13)

This quantity can be introduced together with the extra 3kTc into Eq. (11) to ob-
tained a more accurate expression for the energy loss due to thermalization of carriers.
We finally have

Ltherm =
1

q
(EG − Eg − 3kTc)JG. (14)

4.2 Further Thermalization

We saw in the previous section that after thermalizing to the bandgap, carriers
will carry extra energy due to their fermionic nature. As a consequence, an extra
thermalization must occur in the extraction of carriers to the metal contact. This
second thermalization has to be equal to the internal energy of the carriers, that is,
3kTcJG. Therefore, this second thermalization will cancel the energy gain that we
discussed in section 4.1.

4.3 Emission and Voltage Losses

In this section, we will consider three mechanisms of energy loss that constitute a
smaller fraction of the lost solar radiation in comparison to the loss due to thermaliza-
tion (around 7%). We will first introduce each mechanism as well as the expressions
used in Ref. [2] to describe them and, after that, we will present an approach to
obtain an expression which will combine all three losses.

Let us first consider the energy loss due to emitted photons. According to Kir-
choff’s law, since the cell absorbs radiation, it should also emit. The energy loss
associated with the emission of photons produced by the cell is given in Ref. [2] by

LEm = Eg

∫ ∞

Eg

n(E, Tc, qV, Femi) dE. (15)
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Second, we have two fundamental mechanisms of energy loss that directly affect
the maximum achievable voltage. This is easily seen in Ref [2], where the optimal
voltage is given by

qVopt = Eg

(
1− Tc

Ts

)
− kTc ln

(
Ωemi

Ωabs

)
. (16)

The first term multiplying the energy gap on the right-hand side of Eq. (16)
is called Carnot Factor because its mathematical form resembles of the expression
for Carnot’s efficiency [2, 5]. Since a solar cell may be considered a heat engine,
the maximum achievable efficiency needs to be limited by Carnot’s efficiency, which
manifests as a voltage drop.

The second term affecting the voltage appears due to the possible mismatch
between the solid angles of emission and absorption of radiation. As we saw in
section 2, while we assume that the cell emits in a hemisphere, it typically absorbs
solar radiation through a smaller solid angle. The mismatch between the solid angles
of absorption and emission results in part of the incoming energy being lost in entropy
generation [6]. As for the Carnot loss, because its mathematical expression resembles
Boltzmann’s entropy equation, it is referred to in Ref. [2] as the Boltzmann factor.
The corresponding losses are calculated in Ref. [2] by multiplying each factor by the
optimal current Jopt.

In the following section, we will present an expression that combines the three
losses that have been explained in this section.

4.4 The CBE Loss. Derivation

From Eqs. (15) and (16), we notice that both Carnot and Boltzmann factors as
well as the emission loss cancel when the temperature of the cell is 0 K. We hence
should be able to find an expression that combines all three losses by calculating the
difference in output power at Tc = 0 K and at a non-zero cell temperature, Tc. We
can then define the combined loss, LCBE, (Carnot, Boltzmann and Emission) as

LCBE = Vopt(0)Jopt(0)− Vopt(Tc)Jopt(Tc). (17)

Starting with the voltage, we first take the limit Tc → 0 in Eq. (8). By doing it
so, we obtain an undefined result since W(T−1

c → 0) = W(∞) → ∞. In order to
walk this problem around, we make use of the asymptotic expansion of Lambert’s
W function [7], given by

W(x) ≈ lnx− ln lnx+
ln lnx

lnx
. (18)
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In Eq. (8), all the terms in this expansion are multiplied by the temperature of
the cell, Tc. Since Tc → 0 and the last two terms in the expansion grow very slowly
in comparison, it is reasonable to cancel them out. This leads to

Vopt(Tc → 0) = lim
Tc→0

kTc

q

[
ln

(
e

Jg
J0(Tc)

)
− 1

]

= lim
Tc→0

kTc

q
ln

(
Jg

J0(Tc)

)

= lim
Tc→0

−kTc

q
ln J0(Tc). (19)

In order to proceed now, we need to compute the integral for J0 in Eq. (6). This
is easily doable thanks to having taken Boltzmann’s approximation. The integral
gives

J0(Eg) = exp

(
− Eg

kTc

)
kTc

(
E2

g + 2EgkTc + 2k2T 2
c

)
. (20)

Now, besides the exponential term, we have terms like Tc lnTc, Tc lnT
2
c and

Tc lnT
3
c , which will cancel in the limit Tc → 0. We finally have

Vopt(Tc → 0) = −kTc

q
ln

[
exp

(
− Eg

kTc

)]
=

Eg

q
. (21)

We now continue with the current and take the limit Tc → 0 in Eq. (9). Again,
we have a divergent W(T−1

c ) but this time, in a denominator. This implies that the
last term in Eq. (9) will cancel and, in the limit of 0 K temperature, the maximum
power point current is just JG(Eg). Putting all together, we find LCBE to be

LCBE =


Eg

q
− Vopt(Tc)


1− 1

W
(
eJG
J0

)




 JG. (22)

It should be noted that the asymptotic expansion for Lambert’s W in Eq. (18)
only holds for x > e. In our case, this implies that Eq. (22) only is true for JG > J0,
but this is true in all interesting cases where Boltzmann’s approximation can be used.

