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Revisiting the duration dependence in the US stock market cycles
Valeriy Zakamulin

School of Business and Law, University of Agder, Kristiansand, Norway

ABSTRACT
There is a big controversy among both investment professionals and academics regarding how the 
termination probability of a market state depends on its age. Using more than two centuries of 
data on the broad US stock market index, we revisit the duration dependence in bull and bear 
markets. Our results suggest that the duration dependence for both bull and bear markets is 
a nonlinear function of the state age. It appears that the duration dependence in bear markets is 
strictly positive. For 93% of the bull markets, the duration dependence is also positive. Only about 
7% of the bull markets, those with the longest durations, do not exhibit positive duration 
dependence. We also compare a few selected theoretical distributions on their ability to describe 
the duration dependence in bull and bear markets. Our results advocate that the gamma distribu-
tion most often provides the best fit for both the survivor and hazard functions of bull and bear 
markets. However, our results reveal that none of the selected distributions accurately describes 
the right tail of the hazard functions.
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I. Introduction

For more than a century, investment professionals 
have regularly referred to markets as being bullish 
and bearish. For example, the Dow Theory, devel-
oped at the end of the 19th century, postulates the 
existence of several types of trends in financial mar-
kets (see Brown, Goetzmann, and Kumar (1998)). 
The primary trend is the most dominant of all types 
of trends. Primary trends can be classified as bull and 
bear markets that tend to last for one year or more. 
Since bull and bear markets offer very different 
investment opportunities, investment professionals 
pay close attention to identifying and predicting bull 
and bear states in financial markets.

The majority of investment professionals believe 
that the probability that a bull or bear market 
terminates depends on the market’s age. However, 
there are two opposite views regarding the duration 
dependence in bull and bear markets. Specifically, 
one group of investment professionals believes that 
the older the age of a bull (bear) market, the higher 
the probability that it terminates. This belief indi-
cates a positive duration dependence. The other 
group thinks that the longer a bull (bear) market 
lasts, the lower the probability that it ends. This 
opinion suggests a negative duration dependence.

Not only investment professionals have contra-
dictory opinions on duration dependence in bull 
and bear markets. Academics also present conflict-
ing evidence regarding this dependence. For exam-
ple, Cochran and Defina (1995), Ohn, Taylor, and 
Pagan (2004), and Harman and Zuehlke (2007) 
find positive duration dependence in both bull 
and bear markets in the US. In contrast, Maheu 
and McCurdy (2000) demonstrate negative dura-
tion dependence in both bull and bear markets in 
the US. Lunde and Timmermann (2004) document 
negative duration dependence in bull markets and 
positive duration dependence in bear markets. 
Zhou and Rigdon (2011) report a similar finding. 
Pagan and Sossounov (2003) find no conclusive 
evidence of duration dependence in the US stock 
market cycles.

This paper revisits the duration dependence in 
the US stock market cycles and sheds additional 
light on how a market state’s termination probabil-
ity depends on its age. The answer to this question 
is important not only to investment professionals 
but also to academics because of the following 
reason. There is rich literature on financial markets 
with regime-switching behaviour. This literature 
includes studies on identifying and predicting 
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market states (some examples are Maheu and 
McCurdy (2000), Chen (2009), Maheu, McCurdy, 
and Song (2012), Nyberg (2013), De Angelis and 
Paas (2013), and Kole and van Dijk (2017)), opti-
mal asset allocation decisions in regime-switching 
markets (see, among others, Sotomayor and 
Cadenillas (2009), Dai, Zhang, and Zhu (2010), 
Kong, Zhang, and Yin (2011), and Fei (2013)), 
and pricing of derivative securities in markets 
with regime-switching (a few examples are 
Edwards (2005), Boyarchenko and Levendorskii 
(2009), and van der Hoek and Elliott (2012)). In 
virtually all of these papers, academics assume that 
the market dynamics follow a standard time- 
homogeneous Markov process with two states: 
bull and bear. In such a model, the probability 
transition matrix between the states is constant, 
implying no duration dependence. That is, typi-
cally, academics take for granted that the duration 
of a bull or bear market does not depend on its age. 
If this assumption is not satisfied, academics must 
rework their models by incorporating a more accu-
rate and realistic assumption about duration 
dependence.

This paper employs the most popular procedure 
to identify the bull and bear states of the financial 
market. This procedure is implemented using more 
than two centuries of monthly returns on the broad 
US stock market index. First, we present the 
descriptive statistics of bull and bear markets. 
Next, we examine the empirical survivor and 
hazard functions1 of bull and bear markets. Since 
the shape of a hazard function reflects the duration 
dependence, we focus our attention on examining 
the empirical hazard functions. Our results suggest 
that the duration dependence is a nonlinear func-
tion of the state age for both bull and bear markets.

