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Abstract

In this thesis, we develop analytical models with the purpose of expanding knowledge
and gaining understanding of some of the internal mechanisms that limit the efficiency
of single-junction solar cells. We focus on three distinct topics: fundamental energy
losses, the temperature sensitivity of single-junction solar cells and the effect of the series
resistance on the maximum power point. The thesis is divided in two parts. The first
part reviews basic solar cell physics topics and introduces some more advanced concepts
to provide the reader with the necessary background to understand the attached papers.
The latter constitute the second part of the thesis.

A new set of analytical expressions for the fundamental energy losses of single-junction
solar cells is derived. These make use of Lambert’s W function and an analytical model for
maximum power point, which constitutes an improvement upon the existing expressions
found in the scientific literature. In the new expression for the thermalization loss, the
fermionic nature of electrons and holes is included, which results in the need of a second
thermalization to the conduction band edge. From here, we conclude that the overall
thermalization process occurs step-wise. The employment of Lambert’s W function allows
for an analytical expression that combines the emission, Carnot and Boltzmann energy
losses.

The temperature sensitivity of single-junction solar cells is investigated. We use Lam-
bert’s W function and an analytical model for maximum-power point as starting point
to develop analytical expressions for the temperature coefficients of the maximum power
point voltage, current and power. A new expression for the temperature coefficient of the
fill factor is also derived. The new model for the temperature coefficients uses solar cell
parameters that can be extracted from I − V characteristics as inputs. The expressions
are tested against experimental data obtained from multi-crystalline silicon cells. We con-
clude that the derived model describes with low discrepancy the temperature sensitivity
of the investigated parameters.

We investigate the so-called recombination parameter γ by developing a model in which
we relate γ to the carriers mobilities and lifetimes. This is possible by assuming that all
non-radiative recombination occurs in the neutral region of the cell. In our attempt to
relate γ to impurities in semiconductor crystals, we encounter problems regarding the
definition of γ and its dependency with the open-circuit voltage. Solutions to these prob-
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lems are suggested. Particularly, for low-level injection, we derive analytical expressions
for γ that are note voltage dependent and fully determine γ from the characteristics of
the defect. From numerical experiments, we conclude that the parameter γ alone may
not be suitable for impurity identification but, still be useful in conjunction with other
characterization techniques for defect characterization.

Finally, we derive analytical expressions for the maximum power point that include
the effect of the series resistance. The properties of Lambert’s W function allow for
this. Discrepancies below 0.1% for typical values of the series resistance are obtained
when comparing the new expressions to a numerical single-diode model. We test the
experimental applicability of our expressions and compare them to existing models found
in the scientific literature. For this, we use of 18 multi-crystalline silicon cells, from
which we extract I − V characteristics at multiple temperature. We showed that our
model achieves the same level of accuracy as the previously existing ones, predicting
experimental maximum power of the cells with discrepancies below 0.2%. Compare with
the previously existing models, our model improves in the simplicity of the expressions.



Sammendrag

I denne avhandlingen har det blitt utarbeidet analytiske modeller med mål om å øke
kunnskapen om noen av de interne mekanismene som begrenser effektiviteten til sol-
celler. Det settes søkelys p̊a tre ulike emner: fundamentale energitap, temperatursensi-
tiviteten til solceller og effekten av seriemotstand p̊a det s̊akalte maximum power point
(MPP). Denne avhandlingen best̊ar av to deler. Den første delen beskriver grunnleggende
solcellefysikk, og introduserer leseren for mer avanserte konsepter. Denne bakgrunnsin-
formasjonen trengs for å forst̊a de vedlagte artiklene. Artiklene utgjør den andre delen
av avhandlingen.

Nye analytiske uttrykk, som beskriver de fundamentale energitapene i solceller, er
utledet. Uttrykkene er basert p̊a en tidligere kjent analytisk modell for spenningen ved
MPP. Det nye uttrykket for termaliseringstap tar hensyn til elektronenes fermioniske
natur. Dette resulterer i et behov for en ekstra termalisering. Ved å bruke Lamberts
W funksjon, er et nytt uttrykk, som kombinerer str̊alings-, Carnot- og Boltzmanntap,
utledet.

Temperatursensitiviteten til solceller er ogs̊a utforsket. Vi bruker Lamberts W funksjon
og en analytisk modell for spenningen ved MPP til å utlede analytiske uttrykk for tem-
peraturkoeffisientene til spenningen, strømmen og effekten ved MPP. Et nytt uttrykk for
temperaturkoeffisienten til fyllfaktoren er utledet. Den nye modellen for temperaturko-
effisientene bruker solcelleparametre som kan leses fra en IV-karakteristikk. Uttrykkene
er testet med eksperimentelle data fra multikrystallinske silisiumceller. Vi konkluderer
med at modellen beskriver temperatursensitiviteten til de utforskede parameterne med
lite avvik.

Videre utforsker vi rekombinasjonsparameteren γ ved å utvikle en modell som kobler
sammen γ med ladningsbærermobilitet og levetider. Dette er mulig hvis man antar at
all ikke-str̊alingsrekombinasjon foreg̊ar i den nøytrale regionen av en p − n overgang. Vi
forsøker å koble γ til urenheter, noe som viser seg å være problematisk, blant annet p̊a
grunn av hvordan γ defineres, og p̊a grunn av at γ er spenningsavhengig. Vi forsl̊ar
s̊a mulige løsninger for disse problemene. Blant disse finner vi at ved lavinjeksjon kan
γ bestemmes helt fra egenskapene til urenheten. Fra numeriske beregninger blir det
konkludert med at γ alene ikke kan brukes til å identifisere urenheter, men den kan være
nyttig i samspill med andre defektkarakteriseringsteknikker.
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Til slutt utleder vi et analytisk uttrykk for spenningen ved MPP som tar hensyn til
virkningen til seriemotstand. Modellen er sammenlignet med en numerisk én-diodemodell,
og avvik under 0.1% er oppn̊add for typiske verdier for seriemotstanden. Modellen er ogs̊a
testet med eksperimentelle data fra multikrystallinske silisiumceller, og sammenlignet med
eldre modeller funnet i den vitenskapelige litteraturen. Resultatene viser at modellen v̊ar
er like nøyaktig som de alternative modellene, og kan forutse effekten ved MPP med
avvik under 0.2%. Sammenlignet med de eldre modellene, best̊ar v̊ar modell av kortere
og enklere matematiske uttrykk.
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Chapter 1

Introduction

In the past centuries, the world’s energy needs have mostly been met with fossil fuels,
whose conversion to useful energy results in greenhouse gas emissions to the atmosphere.
These processes have resulted in the Earth warming up around 1◦C above pre-industrial
levels [1]. As the world’s population is expected to increase by two billion people over the
next 20 years, the total energy usage is expected to increase by nearly 50% by 2050 [2]. A
transition to green and renewable sources of energy is therefore necessary to bring down
greenhouse gas emissions and stop climate change.

Solar photovoltaic (PV) energy is expexted to play a huge role in the so-called green
transition and become a key piece in the future energy market. This is due to its great
reduction in costs during the past decade [3]. Particularly, the cost of electricity from PV
energy fell 82% between 2010 and 2019. These cost improvements were driven mainly
by a 90% reduction in module prices, together with decreasing system costs [3]. This
resulted from both technological improvements and increased market competition mainly
facilitated by China [4]. Even in 2020, despite the impact of the global pandemic and the
disruptions caused by the spread of the COVID-19 virus, solar PV had another record-
breaking year, with new installations reaching an estimated 139 GWDC, bringing the
global total to an estimated 760 GWDC [4].

1.1 Motivation

As of the time of writing of this thesis, the conventional single junction solar cell, com-
monly made of crystalline silicon, completely dominates the market, though higher effi-
ciency types of cells have been theorized and are in pursuit of practical implementation [5].
Because modern silicon cells are approaching their efficiency limit [6, 7], a deeper under-
standing of the mechanism that hinder achieving this limiting efficiency is necessary.

Our goal for this PhD project has been to develop analytical models that describe
some of the underlying processes occurring within single-junction solar cells that directly
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affect their efficiency. The motivation for most of these models comes from Ref. [8], where
Khanna et al. made use of a not very well-known function, called Lambert’s W, to obtain
an analytical expression for the maximum power point voltage.

The work of this thesis can be divided in three main blocks: (i) fundamental energy
losses, (ii) temperature sensitivity and (iii) the effect of the series resistance.

Within the first block, we aim to derive analytical expressions that describe the energy
losses intrinsic to single-junction solar cells. Hirst and Ekin-Daukes previously derived in
Ref. [9] a set of equations with the same goal. However, as Khanna’s expression for the
maximum power point voltage had not yet been derived, the authors in Ref. [9] made use
of some approximations to obtain their results. These approximations can be avoided by
making use of Lambert’s W function.

In the second block, we focus on the temperature sensitivity of solar cells, which is
often described with the so-called temperature coefficients (TC). These are parameters
that describe, with a single value, how solar cell parameters change with the temperature.
Among all the solar cell parameters, the open-circuit voltage, i.e., the maximum voltage
obtainable by a solar cell, is the parameter whose temperature sensitivity has been studied
the most [10]. The temperature sensitivity of the maximum power point, however, has not
been explored from an analytical perspective. As the efficiency of solar cells is affected by
temperature variations, gaining deeper understanding on the TCs can only be beneficial.

Still within the second block, we focus on studying the TC of the open-circuit voltage
through the so-called recombination parameter γ. This parameter was introduced by
Green in Ref. [10], where it was said to account for the temperature sensitivity of the
mechanisms determining the open-circuit voltage. Later in Ref. [11], a link between γ

and material properties was shown through the so-called external radiative efficiency.
There are still some questions regarding γ. For example, what is the physical meaning of
γ, or can γ be used to uniquely identify defects in solar cells?

In the final block of this thesis, we focus on the effect of series resistance on the
maximum power point. Particularly, we note that accounting for the effect of the series
resistance in the modeling of the maximum power point results in a set of transcendental
equations that do not have analytical, or closed-form, solution. Singal derived in Ref. [12]
a set of approximate solutions that, although accurate, are not simple to use. Singal’s
model did not make use of Lambert’s W function. Can this function be used to simplify
Singal’s model?

1.2 Research questions

The motivation for the thesis work can be summed up in finding answers to the following
research questions:





1. How can we use Lambert’s W to obtain analytical expressions that de-
scribe the fundamental energy losses without requiring approximations?

2. How can we use Khanna’s model to derive analytical expressions that
describe the temperature sensitivity of the maximum power point?

3. What is the physical meaning of the recombination parameter γ?

4. How can we use Lambert’s W function to derive expressions for the
maximum power point that account for the effect of the series resistance
and are both accurate and of simplicity comparable to Khanna’s model?

1.3 Outline
This PhD project has resulted into six publications that are included in the appendices
of this thesis. These papers have been either published or submitted for publication in
peer-reviewed international conference proceedings and journals. The goal of this part of
the thesis is to provide the reader with the necessary background within solar cell physics
to understand the attached papers. We divide the thesis in five chapters, including the
present one.

In chapter 2, we introduce fundamental concepts in solar cell physics, starting first
with a review of solar radiation models followed by a brief discussion on how electrons
behave in semiconductor crystals. This leads to the introduction of the concepts of gen-
eration and recombination of electron-hole pairs, finally allowing for the introduction of
the detailed balance theory and Shockley’s diode equation. The knowledge of Shock-
ley’s diode equation allows in chapter 3 for the introduction of Khanna’s model for the
maximum power point previously mentioned in this chapter. This is accompanied by a
short introduction to Lambert’s W function and its properties. We then introduce the
fundamental energy losses intrinsic to single-junction solar cells, which are the natural
next step after the results from the detailed balance theory presented in chapter 2. This
is followed by a discussion of the temperature sensitivity of solar cells. Here, we define the
concept of temperature coefficient and introduce Green’s [13] and Dupré’s [11] models for
the TC of the open-circuit voltage. This allows us to briefly introduce the recombination
parameter γ. Finally, we account for the effect of the series resistance in Shockley’s diode
equation by introducing the reader to Banwell’s closed-form expression for the current [14]
and Singal’s model for the maximum power point [12]. In chapter 4, we present and
summarize the findings of the attached papers and, finally, in chapter 5, we conclude
the thesis work.







Chapter 2

Fundamentals of Solar Cell Physics

Solar cells are devices capable of converting solar radiation into electricity [15]. These
devices are made of semiconductors, materials that are capable of using the so-called
photovoltaic effect to convert sunlight into electricity. The main operation can be summed
up as follows: when a solar cell is illuminated, the electrons within the semiconductor may
absorb the incoming photons, allowing them to be promoted from an energy state called
the valence band (VB) to a higher energy state, the conduction band (CB). The difference
between these two energy states is called bandgap (Eg). After the excitation, it is possible
to extract the electrons to an electric circuit. The photovoltaic effect was discovered by
Edmond Becquerel in 1839 [16].

The goal of this chapter is to introduce the reader to the limiting efficiency of single
junction solar cells and characteristic solar cell parameters. In order to do so, we will first
review fundamental concepts such as the nature of solar radiation and generation and
recombination of charge carriers. This will lead to the theory of detailed balance, which
will allow us to compute the limiting efficiency of single junction solar cells and formulate
the diode equation.

2.1 Solar radiation and the effect of the atmosphere

The Sun can be modeled as a blackbody radiating at Tsun = 6000 K. The flux of photons
emitted from a blackbody at a temperature T within the energy interval [E, E + dE] and
chemical potential µ is given by the generalized Planck’s law of thermal radiation [17, 18],

ṅ(E, T, µ, Fs)dE = 2Fs

c2h3
E2 dE

exp
(

E−µ
kT

)
− 1

, (2.1)

Here h, c and k are Planck’s constant, the speed of light in vacuum and Boltzmann’s
constant, respectively. Fs is a geometrical factor related to the solid angle with which the
blackbody radiates. Thermal radiation, such as sunlight, cannot produce work [17]. The
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photon flux emitted from, e.g., the Sun may therefore be given by ṅ(E, Tsun, µ = 0, Fs),
and the total power density, P , of the sunlight is then obtained by integrating the energy
flux, E · ṅ(E, Tsun, 0, Fs), over all possible energies, i.e.,

P =
∫ ∞

0
E · ṅ(E, Tsun, 0, Fs)dE = Fs

2π5k4

15c2h3 T 4
sun (2.2)

= FsσT 4
sun (2.3)

which corresponds to Stefan-Boltzmann’s law [19]. In order to model the actual conditions
under which a solar cell will operate, standardized spectra based on empirical data are
available. Among the most commonly utilized, we encounter the AM0 and AM1.5 spectra.
”AM” stands for ”air mass”, and AM1.5 implies that the spectrum is based on solar
radiation that has traveled through air corresponding to 1.5 times the thickness of the
Earth’s atmosphere. Solar cells are commonly characterized and optimized under standard
test conditions (STC), defined as a global standard solar spectrum AM1.5G corresponding
to an irradiance of 1000 W/m2 [10, 20]. In Fig. 2.1, we compare the three spectrum
models described in this section. Here, we plot the spectral irradiance as a function of the
wavelength, λ. In black, we represent a blackbody radiating at a temperature T = 6000
K while AM0 and AM1.5G are represented in blue and orange, respectively.
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Figure 2.1: Comparison of three spectra. In black, the Sun is assumed to be a blackbody
radiating at Tsun = 6000 K. The AM0 and AM1.5G spectra are represented in blue and
orange, respectively. The latter data can be obtained from the National Renewable Energy
Laboratory (NREL).

2.1.1 Optical étendue

The geometrical factor Fs introduced in Eq. (2.1) is related to the solid angle in which a
blackbody radiates through the so-called optical étendue, a concept often used in geomet-





rical optics to describe light propagating through a medium. An infinitesimal element of
étendue, dE , is defined by [21]

dE = n2 cos θdSdΩ, (2.4)

i.e., the solid angle, Ω, angled an angle θ with respect to the normal of the surface of a
medium with area S and refractive index n. In Fig. 2.2, we display a visual representation
of a differential element of étendue. As Eq. (2.1) describes the emitted photon flux per unit
area, the correct interpretation of Fs would be optical étendue density per unit refraction
index. We refer to it as a ”geometrical factor” for simplification.

dS

dΩ

Figure 2.2: Étendue of a differential surface element.

2.2 Charge carriers in semiconductors
In semiconductor physics, the absence of an electron (e) within a semiconductor’s energy
band is called hole (h). Holes are treated as positively charged particles which are mobile.
The electron and hole populations (n and p, respectively) within a semiconductor are
described by Fermi-Dirac (F-D) statistics [22, 23]. In thermal equilibrium, there is no
net particle flow and F-D statistics describe the most stable energy configuration for
electrons and holes. The potential energy of electrons is described by its Fermi energy,
EF, which equals, at absolute zero, to the energy until which energy states are filled. If
the semiconductor is exposed to light, the electron and hole population will no longer be
in equilibrium with the surroundings resulting in particle flow. The Fermi level may then





split into two quasi-Fermi levels. In Fig. 2.3 we show a schematic band representation of
a semiconductor being disturbed from equilibrium by exposure to light.

CB

VB

E

Eg
EF

(a) Semiconductor in thermal equilibrium.

qV Eg

CB

VB

(b) Semiconductor disturbed from thermal equi-
librium by exposure to light.

Figure 2.3: Schematic band structures of a semiconductor in equilibrium (a) and disrupted
from equilibrium (b). If the disturbance is not too big, the semiconductor will evolve into
a state of quasi-thermal equilibrium, resulting into particle flow. The Fermi level may
then split into two quasi-Fermi levels. The difference between the quasi-Fermi energies
equals the chemical potential, µ, of the cell which is proportional to the voltage V , that
a solar cell will produce. The disturbance is represented by incoming light with energy
equals to ℏω. The particle flow is represented by an electron (black circle) being excited
to the CB, leaving a hole (white circle) in the VB.

2.3 Photogeneration
Photogeneration refers to the process in which an electron within a semiconductor is
promoted from the VB to the CB by means of photon absorption. The excitation leaves
a hole in the VB and, therefore, this process is usually referred to as the generation of an
electron-hole (e − h) pair.

We denote the e − h pair generation rate for a given energy and per unit volume by
ge−h(E). The rate ge−h(E) is related to the incoming photon flux from the Sun through
ge−h(E) = a(E)ṅ(E, Tsun, 0, Fabs), where a(E) is the absorptivity of the material for a
given energy. Here, we have introduced the geometrical factor Fabs, which arises from
integrating over the solid angles of absorption, Ωabs, with respect to the normal of the
cell. To calculate Fabs, let us assume a solar cell that absorbs radiation through a disk
subtended an angle θX from the cell’s surface normal. Defining θ′ as the polar angle, Fabs

will be given by

Fabs =
∫

Ωabs
cos θ′dΩ =

∫ 2π

0

∫ θX

0
cos θ′ sin θ′dθ′dϕ = π sin2 θX. (2.5)





The angle θX is related to the semi-angle to which the Sun subtends through sin θX =√
X sin θsun, with θsun = 0.267◦ and X being the Sun concentration factor. Let us define

Xmax = 1/sin2 θsun as the maximum Sun concentration factor. The total generation rate
per unit volume, G, is obtained by integrating ge−h over all possible energies, i.e.,

G =
∫ ∞

0
a(E)ṅ(E, Tsun, 0, Fabs)dE = X

Xmax

2π

c2h3

∫ ∞

0

a(E)E2 dE

exp
(

E
kTsun

)
− 1

. (2.6)

Note In principle, the surroundings of a solar cell will also contribute to e − h pair
generation if the solar cell and the surroundings are in radiative exchange. However, this
contribution is negligible compared to the contribution of the sunlight and therefore, it is
not worth including it in Eq. (2.6).

2.4 Recombination

Recombination refers to the loss of mobile charge carriers due to electrons decaying to
a lower energy state and, therefore, occupying a hole. We say that an electron recom-
bines with a hole. The recombination process may occur from spontaneous band-to-band
transitions or through impurities (Shockley-Read-Hall recombination). The released en-
ergy may then be radiated to the surroundings (radiative recombination) or as kinetic
energy to another carrier (Auger recombination). In this section, we review the three
most important recombination process that occur within solar cells; Shockley-Read-Hall,
radiative and Auger recombination. While the former two are necessary to understand
essential parts of this thesis, Auger recombination is briefly described for completeness.

2.4.1 Radiative recombination

Radiative recombination results from the spontaneous decay of an electron from the CB
to the VB, thereby emitting a photon to the surroundings. As this recombination process
results into radiative emission, the radiative recombination rate at a given energy and
angle, Urad(E, θ), can be related to the emitted photon flux of a biased blackbody through
Urad(E, θ) = a(E) · ṅ(E, T, µ, Femi(θ)), where Femi is geometrical factor related to the solid
angle with which the cell radiates. If the cell emits energy within a whole hemisphere,
then Femi will equal π. In ṅ(E, T, µ, Femi(θ)), T is the temperature of the solar cell, which
is typically set to 300 K and µ = qV is the splitting of the quasi-Fermi levels for electrons
in the CB and holes in the VB (Fig. 2.3b). The total radiative recombination rate, R,
i.e., the number of photons emitted per second and unit area is obtained by integrating
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Figure 2.4: Band diagram of the three most common recombination mechanisms: (a)
radiative, (b) Auger and (c) SRH recombination. Electrons and holes are represented by
black and white circles, respectively. The emitted photons are represented by their energy
ℏω and the trap states in (c) by their energy levels, Et.

Urad(E, θ) over all possible energies and angles, i.e.,

R =
∫ ∞

0

∫

Ωemi
Urad(E, θ′) cos θ′dΩdE = 2nπ

h3c2

∫ ∞

Eg

a(E)E2

exp
[

E−µ
kT

]
− 1

dE, (2.7)

where we have assumed that the absorptivity of the cell is 0 for any energy lower than the
bandgap, Eg. In Fig. 2.4.a, we display the band structure of a solar cell where an electron
(black circle) spontaneously decays to the VB, thereby leaving a hole (white circle) in the
CB and emitting a photon with energy ℏω.

2.4.2 Shockley-Read-Hall recombination

Shockley-Read-Hall (SRH) recombination [24, 25] is the most important recombination
process occurring in real semiconductors. Impurities within the material introduce avail-
able energy states, usually referred to as traps, within the bandgap. Trap states create
very efficient two-step band-to-band recombination processes by acting as available energy
states to which an electron within the CB may spontaneously decay [15]. The trapped
electron will then decay to the VB and fill a hole. The net SRH recombination rate, USRH,
is given by [24, 25]

USRH = np − n2
i

τn0(p + pt) + τp0(n + nt)
, (2.8)





Figure 2.5: Trap energy levels for the most commonly found impurities within the silicon
bandgap. The figure is obtained from Ref. [26] where it was reformatted from its original
publication in Ref. [27].

where ni is the intrinsic carrier density and is given by

n2
i = NvNc exp

(
− Eg

kT

)
, (2.9)

with Nx (x = c,v) being the effective conduction and valence band density of states and
given by

Nx = 2
(

m∗
xk

2πℏ2

) 3
2

T
3
2 , (2.10)

where m∗
x denotes the effective mass of the conduction (valence) band and ℏ is the reduced

Planck constant.

