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Abstract

Realistic simulations of heavy-duty machinery have the potential to reduce costs before
manufacturing, increase functionality, and even save lives. Therefore it is essential to de-
velop systems that can use realistic real-time simulations to test systems extensively before
applying them to a work area.
This thesis presents a real-time Hardware-In-the-Loop (HIL) simulator system for hydrauli-
cally actuated cranes. For simulating the knuckle boom crane used as a case study, Beckhoff’s
TwinCAT eXtended Automation environment (XAE) software running on a PC is used as the
HIL simulator platform. At the same time, Unreal Engine running on the same PC takes
care of dynamics computation using inputs from TwinCAT to simulate motion by using
the built-in physics engine PhysX. Components representing the electro-hydraulic actuation
system are modeled through well-known equations and implemented in TwinCAT using the
object-oriented Structured Text PLC programming language and can be adapted to different
crane configurations by changing parameters. Unreal Engine is set up to calculate dynamic
movement programmed in Unreal Engine’s own Blueprint visual scripting language. Using
a modded version of Beckhoff’s ADS communication protocol, communication between the
TwinCAT and Unreal Engine is enabled.

To validate the proposed HIL simulator, a Simulink multi-body simulation model connected
to subsystems represented by MATLAB function blocks, including the same equations used
in TwinCAT to represent the actuation system, is used for comparison. The knuckle-boom
crane is actuated by opening and closing the electro actuated directional control valve,
which introduces flow and pressure build-up in the system, resulting in a piston force that
is provided as input (i.e., forward dynamics) to the multi-body system, representing the
mechanical system.
Two tests are carried out to investigate the performance of the HIL simulator. First, to
verify the real-time performance of the electro-hydraulic simulator running in TwinCAT, a
test including only TwinCAT with a simplified mechanical representation of the actuator
motion is presented. Secondly, a full-scale test, including the Unreal Engine, is presented to
evaluate the performance of the co-simulation realized through the ADS communication.
The results from the testing show that while TwinCAT can be used for real-time simulation
for hydraulic and mechanical computation, connecting the system to Unreal Engine for dy-
namic simulation introduces much room for error. This is mainly caused by Unreal Engine‘s
handling of physics tied to the variable frame rate. A force that should be adequate for the
movement of mechanical parts, run using Unreal Engine on a high-end computer, may only
introduce slight movement, depending on the computer running the game engine.
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Chapter 1

Introduction

1.1 Background

This master thesis focuses on the creation and steps required to build a HIL simulator of
a knuckle boom crane. The project will make use of multiple types of software to simulate
a complete system. Beckhoffs TwinCAT 3.1 will be used as the engineering environment
(XAE), and real-time kernel (XAR), for the PLC programming part of the system, which
will use structured text [7] as the coding language. Matlab/Simulink will be used for testing
and validation of the finished PLC system, and used for comparison for actuation of the
crane. For visualizing the system, the game engine software Unreal engine from Epic games
is to be used. All the 3D models used in the game engine will be supplied from Ocean Infinity
Marine, and will be used to visualize and process dynamic movement based on forces received
from TwinCAT. Making the crane move in real-time with TwinCAT calculating hydraulics
based on motion feedback from Unreal engine. The 3D rendered scene in the game engine
will then move according to the forces being fed to the hydraulic actuators. The system
setups made in Simulink and TwinCAT+Unreal Engine will then be run through some tests
to check the functionality and performance of the system.

Figure 1.1: The CAD model representation of the crane

1



1.2 State of the Art

The type of system to be created have not been done before, where all the dynamic move-
ments are computed in Unreal engine, while the process of actuation is happening within
the PLC to create a combined control and compute system for knuckle boom cranes in real-
time. However research have been done within various aspects of the systems used, which
will further be used to build upon to create the real-time TwinCAT‘s knuckle boom crane
simulation system. Previous work done by others when it comes to the following topics will
be looked at for possible use, improvement and implementations: The use of game engines
in combination with real-time control systems programmed with PLC language, the use and
stabilization of knuckle boom cranes, ADS systems for communication, multibody systems
in Unreal, and use of hydraulic actuators.

Previous research of HIL testing in combination with TwinCAT and visualization software
through the use of game engines have been researched and developed in the past by Harald
Sangvik [14]. During his master thesis, he used Beckhoffs TwinCAT PLC as the control
system of a 3D compensated gangway, to control a complete digital twin of the gangway
made in Unity game engine. While the calculations of dynamics for the gangway were done
within Unity using C# scripting language. To enable communication between TwinCAT
and Unity, Beckhoffs ADS communication protocol was used.

For system verification he used a multibody model of the gangway connected to a hydraulic
system, created in the open-source software OpenModelica using native OpenModelica and
OpenHydraulics library. Whereas his report focused on placing all the computing of dy-
namics within Unity game engine, and only using TwinCAT as a controller. This project
will also use a combination of game engine and TwinCAT PLC, but rather than placing all
dynamics, hydraulics, and mechanical systems within the game engine, the hydraulics will
be computed using TwinCAT PLC as the main component of the system, sending forces over
to the Unreal Engine to calculate dynamic movement and sending that information back to
TwinCAT‘s hydraulic system.

