i UiA Ui

BACKGROUND NOISE CLASSIFICATION AND
DENOISING OF AUDIO SIGNALS UTILIZING
EMPIRICAL WAVELET TRANSFORM AND
DEEP LEARNING

ANTON GARBAR

SUPERVISOR
Linga Reddy Cenkeramaddi

University of Agder, 2021
Faculty of Engineering and Science
Department of Engineering and Sciences

Acknowledgments

I would like to thank Associate Professor Linga Reddy Cenkeramaddi for the guidance and support
throughout the thesis. In addition, I would like to thank Rajesh Reddy Yakkati, for hints and help
with the development of my first CNN. Lastly, I would also like to thank Sreenivas Reddy Yeduri
for proofreading and technical help with finishing the compilation of the report.

Abstract

The importance of sound and speech in human life cannot be overstated. Ambient sounds inform us
about our surroundings and warn us of potential dangers, such as a car approaching from behind.
One of the most common modes of communication is speech. However, if it is contaminated with
background noise, it may result in data loss. Recent advances in artificial intelligence enable ma-
chines to recognize and classify sound patterns, as well as remove complex background noise from
contaminated speech.

This thesis investigates a method for improving existing background noise classification and de-
noising solutions. This is accomplished through signal decomposition with the Empirical Wavelet
Transform and subsequent processing with the Convolutional Neural Network. Improvements of up
to 18% have been observed.

ii

Contents

1 Introduction

1.1 Background
1.2 State-of-the-art
1.3 Research directions

2 Background theory

2.1 FFT . o
2.1.1 FFTexample
2.2 STET . . . e
2.2.1 FFT and STFT comparison
2.3 Wavelets and Wavelet Transform
2.3.1 Wavelets L e
2.3.2 Wavelet Transforms
2.4 Empirical Wavelet Transform
2.4.1 Fixed segmentation of the spectrum
2.5 Convolutional Neural Network
2.5.1 Convolution Layer
2.5.2 Activation Function Layero oo
2.5.3 MaxPool Layer
2.5.4 Fully Connected Layer e
3 Proposed Solutions
3.1 Classification Part
3.1.1 Dataset e
3.1.2 Framing and Segmentationo
3.1.3 Noise Classification
3.2 Denoising Parto
3.2.1 Denoisingo e
3.2.2 LPC Cepstrum Distance
4 Results
4.1 Noise Classification
4.2 Denoisingo e e e
4.2.1 Airplane noise
4.2.2 Drone Noise
4.2.3 Babble Noise e

5 Discussions

5.1 Motivation e
5.2 Process e e
5.3 Implementation
5.4 Limitations e e e e

iil

24
24
24
25
27
28
29
31

32
32
43
44
46
48

6 Conclusions
6.1 Further Work

Chapter 1

Introduction

1.1 Background

The advancements in artificial intelligence have completely transformed signal processing approaches.
The use of machine learning in speech signal processing is rapidly expanding. The audio signals
contain both human speech and background noise. The background sounds help us identify and
gather information about the speaker’s surroundings. Such knowledge can be extremely useful at
times and has numerous applications in real-world situations.

Signals from secondary sources are always added to the signals from human speech. In general,
speech signals can be used to obtain speaker information. Whereas secondary source information
can be used to obtain surrounding information. Secondary signal processing aids the forensic de-
partment in tracking the speaker’s activity. Thus, environmental sound classification (ESC) has a
wide range of applications, including smart homes, animal sound classification, and environmen-
tal understanding. Existing classification techniques, such as support vector machine (SVM) and
Gaussian Mixer Model (GMM), are inefficient for ESC because they are incapable of extracting
more accurate and comprehensive features [1].

1.2 State-of-the-art

A heterogeneous system of Deep Mixture of Experts (DMoEs) has been proposed for classifying
the acoustic scenes using convolutional neural networks (CNNs) [2|. Here, each DMoE is a mixture
of different convolutional layers weighted by a gating network [2]. A novel CS-LBlock-Pat. model
has been proposed for an efficient floor tracking of the speaker in a multi-storey building [3]. The
proposed model was tested on an environmental sound classification (ESC) dataset collected from
a ten-floor multi-story hospital. Finally, SVM was applied to the dataset to achieve an accuracy of
95.38% [3]. For audio event classification, the authors propose using nonlinear time normalization-
based event representation prior to mid-term statistics extraction [1]. Following that, in order
to reduce errors in the presence of noise, these short-term features are represented as a constant
uniform distance sampling over a defined space [4]. In [5], the authors have designed 150 different
CNN-based models for the ESC and test their accuracy on the Urbansound8k ESC dataset. It has
been shown in [5] that the CNN model has achieved an accuracy of 82.5%, which is higher than its
classical counterpart. A light weight CNN method for automatic heart sound classification has been
proposed in [6]. This method needs a simple preprocessing on the heart sound data and then the
time-frequency features are extracted based on the heart sound data. Finally, the heart sounds are
classified based on the fusion features |6]. In |7], the authors have proposed a model that is based
on an attention-enhanced DenseNet-BiLSTM network, and segment-based linear filter bank (LFB)
features for detecting spoofing attacks in automatic speaker verification. Initially, the silent segments
have been obtained from each speech signal using a short-term zero-crossing rate and energy. Then,
the LFB features are obtained from the segments. Finally, attention-enhanced DenseNet-BiLSTM
architecture has been built to mitigate the problem of overfitting [7]. The classical methods for
integrating Mel-frequency cepstral coefficients (MFCCs) and the audio signal information in the
temporal domain may lead to the loss of essential information [8]. Thus, in [8], the authors have

adopted a tool named local binary pattern (LBP) to characterize the latent information on the
temporal dynamics. Then, this LBP is used to encode the evolution process by considering the
frame-level MFCC features as 2D images. Finally, the obtained features are fed to the d3C classifier
for ESC [3].

In [9], the authors have coupled the spatio-temporal attention pooling layer with the convolutional
recurrent neural network for acoustic scene classification to learn about patterns that are discrim-
inative while suppressing the irrelevant patterns. Afterward, the final feature vector has been
formed from the outer product of spatial and temporal attention vectors [9]. A standard hybrid
model-based framework has been proposed in [10] to learn the representations for environmental
audio scenes (EASs) and sound events (SEs). Then, the instance-specific adapted Gaussian mixture
model and hidden Markov models have been explored for the EASs and SEs, respectively, to com-
pute discriminatory representations. Finally, a discriminative model-based classifier has been used
to identify EASs and SEs [10]. In [11], the authors have investigated the use of wavelet transform-
based Mel-scaled features for acoustic scene classification. It has been concluded that the proposed
features have shown better discriminative properties than other spectral features even with the
same classification framework [11]. In [12], the authors have investigated the use of unsupervised
and supervised Non-negative matrix factorization (NMF) for feature extraction. Then, the fea-
tures are trained with deep neural networks for an efficient ESC [12]. A sensor-actuator system for
surface identification and classification has been proposed in [13]. The proposed system contacts
the surface to be identified by generating a mechanical impact and then it analyzes the intrinsic
characteristics of the surface based on the resulted sound from the surface. Finally, a deep learning
based machine learning pipeline has been utilized to identify the everyday surface sounds [13]. In
smart cities, the surveillance of hazardous sounds such as gunshots, explosions, and etc., need to be
developed for better monitoring. In [14], the authors have explored several classification methods
over the SESA dataset for sound event recognition task and showed that SDG classifier results in
higher accuracy compared to others. The existing classification algorithms that are based on CNNs
are inefficient [15]. Thus, a capsule network has been introduced in [15] to detect the fake audios.
After that, the dynamic routing algorithm has been explored to pay more attention to the capsule
network for a better identification of audio spoofs [15]. A framework has been proposed in [16]
for determining the user location from the recorded signals of the users’ device. In [16], the au-
thors have presented two algorithms namely SoundSignature and SoundSimilarity for user location
identification. Here, SoundSignature has been utilized to extract the acoustic fingerprints from the
recorded audio. Then, a audio similarity measure has been employed with SoundSignature to detect
the user based on the acoustic signals from nearby users or microphones. An accurate and reliable
identification of the first (S1) and second (S2) sounds of the phonocardiogram in the presence of S3
and S4, high-pitched sounds, murmurs, physiological interference, and other environmental noises
has been proposed in [17,18].

In [19], the authors have proposed three types of audio-visual deep neural networks (AVNs) such as
feature level AVN (AVN-F), embedding level AVN (AVN-E), and joint learning AVN (AVN-J) for
the verification of a speaker. In order to further enhance the robustness of speaker verification, the
respective data augmentation methods have been proposed [19]. A combinatory feature-based stack
autoencoder has been proposed in [20] for fundamental heart sound classification and experiments
are conducted on both public datasets and recorded heart sounds. The usage of Gated Recurrent
CNN for the identification of genuine/spoofed audio classification has been investigated in [21]. In
order to enhance the robustness of the speech in the noise environment, the authors have considered
the usage of signal-to-noise masks as new input features to inform about the input spectral features
that are affected by noise to the anti-spoofing system [21].

In [22], the authors have explored the utilization of spatial information obtained from diverse spatial
receivers such as wireless acoustic sensor networks for acoustic weapon classification. Further,
maximum likelihood estimation based on fused data has been utilized for improving the classification
accuracy [22]. A deep rational attention network (DRANet) has been proposed in [23] to guarantee
the performance of a deep learning-based intelligent diagnosis method under strong method. The
stability analysis of deep convolutional neural networks, long short-term memory, and vanilla neural
networks has been investigated in [24] with the training of raw wave front-ends for automatic

speaker verification. Then, a joint convolutional LSTM neural network has been proposed that
outperforms the other state-of-the-art mechanisms. Further, a CNN-based raw waveform (RW-
CNN) end-to-end computational scheme has been proposed in [25] for speaker identification with
noise and reverberation data augmentation. Moreover, the authors have compared the performance
of the proposed scheme with the MFCCs features and showed that RW-CNN outperforms even in
adverse conditions [25].

Optimum allocation sampling (OAS)-based empirical mode method (EMD) has been proposed
in [26] for automatic ESC. The method reduces the long length sound signals to homogeneous
signals which are then decomposed into intrinsic mode functions (IMFs). These IMFs are fed
into classifiers that use a multi-class least squares support vector machine (MC-LS-SVM) and an
extreme learning machine (ELM) to assess the performance of the proposed mechanism. It has been
concluded that the MC-LS-SVM and ELM results in an accuracy of 87.25% and 77.61%, respectively
[26]. The environmental sound classification (ESC) has been assessed with conventional ncural
network in |27]. A deep neural network with two convolutional layers such as max-pooling layer and
fully connected layers was trained on low-level data [27]. Throughout the manunscript, the terms
background sound classification and environmental sound classification are used interchangeable.
In [28], a 1-dimentional (1-D) CNN based end-to-end approach has been proposed for ESC which
learns the representation directly from the audio signals. It has been concluded that the proposed
system works with any input sizes [28]. A CNN-based ESC has been proposed in [29], which
expresses the features of the ESC in Red-Green-Blue (RGB) image format. Following that, CNN
is trained to improve ESC accuracy. A dilated CNN based ESC method has been proposed in [30]
in order to improve the accuracy of ESC. Further, the performance of the proposed system with
variation of dilation rate and number of layers of dilated convolution has been evaluated. It has
been observed that large values of dilation rate and dilated convolution degrades the accuracy of the
proposed system [30]. A robust filtering algorithm has been proposed in [31] in order to effectively
suppress the noise and interference of the audio forensics that have been collected during questioned
session. The proposed mechanism in [31] first encodes the time domain expression of the combined
signal as the instantaneous frequencies of an analytical sinusoidal frequency modulated signal. Then,
a sinusoidal time frequency distribution (STFD) has been generated using kernel function. The
peaks of STFD corresponds to the intermediate frequencies of the denoised signal [31]. Band energy
difference (BED) descriptor, a feature set, has been proposed in [32], for source attribution, i.e.,
a device from which the audio has been recorded. It has been observed in [32] that a power
discrimination occurs at each frequency based on the device that is being used for the recording.
The descriptor works in two phases such as device identification followed by device verification [32].

To address data scarcity issue, a deep CNN-based classification method with data augmentation
has been proposed in [33]. It has been concluded in [33] that the CNN model with data augmenta-
tion performs better than both CNN without data augmentation and “shallow” dictionary learning
method with the considered data augmentation. Finally, it has been determined that the use of
class conditional data augmentation performs better than other classes of augmentations [33]. In
addition, a deep CNN framework has been proposed in [34] for ESC with various augmentation
techniques. Moreover, the authors in [34] introduced a new data augmentaion method based on
Linear prediction cepstral coefficients (LPCC). The increased size of the dataset requires powerful
GPUs to process it. Thus, the size of the dataset plays a vital role in the system configuration.
In [35], a light weight dilated CNN (LD-CNN) classification method has been proposed to offer
the comparable performance in comparison to the dilated CNN classification method with reduced
dataset size. The proposed work lies on two-fold. Initially, the parameters have been reduced by
filtering a two dimensional convolutional (L x W) filters to two separable one dimensional convo-
lutional filters (L x 1 and W x 1). Then, the first fully connection layer has been replaced by a
feature sum layer in order to reduce the number of parameters. It has been concluded in [35] that
the proposed classification model reduced the size of the dataset by 50 times with a loss of 1% to
2% accuracy.

1.3 Research directions

Based on the background and state-of-the art, the following research directions are addressed in
this thesis.

1. Background classification in the human speech using time-frequency analysis and deep CNN.
2. Denoising the speech signals using time-frequency analysis and deep CNN.

Chapter 2

Background theory

This chapter’s goal is to provide the theoretical foundation for this thesis. A brief explanation and
mathematical background are provided. This chapter is primarily concerned with signal processing.
It is assumed (based on prior experience) that readers are more familiar with Machine Learning
than signal processing.

21 FFT

The Fourier Transform is a useful tool in the signal processing toolbox. It is, to be more precise,
a discrete variant for this. The Discrete Fourier Transform (DFT) is a mathematical process that
determines the harmonic, or frequency, content of a discrete signal sequence |36, p.59|. On the other
hand, FFT stands for Fast Fourier Transform, and it’s an effective method to run DFT.

N-1

X(m) = Z x(n)eiﬂ% (2.1)

n=0
Equation (2.1) is DFT, and it is easy to understand and follow. However, the whole operation is
simply summation and multiplication, which results in complex output.

Where:

x(n) - is sampled input data, with indexn = 0, 1, 2, 3, ... N-I.
X(m) - is DFT output in form of frequency component, with index m = 0, 1, 2, 3, ... N-1.
X(m) - is DFT output in form of frequency component, with index m = 0, 1, 2, 3, ... N-1.

DFT output X(m) is complex in the form of a & jb. To get the magnitude and phase angle of the
frequency component, two additional operations are performed.

| Xmag| = v a? + b? (2.2)

b
Xphase = tan™' = (2.3)
a
Frequency associated with frequency component of X(m) computed by equation (2.4).

F(m) = mSample]:;equency (2.4)

2.1.1 FFT example

The figure (2.1) shows a cosine function with a 5Hz frequency and 45 deg phase angle. This is a
simple test function to show signal processing possibilities with help of FFT.

1.5cos(2mr5t+11/4)
T T

T T T T

()

1 1 1 1 1 1 1 1 1]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t (seconds)

Figure 2.1: Graph of a simple test function, used for FFT display

Let’s assume we know nothing about this test function, and it’s given to us as an array of real
numbers. Processing such array through equation (2.1) results in a new array, but this time in form
of complex numbers. Running these complex numbers through equations (2.2) and (2.3) gives us
frequency, amplitude and phase of a test signal.

- Amplitude Spectrum of 1.5cos(2m5t+11/4)
- T T T

N
T
1

|Xmag|
P

T

1

T
1

0.5 =

0 b b 5 1
0 5 10 15 20 25
Frequency (Hz)

. Phase Spectrum of 1.5cos(2m5t+11/4)
St T T T

Frequency (Hz)

Figure 2.2: Amplitude, frequency and phase of a test signal

2.2 STFT

The Fourier transform of the signal cannot depict how the spectral content of the signal changes
with time, which is critical in many non-stationary signals in practice [37]. That means Fourier

Transform does not display when the set of frequencies occurs. Instead, it provides the frequency
information averaged over the entire signal time interval. Short-time Fourier transform (STFT) is
a sequence of Fourier transforms of a windowed signal. STFT provides the time-localized frequency
information for situations in which frequency components of a signal vary over time [38, p.176].