The electron and hole population in Eq. (2.8) are given by n = n0+∆n and p = p0+∆p,
where n0 and p0 are the electron and hole density at thermal equilibrium and ∆n and
∆p are the excess carrier densities. The parameters nt and pt are the electron and hole
densities when their quasi-Fermi level matches the trap energy level, Et, and are given by

pt = Nv exp
[−Et

kT

]
, (2.11)

nt = Nc exp
[
Et − Eg

kT

]
. (2.12)

The capture time parameters τj0 (j = n, p), which depend on the type and density of
traps, are given by

τj0 = 1
Ntvjσj

, (2.13)

where Nt is the density of traps, vj is the carrier thermal velocity and σj is the capture cross
section of the carriers. A schematic representation of SRH recombination is presented in
Fig. 2.4.c. Here, we display how an electron in the CB may spontaneously decay to a
trap state with energy Et. From here, the electron will decay to the VB and fill a hole.
In Fig. 2.5, we show the trap energy states for the most commonly found impurities in
silicon solar cells.





2.4.3 Auger recombination

In the Auger recombination process, the excess energy resulting from an e−h pair recom-
bining is absorbed by a third carrier, an electron in the CB or a hole in VB. The excited
carrier then thermalizes to its original energy through phonon emission. [28]. This process
can also be visualized as two electrons in the CB colliding and giving the excess kinetic
energy to a hole, or, alternatively, two holes in the VB colliding and giving the excess
energy to an electron [29]. The Auger recombination rate, UAug, is therefore proportional
to the densities of the three involved carriers, i.e.,

UAug = An(n2p − n2
0p0) + Ap(np2 − n0p

2
0) (2.14)

where An and Ap are Auger coefficients of electrons and holes, respectively. Since this
process is a three-particle interaction, it is normally only significant in non-equilibrium
conditions with highly doped semiconductors. Auger recombination is schematically rep-
resented in Fig. 2.4.b. Here, an electron and a hole recombining give an energy excess to
another electron. The latter is excited to an even higher energy level, from which it will
thermalize to the edge of the CB.

2.5 Detailed balance theory
The theory of detailed balance was proposed by William Shockley and Hans J. Queisser
(SQ) in 1961 [30]. In their work, the authors showed that single junction solar cells have
a limiting efficiency of 40.8% under concentrated light. In this section, we review briefly
the theory of detailed balance.

The core of the SQ model is to omit all mechanisms of energy loss that are not
physically unavoidable. This can be done by assuming the following:

i Only radiative recombination occurs within the cell,

ii carriers have infinite mobility,

iii all photons with energy larger than the bandgap are absorbed,

iv one absorbed photon generates one e − h pair and,

v a perfect mirror is placed in the back of the cell to ensure that the cell will only radiate
in a hemisphere.

Assumptions (i) and (iv) are achieved by assuming a not-highly doped impurity-free
semiconductor, so that neither SRH nor Auger recombination are present. Assuming
carriers with infinite mobility implies that all generated e − h pairs are extracted to an





electric. This also implies zero series resistance with the metal contacts. Assumption (iii)
is achieved by setting unit absorptivity, i.e., a(E) = 1 for E ≥ Eg and zero otherwise, in
Eq. (2.6) and (2.7). Finally, assumption (v) is achieved by setting Femi = π.

If a solar cell fulfills these five assumptions, it is said to be at the radiative limit and
the number of electrons that can be extracted from the cell equals the difference between
the number of absorbed and emitted photons. From Eqs. (2.6) and (2.7), since the number
of extracted electrons is proportional to the current, the total current density produced
by a solar cell is given by

J = qG − qR = q
∫ ∞

Eg
ṅ(E, Tsun, 0, Fabs)dE − q

∫ ∞

Eg
ṅ(E, Tc, qV, Femi)dE, (2.15)

where q is the electron charge.

The power density, P , obtainable from a solar cell is given by the product P = V J ,
where J is given by Eq. (2.15). The recombination term in the detailed balance equation
increases with increasing voltage. For a sufficiently high voltage, the recombination term
in Eq. (2.15) will cancel the generation term, resulting in zero current, and therefore zero
power. This is the open-circuit voltage, Voc. In order to calculate the maximum efficiency
of a solar cell, one needs to find the voltage that maximizes the output power. This is
known as the maximum power point voltage, Vmpp. The maximum power point current,
Jmpp, is obtained by evaluating Eq. (2.15) at V = Vmpp. Consequently, the maximum
power density from the cell is given by the product Pmpp = VmppJmpp and, the limiting
efficiency, ηmax, will therefore be given by

ηmax = Pmpp

Pin
= VmppJmpp

X/Xmax · σT 4
sun

. (2.16)

In Fig. 2.6, we display the limiting efficiency of an ideal solar cell as a function of the
energy gap, Eg. The displayed plots correspond to concentrated (X = 46050) and uncon-
centrated (X = 1) light. The maximum efficiencies are 40.8% and 30.9%, respectively,
and are known as the SQ limits.

2.5.1 The diode equation

The last term in Eq. (2.15) corresponds to the photon flux emitted due to radiative recom-
bination. In the regime of useful bandgaps, which corresponds to Eg ≥ 0.5 eV, it holds
that E − qV >> kTc, which implies that the Bose-Einstein (B-E) distribution appearing
in the generalized Planck law is well-approximated by a Boltzmann distribution [31]. As
a consequence, the exponential in the denominator of Eq. (2.1) is much larger than one,
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Figure 2.6: Limiting efficiency of a solar cell as a function of the energy gap. The Sun is
here modeled as blackbody radiating at Tsun = 6000 K.

and the current produced by radiative recombination can be expressed as

q
∫ ∞

Eg
ṅ(E, Tc, qV, Femi)dE = 2qFemi

c2h3

∫ ∞

Eg

E2dE

exp
(

E−qV
kTc

)
− 1

≈ 2qFemi

c2h3

∫ ∞

Eg

E2dE

exp
[

E−qV
kTc

]

=
[

2qFemi

c2h3

∫ ∞

Eg
E2 exp

[
− E

kTc

]
dE

]
exp

[
qV

kTc

]

= J0 exp
[

qV

kTc

]
, (2.17)

where J0 is the thermal recombination current [32]. Eq. (2.17) is known as the Boltz-
mann approximation [29]. The first term on the RHS of Eq. (2.15) corresponds to the
current associated to the photogeneration of e−h pairs and is therefore often referred to as
the photogeneration, or just generation, current, Jph. Using Boltzmann’s approximation,
Eq. (2.15) becomes

J = Jph − J0 exp
[

qV

kTc

]
, (2.18)

which describes the current that will be delivered to the electric circuit to which the solar
cell is coupled. From Eq. (2.18), the short-circuit current, Jsc, i.e., the current through a
solar cell at zero voltage, can be expressed as Jsc = Jph − J0. By inserting this identity
into Eq. (2.18), we arrive at

J = Jsc − J0

(
exp

[
qV

kTc

]
− 1

)
, (2.19)

which corresponds to the so-called diode equation, the characteristic equation of solar
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Figure 2.7: Example of a J − V characteristic corresponding to a semiconductor with
bandgap Eg = 1.125 eV at Tc = 300 K under an AM 1.5G spectrum.

cells [33, 34]. The beauty of the theory of detailed balance is that from a particle balance,
namely ”photons in, electrons out”, we are able to show that a solar cell device will behave
as an ideal diode. Shockley had previously derived the diode equation for p − n junction
in his ”The Theory of p − n Junctions in Semiconductors and p − n Junction Transistors”
in 1949 [33].

2.5.2 Solar cell parameters

Solar cells can be characterized by constructing their current-voltage (J − V ) curve. An
example of a J − V curve is presented in Fig 2.7. The curve is obtained from Eq. (2.19)
and corresponds to a semiconductor with bandgap Eg = 1.125 eV at Tc = 300 K under
an AM 1.5G spectrum.

A J −V curve is characterized by four points; Voc, Jsc, Vmpp and Jmpp. From Eq. (2.19),
an expression for Voc can be found by setting J = 0. We obtain

Voc = kTc log
[
Jsc

J0
− 1

]
≈ kTc log

[
Jsc

J0

]
, (2.20)

where we have approximated Jsc = Jph − J0 ≈ Jph, as this is the case for most solar cells.
Another important solar cell characterization parameter is the fill factor (FF), which
measures the quality of a solar cell by comparing the maximum obtainable power, Pmpp,
to the product of the open-circuit voltage and the short-circuit current.

FF = VmppJmpp

VocJsc
. (2.21)

Finally, it is worth mentioning that in real cells that the output power of real solar





cells is usually negatively affected by voltage and current drops due to series and shunt
resistance effects, respectively. These are not included in the ideal diode equation and
will be further explored in the next chapter.





Chapter 3

Advanced Topics in Photovoltaics

Now that we have introduced the basics of solar cell physics, we can explore more advanced
concepts that are necessary to understand the attached papers. In this chapter, we
introduce Lambert’s W function as the mathematical function that allows for an analytical
expression of the maximum power point voltage. Next, we present the thermodynamic
efficiency limit and the fundamental energy losses of single-junction solar cells. The
discussion follows with a review on the temperature sensitivity of solar cells. Particularly,
we explore the concept of temperature coefficient and Green’s [10] and Dupré’s [11] models
for the temperature coefficient of Voc. Finally, the effect of the series resistance on the
maximum power point is discussed.

3.1 Lambert’s W function and the maximum power
point

In Chapter 2, we introduced the concept of the maximum power point (MPP), in the
context of calculating limiting efficiencies. The MPP is the point (V, J) of a J − V

characteristic that maximizes the power P , given by the product P = V J . In section 2.5.2,
we also introduced analytical expressions for Voc, Jsc and FF, but we did not do so for
Vmpp, nor Jmpp. The reason for this is that, traditionally, the MPP has been calculated
numerically from the diode equation, as only approximate expression for Vmpp were in
use. It was not until recently that Khanna noticed that Lambert’s W function, defined
by z = W(zez) [35], allows for an exact analytical expression of Vmpp and, consequently
Jmpp and Pmpp = VmppJmpp [8]. In this section, we introduce the reader to Lambert’s W
function, the properties of the W function that were most relevant for the research done
for this thesis and how Khanna made use of it in Ref. [8] to derive an expression for Vmpp.
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Figure 3.1: The two real branches of the W function, W0(x) (blue) and W−1(x) (red).

3.1.1 Properties of Lambert’s W function

Lambert’s W function is a multi-valued function defined by the inverse of f(x) = xex,
where x ∈ C. For an integer k, it holds that

x = Wk(xex), (3.1)

where Wk is the k-th branch of the W function. Only two values of k result in functions
defined within the field of the real numbers: W−1(x), defined for − 1/e ≤ x < 0, and W0(x),
defined for x ≥ − 1/e. The latter is known as the principal branch of Lambert’s W. In
Fig. 3.1, we display the two real branches of the W function, W0(x), in blue continuous
lines, and W−1(x) in red dashed lines.

In photovoltaics, we deal with real-valued positive-defined quantities and therefore,
unless otherwise stated, we will always use the principal branch, W0. We will refer to it
as just Lambert’s W function, W. In the following, we derive some of the properties of
Lambert’s W function, as these are used in the attached papers.

Identities Define first x = W(y). Eq. (3.1) then reads W(y) = W
[
W(y)eW(y)

]
.

Applying the inverse of W function, i.e., the function W−1(x), such that, y = W−1(W(y)),
to both sides of the equality yields y = W(y)eW(y) and therefore

eW(y) = y

W(y) . (3.2)

Calculus The derivative of Lambert’s W function can be found from Eq. (3.1) by





implicit differentiation. Letting z := xex, we have

1 = d
dx

W(z) = dW
dz

dz

dx
= dW

dz
(ex + xex)

= ex dW
dz

(1 + x). (3.3)

From z = xex and Eq. (3.1), note that ex = z/x = z/W(z). The derivative of W is then
given by

d
dz

W(z) = 1
ex(1 + x) = 1

z

x

1 + x
= 1

z

W(z)
1 + W(z) . (3.4)

The indefinite integral of W(x) can be obtained by making the substitution x = wew.
A differential element, dx, is then given by dx = (ew + wew)dw. Therefore

∫
W(x)dx =

∫
W(wew)(ew + wew)dw

=
∫

w(ew + wew)dw. (3.5)

Partial integrating Eq. (3.5) and making use of the identity in Eq. (3.2) yields

∫
W(x)dx = x

(
W(x) − 1 + 1

W(x)

)
+ C. (3.6)

Expansions For small x,the Taylor expansion of the principal branch of Lambert’s
W function is given by

W0(x) =
∞∑

n=1

(−n)n−1

n! xn = x − x2 + 3
2x3 − . . . , (3.7)

which converges as long as x ≤
1
e
. On the other hand, for large x, W0 is well approximated

by the asymptotic expansion

W0(x) ≈ log x − log log x + log log x

log x
− . . . (3.8)

3.1.2 Khanna’s model for the maximum power point

The total power density, P , is given by the product P = V J [29]. At the maximum power
point, the function P (V ) has a maximum and, therefore, it holds that

0 = d
dV

P = d
dV

V J(V ) = J + V
d

dV
J, (3.9)





where J(V ) is given by the diode equation. Inserting Eq. (2.19) into Eq. (3.9) yields.

0 =
[
J + V

d
dV

J

]

V =Vmpp

= Jsc − J0 exp
[

qV

kTc

]
+ V

−qJ0

kTc
exp

[
qV

kTc

] ∣∣∣∣∣
V =Vmpp

= Jsc − J0

(
1 + qVmpp

kTc

)
exp

[
qVmpp

kTc

]

= Jsc

J0
−
(

1 + qVmpp

kTc

)
exp

[
qVmpp

kTc

]
, (3.10)

where we have approximated the photogeneration current, Jph by Jsc. Here, we note that
the quotient Jsc/J0 can be written as exp (qVoc/kTc) by means of Eq. (2.20). This allows to
write the last equality in Eq. (3.10) as

exp
(

qVoc

kTc

)
=
(

1 + qVmpp

kTc

)
exp

[
qVmpp

kTc

]
. (3.11)

Taking now the log at both of the equality and solving for Vmpp yields

Vmpp = Voc − kTc

q
log

[
1 + qVmpp

kTc

]
, (3.12)

which is an implicit equation in Vmpp. Traditionally, one would solve Eq. (3.12) numeri-
cally to obtain values of Vmpp.

Lambert’s W function Khanna et al. noticed that by multiplying Eq. (3.11) by
Euler’s number, e, we obtain

exp
(

1 + qVoc

kTc

)
=
(

1 + qVmpp

kTc

)
exp

[
1 + qVmpp

kTc

]
. (3.13)

The right-hand side of Eq. (3.13) is of the form zez, with z = 1 + qVmpp/kTc, and can
therefore be inverted by means of Lambert’s W function. By applying W to both sides
of the equality and solving for Vmpp, one obtains [8, 36]

Vmpp = kTc

q

(
W
[
exp

(
1 + qVoc

kTc

)]
− 1

)
. (3.14)

An expression for the maximum power point current, Jmpp, can be obtained by eval-
uating Eq. (3.14) into Eq. (2.19) and, an expression for the maximum power, Pmpp, is
obtained from the product Pmpp = VmppJmpp. This yields [8, 36]

Jmpp = Jsc


1 − 1

W
[
exp

(
1 + qVoc

kTc

)]


 , (3.15)





Pmpp = Jsc
kTc

q


W

[
exp

(
1 + qVoc

kTc

)]
− 2 + 1

W
[
exp

(
1 + qVoc

kTc

)]


 . (3.16)

In his work, Khanna also derived an expression for the FF by inserting Eqs. (3.14)
and (3.15) into (2.21). Denoting by zoc the argument of Lambert’s W function in Eq. (3.14),
one obtain

FF = kTc

qVoc

(
W [zoc] − 2 + 1

W [zoc]

)
= kTc

qVoc

W[zoc]2 − 2W[zoc] + 1
W [zoc]

= kTc

qVoc

(W[zoc] − 1)2eW[zoc]

zoc
. (3.17)

Eq. (3.17) differs from Khanna’s expression in Ref. [8] in that zoc−1 in the denominator
of the last term is approximated by zoc. This is result of having made Jph ≈ Jsc in
Eq. (3.10).

3.2 Fundamental energy losses in solar cells

In chapter 2, we introduced the SQ efficiency limit of 40.8% for single-junction solar
cells. This implies that, under concentrated light, an ideal solar cell is only capable of
converting around 40% of the incoming solar radiation into useful energy. The natural
question that follows is, what happens to the remaining 60%? In this section, we aim
to find an answer to this question. For this, we will first introduce the thermodynamic
efficiency limit of solar cells. Once that we have set the upper efficiency bound, we will
introduce the fundamental energy losses of solar cells.

3.2.1 Thermodynamics of energy conversion

At its core, a solar cell can be reduced to a heat engine, i.e., a system that converts energy,
the incoming sunlight, into work, the chemical potential of the cell µ = qV , and heat,
emitted to the surroundings in form of radiative recombination. The efficiency of such an
engine is limited by the efficiency of a Carnot cycle [37],

ηCarnot = 1 − T0

TH
, (3.18)

where T0 and TH are the temperatures of the cold and hot reservoirs, respectively. Making
TH = 6000 K and T0 = 300 K yields a maximum efficiency of 95%. Carnot’s efficiency is
calculated as the ratio of the extracted work to the incoming heat flux. A slightly more
realistic approach to calculate the limiting efficiency of a solar cell heat engine assumes
that the cell is in radiative exchange with the surroundings. The efficiency of the cell is
then calculated as the ratio of the extracted work to the to the incoming heat flux minus





the radiated energy flux. A maximum efficiency of 93.33% is obtained assuming both the
Sun and the cell to be blackbodies. This limit is called the Landsberg efficiency limit [38].

In both Landsberg and Carnot efficiency limits, entropy is conserved. This implies
that the process of solar energy conversion is reversible, which is not. To account for the
irreversibility of energy conversion, De Vos proposed in Ref. [39] an endoreversible solution
to calculate the thermodynamic efficiency limit of solar cells. A schematic representation
of De Vos’ system is presented in Fig. 3.2. In this system, the heat imbalance between
the hot reservoir at T = Tsun and an virtual converter at temperature TC > T0 generates
entropy. The converter is then coupled to a heat engine operating at Carnot efficiency
at a temperature, T0, equal to the temperature of the cold reservoir, Tamb. Assuming the
hot reservoir and the converter to be blackbodies, the excess heat generated by the heat
imbalance between the converter and the hot reservoir, Qin in Fig. 3.2, will be given by
the difference

Qin = ϕsun − ϕC = σ(T 4
sun − T 4

C). (3.19)

Since the heat engine is operating at Carnot efficiency, entropy is conserved and there-
fore, it follows that

0 = ∆S = Qin

TC
− Qout

Tamb
. (3.20)

The produced work, W, by the heat engine equals the energy entering the engine from
the converter, Qin, minus the emitted heat to the surroundings, Qout. The efficiency of
the whole device, ηDV, equals the produced work divided by the energy coming from the
Sun, ϕsun. Therefore

W = σ
(

1 − Tamb

TC

)
(T 4

sun − T 4
C), (3.21)

ηDV = W
ϕsun

=
(

1 − Tamb

TC

)(
1 − T 4

C
T 4

sun

)
. (3.22)

For Tsun = 6000 K and T0 = 300 K, i.e. the usual conditions at which a solar cell
operates, Eq. (3.22) has a maximum at TC = 2540 K of ηDV = 85%. As a final note, it
is worth noting that TC is not necessarily a temperature in the usual interpretation, e.g.,
operating cell temperature. TC can, for instance, be the temperature of electrons in a
hot-carrier cell [13, 40, 41]

3.2.2 Fundamental Losses in Solar Cells

In the previous section, we showed that the thermodynamic efficiency limit of a solar cell
is 85%. However, we showed in section 2.5 that the limiting efficiency of an ideal single-
junction solar cell operating at the radiative limit is 40%. What happens then to the
almost 45% missing? To find an answer to this question, we will review the assumptions
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Figure 3.2: Schematic representation of a solar cell. Entropy is produced in the heat
imbalance between the converter and the Sun, thus making the radiative exchange irre-
versible. The inner engine is operating at Carnot efficiency, which is a reversible process.
The overall process of energy conversion is hence irreversible.

made to derive the SQ limit and refer to Ref. [9], where Hirst and Ekins-Daukes identified
the five mechanisms of energy loss that are intrinsic to solar cells and proposed analytical
expressions to calculate these losses.

The first of energy loss mechanism to study is consequence of unabsorbed photons.
One of the five assumptions of the SQ model is unit absorptivity for all photons with
energy larger than the bandgap and zero absorptivity otherwise. A solar cell is therefore
transparent to all photons with energy ℏω < Eg. Referring to the notation introduced
in chapter 2, the flux of photons coming from the Sun, ṅ(E, Tsun, 0, Fabs), is given by
Eq. (2.1). The corresponding energy flux is E · ṅ(E, Tsun, 0, Fabs). The energy loss due to
unabsorbed photons, denoted here LBelow, is given then by

LBelow =
∫ Eg

0
E · ṅ(E, Tsun, 0, Fabs) dE. (3.23)

In Fig. 3.3.a, we show a schematic representation of a photon with energy lower than
Eg going through a solar cell.

Next, if a solar cell absorbs photons with energy much larger than the bandgap,
electrons will be promoted to energy levels way above the conduction band’s edge. Due
to strong interactions with the lattice, these excited electrons will emit the energy excess,
through phonon emission, and relax to the bandgap. This process is called thermalization.
We display in Fig. 3.3.c, a visual representation of the thermalization process. Here, an
electron has been promoted to a high energy level from which relaxes to the CB by
emitting the energy excess as heat. The energy loss due to this process, denoted here





LTherm, is given by [9]

LTherm =
∫ ∞

Eg
(E − Eg) · ṅ(E, Tsun, 0, Fabs) dE. (3.24)

The energy losses due to thermalization of carriers and unabsorbed photons account
for the remaining 45% of the total efficiency loss for single-junction solar cells.

Eg

(a)

(b)

(c)

Figure 3.3: Fundamental losses in single-junction solar cell. In (a) the cell is transparent
to photons with energy ℏω < Eg. In (b), we display radiative recombination and, in (c),
we represent an electron thermalizing to the edge of the CB

The three remaining mechanism of energy loss that Hirst and Ekins-Daukes identified
are intrinsic to the thermodynamic limit described in section 3.2.1. First, the energy loss
consequence of the cell emitting a part of the absorbed energy, represented in Fig. 3.2
as Qout. This in accordance with Kirchhoff’s law of thermal radiation which states that,
in thermal equilibrium, the emissivity of a gray body equals its absorptivity [42]. The
expression that Hirst and Ekins-Daukes proposed for this emission loss, denoted here LEm,
is [9]

LEm = Eg

∫ ∞

Eg
n(E, Tc, qV, Femi) dE, (3.25)

which reads as the energy loss due to radiative recombination (Fig. 3.3.b) assuming that
the average energy of the emitted photons equals the cells energy gap.