1.3 Motivation

For companies working with engineering and manufacturing of crane systems as part of their
business, it is important to able to provide their customers with short delivery times, error-
free software, and reliable support. Therefore the work done within this project is of high
importance, since it focuses on creating pre-programmed reusable PLC software able to con-
trol cranes of various dimensions. For creation of the reusable PLC software, object oriented
programming can be used. Combining this with a visual simulation of the system done
in a game engine, makes it possible to see and test each crane in a real-time environment
before deploying the real crane. Using Unreal Engine which is a free game engine available
to everyone, makes the system highly available for further development and support, and
means that most testing can be done in-house using regular computers. While supporting
customers remotely, a digital twin of the same crane they are requesting support on can be
simulated which makes it easier to get a better view of the issues they are trying to solve.

If the project is successful, it will perhaps help in lower costs regarding control software and
development in general for knuckle boom cranes, as it will minimize the time and resources
required to create control systems for newly produced cranes. A major reason for this, is
that a crane can be simulated, tested and seen, control systems for it can be created before
having the physical crane ready. Along with this, the PLC simulation program will be
streamlined, making it easy to use even for new employees, as there will only be a need to

2



adjust parameter values for arm lengths and hydraulic actuators to adapt the PLC from one
crane to another.

1.4 Problem Statement

Is it possible to simulate the hydraulic actuation system of a knuckle boom crane using Twin-
CAT, and how does it perform in combination with the simulation of a multibody system
in Unreal Engine?

To answer the research question, the following objectives will have to be completed:

1. Build a simulator of actuation systems in TwinCAT using the Structured Text PLC
programming language.
2. Build a multibody simulation able to compute dynamics in Unreal Engine.
3. Make TwinCAT and Unreal Engine able to communicate.
4. Performance testing with comparison against a Simulink simulation.

1.5 Outline

Chapter 1 introduces the master thesis and describes the project. Giving insight to the
overall project, background, motivation, problem statement, and research objectives.

Chapter 2 describes the theory behind the system, mainly the mathematical approach used
to create the equations used to modem the system.

Chapter 3 Covers the methods used to answer the research question. This includes devel-
opment of systems in TwinCAT and Unreal Engine, and the setup of a Simulink multibody
system for comparing systems for validation.

Chapter 4 presents the results of the various aspects of the system, and gives comparisons
to the system with and without certain functions.

Chapter 5 is used for discussing changes to the project, deviations, and also goes into areas
of future development that can and should be introduced to the crane system in the event
of continuing the work done so far.

Chapter 6 concludes the thesis.
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Chapter 2

Theory

To create the multibody systems for Unreal Engine and Simulink, existing libraries found
within the two software will be used. In Simulink, Simscape graphical code blocks will be
used, while in Unreal Engine visual programming via Unreal‘s Blueprint coding language
will be used to put together the multibody system. The hydraulic and mechanical system
will be set up using the equations found in this chapter.

2.1 TwinCAT

TwinCAT is an open-source engineering environment for creating robust PLC systems. It
runs using two systems, the run time kernel (XAR) and TwinCAT eXtended Automation
Environment (XAE) [8]. Both of these can be installed on a standard computer at no
expenses. The code for the PLC system is written via the XAE which uses Visual Studio
(VS) as its development environment [13].

2.1.1 Codesys PLC Compiler

The open-source TwinCAT is based on Codesys which means that that the code written
using it, is cross platform capable. This means that the code which is written in Structured
Text can be copied directly to and from other Codesys based environments. Being based on
Codesys also means that the programming done follows the IEC 61131 standard described
in chapter 2.1.2 below.

2.1.2 International PLC Standard

For programming the PLC software in structured text, IEC 61131[7] is used as the pro-
gramming Standard. This is a Standard used worldwide within automation software for
programmable controllers. Following IEC 61131 means that the basics of the software ar-
chitectural setup is clearly defined, and easily understood by most. To fulfill the agreements
of IEC 61131 Standard, the code must be defined in the following ways: The code must be
written in the most common language used in the world which is English, with datatypes
such as BOOL, LREAL, INTEGER, and their value range clearly defined, the variable types
such as global, local, inputs, etc must be defined, the variable types can be assigned to
variable classes such as VAR, VAR_GLOBAL, VAR_INPUT etc, how the PLC is set up
by using programs and tasks, and Program Organization Units such as functions, function
blocks, programs etc are defined.