Windowed signal means that signal or part of the signal (frame) was multiplied by the window
function. Often used window functions are Hamming and Hanning. However, by the nature of these
functions, the signal will be attenuated at the edges. To prevent that attenuation, the overlap-add
technique is used.

. PV LY L a N
—— -

(d)

Amplitude
°
f

e TN gt
Sample w-/""‘/“\"
1 T T

T T .
0 L 1 1 L L] . A
0 50 100 150 200 250 . r/ il

Sample: k

Weight: w(k)
°
&
T

Nt

0 50 100 150 200 250 s,
Sample T

Amplitude
°

Figure 2.3: Example of windowed signal and overlap-add technique: (a) Signal before multiplying
by the window function. (b) Hanning window function. (c¢) Product of signal and Hanning window
function. (d) Non-windowed signal. (¢) 50% overlap-add technique [39] [10].

Equation (2.5) depicts STFT, and it works by splitting the signal into time-frames by using the
window function, then DFT is performed on each frame Figure 2.4. This results in a time-localized
frequency spectrum. To visualize how frequencies change over time for the whole duration of the
signal, spectrograms are used.

o

Xun(f)= Y x(n)gln—mR)e 27" (2.5)

n=—oo

Where [41]:

g(n) - window function of length M
Xm(f) - DFT of windowed data centered about time mR

R - Hop size between successive DF'Ts. The hop size is the difference between the window
length M and the overlap length L.

The time requirements decide the length of the window function. Often in speech-related analysis,
we choose a 20ms time frame with at least 50% overlap. It allows for sampling of two periods of
100Hz fundamental frequency, which leads to better differentiation between speech sounds (vowels,
diphthongs, and consonants). Nevertheless, there is a correlation between frame size and frequency
resolution.

Gabor-Heisenberg uncertainty principle (2.6) states that by decreasing time resolution, frequency
resolution increases and vice versa. Where A f is "effective frequency width" and At is "the effective
duration" of the analyzed signal [42].

AfAt>05 (2.6)

Increasing At (wider time-frames) degrades time resolution, but that leads to smaller Af, which
means narrower bandwidth. As a result, the certainty regarding the frequency content of the frame
improves.

x(n)

Segmentation/
Windowing

DFT
Xi(h)]? XN [X(DP (X(OP X)) 1 Xs()?

Figure 2.4: STFT overlap-add windowing |41]

2.2.1 FFT and STFT comparison

This subsection shows the practical limitations of FT in analyzing non-stationary signals and how to
overcome such limitations with STFT. However, Gabor-Heisenberg uncertainty principle Eq. (2.6)
plays a big role in deciding time resolution, and we will see how it affects signal analysis by STFT.

Experiments are performed with a linear sweep signal (2.7) (also known as chirp). This type of
signal has linearly increased or decreased frequencies over a period of time.

y=eoin((B2 0 - a2 (2.7)

The start and stop frequencies (Hz) are given by a and b, respectively. The length of the signal over
which the frequency varies between a and b is given by d (seconds) [13, p.171].

The following is the formal definition of a non-stationary signal: A non-stationary stochastic signal
is one whose statistical structure changes as time passes, for example, the mean, variance, correla-
tion (covariance), and so on. Doppler-shifted sound, Bird sound, vibration response of machinery

undergoing operational changes, speech, noise and vibration signals from accelerating traffic, chirp
signals, the impulse response of a damped non-linear Duffing oscillator, trajectories of a Lorenz

system, and velocity of an impacting oscillator are a few examples of such signals [44].

Linear Sweep Cosine 0 to 40 Hz

Linear Sweencos' ine 40 to 0 Hz

™ fFAnn ll ||” u\lvva (‘;" S
|| M‘WH HHH ‘”” ! g H | \H H\H \‘\ I u‘\ |
vE \\HH - L R
SRTHLI .
ww»w\‘h\ I H\HH\ [— H T i
< T H‘ HH\H \ H\ I HH M \H HNRIRY
Vo \M | U J \ H\‘\H I Nw \/
4oV mw VMVWV \ il . I||HH (LR ARARR
. . (a) L L (b)
0 0.2 UJ 0.6 \'I.B 1 1v2 2 0 D.B 1 12 14 1.6 18 2
Time (s) Time (s)
FFT results of a Linear Sweep Cosine 0 to 40 Hz FFT results of a Linear Sweep Cosine 40 to 0 Hz
0.16 - 0.16
014 Jm\ 0.14 ﬂ\ r
%n: w‘ ‘\\J‘\“‘\‘w.\r\)\f‘n‘wl il “‘ %n: ‘3‘ ‘H\H\“Wv“‘f (VAVA‘”'U‘H‘Q\‘\
%-nm { ! “\‘ E;n.os \“‘ J “‘\
?-'-Ams | \ % “\‘
I:nm— ‘ \\ It:.:— \\
\\ \\
0.02 \\\ 0.02 \
. N (c) o | | | | \\r*w—ff (d)
o 10 20 30 40 50 60 70 80 90 100 -10 o 10 20 30 40 50 60 70 80 90 100
Frequency (Hz) Frequency (Hz)
Figure 2.5: Fourier Transform of non-stationary signal: (a) Chirp frequency increase. (b) Chirp

frequency decreases. (c¢) FFT results of Chirp increasing frequency. (d) FFT results of Chirp

decreasing frequency.

The main limitation of performing FT on a non-stationary signal is that it does not show how the
spectral content of the signal changes with time. A simple chirp signal is used to visualize this
limitation Figure (2.5). Signals duration is 2 seconds with a bandwidth of 40 Hz. In Figure 2.5(a)
signal starts at 0 Hz and at the time of 1 second, its frequency is 20 Hz, at the end of signal duration
frequency is 40 Hz. The same signal is shown in Figure 2.5(b), only this time it is inverted. The
results of performing FFT on these signals are identical. It visualizes that Fourier Transform may
not be the best choice to analyze how signals are changing with time.

Now same chirp signal is analyzed by STFT and visualized in the form of a spectrogram Figure 2.6.
The window function is Hanning. Overlap is 95%, high overlap produces smoother spectrogram, but
often is a waste of hardware resources in real analysis applications. Spectrograms show that STFT
can tell that frequencies are increasing or decreasing with time. The quality of the spectrogram and
analysis depends on chosen time resolution. Spectrograms with 500ms time frames correctly show
that frequency bandwidth is 40 Hz, whereas smaller time frames degrade frequency resolution. This
is the trade-off between time and frequency.

IMVW \HH“\“‘\ “»‘ I A /]

Linear Sweep Cosine 0 to 40 Hz. Linear Sweep Cosine 40 to 0 Hz
m/\‘ \ u B!

AT AT
\\ \‘HH\‘ HH‘ 1| I | \
a5 \\/r » " \ \’ ‘H ‘ U\‘ \‘ ‘H\\H/\H\H\NU ‘\ \H‘\ H‘h h/ ‘w l} Aw} \W r\“\H‘ JM HH u ! NH ‘M’ \H‘ || \’ || \““! \\\v’/’/

{ \ \
v i il H“
Trme{) Tlme{)
Fres = 29.3662 Hz, Tres = 50 ms Fres = 29.3662 Hz, Tres = 50 ms

g &
7 g
H o f

(b)

Tlm e (s) Time (s)
Fres =14.6831 Hz, Tres = 100 ms Fres = 14.6831 Hz, Tres = 100 ms

Signal Amplitude
Signal At

Jle)

Figure 2.6: STFT spectrograms of non-stationary signal: (a) Chirp frequency increase. (b) Spectro-
gram of (a) time-res 50ms. (c) Spectrogram of (a) time-res 100ms. (d) Spectrogram of (a) time-res
500ms. (e) Chirp frequency increase. (f) Spectrogram of (e) time-res 50ms. (g) Spectrogram of (e)
time-res 100ms. (h) Spectrogram of (¢) time-res 500ms.

2.3 Wayvelets and Wavelet Transform

Wavelets are mathematical functions that divide data into distinct frequency components and then
examine each component with a resolution proportional to it’s scale. They outperform classic
Fourier methods in assessing physical circumstances with discontinuities and abrupt spikes in the
signal. Fields such as astronomy, acoustics and speech, nuclear engineering, sub-band coding, image
processing, neurophysiology, music, magnetic resonance imaging (MRI), speech discrimination, op-
tics, fractals, turbulence, earthquake prediction, radar signal processing, computer vision, and pure
mathematics applications such as solving partial differential equations are all using wavelets [45].

We start our explanation of wavelets and Wavelet Transform with a reminder of the Fourier Series.

Idea is that, under certain conditions, we may approximate signal or function as a sum of other
functions. For Fourier Series, signal f(t) has to be periodic and have finite energy over one period

T:

T
/0 |f()]?dt < o0 (2.8)

Then any such signal may be approximated by using superposition of base function e/** = e’ Ft
cos(wt) + jsin(wt). Composition of sines and cosines with different frequencies and amplitudes
approximates to f(t) (higher number of sines and cosines improve approximation). It is known as
an exponential form of Fourier Series:

Zc IFM = 1,0,1,... (2.9)

Now let remind ourself how Fourier Transform defined:

flw) = /_ - f(t)e vt dt (2.10)

10

Both Fourier Transform and Series are using sine and cosine as their base functions. And since
sin(nz) and cos(nz) complete n cycles (harmonics) every 27 radians, it is reasonable to generalise
that function f(t) lays on interval [0,27]. Then eq.(2.8) upper limit changes to 27 and function
f(t) repeats itself every 27 radians.

Almost all of the signals that are of practical interest are non-stationary. Meaning, they do not
repeat every 27 radians. Such signals energy can be shown as:

/OO If(t)>dt < oo (2.11)

—00

Non-stationary signals and periodic signals are essentially different. In particular, the local mean
of every base function that forms non-stationary f(¢) should tend to zero at t+oo. However, a
sinusoidal wave family cannot be such a basis (they are non-local and stretch out to infinity [15]).
Therefore, for the basis functions of non-stationary signals, let us consider wavelets well-localized
soliton-like ‘small waves’ [46].

2.3.1 Wavelets

Wavelets differ from sine and cosine functions. There are many types of wavelets and some have
quite unique shapes, which are defined by their mathematical properties. There is no wavelet "one
fits all". Daubechies and Symlets are good for signal and image denoising, while Biorthogonal is a
good candidate for signal and image compression [47].

Daubechies Symiets Coiflets Biorthogonal
: \
3
@
: \
L]
g /
2
E j
[=)
o H 4 6]] 2 4 6 8 ¢ 5 W 1 » B B] 2 4 6 L]
Mexican hat wavelet Maorlet wavelet Complex Gaussian wavelets Gaussian
2
2 /
e |
o
“
= Ilf_.—
| ” T\
]
o

75 -50 -25 00 25 50 18 75 -Sp -25 08 25 S8 7§ a4 2 e ? H 4 2 0 H 3

Figure 2.7: Figures of common mother wavelets 48]

To show how wavelets are expressed mathematically, we start with the Haar wavelet. Normalized
form of the wavelets (more on that later):

Wi k(t) = 29/%0(27t — k) (2.12)
Where

¥ (t) - mother wavelet. Symbol reads as "psi" [49] [50].

¥, (t) - daughter wavelet. When j > 1 it is considered as daughter wavelet and when j = 0
as mother wavelet.

11

¢(t) - scaling function (father wavelet). Haar’s wavelet scaling function is a box function.
Symbol reads as "phi".

0 fort <0
box function {1 for0 < t < 1
0 fort > 1

W(t) = ¢(2t) — ¢(2t — 1) - Haar mother wavelet in terms of scaling function.
j - Dilation (scale) parameter. Stretches or compresses wavelet.

k - Translation (position) parameter. Moves wavelet across t - axis.

15 T T T T T T T
(@ 1 T
o]~ (1) i
0 I | I I I I | I
0 0.2 04 06 08 1 12 14 16 1.8 2
t
. T T T T T T]
®) o WU(t)
s I ! | | 1 I I ! L i
0 02 04 06 08 1 12 14 16 1.8 2
t
E T T T T T T T]
@ o 20/24p(20¢ — 1) |
rC I L I ! ! I I I I
0 0.2 04 06 0.8 1 12 14 16 1.8 2
t
F T T T T T]
) o 21/24p(2't — 0)
s I L I I ! | I ! L i
0 02 04 0.6 08 1 12 14 16 1.8 2

Figure 2.8: Haar wavelet: (a) Scaling function ¢(¢). (b) Mother wavelet 1 (t). (c) Translation of
¥ (t) by k =1 while j = 0. (d) Dilation of ¢(¢) by j =1 while k =0

The wavelets’ normalized form (2.12), means

/ iyl dt = 1
— 00

The 27/2 is the normalization constant for any values of j and k. Based on the definition of
¥k, it is evident that j = 0 corresponds to the mother wavelet, translated by k units Fig.2.8(c).
The successive daughter wavelets are obtained for values of 7 > 1. Increasing values of j results in
narrower and narrower daughters! Normalized, narrower daughter wavelet (one corresponding to the
parent wavelet) to j = 1) is taller by the factor v/2 when compared to mother’s wavelet Fig.2.8(d).
The rule is followed by subsequent generations. Hence, as j — oo, with increasing height, the
wavelets become extremely thin. The scaling function captures the average of a portion of the
signal in an interval indicated by its width; the scaling function window locations are determined
by the values of k. The differences are captured by the wavelets. The mother wavelet collects
the signal differences at a size similar to the scaling function, while the thinner daughter wavelets
investigate the differences at progressively finer scales. This is why wavelet transform is also known
as multi-resolution analysis. Because the wavelet transform uses a finite size window, it may capture
the local nature of a function or signal considerably more efficiently than the Fourier transform [50].

12

2.3.2 Wavelet Transforms

Now we take a look at Discrete Wavelet Expansion and Transform.

Discrete Wavelet Expansion [51]:

0= e (k)27 620t — k) + 35 dj (k)22 0(2t — k) (2.13)
k

k j=jo
Which can be rewritten in compact form(2.14). Where jo denotes the lowest frequency band/coars-
est scale. Increasing index (jo;1) means frequency band shifts up in frequency.

ZCJO)ik + D> di(k)dk(t) (2.14)

k j=jo

Discrete Wavelet Transform is act of calculating coefficients ¢; and d;:

¢i(k) = (F(1), dyx(t)) = / O dlt) de (2.15)

dj(k) = (f(t),¥;(t) / F@®)jx(t) (2.16)

Cocfficients ¢; are called scaling or approximation coefficients and d; wavelet or detail coefficients.
Equation of Wavelet Transform is almost identical to Fourier Transform (2.10), the difference is in
basis functions. While both e=/*! (FT basis) and wavelets act as band-pass filter, e /%! band-passes
are evenly spaced (shifted) in spectrum. Wavelets 1), band-passes increase bandwidth by 2 and
shift in frequency by 2 every time index j increases by 1 [52]. The scaling function behaves as a
low-pass filter and does not shift in the spectrum. That can be seen in (2.14) where scaling function
calculated only for j.

|H (w)]
W Wy Wh W,

|q|=|

Figure 2.9: Spectrum of scaling and wavelet functions. V{, and W{ denotes scaling and mother
wavelet function for jo. W23, denotes daughter wavelet functions for ji 23 [51].

—Jwt ig 4

Fourier Transform coefficients are complex and come in the form a =+ jb, this is because of e
complex function. By running these coefficients through (2.2) we compute the frequency spectrum
of a test signal. In the case of Wavelet Transform most of the wavelets are real functions. That
means plotting a graph of wavelet coefficients will not display frequency spectrum but an approxi-

mation of filtered test signal in time.

Figure (2.10) show results of Discrete Wavelet Transform. The wavelet function that is used is
Haar. Approximation in Vj denotes cj, coefficients (scaling function). Plotting these coefficients
results in a time-domain signal that has been processed through a low-pass filter. The next step is
to compute dj, coeflicients (mother wavelet), which represent the band-pass filtered part of the test
signal. Approximation in V; is the sum of ¢j, and dj, coefficients. Approximation in V3 is the sum
of ¢j,, dj, and d; cocfficients. And the list goes on, increasing the amount of wavelet coefficients
improves approximation. The sum of coefficients can be thought as a result of low-pass filtering.
Filter shift its cut-off frequency higher, as the number of transformed wavelets increase. This can

13

Test Function Approximation in '\.-’B

0.5 0.5
0 0
-0.5 -0.5
o | -1
0 2 . 4 6 0 2. . - A 6
Approximation in VE Approximation in \«"4
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 =1
0 2 4 0 2 4 6
Approximation in V, Approximation in V.,
1 1
0.5 0.5

é

-0.5 -0.5
= =
0 2 4 6 0 2 4 6
Approximation in V1 Approximation in VD
1 1
0.5 0.5
0 —\—]
-0.5 -0.5
= -1
0 2 4 6 0 2 4 6

Figure 2.10: Haar approximation of test function with two discontinuities [51].

be seen in fig.(2.9), where sum of Vj, Wy and W7 creates low-pass filter with cut-off frequency at /2.