The last two mechanisms of energy loss that Hirst and Ekins-Daukes describe in their
work limits to the obtainable voltage. This is easily seen in the expression for Vmpp

1 that

1In their work, the authors refer to it as the optimal voltage, Vopt.
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Figure 3.4: Intrinsic energy losses and power output as a function of the bandgap under
1000 suns illumination. Reproduced from [9].

the authors provided in Ref. [9],

qVmpp = Eg

(
1 − Tc

Tsun

)
− kTc log

(
Femi

Fabs

)
. (3.26)

The first term on the right-hand side of Eq. (3.26) is referred to in Ref. [9] as the
Carnot factor due to its similarity with the efficiency of a Carnot cycle, Eq. (3.18). The
second term affecting the voltage appears due to the possible mismatch between the solid
angles of emission and absorption of radiation, which results in part of the incoming
energy being lost in entropy generation [43]. The physical explanation for this energy
loss is provided by Markvart in Refs. [44], [45] and [46] and reads as follows: when a
solar cell absorbs light, entropy needs to be created, in form of an energy loss, to ensure
conservation of optical etendue23 [48, 49]. As étendue cannot decrease, the solid angle of
emission, Ωemi, must be greater (or equal) than the solid angle of absorption, Ωabs. The
last term in Eq. (3.26) will always be positive, or zero for Ωabs = Ωemi. In the context
of Fig. 3.2, this loss accounts for the irreversibility of solar energy conversion. As for
the Carnot loss, because of its mathematical expression resembles Boltzmann’s entropy
equation, it is referred to in Ref. [9] as the Boltzmann factor.

In Fig. 3.4 the fraction of the incident solar radiation is plotted as a function of the

2Recall that the geometrical factors, Fs, are related to the solid angles Ωs (s = abs, emi) through the
étendue, Eq. (2.4)

3We would like to refer to Ref. [47] for an entertaining, yet accurate, explanation of the law of
conservation of étendue.





energy gap, Eg. Here, the contribution of each of the energy losses presented in this
section is displayed. The cell is assumed to be at T = 300 K and to emit radiation in a
whole hemisphere. This is obtained by setting the solid angle of emission to 2π. The solid
angle of absorption has been set so that it is equivalent to a Sun concentration factor of
1000. The figure is reproduced from Ref. [9].

3.3 Temperature sensitivity of solar cells

The temperature of a solar cell plays a very important role in its overall power efficiency.
See, e.g., the thermodynamic efficiency limits presented in section 3.2.1. The efficiencies
ηCarnot in Eq. (3.18) and ηDV, in Eq. (3.22), decrease with increasing temperature. The
fundamental energy losses presented in section 3.2 are also dependent on the cell temper-
ature; the emission, Carnot and Boltzmann losses present an explicit dependence with
the cell temperature, whereas the losses due to thermalization and unabsorbed photons
depend on the cell temperature through the semiconductor bandgap [50, 51, 52]. Solar
cell devices are usually characterized and optimized at standard test conditions (STC),
defined as a global standard solar spectrum AM1.5G, an irradiance of 1000 W · m−2 , and
a cell temperature of T = 300 K. However, real operating conditions can differ signifi-
cantly from STC depending on, e.g., the climate [53, 54]. This is exemplified in Fig. 3.5,
where the normalized efficiency of various solar cell materials is displayed as a function of
the operating cell temperatures. Being able to accurately quantify temperature variations
is therefore relevant in the pursue of optimal efficiency.

3.3.1 Temperature Coefficient

The temperature sensitivity of a solar cell parameter (Voc, isc...) is usually described by
its temperature coefficient (TC). The absolute temperature coefficient of a parameter X,
as a function of the temperature, T , denoted here βX(T ), is defined as the rate of change
of X over the considered temperature range, i.e., the derivative of X with respect to the
temperature. The relative temperature coefficient of X, denoted here βr

X , is defined as
the absolute TC of X normalized by X, i.e., [56]

βr
X(T ) = 1

X
βX(T ) = 1

X

dX

dT
= d

dT
log X(T ). (3.27)

The dependence with the temperature of most solar cell parameters, such as Voc or
the efficiency, is approximately linear for normal operating temperatures [10, 57]. The
derivative in Eq. (3.27) is then nearly constant and, therefore, βX can be referred to as
the temperature coefficient.





Figure 3.5: Normalized efficiency as a function of the temperature for various solar cell
materials (c-Si: crystalline silicon; a-Si: Amorphous silicon; CdTe: Cadmium telluride.
GaAs: Gallium arsenide; SHJ: Silicon hetero-junction; CIGC: Copper-indium-gallium
selenide) [55]

3.3.2 The temperature coefficient of the open-circuit voltage

The TC of Voc, βVoc , has been studied from an analytical perspective in multiple works.
This is because βVoc accounts for approximately 80–90% of the total temperature sensitiv-
ity of the cell [10]. For the thesis work, two articles are of particular relevance: Refs. [11]
and [13]. In this section, we reproduce the derivations of the relevant expressions derived
in these works.

Starting with Ref. [13], Green derived an expression for the TC of Voc. From the
expression for Voc given in Eq. (2.20), Green wrote

Jsc(T ) = J0

(
exp

(
qVoc

kT

)
− 1

)
= AT γ exp

(−Eg0

kT

)
exp

(
qVoc

kT

)
, (3.28)

where A is a constant, Eg0 is the bandgap extrapolated to 0 K and γ is a parameter
that includes the temperature dependencies of the remaining parameters determining J0.
The last equality of Eq. (3.28) was proposed by Green in Ref. [13] and this form of J0 is
derived and justified later in the present text. Taking the derivative with respect to the
temperature at both sides of Eq. (3.28) yields

dJsc

dT
=
(

AγT γ−1 + AT γ q

kTc

[
dVoc

dT
−
(

Voc − Eg0/q

T

)])
exp

(
q(Voc − Eg0/q)

kT

)
(3.29)

Here, Green noted that the absolute value of dJsc/dT can be neglected in comparison
with the remaining terms of the equality. The parenthesis on the RHS of Eq. (3.29) is then





zero. Making use of the definition of TC to write dVoc/dT = βVoc and a bit of manipulation
yields [13]

βVoc = dVoc

dT
= −

Eg0/q − Voc + γkT/q

T
, (3.30)

from where Green concluded a approximately linear decrease in Voc with increasing tem-
perature.

3.3.2.1 The external radiative efficiency

As the diode equation presented in Eq. (2.19) is derived from the detailed balance, it
describes a solar cell operating at the radiative limit. However, as noted in section 2.4,
non-radiative recombination processes, such as SRH recombination, are the most impor-
tant processes occurring in real semiconductors. In order to account for non-radiative
recombination, Green introduced the concept of External Radiative Efficiency (ERE) in
Ref. [58]. The ERE is defined as the fraction of the total dark current recombination in the
cell that results in radiative emission from the cell [58]. In Ref. [11], Dupré made use of
the ERE to explicitly quantify the mechanism affecting the temperature sensitivity of Voc.
For this, Dupré introduced the ERE in Eqs. (2.19) and (2.20) by making the substitution
J0 → J0/ERE [11] and wrote

J = Jsc − 1
EREJ0 exp

(
qV

kT

)
, (3.31)

Voc(T ) = kT

q
log

(
EREoc

Jsc

J0

)
, (3.32)

where EREoc is the ERE evaluated at open-circuit. From Eq. (3.32), an expression for
βVoc can be obtained by taking the derivative with respect to the temperature. This gives

βVoc = dVoc

dT
= k

q
log

(
EREoc

Jsc

J0

)
+ kT

q

d
dT

log
(

EREoc
Jsc

J0

)

= Voc

T
+ kT

q

[
J ′

sc
Jsc

+ ERE′
oc

EREoc
− J ′

0
J0

]
, (3.33)

where the prime implies derivative with respect to the temperature. The thermal recom-
bination current, J0, is given by the integral in Eq. (2.17), which is well approximated
by

J0(T ) = 2π

c2h3

∫ ∞

Eg(T )
E2 exp

[
− E

kT

]
dE ≈ 2π

c2h3 kTEg(T )2 exp
[
−Eg(T )

kT

]
. (3.34)

Note from Eq. (3.34) that the bandgap is dependent on the cell’s temperature, Eg(T ).
This originates from interaction between electrons and lattice phonons [59]. The bandgap





Figure 3.6: Limiting efficiency of single-junction solar cells as a function the energy gap
for various temperatures. An AM1.5G spectrum is assumed. The plot also displays the
temperature sensitivity of the bandgap of various semiconductors, as well as their limiting
efficiencies [11, 55].

of most semiconductors decreases with increasing temperature. This excludes CH3NH3PbI3

and related perovskite compound which shows the opposite behavior [55]. The tempera-
ture sensitivity of the bandgap is well approximated by [13, 50, 60],

Eg(T ) = Eg0 − T
dEg

dT

∣∣∣∣∣
T =Tc

+ O(T 2
c ) . . . (3.35)

where Eg0 is the bandgap extrapolated to T = 0 K. In Fig. 3.6, the limiting efficiency
of single-junction solar cells is displayed as a function of the bandgap for temperatures
ranging from 5◦C up to 85◦C [11, 55]. Here, the temperature sensitivity of the bandgap
of various solar cell materials is also displayed.

Inserting Eq. (3.34) into (3.33) and accounting for the linear temperature dependence
of the bandgap in Eq.(3.35) yields [11]

βVoc = Voc − Eg0/q − γkTc/q

Tc
, (3.36)

with
γ = 1 + 2Tc

E ′
g

Eg
− Tc

ERE′

ERE − Tc
J ′

sc
Jsc

. (3.37)

Comparing Eq. (3.36) to (3.30), Dupre noted that they had arrived at the same ex-
pression4 and concluded that Eq. (3.37) explicitly quantifies the recombination parameter
γ introduced in section 3.3.2. Recalling the definition of γ, given by Green in Ref. [10],
Dupré concluded that Eq. (3.37) allows for an explicit identification of the temperature

4In Ref. [11], the author used the notation d log X
d log T , which is equivalent to T X′

X





Figure 3.7: Equivalent circuit for a solar cell including series (r) and shunt (rsh) resistance.
Jph and J0 are the photogeneration and thermal recombination current introduced in
chapter 2. Jsh equals the last term in Eq. (3.38).

sensitivity of the mechanisms determining Voc [11, 61].

3.4 The effect of the series resistance
So far, all the expressions that we have presented in this thesis have been derived from
the diode equation, Eq. (2.19). Non-radiative recombination has been accounted for
through the ERE, Eq. (3.31). In real solar cells, however, power is lost not only through
recombination but also through resistance of the metal contacts and current leakages. To
account for these effects in the characterization of solar cell devices, the diode equation
in Eq. (2.19) needs to be modified to the general form [26, 29, 62]

J = Jph − J0 exp
[

q(V + Jr)
kT

]
− V + Jr

rsh
, (3.38)

where r and rsh are the series and shunt resistances, respectively. Note that, as Eq. (3.38)
describes current density, the units of the resistance are Ω · cm2 and therefore, these are
sometimes refer to as area-normalized resistances [63]. In Fig. 3.7, we display the equiv-
alent circuit of a solar cell. Here, Jsh equals the last term in Eq. (3.38). Shunt resistance
effects do not usually have a relevant impact in laboratory cells, as these typically appear
due to defects in manufacturing. We will therefore assume rsh → ∞ in Eq. (3.38), so that
the last term is negligible, and limit our discussion to only series resistance.

3.4.1 Closed-form of the diode equation with series resistance

Banwell showed in Ref. [14] that Lambert’s W function, introduced in section 3.1.1, allows
for an exact analytical solution of Eq. (3.38). In this section, we reproduce the derivation.
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Multiplying both sides of the equality by qr
kT

exp(− qr(J−Jph)
kT

) allows to rewrite Eq. (3.38)
as

qr

kT
(Jph − J) exp

[
qr(Jph − J)

kT

]
= qr

kT
J0 exp

[
q(V + Jphr)

kT

]
. (3.39)

Note that the left-hand side of the equality is of the form zez, with z = qr
kT

(Jph − J).
Applying W to both sides of Eq. (3.1) yields

qr

kT
(Jph − J) = W

[
qr

kT
J0 exp

[
q

kT
(V + Jphr)

]]
, (3.40)

and therefore
J = Jph − kT

qr
W
[

qr

kT
J0 exp

[
q

kT
(V + Jphr)

]]
. (3.41)

From Eq. (3.41), it is now straight forward to obtain an expression for the short-circuit
current, Jsc, by setting V = 0. This gives

Jsc = Jph − kT

qr
W
[

qr

kT
J0 exp

[
qJphr

kT

]]
. (3.42)

In Fig. 3.8, we display J − V characteristics corresponding to a solar cell with Eg =
1.125 eV at T = 300 K under an AM1.5G spectrum for various values of the series
resistance ([r] = Ω ·cm2). Here, the arrow indicates increasing series resistance. Note that
the the series resistance reduces the fill factor. As a final note, it is worth mentioning the
work of Jain and Kapoor in Ref. [64], where, the authors derived an analogue expression
to Eq. (3.41) that also included the effect of the shunt resistance.





3.4.2 Singal’s model for the maximum power point

Already in 1981, Singal derived approximate analytical expressions for Vmpp, Jmpp and
Pmpp [12]. Because this work came before Banwell’s close-form expression for the current
with series resistance, Eq. (3.41), Singal’s model did not make use of Lambert’s W func-
tion. In this section, we derive Singal’s expressions. First, setting rsh → ∞, we can solve
Eq. (3.38) for V and obtain

V = kT

q
log

[
Jph − J

J0

]
− Jr. (3.43)

The power density, P , is given by P = V J and at the maximum power point, it holds

0 = dP

dJ

∣∣∣∣∣
J=Jmpp

= kT

q
log

[
Jph − Jmpp

J0

]
− kT

q

Jmpp

Jph − Jmpp
− 2Jmppr. (3.44)

For convenience, Singal defined the dimensionless variables v and y as

v = q

kT
Voc, (3.45)

y = kT

qVoc
log

[
Jph − Jmpp

J0

]
= 1

v
log

[
Jph − Jmpp

J0

]
. (3.46)

Note that yVoc = Vmpp. This can be seen by evaluating Eq. (3.43) at the MPP with
r = 0:

Vmpp = kT

q
log

[
Jph − Jmpp

J0

]
= Voc

v
log

[
Jph − Jmpp

J0

]
= yVoc, (3.47)

where we used Eqs. (3.45) and (3.46). Since yVoc = Vmpp, y is necessarily less than one.
Note that, from Eq. (2.20), it follows that Jph/J0 = exp (qVoc/kT) = exp(v). Additionally,
note that Jmpp = Jph − J0 exp(yv) follows from Eq. (3.46). The variables v and y can
be found in Eq. (3.44) by dividing the equality by Voc. The presented identities together
with the Eqs. (3.45) and (3.46) allow for Eq. (3.44) to be expressed as

1 + vy = ev−vy + 2qrJ0

kT
(ev − evy)

= ev−vy
[
1 + 2qrJ0

kT
evy(1 − evy−v)

]
, (3.48)

and taking the logarithm at both sides of the equality and a bit of manipulation finally
gives

y = 1 − 1
v

log v − 1
v

[
log y + 1

v

]
+ 1

v
log

[
1 + 2qrJ0

kT
evy(1 − evy−v)

]
. (3.49)

From here, Singal noted that for most solar cells, it holds that qVoc >> kT , implying





that v >> 1. Additionally, as noted above, we have y ≤ 1. This allowed him to make
a series of Taylor expansions and approximations that yielded an approximate analytical
solution of the form y = f(v). We refer to Ref. [12] for the further-detailed derivation.
The obtained analytical solutions for Vmpp and Jmpp were

Vmpp = Voc

[
1 − 1

v
log(1 + v − log(v)) + 1

v
log

(
1 + 2Jscr

Voc

v(v − log(v))
(1 + v − log(v))2

)

− Jscr

Voc

v − log(v)
1 + v − log(v) +

(
Jscr

Voc

)2 2v(v − log(v))
(1 + v − log(v))3

]
, (3.50)

Jmpp = Jsc

[
1 − 1

1 + v − log(v) − 2Jscr

Voc

v(v − log(v))
(1 + v − log(v))3

]
. (3.51)

The corresponding expression for Pmpp is obtained by multiplying, i.e., Eqs. (3.50)
and (3.51)

Pmpp = VocJsc

[
1− 1

1 + v − log(v) − 2Jscr

Voc

v(v − log(v))
(1 + v − log(v))3

]

×
[
1− 1

v
log(1 + v − log(v)) + 1

v
log

(
1 + 2Jscr

Voc

v(v − log(v))
(1 + v − log(v))2

)

− Jscr

Voc

v − log(v)
1 + v − log(v) +

(
Jscr

Voc

)2 2v(v − log(v))
(1 + v − log(v))3

]
. (3.52)

With these expressions, Singal obtained estimated numerical errors below 1%, com-
pared to numerical models. As a final note, we want to note the work in Ref. [65], where
Green made use of Banwell’s expression in Eq. (3.41) to derive an implicit analytical
expression of Vmpp that accounted for the effect of the series resistance.







Chapter 4

Summary of Papers

In this chapter, we present a summary and the motivation of the attached papers.

Author contributions: Alfredo Sanchez Garcia and Rune Strandberg are the authors
of the six attached papers. In all six papers, the conceptualization, mathematical modeling
and numerical computations were made by Alfredo Sanchez. The writing of all six papers
was also done by Alfredo Sanchez. Rune Strandberg supervised the process, reviewed and
helped in the writing and, overall, catalyze the work through fruitful discussions. In the
papers that involved experimental verification of the models, it was Sissel Tind Kristensen
who coordinated the experiments and therefore shares co-authorship.

Paper A: Analytical expressions for radiative losses in
solar cells
In Ref. [9], Hirst and Ekin-Daukes derived a set of analytical expression to describe
the fundamental losses intrinsic to single-junction solar cells. As Khanna’s model for
the maximum power point [8] had not yet been derived, the authors in Ref. [9] made
use of various approximations to obtain their model. In this paper, we investigate how
Khanna’s model and Lambert’s W function can be used to describe fundamental energy
losses intrinsic to single-junction solar cells. We derive a new set of exact analytical
expressions. The new expression for the thermalization loss is derived accounting for the
fermionic nature of electrons. We show that Khanna’s model allows for an expression
that combines the emission, Carnot and Boltzmann losses.

Published as:
Garcia, A.S. and Strandberg, R., 2019, June. Analytical expressions for radiative losses
in solar cells. In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (pp. 1774-
1779). IEEE.
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Paper B: Temperature Coefficients of Solar Cell Pa-
rameters at Maximum Power Point

Motivated by the works of Green in Ref. [13] and Dupré in Ref. [11] on the modeling
of TCs, we derive analytical expressions for the TC of Vmpp and Jmpp. Our approach
is inspired by Dupré in Ref. [11], as we also use the ERE to account for non-radiative
recombination. We explore the effects of making use of certain approximations and the
choice of bandgap model. The recombination parameter γ is found to play role in the
temperature sensitivity of the maximum power point. From both theory and experiments,
we show that Jmpp does not change linearly with the cell temperature. This work sets the
ground for paper C.

Published as:
Garcia, A.S., Kristensen, S.T., Christiansen, S.N. and Strandberg, R., 2020, June.
Temperature Coefficients of Solar Cell Parameters at Maximum Power Point. In 2020
47th IEEE Photovoltaic Specialists Conference (PVSC) (pp. 1232-1237). IEEE.

Paper C: Analytical Modeling of the Temperature Sen-
sitivity of the Maximum Power Point

This paper extends on paper B. Here, we drop the ERE approach and make use of
identities that follow from Khanna’s model [8] to write all the expressions for the TCs in
terms of known solar cell parameters. In addition to the expressions derived in paper B,
we derive an analytical expression for the TC of Pmpp, which allows for the derivation of
a new exact analytical expression for the TC of the FF. The expressions are tested with
experimental data obtained from suns-Voc measurements and show outstanding agreement
with the experiments. The limitations of a single-valued TC to describe the temperature
sensitivity of a solar cell parameter are also discussed.
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Paper D: Analytical Modeling of the Maximum Power
Point with Series Resistance.
In this work, we derive analytical expressions for Vmpp, Jmpp and Pmpp that account for
the effect of the series resistance of the solar cell. To obtain these, we make use of the
Taylor expansion of Lambert’s W function. This allows for an analytical solution of what
is otherwise a transcendental equation. The new model allows for the derivation of an
analytical expression that explicitly shows how the series resistance depends on other
solar cell parameters. We test the new analytical model against a numerical single-diode
model and show that our expressions are able to predict the maximum power point with
discrepancies below 0.1% for typical values of the series resistance.
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Paper E: Assessment of a New Analytical Expression
for the Maximum Power Point Voltage with Series Re-
sistance.
In this paper, we test the applicability of the model presented in paper D. For this, we use
experimental data obtained from 18 multi-crystalline silicon solar cells. We also compare
the model to Singal’s [12] and a numerical model obtained from the diode equation with
series resistance. We conclude that the model presented in paper D can be successfully
applied in multi-crystalline silicon solar cells, achieving, and sometimes surpassing, the
level of accuracy that Singal’s model has.
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Paper F: The Recombination Parameter γ: Modeling
and Comments
The recombination parameter γ was introduced by Green [13], when deriving an expression
for the TC of Voc. Later in Ref. [11], Dupré was able to explicitly quantify γ by making





use of the ERE. Motivated by these works, we explore, from a theoretical perspective, the
connection between γ and material properties, such as carrier mobility and lifetime. This
is possible by assuming that all non-radiative recombination occurs in the neutral region
of the cell, where carrier diffusion is dominant. We find problems in the definition of γ that
hinder a further analytical investigation. Particularly, we note that γ is dependent on Voc.
Because of this voltage dependency, the applicability of γ is limited. We suggest solutions
to the presented problems. Particularly, for low-level injection, γ is not dependent on Voc.
We derive analytical expressions for γ in this regime and conduct numerical experiments.
We conclude that although γ may not be a fingerprint of defects in silicon, it may still be
useful in conjunction with other characterization techniques for impurity identification.
Particularly, we suggest its possible usability in showing how impurities distribute within
silicon wafers.
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Chapter 5

Summary and further work

In this thesis, we have developed analytical models that described some of the physical
processes limiting the efficiency of single-junction solar cells. We have focused on three
distinct topics: fundamental energy losses, the temperature sensitivity of single-junction
solar cells and the effect of the series resistance on the maximum power point.