TwinCAT3 uses an extended version of the IEC, mainly the IEC 61131-3, which is part
three of the IEC Standard. This part defines five programming languages that can be used
to program a PLC, which are the following: Instruction List (IL), Function Block Diagram
(FBD), Ladder diagram (LD), Structured text (ST), and Sequential Functon Chart (SFC).
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This project will use Structured text as its main programming language which loosely resem-
bles programming languages like Python and C. This is advantageous as MATLAB which
uses a language based on C, will be used throughout the project, making it easier to grasp.

There are multiple advantages of programming using IEC 61131-3, the main ones are: It
simplifies the understanding of code written for PLC programmers, being able to reuse
written program code into other PLC software, efficiency and time saving, and with it being
widely used and well known among the automation industry makes it a good choice since
there are many guides on the usage both online and in books.

2.1.3 PLC Software Development

To be able to control the knuckle boom crane, Beckhoffs PLC software TwinCAT3 was used
as the main component of the system. PLC programs written in TwinCAT3 has the feature
of being able to be implemented onto dedicated Beckhoff IPC, and I/O cards to run the
system in real-time with using a small form factor proprietary hardware. The dedicated
Beckhoff IPC has the same hardware as a regular PC, where the only difference is that the
components of the IPC has industrial quality components and a BIOS that is optimized
better for real-time performance.

As mentioned in chapter 2.1, TwinCAT runs using its own run time kernel XAR, which
makes it possible to share cores with Windows or use one dedicated to itself. This can be
used as a safety measure, when using a dedicated core, if Windows crashes, the XAR keeps
running on its own core.

Equations for the hydraulic system were to be set up and programmed into the PLC, in
such a way that it could take variables, dimensions, and commands for hydraulic actuator
systems as inputs. While outputting desired computed results like positions, velocity, and
forces. These outputs are then to be sent over into a game engine software and used to
visualize the movements of the digital twin made of the knuckle boom crane.

The hydraulic system was made using a well established approach [10] for setting up equa-
tions for hydraulic cylinders, orifice flows, valve dynamics, effective Bulk modulus and pres-
sure components. These were to be made using function blocks containing named variables
inside each equation, making it possible to reuse the function blocks wherever needed apply-
ing various sets of variables as required.

2.2 Electro-Hydraulic Actuation System

The models for hydraulics and mechanical were set up using well known equations, and are
known to be satisfactory for simulation of similar systems [6].

2.2.1 Hydraulic Actuators

Hydraulic cylinder

To be able to simulate motion of the hydraulic cylinders, the very well known Newtons second
law of motion F = ma is used. The governing equation for movement of hydraulic actuators
below was set up as seen below in equation 2.1. This equation yields the acceleration of the
hydraulic piston inside the cylinder, which when integrated once and twice, produces the
current velocity and position of the hydraulic piston.
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Figure 2.1: Illustration showing how the components affect an hydraulic cylinder

ẍ =
pA · A− pB · a− FL − Ffriction

mL

(2.1)

ẋ =

∫
ẍ (2.2)

x =

∫
ẋ (2.3)

The integrated equation 2.2 produces the velocity of the piston in [m/s], while integrating
this a second time as shown in equation 2.3 produces the current Position of the piston in
[m].

2.2.2 Piston Forces

An important part of any hydraulic - mechanical system is to be able to calculate the
summation of forces acting upon the cylinders pistons at all times. The following equation
were set up as governing equation for piston force.

Figure 2.2: Illustration forces generated in the hydraulic cylinder

FPiston = FHydraulic − FStribeckFriction − FUpperStrokeLimit + FLowerStrokeLimit (2.4)

Equation 2.5 was set up for calculating the resulting hydraulic force pushing on the piston.
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FHydraulic = pin · A− pout · a (2.5)

This equation uses the pressures at each side of the cylinder along with the size of areas
inside of the cylinder to generate a variable hydraulic force.

To add friction to the moving pistons, equation 2.6 representing a Stribeck friction force was
set up. This friction force adds to the stability of the system by providing an exponentially
higher force as the pistons velocity increases. This helps make the system run more smoothly
and leads to the system stabilizing quicker when the crane is signaled to stop at its current
position.

FS = (exp

(
−vPiston·tmp

Kft

)
· Ff + FC) · tmp+ vPiston · Fv (2.6)

tmp = exp (vPiston ·Kfa) · 2 (2.7)

tmp =
tmp− 1

tmp+ 1
(2.8)

Where equations 2.7 and 2.8 for tmp represents a ratio that maxes out at 1. This changes
depending on the current velocity of the piston. Additionally this only works in slow moving
systems, and any velocity higher than approximately 0.918 [m/s] will produce errors to the
system.
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To stop the hydraulic cylinders pistons from breaking and moving outside of the hydraulic
cylinder, equations 2.9 and 2.10 simulating upper and lower stroke limits were set up.

FUSL = (xPiston − xMax) ·Kx + Cx · vPiston (2.9)

FLSL = xPiston ·Kx + Cx · vPiston · (−1) (2.10)

These two equations apply a force to stop the piston from moving outside its area of oper-
ation, using springs and dampers to bring it to steady-state. The upper stroke limit force
only activate when the hydraulic piston is at or above its maximum stroke length, while the
lower stroke limit only activates when the piston is at, or below zero.