A new tool is required to represent time-frequency (spectrum) from real valued Discrete Wavelet
Transform coefficients. This tool is known as the Hilbert Transform. It is a method for producing
complex-valued signals from real-valued signals [36, p.479]. Then by applying (2.2) and (2.3) on a
complex signal we can extract frequency and phase of wavelet coefficients.

If the wavelet is complex, such as the complex Morlet wavelet it is possible to compute the frequency
spectrum of the signal directly. The same logic will apply - wavelets produce a band-pass filter bank.
Computing Wavelet Transform generates wavelet coefficients, this time in complex form. We can
not use a complex Morlet wavelet with Discrete Wavelet Transform, for that we have to apply
Continuous Wavelet Transform.

CWT(a,b) = /_ h f(t)éw*(#) dt (2.17)

Equation (2.17) depicts Continuous Wavelet Transform. Parameter a - dilation, b - translation and
% denotes complex conjugate [53]. Since we divide by a, it has to be greater than 0 (a > 0). By
increasing a parameter, wavelet stretches in time, which leads to narrower bandwidth that shift
towards zero Hz.

Since by definition Continuous Wavelet Transform (same as Fourier Transform as well) takes in-
finitesimal steps for all its parameters (t,b,a) it produces a lot of redundant information. Because

14

of that Discrete Wavelet Transform are often preferred. To combat redundancy, the Dyadic scale
is used for the dilation of a wavelet. That means the bandwidth of the next wavelet increased or
decreased by 2 (1,2,4,8,16,32...). This can be seen in fig.(2.9) where bandwidth keeps on increasing.

A A A
(a) (b) (c)
Q Q @
= s =3
g g g
time = time ” time =

Figure 2.11: Time-frequency comparison: (a) Fourier Transform. (b) Short-Time Fourier Transform.
(¢) Continuous Wavelet Transform.

Let us compare the spectrum produced by Fourier Transform, Short Time Fourier Transform, and
Discrete Wavelet Transform fig.(2.11). Fourier Transform does not have the concept of time, but
frequency resolution is very good from low to high frequencies. Short-Time Fourier Transform
balances between time and frequency resolution. where increasing one degrades another. Wavelet
Transform is something in between, frequency content extracted dyadically. Low frequencies are
extracted throughout the whole duration of the signal. Next frequency content shifted up by 2
and resolution decreased by 2. That scheme provides us with good time localization of frequency
content for the practical signals. Often we are interested in high-frequency content when working
with such signals.

2.4 Empirical Wavelet Transform

Empirical Wavelet Transform is a method for constructing a family of wavelets that are tailored
to the processed data. From a Fourier perspective, this technique is analogous to creating a set of
bandpass filters. One approach to achieving adaptability is to think that the filters’ supports are
dependent on where the information in the examined signal’s spectrum is placed. [54].

Let us discuss why such transform is very useful. Take a look at the test signal composed of low-
frequency sinusoids fig.(2.12). The bandwidth of the signal is 56 Hz and the signal is sampled at
1 kHz. By following Nyquist criteria our scale of frequencies is [0, 7] = [0Hz,500Hz]. By executing
Discrete Wavelet Transform with same dyadic scale as in fig.(2.9) all frequencies of the test signal
would lay in Vj (scaling function as lowpass filter), which spans from 0 to 62.5 Hz. That means no
decomposition of the test signal would happen at all. To achieve full decomposition down to all 5
sinusoids would require a high number of wavelets and a lot of them would be empty (assuming the

dyadic scale is used).

A solution to this problem is to decompose this signal by Empirical Wavelet Transform. Dyadic
scaling is fixed, while EWT allows us to adapt to a signal. It segments the spectrum of a signal
by detecting the boundaries of each bandpass filter that wavelets represent. For the segmentation
of the Fourier spectrum of the examined signal, many methods such as local maxima, lowest local
minima between two selected local maxima (local maxmin), adaptive methodology, scale-space, and
order statistic filters (OSF) have been utilized [55].

We visualise Empirical Wavelet Tranform by decomposing test signal f(¢) = sin (2720¢)+sin (2730t)+

15

Test signal

F(t) = sin (2720¢) + sin (2730¢) + sin (2740t) + sin (2750t) + sin (2756¢)

1 | :

| | 1 1 1
-5
0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1
t (sec)

Figure 2.12: Test signal composed of 5 sinusoids: 20, 30, 40, 50 and 56 Hz

sin (2740t) 4 sin (2750t) 4 sin (2756t). Method for boundaries detection is local maxima. Algorithm
automatically finds boundaries and creates wavelets which are used for signal decomposition. Fig-
ure (2.13) shows such segmentation of the spectrum. EWT algorithm is not perfect and creates 1
segment too many. Effects of this extra segment can be seen in fig.(2.14) where it represented by
"ewt(1)". By looking at magnitude of "ewt(1)" (107!%) we can safely discard this segment without
affecting signal reconstruction from the rest the parts.

Spectrum of the test signal
600 T T T T T T T T T

500 — Segment 1 Seg 2 Segment 3 Segment4 Segment5 Segment 6 —

400~ : : : : : .

|Xmag|
8
o
T
|

s 5 z 5 | -

z e s | | .

0 L. | i | H | h 1 H | | | |
0 10 20 30 40 50 60 70 80 920 100
Frequency (Hz)

Figure 2.13: Segmentation of the test signals spectrum

The mathematical expression of empirical wavelets are as follows [54]:

16

x1071 ewt(1)
T

SVAYAVAVAYAVAVAVAVAVAVAVAYAVAVAVAVAVAVAY
STV YATANYAYATANAYANATAN Y LYATANAYAVATANAYANATANAVAYAVE:
AT AN AN AT AT AR
A A AT

Figure 2.14: Decomposition of the test signal

1 iflw| <wp — Ty

cos [%B (ﬁ(|w| —wp + Tn))}

Pn(w) = , (2.18)
if wp— T < |w| <wp+7
0 otherwise
1 ifwn + 1 < |W| < Wppl — Tptd

COS [%B <27n+1 (|w] — wnt1 + Tn+1)>}

(W) = ifwnt1 — Tngr < |w| S wng1 + ot (2.19)
sin [g@ (m (Jw| — wn + Tn))]

ifwn —Tn < |w| <wp+ 7

0 otherwise.

B(x) = 2(35 — 84 4 702% — 202%) (2.20)

Where w,, denotes the center of each segment and 7,, overlap between segments.

1+
D) Do, Y) -
+ + 4+ il 4 + n 4 -

w1 w9 w3 Wn Wn+l m

Figure 2.15: EWT visualization of segmentation with use of wy, and 7, |5]

2.4.1 Fixed segmentation of the spectrum

Often we would like to segment the spectrum according to our needs. This can be done by manually
constructing filter banks. But the manual method is error-prone and becomes more difficult as the
number of segments increases. With the help of EWT, it is possible to set the boundaries of each
segment and let wavelets act as bandpass filters.

17

600

500

400

|Xmag|
w
=3
o

200

100

Spectrum of the test signal
I

Segment 1 Segment 2 Segment3 Segment4 Segment 5

| | : | : |) 11, | | 1

10 20 30 40 50 60 70 80
Frequency (Hz)

Figure 2.16: Manual segmentation of the test signals spectrum

90 100

Equation (2.21) depicts how to calculate boundaries for spectrum segmentation [55]. By is the
upper boundary of the first segment on a scale of [0,7] (0 and 7 are included by default). Fp is the
upper frequency in Hz of the first segment and Fj is the sampling frequency of the signal in Hz.

-

ewt(1

o

0

FAVLTATLTAVLTAYATAYATATATATATAVATAVAAE

ewt(2

1

ATV TATAPATATARATARAMATATAVAYAVAVATATA

0

0. 0.3 0.5 0.6 0.7 0.8
ewt(3)

0.9 1

] \M/\W U \:W/ U \/ ARV,

I I
| |
0.1 .3 0.5 0

6 0.7 0.8 0.9 1
ewt(4)
1 T T T T T T T T T
1 | 1 1 1 I | I |
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
ewt(5)
T T T T T
1 1 1 | 1
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Figure 2.17: Decomposition based on manual segmentation of test signals spectrum
2w F;
B, = (2.21)
F's

Let us visualise manual segmentation and remove extra segment from the same test signal. We
pick frequencies for segmentation as follows: "25, 35, 45 and 53 Hz". These produce following seg-

18

ments: [0-25Hz|, [25-35Hz|, |35-45Hz|, [45-53Hz|, [53-500Hz|. Figure (2.16) shows result of manual
segmentation with chosen boundaries, while fig.(2.21) show decomposition of the test signal.

2.5 Convolutional Neural Network

Convolutional Neural Network is a type of Deep Neural Network (has many layers), which is typi-
cally used in machine vision and image classification. CNN requires fewer hardware resources when
processing big images than other Artificial Neural Networks [56]. Convolutional operation (multiply
and add) is done by sliding the filter kernel over the image in small steps. This can be greatly ac-
celerated by using video graphics cards. Due to its simplicity and low amount of parameters chance
of network overfitting is reduced. All of these make CNN a perfect candidate for our task of noise

classification and removal.

An image can be represented as a ma-
trix, e.g. full HD resolution image is a
1080x1920 pixels matrix. In general, im-

3 Colour Channels

ages are represented as HxW=xD, where
H is height W is the width and D is ® |18 |5 |6
depth. D is used to represent color (at 13 22 | 16 | s3 Height: 4 Units
the input layer), so D = 1 tells us it 72 |5 i
is the black and white image or D =
3 could mean RGB (Red, Green, and o |8 |1]2
Blue).
Width: 4 Units

Audio tracks that are used in this thesis is mono, (Pixels)

and. it is just an array of numbers (1xN matru.(). Figure 2.18: 4x4x3 RGB image [57]
As it has been shown EW'T can be used for sig-

nals decomposition. Several segments of audio

frames or tracks form an image-like matrix with sizes that are chosen by the user.

— Flower
2| —Cup
—» Car
—>Tree

ear units

Convolution
Convolution
ReLU
Pooling
Convolution
ReLU
rectified linear units
Pooling
Convolution
layers to support

rectified lin

Input Image

Probability

I
I
]
|

Sliding window

7
*J" ‘ N » HHE X/
“u wil wlH- 2

I complexshapes shapes that can be

* .
Filters ~a
light and dark . P used to define a flower . .
Vg— VR -

Every feature map output is the

result of applying a filter to the image
The new feature map is the next input

Figure 2.19: CNN architecture for image classification 58]

Figure (2.19) depicts one of the typical configurations of CNN for image classification. It has multiple
repeating layers. Order of these layers matters and it goes like this: input layer, convolution layer,
activation function layer, pooling layer, fully connected layer, softmax layer, and classification layer.
In the case of convolution, activation, and pooling layers repetition output of a pooling layer acts
as the input layer for the following convolution layer.

19

2.5.1 Convolution Layer

The convolution layer is the most important layer
and its job is to extract features from the input.
Features such as edges or colors. Later based on
these features network is trained to identify in our
case, noise patterns. Which are then used for the
classification of the noise types. Feature extrac-
tion is done by shifting filters (kernel) over an in-
put, starting from the top left corner and going to
the right. The usual size of the kernel is 3x3xN
or 5x5xN, where N is the depth of the input layer S
[59]. O,

©ih

7

height

Figure (2.20) depicts movement of a kernel. Since the in- Figure 2.20: 3x3x3 kernel movement
put layer has a depth D = 3, the kernel forms a cube. [57]

This cube is composed of 3 filters the size of 3x3 which

are stacked on top of each other. We call them filters because their job is to filter out features.
CNN training consists of computing filter weights that will give users better and better classification
results.

-] a a o o L]] o o o o (] - o [}]
o |156 | 155 | 156 | 158 | ass | .. o | 167 | 166 | 167 | 169 | 189 168 | 165 | 165
o |83 |1sa| 157 |ase|as9| . o | 164 | 255 | 188 | 370 |70 | - 164 | 166 | 166
o |49 |1sa| 155 [ass|ase| . | | o |ae0 162|166 | 269 | 270 | o [156 | 158 | 162 | 163 | 166
[} 146 | 146 | 149 | 153 | 158 | © ‘ 156 | 156 | 159 | 163 | 188 o 155 | 155 | 158 | 162 | 167
o | uas | 1es | a4n | s | ass | . o | 195 | 138 | 138 | 138 | 1e8 | _ o [13a | 152 | 132 | 157 | 167
Input Channel #1 (Red) Input Channel #2 (Green Input Channel #3 (Blue)
1]-1]1 1|j0]0
0|1]|-1 11-1]-1
0j1(1 1|j0]-1
Kernel C_r-\annel #1 Kernel Channel #2 Kernel CI:mnneI #3 Output
|]
308 + —498 + 164 +1=-25
I
Bias =1

Figure 2.21: Kernel convolution visualization |57]

Figure (2.21) depicts kernel convolution. Input image with a size of HxWx3 is split into 3 channels
with sizes of HxWx1. Each filter is having its own weights and gets its own channel to slide over.
Convolution of a filter itself and a part of the input is simply multiplied and add method fig.(2.22).
It is important to note that the output of the convolution layer does not have the same dimension as
the input. The size of the output depends on the size of the filter and stride parameters. Stride tells
filter how many pixels to shift in a horizontal and vertical position after each convolution. Usually,
it is desirable to reduce the size of the output matrix, in cases where it is not, we can add zeros at
the edges of an input image.

Figure (2.23) visualizes how extracted features from the convolution layer may look. The picture
of a cat has a grayscale color scheme and its depth is 1. Fourfilters are applied to the same input
image and produce four new images.

20

Output [0][0] = (9%0) + (4*%2) + (1*4) +
(1*1) + (1%0) + (1*1) + (2*0) + (1*1)

i =0+8+1+4+1+0+1+0+1
S, =16

Inputimage Filter Output array

Figure 2.22: Filter convolution example [60]

PEERYEE.

Filter &

=
=

Figure 2.23: Convolution Layer extracted features visualization [59]

21

2.5.2 Activation Function Layer

The activation function layer is the layer where a non-linear function is applied to the input. This
makes the network non-linear, which makes it harder to train but enables it to learn complex fea-
tures.

Figure (2.24) depicts graphs of four common activation functions and their formulas. These func-
tions are widely used not only in CNN but in many other Neural Networks. The main job of these
functions is to make the network non-linear. The sigmoid function do that by squishing input be-
tween 0 and 1, while Tanh squishes between -1 and 1. These two functions were popular choices
before, but they have a problem with saturation. This leads to a "vanishing gradient" problem in
networks with many layers [56].

Sigmoid
1.0
1
olz)=
{) I+¢e~
0 -10 =5
-0,
-10 = 5 10 0
(a) (b)
RelLU LeakyReLU(a=0.2)
0] 10
5 \ z,z>0
5,350 LcakdeM(:): az,otherwise

ReLU(z)=
(2) {O,r)therwixe 51

T 3 0

Figure 2.24: Four commonly used activation functions [61]

A popular activation function that is easy to compute is ReLLU. This function zeroes out every pixel
that has a negative value but leaves anything else unchanged. The activation function layer does
not change the size of the input matrix. Output and input are equal in size.

Activation Function Layer Input Activation Function Layer Output
0.45 -10 2 0.45 0 2

5 -0.11 7 pP—ReLU—» 5 0 0

3 -3 9 3 0 9

Figure 2.25: ReLLU activation function visualisation

22

2.5.3 MaxPool Layer

MaxPool layer’s job is to deliberately reduce the size of the input matrix. This reduces computa-
tional load and chance of overfitting, the downside is loss of information. Same as with convolution
layer filters and stride are used for downsizing. The usual size of maxpool filter is 2x2 or 3x3 [62].

Common variants of pooling filters are Max Pool and Average Pool. Max Pool simply returns the
highest value while Average Pool computes the average of the part of the signal that filter slides
over.

max pooling

20 30

112| 37
12120 30
8 1121 2
3470| 37| 4 average pooling
1121100{ 25 | 12 13 8

79| 20

Figure 2.26: Max Pool and Average Pool visualization |57

2.5.4 Fully Connected Layer

The last part of CNN is a regular Neural Network. The main part of this Neural Network is a Fully
Connected Layer. FC layer job is to combine outputs from the previous layer to the next one. The
next layer can be a Softmax function layer or just one more FC layer. Each Fully Connected layer
have their own weights and biases, which are too used in network training. This leads to an increase
in prediction accuracy [57].