We study the nonlinear duration dependence in 
bull and bear markets utilizing a piecewise linear 
regression model with several unknown break-
points. Our results suggest that the hazard func-
tions for both bull and bear markets have three 
linear segments. For the bull markets, the duration 
dependence is as follows. The duration dependence 
is strictly positive in the first linear segment, which 
includes 93% of all observations. In contrast, the 

duration dependence is negative in the second lin-
ear segment. Finally, the duration dependence is 
again positive in the third linear segment. Only 
about 7% of the bull markets, those with the most 
prolonged durations, do not exhibit positive dura-
tion dependence. For the bear markets, our results 
on duration dependence are as follows. If a bear 
market’s age is less than its average value, then the 
probability that it terminates increases relatively 
rapidly with age. Subsequently, when a bear mar-
ket’s age rises above its average value, the termina-
tion probability increases slowly. Eventually, for 
the bear markets with durations, which fall within 
8% of the most prolonged durations, the hazard 
rate again increases rapidly with age.

Finally, we compare a few selected theoretical 
distributions on their ability to describe the empiri-
cal probability distributions of the bull and bear 
market durations and their hazard functions. These 
distributions are the most popular distributions for 
lifetime modelling and include the exponential, the 
Weibull, the log-logistic, the gamma, and the Burr 
distribution. We find that the gamma distribution 
most often provides the best fit for both the survi-
vor and hazard functions of bull and bear markets. 
However, our results reveal that none of the 
selected distributions accurately describes the 
hazard functions’ right tail.

The remainder of this paper is structured as 
follows. Section II presents the data and the 
descriptive statistics of bull and bear markets, 
while Section III presents the empirical survivor 
and hazard functions. Section IV examines the 
nonlinear behaviour of empirical hazard functions 
using a piecewise linear regression model. Section 
V compares the goodness-of-fit provided by a few 
selected theoretical distributions to the empirical 
survivor and hazard functions. Finally, Section VI 
concludes the paper.

II. Data and descriptive statistics of bull and 
bear markets

To ensure the best possible description of bull and 
bear stock markets, we use the longest possible time 
series of the US stock market returns from 

1While the survivor function specifies the probability that a market state’s duration will equal or exceed some specific length, the hazard function gives the 
probability that the market state terminates during the subsequent period under the condition that the termination has not occurred before.
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January 1802 to December 2019. William Schwert2 

provides the data for the period from January 1802 
to December 1925. The market returns for this 
period are constructed using a collection of early 
stock market indices for the US. The methodology 
of construction is described in all detail in Schwert 
(1990). From January 1926 to February 1957, the 
market returns are the returns on the Standard and 
Poor’s 90 stock market index. From March 1957, 
the market returns are the returns on the Standard 
and Poor’s 500 stock market index. Amit Goyal3 

provides the returns for the period from 
January 1926 to December 2019. All data come at 
a monthly frequency.

We follow the standard practice and use the 
nominal capital gain returns to identify bull and 
bear markets. There are several alternative methods 
to classify the stock market’s states because of the 
lack of consensus on the formal definition of bull 
and bear markets in the finance literature. This 
study uses the most popular method proposed by 
Pagan and Sossounov (2003). In brief, Pagan and 
Sossounov (2003) adopt, with minor modifications, 
the dating algorithm proposed by Bry and Boschan 
(1971) and used to identify the US business cycle 
turning points. This method uses an elaborate set 
of rules and comprises two main stages: detecting 
initial turning points and censoring operations.

In the first stage, one identifies a peak (bottom) 
as a point higher (lower) than other points within 
an 8-month window around this date. 
Subsequently, one enforces the turning points’ 
alternation by selecting the highest of multiple 
peaks and the lowest of multiple bottoms. In 
the second stage, one performs censoring opera-
tions to ensure that a stock market state lasts at 
least 4 months (unless the market move exceeds 
20%), and a complete market cycle (a bull market 
and a subsequent bear market or vice versa) spans 
at least 16 months.