2.2.3 Hydraulic Pressures

Differential equations yielding pressure gradients for each side of hydraulic actuators were
set up as shown below.

ṗA =
β

VLine + x · A
· (Qin −Qout) (2.11)

ṗB =
β

VLine + (xmax − x) · a
· (Qin −Qout) (2.12)

These two equations will be used to compute the pressure nodes found in the hydraulic
actuation system through integration to yield the pressure components required to simulate
the hydraulic system. The resulting pressure will then be inserted into the equation for
hydraulic cylinder acceleration found in 2.1.

pA =

∫
ṗA (2.13)

pB =

∫
ṗB (2.14)

Equations 2.13 and 2.14 shows the integrated pressure gradients resulting in pressure nodes
pA and pB both in [bar].

2.2.4 Orifice Flow

To be able to determine the flow coming in and going out of the hydraulic cylinders, the
orifice equation was used. This takes care of calculating the flow through the input and
output ports of the cylinders. It makes use of the flow coefficient of the valve, the current
pressure total in the cylinder, and a sign function that can change between positive and
negative to be able to change the direction of flow depending on the pressure nodes.
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Figure 2.3: Illustration of the orifice equation, with flow running from left to right

Q = Kv · uDCV · sign(∆p) ·
√

|∆p| (2.15)

Kv =
Qnominal√

∆p

(2.16)

∆p = (pin − pout − pcrack) (2.17)

While equation 2.15 takes care of the fluid flow in the system, equation 2.16 concerns the
valve flow coefficient and 2.17 gives the current total pressure. The total pressure uses results
from equations 2.13 and 2.14, assigned as pin and pout, which of them is regarded as inlet
and outlet depends on which way the system is currently running, extracting or retracting
the hydraulic piston.

2.2.5 Directional Control Valve

For the system to be able to run both ways, a variable 4/3 valve was chosen. This valve
has four connections to hydraulic flow, and can control the direction of the flow found in
equation 2.15. It also has the feature of being able to gradually open and close, without
limiting the options to fully open or fully closed, making the system able to partially restrict
the amount of flow happening in the system.

Figure 2.4: Illustration of the 4/3 Directional Control Valve

The opening of the valve is to be set a value ranging from -1 to 1, which is used to control
the direction of flow in the system. This value could have been set as a static number used
as a step function, but since the system is to be used to simulate a real world scenario, valve
dynamics are introduced.

For the valve opening to be able to open and close in a more realistic way, a second order
transfer function is used to smooth out the opening and closing of the valve. This makes the
valve function ramp up and down instead of unrealistically jumping from 0 to a set value in
an instant.
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Y (s)

X(s)
=

ω2
BW

s2 + 2 · ζ · ωBW · s+ ω2
BW

(2.18)

To later implement this into the PLC program using structured text, the transfer function
above had to be converted into a discrete differential equation. This was achieved through
the use of an inverse Laplace transformation.
Simplifying the TF:

Y (s)

X(s)
=

1
1

ωBW
2 · s2 + 2 · ζ

ωBW
· s+ 1

(2.19)

a =
1

ωBW
2

b =
ζ

ωBW

(2.20)

Y (s)

X(s)
=

1

a · s2 + 2 · b · s+ 1
(2.21)

⇒ X = Y · (a · s2 + 2 · b · s+ 1) (2.22)

⇒ X = a · s2 · Y + 2 · b · s · Y + Y ) (2.23)

Applying inverse Laplace:

x = a · ÿ + 2 · b · ẏ + y (2.24)

⇒ ÿ =
x− 2 · b · ẏ − y

a
(2.25)

ẏ =

∫
ÿ y =

∫
ẏ (2.26)

The theory of the valve dynamic is based on a paper by Morten Bak [2], where he did
experimental frequency analyzes of a Danfoss PVG32 valve and found the average values for
bandwidth frequency ωBW and damping ratio ζ. Specifically ω = 30 [rad/s] and ζ = 0.8.
As these values were found to be optimal in Morten‘s paper, they will be used as function
parameters for the dynamics of the valve movement in this thesis. The twice integrated
result of the equation for acceleration of the valve opening 2.25, will be used to determine
the current opening position of the valve.

2.2.6 Integration Method

The differential equations are integrated using forward Euler to find their integrated coun-
terparts. Forward Euler is an approximation method to find the integral value using the
current state and time increments to calculate the next state.

xn+1 = xn + ẋn · dt (2.27)
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Chapter 3

Methods

This chapter will take care describing the steps taken in order to build the system. It will
give information on how the TwinCAT PLC system is built regarding both hydraulics and
mechanical. The visual system setup will be explained in detail, and the communication
between the two systems will then be clarified. Additionally, a multibody system will be
configured to use the same hydraulic system as the PLC to actuate, and to later be used for
comparison.