Output Volume Qutput Volume

588x1 2001
Output Nodes
Sxl
Output Volume .
14x1dx2 =
RelU Activation Fn. Class 1
Volume-28x28x3 T—l_‘l_ Q O
: i Class 2
Class 3
o O e
£
i Class 4
Convolution =1 i H 1
L i
layer Stride 1 H = . O Class 5
/ .
Max Pool " i /’J
layer Stride 2 O O i
Fully connected Soft-Max
Input Volume Flatten layer Layer ReLU Activation Activation Fn
32%32m1 Fn.

Figure 2.27: Complete classification CNN [57]

23

Chapter 3

Proposed Solutions

This chapter is split into two parts. It describes a classification of audio noise embedded in human
speech and the removal of such noise from the signal. Both classification and noise removal is done
with the help of Convolutional Neural Networks. Both cases utilize Empirical Wavelet Transform
for signals decomposition.

3.1 Classification Part

The classification part of this thesis solves the problem of classifying 14 different kinds of noise
embedded into audio signals. There are only 30 audio signals to train on, per type of noise. The
network is trained for signal-to-noise ratios of 10, 0, and -5 decibels.

We can artificially increase the amount of train data by split-
ting signals into frames. The next step is to decompose
each frame with Empirical Wavelet Transform. Boundaries Sp'i‘nziglfgrsg?}fa;lzq“a'
for the segmentation of the Fourier spectrum are chosen by

the user. But to make it simple, the frequency range for
each segment is the same. The decomposed frame forms a

¥

Decompose frames with EWT

2D object, we can imagine it as a picture. The next step :
is to feed these picture-like frames into Convolutional Neu- p—
ral Network, which extracts features from each frame. Then ,
these extracted features are sent to another neural network]
whose job is to classify each frame according to the type of Fu"yLC;;.:remd

noise. ¥

Softmax Layer
Based on hardware and accuracy requirements, our classification
network allows the user to choose and modify some of its parameters.

Such as the size of frames and the number of segments. For example, Clasfg,?ion
a low number of segments decreases the accuracy of classification
but requires less RAM.

— ¥

Figure 3.1: Noise classifica-

tion block diagram
3.1.1 Data set

This thesis uses an audio set that consists of 30 tracks (can be found

at [63]). The language spoken is English. Tracks are divided evenly

between male and female voices, with an average length of 2.5 seconds. Tracks of audio noise set
are taken from Aurora experimental framework (can be found at [64]).

Noise set consists of the sound of: "airplane, airport, babble, car, drone, exhibition, helicopter,
restaurant, sea waves, station, street, toilet flush, train and washing machine". Noise sounds can
be categorized into 3 types. Stationary - noise is homogeneous and varies very little with time, also
there is little change in its frequencies. Airplane, car, helicopter, train and washing machine belongs

24

to the stationary type of noise. The next type of noise is non-stationary - noise that changes with
time, medium to a sharp change in frequencies. Drone, sea waves, station, street, and toilet flush
belong to the non-stationary type of noise. A final type of noise is babble - noise that is made of
unintelligible human speech in the background. This type of noise is particularly difficult to classify
since it contains a resemblance to human speech. Airport, babble, exhibition, and restaurant belong
to babble type of noise.

By noisy audio, we imply the mixing of clean (non-noisy) audio tracks with particular noise and
SNR (signal-to-noise ratio). Chosen SNRs are 10, 5, 0 and -5 decibels. The sampling rate of noisy
audio tracks is 8 kHz.

3.1.2 Framing and Segmentation

Preparation for classification consists of framing and segmentation of the audio tracks. First, all
30 noisy tracks are split into an equal number of frames. To calculate the number of frames this
split will produce, we need to find the shortest track. In our set, this is track number 4 which is
16928 samples long. Then we divide 16928 by the length of the frame (one of the variables that
the user may change) and round the quotient down to the nearest integer. A computed integer is
the number of frames that we split tracks into. It will depend on the chosen length of the frame.
If a track is longer than 16928 samples, then we simply ignore the rest. Figure (3.2) visualizes this
procedure.

FRAME N-1 FRAI!IIE N

1
FRAME 1 FRAME 2 FRAME N-1 FRA*IIE N

FRAME N-1 FRA*/IE N
0.5

(€) o

-0.5

t

Figure 3.2: Splitting of noisy (5dB SNR) tracks into an equal number of frames: a) 16928 samples.
b) 17967 samples. ¢) 19934 samples

The next step is to create boundaries for frames segmentation. Each frame will be decomposed
by EWT into an equal number of segments. Amount of segments is chosen by the user. A higher
number of segments requires a higher amount of RAM and VRAM but increases the accuracy of
noise prediction. To make it simple, the boundaries of each segment are evenly spaced. Figure (3.3)
visualises segmentation of one of the frames. Boundaries computed by eq.(2.21), where 0 and 7 are
included by default. The bandwidth of each segment is then given by dividing Nyquist frequency
by the total amount of segments.

4 kHz

— =80 H
50 segments :

25

25 T T T T T T T

|Xmag|

0 500 1000 2000 2500 3000 3500 4000
Frequency (Hz)

Figure 3.3: Segmentation of frames Fourier spectrum. 50 segments

Figure (3.4) visualises partial decomposition of one frame. We can see how segment 10, 20, 30, and
40 out of 50 looks like. Of course in the code, these segments are simply arrays of numbers.

02F T T T T T T T I
@ -
0.2] | 1 1 | l | L1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples
0.05 T T T T T T T T T T
0 o s o e " MWMWWWWMWMMWMMWWMWWMNVWMN\M .
0.05 | | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples
0.01 T T I l I —
@ T |]
-0.01 1 1 ! 1 ” | h“]‘“ﬂmmnn 1 lmwm [
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples
0.01 T T T T I T I T T =
@, i
.0.01] ! 1 ! 1 1] 1 [
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples
0.01 T T T T T T T T T
©, i
0.01 | | | | | | 1 | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples

Figure 3.4: Decomposed frame: a) Frame 2048 samples. b) Segment 10. ¢) Segment 20. d) Segment
30. e) Segment 40.

Therefore the best way to describe decomposed frames is by matrices. Then, the 2048 samples
frame, decomposed to 50 segments describes as a 50x2048 matrix.

The total amount of frames depends on the chosen length of the frame. If this length is 2048 samples
then each noisy track produces 8 frames, which is 240 frames per class of noise. By having 14 classes

of noise, the total number of frames is 3360.

26

Noisy Track

Framing and EWT 50 Segments
— |

30 Noisy Tracks * 14 Classes of Noise

Framing and EWT

Figure 3.5: Visualization of signals preparation prior to classification

3.1.3 Noise Classification

LAYERS COLOR LEGEND
Image Input Layer
Convwolution 2D Layer
Batch Normalization Layer
Maxpool Layer

50x2048x8 - Tahn Activation Layer -
Fully Connected Layer
Softmax Layer
Class Output Layer =

25x1024x16

12x512x24
BX256x32

3x128x64

25x1024x8 12x512x16 6x256x24 3x128x32 1x64x64

50x2048x1

Figure 3.6: Classification CNN Layers Deep Stacking

The noise classification network consists of 24 layers in total. The first layer is input and the size
of it will affect subsequent layers. Here we chose to train the network with a 50x2048 frame size.
The next stack of 3 layers is convolution, batch normalization, and maxpool layers, followed by
the activation layer. This process of layer stacking is then repeated 4 times. This is visualised
in fig.(3.6). The classification itself is done at the last 3 layers, which consists of fully connected,
softmax, and classoutput layers.

The size of the filter kernel is 3x3. For features extraction, we chose to start with 8 filters and
double their amount at each subsequent convolution layer. By doing this we increase the amount

27

of extracted features and increase the accuracy of prediction.

‘ ANALYSIS RESULT =)

Name Type Activations Leamnables Total Learnab...
‘ 1 imageinput Image Input 50%2048x1 - [

5052048% 1 Imsges with Zarocantar normalization

1 Cenvolution 58x2048x8 Weights 3x3=1x3 -
¢ batchnom_1 Bias 1x1s8
\ Batch Normalization |50x2248=8 Offset 1x1x8 1
& lagar 1 Scale 1x1+§
T ||+ Tanh 50+2048+8 z]
* maxpool_1
1 Max Pooling 25%1024x8 - @
comv_2
" Convolution 25x1024+16 Weignts 3x3x8x16 1168
& baichnorm 2 | Bias 1x1x16
1 7 baichnorm_2 Batch Normalization | 25x1824%18 Offset 1x1xl6 2
. Batch rommakeatan Scale 1x1x16
® layer 2 |
1 8 layer_2 Tanh 25%1024%16 - @
* maxgool 2 | Hypoacngen
i 2 maxpool_2 Max Pooling 12x512x16 - e
& conv_3 . i, -
' conv_3 Convolution 12x512=24 Weights 3x3x16x24 3489
24 3x3 convltions with stride [1 1] and same Bias 1x1x24
® bachnorm_3
' Baich Normalization |12x512=24 Offset 1x1x24 48
Scale 1x1x24
®iayer 3 7
T 2 Tanh 12%512=24 - 4
t Max Pooling 6x256%24 - e
®conv_s 5 :
o Convolution 6x256x32 Weights 3x3x24x32 6944
1 Bias 1x1x32
® batchnarm_4
senne Batch Normalization | 6=256«32 Offset 1x1x32 64
! Scale 1x1x32
® lzyer 4
i L Tanh 6%256x32 -]
* maxpocl_4 17 Max Pooling 3x128x32 = e
1
comv_3 Convolution 312864 Weights 3x3x32x64 18496
! Bias 1x1x64
$ Leitinm. 2 ||1e |batchnorm_5 Batch Normalization | 3«12=64 Offset 1x1x64 128
T Baich nomatzation Scale 1x1x64
®layer s e layer_5 Tanh 3%128%64 - 2
1 Hyperbaic tangen
® maxpool_§ 2 maxpool_5 Max Pooling 1x64=64 - 8
| 25 i 2] and padding [0 000
ef = Fully Connected 1x1x14 Weights 144896 57358
! 14 fully connected layer Bies 141
® softmax Softmax 1x1x14 2 e
| | I
classoutput 24 Classification Output | - = 8

Figure 3.7: Analysis report of the noise classification network

3.2 Denoising Part

The denoising part of this thesis attempts to remove 14 different kinds of noise that is embedded
into audio signals. Signal-to-noise ratios of noisy signals are 0, -5, -10 decibels. Denoising itself is
done with the help of CNN. There are 30 audio signals per type of noise.

4 Noisy \\ Denoising)

_Segment 1 / Network 1 LenoisediSegment
e N ‘ AN . Sum of ;
/ \ WT / y Del d Track
| Noisy Track —> £ L Y] f DRI Denoised Segment 2—> Denoised Helbee o
\ Y, Decomposition _Segment2 / Network 2 Segements

Noisy Denoising B
\ ;\Segment N/" NCthomIN Denoised Segment N——

Figure 3.8: Denoising block diagram

The first step of removing noise from the audio track is to decompose it with Empirical Wavelet
Transform. As in the classification part, boundaries for the segmentation are chosen by the user
and the frequency range for each segment are the same. Amount of segments that are used are
chosen by the user as well. Each segment is then processed by each own CNN. Output from these
networks is denoised segments. Sum of these segments forms a denoised signal. The main idea is

28

that each denoising CNN is working with the specific bandwidth of a noisy signal. Thus increasing
the amount of noise was removed.

There are some similarities with classification networks. Both networks are using EWT for decom-
position, and CNN for features extraction from each EWT segment. The first difference is that in
the classification part, signals are split into an equal amount of frames and each of those frames is
decomposed by EWT. In the denoising part, the full duration of the signal is utilized and decom-
posed by EWT. Signals length difference is no longer an issue. The second difference is that the
classification network extracts features from time-domain data, while the denoise network extract
from the frequency domain.

3.2.1 Denoising

The core of the denoising network is taken from the Matlab example, which can be found at [65].

Clean Track

| — ST — Extract magnitude ——Target—>|
Segment CNN
Denoised Segment
a L, K-step.Ahead |, Comertto | J Inverse g
N Prediction Complex STFT
Regression Layer
Noisy Track
Segment

> STFT —> Extract magnitude Wpred\ctorﬂ

\—~ Extract angle }

Figure 3.9: Denoising network block diagram [65]

The first step is to extract the frequency content of
each segment. This is done by computing STFT with Ppredicorpoisy udio)
the following parameters: window length is 256 sam- TiTi
ples, the window function is hamming, the overlap is
75%. Next is to extract frequency magnitudes (eq.(2.2))
from clean and noisy STFT frames and extract phase an-
gles from noisy STFT frames (eq.(2.3)). When extract-
ing magnitudes and phase angles only the last half of rarget(ciean audio)
the frame is computed. This is due to the dropping of
negative frequencies and thus reducing the size of data
[65].

Estimate

|

129 (FFT Length = 256)

CNN |wmp

129

g mmp
§

Computed magnitudes of clean STFT frames are called tar-
gets. Each frame of clean STFT is the target and has a size
of 129x1. Computed magnitudes of noisy STFT frames are
called predictors. Predictors size is different from targets, 8
frames of noisy STFT produce 1 predictor with the size of
129x8 fig.(3.10).

Figure 3.10: Predictor and target
frames [65]

Targets and predictors are then processed by CNN with the Regression layer as the last one. The
regression layer returns a half-mean-squared error of the predicted responses, which are used in the
K-step ahead prediction algorithm. This algorithm takes two parameters, half-mean-squared errors,
and predictors. Resulting in predicted frequency magnitudes of denoised STFT frame of a segment
of a signal. Frequency magnitudes and extracted angles are combined together to form an array of
complex numbers. This is done by exponential form of complex numbers 7260 = re??. Where r is
frequency magnitude and 6 is extracted angle.