4.5 The CBE Loss. Separation

Eq. (22) has the advantage with respect to Ref. [2] that the model now is more
compact, reducing the amount of equations from five to three. A disadvantage to
point out is that it now becomes a bit problematic to see each contribution (emission,
Carnot and Boltzmann) individually.

In the following, we show alternative ways to find each contribution separately.
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Emission loss Eq. (15) assumes that the emitted photons have an average energy
of Eg. Let us instead compute the total energy flux

∫
E · n(E, Tc, qV, Femi) dE as

LEm =

∫ ∞

Eg

E · n(E, Tc, qV, Femi) dE

= exp

(
qV

kTc

)∫ ∞

Eg

E · n(E, Tc, 0, Femi) dE. (23)

The last integral in Eq. (23) equals the energy flux emitted by the cell in thermal
equilibrium. We denote it E0 and use the expression for Vopt in Eq. (8) to get

LEm =
E0

W
(
eJG
J0

) JG
J0

. (24)

Voltage Losses Both Carnot and Boltzmann losses reduce the maximum achiev-
able voltage of a solar cell. Since this is the case, an alternative way of computing
these losses may be the product of the correspondent voltage drop times the optimal
current, Jopt, given in Eq. (9). This approach was already introduced in Ref. [2].

In the context of voltage losses, it is useful to define the ratio between the geomet-
rical factors of emission and absorption. Let γ = Fabs/Femi. The advantage of using
γ with respect to X/Xmax is that now, we can increase the efficiency by restricting
the emission angle instead of having a high number of Suns. In terms of efficiency,
it is equivalent to have a maximum Sun concentration factor and restricting the cell
to emit in the same angle as it absorbs [6].

In order to incorporate γ to the notation presented in section 2, we need to
make use of the general form of Femi in Eq.(3). By doing this, γ appears in all the
expressions where Lambert’s W is involved. We have

W

(
e
JG
J0

)
= W

(
sin2 θX
sin2 θemi

eJG,max

J0,max

)
= W

(
γ
eJG,max

J0,max

)
, (25)

where JG,max and J0,max are given by Eqs. (5) and (6) evaluated at Fabs = Femi = π.
The dependence with the absorption and emission angles is now incorporated in γ.
When γ = 1, the emission and the absorption angle are equal and therefore we will
have maximum efficiency without having maximum Sun concentration.

In order to have a compact notation, let us introduce γ as an index in the ex-
pressions for the optimal voltage and current, defined in Eqs. (8) and (9). We make
Vopt → V γ

opt and Jopt → Jγ
opt. We can now proceed to calculate the Carnot and

Boltzmann losses.
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Starting with Boltzmann loss, we have previously discussed that it is consequence
of the possible mismatch between solid angles of emission and absorption. In terms
of γ, Boltzmann loss will be zero at γ = 1 and nonzero otherwise. Hence, the
Boltzmann energy loss can be computed as the difference in voltage V 1

opt−V γ
opt times

the optimal current, that is

LB =
kTc

q

[
W

(
eJG,max

J0,max

)
−W

(
γ
eJG,max

J0,max

)]
Jγ
opt. (26)

It should be noted that expanding the W functions to first order, i.e., W(x) ≈ lnx
in Eq. (26) will result in the expression proposed in Ref. [2] for the Boltzmann loss.

Continuing with Carnot loss, the corresponding voltage drop is due to the cell hav-
ing a nonzero temperature. We can hence calculate this loss as (V 1

opt(Tc = 0)− V 1
opt(Tc))J

γ
opt,

where we have to set γ = 1 in the voltage drop to ensure that there is no Boltzmann
loss. From Eq. (21), we have that V 1

opt(Tc = 0) = Eg/q. Hence, the Carnot energy
loss is

LC =

(
Eg

q
− V 1

opt

)
Jγ
opt. (27)

We want to point out that by introducing Eqs. (8) and (9) and further expanding
the W functions to first order, the proposed expression for the Carnot loss in Ref. [2]
is obtained if we also make use of Boltzmann’s approximation in calculating JG.