The hydraulics and mechanical parts of the system is split into two systems, TwinCAT and
Unreal Engine. TwinCAT simulates all of the hydraulics computations which produces forces
summed up into piston forces for each cylinder. Unreal Engine gets the piston force from
TwinCAT over ADS, and in return computes dynamic movement of the crane. The positions
and velocity from Unreal Engine is then sent back to TwinCAT. These two systems together
simulates the knuckle boom crane operation.

3.1 Case Study

Knuckle boom cranes are an extension of the single-boom crane. Adding a knuckle jib to the
outer part of the boom of a crane, increases its flexibility resulting in a more complex and
larger workspace available for the crane‘s tool tip. This is most likely why they are becoming
one of the most common types of cranes used within a variety of industrial areas [1]. The
knuckle jib of the crane makes it able to fold into itself, and makes it a good tool for moving
payloads from point-to-point.

Comparing the knuckle boom crane to the typical telescopic crane that only extracts and
retracts, it should be noted that one of the disadvantages of using the knuckle boom is that
it is more susceptible to damage. Components such as the hydraulic lines are often on the
outside of the crane arms making them vulnerable, while a telescopic crane normally has
these hidden away on the inside the crane arm [4].
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Figure 3.1: An Ocean Infinity knuckle boom crane
[11] Figure 3.2: An Ocean Infinity telescopic crane [12]

Another difference in the use of these two cranes are that while the knuckle crane is good
at moving point-to-point, it is not great at placement of payloads behind obstacles, as its
knuckle can accidentally come in contact with and damage said obstacle when unfolding to
lower the load.

An important part of what makes the use of knuckle boom cranes so desirable for payload
operations, is that they are far easier to control. This is because of the payload being placed
in the immediate close proximity of the tool point eliminating instability. On a telescopic
crane, the payload hangs onto a long cable that is used to lower and lift the payload, making
it an unstable lifting solution in theory.

The knuckle boom crane even has multiple applications since the tool point is able to be
fitted with an increasingly wide roster of attachments targeted at different purposes. These
can be everything from claws for grabbing, to digging buckets, and many more.

Because of its wide variety of applications, and its flexibility when it comes to movement and
reaching difficult areas, the knuckle boom is the chosen crane this thesis. Using a knuckle
boom crane is a lot more complex when it comes to making the mechanical model for the
system, but the benefits of the crane if implemented in time, out weights the cons. A crane
fit for the future.

3.1.1 Considered Knuckle Boom Crane

As mentioned why in section 3.1, a KnuckleBoom crane is chosen to be modeled and simu-
lated throughout the project. To do this efficiently, a study of the crane and its components
were done. This was to get an overview of the amount and types of actuators required to
program into TwinCAT for the crane to be able to mimic the real physical crane.

12



Figure 3.3: Drawing of the arm made in Autodesk Inventor, with annotations for actuators

By inspecting the drawing above, it is seen that the system requires two hydraulic cylinders
for the MainBoom and two hydraulic cylinders for the Knuckle boom, as actuators for the
crane arms. There is also a need for a hydraulic motor to actuate and rotate the crane‘s
slew joint to be able to turn the whole crane around.

By looking at the specifications data sheet for the crane, the pistons lifting the main boom
should be able to extend up to 3070mm, while the pistons lifting the knuckle jib should be
able to extend to 2320mm, for the crane to reach its max position. A run time of 90s for the
real crane to lift up from a starting point at rest to its max position is also noted, as this
can be a sign to look for that indicates if the digital twin is behaving as close to the real
crane as possible.

3.1.2 System Identification

To create the digital crane as close as possible to the real crane, the mass properties of the
main components of the crane were studied using Inventor. Parameters for inertia, mass,
and center of mass for the king, main boom, knuckle jib, and hydraulic cylinders were found.
The values for each of these are noted in tables 3.1, 3.2, and 3.3.

King Boom Knuckle
m 9548.932 [kg] m 12778.219 [kg] m 5344.619 [kg]
mx, 0.01902 [m] mx, -8.04374 [m] mx, -0.09160 [m]
my, -0.02866 [m] my, 0.86496 [m] my, 1.33344 [m]
mz, -1.02348 [m] mz, 0.09635 [m] mz, 4.29518 [m]
Ixx 15537.579721658 [kgm2] Ixx 7114.72560 [kgm2] Ixx 38034.92421 [kgm2]
Iyy 14993.168777119 [kgm2] Iyy 437213.61585 [kgm2] Iyy 37329.15993 [kgm2]
Izz 7026.716838393 [kgm2] Izz 438926.98425 [kgm2] Izz 1911.37793 [kgm2]

Table 3.1: Mass, CoM, and inertia of crane arm bodies

The origins set for the boom and knuckle are at the center of the revolute joints connecting
them together. The king has its origin set at the center of It‘s circular bottom.