To go from the frequency domain back to the time-domain Inverse STFT is performed on converted
complex numbers array. ISTFT parameters are identical to STFT ones. The result of ISTFT is a

29

(9 [imageinput

batchnorm_1
reiu_1

conv_2

batchnorm_2

conv_4
batchnorm_4
relu_4

conv_5
relu_5
conv_6
relu_6
conv_7
batchnorm_7
relu_7

conv_8

batchnorm_8

conv_10
batchnorm_10
relu_10

conv_11

relu_11

conv_12

rely_12
conv_13
batchnorm_13
rely_13

conv_14

relu_14
conv_15
batchnorm_15
relu_15

conv_16

regressionoutput

ANALYSIS RESULT (

2 conv_1 1 Convolution 129x1x18 Weights 9x8x1x18 131
18 9x8 convolutions with stride [1 100] and padding 'same’ Bias 1x1x18

3 batchnorm_1 Batch Normalization |129x1x18 Offset 1x1x18 36
Batch normalization Scale 1x1x18

4 refu_1 RelU 129x1x18 = e
Rel0

5 conv_2 Convolution 129x1x30 Weights S5x1x18x30 273e
30 5x1 convolutions with stride [1 100] and padding 'same’ Bias 1x1x30

8 batchnorm_2 Batch Normalization |129x1x3@ Offset 1x1x30 60
Bateh normalization Scale 1x1x38

7 relu_2 RelU 129x1x38 =]
RelU

g conv_3 Convolution 129x1x8 Weights 9x1x3@x8 2168
8 9x1 convolutions with stride [1100] and padding ‘same’ Bias 1x1x8

el batchnorm_3 Batch Normalization |129x1x8 Offset 1x1x8 16
Batch normalization Scale 1x1x8

0 rew_3 ReLU 129%1x8 - [
Rell

1 conv_4 Convolution 129x1x18 Weights 9x1x8x18 1314
18 8x1 convolutions with stride [1 100] and padding 'same’ Bias 1x1x18

iz batchnorm_4 Batch Normalization |129x1x18 Offset 1x1x18 36
Batch normalization Scale 1x1x18

13 relu_4 RelU 129x1x18 - [
RelU

" conv_5 Convolution 129x1x30 Weights 5x1x18x3@ 2730
30 5x1 convolutions with stride [1 100] and padding 'same’ Bias 1x1x30

3 batchnorm_5 Batch Normalization |129x1x3@ Offset 1x1x3@ 68
Batch normalization Scale 1x1x3@

© rews RelU 120x1x30 - [
RelU

7 conv_6 Convolution 129x1x8 Weights 9x1x3@x3 2168
8 9x1 convolutions with stride [1 100) and padding ‘same’ Bias 1x1x8

L batchnorm_6 Batch Normalization |129x1x8 Offset 1x1x8 16
Batch normalization Scale 1x1x8

e relu_6 RelU 129x1x8 - e
RelU

E conv_7 Convolution 129x1x18 Weights 9x1x8x18 1314
18 9x1 convolutions with stride [1 100] and padding 'same’ Bias 1x1x18

21 batchnorm_7 Batch Normalization |129x1x18 Offset 1x1x18 36
Batch normalization Scale 1x1x18

2 relu_7 RelU 129x1x18 = e
Rell

e conv_8 Convolution 129x1x30 Weights 5x1x18x3@ 2730
30 5x1 convolutions with stride [1 100] and padding 'same’ Bias 1x1x30

24 batchnorm_8 Batch Normalization |129x1x38 Offset 1x1x3@ (]
Batch normalization Scale 1x1x3@

= relu_8 RelU 129x1x38 = °
RelU

2 conv_9 Convolution 129x1x8 Weights 9x1x30x8 2168
8 91 convolutions with stride [1 100) and padding "same’ Bias 1x1x8

27 batchnorm_9 Batch Normalization |129x1x8 Offset 1x1x8 16
Batch normalization Scale 1x1x3

28 relu_9 RelU 129x1x8 = o
RelU

2 conv_10 Convolution 129x1x18 Weights 9x1x8x18 1314
18 8x1 convolutions with stride [1 100] and padding 'same’ Bias 1x1x18

£ batchnorm_10 Batch Normalization |129x1x18 Offset 1x1x18 36
‘Batch normalization Scale 1x1x18

3 relu_10 RelU 129x1x18 - e
RelU

2 conv_11 Convolution 129x1x30 Weights 5x1x18x30 273
30 5%1 convolutions with stride [1 100] and padding 'same’ Bias 1x1x38

B batchnorm_11 Batch Normalization |129x1x3@ Offset 1x1x3@ 68
Batch normalization Scale 1x1x3@

4 relu_11 RelU 129x1x38 =]
RelU

3 |conv_12 Convolution 129x1x8 Weights 9x1x3@x8 2168
8 9x1 convolutions with stride [1100] and padding ‘same’ Bias 1x1x8

* batchnorm_12 Batch Normalization |129x1x8 Offset 1x1x8 16
Batch normalization Scale 1x1x8

7 refu_12 RelU 129x1x8 -]
RelU

e conv_13 Convolution 129x1x18 Heights 9x1x8x18 1314
18 8x1 convolutions with stride [1 100] and padding ‘same’ Bias 1x1x18

=@ batchnorm_13 Batch Normalization |129x1x18 Offset 1x1x13 36
Batch normalization Scale 1x1x18

0 relu_13 RelU 129x1x18 = e
RelU

“ conv_14 Convolution 129x1x30 Weights Sx1x18x3@ 273e
30 5x1 convolutions with stride [1 100] and padding ‘same’ Bias 1x1x38

2 batchnorm_14 Batch Normalization |129x1x3@ Offset 1x1x3@ 60
Batch normalization Scale 1x1x30

2 relu_14 ReLU 129x1x30 - o
RelU

“ conv_15 Convolution 129x1x8 Weights 9x1x3@x8 2168
8 9x1 convolutions with stride {1 100] and padding 'same’ Bias 1x1x8

4% batchnorm_15 Batch Normalization |129x1x8 Offset 1x1x8 16
Batch normalization Scale 1x1x8

4 relu_15 RelU 129x1x8 =]
RelU

“ conv_16 Convolution 129x1x1 Weights 129x1x8 1033
1129%1 convolutions with stride [1 100] and padding 'same’ Bias 1x1

4 |regressionoutput Regression Output - - °
mean-squared-error

Figure 3.11: Analysis report of denoising network

30

chain of frames which is a denoised segment of a signal. To get the denoised signal itself, all of the
segments are simply summed together.

3.2.2 LPC Cepstrum Distance

Linear Predictive Coding Cepstrum Distance methods are used as an objective measurement of
denoising quality. This is done by comparing denoised and noise-free (clean) signals and returning
a score between 0 and 10, where 0 is a perfect match and 10 is no match at all. The algorithm first
calculated LPC coefficients for both clean and denoised signals, then converted these coefficients to
Cepstrum coefficients. The score is calculated based on the distance between clean and denoised
Cepstrum coefficients [66].

More about Linear Predictive Coding can be found at [67]. Cepstrum and its applications [68]. And
LPC Cepstrum Distance as an objective measure |69].

31

Chapter 4

Results

This chapter is divided into two parts, classification of noise patterns and denoising. Several tests
are performed to determine the quality of chosen methods.

4.1 Noise Classification

Signals that are used in noise classification testing are of different SNRs. Chosen SNR are 10, 0 and
-5 dB. More weight is put on 10dB signal classification tests. This is due to the network struggling
to correctly classify noise patterns at that SNR. Two methods are then tested to decrease classifi-
cation failure. Increase the number of segments and increase/decrease the size of the frames.

The default size of the frames is chosen to be 1024. This size is used at every SNR testing. Frame
sizes 512, 1024, and 2048 are used at 10dB SNR testing. Every test are done for both 50 and 100
segments per frame.

Table 4.1: Classification test accuracy values for different SNR, samples per frame and amount of
segments.

SNR (dB) | Segments per frame | Frame Size | Test Accuracy (%)
10 50 512 69.42
10 100 512 71.58
10 50 1024 75.42
10 100 1024 77.68
10 50 2048 75.31
10 100 2048 77.98
0 50 1024 85.71
0 100 1024 88.84
-5 50 1024 100.00
-5 100 1024 100.00

Below the reader will find 10 figures of classification network training and its results. The order of
figures is the same as in table (4.1).

32

[—Training Accuracy
| —Validation Accurac

80—

gl L ||I‘i|‘"q'_|j ey |\|,MI\JJ|‘| I|\vJ“\M\I!UINIII‘ MH

IS o)
S S S
T T T

Training Accuracy

@
S
1

20 -
10 -1
0 Il Il Il Il Il Il
0 500 1000 1500 2000 2500 3000 3500
Iterations
(a)
3.5
I I I I I T Fraining Loss
[—Validation Loss|
3 -
2.5 -1

Training Loss
N
1

1.5 -1
il MRATE S A Y "
1~ (LAl N i (L] A AR "r‘\"I'T'H]"l"rN"han"I ‘[”l"‘ TIP"““’,'n‘ml""ﬂ"ﬁ"'“"]' -
05 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500
Iterations

airplane 1 LN 1.0%
airport 34 19 8 1 6 15 13 35.4% | 64.6%
babble 9 45 8 2 11 1 13 5 2 53.1%
car 4 4 6 1 8 6
drone 96
exhibition 4 12 2 3 14 7
helicopter 96
ﬁ restaurant 12 27 8 2 19 1 15 10 2
g’ sea waves m
= station 13 | 12 | 6 1 5 48 | 10 1 .0% | 50.0%
street 2 14 9 6 6 17 41 57.3%
toilet flush 1 19 20.8%
train 5 5 12 2
washing machine

VK07 45.9% | 34.6% | 53.7% [N 100.0% iKY 81.4% EIRZRENNEZS 100.0% 82.8% 100.0%
54.1% | 65.4% | 46.3% | 1.0% |35.7% 62.0% | 18.6% | 59.7% | 59.4% 17.2%
X

e 0@ B o e RS RRAON R N\
RN LSO NN NS I AN\ LA (N C AR\ N\
,a_\&Q e o & e*\(\\ K\Q’\\o ‘ee\'b %e,b@ 5 B \0.\\9,\ R

«’g"i\(\g
Predicted Class

()

Figure 4.1: Training (a), Loss (b), and Confusion Matrix (c) results at 10dB SNR, 50 segments per
frame, and 512 samples per frame.

33

Training Accuracy
Validation Accurac!

i

il Ll [.l‘lumw“‘\)w-ﬂrul,l\. ‘.J,MI.‘IHIllh“]\\,l.ﬂumllld

Training Accuracy
a @
3 3
T T

N
S
1

Il Il Il Il Il Il
0 500 1000 1500 2000 2500 3000 3500
Iterations

(a)

3
I I I I I T FTraining Loss

|—Validation Loss|

25} -

o 2 -
I3
o
-
o
c
=
]

sk E

|
1~ ! -
| i AL s
U bl il ARt bt i
05 | | | | | |
0 500 1000 1500 2000 2500 3000 3500
Iterations

airplanem 2 YV 2.1%
airport 1 34 8 9 2 17 1 15 7 2 35.4% | 64.6%
babble 15 4 1 3 7 11 6 2 42.7% | 57.3%
car 2 2 4 1 4 5
drone 1
exhibition 2 12 3 9 7
helicopter 1
ﬁ restaurant| 1 18 16 7 4 31 1 3 9 6
g’ seawaves| 2 1 1 4
E station 10 4 12 4 10 37 17 61.5%
street 9 6 5 14 6 1 4 47 51.0%
toilet flush 3 1 82 SRS/ 14.6%
train 2 1 5 2 2 84
washing machine 96
SRS 38.2% | 50.6% 100.0% RENEZY 84.6% [ONGZNEEREZN 94.3% 76.4% 99.0%
4.1% [61.8% | 49.4% | 43.2% | 3.1% |36.4% 60.8% | 15.4% | 50.0% |53.9% | 5.7% |23.6% | 1.0%

RGN SR, & RN S S @@ =~ oSt o 20 «©

,3\@\2‘ X @ & e*‘@\\ K\%\.\OQQ 85\,&& e’b‘x@ &8 & 0\\6\&\ x¢ «\ag\(\

< o XS)

\

o
Predicted Class

()

Figure 4.2: Training (a), Loss (b), and Confusion Matrix (c) results at 10dB SNR, 100 segments
per frame, and 512 samples per frame.

34

T T T T T T T —Training Accuracy

[— Validation Accurac

90—

M
i \1‘|...m.m.uuw.,Mu,u.wWWWWW A

“ “lk”‘l “IH

60—

Training Accuracy
a
3
T
1

20 -

Il Il Il Il Il Il Il Il
0
0 200 400 600 800 1000 1200 1400 1600 1800
Iterations

(a)

3
I I I I I I I Training Loss
Validation Loss|

25

Training Loss

0.5

0 200 400 600 800 1000 1200 1400 1600 1800
Iterations

airplane S
airport 4 3 2
babble 9 24
car 1 1 4
drone 48
exhibition 2 2 2 37
helicopter
§ restaurant 12 4 2 1 60.4%
? sea waves 1
= station 8 2 7 1
street 2 1 3 8
toilet flush ¥ 20.8%
train 3
washing machine

43.3% 100.0% 98.0% 79.3% 47.2%

38.9% | 2.0%

] o\ \& 8 @ o0 S o c® "o e a0 N e
IR C N S R SR S LR C AT R A G T s
P 2 o N NS S0 W 3 & @

R e & @ O \6\(\%6\
R

Predicted Class

(©)

Figure 4.3: Training (a), Loss (b), and Confusion Matrix (c) results at 10dB SNR, 50 segments per
frame, and 1024 samples per frame.

35

90—

80—

a ~
S =)
T T

Training Accuracy
a
3
T

I— Training Accuracy
\—Validation Accurac!
KT T u

a0+ }, .
304 =
20ff =
10 —
0 1 1 1 1 1 1 1
[200 400 600 800 1000 1200 1400 1600 1800
Iterations
(a)
35
I I I I I I ETralnlng Loss
Validation Loss|
3 4
25 =
3
3 2 7
-
o
£
£
©
S5 =
1 4
0.5 4
0 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800
Iterations
airplane m
airport 19 4 6 6 9 4 60.4%
babble 5 2 47.9%
car 2 18.8%
drone 1 21%
exhibition 2 2 12.5%
helicopter
2]
& restaurant 5 3 45.8%
(i sea waves
= station 5 7 45.8%
street 4 20 1 58.3%
toilet flush 6 42 12.5%
train 4 44 8.3%
washing machine 48
100.0% 76.4% 100.0% 87.3% LEZRNAELRSN 97.7% 89.8% 100.0%
47.2% | 32.4% | 33.9% 23.6% 42.2% | 12.7% | 55.9% | 538.5% | 2.3% |10.2%
] o\ \& 8 @ o0 S o @ "o e a0 N N
O 5% @ PO O o B @ @ €T T @
,a_\&Q e o e*‘\\ K\G\\G ‘er:\'b %e,b@ S \0.\\9,\ o

«’6‘5@\%
Predicted Class

(©)

Figure 4.4: Training (a), Loss (b), and Confusion Matrix (c) results at 10dB SNR, 100 segments
per frame, and 1024 samples per frame.

36

90—
80—

70+

60— ‘v
g,
)

40

Training Accuracy

30—

mn
My v g Accuracy
alidation Accurac

300

400

500 600 700 800 900
Iterations

25

Training Loss
n
T

0.5

Training Loss
Validation Loss|

0 100 200

300

400

500 600 700 800 900
Iterations

(b)

airplane
airport 10 2 1 5 4 2
babble 4 8 1 2 7 1
car 2 1
drone
exhibition 1 2 1 2 1
helicopter
§ restaurant 7 4 8 3 2
? sea waves m-l
= station 1 1 3 1 3
street 1 1 5 4 9
toilet flush
train
washing machine
057 43.5% | 42.1% 100.0% 100.0% EXS73100.0% EZREZREIN7N 100.0% 95.8% 100.0%
56.5% | 57.9% | 38.7% 26.1% 55.6% 55.9% | 55.0% 4.2%

e o0 0e &
,3\@\% X @®

Figure 4.5: Training (a), Loss (b), and Confusion Matrix (c) results at 10dB SNR, 50 segments per

frame, and 2048 samples per frame.

e o ot & c® N ot o0 N e
O O @ N RO @ QY @ e
& e*‘\w K\e\“‘& ‘e‘?’@\) e’fs’b 5@ & \6\\9’\’\ X e
B

«’6‘5@@
Predicted Class

(©)

37

e T
LALILARE A MU (A | A —Training Accuracy
|—Validation Accurac

90

80

70

60

50

40

Training Accuracy

30

20

Il Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800 900
Iterations

4
I I I I I I I Training Loss
Validation Loss|

35 -1

Training Loss
N
T
1

o
T
1

0.5 -

1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900
Iterations

(b)
airplane
airport 10 4 1 4 4 1
babble
car 1

w
w

drone
exhibition 1
helicopter
restaurant 6 2 9 2 5
sea waves 3
station 6 2 4 2 8 2
street 2 2 1 2 1 3
toilet flush 1
train 1

True Class

washing machine

78.6% 100.0% 88.5% 100. . 88.5% 100.0% 100.0%

44.0% | 21.4% 11.5% 55.0% | 4.5% |55.6% | 48.0% | 11.5%

] o\ \& 8 @ o0 S N @ "o e a0 N N
AN C N S P AR S L C AT A A G S g
P 2 o N NS S0 W 5 R @

R e & @ O \6\‘\%6\
R

Predicted Class

(©)

Figure 4.6: Training (a), Loss (b), and Confusion Matrix (c) results at 10dB SNR, 100 segments
per frame, and 2048 samples per frame.

38

[—Training Accuracy

Training Accuracy

Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800
Iterations

(a)

3
I I I I I I I Training Loss
Validation Loss|

Training Loss

0.5

0 200 400 600 800 1000 1200 1400 1600 1800
Iterations

airplane
airport
babble
car

drone

exhibition

helicopter

33.3%

restaurant

sea waves

station

True Class

street

toilet flush

train

washing machine

82.5% 81.5% 100.0% 91.1% 100.0%

8.9%

] o\ \& 8 @ o0 S N c® "o e a0 N e
IR C N O AR S LR C AT A G R g
P 2 o N NS a0 W 5 & @
R e & @ O \6\(\%6\
R

Predicted Class

(©)

Figure 4.7: Training (a), Loss (b), and Confusion Matrix (c) results at 0dB SNR, 50 segments per
frame, and 1024 samples per frame.