Table 1 presents the summary statistics of the 
bull and bear markets. From 1802 to 2019, there 
were 62 bear markets and 63 bull markets. A bull 
market tends to last longer than a bear market. The 
mean duration of a bull market is 25 months, 
whereas the mean bear market duration is 17  

months. Consequently, the mean bull market dura-
tion is 1.5 times longer than the mean bear market 
duration. The median duration of a bull (bear) 
market is 23 (14) months. The median duration is 
smaller than the mean duration for both market 
states. Consequently, the duration distribution is 
right-skewed for each market state. In other words, 
the right tail of each distribution is longer than the 
left tail.

We continue our analysis by computing the 
empirical density of bull and bear market dura-
tions. Figure 1 plots the histograms of the bull 
and bear market durations. Specifically, the left 
(right) panel in this plot shows the bull (bear) 
market duration histogram. Solid lines in each 
panel plot the estimated kernel densities of bull 
and bear market durations using a Gaussian 
smoother. It is worth noting that, for each market 
state, the shape of the empirical density function is 
a positively skewed bell curve.

III. Survivor and hazard functions

We denote a market state’s duration by T and 
consider T as a random variable. It is worth 
emphasizing that each plot in Figure 1 shows the 
probability density function f ðtÞ of a market state 
duration. Alternatively, the probability distribution 
of durations can be specified by the cumulative 
distribution function 

FðtÞ ¼ ProbðT < tÞ;

which is the probability that the random variable 
T is less than some certain value T. Given FðtÞ, the 
corresponding density function is f ðtÞ ¼ dFðtÞ=dt.

In duration analysis, instead of working with the 
cumulative distribution function, it is more conve-
nient to work with the survivor function 

Table 1. Summary statistics of bull and bear market states. 
Duration is measured in months.

Bull Bear

Number of states 63 62
Minimum duration 4 3
Mean duration 25 17
Median duration 23 14
Maximum duration 74 44

2http://schwert.ssb.rochester.edu/data.htm.
3http://www.hec.unil.ch/agoyal/.
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SðtÞ ¼ 1 � FðtÞ ¼ ProbðT � tÞ:

The survivor function is the probability that 
the random variable T equals or exceeds some 
specific value t. Another very convenient func-
tion for analysing duration data is the hazard 
function 

hðtÞ ¼
f ðtÞ
SðtÞ

:

The hazard function gives a conditional failure 
rate. In our context, the hazard function is 
a probability that the market state ends during the 
period ½t; t þ dt� under the condition that the mar-
ket state lasted till t. In simple terms, the hazard 
function is a continuous-time version of a sequence 
of conditional probabilities.

If a hazard function is an increasing function 
of time, there is a positive duration dependence. 
In this case, the longer a market state lasts, the 
higher the probability that it ends. On the other 
hand, if a hazard function is a decreasing func-
tion of time, there is a negative duration depen-
dence. In this circumstance, the longer a market 
state lasts, the lower the probability that it ends. 
When the hazard function is constant, there is no 
duration dependence. Provided the absence of 
duration dependence, at any time, the probability 
that a market state ends does not depend on how 
long the state has lasted. The hazard function can 

also take either a U-shaped or inverted U-shaped 
form. With a U-shape form common in demo-
graphy, the hazard function first decreases and 
then increases.

The left panel in Figure 2 plots the empirical 
survivor functions for bull and bear markets. 
One can use the information in this plot to 
estimate the probability that a market state 
lasts longer than a specific number of months. 
It is worth noting that, for any given t, the 
probability of survival for a bull state is higher 
than that for a bear state. This relationship is 
a direct consequence of the fact that a bull 
state’s mean duration is longer than a bear 
state’s mean duration.

The right panel in Figure 2 plots the empiri-
cal hazard functions for bull and bear markets. 
Our first impression is that the hazard function 
is nonlinear for each market state. Whereas the 
duration dependence seems to be always positive 
for the bear state, the duration dependence is 
more complicated for the bull state. Specifically, 
for the bull state, the hazard function first 
increases, then decreases, and finally increases 
again. In the subsequent section, we take 
a closer look at the behaviour of the hazard 
functions. As a final remark to conclude this 
section, we note that for any given t, the bear 
state’s hazard function is higher than the bull 

Figure 1. Empirical density of bull and bear market durations. Solid lines plot the estimated kernel densities of bull and bear market 
durations using a Gaussian smoother.
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state’s hazard function. Again, this is a direct 
consequence of the fact that, on average, bull 
markets last longer than bear markets.

IV. Piecewise linear modelling of hazard 
functions

The plots of the bull and bear markets’ empiri-
cal hazard functions motivate that the duration 
dependence in both market states is nonlinear. 
Namely, the hazard rate is a nonlinear function 
of the state age for each market state. The sim-
plest way of modelling a nonlinear relationship 
is to assume that the relationship is piecewise 
linear. The idea is to split the nonlinear function 
into several linear pieces.