Our model for the fundamental energy losses improved upon the expressions presented
in Ref. [9], as it made use of Lambert’s W function and Khanna’s model for the maximum
power point. In the newly derived expression for the thermalization loss, the fermionic
nature of electrons and holes was accounted for. This resulted in the need of a second
thermalization to the CB edge, from where we concluded that the overall thermalization
loss needed to occur step-wise. The introduction of Lambert’s W allowed for an expression
that combined the emission, Carnot and Boltzmann energy losses.

Regarding the temperature sensitivity of single-junction solar cells, we made use of
Khanna’s model to derive analytical expressions for the temperature coefficients of the
maximum power point. These expressions allowed for an expression of the temperature
coefficient of the fill factor, which improved upon Green’s semi-empirical expression [13],
as in ours being completely analytical. The derived model used solar cell parameters
that can be extracted from I − V characteristics as inputs. We therefore suggested the
possibility of implementing our model in sun simulator softwares to allow for accurate
determination of the temperature sensitivity of the maximum power point. The model
was tested against experimental data obtained from 18 multi-crystalline silicon cells, with
different architectures and from different ingot positions. We discussed the limitations
of making use of a single-valued TC to describe the temperature sensitivity of solar cells
by showing that not all solar cell parameters can vary linearly with the temperature. In
contrast, our model did not make any assumptions regarding the temperature dependence
of any of the solar cell parameters. We showed that the derived model predicted the
temperature sensitivity of all investigated parameters with low discrepancy.

As for the recombination parameter γ, assuming that all non-radiative recombination
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occurs in the neutral zone of the solar cell allowed for analytical expressions that relate γ

to the carriers mobilities and lifetimes. In our attempt to further explore the utility of γ

for impurity identification in semiconductor crystals, we found various problems regarding
the definition of γ and its dependency with the open-circuit voltage. We suggested possi-
ble solutions to amend these problems. From these solutions, it is worth mentioning the
expressions for γ derived assuming a thick cell in low-injection level regime. From numer-
ical experiments, we concluded that γ by itself may not be enough for defect identification
but may be useful in conjunction with other characterization techniques.

Finally, regarding the effect of series resistance, we made use of Banwell’s closed-form
expression for the current as a starting point to derive a set of analytical expressions for
the maximum power point. The transcendental equations became analytically solvable by
realizing that for most solar cells and typical values of the series resistance, Lambert’s W
function can effectively be linearized. We compared the new expressions to a numerical
single-diode model and obtained discrepancies below 0.1% for typical values of the series
resistance. The next step consisted in testing the experimental applicability of the model
and compare it to the already existing derived by Singal in Ref. [12]. For this, we made
use of 18 multi-crystalline silicon cells, from which we extracted I − V characteristics
at multiple temperature. We showed that our model had the same level of accuracy as
Singal’s, predicting experimental values of Vmpp and Pmpp with discrepancies up to 0.7%
and 0.2%, respectively. Our model then improves upon Singal’s as in it is much simpler
and easy to use.

5.1 Outlook

The work presented in this thesis has resulted in analytical models that describe funda-
mental energy losses, the temperature sensitivity of the maximum power point and the
effect of series resistance in single-junction solar cells.

The natural next step to our research is attempting to combine some of these results.
One possibility could be to make use of the expressions that we derived to describe the
effect of the series resistance on the maximum power point in paper D as a starting point
to derive expressions for the temperature coefficients that include the series resistance and
its temperature sensitivity.

Still within the block of temperature sensitivity, although we restricted the work on γ

in paper F to just theory, experimental γ maps for wafers and cells have been investigated
in the scientific literature [66, 67, 68]. The results presented in paper F may, e.g., help
to extract more information from these maps. Further theoretical and experimental work
should be performed to asses the capabilities of γ for defect characterization.

Deriving analytical expressions for the maximum power point that account for shunt





resistance effects may also be of interest. Although shunt resistance is often not relevant
in laboratory cells, it may be nevertheless interesting to obtain such analytical models for
outdoor characterization. These new expressions could also be used as a starting point
to obtain analytical expressions for the corresponding temperature coefficients. Based on
Ref. [64], it is quite likely that Lambert’s W function will play a role in these new models.

The applications of Lambert’s W in the field photovoltaics should be further explored.
Lambert’s W function has already been proven useful in describing the maximum power
point, with and without series resistance, and its temperature sensitivity. We strongly
believe that this function will play an important role in the derivation of future analytical
models not only in single-junction but also third generation solar cells [69].

As a final note, generalizing the models that we have derived during this PhD to third
generation photovoltaics may also be an interesting direction for research. Example of
this could be, e.g., exploring the temperature sensitivity of multi-junction or intermediate
band solar cells. For the multi-junction cells, Lambert’s W function was employed in a
recent work to analytically determine the maximum power point of various multi-junction
solar cell configurations [69]. This sets the possibility to make use of an analogue approach
as the one we used in paper D to obtain analytical expressions for the TCs.
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Abstract

Analytical expressions for the fundamental losses in single junction solar
cells are revised and improved. The losses are, as far as possible, described using
parameters with clear physical interpretations. One important improvement
compared to earlier work is the use of Lambert’s W function, which allows for
analytical expressions for the voltage and current at the maximum power point.
Other improvements include the use of Stefan Boltzmann’s law to describe the
incoming energy flux as well as taking into account the fermionic nature of the
electrons when calculating the thermalization loss. A new expression, which
combines emission, Boltzmann and Carnot losses, is presented. Finally, an
expression which combines all energy losses derived in this work is presented.

1 Introduction
In 1961, Shockley and Queisser published an article where the theoretical efficiency
limits of single-junction solar cells (SC) were studied. They presented a model based
on a detailed particle balance and found a theoretical upper limit of 40.8% [1]. This
Shockley-Queisser (SQ) limit shows that a single-junction solar cell is unable to
convert almost 60% of the incoming solar radiation into useful energy. In order to
understand what happens to this 60% of the total incoming radiation, five different
mechanisms of energy loss were identified and studied in Ref. [2]. There, the au-
thors mathematically modeled the energy losses that are theoretically unavoidable.
These fundamental energy losses are due to: (i) unabsorbed photons, (ii) carriers
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thermalizing to the bandgap, (iii) radiative emission from the cell and, voltage losses
caused by (iv) the cell having a temperature higher than 0 K and, (v) a mismatch
of the solid angles of absorption and emission of radiation. These five mechanisms
of energy loss are further studied and discussed in section 4.

The expressions derived in Ref. [2] are based on approximations which may lead
to some inaccuracies. In this work, we intend to improve those expressions.

In Ref. [3], exact expressions for both the optimal voltage and current, and conse-
quently the efficiency, were derived by making use of Lambert’s W function. We will
follow this approach and combine it with Refs. [1] and [2] to find compact expressions
for the fundamental losses in solar cells.

Before starting our discussion, let us summarize our strategies to improve the
model presented in Ref. [2]. These will later on be explained in detail:

• Stefan Boltzmann’s law is used to describe the incoming solar radiation.

• Lambert’s W function is used to obtain exact expressions for the maximum
power point voltage and current. Consequently, some of the fundamental losses
are expressed in terms of Lambert’s W function.

• The fermionic nature of electrons and holes is considered in the expression for
the thermalization loss.

• A new expression that combines Carnot, Boltzmann and emission losses is
derived. The derivation consists in computing the difference in output power
when the cell is at 0 K and at a nonzero temperature Tc.

• The new expressions together with the output power account for 100% of the
total incident solar radiation.

2 Conventions and notation
We will follow Shockley and Queisser ’s detailed balance approach [1] and study a
single junction solar cell operating at temperature Tc = 300K. The Sun is assumed
to be a blackbody radiating at temperature Ts = 6000K. The flux of photons with
energy in the interval [E,E + dE] is given by Planck’s law

n(E, T, µ) =
2Fs

c2h3

E2 dE

exp
(
E−µ
kT

)
− 1

, (1)

where µ is the chemical potential, or the splitting of quasi-Fermi levels, of the material
and Fs is a geometrical factor associated with the solid angle in which the cell absorbs
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or emits radiation. Thermal energy emission, such as solar radiation, has a 0 chemical
potential, while in the case of luminescent emission from a solar cell, the chemical
potential is µ = qV , where q is the electron charge and V is the voltage across the
device.

The total electrical current produced by the cell is calculated as the difference
between the absorbed and emitted photons times the electric charge

J = q

∫ ∞

Eg

[n(E, Ts, 0, Fabs)− n(E, Tc, qV, Femi)] dE, (2)

where Fabs and Femi are the geometrical factors associated with absorption and emis-
sion of radiation, respectively. The first term on the right hand-side of Eq. (2) is
known as generation current, JG, while the second is known as recombination current,
JR.

Let us now compute the geometrical factors. Although this is found in textbooks,
we include their derivation here since they are important for the Boltzmann loss. The
geometrical factors arise from integrating over the solid angles of emission, Ωemi, and
absorption, Ωabs with respect to the normal of the cell. We will assume that the cell
emits through and angle θemi and absorbs energy through an angle θX . Defining θ′

as the polar angle with respect to the surface normal, we have

Femi =

∫

Ωemi

cos θ′dΩ =

∫ 2π

0

∫ π
2

0

cos θ′ sin θ′dθ′dϕ = π sin2 θemi, (3)

Fabs =

∫

Ωabs

cos θ′dΩ =

∫ 2π

0

∫ θX

0

cos θ′ sin θ′dθ′dϕ = π sin2 θX . (4)

θX can be expressed in terms of the Sun concentration factor, X, by making
use of the sin θX =

√
X sin θsun, with θsun = 0.267◦ being the angle which the Sun

subtends without any concentrators. Defining Xmax = 1/ sin2 θsun, as the maximum
concentration factor, we can express Fabs as Fabs = π(X/Xmax). With this in mind,
JG can be expressed as

JG(Eg) =
2πq

c2h3

X

Xmax

∫ ∞

Eg

E2

exp
(

E
kTs

)
− 1

dE. (5)

It is possible to simplify Eq. (1). When E−µ >> kT , the exponential term in the
denominator becomes dominant. Hence, we can neglect the -1. This is called Boltz-
mann’s approximation and is valid in the regime of useful bandgaps (Eg ≥ 0.5 eV for
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the normal conditions experienced by solar cells). We will use this approximation to
express JR as

JR(Eg) ≈
2q

c2h3
Femi

∫ ∞

Eg

E2 exp

(
− E

kTc

)
exp

(
µ

kTc

)
dE = J0(Eg) exp

(
qV

kTc

)
, (6)

where J0 is known as the dark saturation current. Unless otherwise stated, we will
assume in the following that the cell emits radiation in a hemisphere, i.e., Femi = π.
Finally in this section, we want to point out that Boltzmann’s approximation should
not be used when calculating JG since kTs is large compared to the photon energies
in question.

3 Optimal power out efficiency
The efficiency of the solar cell is given by:

η =
V J

Pin
, (7)

where Pin = σT 4
S , with σ being the Stefan-Boltzmann constant. The optimal effi-

ciency is found by differentiating η(V ) with respect to the voltage, equating to zero
and solving for V . The achieved limiting efficiency receives the name of Shockley-
Queisser (SQ) limit and is 40.8%. In Fig. 1, the optimal efficiency as a function of
the bandgap, Eg, is presented for Sun concentration factors, X = Xmax and X = 1.
The limiting efficiencies are 40.8% and 30.9%, respectively.

In Ref. [3], it was shown that an analytical expression for the optimal voltage,
Vopt, can be obtained by making use of Lambert’s W function, defined as z = W(zez),
to solve ∂(JV )

∂V
= 0. The obtained optimal voltage then is

Vopt =
kTc

q

(
W

(
e
JG
J0

)
− 1

)
. (8)

An expression for the optimal current, Jopt, was found by plugging Eq. (8) into
Eq. (2). The obtained expression is

Jopt = JG(Eg)


1− 1

W
(
eJG
J0

)


 , (9)
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Figure 1: Power out efficiency as a function of the bandgap for different Sun concen-
tration factors.

where they made use of W(z) exp[W(z)] = z to simplify the expression. The optimal
power out efficiency then is found by plugging Eqs. (8) and (9) into Eq. (7). We then
have

η(Eg) =
kTc

q


W

(
e
JG
J0

)
− 2 +

1

W
(
eJG
J0

)


 JG. (10)

A comparison between the efficiencies obtained in Ref. [3] and in Ref. [2] is pre-
sented in Fig 2. We notice a difference between the maxima of both efficiencies. The
efficiency calculated with the approximations used in Ref. [2] has its maximum at
39.2%, while Ref. [3] yields a maximum of 40.8%, as expected from the Shockley-
Queisser limit [1]. As we mentioned in section 2, Boltzmann approximation should
not be used to calculate JG. In Ref. [2], it was done in order to find a compact
expression for the optimal voltage. A large drawback of using Boltzmann’s approxi-
mation to calculate JG was that the achieved power out efficiency and, later on, the
intrinsic losses were slightly lower than they should be.

4 Intrinsic losses
From Fig 2, we clearly see that more than half of the incoming solar radiation is not
converted into useful energy for the cell. Intrinsic losses for idealized single junction
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Figure 2: Power out efficiency as a function of the energy gap at maximum Sun
concentration factor. Ref. [3] makes use of an expression for the efficiency that relies
in fewer approximations than the one derived in Ref. [2]. This results into a higher
efficiency.

solar cells are unavoidable and presented in this section. Five mechanisms of energy
loss have previously been discussed in Ref. [2]. In this section, we will revise them
and propose new analytical expressions with the purpose of describing them more
accurately.

4.1 Thermalization

Let us start by considering the energy loss due to thermalization. If an electron ab-
sorbs a high-energetic photon, it will acquire an energy way higher than the bandgap.
Through strong interactions with lattice phonons, the overexcited electrons will ther-
malize to the edge of the conduction band, i.e., they will emit their energy excess as
heat and relax to an energy of E = Eg. This process of energy loss is described in
Ref. [2] by

LTherm =

∫ ∞

Eg

(E − Eg) · n(E, Ts, 0, Fabs) dE. (11)

After relaxing to the bandgap, electrons should distribute according to Fermi-
Dirac statistics, which means that their mean energy will be a little above Eg. Ac-
cording to the literature (e.g. in Ref. [4]), the internal energy of the electrons is given
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by ∫∞
0

EF (E)D(E) dE∫∞
0

F (E)D(E) dE
=

3

2
kTc, (12)

where F (E) is the Fermi-Dirac distribution and D(E) is the density of states for the
electrons. It should be noted that the internal energy of the electrons is equal to
3
2
kTc only when their dispersion relation is parabolic [4]. The same argument should

apply to holes in the VB and, therefore, the mean energy of an electron-hole pair is
Eg + 3kTc.

The average energy of the exciting photons is given by

EG =
q

JG

∫ ∞

Eg

E · n(E, Ts, 0, Fabs) dE, (13)

This quantity can be introduced together with the extra 3kTc into Eq. (11) to ob-
tained a more accurate expression for the energy loss due to thermalization of carriers.
We finally have

Ltherm =
1

q
(EG − Eg − 3kTc)JG. (14)

4.2 Further Thermalization

We saw in the previous section that after thermalizing to the bandgap, carriers
will carry extra energy due to their fermionic nature. As a consequence, an extra
thermalization must occur in the extraction of carriers to the metal contact. This
second thermalization has to be equal to the internal energy of the carriers, that is,
3kTcJG. Therefore, this second thermalization will cancel the energy gain that we
discussed in section 4.1.

4.3 Emission and Voltage Losses

In this section, we will consider three mechanisms of energy loss that constitute a
smaller fraction of the lost solar radiation in comparison to the loss due to thermaliza-
tion (around 7%). We will first introduce each mechanism as well as the expressions
used in Ref. [2] to describe them and, after that, we will present an approach to
obtain an expression which will combine all three losses.

Let us first consider the energy loss due to emitted photons. According to Kir-
choff’s law, since the cell absorbs radiation, it should also emit. The energy loss
associated with the emission of photons produced by the cell is given in Ref. [2] by

LEm = Eg

∫ ∞

Eg

n(E, Tc, qV, Femi) dE. (15)
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Second, we have two fundamental mechanisms of energy loss that directly affect
the maximum achievable voltage. This is easily seen in Ref [2], where the optimal
voltage is given by

qVopt = Eg

(
1− Tc

Ts

)
− kTc ln

(
Ωemi

Ωabs

)
. (16)

The first term multiplying the energy gap on the right-hand side of Eq. (16)
is called Carnot Factor because its mathematical form resembles of the expression
for Carnot’s efficiency [2, 5]. Since a solar cell may be considered a heat engine,
the maximum achievable efficiency needs to be limited by Carnot’s efficiency, which
manifests as a voltage drop.

The second term affecting the voltage appears due to the possible mismatch
between the solid angles of emission and absorption of radiation. As we saw in
section 2, while we assume that the cell emits in a hemisphere, it typically absorbs
solar radiation through a smaller solid angle. The mismatch between the solid angles
of absorption and emission results in part of the incoming energy being lost in entropy
generation [6]. As for the Carnot loss, because its mathematical expression resembles
Boltzmann’s entropy equation, it is referred to in Ref. [2] as the Boltzmann factor.
The corresponding losses are calculated in Ref. [2] by multiplying each factor by the
optimal current Jopt.

In the following section, we will present an expression that combines the three
losses that have been explained in this section.

4.4 The CBE Loss. Derivation

From Eqs. (15) and (16), we notice that both Carnot and Boltzmann factors as
well as the emission loss cancel when the temperature of the cell is 0 K. We hence
should be able to find an expression that combines all three losses by calculating the
difference in output power at Tc = 0 K and at a non-zero cell temperature, Tc. We
can then define the combined loss, LCBE, (Carnot, Boltzmann and Emission) as

LCBE = Vopt(0)Jopt(0)− Vopt(Tc)Jopt(Tc). (17)

Starting with the voltage, we first take the limit Tc → 0 in Eq. (8). By doing it
so, we obtain an undefined result since W(T−1

c → 0) = W(∞) → ∞. In order to
walk this problem around, we make use of the asymptotic expansion of Lambert’s
W function [7], given by

W(x) ≈ lnx− ln lnx+
ln lnx

lnx
. (18)
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In Eq. (8), all the terms in this expansion are multiplied by the temperature of
the cell, Tc. Since Tc → 0 and the last two terms in the expansion grow very slowly
in comparison, it is reasonable to cancel them out. This leads to

Vopt(Tc → 0) = lim
Tc→0

kTc

q

[
ln

(
e

Jg
J0(Tc)

)
− 1

]

= lim
Tc→0

kTc

q
ln

(
Jg

J0(Tc)

)

= lim
Tc→0

−kTc

q
ln J0(Tc). (19)

In order to proceed now, we need to compute the integral for J0 in Eq. (6). This
is easily doable thanks to having taken Boltzmann’s approximation. The integral
gives

J0(Eg) = exp

(
− Eg

kTc

)
kTc

(
E2

g + 2EgkTc + 2k2T 2
c

)
. (20)

Now, besides the exponential term, we have terms like Tc lnTc, Tc lnT
2
c and

Tc lnT
3
c , which will cancel in the limit Tc → 0. We finally have

Vopt(Tc → 0) = −kTc

q
ln

[
exp

(
− Eg

kTc

)]
=

Eg

q
. (21)

We now continue with the current and take the limit Tc → 0 in Eq. (9). Again,
we have a divergent W(T−1

c ) but this time, in a denominator. This implies that the
last term in Eq. (9) will cancel and, in the limit of 0 K temperature, the maximum
power point current is just JG(Eg). Putting all together, we find LCBE to be

LCBE =


Eg

q
− Vopt(Tc)


1− 1

W
(
eJG
J0

)




 JG. (22)

It should be noted that the asymptotic expansion for Lambert’s W in Eq. (18)
only holds for x > e. In our case, this implies that Eq. (22) only is true for JG > J0,
but this is true in all interesting cases where Boltzmann’s approximation can be used.

4.5 The CBE Loss. Separation

Eq. (22) has the advantage with respect to Ref. [2] that the model now is more
compact, reducing the amount of equations from five to three. A disadvantage to
point out is that it now becomes a bit problematic to see each contribution (emission,
Carnot and Boltzmann) individually.

In the following, we show alternative ways to find each contribution separately.
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Emission loss Eq. (15) assumes that the emitted photons have an average energy
of Eg. Let us instead compute the total energy flux

∫
E · n(E, Tc, qV, Femi) dE as

LEm =

∫ ∞

Eg

E · n(E, Tc, qV, Femi) dE

= exp

(
qV

kTc

)∫ ∞

Eg

E · n(E, Tc, 0, Femi) dE. (23)

The last integral in Eq. (23) equals the energy flux emitted by the cell in thermal
equilibrium. We denote it E0 and use the expression for Vopt in Eq. (8) to get

LEm =
E0

W
(
eJG
J0

) JG
J0

. (24)

Voltage Losses Both Carnot and Boltzmann losses reduce the maximum achiev-
able voltage of a solar cell. Since this is the case, an alternative way of computing
these losses may be the product of the correspondent voltage drop times the optimal
current, Jopt, given in Eq. (9). This approach was already introduced in Ref. [2].

In the context of voltage losses, it is useful to define the ratio between the geomet-
rical factors of emission and absorption. Let γ = Fabs/Femi. The advantage of using
γ with respect to X/Xmax is that now, we can increase the efficiency by restricting
the emission angle instead of having a high number of Suns. In terms of efficiency,
it is equivalent to have a maximum Sun concentration factor and restricting the cell
to emit in the same angle as it absorbs [6].

In order to incorporate γ to the notation presented in section 2, we need to
make use of the general form of Femi in Eq.(3). By doing this, γ appears in all the
expressions where Lambert’s W is involved. We have

W

(
e
JG
J0

)
= W

(
sin2 θX
sin2 θemi

eJG,max

J0,max

)
= W

(
γ
eJG,max

J0,max

)
, (25)

where JG,max and J0,max are given by Eqs. (5) and (6) evaluated at Fabs = Femi = π.
The dependence with the absorption and emission angles is now incorporated in γ.
When γ = 1, the emission and the absorption angle are equal and therefore we will
have maximum efficiency without having maximum Sun concentration.

In order to have a compact notation, let us introduce γ as an index in the ex-
pressions for the optimal voltage and current, defined in Eqs. (8) and (9). We make
Vopt → V γ

opt and Jopt → Jγ
opt. We can now proceed to calculate the Carnot and

Boltzmann losses.
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Starting with Boltzmann loss, we have previously discussed that it is consequence
of the possible mismatch between solid angles of emission and absorption. In terms
of γ, Boltzmann loss will be zero at γ = 1 and nonzero otherwise. Hence, the
Boltzmann energy loss can be computed as the difference in voltage V 1

opt−V γ
opt times

the optimal current, that is

LB =
kTc

q

[
W

(
eJG,max

J0,max

)
−W

(
γ
eJG,max

J0,max

)]
Jγ
opt. (26)

It should be noted that expanding the W functions to first order, i.e., W(x) ≈ lnx
in Eq. (26) will result in the expression proposed in Ref. [2] for the Boltzmann loss.