39

T T T T T T T
[—Training Accuracy
|— Validation Accurac
b) :
‘N ‘nlmu ‘
80— w “I'UWH‘ | B
|
il
70+ -1
. I
o
s
3 60 -
o
<
2
£ soF 4
S
=
40 -
30 -
20§ -1
Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800
Iterations
(a)
3
I I I I I I I Training Loss
Validation Loss|
2.5 -1

Training Loss
»
1

0.5 -

0 200 400 600 800 1000 1200 1400 1600 1800
Iterations

airplane
airport
babble
car

drone

exhibition

helicopter

restaurant

sea waves

station

True Class

street

toilet flush

train

washing machine

84.6% 90.0% 100.0% 87.8% 100.0% 100.0% 77.8% 100
30.8% | 15.4% | 10.0% 12.2% 29.4% 27.1% | 22.2% 8.0%
] o\ \& 8 @ o0 S N c® "o e a0 N e

RN S PO O o8 B @ @ @ T @
o W X S S G

X AN 8 O¢ R\

o
R

Predicted Class

(©)

Figure 4.8: Training (a), Loss (b), and Confusion Matrix (c) results at 0dB SNR, 100 segments per
frame, and 1024 samples per frame.

40

100 e RS T T T T

g Accuracy
alidation Accurac:

90— -1

~

=)
T
1

a
S
1

Training Accuracy
a a
3 3
1 1

20 -
10 —
0 Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800
Iterations
(a)
3
I I I I I I I Training Loss
[—Validation Loss|
2.5 -1

Training Loss
»
1

0.5 -
0 1 1 1 e - 1 T T T
0 200 400 600 800 1000 1200 1400 1600 1800
Iterations

(b)

airplane
airport
babble
car

drone

exhibition

helicopter

restaurant

sea waves

station

True Class

street
toilet flush
train

washing machine

6 100.0% 100.0% 100.0%

o

e Y e
oo & o
B

@ ot S RS S S P R
é\‘Q\b PR Q N 2 @ SR X ‘(\90‘\

wcO' O A
@ 5 o o <O
o

Predicted Class

(©)

Figure 4.9: Training (a), Loss (b), and Confusion Matrix (c) results at -5dB SNR, 50 segments per
frame, and 1024 samples per frame.

41

100 ,W[,-“-W- (. T T T T

90— -1

o @ ~
S S =)

T I
1 1 1

Training Accuracy

N

S
T
1

201 -1

Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800
Iterations

3.5
I I I I I I I Training Loss
[—Validation Loss|

3l -

Training Loss
o
1

0.5 -

0 200 400 600 800 1000 1200 1400 1600 1800
Iterations

(b)

airplane
airport
babble
car

drone

exhibition

helicopter

restaurant

sea waves

station

True Class

street

toilet flush

train

washing machine

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

] o\ \& 8 @ o0 S N @ "o e a0 N N
RN C N O R RS LR C AT A G T g
P 2 o N NS S0 W 5 & @

R e & @ O \6\‘\%\‘\
R

Predicted Class

(©)

Figure 4.10: Training (a), Loss (b), and Confusion Matrix (c) results at -5dB SNR, 100 segments
per frame and 1024 samples per frame.

42

4.2 Denoising

For denoising 3 classes of noise have been chosen, one for each type. For stationary noise type, it is
airplane noise. For non-stationary it is drone noise. And for babble type, it is babble noise. Chosen
SNR are 0, -5 and -10 dB. More weight is put on -10 dB signals. This is due to the denoising
network starting to struggle. One method is tested to improve the quality of denoising. Increase
number of segments.

LPC Cepstrum Distance is used as a metric for denoising quality. Due to the probabilistic nature
of denoising network testing may vary up to 20% between cach consecutive test. Therefore each
test is performed 10 times and results are averaged.

The test is performed on no segmentation, 5 segments, 10 and 15 segments signals. Where 10 and
15 segments are only done for -10 dB SNR. Results are compared to find if signal decomposition
improves the quality of denoising.

Even though increasing segments depict a decrease in metric quality, subjectively (by listening)

signals denoised with 15 segments sound better than those with 5 segments. Babble noise is very
difficult for CNN to denoise, processed signals at -10 dB are not comprehensible.

43

4.2.1 Airplane noise

Table 4.2: Denoising of Airplane class noise. Comparison between no EWT decomposition and 5
segments decomposition, based on averaged LPC CD coefficients. SNR 0 dB (a), SNR -5 dB (b),
SNR -10 dB (c)

Tr. | Single Track | 5 Segments L’;‘f;‘;;sf?g) ﬁ;’gr_a(gt;g
1 6.69196 5.15678 22.94066
2z 556338 157319 17.79835
3 6.4123 195135 22.78356
I 6.01614 1.92341 18.16331
5 5.64775 1.5240 10.558668
6 5.84099 1.76392 18.43985
7 5.80184 1.58657 20.94629
B 5.6585 176491 16.23609
9 5.87386 5.0368 14.2506
10 6.01348 4.92392 18.11863
11 6.01428 1.02242 18.15446
12 5.36326 147164 16.62459
13 G.17317 1.87162 21.08398
14 6.23178 5.0707 18.63159
15 5.70623 158737 19.60769 18.52538
16 5.3404 T.41421 17.34308 95998
17 535472 1.44089 17.06588
18 530133 159871 13.25366
19 6.24579 5.17228 1718774
20 5.52188 1.74649 14.04214
21 5.06199 1.69401 21.26773
22 6.25723 1.00173 20.2246
23 6.16356 1.80583 20.56815
24 751801 6.20148 17.52156
25 6.69714 5.50145 17.85374
26 5.47039 1.47716 18.15648
27 5.70501 1.51376 20.89325
28 5.25016 1.25036 19.04323
29 564766 1.66833 1734046
30 554524 T41771 20.33320
(b)
- Tmprovement Averaged
Tr. Single Track 5 Segments por track (%) imp. (%)
1 6.91916 5.48417 20.73937
2 5.80327 1.88034 15.90362
3 6.76724 5.46728 19.2096
£ 6.14542 5.11015 16.69975
5 5.85814 2.86096 17.02213
6 6.16258 5.14832 16.45837
7 5.95252 1.0278 17.21489
B 5.8751 1.9307 16.07462
9 6.16322 5.17768 15.90067
10 6.12634 5.21006 1404171
11 6.18126 5.00738 17.53494
12 5.58113 1.50333 17.69892
13 6.30895 5.00015 10.17593
T4 6.51399 5.38933 17.2653
5 6.03323 189618 18.84646 -
16 5.52295 1.43241 19.74561 17.25592
17 562732 1.69366 16.50156
18 5.4516 1.82936 11.4139
19 6.40929 5.30567 17.21907
20 5.811901 5.00978 13.80149
21 6.12239 1.67442 23.6504
22 6.34902 5.34614 15.79582
23 6.30762 519131 17.6978
24 772838 6.46773 16.31196
25 G.78611 5.53934 18.37238
26 5.71563 1.80592 15.01618
27 5.02039 1.82824 18.57105
28 5.43814 145413 18.00461
29 5.82381 189861 1588651
30 577153 1.7423 17.83288
(c)

Tr. [Single Track | 5 Segments | boPiovemert [fverages
1 6.61695 5.84265 11.70177
2 5.69786 521811 8.410828
3 6.71831 6.00096 0.3379014
1 59179 5.39936 §.76223
5 5.7239 5.31801 7.075421
G 6.00657 555744 7477312
7 5.03706 5.31850 10.41761
3 5.59583 5.18 7.431060
9 6.00594 554487 9.039951
10 5.07124 5.64767 5.418807
11 5.005901 5.3100 9.027513
12 5.41413 1.00797 0.34887
13 5.90355 5.32526 9.795631
14 6.43419 57812 10.14875
15 6.01008 5.3665 10.85519
16 5.27828 1.63815 12.12762 8.082815
17 5.60767 5.0808 9.305524
18 5.45661 5.10087 6.510432
19 6.1926 5.58448 9.520108
20 5.77266 5.35489 7237045

T 5.65106 1.83407 14.457290

2 6.23896 5.73398 8.093977
23 6.00877 5.56275 §.788985
21 7.37549 6.60881 10.30497
25 6.41884 5.71550 10.95603
26 5.57322 5.15407 7 520787
27 567895 5.25497 7465817
28 5.20083 177491 §.180462
29 5.61021 5.28412 5.812438
30 5.553 5.13301 7547002

44

Table 4.3: Denoising of Airplane class noise SNR -10 dB. Comparison between no EWT decomposi-
tion and 5, 10 and 15 segments decomposition, based on averaged LPC CD coeflicients. 5 segments
(a), 10 segments (b), 15 segments (c)

Tr. | Single Track | 5 Segments ;Z’fz‘r’;’jl‘(“?% ﬁ;’ :fa(g(;l‘;
1 6.61695 5.84265 11.70177
2 5.69786 521811 §.410828
3 6.71831 6.00096 0.337014
E3 50179 5.39936 8.76223
5 5.7239 5.31891 7075421
G 6.00657 5.56744 7477312
7 5.03706 5.31850 10.41761
3 5.50583 5.18 7.431060
9 6.00594 554487
10 5.07124 5.64767 5.418807
11 5.005901 5.3190 9.027513
12 5.41413 1.00797 9.34887
13 5.00355 5.32526 9.795631
14 6.43419 57812 10.14875
15 6.01998 5.3665 10.85519
16 5.27828 1.63815 12.12762 8.082815
17 5.60767 5.0808 0.305524
18 5.45661 5.10087 6510432
19 6.1926 5.58448 0.820108
0 5.77266 5.35480 7.237045
T 5.65100 4.83407 14.45729
22 6.23896 573398 §8.093977
23 6.00877 5.56275 8.788985
24 7.37549 6.60881 10.39497
25 6.41884 5.71550 10.95603
26 5.57322 5.15407 7 520787
27 5.67895 5.25407 7465817
28 5.20083 477491 §.180462
29 5.61021 5.28412 5.812438
30 5.553 5.13301 7547002
(b)
Tr. | Single Track | 10 Segments g:f;f;’:;‘?;:) iArZ ;‘_af;:;
1 6.61695 6.21986 5.547722
2 5.69786 5.45035 1.343912
3 671831 6.30954 1744794
1 5.9179 5.64579 1.508084
5 5.7239 5.49255 1.041825
G 6.00657 5.62258 6.302833
7 5.93706 5.30888 9.064756
8 5.59583 5.20996 6.895671
9 6.09594 5.49555 9.849014
10 5.07124 575377 3.641957
11 5.90591 5.72058 3.138043
12 541413 51811 1.304108
13 5.90355 5.66805 3.089125
17 6.43419 6.11268 1.996899
15 6.01098 5.70308 5.264137
16 5.27828 202723 6.650841 4.657982
17 5.60767 5.34408 1.700526
is 5.45661 5.345857 1.970984
19 6.1026 5.88794 1.010743
20 5.77260 5.62540 2.407982
21 565106 5.20536 6.294394
22 6.23896 5.99149 3.966526
23 6.09877 5.8204 1.564363
24 7.37549 7.06991 1.143182
25 6.41884 6.00361 6.468926
26 5.57322 5.33077 1.350268
27 5.67895 5.56231 2.053901
28 5.20083 5.0569 2.767443
29 5.61021 5.52061 1.436666
30 5553 5.43462 3.131821
(c)
Tr. Single Track | 15 Segments ;Tff::;"‘z;:) ﬁ;’ ;”Eﬁ;:;
1 6.61695 6.3287 4.356237
2 5.60786 536811 5.78726
3 671831 6.48932 3.408446
g 5.0179 5.71864 3.367073
5 5.7239 5.40226 4.046891
6 6.00657 5.50026 6.030911
7 5.93706 5.47555 7. 773376
8 5.50583 5.2692 5.837025
9 6.00594 5.35323 12.18368
10 507124 5.82524 2.445053
11 590501 577916 2.146155
12 5.41413 5.185 1.232074
13 5.00355 5.75558 2.506458
12 6.43419 6.07947 5.513048
15 6.01998 5.68316 5.595035
16 5.27828 175467 9.020088 4.296816
17 5.60767 5.2118 7.059438
18 5.45661 5.33885 2.158116
19 6.1026 5.88103 5.031328
20 577266 5.58285 3.288086
21 5.65100 5.27925 6.579474
22 6.23896 6.0184 3.535205
23 6.00877 5.9031 3.208352
24 7. 37549 7.28059 1.286694
25 6.41884 6.04818 5.774564
26 5.57322 5.46795 1.888854
27 5.67895 5.69676 ~0.313061
28 5.20083 5.10163 1.007388
29 5.61021 5.57268 0.668959
30 5.553 5.50953 0.78282

45

4.2.2 Drone Noise

Table 4.4: Denoising of Drone class noise. Comparison between no EWT decomposition and 5
segments decomposition, based on averaged LPC CD coefficients. SNR 0 dB (a), SNR -5 dB (b),
SNR -10 dB (¢)

(a)

Tr. | Single Track | 5 Segments E?fif:ﬁf??% ﬁzr.a(g;::;
T 6.79373 6.3806 6.081048
z 5.76135 5.47673 1.040162
3 6.36001 5.04734 6.633846
4 6.46731 6.00248 7.187378
5 5.7417 5.25753 8.43252
6 5.0906 5.70653 1.741929
7 5.02899 5.40899 8.770465
8 5.80087 567541 3.657524
0 6.3257 6.20151 1.063261
10 6.16034 5.86476 1.798112
11 6.24575 575769 7814274
12 5.68101 5.22601 7.003297
3 6.31568 5.82536 7763535
1 6.58063 5.08415 9.064178
15 5.06372 5.52315 7387503
16 5.44671 5.03859 7.992964 6614969
17 5.44064 5.02677 7.607009
18 5.50126 5.14946 6.394899
19 6.31303 5.73432 9.166914
20 5.73013 5.3277 7.023052
21 6.04855 5.62935 6.030587
22 6.51848 6.23798 1.30315
23 6.24304 5.8293 6.62722
21 7.57333 733508 3.134024
25 7.00823 6.66658 1.874983
26 5.68563 5.32882 6.275646
27 5.77229 5.29826 8.212165
28 5.44593 5.18274 1.832783
9 5.01332 5.521 6.620984
0 5.69711 5.0292 11.72366
(b)
Tr. | Single Track | 5 Segments :‘rp‘t‘r’zsl’:’f{,}:) &\;:rla(g;{)c;
T 6.80801 6.41535 5.767618
2 6.0692 5.74274 5.378963
3 6.69315 6.14187 8.236481
4 6.82308 6.22995 8.692995
5 5.05593 5.45326 8.130824
G 6.2703 585490 6.624882
7 6.1821 5.60271 9.372058
g 6.1386 5.86153 1.51357
g 6.75853 6.4894 3.082079
10 6.37008 6.12703 3.820081
11 6.32812 5.80933 6.775946
12 5.03241 547347 7736148
13 G.27414 57916 7690935
11 G.8002 6.22072 8.380165
15 6.2157 5.67547 8691378
16 5.44428 5.06805 6.910556 6.613458
17 5.64188 5.31429 5.806398
18 5.69266 5.39263 5.270471
19 6.46246 5.86204 9.290889
20 6.05203 5.6316 6.046925
21 5.07263 565141 5.3782
22 6.59031 6.32634 1.136342
23 6.31704 5.06325 5.600566
21 756571 741143 2.030201
25 6.00745 6.72454 2.64801
26 6.10543 5.50053 9.61838
27 5.06614 5.42736 9.03063
28 5.61158 5.36871 1.328015
29 6.10809 5.68955 6.852224
30 5.9413T 5.32188 10.42582
(c)
Tr. | Single Track | 5 Segments L:‘fii:i;“?g;) ﬁ;’zrla(g;e‘;
T 7.12044 6.45516 9.457685
2 6.54657 5.04429 9.199932
3 715616 6.26812 12.40945
1 7.13066 G.32542 11.20264
5 6.32223 5.54326 12.32113
5 §.50001 5.06203 40342
7 6.55688 579231 11.66058
8 6.74314 6.24145 7.440006
g 7.06023 6.77053 1.225354
10 6.76403 6.34041 6.262834
11 6.71289 5.03832 11.53855
12 6.38080 5.81613 8.070184
13 6.55110 5.63607 13.06876
2 717213 6.44444 10.14608
15 6.608 5.91484 10.48971 -
16 | 5.85642 5.42478 7.370373 9.984589
17 G.21754 579328 6.823599
8 6.25065 5.80708 7081083
19 6.70141 5.00011 12.00141
20 6.57847 5.87006 10.76861
21 6.43577 5.68877 11.607
22 7.01618 6.35518 9.421081
23 6.75088 6.00664 11.1428
24 7.0693 747648 6.183981
25 7.21215 6.82513 5.366222
26 6.81276 5.06408 12.45721
27 6.44801 5.53469 14.16437
28 6.09463 5.44475 10.66316
29 6.52842 5.81001 11.00435
30 6.46255 5.5128 14.69621