Cylinder (Boom) Cylinder (knuckle)
m 93.301 [kg] m 47.854 [kg]
mx, 1.44936 [m] mx, 1.14441 [m]
my, -0.00029 [m] my, 0.00057 [m]
mz, 0.00189 [m] mz, 0.00651 [m]
Ixx 1.9472911 [kgm2] Ixx 0.62964 [kgm2]
Iyy 134.27063 [kgm2] Iyy 46.22579 [kgm2]
Izz 134.14240 [kgm2] Izz 46.15761 [kgm2]

Table 3.2: Mass, CoM, and inertia of cylinder bodies
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Piston (Boom) Piston (knuckle)
m 99.933 [kg] m 50.313 [kg]
mx, 176.678 [m] mx, 141.464 [m]
my, 0 [m] my, 0 [m]
mz, 0 [m] mz, 0 [m]
Ixx 0.47860 [kgm2] Ixx 0.15094 [kgm2]
Iyy 125.87937 [kgm2] Iyy 42.45844 [kgm2]
Izz 125.83972 [kgm2] Izz 42.44596 [kgm2]

Table 3.3: Mass, CoM, and inertia of piston bodies

The origins set for of the hydraulic actuators are the same for both the cylinders and the
piston, and are located at the center of the bottom of each piston.

Boom actuator Knuckle actuator
Bore diameter 0.28 [m] Bore diameter 0.22 [m]
Rod diameter 0.18 [m] Rod diameter 0.14 [m]
Stroke length 3.07 [m] Stroke length 2.32 [m]

Table 3.4: Sizing of the hydraulic actuators

3.2 Programming and Implementation in TwinCAT

3.2.1 PLC Software

TwinCAT3 is used to set up and program both hydraulic and mechanical models. The PLC
code written uses a combination of function blocks, global variable lists, programs, functions,
and STRUCTS, all written in structured text programming language.

There are multiple smaller function blocks containing code for each of the equations found
in chapter 2 Theory, with the main components of the system being the function blocks
"ValveControlledCylinder" and "CylinderMech". These function blocks incorporates all the
other smaller blocks by calling on them to combine them all into a complete system. Exam-
ples of this is shown in Appendix BB

The setup of the hydraulic and mechanical system found within TwinCAT PLC is further
explained through flowcharts in chapter 3.2.2 below.

3.2.2 Electro-Hydraulic Actuation System Model

Below is a representation of how the hydraulics part of the system in TwinCAT works, this
is a simplification of the programming code setup for the system.

14



Figure 3.4: Flowchart of the PLC‘s hydraulics system

The hydraulic system is controlled by opening and closing valves for each actuator, which
in return makes the system calculate the hydraulic force needed to move the piston in the
desired direction. The system uses positions and velocities retrieved from hydraulic cylinders
created in a multibody system in Unreal Engine. The Unreal Engine model is explained
further down in chapter 3.3.1

3.2.3 Mechanical System Model

The mechanical model of the PLC consists of the mechanical aspects such as the piston
force, the current velocity, and the position of the pistons. This was initially used with-
out a connection to Unreal Engine, to be able to test the hydraulic systems functionality
before moving on into further development and adding Unreal Engine as a part of the system.

The current system uses velocity and position data of the pistons retrieved from the visual
Unreal Engine 3D model simulating the crane moving via dynamics coded into Unreal.
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Figure 3.5: Flowchart of the PLC‘s mechanical system

The system uses the hydraulic force computed within the hydraulics actuator system, in
combination with friction force and stroke limit forces. The resulting piston force is then
sent to the pistons in Unreal Engine to actuate the piston movement making the crane arms
move accordingly.

3.2.4 Parameters

Each component of the hydraulic system requires some parameter presets for the system to
be able to function. These parameters include sizing of the hydraulic system, information
about the fluid used, supply and tank return pressure, etc. The assigning of parameters to
the instance of actuators can be seen in Appendix C.B.14.

By assigning the variables as persistent in the parameter block setup, each of the hydraulic
actuators can be set to use different values from each other by running the system and then
manually changing parameters stored for each cylinder. The affix also makes it so that the
system remember the last set parameters, so there is only a need to set the parameters once.
This eliminates the need of reassigning values each time the system runs, which would be
the case without this function when having only one parameter file.

The standard parameters that were assigned to all actuators can be seen in Appendix B.B.16.
Most of the values from the parameter code were used by the whole system, but some were
changed due to the difference in sizing for each actuator. The values that required changing
for each separate cylinder can be found in table 3.1.2

3.2.5 Global Variable List

For ease of use when it comes to storing variables and be able to use them by the system
wherever they are needed, GVL‘s were made. These make it possible for the PLC system
to temporary store values calculated by both TwinCAT and Unreal Engine, making them
available for available global use. Separate GVL´s for variables received and variables sent
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between TwinCAT and Unreal Engine were made as to have complete control of the com-
municated variables. By storing them in this way, values for force, positions and velocities
can be temporary stored and then be used in function blocks in the program that uses these
values.