Continuing with Carnot loss, the corresponding voltage drop is due to the cell hav-
ing a nonzero temperature. We can hence calculate this loss as (V 1

opt(Tc = 0)− V 1
opt(Tc))J

γ
opt,

where we have to set γ = 1 in the voltage drop to ensure that there is no Boltzmann
loss. From Eq. (21), we have that V 1

opt(Tc = 0) = Eg/q. Hence, the Carnot energy
loss is

LC =

(
Eg

q
− V 1

opt

)
Jγ
opt. (27)

We want to point out that by introducing Eqs. (8) and (9) and further expanding
the W functions to first order, the proposed expression for the Carnot loss in Ref. [2]
is obtained if we also make use of Boltzmann’s approximation in calculating JG.

4.6 Unabsorbed photons

Finally, the last mechanism of energy loss is produced by the photons with energy
lower than the bandgap of the material. These photons will not be absorbed. The
energy lost due to unabsorbed photons is given by

LBelow =

∫ Eg

0

E · n(E, Ts, 0, Fabs) dE. (28)

As for the optimal efficiency, the expression derived in Ref. [2] makes use of
Boltzmann’s approximation when calculating JG. As we discussed in section 2, this
approach is inaccurate. Even though the expression may not be as compact as
desirable, not making use of Boltzmann’s approximation in Eq. (28) gives a more
accurate energy loss.

Eq. (28) can be expressed in terms of the incident solar radiation by making use
of EG. Adding the energy flux of the exciting photons,

∫
E · n(E, Ts, 0, Fabs), to
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Eq. (28) gives
(∫ Eg

0

+

∫ ∞

Eg

)
E · n(E, Ts, 0, Fabs) dE =

∫ ∞

0

E · n(E, Ts, 0, Fabs) dE, (29)

which is just Pin = σT 4
s . We can hence write the energy loss due to unabsorbed

photons as

LBelow =

(
σT 4

s

JG
− EG

q

)
JG. (30)

4.7 The Total Loss

Finally, Eqs. (14) and (22) together with the second thermalization can be summed
into a compact expression which accounts for all mechanisms of energy loss occurring
in the cell. We denote it as LT . The total sum gives

LT =


EG

q
− Vopt(Tc)


1− 1

W
(
eJG
J0

)




 JG. (31)

Note that by also adding the energy loss due to unabsorbed photons given by
Eq. (30), we obtain a very obvious result which reads as: the total energy loss equals
the difference between the input and the output power.

5 Numerical Results
The intrinsic losses and power out efficiency, all as a function of the energy gap, are
plotted in Fig. 3 for a Sun concentration factor of X = 1000. The incident solar
radiation is described by Stefan-Boltzmann law. A comparison between the results
obtained in this work, (left), and the ones derived in Ref. [2], (right), is shown.

Tab 1 shows a comparison between the fraction of solar energy attributed to
the different expressions derived both in this work and in Ref. [2]. All expressions in
Tab. 1 are evaluated at the optimal bandgap of Eg = 1.17 eV for a Sun concentration
factor of X = 1000. Due to having taken fewer approximations in Eqs. (10) and (30),
the energy loss due to unabsorbed photons and the power out efficiency obtained in
this work are slightly higher than the ones achieved in Ref. [2]. The sum of the two
occurring thermalizations gives a fraction of the incident solar radiation that agrees
with the results obtained in Ref. [2]. This is also the case with the new expression

12



Figure 3: Comparison between this work (left) and Ref. [2] (right) of the intrinsic
losses and power out efficiency as a function of Eg at Sun concentration factor of
X = 1000.

Table 1: Fraction of solar radiation for all losses and power out efficiency at Eg =
1.17 eV and X = 1000.

Fraction of Fraction of
X = 1000 solar radiation solar radiation
Mechanism This Work Ref. [2]
Power out 0.371 0.357
Below Eg 0.235 0.180
Thermalization 0.327 0.322
Carnot 0.021 0.021
Boltzmann 0.035 0.035
Emission 0.011 0.009
Total 1.000 0.924
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Figure 4: Intrinsic losses for a solar cell with optimal bandgap of Eg = 1.31 eV and
a Sun concentration factor of X = 1. This type of plot was inspired by Ref. [2]

that combines emission, Carnot and Boltzmann losses, LCBE. Overall, the sum of
the output power and all the losses gives significant improvement with respect to the
previous model, adding to 100% of the incident solar radiation.

All the expressions for the intrinsic losses presented in this work as well as the
output power are also presented in Fig. 4, where a plot of the optimal current in
Eq. (9), Jopt, as a function of the bandgap energy is showed. The intrinsic losses
and output power are evaluated at a Sun concentration factor of X = 1, so that the
Boltzmann loss is easier to notice.
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6 Conclusions
With the purpose of improving the expressions for the intrinsic losses of single-
junction solar cells given in Ref. [2], we have presented new analytical expressions.
Our approach has its starting point in Ref. [3] where Lambert’s W function was
used in order to find analytical expressions for both the optimal voltage and current.
We have made use of Lambert’s W to find expressions for some of the fundamental
energy losses. In the thermalization loss, the fermionic nature of electrons and holes
was also accounted. A second thermalization, occurring in the process of carrier
extraction, has been discussed. An expression that combines emission, Carnot and
Boltzmann losses has been presented. Each contribution to the combined loss has
also been identified. As shown in Tab. 1, our results show a significant improvement
with respect to the previous model, adding up to 100% of the incident solar radiation.
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Abstract

Analytical expressions for the temperature coefficients of the maximum
power point voltage and current are presented. The temperature coefficients
are calculated assuming the bandgap to be a linear function of the temperature
and accounting for energy losses of non-radiative nature. The latter are intro-
duced in the model through the External Radiative Efficiency. The so-called γ
parameter, which has been shown to account for the thermal sensitivity of all
mechanisms determining the open-circuit voltage, appears to also play a role in
the temperature coefficient of the maximum power point voltage and current.
Numerical results and a comparison with experimental measurements are also
presented.

1 Introduction
Solar cells are generally characterized and optimized under standard test condi-
tions (STC), defined as a global standard solar spectrum AM 1.5G, an irradiance of
1000 W/m2, and a cell temperature of 298 K [1, 2, 3]. An increase in cell temperature
results in a linear decrease in efficiency for most semiconductor materials [1, 4]. In
order to optimize solar cells, it is therefore of high relevance to understand and being
able to quantify the effect of changes in temperature.

The temperature sensitivity of any solar cell parameter is described by its tem-
perature coefficient (TC) [1]. Some work has been done aiming to explicitly quantify
the TCs of the open-circuit voltage, Voc, and the short-circuit current, Jsc [2, 3], but,
so far, there has not been much focus on the TCs for the maximum power point
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voltage, Vmpp and current, Jmpp. In this work, we aim to find analytical expressions
for the TCs of these two quantities.

This work is structured as follows: we make use of the expressions for Vmpp and
Jmpp, previously derived by Sergeev and Sablon in Ref. [5], to derive analytical ex-
pressions for the respective TCs. Our approach is inspired by the work of Dupré et
al. in Ref. [3] and, therefore, energy losses related to non-radiative recombination
are also considered through the External Radiative Efficiency (ERE). The derived
expressions also account for temperature variations of the bandgap, which we model
as a linear function of the temperature. We discuss the limit case where only ra-
diative recombination occurs and where the bandgap is a constant with respect to
temperature variations. Additionally, we discuss how a more realistic temperature
dependence of the bandgap affects the derived expressions for the TCs. Finally, we
present numerical results and compare them with experimental measurements.

2 Theoretical Background
In the radiative limit and assuming non-degenerate conditions, so that we can approx-
imate Fermi-Dirac by Maxwell-Boltzmann distributions, the total current produced
by a solar cell is given by Shockley’s diode equation [6],

J = JG − J0 exp

(
qV

kT

)
, (1)

where JG is the generation current and J0 is the dark saturation current. Assuming
the Sun to be a black body radiating at Ts = 6000 K, JG is given by

JG =
2πq

c2h3

X

Xmax

∫ ∞

Eg

E2

exp
(

E
kTs

)
− 1

dE, (2)

with h, q, c and X being Planck’s constant, the elementary charge, the speed of light
and the Sun concentration factor, respectively. In the radiative limit, J0 is given
by [6]

J0 =
2πq

c2h3

∫ ∞

Eg

E2 exp

(
− E

kT

)
dE. (3)

2.1 Maximum Power Point

In Ref. [5], it was shown that an analytical expression for Vmpp can be obtained by
making use of Lambert’s W function, defined by z = W(zez) [7]. Consequently, an
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analytical expression for Jmpp could be obtained by evaluating Eq. (1) at V = Vmpp.
The obtained expressions were

Vmpp =
kT

q

[
W

(
e
JG
J0

)
− 1

]
, (4)

Jmpp = JG


1− 1

W
(
eJG
J0

)


 . (5)

2.2 Temperature Coefficient

The efficiency of a solar cell varies linearly with temperature for the majority of
semiconductor materials under normal operating temperatures [1]. This variation
may be characterized by making use of the TC. The relative temperature coefficient
of a photovoltaic cell parameter, X, as a function of the temperature, T , denoted
here βr

X(T ), is defined as the rate of change of X over the considered temperature
range and normalized by X, i.e.,

βr
X(T ) =

1

X(T )

∂X

∂T
. (6)

3 The Model
To account for non-radiative recombination, Green introduced the concept of Exter-
nal Radiative Efficiency (ERE) in Ref. [8]. The ERE is defined as the fraction of the
total dark current recombination in the cell that results in radiative emission from
the cell [8]. Admitting that the ERE may depend on the temperature, let us denote
ERE := E(T ). Following Ref. [3], we modify Eq. (1) so that it also accounts for E(T )
and obtain

J = JG − 1

E(T )J0 exp
(
qV

kT

)
. (7)

From Eq. (7), we can derive an expression for Vmpp in the same way as in Ref. [5].
In order to do so, let us first assume that the ERE is not dependent on the voltage.
This is the case if, e.g., we restrict ourselves to a low-injection regime, or if we just
assume carrier lifetimes which are constant with the injection level [9]. Vmpp then
becomes

Vmpp =
kT

q

[
W

(
E(T )eJG

J0

)
− 1

]
. (8)
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3.1 Temperature Dependence of the Bandgap

Since both JG and J0 are functions of the bandgap, Eg, its temperature dependence
will be important for computing the TCs. The bandgap decreases when the temper-
ature increases for most semiconductors1 [1]. This effect was considered in Ref. [3]
by assuming a linear variation of the bandgap with the temperature, i.e.,

Eg(T ) ≈ Eg0 + T
∂Eg

∂T

∣∣∣∣
T=Tc

, (9)

with Eg0 being the bandgap at T = 0 K and the slope of the straight line resulting
from linear fits around T = 300 K [4]. We will also assume that the bandgap is a
linear function of the temperature and proceed to derive an expression for the TC of
Vmpp by making use of Eq. (6).

3.2 Dark Saturation Current

Before computing the TC for Vmpp, let us take a look back at the dark saturation
current, J0, given in Eq. (3). Performing the integral yields:

J0 =
2πq

c2h3
kT exp

(
−Eg

kT

)
(E2

g + 2kTEg + 2k2T 2). (10)

In Ref. [3], the polynomial in Eg in Eq. (10) is approximated by E2
g . We will refer

to this as the approximated form of J0, while Eq. (10) will be referred to as the full
form. This approximated form simplified the derivation of the analytical expression
for the temperature coefficient of the Voc. This is also the case for Vmpp and Jmpp. In
order to check the validity of this approximation, we display in Fig.1 a logarithmic
plot of J0 as a function of the temperature for the bandgap of silicon, which has been
considered linear, as in Eq. (9). We see that the full and the approximated form of J0
overlap. We will therefore make use of the approximated form of J0 to compute the
temperature coefficients of Vmpp and Jmpp. The numerical consequences of making
use of this approximation will be discussed in section 5.

3.3 Temperature Coefficients

Let Z := e E JG
J0

and W(Z) := W. From Eq. (8), we have

∂Vmpp

∂T
=

Vmpp

T
+

kT

q

∂W

∂T
. (11)

1Exceptions of this behavior are CH3NH3PbI3 and related perovskite compounds [4]
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Figure 1: Dark saturation, both in full (Eq. (10)) and approximated form, as a function of
the temperature.

Let us now explicitly compute the derivative of Lambert’s W function with respect
to the temperature. From Eqs. (3) and (9), we have

∂W

∂T
=

∂

∂T
log

(
E eJG

J0

)
W

1+W

=

(E ′

E +
J ′
G

JG
− J ′

0

J0

)
W

1+W

=

(E ′

E +
J ′
G

JG
− 1

T
− Eg0

kT 2
− 2

E ′
g

Eg

)
W

1+W

= − 1

T

(
γ +

Eg0

kT

)
W

1+W
, (12)

where the prime implies the derivative with respect to the temperature and

γ = 1 + 2T
E ′

g

Eg

− T
E ′

E − T
J ′
G

JG
. (13)

In Eq. (12), we have made use of the derivative of Lambert’s W function, which
can be found in, e.g., Ref. [7]. We obtain the absolute TC for Vmpp (βVmpp) by
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inserting Eq. (12) into Eq. (11). Let ω := W/(1 +W). We then can write βVmpp as

βVmpp =
Vmpp − ωEg0

q
− ω kT

q
γ

T
, (14)

which resembles the expression for βVoc in Ref. [3], which was

βVoc =
Voc − Eg0

q
− kT

q
γ

T
. (15)

The γ parameter in Eq. (13) is identical2 to the γ used in the expression for βVoc

in Ref. [3]. This parameter was first introduced by Green in Ref. [1] as a way to
account for the temperature sensitivity of all mechanisms determining Voc and was
later explicitly quantified in Ref. [3]. From the work presented here, we may conclude
that γ also plays a role in the temperature sensitivity of Vmpp.

Rearranging terms in Eq. (14), we can express βVmpp as

βVmpp =
Vmpp

T

[
1 +

W

1−W2

(
γ +

Eg0

kT

)]
, (16)

from which it is trivial to find the relative TC for βVmpp . Likewise for Jmpp, we can
derive expressions for its TC from Eq. (5) by making use of Eq. (6). We obtain

βJmpp =
Jmpp

T

[
T
J ′
G

JG
+

1

1−W2

(
γ +

Eg0

kT

)]
. (17)

3.4 The Radiative Limit with Constant Bandgap

In the radiative limit, the total current produced by the cell is given by Eq. (1). The
maximum power point voltage, current and power are therefore given by Eqs. (4)
and (5). All energy losses are of radiative nature and, therefore, ERE = 1. Addi-
tionally, if the bandgap is a constant with respect to temperature variations, the
γ parameter given in Eq. (13) simplifies to γ = 1. Accounting for this, Eqs. (16)
and (17) become

βVmpp =
Vmpp

T

[
1 +

W

1−W2

(
1 +

Eg0

kT

)]
, (18)

βJmpp =
Jmpp

T

[
1

1−W2

(
1 +

Eg0

kT

)]
(19)

2The notation T X′

X is equivalent to ∂ logX
∂ log T .
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Figure 2: Temperature dependence of the energy gap, Eg(T ), for Green’s (Eq. (9)) and
Sze’s (Eq. (20)) models.

3.5 A More Realistic Bandgap

In this work as well as in Ref. [3], the bandgap of silicon has been assumed to be a
linear function of the temperature, as seen in Eq. (9). Sze determined in Ref. [10]
the temperature dependence of Eg from the absorption edge of silicon and showed
that it could be empirically described by

Eg(T ) = Eg0 −
αT 2

T + β
, (20)

where α and β are fitting parameters; and Eg0 is the bandgap extrapolated to T = 0
K. Sze’s model shows that at low temperatures, the bandgap has a rather quadratic
dependence with the temperature, in contrasts to the linear bandgap presented in
section 3.1.

Eq. (9) follows from the model for the temperature dependence of the energy gap
presented by Green in Ref. [11]. There, Green modeled Eg(T ) as a piecewise function
of the temperature, with a quadratic dependency for T < 300 K and a linear one for
T > 300 K [11]. Eq. (9) represents the linear part of Green’s model. Fig. 2 displays a
comparison between both models. Here, we have plotted Sze’s and Green’s bandgap
as a function of the temperature, for silicon. We see that, in the normal operating
temperature range of [300, 343] K, both functions overlap well.
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In order to introduce Sze’s bandgap in our model, we need to make use of Eq. (20)
when computing J ′

0. This results in one new term that should be added to the γ
parameter in Eq. (13), which yields

γ = 1 + 2T
E ′

g

Eg

+
αβT

k(T + β)2
− T

E ′

E − T
J ′
G

JG
. (21)

Since we always can collect this new term into the γ parameter, the expressions
for the TCs presented in this work are still valid.

Finally, as noted in Ref. [9], the deviation between Sze’s and Green’s models is
a measure for the uncertainty of the model used. In the relevant temperature range
up to 650 K, this uncertainty is below 1% and can be neglected.

4 Experimental Method
In order to validate the analytical expression for βVmpp and βJmpp , 18 cells with differ-
ent bulk resistivities (ρ) and cell architectures were studied. The cells were fabricated
from three different compensated p-type multi-crystalline silicon (mc-Si) ingots and
can be divided into three groups: (a) ρ = 0.5 Ω cm, Passivated Emitter Rear Cell
(PERC), (b) ρ = 1.3 Ω cm, PERC, and (c) ρ = 1.3 Ω cm, Aluminum Back Sur-
face Field (Al-BSF) cell. Each group contains six cells from various brick positions.
The βVmpp and βJmpp values were obtained from temperature dependent suns − Voc

measurements using a NeonSeeTM AAA Sun-simulator. Making use of suns − Voc

measurements allowed for TCs without the effects of series resistance.

5 Numerical Results and Discussion
In this section we present numerical results for the model presented in section 3 and
compare them to experimental measurements. For all numerical evaluations, the
bandgap is assumed to be a linear function of the temperature as stated in Eq. (9).

5.1 Temperature Coefficient of Vmpp

In Fig. 3, βr
Vmpp

is plotted as a function of Vmpp for E ′
g = −0.27× 10−3 eV K−1, i.e.,

the temperature sensitivity of the silicon bandgap [4]. Here, Eq. (14) is represented
by a dashed line and our experimental values by crosses. Note that Vmpp and βr

Vmpp

are increasing functions of the ERE (see Eq. (8)). The points of the dashed line
in Fig. 3 are obtained by evaluating Eqs. (8) and (14) for several values of the ERE
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Figure 3: Relative temperature coefficient of the maximum power point voltage as a function
of Vmpp. Eq. (14) is represented by the dashed line. The crosses represent experimental
measurements of Vmpp of the three sets of mc-Si samples described in section IV: (a) PERC:
ρ = 0.5 Ω cm, (b) PERC: ρ = 1.3 Ω cm and (c) Al-BSF: ρ = 1.3 Ω cm

within the interval E ∈ [3, 15] × 10−5. The ERE of each measurement can be
calculated by subtracting the ideal and the measured Voc as

E(T ) = exp
[ q

kT
(Voc − V id

oc )
]
, (22)

where V id
oc is the open-circuit voltage in the radiative limit, given in, e.g., Ref. [12].

For the samples presented in this work, we find an average value of the ERE of
E = 6.99× 10−5. A rather low value of the ERE is expected since silicon is dominated
by non-radiative recombination [1, 12]. In the light of Fig. 3, we may conclude that
Eq. (14) gives food predictions of the temperature behavior of Vmpp.

5.2 Dark Saturation Current

As mentioned in section 3, we have been making use of the approximated form of J0
to simplify the derivation of βVmpp and βJmpp . We have numerically computed these
TCs by making use of both the full and approximated form J0 to check whether there
is a significant difference. The results show a difference of 12 ppm K−1 at T = 300 K
and E = 1 up to 66 ppm K−1 at T = 343 K and E = 10−7 for βr

Vmpp
and, 0.5 ppm K−1

at T = 300 K and E = 1 up to 10 ppm K−1 at T = 343 K and E = 10−7 for βr
Jmpp

.
From the measured values, as well as from Fig. 3, we see that typical values of βr

Vmpp
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Figure 4: Relative temperature coefficient of the maximum power point current as a function
of the temperature calculated from Eq. (17) for several values of the ERE.

range from -3500 to -4000 ppm K−1. We can therefore conclude that having made
use of the approximated form of J0 for computing the TCs does not have significant
effects in βVmpp and βJmpp , in our cases.

5.3 Temperature Coefficient of Jmpp

In Fig. 4, we have plotted Eq. (17) as a function of the temperature for different values
of the ERE. Here, we can see that the temperature behavior of Jmpp changes with a
decreasing ERE. For E = 1, βr

Jmpp
(T ) has positive values, implying that Jmpp increases

with temperature. But when the ERE starts decreasing, we encounter negative values
of βr

Jmpp
(T ), implying that Jmpp is decreasing with increasing temperature. Fig. 4

shows that βJmpp is not a constant but rather temperature dependent, which implies
Jmpp does not vary linearly with the temperature. Note that for E = 6.99 × 10−5,
i.e., the average ERE of our samples (sec. 5.1), we have βr

Jmpp
< 0 (red line in Fig. 4)

and, particularly, βr
Jmpp

(avg. ERE) = −122 ppm K−1 for T = 300 K. Let us also note
that, for E = 10−3, βr

Jmpp
crosses zero at a temperature, denoted here Tcrit, which

equals 284 K in this specific case. J(Tcrit) therefore is a maximum Jmpp. Note also
that for E = 1, βr

Jmpp
is decreasing with the temperature and will eventually cross

zero. Fig. 4 therefore suggests that Tcrit is decreasing with the ERE.
Our experiments show a variety of temperature behaviors for the measured Jmpp.

In Fig. 5, we display our measurements of Jmpp for three of the six investigated Al-
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Figure 5: Measurements of Jmpp of the Al-BSF cell for different temperatures. Each color
represents a position within the brick.

BSF cells (group (c) in sec. 4). The cells are numbered according to their position
within the brick starting from the bottom, i.e., position 005 will be lower in the brick
than 009. In Fig. 5, we can see that in brick position 005, Jmpp is clearly decreasing
with the temperature. This is also the case for three other cells in positions 012,
022 and 027. These are not displayed in Fig. 5. In positions 009 and 034, Jmpp

appears to increase with temperature, reach a maximum and then decrease. In our
measurements of the PERC cells (groups (a) and (b) in sec. 4), Jmpp is increasing
with the temperature in most brick positions. There are however a few positions
where the measured values Jmpp vary in a non-systematic manner, and it is hard
to see any increasing or decreasing trend. A similar behavior as the one found in
positions 009 and 034 of group (c) is found in positions 012 and 041 of group (a).