46

Table 4.5: Denoising of Drone class noise SNR -10 dB. Comparison between no EWT decomposition
and 5, 10, and 15 segments decomposition, based on averaged LPC CD coefficients. 5 segments (a),
10 segments (b), 15 segments (c)

r. | Single Track | 5 segments | DUPIOVORIL | Averaged
1 7.12944 6.45516 9.457685
2 654657 5.04429 9.1009032
3 7.15616 6.26812 12.40945
£ 713066 6.32542 11.20264
5 6.32223 5.54326 12.32113
G 6.50001 5.06203 8.403428
7 6.55688 5.79231 11.66058
B 6.74314 6.24145 7.440006
9 7.06923 6.77053 1.225354
10 6.76403 6.34041 6.262834
1T G.71289 5.03832 11.53855
12 6.38989 5.81613 8.070184
13 655119 5.63607 13.06876
14 717213 6.44444 10.14608
15 6.608 5.01484 10.48971 -
16 5.85642 5.42478 7.370373 9.084589
17 621754 5.70328 6.823590
18 6.25065 5.80798 7.081983
19 679141 5.00911 12.90141
0 G.57847 5.87000 10.76861
T 643577 5.68877 11.607
22 701618 6.35518 9.421081
23 6.75988 6.00664 11.1428
24 7.9693 7.47648 6.183981
25 721215 6.82513 5.366222
26 6.81276 5.06408 12.45721
27 6.44801 5.53469 14.16437
28 6.00463 5.44475 10.66316
29 6.52842 5.81001 11.00435
30 6.46255 55128 14.69621
(b)
Tr. | Single Track | 10 Segments g:f;f;’:;‘?;:) iArZ ;‘_af;:;
1 7.12944 6.6321 6.075863
2 6.54657 5.9969 8.396305
3 715616 6.30044 11.05781
1 7.13066 6.12410 14.11468
5 6.32223 553418 12.46475
G 6.50001 5.03547 8.811478
7 6.55688 5.80530 11.46109
8 6.74314 6.08555 9.751985
9 7.06923 G.58343 G.872036
10 6.76403 6.45733 1.534279
11 6.71289 6.16369 8.181275
12 6.38089 5.9203 7208105
13 655119 574429 12.31685
17 717213 6.54783 8.704527
15 6.608 6.00081 0.188711
16 5.85642 5.54760 5.271651 8.784869
17 6.21754 6.01224 3.301949
is 6.25065 5.85904 G.265108
19 679141 6.00447 11.58728
20 6.57847 6.14999 6.513369
21 6.43577 578132 10.16895
22 7.01618 6.55545 6.566679
23 6.75088 G.17117 8.708882
27 7.9693 7.66984 3.75767
25 721215 6.95524 3.562183
26 6.81276 6.01228 11.74972
27 6.44801 5.55042 13.78084
28 6.00463 5.49304 0.870821
29 652842 5.938490 9.036337
30 646255 5.657 12.46489
(c)
Tr. | Single Track | 15 Segments ;Tff::;"‘z;:) ﬁ;’ ;”Eﬁ;:;
1 7.12944 6.68951 6.170611
2 654657 617711 5.643566
3 7.15616 G.57584 8.073604
g3 7.13066 6.31104 11.49431
5 6.32223 567158 10.20146
6 6.50901 5.94409 8.679046
7 6.55688 5.90061 10.00888
g 674314 6.13154 9.069959
9 7.06923 6.64821 5.95567
10 6.76403 6.60665 2.326719
11 6.71289 6.32404 5.792587
12 6.38989 5.99115 6.24017
13 655119 5.85325 10.65364
12 717213 6.6762 6.014682
15 6.608 6.21627 5928117
16 5.85642 5.6888 2.862158 6.926994
17 621754 6.10612 0.344500
18 6.25005 6.01222 3.814483
19 670141 6.07418 10.56084
20 6.57847 6.24634 5.048742
21 6.43577 5.81827 9.594811
22 7.01618 6.64125 5.343791
3 6.75908 G.33340 G.3081
7 7.9693 766565 810247
25 721215 6.96563 3.418121
26 6.81276 G.2766 7.869938
27 6.44801 5.76384 10.61056
28 6.00463 5.65925 7.143666
29 6.52842 507577 8.465295
30 6.46255 5.85601 0.371533

47

4.2.3 Babble Noise

Table 4.6: Denoising of Babble class noise. Comparison between no EWT decomposition and 5
segments decomposition, based on averaged LPC CD coefficients. SNR 0 dB (a), SNR -5 dB (b),
SNR -10 dB (¢)

(a)

Tr. | Single Track | 5 Segments E?fif:ﬁf??% ﬁzr.a(g;::;
1 6.47797 5.83786 6.081048
z 5.81928 5.30032 1.040162
3 6.05446 6.50204 6.633840
1 6.28004 5.05653 7187378
5 5.59636 5.16818 8.43252
G 5.0134 5.51506 1.741920
7 6.00483 551142 8.770465
B 5.68724 5.14775 3.657524
9 6.49064 577762 1.063261
10 6.18694 5.54205 1.798112
11 5.53535 5.34895 7814274
12 5.32845 5.19925 7093207
13 5.41637 5.21062 7763535
14 5.07652 5.5%056 9.064178
i5 5.64187 5.36703 7387503
16 1.95698 5.04072 7.492964 6.614969
7 5.37805 2.93105 7607000
8 5.3923 5.0729 6.394899
19 5.02638 5.04159 9.166914
20 5.638 5.5607 7.023052
21 5.22278 1.84345 G.030587
22 6.21702 5.70809 1.30315
23 6.07987 5.68412 6.62722
23 717554 G.70651 3.134024
25 6.31402 5.58476 1.874983
26 5.5935 5.25154 6.275646
27 5.41028 5.30484 8.212165
o8 5.06108 102387 1.832783
9 5.46788 5.20432 6.620984
0 5.2997 5.06742 11.72366
(b)
Tr Single Track | 5 Segments :‘rp‘t‘r’zsl’:’f{,}:) &\;:rla(g;{)c;
1 7.42084 6.43815 13.2423
z G.71413 5.65763 15.73547
3 778029 6.63226 14.75562
1 G.04412 5.80101 15.15253
5 6.55756 5.53487 15.505590
G 6.88955 5.78616 16.01641
7 6.81802 5.86809 13.01944
B 6.55529 5.48377 16.34588
9 7.00259 5.87746 16.06734
10 6.81431 5.68863 16.88563
11 6.82453 5.70055 16.33783
12 6.45352 538167 16.60877
13 G.875 5.60435 18.48218
14 734871 G.16599 16.00425
5 G.OL1747 5.7605 16.72533 -
16 6.23768 5.204 16.57155 15.77578
17 6.73715 5.52002 17.919
8 G.29327 5.49019 12.76003
19 6.80258 5.77446 15.11368
20 G.61501 5.0015 10.79836
2T 6.71476 5.40203 19.54992
EP) 7.24857 6.07348 16.21134
23 6.01549 5.7153 17.3551
24 B.13183 710651 12.60872
25 718975 6.03877 16.00862
26 6.62545 553157 16.51027
o7 G.72061 5.62762 16.26326
28 6.18542 5.19425 16.0243
20 G.61085 5.58510 15.63011
30 6.66017 5. 59557 15.08458
(c)
Tr Single Track | 5 Segments L:‘fii:i;“?g;) ﬁ;’zrla(g;e‘;
T 7.64723 6.81138 10.9301
Z 7.00325 5.09649 14.37661
3 7.81848 6.85203 12.34959
1 7.08136 G.22421 12.10431
5 6.9696 5.87037 15.64265
6 6.94868 5.95919 1423997
7 6.03126 6.08383 12.2262
B G.7805 5.81288 14.27063
9 7.20635 6.27994 12.85547
10 7.04496 6.07406 13.78148
11 6.05142 5.89063 15.26005
12 6.69981 5.59644 16.46868
13 6.08466 5.72424 18.04555
14 74199 6.42473 13.41218
15 712861 6.19506 13.00582
16 6.46533 5.33067 17.54992 14.47673
17 716757 5.84301 18.4799
8 6.44414 5.50694 13.14683
19 6.04651 5.89138 15.18935
20 6.04208 6.11278 11.9574
o1 6.76644 5.55343 17.92686
22 TABTTT 6.50444 12.78304
23 711018 6.06454 14.70624
24 8.20965 747607 8035582
25 731884 6.32126 13.6303
26 6.02201 5.0374 14.23586
27 7.03724 5.85481 16.80247
28 6.51737 5.42015 16.83532
29 6.81662 5.64149 17.23910
30 G.00267 5.8103 15.82533

48

Table 4.7: Denoising of Babble class noise SNR -10 dB. Comparison between no EWT decomposition
and 5, 10, and 15 segments decomposition, based on averaged LPC CD coefficients. 5 segments (a),
10 segments (b), 15 segments (c)

Tr. | Single Track | 5 Segments Lffif;ﬁ??% i;’:“'a(g(;l‘;
1 6.47797 5.83786 6.081048
2 5.84028 5.30032 1.040162
3 6.05440 6.50204 6.633846
T 628094 5.05653 7187378
5 5.50636 5.16818 §.43252
G 5.0134 5.51506 T.741929
7 G.00483 551142 8770465
3 5.68724 514775 3.657524
5 649064 577762 T.063261
10 G.18694 5.54205 Z798112
11 5.53535 5.31895 7814274
2 532845 5.19925 7003207
13 541637 5.21062 7763535
2 5.07652 5.52056 0.064178
15 5.64187 5.36703 7387503
16 1.05698 5.04072 7.402064 6.614969
7 5.37805 2.03105 7.607000
18 5.3023 5.0729 6304800
10 5.02638 5.04150 9.166014
0 5.638 5.5697 7.023052
T 5.22278 1.84345 G.030587
33 631792 570809 730315
33 6.07987 5.68412 6.62722
54 717554 670651 3.134024
25 631402 558476 1.871983
26 5.5035 525154 6275646
o7 5.41028 530484 5212165
38 5.06198 1.02387 1.832783
29 5.46788 5.20432 6.620084
30 5.2007 5.06742 11.72366
(b)
Tr. | Single Track | 10 Segments g:f;f;’:;‘?;:) iArZ ;‘_af;:;
T 7.64723 6.89355 9.855505
2 7.00325 6.02255 12.0035
3 781848 6.02817 1138725
I 7.08136 6.31065 10.75655
5 6.0690 6.03414 13.422
G G.04868 G.101584 12.187006
7 6.03126 6.09024 T2.00388
s 6.7805 5.89023 13.12986
9 7.20635 6.32604 12.21575
10 7.04496 6.1448 12.77736
11 6.05142 617147 11.22001
T3 6.60981 565361 15.61537
3 6.08466 5.00737 15.42366
T2 74199 6.50453 12.33265
15 712861 62782 11.92953
6 6.46533 5.45264 15.66330 12.94053
7 716757 5.08168 16.54522
s 644414 5.65078 1170614
0 G.04651 G.0180 13.35361
20 G.04208 G.10660 10.74884
21 6.76644 570887 15.62064
32 75777 6.64214 10.93665
23 711018 6.22149 12.490884
23 §.20965 754825 8.056373
35 731884 651162 T1.02934
36 6.02204 5.03325 142058
o7 7.03724 G.03851 T2.18781
28 651737 5.40164 15.7384
29 G.81662 5.81535 14.68866
30 6.00267 587575 T2.87714
(c)
Tr. | Single Track | 15 Segments ;Tff::;"‘z;:) ﬁ;’ ;”Eﬁ;:;
T 764723 708909 7 20859
> 7.00325 6.22433 11.12226
3 7.81848 71109 8.034985
T 7.08136 636571 10.10611
5 6.9696 G.15061 11.62176
G 6.04368 6.2049 107039
7 6.03126 6.35204 8.343649
8 G.7805 6.02471 T1.14652
0 7.20635 5.40006 T1.1886
0 7.04496 5.34300 5563151
1T §o5142 6.33000 S 705757
T3 6.69981 5.85307 1363827
3 G.08160 6.16440 1174288
T2 74199 674037 5.036914
15 712861 6.40775 §.849602
6 6.46533 5.63131 12.89088 10.25242
7 716757 6.10501 13.56880
8 644414 570903 10.0108
0 G.04651 G.18668 T0.0383
20 6.04208 6.30036 7820779
21 G.76644 5.03542 12.2815
22 75777 G.85306 8.108450
3 71101 5.4060 8.020500
T 30965 7 80634 7512633
35 731884 670717 8357472
36 692294 6.14129 1129072
o7 7.03724 6.21848 11.20837
78 G.51737 5.08167 12.82260
39 6.81662 6.01046 T1.826390
30 6.00267 6.11618 T1.394

49

Chapter 5

Discussions

5.1 Motivation

The idea of using autonomous drones in search and rescue operations motivates the decision to
work with noise classification and denoising. A flying drone capable of picking up human speech
in low-visibility areas such as above forests, fogs, or at night. The first practical challenge would
be to eliminate drone noise from recorded signals. That is what I have been working on in prepa-
ration for my master’s thesis. For a long time, there has been a solution to this problem. Every
mobile phone has two microphones, one for picking up ambient noise and the other for picking up
contaminated speech. The algorithm for removing noise is proprietary and not disclosed to us, but
spectral subtraction is a simple solution that works well.

Wavelet Empirical The transform decomposes the signal and provides time-frequency analysis in
terms of subband signals. The idea of splitting a noisy signal into segments and then simply re-
moving the noisy ones was too difficult to swallow. For segment removal, the naive approach was
to use the iterative method. While it did work in some ways, each signal removed segment had to
be individually selected. Machine learning evolved into a general solution that could handle any
signal. Denoising research naturally led to the classification of noise patterns.

5.2 Process

Because I have previously worked with EWT in Matlab, it was decided that I would continue to
use Matlab. Because of my lack of experience with CNN, the first task I wanted to complete was
noise classification. This is a well-defined machine learning task, and almost all teaching resources
demonstrate CNN using image classification examples. With the help of EWT decomposition, au-
dio signals resemble images. This worked extremely well and aided me in learning CNN by example.

The second task was to solve the audio signal denoising. First, I attempted to solve the problem by
decomposing signals, removing segments, and then recomposing segments into the modified signals.
This really didn’t work out, and my boss insisted that I look for a machine learning-based solution.
Because Matlab already has such solutions and examples. It was decided to use it as a starting
point and improve on it.

5.3 Implementation
GPU was used for classification network training and testing. This greatly accelerated the entire
process and enabled the use of higher resolution "images." The number of layers and filter size were

determined empirically. Good results have already been obtained after 40 epochs. This equates to
approximately 6 minutes for 50 segments. However, as the number of segments doubles, so does

50

the time required to train the network.

GPU is also used for denoising network training. I thoroughly tested various network modifications,
but the Matlab solution produced the best results in terms of performance vs hardware requirements.
Because several networks are trained one after the other, each network is saved on the hard drive
and then erased to make room for RAM. Each network is trained over a period of two epochs.

5.4 Limitations

The classification network has a hardware limitation. Signal decomposition necessitates a large
amount of RAM and VRAM, but a larger number of segments improves accuracy. With 16 GB
of RAM and 8 GB of VRAM, I was able to reliably classify 100 segments. At 150 segments, I'm
already at risk of running out of memory. Because it was deemed untrustworthy, the results of 150
segments are not included in this report.

The main limitation of denoising networks is their high latency; it takes an average of 1.3 seconds
for the K-step Ahead prediction algorithm to run its course. And that’s without accounting for
data preparation (decomposition and STFT), which takes about 4 seconds. It could take up to 13
seconds to denoise 5 segments (considering OS lag). The total time for ten segments is 22 seconds.

51

Chapter 6

Conclusions

Convolutional Neural Networks for noise classification and denoising of audio signals have been
presented in this thesis. Three types of noises have been used for testing networks, stationary, non-
stationary, and babble type noise. The total number of noise classes is 14 with a signal-to-noise ratio
ranging from 10 dB to -10 dB. The noise classification network is able to classify all 14 classes of noise
with 100% accuracy at -5 dB SNR. Denoising network showing up to 18% improvement compared
to denoising solution by STFT method. To achieve these results, audio signals are decomposed
by Empirical Wavelet Transform before being processed by CNN in both cases. Although signals
decomposition improves the quality of denoising, this is not a real-time solution due to high latency.