The methodology of estimating piecewise linear 
regression models with unknown breakpoints is 
developed by Muggeo (2003). The parametrization 
of the piecewise linear regression model for 
a hazard function with m unknown breakpoints is 
as follows 

hðtÞ ¼ αþ β0t þ
Xm

i¼1
βiðt � τiÞ

þ
þ εðtÞ; (1) 

where t is the market state age, hðtÞ is the 
empirical hazard function, α is the intercept, β0 is 
the initial slope, βi are the ‘difference-in-slopes’ 
parameters, τi are the breakpoints, and εðtÞ are 
the residuals. The notation ðt � τiÞ

þ means that 
the value t � τi > 0 if it is positive and 0 otherwise.

As a simple illustration, consider the case where 
there is only one breakpoint in the relationship. In 
such a situation, the piecewise linear regression 
model (4.1) reduces to 

hðtÞ ¼ αþ β0t þ β1ðt � τ1Þ
þ
þ εðtÞ:

In this case, there are two linear segments in the 
model, and τ1 is the breakpoint’s location between 
the two segments. Note that on the left segment of 
the relationship, the line’s slope is given by β0. On 
the right segment of the relationship, the line’s 
slope is given by β0 þ β1.

Figure 2. Left panel plots the empirical survivor functions for bull and bear markets. Right panel plots the empirical hazard functions 
for bull and bear markets.

Table 2. Breakpoints in the piecewise linear model for the hazard function for bull and bear markets. Estimate is the estimated 
location of the breakpoint, in months. 95% CI is the 95% confidence interval for the location of the breakpoint. Percentile is the 
percentile of each estimated breakpoint within the corresponding distribution of durations.

Bull markets Bear markets

Breakpoint Estimate 95% CI Percentile Estimate 95% CI Percentile

1st 45.40 (44.97, 45.83) 0.93 16.12 (14.00, 18.23) 0.60
2nd 56.44 (56.03, 56.84) 0.95 32.85 (32.11, 33.59) 0.92

APPLIED ECONOMICS 5



We determine the breakpoints by the method of 
maximum likelihood. The application of the metho-
dology developed by Muggeo (2003) requires specify-
ing the number of unknown breakpoints and the 
initial guess for each breakpoint. We implement 
Muggeo’s procedure of detecting the breakpoints for 
m ¼ 1; . . . ; 5. As a model selection criterion, we use 
the adjusted R-squared. For both hazard functions, 
we find that the optimal number of breakpoints is 
m ¼ 2. That is, our results suggest that the hazard 
function for both bull and bear markets has two 
breakpoints. Table 2 reports the location of the esti-
mated breakpoints and the 95% confidence interval 
for each breakpoint. Besides, this table provides the 
percentile of each estimated breakpoint within the 
corresponding distribution of durations. Table 3 
reports the slope estimates for each of the three linear 
segments between two breakpoints as well as the 95% 
confidence interval for each slope. Figure 3 plots the 
empirical hazard functions and fitted piecewise linear 
models with two breakpoints. Vertical dotted lines in 
this figure show the location of the breakpoints.

First, we discuss the results for the piecewise 
linear model of the hazard function for bear mar-
kets. Our main observation is that the bear mar-
kets’ duration dependence is always positive. Yet, 
the hazard rate is nonlinear in the age of a bear 
market. Our results suggest that when a bear mar-
ket is ‘young’, the hazard rate increases rapidly with 
its age. However, as a bear market ‘matures’ and its 
age exceeds 16.12 months, the hazard rate levels off. 
Specifically, while the hazard function’s slope is 
0.0055 for bear markets shorter than 16.12 months, 
the hazard function’s slope decreases to 0.0017 
when the bear market’s age is between 16.12 and 
32.85 months. That is, our results suggest 
a reduction of the slope coefficient by a factor of 
three. Eventually, when the bear market age sur-
passes 32.85 months, the hazard rate dramatically 
increases. The first breakpoint of 16.12 months 
corresponds to the 60th percentile, whereas 
the second breakpoint corresponds to the 92nd 
percentile within the distribution of bear market 
duration. Note that the estimate for the first break-
point is roughly equal to the average bear market 
duration.

Consequently, our results imply that when 
a bear market’s age is less than its average 
value, the probability that it terminates increases 
rapidly. However, when a bear market’s age rises 
above its average value, the probability that it 
ends increases slowly. Only for bear markets 

Table 3. Slope estimates for each of the three linear segments 
between two breakpoints and the 95% confidence interval for 
each slope.