The TC of Jmpp in each position is calculated by least-square fitting the measured
values of Jmpp to a straight line. βJmpp will therefore be the value of the slope. This
method gives reasonable fitting errors in those brick positions where Jmpp shows a
clear increasing, or decreasing, trend. In the case of position 005 in Fig. 5, we find
βr
Jmpp

= −156± 16 ppm K−1. In the case of positions 009 and 034, where Jmpp shows
both an increasing and a decreasing behavior, the fit gives βr

Jmpp
= 147± 96 ppm K−1

and βr
Jmpp

= 85± 180 ppm K−1, respectively. The non-linearity of Jmpp originates
these large uncertainties. It is therefore reasonable to conclude that making use of a
single TC to describe the temperature behavior of Jmpp may be misleading.

Our model has limitations that may be able to explain the discrepancy with our
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experiments. First, the spectral response of the solar cell. Eq. (7), assumes unit
absorptivity [6]. In real solar cells, the absorption coefficients are not step-functions
but rather smooth functions of the incoming wavelength which also depend on the cell
temperature [13] and, therefore, they will play a role in the temperature coefficients.
Particularly, the spectral response of the cell will affect the value of J ′

G. Second,
whereas our model assumes an ideality factor of 1, the IV-curve of real cells are often
better described by a larger ideality factor [14]. A temperature dependent ideality
factor, n(T ), will possibly also affect the TCs.

These two factors may not be sufficient to explain the discrepancies, so let us
focus now on the experiments. The biggest source of uncertainty in our measure-
ments comes from the difficulty in stabilizing the temperature during the relatively
long data-acquisition times. This results in not only uncertainty in the temperature,
but possibly also in the measured values of Vmpp and Jmpp. The uncertainty of the
temperature propagates in the calculation of the TCs further increasing the fitting er-
rors. Within the investigated temperature range, βJmpp varies with temperature (see
Fig. 4) while βVmpp is nearly constant. Small temperature fluctuations will therefore
cause a bigger, and significant, effect on βJmpp than on βVmpp .

Finally, Tcrit may be the last piece of the puzzle to explain the discrepancies
between Eq. (17) and our experiments. A Tcrit dependent on the brick position
and the cell architecture may explain the variety of temperature behaviors that our
experiments show. Jmpp has not reached Tcrit in the cells that show an only increasing
Jmpp. At the same time, those cells only showing a decreasing Jmpp have a Tcrit lower
than the temperature range in which the measurements were performed, as seen,
for example, in Fig. 5 in the measurements of the cell from position 005. Finally,
the positions where Jmpp first increases and then decreases with the cell temperature
reach their correspondent Tcrit within the investigated temperature range. This is
the case for brick positions 009 and 034 in Fig. 5, where we can see that their
correspondent Tcrit is around 328 K and 318 K, respectively.

6 Conclusion
In this paper, we have presented analytical expressions for the TCs of Vmpp and
Jmpp. It was discussed in Ref. [3] that the γ parameter, first introduced in Ref. [1],
accounts for the temperature sensitivity of all mechanisms determining the Voc. From
the results presented in section 3, we conclude that γ may also determine the thermal
sensitivity of Vmpp and Jmpp.

Numerical results as well as a comparison with experimental measurements of
βVmpp and βJmpp have also been presented and discussed. We have found that our

12



model gives good predictions of the temperature behavior of the measured values of
βVmpp . The mismatch between the experimental measurements of βJmpp and Eq. (17)
suggests that there are one or more factors, which are not accounted for in our model,
that affect the temperature sensitivity of Jmpp. The solar cell spectral response and
a temperature dependent ideality factor have been proposed as possible explanations
to the discrepancy. The uncertainty of the measurements due to small temperature
fluctuations may also contribute to the discrepancy between the experiments and
Eq. (17). Finally, Fig. 4 shows that βJmpp is not a constant within the investigated
temperature range. Additionally, it can be seen in Fig. 4 that βJmpp(T ) crosses zero
at an ERE-dependent critical temperature, implying that Jmpp reaches a maximum
at this temperature.
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Abstract

This work presents new analytical expressions for the temperature coeffi-
cients of the voltage, current and power of a solar cell at its maximum power
point. A new analytical expression of the temperature coefficient of the fill
factor is also derived. The new expressions are written as functions of solar
cell parameters that can be extracted from the current-voltage characteristic
of the cell. Non-ideal diode behavior is partially accounted for through a tem-
perature dependent ideality factor. The recombination parameter γ, which has
been shown to account for the thermal sensitivity of all mechanisms determin-
ing the open-circuit voltage, appears to play a role also for the temperature
coefficient of the maximum power point. The expressions are tested against
experimental data, which covers measurements from 18 multicrystalline silicon
solar cells with different bulk resistivities and cell architectures. It is found
that the new model captures the essence of the temperature variation shown
by the investigated parameters.

1 Introduction
The temperature sensitivity of a solar cell parameter, such as the open-circuit volt-
age, Voc, is usually described by its temperature coefficient (TC) [1]. Some work has
been done aiming to explicitly quantify the TCs of Voc and the short-circuit current,
isc [2, 3], but so far, there has not been much focus on the temperature sensitiv-
ity of the maximum power point (MPP). Quantification of TCs, particularly at the
MPP, is of special importance as it is desirable to accurately predict the temperature
dependent performance of solar cells under real operating conditions. The lack of
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analytical models describing the temperature sensitivity of the MPP represents a
gap in the scientific literature which this work seeks to fill. To this end, Khanna’s
model for the maximum power point [4] is used as a starting point to derive analyt-
ical expressions for the TCs of the voltage, current and power at the MPP. Inspired
by the work of Dupré et al. in Ref. [3], the influence of the recombination param-
eter γ in the temperature sensitivity of the MPP is also explored. For this, energy
losses related to non-radiative recombination are considered through the External
Radiative Efficiency (ERE), as defined in Ref. [5]. The derived expressions also
account for temperature variations of the bandgap, which are modeled with a linear
function of the temperature. Some preliminary results have already been presented
in Ref. [6]. This extended version includes the derivation of the expressions for the
TCs of photovoltaic parameters that were not included in the preliminary version. In
the present work, non-ideal diode behavior is also accounted for through a temper-
ature dependent ideality factor. The derived quantities are expressed as functions
of each other and of well-known parameters, such as Voc and isc. This allows for
the derivation of an analytical expression for the TC of the fill factor. Finally, the
new expressions are tested with experimental data obtained from suns-Voc measure-
ments of 18 multicrystalline silicon solar cells with different bulk resistivities and cell
architectures.

2 Theoretical Background
Assuming non-degenerate conditions, the total current density, i, produced by a solar
cell as a function of its voltage V , is given by Shockley’s diode equation [7],

i = iG − i0 exp

(
V

mVt

)
≈ isc − i0 exp

(
V

mVt

)
, (1)

where i0 is the thermal recombination current [8] and the photogeneration current,
iG, has been approximated by the short-circuit current, isc. This assumption is valid
for practically all solar cells [9]. The thermal voltage Vt is defined by qVt = kT , where
k is Boltzmann’s constant and T is the cell temperature. Non-ideal diode behavior
is accounted for through the ideality factor m which is assumed to be constant with
respect to the voltage but allowed to vary with the temperature. As commonly found
in literature on solar cells, the open-circuit voltage Voc is easily obtained from Eq. (1)
by setting i = 0, which gives

Voc = mVt log

(
isc
i0

)
. (2)
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The power P delivered by the cell is given by the product P = V i [9]. At the
maximum power point, it holds that dP/dV = 0. In Ref [4], Khanna et al. found
that Lambert’s W function, defined by z = W(zez) [10], allows for an analytical
expression of the maximum power point voltage, Vmpp, of the form

Vmpp = mVt

[
W

(
e
isc
i0

)
− 1

]

= mVt

[
W
(
e1+

Voc/mVt
)
− 1
]
, (3)

where Eq. (2) was made use of in order to write isc/i0 = exp [Voc/mVt]. The maximum
power point current, impp, is obtained by inserting Eq. (3) into Eq. (1). This yields

impp = isc

[
1− 1

W (e1+Voc/mVt)

]
. (4)

The maximum power that a solar cell can produce is given by [9]

Pmpp = Vmppimpp = VociscFF, (5)

where FF is the Fill Factor. Inserting Eqs. (3) and (4) yields [4, 11]

Pmpp = mVtisc

[
W
(
e1+

Voc/mVt
)
− 2 +

1

W (e1+Voc/mVt)

]
. (6)

2.1 Temperature Coefficient

The TC of a solar cell parameter (Voc, isc...) describes how this parameter changes
with the temperature. The relative temperature coefficient of a parameter, X, as a
function of the temperature, T , denoted here βr

X(T ), is defined as the rate of change
of X over the considered temperature range and normalized by X, i.e., [12]

βr
X(T ) =

1

X

dX

dT
=

d

dT
log [X(T )] . (7)

The temperature dependence of many solar cell parameters, such as Voc or the effi-
ciency, is approximately linear for normal operating temperatures [1]. The derivative
in Eq. (7) is then nearly constant and the temperature coefficient becomes a single
valued parameter, hence its designation. Inserting Eq. (5) in Eq. (7), it is seen that
the relative TC of Pmpp can be expressed as the sum of the relative TCs of Voc, isc
and FF, i.e., [3]

βr
Pmpp

= βr
Voc

+ βr
isc + βr

FF = βr
Vmpp

+ βr
impp

. (8)
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2.2 The recombination parameter γ

For a solar cell operating at the radiative limit, the thermal recombination current,
i0 in Eq. (1), is well approximated by

i0 ≈ qVt exp

(
−Eg

qVt

)
E2

g . (9)

To account for non-radiative recombination, Green introduced the concept of Ex-
ternal Radiative Efficiency (ERE) in Ref. [5]. The ERE is defined as the fraction
of the total dark current recombination in the cell that results in radiative emission
from the cell [5]. Following Ref. [3], the ERE is introduced in Eq. (1) by making the
substitution i0 → i0/ERE. Assuming that the ERE is independent on the voltage, the
expression for Voc in Eq. (2) becomes

Voc = Vt log

(
ERE

isc
i0

)
, (10)

where m is set to 1 to match the expression presented in Ref. [3]. Using Eqs. (10)
and (7) as a starting point, it can be shown that the absolute TC of Voc, βVoc , is
given by [3]

βVoc =
Voc − Egc

q
− kT

q
γ

T
, (11)

with

γ = 1 + 2T
E ′

g

Eg

− T
ERE′

ERE
− T

i′sc
isc

, (12)

where the prime denotes derivative with respect to the temperature. This explicit
expression for the γ parameter is obtained by making use of the explicit form of i0
found in Eq. (9). To obtain Eqs. (11) and (12), one also needs to assume a bandgap
that changes linearly with the temperature [1], i.e.,

Eg(T ) ≈ Eg(Tc) + (T − Tc)
dEg

dT

∣∣∣∣
T=Tc

+O(T 2)

= Egc + TE ′
g +O(T 2), (13)

with Egc = Eg(Tc) − TcE
′
g. For, e.g., crystalline silicon, Egc = 1.206 eV and

E ′
g = −2.73 × 10−4 eVK−1 [1]. The recombination parameter γ in Eq. (12) was

first introduced by Green in Ref. [1] as a way to account for the temperature sensi-
tivity of all mechanisms determining Voc and was later explicitly quantified by Dupré
et al. in Ref. [3]1.

1The notation T X′

X is equivalent to d logX
d log T .
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3 The model
To shorten the notation, the argument of Lambert’s W function in Eqs. (3), (4)
and (6) is denoted by zoc. Foreseeing its usability in the coming derivations, note
from Eq. (4) that

1

W(zoc)
= 1− impp

isc
. (14)

This identity will be used in the derivation of the expressions for the TCs to eliminate
the W functions when this is advantageous. From Eqs. (3) and (7), the relative TC
of Vmpp, βr

Vmpp
, is given by

βr
Vmpp

=
d

dT
log Vmpp

=
d

dT
log
[
mVt

[
W
(
e1+

Voc/Vt
)
− 1
]]

=
1

T
+

m′

m
+

1

W(zoc)− 1

d

dT
W(zoc)

=
1

T
+

m′

m
+

1

W(zoc)− 1

W(zoc)

1 +W(zoc)

d

dT

[
1 +

Voc

Vt

]

=
1

T
+

m′

m
+

mVt

Vmpp

W(zoc)

1 +W(zoc)

d

dT

[
1 +

Voc

mVt

]
, (15)

where the derivative of Lambert’s W function, which can be found in, e.g., Ref. [10]
was used. Additionally, Eq. (3) was used to make (W(zoc) − 1)−1 = mVt/Vmpp. The
last derivative in Eq. (15) can be written as

d

dT

[
1 +

Voc

mVt

]
=

dVoc

dT

q

mkT
− qVoc

mkT 2
− m′

m

=
Voc

mVt

[
βr
Voc

− 1

T
− m′

m

]
, (16)

where the definitions of relative TC in Eq. (7) was used. Inserting now Eq. (16) into
the last line of Eq. (15) yields

βr
Vmpp

=
1

T
+

m′

m
+

W(zoc)

1 +W(zoc)

[
βr
Voc

− 1

T
− m′

m

]
Voc

Vmpp

. (17)

Employing Eq. (14) to eliminate the W functions, the factor in front of the parenthesis
of Eq. (17) becomes

W(zoc)

1 +W(zoc)
=

isc
2isc − impp

= I. (18)
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To shorten the notation, note that 1/T + m′/m equals the derivative with respect to
the temperature of the logarithm of mVt, i.e., βr

mVt
. Eq. (17) then becomes

βr
Vmpp

= βr
mVt

+ I
[
βr
Voc

− βr
mVt

] Voc

Vmpp

. (19)

Performing the same type of derivation with Eqs. (4) and (6) as starting points, the
relative TCs of impp and Pmpp can be expressed as

βr
impp

= βr
isc + (1− I)

[
βr
Voc

− βr
mVt

] Voc

Vmpp

, (20)

βr
Pmpp

= βr
mVt

+ βr
isc +

[
βr
Voc

− βr
mVt

] Voc

Vmpp

, (21)

where it is straightforward to show that Eqs. (19), (20) and (21) satisfy Eq. (8).
Finally, using Eqs. (8) and (21), the relative TC of the fill factor, FF, can be written
as

βr
FF = βr

Pmpp
− βr

Voc
− βr

isc

= βr
mVt

−
(
βr
mVt

− βr
Voc

) Voc

Vmpp

− βr
Voc

=
(
βr
mVt

− βr
Voc

)(
1− Voc

Vmpp

)
. (22)

4 The recombination parameter γ

As mentioned in section 2, Green introduced the recombination parameter γ as a
way to account for the temperature sensitivity of all mechanisms determining Voc [9].
Eqs. (3), (4) and (6) show a direct link between the open-circuit voltage and the
maximum power point. The parameter γ should therefore be expected to play a
role in the temperature sensitivity of the maximum power point. In this section, the
expressions for the TCs are derived in an alternative way to include the γ parameter.
To match Dupré’s expression in Ref. [3], m = 1 will be assumed in this section. By
combining Eqs. (11) and (16), it becomes clear that

Voc

Vt

(
βr
Voc

− 1

T

)
=

1

Vt

(
βVoc −

Voc

T

)
= − 1

T

(
γ +

Egc

kT

)
, (23)
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with γ being given by Eq. (12). Substituting this identity into Eq. (17) yields

βr
Vmpp

=
1

T
− W(zoc)

1 +W(zoc)

1

W(zoc)− 1

Voc

Vt

[
1

T
− βr

Voc

]

=
1

T
− W(zoc)

1 +W(zoc)

1

W(zoc)− 1

−1

T

(
γ +

Egc

kT

)

=
1

T

[
1 +

isc(isc − impp)

impp(impp − 2isc)

(
γ +

Egc

kT

)]
, (24)

where Eq. (14) has been used to eliminate the W functions. Likewise with βr
impp

and
βr
Pmpp

, inserting Eq. (23) into (20) and (21) yields

βr
impp

=
1

T

[
T
i′sc
isc

+
(isc − impp)

2

2iscimpp − i2mpp

(
γ +

Egc

kT

)]
, (25)

βr
Pmpp

=
1

T

[
1 + T

i′sc
isc

+

(
1− isc

impp

)(
γ +

Egc

kT

)]
. (26)

As for Eqs. (19), (20) and (21), it is straight forward to show that Eqs. (24), (25)
and (26) also satisfy Eq. (8). Finally, it should be mentioned that alternative pre-
liminary forms of Eqs. (24) and (25) were presented in Ref. [6].

5 Experimental Method
The theoretical expressions are compared to measurements of 18 solar cells with dif-
ferent bulk resistivities, ρ, and cell architectures. The cells are industrially fabricated
from three different compensated p-type multi-crystalline silicon (mc-Si) ingots and
can be divided into three groups: (a) ρ = 1.3 Ω · cm, Aluminum Back Surface Field
(Al-BSF) cells, (b) ρ = 0.5 Ω · cm, Passivated Emitter and Rear Cells (PERC), (c)
ρ = 1.3 Ω · cm, PERC. Each group contains six cells from various brick positions,
numbered from 001-060, with position 001 denoting a cell from the bottom of the
brick and position 060 denoting a cell from the top. The performance of the cells
was measured with temperature dependent suns-Voc using a NeonSeeTM AAA sun
simulator with a built-in water heater. This allowed for the acquisition of i−V data
without series resistance effects at a temperature range between 293K and 343 K,
and subsequently, calculation of the TCs. The suns-Voc method was chosen to enable
better comparison with the theoretical expressions, which do not account for series
resistance effects.

7



6 Numerical Method
From the temperature dependent suns-Voc measurements, the experimental values
of Voc, isc, Vmpp, impp, Pmpp and FF were extracted at multiple temperatures. The
corresponding TCs were determined by fitting the measured values to second degree
polynomials of the temperature before calculating the derivative at each of the mea-
sured temperatures. This method is chosen over a simpler linear regression because
some of the measured solar cell parameters (particularly isc and impp) show depen-
dencies with the temperature that are far from linear. Regarding the temperature
dependence of the ideality factor, Eq. (1) was evaluated at the MPP to obtain

m =
1

Vt

Vmpp − Voc

log
(
1− impp

isc

) , (27)

where Eq. (2) was used to eliminate iG and i0. Note that m is voltage dependent for
most common solar cells. This was also the case for the studied cells. If one assumes
that m(V ) is not going to vary significantly from Vmpp to Voc, Eq. (27) can be used
to estimate m at the measured temperatures and then fit to a polynomial to obtain
m(T ).

7 Experimental and numerical results
In this section, the polynomials of the temperature corresponding to the measured
values of Voc, isc, Vmpp, impp, βr

Voc
and βr

isc are used to evaluate Eqs. (19), (20), (21)
and (22). The obtained values are then compared to the experimental relative TCs,
which are calculated according to the method explained in section 6.

Figs. 1, 2, and 3 present the numerical results as follows: In the upper graph of
each subfigure, the parameter of interest is plotted as a function of the cell tempera-
ture. Here, the crosses represent measured values. For example, in the top graph of
Fig. 1(a), the crosses correspond to the experimental values of Vmpp. The continuous
lines display the polynomials that fit the measurements. Each color represents a cell
from the ingot position stated in the legend. In the lower graph of each subfigure, the
relative TC is plotted as a function of the cell temperature. Here, the experimental
TCs are displayed with crosses. The dashed lines show the TCs calculated with the
proposed model. In the bottom graph of, e.g., Fig. 1(a), the dashed lines display
TCs calculated with Eq. (19).

Starting with Vmpp, Figs. 1- 3(a) show a nearly linear dependence with the tem-
perature for the measured cells. Eq. (19) describes reasonably well the measured
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Figure 1: Vmpp, impp, Pmpp, FF and their corresponding relative TCs as a function
of the temperature for the cells in group (a). In all eight graphs, the experimental
values and their TC are displayed with crosses. The continuous lines at the top
graphs represent the polynomial fit of the measurements. The dashed lines at the
bottom graphs correspond to the new expressions presented in this work.
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βr
Vmpp

values, although discrepancies can be observed. In Fig. 1(a), the maximum
discrepancy is of 3.2 %, found for the cell in position 022 at T = 338 K. A possible
explanation for the discrepancies involves the possible non-ideal diode behavior of
the measured cells. Some non-ideality is accounted for by the temperature dependent
ideality factor, but this is still an approximation since the ideality factor in general
may show some voltage dependency. Crystalline silicon cells are often better de-
scribed with two-diode models rather than with Eq. (1). Noise in the measurements
originating from the difficulties in stabilizing the temperature during the relatively
long data acquisition times may also explain some of the discrepancy between the
model and the experiments.

As for the temperature dependence of Pmpp, some small nonlinearities can be
observed in Figs. 1- 3(b) (see, e.g., the curves corresponding to the cells in positions
022 and 044 at the in the top graph of Fig. 1(b)) but the overall dependence with
the temperature is approximately linear. Figs. 1- 3(b) show an excellent agreement
between the measurements and the values predicted by Eq. (21). Here the relative
discrepancies between the proposed model and the experiments are much smaller,
typically below 1.5% for the cells in groups (a) and (c) and below 3% for the cells in
groups (b).

In Figs. 1- 3(c), impp and βr
impp

are plotted as functions of the temperature. Here,
a nonlinear dependence of impp with the temperature of the cell can be observed.
Moreover, in some of the measured cells, impp appears to even have a local extremum.
An example of this is the cell from position 034 in Fig. 1(c), where impp(T ) is clearly
observed to have a maximum. This is mirrored in the bottom figure, where it can
be seen that the curve for βr

impp
(T ) crosses zero. The nonlinear behavior of impp

can also be observed in Figs. 2(c) and 3(c) and it is particularly clear in cell 003 of
group (b) and in cells 003 and 052 of group (c). In all three groups, the cells that
show the clearest nonlinear behavior are positioned towards the top and bottom of
the ingot. This may be coincidental, but it is worth noting that the concentration of
impurities is higher towards the top (segregation) and bottom (diffusion) of the ingot.
This suggests a connection between the nonlinear behavior of impp and high impurity
concentration. Despite the non-linear behavior of impp, the proposed model shows
a reasonably good agreement with experimental values of βr

impp
for all the studied

cells. It can be concluded from Fig. 1(c) that restricting the temperature sensitivity
of impp of the studied cells to a single coefficient may be misleading. Although these
nonlinearities originate, from a physical point of view, from the dependence of βr

impp

with βr
isc [3]; the nonlinear behavior of impp can be implied from Eq. (5). If a single

coefficient can describe the temperature sensitivity of Vmpp and Pmpp, then, one can
write Vmpp = a1T + b1 and Pmpp = a2T + b2. Here ai are the slopes of the straight
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Figure 2: Vmpp, impp, Pmpp, FF and their corresponding relative TCs as a function
of the temperature for the cells in group (b).
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lines, equal to the corresponding absolute TC, i.e., a1 = βVmpp and a2 = βPmpp , and bi
are the parameters in question at T = 0 K. Since Vmpp and Pmpp must follow Eq. (5),
impp must be given by

impp =
a2T + b2
a1T + b1

, (28)

which is not a linear function and, therefore, its derivative is not a constant. There-
fore Vmpp, impp and Pmpp cannot be linearly dependent on the temperature simulta-
neously.