3.2.6 Cycle Time

To help with the stability of the system, the cycle time was set fairly low at 100µs. As
the cycle time is lowered, the program increases its frequency of calculations using smaller
increments regarding time calculations, which leads to the system being more accurate and
stable. The main thing to think about when adjusting this value is that lowering cycle
time also requires more computing power, so finding a comfortable spot where the system is
running fast enough, while still being stable is highly focused on. A cycle time that is too
high may also lead to the program reaching singularities where there are none, which would
crash the system. To match the cycle time set, the timer that was coded into the the main
program program that initializes the PLC, was also set to use the same time increments.

3.2.7 Software Re-usability

As mentioned earlier, the PLC written in TwinCAT was made with the intention of being
able to reuse all the different components whenever needed. For this an object oriented pro-
gramming approach was used, meaning essentially making programmed simulated versions
of components found in physical hydraulic, and mechanical systems.

All functions added to the system was made using named variables and interchangeable
parameters in their calculations instead of hard coding numbers into the various equations.
This meant that they can be reused for different purposes by redefining the inputs sent to
the said function block.

Figure 3.6: Flowchart showing how the system creates multiple hydraulic-mechanical cylinders
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The picture above shows how the function blocks were reused multiple times to be able to
generate hydraulic systems for different parts of the crane reusing the same function blocks.

3.2.8 HMI

To monitor and control the hydraulic cylinders in TwinCAT, an HMI overview was made.
This was composed of variables for current position of the pistons, and the opening of the
valves. The HMI also includes buttons that enable or disable direct control of the valves via
the HMI. The valve opening can be set either by pulling the sliders to the sides or clicking
the variable field UDCV and entering a number manually.

Figure 3.7: TwinCAT HMI displaying valve openings and cylinder positions

Figure 3.7 above shows the HMI as the system is running, where the valve of the MainBoom
is at a positive 20% opening with its piston currently extracted 0.39 [m]. If the opening
value for the valves are set to a negative value, the cylinders pistons would start to retract
instead.

Remote Control

To add external control there would be a need for a physical device. It was decided to
implement communication between an Xbox controller and the TwinCAT PLC program. To
do this a git repository from Github [3] was cloned into the existing TwinCAT folders. This
repo contains python code which is usable by first starting the TwinCAT PLC and then
running the included python script. Using this enables valve operation through the use of
the Xbox controller‘s joysticks, resulting in a change of flow rates and thereby extracting
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or retracting the cylinders pistons. This needs to be run on the same IPC as TwinCAT to
function.

Figure 3.8: Controller system overview

3.2.9 Latency

The system was to run as close to real-time as possible, and therefore the latency within
TwinCAT had to be looked at. Beckhoff‘s TwinCAT PLC software is greatly integrated into
windows and is able to both share core usage with windows, or use one or more cores ex-
clusively. Through the PLC‘s Real-Time interface window, core settings can be configured.
When the cores are set to be shared with windows, they are assigned a limit of how much
percentage of the chosen cores are to be available for use. Sharing cores means that windows
still has access to the core and will in most cases produce latency to the PLC program as the
two systems fight for power. Isolating a core to be used exclusively for TwinCAT means that
windows will run a bit slower as it has one fewer core to work with, but in return TwinCAT
will have access to 100% of an uninterrupted core. There was an attempt to run TwinCAT
with a shared core at 80% usage limit, but after running the system in this configuration for
some time and looking at the latency imposed on the system, it was decided to try to run
the PLC using dedicated cores instead since it spiked all the time up to about 100µs latency.

3.3 Programming and Implementation in Unreal Engine

3.3.1 Unreal Engine

Unreal Engine is a game engine developed by Epic Games, and comes in five versions, Unreal
Engine 1, up to Unreal Engine 5. Unreal Engine 5 recently came out (5. April 2022), and
is still a bit too new when it comes to flow of information and guides available. Therefore
Unreal Engine 4 which have been out since March 2014, is the chosen version used. Even
though this version is a couple of years, it have been updated steadily throughout the years
and is regarded by many as one of the best tools for creating great looking high budget
games and movies.

Advantages of using Unreal Engine:

• Graphical coding via Blueprint, easy option instead of using C++, or C# if using Unity
as engine

• Results in more realistic graphics in general. Getting the same visual fidelity in Unity
takes a lot more work

• Completely free to use, where as using the more advanced functions of Unity requires
a purchase

• Open-source, while Unity does not allow tinkering with the source code

• Faster rendering times than Unity, which is important in a project such as this where
the system will need to be rendered over and over again, while being time efficient
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3.3.2 Importing Models

To import models into Unreal Engine, for them to be later placed into the game world,
model files for Autodesk were used. The main components needed to visualize the crane
had to be converted into a file format that Unreal Engine supported. As Unreal Engine do
not support any of the file types from CAD by itself, a plugin named Datasmith had to be
used for importing the files into usable mesh files. The part files for Pedestal, King, Main
boom, Knuckle jib, hydraulic cylinders and connectors for the outer piston were converted
into STEP files, and imported using Datasmith. This created a lot of geometry and texture
files, filling the project with too many small parts loaded in, which slowed down Unreal.
The solution to this was to highlight all the components that were used to build a part and
convert them into one single solid mesh, and then to delete the excess files.