Bull markets Bear markets

Segment Slope 95% CI Slope 95% CI

1st 0.0025 (0.0024, 0.0026) 0.0055 (0.0049, 0.0061)
2nd −0.0091 (−0.0098, −0.0084) 0.0017 (0.0011, 0.0023)
3rd 0.0048 (0.0045, 0.0052) 0.0136 (0.0128, 0.0149)

Figure 3. Empirical hazard functions and fitted piecewise linear models with 2 breakpoints. Vertical dotted lines show the location of 
the breakpoints.
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with durations that fall within 8% of the longest 
durations, the hazard rate increases dramatically 
with age.

We turn to discuss the results for the piecewise 
linear model of the hazard function for bull mar-
kets. When the bull market’s age is less than 45.40  
months, the duration dependence is positive. This 
means that the longer a bull state lasts, the higher 
the probability that it ends. However, the duration 
dependence is negative when the bull market age 
lies between 45.40 and 56.44 months. This means 
that once the bull market age exceeds 45.40  
months, the bull market gains ‘momentum’, and 
the probability that it ends decreases. Eventually, 
when the bull market age exceeds 56.44 months, 
the probability that it terminates again increases. 
However, it is worth emphasizing that the first 
breakpoint of 45.40 months corresponds to the 
93rd percentile within the distribution of bull mar-
ket duration. That is, for 93% of all bull markets, 
the duration dependence is strictly positive. Only 
7% of all bull markets do not fit the positive dura-
tion dependence. Since the total number of bull 
market states is 63, only for 4 or 5 longest bull 
markets, the positive duration dependence breaks 
down.

In concluding this section, we want to briefly 
elaborate on why many bear markets are short 
and end quickly and why a few bull markets gain 
momentum and last long. To facilitate the discus-
sion, Table 4 lists the five longest bull markets and 
shortest bear markets. First, we start with the short- 
lived bear markets. A review of these bear markets 
suggests the following story: An unexpected eco-
nomic event triggers a stock market panic and sell- 
off. When investors realize that they have over-
reacted to this event, the stock market quickly 
recovers. For example, the plummeting gold price 
caused the stock market panic of 1869 (see 
Kindleberger (1978) and Morgan and Narron 

(2016)). The stock market crash in China precipi-
tated the panic of 2015. In 1994, an unexpected rise 
in interest rates caused a debt crisis and a stock 
market turmoil. In 1990, Iraq invaded Kuwait, 
causing oil prices to increase substantially for 
a short period. The most often cited cause of the 
stock market crash in 1987 was ‘portfolio insur-
ance,’ a popular hedging strategy executed by 
computers.

Second, we continue with the longest bull mar-
kets. The two most prolonged bull markets ended 
with a speculative bubble in stocks and 
a subsequent stock market crash. Specifically, the 
Dot-com bubble of the 1990s burst in 2000, while 
the bubble of the 1920s (Roaring Twenties) led to 
the Great Crash of 1929. The third-longest bull 
market is associated with the US housing bubble, 
culminating in a bust of 2007 that led to the Global 
Financial Crisis. The fifth-longest bull market of 
1877–1881 is characterized by a speculative mania 
in railroad stocks (Hughes 1955). It could be 
argued, therefore, that a bull market gains momen-
tum and violates the positive duration dependence 
when a bull market develops into a full-fledged 
stock market bubble.

V. Fitting statistical distributions to bull and 
bear duration data

This section compares a few selected theoretical 
distributions in describing the empirical probabil-
ity distributions of the bull and bear market dura-
tions and their hazard functions. These 
distributions include the most popular distribu-
tions for lifetime modelling. Each of these distribu-
tions is defined on the positive real line t > 0 and 
has from one to three parameters. These distribu-
tions are:

• Exponential with 

f ðtÞ ¼ r expð� rtÞ

for r > 0,
• Weibull with 

f ðtÞ ¼
k
λ

t
λ

� �k� 1

exp �
t
λ

� �k
 !

for k> 0 and λ> 0,
• Log-logistic with 

Table 4. The five longest bull markets and shortest bear markets. 
Duration is measured in months.