Figs. 1- 3(d) show FF and βr
FF plotted as functions of the temperature for the cells

in groups (a), (b) and (c), respectively. Here, some small bends in the curves can be
observed but, overall, the dependence with the temperature of the measurements is
well described by straight lines. Here, the discrepancy between the predicted values
and the experiments may also be attributed to temperature noise in the measure-
ments and the diode model employed in the derivation of the expressions. Still, the
proposed model predicts reasonably well the experimental values.

8 Conclusions
In this work, analytical expressions that describe the temperature sensitivity of the
maximum power point have been derived. The expressions were tested with mea-
surements from 18 multicrystalline silicon solar cells with different bulk resistivities
and cell architectures. It was found that the new model describes with low discrep-
ancy the temperature sensitivity of the investigated parameters and is in very good
agreement with the experimental values.

From Eq. (28), it was concluded that not all parameters of a solar cell can vary
linearly with the temperature at the same time. Using a single valued TC, though
practical, may therefore be misleading. Additionally, it is worth noting that a single
TC does not provide any information of the temperature sensitivity of the solar cell
outside of the normal operating temperature interval, where linear dependence with
temperature is usually assumed [3]. Contrary to previous literature, the model pre-
sented in this work shows how the temperature coefficient of solar cell parameters
may vary with the temperature and, since no assumptions have been made regarding
the temperature dependence of the parameters, the derived expressions describe the
temperature sensitivity of the maximum power point at any given temperature. Fi-
nally, with respect to further developments, the techniques and methods employed in
this work may be used to derive expressions for the TCs that include the effect of the
series resistance [13, 14]. This would not only allow for a more accurate description of
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the temperature sensitivity of the MPP, but also potentially gaining understanding
of the temperature sensitivity of the series resistance.
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Analytical Modeling of the Maximum Power Point
with Series Resistance

Alfredo Sanchez Garcia and Rune Strandberg
University of Agder, Grimstad, 4879, Norway

Abstract

This paper presents new analytical expressions for the maximum power
point voltage, current, and power that have an explicit dependence on the
series resistance. An explicit expression that relates the series resistance to
well-known solar cell parameters was also derived. The range of the validity
of the model, as well as the mathematical assumptions taken to derive it are
explained and discussed. To test the accuracy of the derived model, a numerical
single-diode model with solar cell parameters whose values can be found in the
latest installment of the solar cell efficiency tables was used. The accuracy
of the derived model was found to increase with increasing bandgap and to
decrease with increasing series resistance. An experimental validation of the
analytical model is provided and its practical limitations addressed. The new
expressions predicted the maximum power obtainable by the studied cells with
estimated errors below 0.1% compared to the numerical model, for typical
values of the series resistance.

1 Introduction
Shockley’s diode equation describes how a solar cell responds to bias and illumina-
tion [1]. Analytical expressions for photovoltaic parameters, such as the open-circuit
voltage, Voc, or the short-circuit current, isc, can easily be derived from it. When
series resistance is accounted for, however, the diode equation becomes an implicit
expression of the current, which is not as straightforward to work with. Some work
has been performed aiming to quantify analytically the effect of series resistance on
various solar cell parameters. Banwell et al. showed that Lambert’s W function
allows for a closed-form expression of the current when the effect of series resistance
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is considered [2]. Jain et al. derived, in [3], an analogue to Banwell’s expression that
also accounted for the effect of shunt resistance. The latter authors later made use of
this expression to derive analytical expressions for Voc and isc. The maximum power
point (MPP) has been little explored from an analytical perspective, although some
exceptions exist [4, 5, 6, 7, 8]. The reason for this lies in the fact that, when series re-
sistance is considered, deriving an expression for the maximum power point voltage,
Vmpp, involves solving a transcendental equation. Such equations often do not have
closed-form solutions and need to be solved numerically. It is worth mentioning the
work presented in [4], where Singal was able to obtain an approximate closed-form
expression of Vmpp, in terms of Voc. In contrast with a numerical model, an analytical
model would allow identifying the physical parameters affecting the MPP. Account-
ing for the series resistance in the analytical model for the MPP would also allow for
better characterization of real solar cells. In this sense, such a model would describe
the MPP with higher accuracy than other analytical models that do not account for
the effect of series resistance. The lack of an accurate analytical model for the MPP,
which includes series resistance, in the scientific literature represents a research gap
that this work aims to fill. To this end, a closed-form expression for the maximum
power point voltage that accounts for the effect of the series resistance is derived.
The starting point of the derivation is the analytical expression for the current, de-
rived by Banwell in [2], in terms of Lambert’s W function. It is then argued that,
at the maximum power point, the argument of the W function is small enough to
accurately approximate the function value. This makes the transcendental problem
analytically solvable. The accuracy of the derived model was found to increase with
increasing bandgap energy and to decrease with increasing series resistance. From
the new expression for Vmpp, an analytical expression for the series resistance was
then derived. Additionally, approximate analytical expressions for the maximum
power point current, impp, and power, Pmpp, were derived. Numerical results were
calculated using parameters typical for seven different solar cell technologies. The ac-
curacy of the model was tested through a comparison with reference values that were
obtained from a numerical single-diode model. The results showed that the analytic
model can predict the maximum power with relative errors below 0.1% when com-
pared to the numerical model, when typical values of the series resistance are used.
Still, it must be kept in mind that the analytical approach derived in the present
work corresponds to a one-diode model. This implies that it should not be used
with solar cells that follow, e.g., the double-diode equation. For such cells, different
techniques, such as those proposed in [9], should be employed. Finally, the practical
limitations of the model are discussed based on its experimental validation, provided
in [10]. Whereas the present work focuses on the derivation, range of validity, and
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theoretical limitations of the model from a formal perspective, in [10] the focus was
on its experimental applicability.

To summarize, this work presents a novel approach based on the use of Lambert’s
W function to obtain closed-form analytical expressions for the MPP that account
for the effect of the series resistance.

2 Background
Assuming nondegenerate conditions, the total current density, i, produced by a solar
cell is given by Shockley’s diode equation [11],

i = iG − i0 exp

[
V

Vt

]
, (1)

where V is the voltage and iG and i0 are the generation and thermal recombina-
tion [12] currents, respectively. Here, the thermal voltage, Vt, given by qVt = kT
with T , k, and q being the cell temperature, Boltzmann’s constant, and the elec-
tron charge, respectively, is introduced. The total power density, P , is given by the
product P = V i [13]. At the maximum power point, it holds that:

d

dV
P = i+ V

d

dV
i = 0. (2)

Khanna et al. found that Equation (2) is solved by [14, 15]:

Vmpp = Vt

(
W

[
iG
i0
e

]
− 1

)
, (3)

where W(x), defined by x = W(xex), is Lambert’s W function [16]. An expression for
the maximum power point current, impp, can be obtained by inserting Equation (3)
into Equation (1), and an expression for the maximum power, Pmpp, is obtained from
the product Pmpp = Vmppimpp. This yields [14, 15]:

impp = iG


1− 1

W
[
iG
i0
e
]


 , (4)

Pmpp = iGVt


W

[
iG
i0
e

]
− 2 +

1

W
[
iG
i0
e
]


 . (5)
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When series resistance is accounted for, Equation (1) becomes [13]:

i = iG − i0 exp

[
V + ir

Vt

]
, (6)

where r is the cell series resistance ([r] = Ω · cm2). Banwell et al. proved in [2] that
Lambert’s W function allows for an explicit expression for i. Defining the voltages
VG and V0 as VG = iGr and V0 = i0r, Equation (6) becomes [2]:

i = iG − Vt

r
W

[
V0

Vt

exp

[
VG

Vt

+
V

Vt

]]
, (7)

from which it can be seen that in the limit r → 0, Equation (1) is recovered.

3 The Maximum Power Point
Let z(V ) denote the argument of Lambert’s W function in Equation (7), and let
zmpp := z(Vmpp). Inserting Equation (7) into Equation (2) yields:

0 =

[
i+ V

d

dV
i

]

V=Vmpp

= i(Vmpp) + Vmpp
−Vt

r

W(zmpp)

1 +W(zmpp)

[
d

dV
log z

]

V=Vmpp

= iG − Vt

r
W(zmpp)−

Vmpp

r

W(zmpp)

1 +W(zmpp)

=
Vt

r
W(zmpp)

[
1

W(zmpp)

iGr

Vt

− 1− Vmpp/Vt

1 +W(zmpp)

]

=
1

W(zmpp)

VG

Vt

−
1 +W(zmpp) +

Vmpp

Vt

1 +W(zmpp)
, (8)

where the derivative of Lambert’s W function, found in, e.g., [16], is used. Equa-
tion (8) is a transcendental equation in Vmpp and does not have a closed-form solution.
Values for Vmpp can be calculated by solving Equation (8) numerically.

3.1 Maximum Power Point Voltage

The Taylor expansion of the principal branch of Lambert’s W function, W0, is given
by:

W0(x) =
∞∑

n=1

(−n)n−1

n!
xn = x− x2 +

3

2
x3 − 8

3
x4 . . . (9)
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which converges as long as x ≤ 1/e. The series expansion in Equation (9) can be
used to find an approximate analytical solution to Equation (8). To do so, notice
that zmpp may be small for typical solar cells. To see this, note that i0 is given by
i0 ≈ qCVt exp [−Eg/qVt]E2

g , where Eg is the bandgap of the semiconductor and C is a
constant involving the speed of light, Planck’s constant, and the external radiative
efficiency (ERE) [17]. The latter is used to account for nonradiative recombination.
z(V ) can then be written as:

z(V ) = rCE2
g exp

[
V

Vt

− Eg/q

Vt

+
iGr

Vt

]
. (10)

The voltage is limited by the bandgap, and therefore, it holds that V − Eg/q < 0.
As long as the value of r is not excessively large, the exponent in Equation (10)
will be negative, resulting in a small z. Assuming a reasonable cell quality, the
series expansion in Equation (9) can be used to approximate W(zmpp) by zmpp in
Equation (8). To show this, Figure 1 displays the values of W(zmpp) (continuous
lines) and zmpp (crosses) as a function of the bandgap for various values of r. There,
it is confirmed that, for large bandgaps, W(zmpp) is well approximated by zmpp, even
for values of r up to 5 Ω · cm2. As expected from Equation (10), Figure 1 shows
that the approximation is more accurate for lower values of r. In this context, it
is worth noting that typical values for area-normalized series resistance usually are
below 2 Ω · cm2 for both laboratory and commercial solar cells [18]. Therefore,
W(zmpp) should be well approximated by zmpp for most solar cells. Figure 1 is
obtained assuming an AM1.5G spectrum and ERE value of 10−4. The displayed
values correspond to values of Vmpp that were obtained by solving Equation (8)
numerically for various values of r and Eg. Approximating W(zmpp) by zmpp in
Equation (8) results in:

1

zmpp

VG

Vt

=
1 + zmpp +

Vmpp

Vt

1 + zmpp

. (11)

Focusing now on the right-hand side of Equation (11), since zmpp needs to be
small so that the approximation W(zmpp) ≈ zmpp is accurate, the term Vmpp/Vt will
dominate over zmpp in the numerator. Equation (11) can then be simplified to:

1

zmpp

VG

Vt

=
1 + Vmpp

Vt

1 + zmpp

, (12)

which is analytically solvable. The first step in finding the solution is to insert zmpp.
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Figure 1: W(zmpp) (continuous lines) and zmpp (crosses) as a function of the energy
gap, Eg, for various values of r. The graph is obtained assuming an AM 1.5G
spectrum and ERE = 10−4. The Vmpp values are obtained by solving Equation (8)
numerically.

After a bit of manipulation, Equation (12) becomes:
(
1 +

Vmpp − VG

Vt

)
exp

[
1 +

Vmpp − VG

Vt

]
=

VG

V0

exp

[
1− 2

VG

Vt

]
, (13)

which has the closed-form solution:

Vmpp = VG + Vt

(
W

[
VG

V0

exp

[
1− 2

VG

Vt

]]
− 1

)
. (14)

Finally, inserting the definitions for VG and V0 yields:

Vmpp = iGr + Vt

(
W

[
iG
i0

exp

[
1− 2

iGr

Vt

]]
− 1

)
, (15)

from which it can be seen that, in the limit r → 0, Equation (15) becomes Equa-
tion (3).
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3.2 Maximum Power Point Current and Power

In order to obtain expressions for impp and Pmpp, Equation (15) has to be inserted into
Equation (7). This results in a composite of W functions that cannot be simplified.
A simpler approximate expression for impp can be obtained by noting that at the
maximum power point, the W function in Equation (7) is evaluated at z(V ) = zmpp.
Since zmpp needs to be small for Equation (15) to be accurate, W(zmpp) can be
approximated by zmpp here as well. From Equation (7), this yields:

impp = iG − Vt

r
W(zmpp) ≈ iG − Vt

r
zmpp

= iG − i0 exp

[
Vmpp

Vt

+
VG

Vt

]
. (16)

An analytical expression for impp can now be obtained by inserting Equation (15)
into (16), and an analytical expression for Pmpp can be found by evaluating Vmpp ·
impp. To shorten the notation, let α(r) denote the argument of the W function
in Equation (15). The approximate analytical expressions for impp and Pmpp then
become:

impp = iG

(
1− 1

W [α(r)]

)
, (17)

Pmpp = i2Gr

(
1− 1

W [α(r)]

)
+ iGVt

(
W[α(r)]− 2 +

1

W [α(r)]

)
. (18)

Note that in the limit r → 0, Equations (4) and (5) are recovered.

3.3 Practical Note

For practical applications of Equations (15), (17), and (18), it is worth noting that
iG is well approximated by isc, even though the latter is dependent on the series
resistance. In the case of, e.g., silicon under an AM 1.5G spectrum, iG and isc
practically overlap for values of r up to about 11 Ω · cm2. Additionally, note that the
quotient isc/i0 can be expressed as exp (Voc/Vt). Equation (15) then becomes:

Vmpp = iscr + Vt

(
W

[
exp

[
1 +

Voc

Vt

− 2
iscr

Vt

]]
− 1

)
. (19)

These practical substitutions may be also applied to Equations (17) and (18).
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4 Analytical Expression for the Series Resistance
From Equation (19), it is possible to obtain r as a function of Vmpp. To see this, note
that Equation (19) can be rewritten as:

1 +
Vmpp − iscr

Vt

= W

[
exp

[
1 +

Voc

Vt

− 2
iscr

Vt

]]
, (20)

which is equivalent to:
(
1 +

Vmpp − iscr

Vt

)
exp

[
1 +

Vmpp − iscr

Vt

]
= exp

[
1 +

Voc

Vt

− 2
iscr

Vt

]
, (21)

which is seen by applying Lambert’s W function to both sides of Equation (21) and
using the definition x = W(xex). Multiplying both sides by exp [−2Vmpp/Vt + 2iscr/Vt]
yields:

exp

[
1 +

Voc

Vt

− 2
Vmpp

Vt

]
=

(
1 +

Vmpp − iscr

Vt

)
exp

[
1− Vmpp − iscr

Vt

]
. (22)

Finally, multiplying both sides by −e−2 gives:

− exp

[
−1 +

Voc

Vt

− 2
Vmpp

Vt

]
=

(
−1− Vmpp − iscr

Vt

)
exp

[
−1− Vmpp − iscr

Vt

]
, (23)

which can be inverted by making use of Lambert’s W function. After some manipu-
lation, r can be expressed as:

r =
Vmpp

isc
+

Vt

isc

(
W

[
− exp

[
−1 +

Voc

Vt

− 2
Vmpp

Vt

]]
+ 1

)
. (24)

4.1 Validity of the Approximate Expression

Equation (24) sets the limit for the range of r where Equation (19) describes the
physical behavior of Vmpp. As the exponential function only yields positive values,
the argument of Lambert’s W in Equation (24) is negative. The principal branch
of Lambert’s W function, W0(z), is only defined for z ≥ −1/e, which implies that
W(z) /∈ R for z ≤ −1/e. Since the series resistance is a real-valued physical quantity,
the argument of the W function in Equation (24) must fulfill:

exp

[
−1 +

Voc

Vt

− 2
Vmpp

Vt

]
≤ 1

e
, (25)
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which implies:

Vmpp ≥ 1

2
Voc. (26)

Equation (26) sets an upper limit for the series resistance, as having Vmpp less
than 1

2
Voc would require a complex-valued r. This translates into Equation (15) not

describing a physical Vmpp for any value of the series resistance, which would make
Vmpp smaller than Voc/2. This maximum value of the resistance, which is denoted in
the present work by rmax, is found by evaluating Equation (24) at Vmpp = Voc/2. This
yields:

rmax = r

[
Voc

2

]
=

Voc/2

isc
+

Vt

isc

(
W

[
−1

e

]
+ 1

)
=

Voc

2isc
.

Note that at r = rmax, the parentheses in Equation (19) cancel out. For r ≥ rmax,
the W function tends asymptotically to zero. This results in Vmpp increasing linearly
with r with slope isc, which is not physical.

4.2 Accuracy of the Approximation

The accuracy of Equation (15) decreases with increasing series resistance. For suf-
ficiently large r, the term involving zmpp in the numerator on the right-hand side of
Equation (11) will not be small in comparison to Vmpp/Vt, implying that Equation (15)
will be less accurate. Therefore, it is relevant to determine the value of the series resis-
tance, rL, until the derived model gives the acceptable results. The value rL = rmax/3
is proposed as a rule of thumb. This corresponds roughly to zmpp ≈ 1/e, which seems
a natural choice since for zmpp ≥ 1/e, the Taylor expansion in Equation (9) should
not be applicable as zmpp would be larger than the convergence radius of the expan-
sion. Determining the actual value of r that makes zmpp = 1/e would require solving
simultaneously zmpp − 1/e = 0 and Equation (8), which is rather counterproductive,
since the main point of making use of Equation (15) is to avoid solving Equation (8)
numerically.

5 Numerical Results
In this section, the accuracy of Equation (19) is tested. For this, the focus is on Vmpp

and Pmpp, given by Pmpp = Vmppi(Vmpp), with i being given by Equation (7). The la-
bel “mod” is used to denote the values of Vmpp and Pmpp obtained from Equation (19).
The label “ref” is used to denote the reference values to which V mod

mpp and Pmod
mpp are

compared. The “ref” quantities are obtained by numerically solving Equation (8).
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The accuracy of Equations (17) and (18) is also tested, and the label “app” is used
to denote these.

For all numerical calculations, the AM 1.5G spectrum was assumed. The nu-
merical single-diode model used to test the accuracy of Equation (19) was fed with
cell parameters corresponding to six different technologies found in the latest install-
ment of the solar cell efficiency tables [19]. The parameters corresponding to these
cells are summarized in Table 1. As a seventh case, the derived model was also
tested against a numerical single-diode model using Eg = 1.125 eV and ERE = 10−4.
These values are typical for silicon cells. This case is therefore referred to as a nu-
merically modeled silicon cell. All cells were assumed to be at a temperature of 300
K. Figure 2 displays (a) Vmpp, (b) impp, and (c) Pmpp as a function of the series re-
sistance. Additionally, the corresponding current–voltage characteristic (Figure 2d)
is shown for several values of the series resistance. All curves correspond to the
numerically modeled silicon cell described above. In Figure 2d, dotted lines show
how the maximum power point changes with increasing series resistance. The red
dotted line was obtained by solving Equation (8) numerically, for multiple values
of the series resistance, and evaluating Equation (7) with the obtained Vmpp values.
The purple dotted line was obtained from Equation (15). The values for rL and rmax

(Figure 2a–c) and their correspondent values of Vmpp (Figure 2d) are displayed with
black vertical dashed lines. From Figure 2a–c, it can be seen that the values cal-
culated with the new analytical model were in good agreement with the numerical
reference model for r ≤ rL. For r ≥ rL, V mod

mpp appears to be underestimated (Fig-
ure 2a) and imod

mpp overestimated (Figure 2b). As a result, Pmod
mpp overlaps well with

P ref
mpp (Figure 2c). Finally, for r ≥ rmax, V mod

mpp appears to increase with increasing
series resistance.

Table 1: Parameters for selected single-junction solar cell technologies. The ERE
values were estimated from Equation (27).

Device Eg (eV) Voc (V)1 isc (mA/cm2)1 ERE (%)
InP 1.34 0.939 31.15 0.365

GaAs 1.42 1.107 29.60 14.510
CdTe 1.51 0.876 30.25 10−4

CIGS 1.08 0.734 39.58 1.750
a-Si 1.69 0.896 16.36 1.96 ×10−7

PSC 2 1.60 1.042 20.40 0.002
1 The Voc and isc values were measured under the AM 1.5G spectrum at T = 300 K [19].
2 Perovskite solar cell.

The accuracy of the expression for V mod
mpp , Equation (19), decreases with increasing
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Table 2: Comparison of Vmpp and Pmpp for various values of area-normalized series
resistance. The values correspond to a numerically modeled Si cell (Eg = 1.125 eV)
with ERE = 10−4 at T = 300 K.

r (Ω · cm2) Vmpp (V) Error (%) Pmpp (W) Error (%)
V mod
mpp V ref

mpp Pmod
mpp P ref

mpp

0 0.559 0.559 10−4 5.414 5.414 10−8

0.5 0.539 0.540 0.153 5.213 5.213 0.003
1.5 0.500 0.503 0.629 4.813 4.815 0.034
2.0 0.480 0.485 1.032 4.615 4.618 0.066
5.0 0.371 0.390 4.906 3.477 3.502 0.728

resistance. This can be seen in Figure 3, where Vmpp is plotted as a function of
the series resistance for the six technologies presented in Table 1. The dashed lines
correspond to the reference values, V ref

mpp and the continuous lines to V mod
mpp . The points

corresponding to a series resistance equal to rL are marked with crosses. Focusing
on the graphs representing the CIGS cell, the mismatch between V ref

mpp and V mod
mpp

becomes noticeable for r ≥ rL. For additional comparison, the Vmpp calculated from
Equation (3) (i.e., without series resistance) for the GaAs cell is displayed in Figure 3.
This is represented by the blue straight line with zero slope. At r = 0 Ω · cm2, V ref

mpp,
V mod
mpp , and Equation (3) overlap, but as soon as r starts increasing, Equation (19)

predicts the value of V ref
mpp with higher accuracy. Finally, it is worth mentioning that

the overlap between V mod
mpp and V ref

mpp is particularly good with the perovskite (PSC)
and the amorphous silicon (a-Si) solar cells due to their large bandgaps. Table 2
displays the values of Vmpp and Pmpp corresponding to the numerically modeled Si
cell shown in Figure 2 for various values of the series resistance. From the left,
the first column presents five values of area-normalized series resistance. In the
second column, the values of V mod

mpp and V ref
mpp are presented, followed by their relative

discrepancy in %. The three remaining columns follow the same structure, but with
the values of Pmod

mpp and P ref
mpp. Table 2 shows that the higher the series resistance, the

higher the discrepancy is. Nevertheless, the model derived in the present work has
a reasonable accuracy and is able to predict the value of Pmpp with an error below
0.75% for series resistance up to 5 Ω · cm2 for this numerically modeled cell.