6.1 Further Work

In real-world application scenarios, use noise classification and denoising. A search and rescue flying
drone, for example, could capture and transmit surrounding sound to a server via cellular network,
Lora, Wimax, or Bluetooth. The server could be a cloud solution like Google Colab or Microsoft
Azure, or it could simply be a personal computer. To make that work, the code must be rewritten
in Python.

Increase the amount of training data, and include voices with various accents and backgrounds.
Increase the number of noise classes even more. Perform a more in-depth level of segmentation
on a more powerful PC to see if and when saturation occurs. Currently, increasing the number of
segments from 50 to 100 improves classification accuracy slightly.

52

Bibliography

[1]

2]

3]

4]

15]

[6]

17l

18]

19]

[10]

[11]

[12]

J. Singh and R. Joshi, “Background sound classification in speech audio segments,” in
Proc. International Conference on Speech Technology and Human-Computer Dialogue (SpeD),
Timisoara, Romania, Oct. 2019, pp. 1-6.

T. T. Nguyen, A. Fuchs, and F. Pernkopf, “Acoustic scene classification using deep mixtures
of pre-trained convolutional neural networks,” 2019 18th IEEE International Conference On
Machine Learning And Applications (ICMLA), pp. 871-875, 2019.

M. Okaba and T. Tuncer, “An automated location detection method in multi-storey buildings
using environmental sound classification based on a new center symmetric nonlinear pattern:

Cs-lblock-pat,” Automation in Construction, vol. 125, p. 103645, 2021. [Online|. Available:
https://www.sciencedirect.com /science/article /pii/S0926580521000960

I. Martin-Morat6, M. Cobos, and F. J. Ferri, “Adaptive mid-term representations for robust au-
dio event classification,” IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 26, no. 12, pp. 2381-2392, 2018.

H. Seker and O. Inik, “Cnnsound: Convolutional neural networks for the classification of
environmental sounds,” in 2020 The 4th International Conference on Advances in Artificial
Intelligence, ser. ICAAT 2020. New York, NY, USA: Association for Computing Machinery,
2020, p. 79-84. |Online|. Available: https://doi.org/10.1145/3441417.3441431

S. Li, F. Li, S. Tang, and F. Luo, “Heart sounds classification based on feature fusion using
lightweight neural networks,” IEEE Transactions on Instrumentation and Measurement, vol. 70,
pp. 1-9, 2021.

L. Huang and C.-M. Pun, “Audio replay spoof attack detection by joint segment-based linear
filter bank feature extraction and attention-enhanced densenct-bilstm network,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 1813-1825, 2020.

W. Yang and S. Krishnan, “Combining temporal features by local binary pattern for acoustic
scene classification,” IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 25, no. 6, pp. 1315-1321, 2017.

H. Phan, O. Y. Chén, L. Pham, P. Koch, M. De Vos, I. McLoughlin, and A. Mertins, “Spatio-
temporal attention pooling for audio scene classification,” arXiv preprint arXiv:1904.03543,
2019.

S. Chandrakala and S. L. Jayalakshmi, “Generative model driven representation learning in a
hybrid framework for environmental audio scene and sound event recognition,” IEEE Transac-
tions on Multimedia, vol. 22, no. 1, pp. 3-14, 2020.

S. Waldekar and G. Saha, “Wavelet transform based mel-scaled features for acoustic
scene classification,” in Proc. Interspeech 2018, 2018, pp. 3323-3327. [Online|. Available:
http://dx.doi.org/10.21437 /Interspeech.2018-2083

V. Bisot, R. Serizel, S. Essid, and G. Richard, “Leveraging deep neural networks with non-
negative representations for improved environmental sound classification,” in 2017 IEEE 27th
International Workshop on Machine Learning for Signal Processing (MLSP), 2017, pp. 1-6.

53

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

S. Ryu and S.-C. Kim, “Impact sound-based surface identification using smart audio sensors
with deep neural networks,” IEEFE Sensors Journal, vol. 20, no. 18, pp. 10936-10944, 2020.

T. Spadini, D. L. de Oliveira Silva, and R. Suyama, “Sound event recognition in a
smart city surveillance context,” CoRR, vol. abs/1910.12369, 2019. [Online|]. Available:
http://arxiv.org/abs/1910.12369

A. Luo, E. Li, Y. Liu, X. Kang, and Z. J. Wang, “A capsule network based approach for
detection of audio spoofing attacks,” in ICASSP 2021 - 2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 6359-6363.

R. Leonardo, M. Barandas, and H. Gamboa, “A framework for infrastructure-free indoor lo-
calization based on pervasive sound analysis,” IEFE Sensors Journal, vol. 18 no. 10, pp.
4136-4144, 2018.

V. Nivitha Varghees and K. I. Ramachandran, “Effective heart sound segmentation and mur-
mur classification using empirical wavelet transform and instantaneous phase for electronic
stethoscope,” IEEE Sensors Journal, vol. 17, no. 12, pp. 3861-3872, 2017.

K. A. Babu, B. Ramkumar, and M. S. Manikandan, “Automatic identification of s1 and s2 heart
sounds using simultaneous pcg and ppg recordings,” IEEE Sensors Journal, vol. 18, no. 22, pp.
9430-9440, 2018.

Y. Qian, Z. Chen, and S. Wang, “Audio-visual deep neural network for robust person veri-
fication,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 29, pp.
1079-1092, 2021.

M. Mishra, H. Menon, and A. Mukherjee, “Characterization of s; and s heart sounds using
stacked autoencoder and convolutional neural network,” IEEFE Transactions on Instrumentation
and Measurement, vol. 68, no. 9, pp. 3211-3220, 2019.

A. Gomez-Alanis, A. M. Peinado, J. A. Gonzalez, and A. M. Gomez, “A gated recurrent con-
volutional neural network for robust spoofing detection,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 27, no. 12, pp. 1985-1999, 2019.

H. A. Sanchez-Hevia, D. Ayllén, R. Gil-Pita, and M. Rosa-Zurera, “Maximum likelihood deci-
sion fusion for weapon classification in wireless acoustic sensor networks,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 25, no. 6, pp. 1172-1182, 2017.

D. Zhao, H. Zhang, S. Liu, Y. Wei, and S. Xiao, “Deep rational attention network with threshold
strategy embedded for mechanical fault diagnosis,” IEEE Transactions on Instrumentation and
Measurement, vol. 70, pp. 1-15, 2021.

H. Dinkel, Y. Qian, and K. Yu, “Investigating raw wave deep neural networks for end-to-
end speaker spoofing detection,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 26, no. 11, pp. 2002-2014, 2018.

D. Salvati, C. Drioli, and G. Foresti, “End-to-end speaker identification in noisy and reverberant
environments using raw waveform convolutional neural networks,” in INTERSPEECH, 2019.

S. Ahmad, S. Agrawal, S. Joshi, S. Taran, V. Bajaj, F. Demir, and A. Sengur, “Environmental
sound classification using optimum allocation sampling based empirical mode decomposition,”
Physica A: Statistical Mechanics and its Applications, vol. 537, p. 122613, Jan. 2020. |Online].
Available: https://www.sciencedirect.com/science/article/pii/S0378437119314955

K. J. Piczak, “Environmental sound classification with convolutional neural networks,” in Proc.
IEEE International Workshop on Machine Learning for Signal Processing (MLSP), Boston,
MA, USA, Sep. 2015, pp. 1-6.

54

28]

[29]

130]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]
[39]

[40]

[41]

[42]

[43]

S. Abdoli, P. Cardinal, and A. Lameiras Koerich, “End-to-end environmental sound
classification using a 1d convolutional neural network,” FExpert Systems with Applications,
vol. 136, pp. 252263, Dec. 2019. [Online|. Available: https://www.sciencedirect.com /science,
article/pii/S0957417419304403

J. Lu, R. Ma, G. Liu, and Z. Qin, “Deep convolutional neural network with transfer learning for
environmental sound classification,” in Proc. International Conference on Computer, Control
and Robotics (ICCCR), Shanghai, China, Jan. 2021, pp. 242-245.

Y. Chen, Q. Guo, X. Liang, J. Wang, and Y. Qian, “Environmental sound classification with
dilated convolutions,” Applied Acoustics, vol. 148, pp. 123-132, May 2019. [Online]. Available:
https:/ /www.sciencedirect.com /science/article /pii/S0003682X 18306121

G. Hua and H. Zhang, “Enf signal enhancement in audio recordings,” IEEFE Transactions on
Information Forensics and Security, vol. 15, pp. 1868—1878, Nov. 2020.

D. Luo, P. Korus, and J. Huang, “Band energy difference for source attribution in audio foren-
sics,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 9, pp. 2179-2189,
Mar. 2018.

J. Salamon and J. P. Bello, “Deep convolutional neural networks and data augmentation for
environmental sound classification,” IEEE Signal Processing Letters, vol. 24, no. 3, pp. 279283,
Jan. 2017.

N. Davis and K. Suresh, “Environmental sound classification using deep convolutional neural
networks and data augmentation,” in Proc. IEEE Recent Advances in Intelligent Computational
Systems (RAICS), Thiruvananthapuram, India, Dec. 2018, pp. 41-45.

X. Zhang, Y. Zou, and W. Wang, “Ld-cnn: A lightweight dilated convolutional neural network
for environmental sound classification,” in Proc. International Conference on Pattern Recogni-
tion (ICPR), Beijing, China, Aug. 2018, pp. 373-378.

R. G. Lyons, Understanding Digital Signal Processing, 3rd ed. Pearson Education, Inc.

E. Sejdi¢, 1. Djurovié¢, and J. Jiang, “Time—frequency feature representation using energy
concentration: An overview of recent advances,” vol. 19, no. 1, pp. 153-183. [Online|.
Available: https://www.sciencedirect.com /science/article/pii/S105120040800002X

N. Kehtarnavaz, Digital Signal Processing System Design, 2nd ed. Academic Press.

V. Velardo, “AudioSignalProcessingForML,” original-date: 2020-06-18T11:54:37%.
[Online]. Available: https://github.com /musikalkemist /AudioSignalProcessingForML /
blob/2b7efd37305a10d0059fdd0a41f011fd0218771a/6-%20How%20t0%20extract%20audio%
20features /How%20to%20extract %20audio%20features%20.pdf

——, “AudioSignalProcessingForML,” original-date: 2020-06-18T11:54:37Z. [On-
line]. Available: https://github.com /musikalkemist /AudioSignal ProcessingForML /
blob/2b7efd37305a10d0059fdd0a41f011fd0218771a/15%20-%20Short-Time%20Fourier%
20Transform%20explained %20easily /Short-Time%20Fourier %20 Transform%20Explained %
20Easily.pdf

Short-time fourier transform - MATLAB stft. [Online|. Available: https://www.mathworks.
com /help /signal /ref /stft.html

D. Gabor, “Theory of communication. part 1: The analysis of information,” wvol. 93,
no. 26, pp. 429-441, publisher: IET Digital Library. [Online|. Available: https:
/ /digital-library.theiet.org /content /journals/10.1049/ji-3-2.1946.0074

D. H. von Seggern, CRC Standard Curves and Surfaces with Mathematica, 3rd ed. CRC Press.

95

44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

J. K. Hammond and P. R. White, “THE ANALYSIS OF NON-STATIONARY SIGNALS
USING TIME-FREQUENCY METHODS,” vol. 190, no. 3, pp. 419—447. [Online]. Available:
https:/ /www.sciencedirect.com /science /article /pii/S0022460X 96900723

A. Graps, “An introduction to wavelets,” vol. 2, no. 2, pp. 50-61, conference Name: IEEE
Computational Science and Engineering.

N. M. Astaf’eva, “Wavelet analysis: basic theory and some applications,” vol. 39, no. 11,
p. 1085, publisher: IOP Publishing. [Online]. Available: https: /' /iopscience.iop.org/article /10.
1070/PU1996v039n11ABEH000177 /meta

Choose a wavelet - MATLAB & simulink. |Online|. Available: https://www.mathworks.com
help/wavelet /gs /choose-a-wavelet.html

M. Hanteh, O. Rezaifar, and M. Gholhaki, “Selecting the appropriate wavelet function in the
damage detection of precast full panel building based on experimental results and wavelet
analysis | request PDF.” [Online|. Available: https:// www.rescarchgate.net/publication/
352080994 Selecting the appropriate wavelet function in the damage detection of
precast full panel building based on experimental results and wavelet analysis

Ryan, Linear Algebra, Signal Processing, and Wavelets - A Unified Approach,
matlab version ed., ser. Springer Undergraduate Texts in Mathematics and Technology.
Springer. |Online|. Available: https://link.springer.com/book/10.1007/978-3-030-01812-2+#

siteedition-academic-link

S. P. Nanavati and P. K. Panigrahi, “Wavelet transform,” vol. 9, no. 3, pp. 50-64. [Online]|.
Available: https://doi.org/10.1007/BF02834988

C. Burrus, R. Gopinath, and H. Guo, “Introduction to wavelets and wavelet transform—a
primer,” vol. 67. [Online|. Available: https://www.researchgate.net/publication /246532602
Introduction to Wavelets and Wavelet Transform-A Primer

C. Valens, “A really friendly guide to wavelets.” [Online|. Available: http://agl.cs.unm.edu/
“williams/csb30 /Jarfgtw.pdf

Continuous wavelet transform and scale-based analysis - MATLAB
& simulink. [Online]. Available: https://www.mathworks.com /help /wavelet /gs,

continuous-wavelet-transform-and-scale-based-analysis.html

J. Gilles, “Empirical wavelet transform,” vol. 61, no. 16, pp. 3999-4010, conference Name: IEEE
Transactions on Signal Processing.

R. Panda, S. Jain, R. Tripathy, and U. R. Acharya, “Detection of shockable
ventricular cardiac arrhythmias from ECG signals using FFREWT filter-bank and
deep convolutional neural network,” wvol. 124, p. 103939. [Online|. Available: https:
/ /www.sciencedirect.com/science/article /pii /S0010482520302742

S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural net-
work,” in 2017 International Conference on Engineering and Technology (ICET), pp. 1-6.

S. Saha. A comprehensive guide to convolutional neural networks
— the ELI5 way. [Online|. Available: https:/ /towardsdatascience.com
a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Learn about convolutional neural networks - MATLAB &
simulink. |[Online|. Available: https: / /www.mathworks.com /help /deeplearning /ug

introduction-to-convolutional-neural-networks.html

A. Bonner. The complete beginner’s guide to deep learning: Convolutional neural networks.
[Online]. Available: https://towardsdatascience.com/wtf-is-image-classification-8e78a8235ach

56

[60]

[61]

[62]

[63]

|64]

[65]

[66]

[67]

68|

[69]

What are convolutional neural networks? |Ounline|. Available: https://www.ibm.com/ cloud/
learn/convolutional-neural-networks

J. Feng, X. He, Q. Teng, C. Ren, H. Chen, and Y. Li, “Reconstruction of porous media from
extremely limited information using conditional generative adversarial networks,” vol. 100.

CS231n convolutional neural networks for visual recognition. [Online|. Available: https:
//es231n.github.io/convolutional-networks /

NOIZEUS: Noisy speech corpus - univ. texas-dallas. [Online]. Available: https:
/ /ecs.utdallas.edu/loizou/speech /noizeus/

aurora - aurora speech recognition experimental framework. [Online|. Available: http:
/ Jaurora.hsnr.de/index-2.html

Denoise speech using deep learning networks - MATLAB & simulink. [Online|. Available:
https:/ /www.mathworks.com /help /audio/ug/denoise-speech-using-deep-learning-networks.
html#mw _rtc_DenoiseSpeechUsingDeepLearningNetworksExample EE4C0B08

J. Kim, “Speech enhancement toolkit,” original-date: 2018-06-04T03:53:417.
[Online]. Available: https://github.com /jtkim-kaist /Speech-enhancement /blob
84f1a3c1273fb4952522b911dd62cbb4476a534d /SE /lib/sub_lib/MATLAB code/objective
measures/quality /comp cep.m

D. O’Shaughnessy, “Linear predictive coding,” vol. 7, no. 1, pp. 29-32, conference Name: IEEE
Potentials.

R. B. Randall, “A history of cepstrum analysis and its application to mechanical problems,”
vol. 97, pp. 3-19. [Online|. Available: https:/ www.sciencedirect.com/science/ article/pii
S0888327016305556

N. Kitawaki, H. Nagabuchi, and K. Itoh, “Objective quality evaluation for low-bit-rate speech
coding systems,” vol. 6, no. 2, pp. 242248, conference Name: IEEE Journal on Selected Areas
in Communications.

o7