Bull markets Bear markets

Dates Duration Dates Duration

1 Jul 1994 to Aug 2000 74 Sep 1987 to Nov 1987 3
2 Aug 1923 to Aug 1929 73 Sep 1869 to Dec 1869 4
3 Oct 2002 to Oct 2007 61 Jun 2015 to Sep 2015 4
4 Oct 2015 to Dec 2019 51 Jun 1990 to Oct 1990 5
5 Jul 1877 to May 1881 47 Feb 1994 to Jun 1994 5

APPLIED ECONOMICS 7



f ðtÞ ¼ krktk� 1 1þ ðrtÞk
� �� 2 

for k> 0 and r > 0,
• Gamma with 

f ðtÞ ¼
rktk� 1

ΓðkÞ
expð� rtÞ

for k> 0 and r > 0,
• Burr with 

f ðtÞ ¼ λkrktk� 1 1þ ðrtÞk
� �� λ� 1 

for k> 0, λ> 0 and r > 0.
The exponential distribution is widely used in 

lifetime modelling and reliability studies. This dis-
tribution is simple to work with and interpret. This 
distribution describes the state durations in 
a continuous-time Markov chain model. The 
hazard function in this distribution hðtÞ ¼ r. That 
is, the hazard rate is constant, which means that 
there is no duration dependence. It is worth noting 
that the exponential is the only distribution with 
this property.

The Weibull distribution is described by two 
parameters and generalizes the exponential distri-
bution. The hazard function in this distribution is 
given by 

hðtÞ ¼
k
λ

t
λ

� �k� 1

:

When k ¼ 1, the Weibull distribution becomes 
the exponential distribution with r ¼ 1=λ. That is, 
there is no duration dependence if k ¼ 1. The 
hazard function is increasing in duration if k> 1 
and decreasing if k< 1. Consequently, the Weibull 
distribution can model both positive and negative 
duration dependence.

The hazard function in the log-logistic distribu-
tion is given by 

hðtÞ ¼ krktk� 1 1þ ðrtÞk
� �� 1

:

For 0< k � 1, the hazard function decreases with 
duration. For k> 1, the hazard function first 
increases with duration, then decreases. 

Consequently, the log-logistic distribution can be 
used to model a hazard function that has an inverted 
U-shaped form.

The gamma distribution is described by two 
parameters and is very much like the Weibull dis-
tribution. If k ¼ 1, the hazard function in the 
gamma distribution is constant. If k< 1 (k> 1), 
the hazard function is decreasing (increasing) in 
duration. Finally, the Burr distribution is described 
by three parameters. Therefore, it can generate 
a more intricate shape of the hazard function. For 
example, the hazard function in this distribution 
can first increase, then decrease, and then increase 
again.

Table 5 reports the maximum likelihood esti-
mates of the selected distributions’ parameters, 
along with their standard errors, fitted to the bull 
and bear markets duration data. It is worth obser-
ving that the parameter k in the Weibull and the 
gamma distribution is statistically significantly 
greater than 1, reflecting positive duration 
dependence.4 Similarly, the parameter k in the log- 
logistic distribution is statistically significantly 
greater than 1, and this implies that the hazard 
function first increases with duration, then 
decreases. Note that for all but the Burr distribu-
tion, each parameter estimate is statistically signifi-
cantly different from zero. Only for the Burr 
distribution, some parameters are not statistically 
significant. This result can be explained by the fact 
that the number of observations is relatively small, 
while the number of parameters in the Burr dis-

Table 5. Maximum likelihood parameter estimates (MLE) and 
their standard errors (SE).

Parameter

Distribution r k λ

MLE SE MLE SE MLE SE

Panel A: Bull markets
Exponential 0.0389 0.0051
Weibull 1.7381 0.1700 29.0390 2.3231
Log-logistic 0.0459 0.0038 2.7779 0.3027
Gamma 0.1110 0.0213 2.8546 0.5021
Burr 0.0310 0.0141 2.3302 0.4457 1.9552 1.3998

Panel B: Bear markets
Exponential 0.0585 0.0077
Weibull 1.9025 0.1932 19.3331 1.4228
Log-logistic 0.0672 0.0054 2.8636 0.3145
Gamma 0.1844 0.0356 3.1505 0.5617
Burr 0.0251 0.0223 2.1112 0.3607 5.3219 7.7218

4Statistical significance can be established using the estimated parameters and the standard errors of estimation of these parameters.
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tribution is relatively large.
However, this section aims not to estimate the 

selected theoretical distributions’ parameters but to 
evaluate how well these distributions fit the empiri-
cal data. For this purpose, we use three well-known 
goodness-of-fit test statistics (Stephens 1986): the 
Kolmogorov-Smirnov statistic, the Cramer-von 
Mises statistic, and the Anderson-Darling statistic. 
In each goodness-of-fit test statistic, the aim is to 
measure the distance between the fitted parametric 
distribution function FðtÞ and the empirical distri-
bution function FnðtÞ. Table 6 provides the compu-
tational formulas for the three considered goodness- 
of-fit statistics. While the Kolmogorov-Smirnov sta-
tistic computes the maximum absolute difference 
between the theoretical and empirical distributions, 
the Cramer-von Mises statistic computes the inte-
grated squared distance between the theoretical and 
empirical distributions. The Anderson-Darling sta-
tistic is also based on integrated squared distance, 
but it focuses on the distribution tails.