Figure 4 displays the base-10 logarithm of the relative discrepancy (in %) between
Pmod
mpp and P ref

mpp as a function of the bandgap energy and the ERE for r = 2 Ω · cm2.
The relative discrepancy between Pmod

mpp and P ref
mpp for the six solar cell technologies

presented in Table 1 is also shown. The white dotted lines represent levels of fixed rel-
ative discrepancy. To compute this figure, the ERE values of the solar cells presented
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Figure 2: Vmpp (a), impp (b), and Pmpp (c) as a function of the series resistance. For
(c), a typical Si solar cell size of 6× 6 inch2 (0.0232 m2) was assumed. (d) Current–
voltage characteristics for three different values of series resistance. The dotted lines
(Equation (15) in purple and Equation (8) in red) represent the maximum power
point changing with increasing series resistance.

in Table 1 were estimated by making use of:

ERE = exp

[
Voc − V rad

oc

Vt

]
, (27)

where V rad
oc can be calculated from Equation (1) by assuming that i0 results only

from radiative recombination. Figure 4 shows that, for a given series resistance,
the accuracy of Equation (15) increases with increasing bandgap and decreases with
decreasing ERE. Note that the Pmpp of all the investigated cases was predicted with
a discrepancy below 0.07%. Finally, Figure 5 displays the base-10 logarithm of the
relative discrepancy (in %) between P ref

mpp and Pmod
mpp (Figure 5a) and between P ref

mpp and
P app
mpp (Figure 5b) as a function of the series resistance for the six devices presented

in Table 1. Here, it can be seen that the discrepancy between P ref
mpp and P app

mpp is
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Figure 3: Vmpp as a function of the series resistance at T = 300 K. V mod
mpp (Equa-

tion (15)) is represented by continuous lines and V ref
mpp (Equation (8)) by dashed

lines.

around one order of magnitude larger than between Pmod
mpp and P ref

mpp. P app
mpp could still

predict Pmpp in most of the studied cases with errors below 1% for values of the series
resistance up to 5 Ω · cm2.

6 Experimental Validation and Remarks
Now that the analytical model has been numerically validated, its applicability in
real cells should be tested. This was performed in [10], where 18 multicrystalline
silicon solar cells with different bulk resistivities and cell architectures were measured
at multiple temperatures. For the studied cells, Equations (18) and (19) predicted
the experimental Pmpp and Vmpp with relative discrepancies below 0.2% and 0.7%,
respectively. It is worth mentioning that low relative discrepancies were obtained at
all the measured temperatures.

Besides the numerical limitations that the model derived in the present work may
have (e.g., Equation (26)), practical limitations of the model should be addressed.
These may include factors that real cells will eventually experience, for instance,
degradation due to aging or shunt resistance effects. Although the derived model
cannot account for, e.g., cell degradation, it is worth noting that neither can the
diode equation in Equation (1), nor the modified diode equation in Equation (6).
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The analytical expressions derived in the present work were subjected to the same
practical limitations that the modified diode equation was. The advantage that the
derived model presents with respect to Equation (6) is that it allows seeing how the
series resistance affects the MPP analytically. On the other hand, shunt resistance
effects do not usually have a relevant impact in laboratory cells, as these typically
appear due to defects in manufacturing. In fact, in [10], the shunt resistance in the
measured cells had only a negligible effect on the comparison between the model and
the experiments. Although it might be possible to obtain an expression analogous to
Equation (19) that also accounts for the effect of shunt resistance, this goes beyond
the scope of the present work.

7 Conclusions
In this work, a new analytical expression for the maximum power point voltage that
explicitly accounts for the effect of the series resistance was derived. Approximate
analytical expressions for the current and power at the maximum power point were
also presented. To derive these expressions, it was shown that Lambert’s W function
may be approximated by its argument, as long as the value of the series resistances is
not excessively large. This makes what otherwise would be a transcendental problem
analytically solvable. The accuracy of the new expressions was tested with a numer-
ical single-diode model. It was shown that the new model accurately predicts the
maximum power of all the investigated cases with small discrepancies between the
analytical model and the numerically simulated values. This was the case even when
considering values of the series resistance above 2 Ω ·cm2, which is larger than typical
values for laboratory and commercial cells [18]. The accuracy of the approximation
was shown to decrease with increasing series resistance, but also to increase with
increasing bandgap energy. This makes the derived model of particular interest for
semiconductors with large bandgaps such as perovskite or organic solar cells. Based
on the results presented in this work, together with the results published in [10],
it may be concluded that the derived analytical model can successfully be utilized
to predict the maximum power point for solar cells that follow the diode equation
when series resistance is accounted for. Moreover, the employment of Lambert’s W
function allowed for accurate and simpler expressions than what is currently found
in the scientific literature. With respect to new developments, the derived model
opens the possibility of analytically studying the effect of the series resistance on the
temperature coefficients of the maximum power point. Further enhancements may
also include attempts to generalize the model derived in the present work to also
include the effect of the shunt resistance.
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Abstract
This work compares a recently developed analytical expression for the maximum-

power point voltage with experimental data, to test its usability for crystalline
silicon solar cells. The experimental data covers measurements from 18 mul-
ticrystalline silicon solar cells with different bulk resistivities and cell archi-
tectures. We show that the expression is able to predict the maximum power
obtainable by the measured cells with relative discrepancies below 1%. Ad-
ditionally, we compare the accuracy of this new expression with two already
existing models.

1 Introduction
The maximum-power point of solar cells that follow Shockley’s diode equation has
been studied from an analytical perspective in a number of works, such as Refs. [1]
and [2]. There, the authors showed that Lambert’s W function [3] allowed for a simple
analytical expression of the maximum-power point voltage, Vmpp, and, consequently
the maximum-power point current and power, impp and Pmpp, respectively.

Some work has been done aiming to quantify analytically the effect of series
resistance on various solar cell parameters [4, 5, 6, 7]. Particularly in Ref. [6], Singal
obtained an approximate closed-form expression of Vmpp in terms of the open-circuit
voltage, Voc.

Recently, a new expression for Vmpp that accounts for the effect of series resistance,
and is comparable in simplicity to the expression derived by Khanna in Ref. [1], has
been derived and tested against a numeric one-diode model for a number of different
bandgaps [8].
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In this paper, we aim to test the applicability of this new expression for Vmpp in
crystalline silicon (c-Si) solar cells. The current-voltage (I-V ) characteristics of 18
compensated multicrystalline silicon (mc-Si) solar cells, as well as the series resistance
and sample characteristics, were measured at various temperatures. We compare the
measured values of Vmpp, impp and Pmpp of the measured cells to their corresponding
counter parts predicted by the expression derived in Ref. [8]. Additionally, we test the
accuracy of the expressions derived in Ref. [8] against Singal’s expressions (Ref. [6])
and a numerical model.

2 Theoretical Framework
When series resistance is accounted for in Shockley’s diode equation [9], the total
current, i, produced by a solar cell is given by [10]

i = iG − i0 exp

(
V + iR

Vt

)
(1)

where iG and i0 are the generation and the thermal recombination [11] currents,
respectively; V is the voltage and qVt = kT with q and k being the elementary
charge and Boltzmann’s constant; and R is the series resistance. Banwell et al.
showed in Ref. [4], that Lambert’s W function, defined by x = W(xex) allows for
Eq. (1) to be expressed in closed-form as

i = isc −
Vt

R
W

(
iscR

Vt

exp

[
V

Vt

− Voc

Vt

+
iscR

Vt

])
, (2)

where we have approximated iG by isc and made use of the identity i0 = isc/ exp (Voc/Vt).
The latter follows from Eq. (1) by noting that i(Voc) = 0 [10].

At the maximum-power point, it holds that dP/dV = 0, with P being given by the
product P = i ·V . Inserting Eq. (2) results into an transcendental equation in V that
does not have an analytical solution and needs to be solved numerically. However,
some approximate analytical solutions can be found in the literature.

2.1 Without Lambert’s W function

Already in 1981, Singal derived in Ref. [6] approximate analytical expressions for
Vmpp, impp and Pmpp. In his derivation, Singal did not make use of Lambert’s W
function. Instead, he noted that, for most solar cells, Voc >> Vt, which allowed him
to take a series of approximations that converted the transcendental problem into

2



an analytically solvable equation. The proposed expressions for the maximum-power
point were

Vmpp = Voc

[
1− 1

v
log(1 + f(v)) +

1

v
log

(
1 +

2iscR

Voc

vf(v)

(1 + f(v))2

)

− iscR

Voc

f(v)

1 + f(v)
+

(
iscR

Voc

)2
2vf(v)

(1 + f(v))3

]
, (3)

impp = isc

[
1− 1

1 + f(v)
− 2iscR

Voc

vf(v)

(1 + f(v))3

]
, (4)

where v = Voc/Vt and f(v) = v − log(v). The corresponding expression for Pmpp is
obtained by multiplying Eqs. (3) and (4).

2.2 With Lambert’s W function

Sanchez and Strandberg showed in Ref. [8] that approximating Lambert’s W function
by its argument in the derivation of Vmpp allowed for an approximate analytical
solution of the transcendental problem. The obtained expression was

Vmpp = iscR + Vt

(
W

[
exp

[
1 +

Voc

Vt

− 2
iscR

Vt

]]
− 1

)
. (5)

From Eq. (2), it is possible to calculate the maximum-power point current, impp,
and power, Pmpp, by inserting Eq. (5) into Eq. (2) and then calculating the product
impp · Vmpp. The authors in Ref. [8] also proposed two approximate expressions for
these quantities,

impp = isc

(
1− 1

W [α(R)]

)
, (6)

Pmpp = i2scR

(
1− 1

W [α(R)]

)
+ iscVt

(
W[α(R)]− 2 +

1

W [α(R)]

)
, (7)

where α(R) equals the argument of Lambert’s W function in Eq. (5).
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2.3 The ideality factor

Foreseeing its usability in the comparison with our experiments, it is worth dedicating
a section to the ideality factor, n. At the beginning of this section, we introduced
the recombination term of the diode equation as i0 exp [V/Vt]. This is true only for
solar cells that follow the ideal diode equation, which assumes that all recombination
occurs in the cell bulk through band-to-band transitions or through Shockley-Read-
Hall (SRH) recombination. Real cells experience other types of recombination and,
also, in different areas of the device [10]. In order to account for these, we need to
introduce an ideality factor, n, in the exponent as qVt → qnVt = nkT . The ideality
factor is then a measure of how ideal the cell in question is [10].

The ideality factor of a cell may be extracted from the experimental data by
fitting the obtained I−V characteristics to Shockley’s diode equation. Let us instead
propose an alternative method that requires less computational power. From Eq. (1),
we can solve for nVt and obtain

nVt =
V + iR− Voc

log
(
1− i

isc

) . (8)

Here, we have also approximated iG by isc and made use of i0 = isc/ exp (Voc/Vt).
Eq. (8) is only defined in the real axis within the interval 0 < i < isc, i.e., for all
points in the I − V curve except Voc and isc. Assuming that the ideality factor
is constant throughout the I − V characteristic, we can evaluate Eq. (8) at the
maximum-power point and express n as

n =
q

kT

Vmpp + imppR− Voc

log
(
1− impp

isc

) . (9)

All the physical quantities appearing in Eq. (9) can be extracted from the mea-
surements, which allows for the determination of n at different temperatures.

In Ref. [12], Townsend proposed a method for estimating the performance of
coupled photovoltaic systems. To this end, he compared various models that could
be potential candidates. It is worth mentioning that Townsend arrived at Eq. (9)
when obtaining a solution for what he denoted the "Lumped, 1 Mechanism with 4
Parameters" model [12].

3 Experimental Method
To compare the analytical expression with experimental data, 18 compensated p-
type mc-Si solar cells were studied. The cells were fabricated from three different

4



ingots with different bulk resistivities, ρ, and different cell architectures. The cells
can be divided into three groups: (a) ρ = 0.5 Ω · cm, Passivated Emitter Rear Cells
(PERC), (b) ρ = 1.3 Ω · cm, PERC, and (c) ρ = 1.3 Ω · cm, Aluminum Back Surface
Field (Al-BSF) cells. Each group contains six cells from various brick positions,
numbered from 001-060, with position 001 at the bottom of the brick and position
060 at the top. The measurements were performed using a NeonSeeTM AAA Sun
simulator, enabling acquisition of the I − V characteristics of the cells, as well as
the series resistance, at various temperatures ranging from 293K to 343K. The cell
temperature was controlled using a built-in water heater.

4 Numerical Method
We denote with the label "exp", the experimental values of Vmpp, impp and Pmpp.
The experimental values of Voc, isc and R are used as inputs to evaluate Eqs. (5), (6)
and (7) to calculate Vmpp, impp and Pmpp at multiple temperatures. We denote these
with the label "mod". Singal’s model, i.e., Eqs. (3), (4) and the corresponding Pmpp,
will be labeled "S". As all the expressions presented in sections 2.1 and 2.2 result
from approximations, it may also be of interest to compare the experiments with the
value of Vmpp, impp and Pmpp that we can obtain directly from Eq. (2). To do so, we
calculate values of Vmpp by finding numerically the voltage that maximizes P = V i,
with i being given by Eq. (2). In order to do this, we first make use of experimental
values of Voc, isc and R and insert them in Eq. (2). We then make use of an auxiliary
function, f(V ) = −V i, and find the voltage that minimizes it. We denote by V num

mpp ,
the values of Vmpp obtained in this way. The corresponding impp and Pmpp are also
denoted by the label "num".

4.1 Simultaneous determination of the ideality factor and the
series resistance

Before we compare with the experiments, we need to address the way R is obtained
from the experimental I − V characteristics. In our case, the NeonSeeTM AAA
Sun simulator software estimates the value of the series resistance from the I − V
characteristics by computing the negative reciprocal of the slope at V = Voc. As
noted in, e.g., Ref. [12], this method overestimates the value of R. This can be
analytically shown from Eq. (1) by taking the derivative of i with respect to V ,
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evaluating at V = Voc and solving for R. We obtain

R = − 1

∂i
∂V

∣∣∣∣
V=Voc

− 1
qi0
nkT

exp
[
qVoc

nkT

] = R0 −
nkT

qisc
, (10)

where we have introduced R0 as the estimate of the R that the software gives and
again made use of the identity i0 = isc/ exp (Voc/nVt). From Eq. (10), we note that R
is always going to be smaller than the given estimate, R0 [12].

In order to being able to compare with the experiments, we need to not only
accurately estimate R but also n. A straightforward method would be to extract
these parameters from the measured I−V characteristics by, e.g., least-square fitting
the data points to Eq. (1). Alternatively, we can note from Eqs. (9) and (10) that
we have n(R) and R(n), respectively. Solving the system of equations in closed-form
yields

n =
q

kT

isc
impp

imppR0 + Vmpp − Voc(
1 + isc

impp
log
[
1− impp

isc

]) , (11)

R = −
Vmpp − Voc − iscR0 log

[
1− impp

isc

]

impp + isc log
[
1− impp

isc

] , (12)

which again requires less computational power.
As a final note, it is worth pointing out that the NeonSeeTM AAA sun simulator

software has been updated since these measurements were obtained and now the
"Variable Intensity Method" is used to extract the series resistance from the I − V
curves [13].

5 Numerical Results and Discussion
In Figs. 1, 2 and 3, we display Vmpp, impp, and Pmpp, respectively, as a function of the
cell temperature. The values correspond to the cell in brick position 012 of group
(a). In all three figures, the experimental values of the corresponding parameters are
represented with blue crosses. The values corresponding to the numerical model are
represented with continuous black lines. The "mod" parameters, i.e., Eqs. (5), (6)
and (7), are represented with continuous gray lines. Finally, Singal’s model, i.e.,
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Eqs. (3) and (4), is represented with dashed red lines. In all three figures, it is
assumed an ideality factor of 1 in both the numerical and the analytical models.

Starting with Fig. 1, we see that the values of V num
mpp and both the approximate

analytical models overlap well, but all three models appear to underestimate V exp
mpp

by 3.5%, on average. As for Fig. 2, we we see that the numerical and the analytical
models overlap well, but overestimate the experimental values of impp. Since there
is a good agreement between the "num", "mod" and "S" Vmpp and impp values, we
also find a good agreement between Pmod

mpp , P S
mpp and P num

mpp , as we can see in Fig. 3.
All three methods appear however to underestimate the experimental values.

Figure 1: Vmpp as a function of the temperature for the cell from brick position 012 in
group (a). The experimental values are represented with blue crosses. The numerical
model, corresponding to V num

mpp in section 4, is represented by continuous black lines.
The analytical models, corresponding to Eqs. (3) and (5), are represented by dashed
red and continuous gray lines, respectively.

5.1 The effect of the ideality factor

Understandingly, we may find discrepancies between the experiments and both ana-
lytical models, as the latter result from approximations of the numerical model. But
one would expect the numerical model to accurately describe the experiments as it
is derived from the (modified) diode equation, Eq. (1).

One possible reason for the mismatch between the models and the experiments
is the ideality factor of the measured cells. To compute Figs. 1, 2 and 3, we have
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Figure 2: impp as a function of the temperature for the cell in position 012 in group
(a).

Figure 3: Pmpp as a function of the temperature for the cell from brick position 012
in group (a).

assumed n = 1 which, as noted in section 2.3, is only true for solar cells that follow
the ideal diode equation. Indeed, the measured cells do not behave like ideal diodes.
To see this, we display in Fig. 4 the I − V characteristics corresponding to the cell
from brick position 005 of group (c) at T = 298 K (black dots), as well as three
simulated cases where the ideality factor was obtained using different methods: (i, in
blue) by fitting the experimental I − V curve to Shockley’s diode equation (Eq. (1)

8



Figure 4: I−V characteristics corresponding to cell from brick position 005 of group
(c) at T = 298 K. The experimental values are represented with black dots. The
dashed blue line is obtained by evaluating Shockley’s single diode equation (Eq. (1)
with R = 0) with the measured voltages and an ideality factor obtained from a least-
square fit. The orange dashed line is also obtained from the single diode equation
but evaluated with an ideality factor obtained from Eq. (9), setting R = 0. Finally,
the green dashed line is obtained by evaluating Eq. (2) with the measured voltages
and an ideality factor obtained from Eq. (9) with the measured values of the series
resistance, R0. At the bottom, we display a residual plot.

with R = 0) and extracting n from the fit, (ii, in orange) by evaluating Eq. (9) with
R = 0 and the experimental values of Voc, isc, Vmpp and impp corresponding to the
displayed I−V curve and (iii, in green) by evaluating Eq. (9) with R = R0 (the series
resistance value provided by the Sun simulator software) and the experimental values
of Voc, isc, Vmpp and impp. At the bottom of Fig. 4, we display the corresponding
residual plot, i.e., a plot of the difference between the models and the obtained
experimental values. The obtained ideality factor is different from one in all three
represented cases; 1.37 and 1.32 for methods (i) and (ii), respectively and 0.80 for
method (iii).

In Fig. 5, we display the relative discrepancy between the experimental values
of Vmpp (dots) and Pmpp (crosses) and the corresponding values obtained from the
analytical models for the cells in group (a) at T = 298 K. The "mod" parameters
(Ref. [8]) are represented with the color blue and the "S" parameters (Ref. [6]), with
the color red. Here, we have introduced the ideality factor of the corresponding cells
calculated with Eq. (9) and the measured value of the series resistance, R0 (method
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Figure 5: Relative discrepancy between the experimental and the modeled values
of Vmpp (dots) and Pmpp (crosses) for all cells in group (a) and at T = 298 K. The
Ref. [8] points correspond to the "mod" parameters, i.e., Eqs. (5) and (7). Ref. [6]
points correspond to the "S" parameters; Eqs. (3) and P S

mpp given by Eqs. (3) ×
Eqs. (4). All expressions are evaluated at the series resistance provided by the Sun
simulator software, R0, and at n(R0) with n being given by Eq. (9).

(iii) above). In the case of Vmpp, accounting for the ideality factor of the cells reduces
the relative discrepancy between the experiments and both the numerical and the
analytical models by approximately 50%. From Fig. 5, we see that both Eq. (7) and
Singal’s expression predict the experimental values of Pmpp for all brick positions
with a relative error below 0.5% for all cells in all three groups.

5.2 Extraction of n and R

Even though we obtain a reasonable relative discrepancy with the experiments when
comparing the Pmpp values, the results for Vmpp are not ideal. We can reduce the
relative discrepancy between the models and the experiments by extracting R and
n directly from the I − V curves. As noted in section 4.1, this may be done by
fitting the obtained I − V characteristics to Eq. (2) or by making use of Eqs. (11)
and (12). The results of this procedure are displayed in Figs. 6 and 7, where we show
the relative discrepancy between the experimental values of Vmpp and Pmpp and the
corresponding values obtained from the analytical models for the cells in groups (b)
and (c). As it can be seen from the figures, making use of Eqs. (11) and (12) to
extract n and R results in a more accurate estimation.
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Figure 6: Relative discrepancy between the experimental and the modeled values of
Vmpp (dots) and Pmpp (crosses) for all cells in group (b) and at T = 298 K. Here and
also in Fig. 7, we have obtained n and R from Eqs. (11) and (12), respectively.

Figure 7: Relative discrepancy between the experimental and the modeled values of
Vmpp (dots) and Pmpp (crosses) for all cells in group (c) and at T = 298 K.
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Regarding the accuracy of the analytical models, we see from the figures that
both models predict similar values when provided with the same input. We can
therefore regard them as equally capable to predict experimental values. The main
improvement that Eqs. (5), (6) and (7) may present compared to Singal’s model is
a simplification of the mathematical expressions.

6 Conclusion
In this work, we have tested the usability of a model for the maximum-power point,
previously derived in Ref. [8], with mc-Si solar cells. To this end, we studied 18
compensated p-type mc-Si cells at multiple temperatures. To allow a comparison
with the experiments we have also developed an analytical method, based on the
works of Townsend in Ref. [12], that allows for the simultaneous extraction of n
and R from the I − V curves. We have shown that, when provided with the right
input, the analytical model is able to predict experimental data with low relative
discrepancy. We have also compared this new model to two already existing models;
one numerical and one analytical, previously derived by Singal in Ref. [6]. Both
analytical models are very similar in accuracy. The main difference between the two
lies in the simplicity of the mathematical expressions. Overall, we may conclude that
the model presented in Ref. [8] accurately predicts the experimental values of Vmpp

and Pmpp and can be successfully applied to mc-Si solar cells.
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