4.6 Unabsorbed photons

Finally, the last mechanism of energy loss is produced by the photons with energy
lower than the bandgap of the material. These photons will not be absorbed. The
energy lost due to unabsorbed photons is given by

LBelow =

∫ Eg

0

E · n(E, Ts, 0, Fabs) dE. (28)

As for the optimal efficiency, the expression derived in Ref. [2] makes use of
Boltzmann’s approximation when calculating JG. As we discussed in section 2, this
approach is inaccurate. Even though the expression may not be as compact as
desirable, not making use of Boltzmann’s approximation in Eq. (28) gives a more
accurate energy loss.

Eq. (28) can be expressed in terms of the incident solar radiation by making use
of EG. Adding the energy flux of the exciting photons,

∫
E · n(E, Ts, 0, Fabs), to
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Eq. (28) gives
(∫ Eg

0

+

∫ ∞

Eg

)
E · n(E, Ts, 0, Fabs) dE =

∫ ∞

0

E · n(E, Ts, 0, Fabs) dE, (29)

which is just Pin = σT 4
s . We can hence write the energy loss due to unabsorbed

photons as

LBelow =

(
σT 4

s

JG
− EG

q

)
JG. (30)

4.7 The Total Loss

Finally, Eqs. (14) and (22) together with the second thermalization can be summed
into a compact expression which accounts for all mechanisms of energy loss occurring
in the cell. We denote it as LT . The total sum gives

LT =


EG

q
− Vopt(Tc)


1− 1

W
(
eJG
J0

)




 JG. (31)

Note that by also adding the energy loss due to unabsorbed photons given by
Eq. (30), we obtain a very obvious result which reads as: the total energy loss equals
the difference between the input and the output power.

5 Numerical Results
The intrinsic losses and power out efficiency, all as a function of the energy gap, are
plotted in Fig. 3 for a Sun concentration factor of X = 1000. The incident solar
radiation is described by Stefan-Boltzmann law. A comparison between the results
obtained in this work, (left), and the ones derived in Ref. [2], (right), is shown.

Tab 1 shows a comparison between the fraction of solar energy attributed to
the different expressions derived both in this work and in Ref. [2]. All expressions in
Tab. 1 are evaluated at the optimal bandgap of Eg = 1.17 eV for a Sun concentration
factor of X = 1000. Due to having taken fewer approximations in Eqs. (10) and (30),
the energy loss due to unabsorbed photons and the power out efficiency obtained in
this work are slightly higher than the ones achieved in Ref. [2]. The sum of the two
occurring thermalizations gives a fraction of the incident solar radiation that agrees
with the results obtained in Ref. [2]. This is also the case with the new expression
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Figure 3: Comparison between this work (left) and Ref. [2] (right) of the intrinsic
losses and power out efficiency as a function of Eg at Sun concentration factor of
X = 1000.

Table 1: Fraction of solar radiation for all losses and power out efficiency at Eg =
1.17 eV and X = 1000.

Fraction of Fraction of
X = 1000 solar radiation solar radiation
Mechanism This Work Ref. [2]
Power out 0.371 0.357
Below Eg 0.235 0.180
Thermalization 0.327 0.322
Carnot 0.021 0.021
Boltzmann 0.035 0.035
Emission 0.011 0.009
Total 1.000 0.924
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Figure 4: Intrinsic losses for a solar cell with optimal bandgap of Eg = 1.31 eV and
a Sun concentration factor of X = 1. This type of plot was inspired by Ref. [2]

that combines emission, Carnot and Boltzmann losses, LCBE. Overall, the sum of
the output power and all the losses gives significant improvement with respect to the
previous model, adding to 100% of the incident solar radiation.

All the expressions for the intrinsic losses presented in this work as well as the
output power are also presented in Fig. 4, where a plot of the optimal current in
Eq. (9), Jopt, as a function of the bandgap energy is showed. The intrinsic losses
and output power are evaluated at a Sun concentration factor of X = 1, so that the
Boltzmann loss is easier to notice.

14



6 Conclusions
With the purpose of improving the expressions for the intrinsic losses of single-
junction solar cells given in Ref. [2], we have presented new analytical expressions.
Our approach has its starting point in Ref. [3] where Lambert’s W function was
used in order to find analytical expressions for both the optimal voltage and current.
We have made use of Lambert’s W to find expressions for some of the fundamental
energy losses. In the thermalization loss, the fermionic nature of electrons and holes
was also accounted. A second thermalization, occurring in the process of carrier
extraction, has been discussed. An expression that combines emission, Carnot and
Boltzmann losses has been presented. Each contribution to the combined loss has
also been identified. As shown in Tab. 1, our results show a significant improvement
with respect to the previous model, adding up to 100% of the incident solar radiation.
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