Table 7 displays the estimated goodness-of-fit 
statistics for the selected theoretical distributions. 
According to the Kolmogorov-Smirnov statistic, 
the bull market durations’ empirical probability 
distribution is described best by the gamma dis-
tribution, while the Burr distribution 
comes second best. In contrast, both the Cramer- 

von Mises and Anderson-Darling statistics select 
the Burr distribution as the best one, whereas the 
gamma distribution comes second best. The log- 
logistic distribution is the third-best probability 
distribution to describe the bull duration data. 
Regarding the description of the bear market 
durations’ empirical distribution, all three good-
ness-of-fit statistics are unanimous that the 
gamma distribution best fits the empirical data. 
The second-best theoretical distribution to 
describe the bear market duration is the Burr 
distribution, while the third-best is typically the 
Weibull distribution.

The Kolmogorov-Smirnov test statistic is, in 
fact, the statistic which is calculated under the 
null hypothesis that the theoretical probability dis-
tribution correctly describes the empirical distribu-
tion. Therefore, the Kolmogorov-Smirnov test is 
the test of whether two underlying probability dis-
tributions differ. The value of the Kolmogorov- 
Smirnov test statistic can be converted to 
a p-value of the test. For both the bull and bear 
markets, the Kolmogorov-Smirnov test rejects the 
null hypothesis only for the exponential distribu-
tion (these results are not reported to save space). 
In other words, this test cannot reject the null 
hypothesis that all but the exponential distribution 
correctly describe the empirical distributions of 
bull and bear market durations.

Figure 4 visualizes the goodness-of-fit for the 
three best theoretical distributions. In particular, 
the left panel in this plot shows the goodness-of- 
fit of the gamma, Burr, and log-logistic distribu-
tions to the survivor function for the bull markets. 
The right panel in this plot shows the goodness-of- 
fit of the gamma, Burr, and Weibull distributions to 
the survivor function for the bear markets.

The visual observation of the plots in Figure 4 
suggests that all plotted theoretical distributions fit 
quite well the empirical survivor functions. 
However, since we are primarily interested in dura-
tion dependence, we want to know which theore-
tical distribution best fits the empirical hazard 
functions. To evaluate the goodness-of-fit to the 
empirical hazard functions, we employ two most 
common accuracy measures: the mean squared 
error (MSE) and the mean absolute error (MAE). 
These two measures of errors are computed 
according to 

Table 6. Goodness-Of-Fit statistics as defined by Stephens 
(1986). n denotes the number of observations.

Statistic Computational formula

Kolmogorov-Smirnov sup FnðtÞ � FðtÞj j

Cramer-von Mises
n ò
1

� 1
ðFnðtÞ � FðtÞÞ2dt

Anderson-Darling
n ò
1

� 1

ðFnðtÞ� FðtÞÞ2

FðtÞð1� FðtÞÞ dt

Table 7. Estimated goodness-of-fit statistics for the selected 
theoretical distributions. Each statistic evaluates the goodness- 
of-fit provided by the fitted theoretical distribution to the 
empirical cumulative distribution function.

Probability distribution

Statistic Exp Weibull Loglogis Gamma Burr

Panel A: Bull markets
Kolmogorov-Smirnov 0.2272 0.0867 0.0856 0.0621 0.0686
Cramer-von Mises 0.8506 0.0678 0.0497 0.0364 0.0331
Anderson-Darling 4.7006 0.5152 0.3045 0.2691 0.2198

Panel B: Bear markets
Kolmogorov-Smirnov 0.2361 0.0834 0.0833 0.0688 0.0721
Cramer-von Mises 0.9389 0.0531 0.0562 0.0403 0.0428
Anderson-Darling 5.1498 0.3421 0.4520 0.2709 0.2864
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MSE ¼ n� 1
Xn

i¼1
ðhnðtÞ � hðtÞÞ2;

MAE ¼ n� 1
Xn

i¼1
hnðtÞ � hðtÞj j;

where n is the number of observations, hnðtÞ is 
the empirical hazard function, and hðtÞ is the the-
oretical hazard function.

Table 8 displays the estimated errors between the 
empirical and theoretical hazard functions for the 
selected distributions. Our main observation is that, 
regardless of the choice of the accuracy measure, the 
gamma distribution best fits the empirical hazard 
function for the bull markets. Therefore, the gamma 
distribution best fits both the empirical cumulative 
distribution function and the empirical hazard func-
tion. The second-best (third-best) fit is provided by 
the Burr (Weibull) distribution. In contrast, whereas 
the gamma distribution provides the best fit to the 
empirical cumulative distribution function of the bear 
market durations, the Weibull distribution provides 

the best fit to the empirical hazard function for 
the bear markets. The gamma (Burr) distribu-
tion gives the second-best (third-best) fit. 
Consequently, in describing bear market dura-
tion data, the ranking of probability distribu-
tions depends on whether one evaluates the fit 
to the cumulative distribution function or the 
hazard function.

Figure 5 shows the goodness-of-fit for the 
three best theoretical distributions to the 
empirical hazard functions. Specifically, the 
left panel in this plot shows the goodness-of- 
fit of the gamma, Burr, and Weibull distribu-
tions to the empirical hazard function for the 
bull markets. The right panel in this plot shows 
the goodness-of-fit of the Weibull, gamma, and 
Burr distributions to the empirical hazard func-
tion for the bear markets. A visual inspection 
of the fitted curves suggests that all distribu-
tions correctly describe the duration depen-
dence in the left tail of the hazard functions. 
Still, none of the fitted distributions accurately 
describes the right tail of the hazard functions. 
However, the right tail of each empirical hazard 
function is constructed using the data on the 
market states with the longest durations. Thus, 
it is computed using only a few observations. 
Therefore, we should be careful in interpreting 
the results based on a small number of 
observations.

Figure 4. Illustration of the goodness-of-fit to the empirical survivor functions for the bull and bear markets provided by the three best 
theoretical distributions.

Table 8. Estimated errors between the empirical and theoretical 
hazard functions for the selected distributions.

Probability distribution

Statistic Exp Weibull Loglogis Gamma Burr

Panel A: Bull markets
MSE 0.0109 0.0071 0.0167 0.0042 0.0044
MAE 0.0260 0.0185 0.0306 0.0138 0.0145

Panel B: Bear markets
MSE 0.0706 0.0085 0.0904 0.0184 0.0179
MAE 0.0626 0.0171 0.0623 0.0224 0.0224
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VI. Conclusions

There is a big controversy among both investment 
professionals and academics regarding how the 
termination probability of a market state depends 
on its age. Using more than two centuries of data 
on the broad US stock market index, we revisit the 
duration dependence in bull and bear markets. 
Our results suggest that the duration dependence 
for both bull and bear markets is a nonlinear 
function of the state age. It appears that the dura-
tion dependence in bear markets is strictly posi-
tive. When a bear market’s age is less than its 
average value, the termination probability 
increases relatively rapidly with age. However, 
when a bear market’s age rises above its average 
value, the probability that it terminates increases 
slowly. For 93% of the bull markets, the duration 
dependence is also positive. Only about 7% of the 
bull markets, those with the most prolonged dura-
tions, do not exhibit positive duration depen-
dence. We also compare a few selected 
theoretical distributions in describing the dura-
tion dependence in bull and bear markets. Our 
results advocate that the gamma distribution most 
often provides the best fit for both the survivor 
and hazard functions of bull and bear markets. 
However, our results reveal that none of the 
selected distributions accurately describes the 
hazard functions’ right tail.

Successful forecasting of the future market 
state can potentially deliver big profits to inves-
tors. Typically, the stock market states are pre-
dicted using either Markov or semi-Markov 
hidden models (Kole and van Dijk 2017). In 
this regard, our results are very relevant because 
they help to choose an appropriate probability 
distribution of a market state duration. 
However, our results also advocate that the 
duration of some bull and bear markets depends 
on investors’ sentiment. Specifically, our review 
of the shortest bear and longest bull markets 
suggests that they are related to stock market 
panics and speculative manias. Therefore, in 
forecasting market states, there is a need to use 
investors’ sentiment and advanced techniques 
such as machine learning, deep learning, and 
artificial intelligence. An example of such 
a forecasting technique is provided by Zhao 
and Chen (2021).
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Figure 5. Illustration of the goodness-of-fit to the empirical hazard functions for the bull and bear markets provided by the three best 
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