The last step before using these newly imported static meshes, were to assign each of them
with collision meshes. The collision mesh is what the physics engine of Unreal uses in
combination with the assigned masses, to calculate the center of gravity along with inertia.
Without this, the option to activate physics cannot be enabled.
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3.3.3 Unreal Setup

After components were imported into Unreal, some had to be attached to each other to create
full assemblies. For example the crane which had to be put together piece by piece and then
configured further to be able to operate as a crane should. To make the crane into an as-
sembly, all the main components were put together as a Blueprint named BPCrane. Creating
a Blueprint for the crane, enables adjustments, assembly and configuration of components
within that Blueprint in a closed environment.

Figure 3.9: Picture of the Blueprint for the crane

The hydraulic cylinders used on the crane needed to be put together by the cylinder and the
piston, and then had to be applied physics constraints which gave the piston the function
of extend and retract within the cylinder housing. The linear motion of the piston then
needed to be set to limited and applied a value for how far the piston could move. In Unreal
limiting these types of movement constraints means how far the constraint can move in both
ways, so the constraint itself needs to be put at mid center of where it should be allowed to
move and then set half the stroke length as the value for max movement. This results in the
piston being able to move within the correct area and stops the piston from going through
the cylinder top or falling out of the cylinder.
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Figure 3.10: Picture of hydraulic cylinder with constraint

After the system components were assembled and put together, the visuals for the simulation
were completed. The last thing to do to fully implement the use of Unreal Engine, was to
enable communication to the PLC.

Figure 3.11: Picture of the finished Unreal Engine system, showing the boat, ocean, and crane

The assembly of the crane was made using accurate placements of components. For this,
dimension drawings were made using the CAD assembly in Inventor.

3.3.4 PhysX - Unreal‘s Physics Engine

For computing collision, behaviour of masses, and forces and reaction forces acting on com-
ponents, the physics engine PhysX developed by Nvidia is used. This is the default physics
engine that Unreal comes with and uses. Currently in the works is a new lightweight physics
engine named Chaos, but this is not yet ready for use, as it is still in beta.
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3.4 Co-Simulation

3.4.1 TwinCAT Communication

To enable communication between Epic games Unreal Engine and Beckhoffs TwinCAT PLC
software, Beckhoffs own free ADS libraries[15] was used. ADS is the communication protocol
of TwinCAT and enables among other things access to I/O tasks, Access by variable name,
synchronous and asynchronous access, and cyclic and event-based messages. The ADS pack-
age was then further developed through C++ programming by Ocean Infinity Marine, and
given additional functions which made it able to communicate back and forth with Unreal.
The C++ library was then downloaded from their Github site and extracted into the the
projects folders where the visual world project was saved, inside a plugin folder. Through
the use of Microsoft Visual Studio 2019, an IDE mainly used for software development, the
code was compiled and ready to be tested.

For the ADS communication to work correctly and apply values from TwinCAT over to
Unreal and vice versa, visual scripting through Unreals Blueprints had to be learned and
utilized. The Blueprint code for this takes care of pulling up the ADS master node that
receives variable values from TwinCAT and connecting those variables to a set crane com-
ponent such as the hydraulic pistons positions, velocities, force components etc.

Figure 3.12: Picture of Blueprint code for the hydraulic cylinders

The picture above shows the how the Blueprint boxes are connected, for closer inspection,
closeups of the Blueprint code are found in Appendix C C.

To be able to monitor parameter signals sent over the ADS, an interface panel for Unreal
were developed and added to the ADS system. Inside Unreal, the values for these can then
be set directly via details window found in the editor for the boat and crane system. These
parameters point to TwinCAT‘s function blocks as targets and the shows the numerical val-
ues for the system as it is running.

Connecting Unreal Engine to TwinCAT means that the PLC does not need to calculate
position or velocity anymore, since these can now come from Unreal Engine‘s built in "get
position" and "get velocity" functions through the use of Blueprints. So now the system
works as follows, piston forces for the hydraulic cylinders are sent over ADS to Unreal
Engine, to move the arms of the crane. The movements of the arms are then sent back from
Unreal over to TwinCAT where calculations regarding required force are continuously being
calculated depending on the movement.
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3.5 Testing

3.5.1 MATLAB/Simulink Simulation

For cross system comparison to the PLC, and to be able to verify if the programmed PLC
system was working as intended, a Simulink multibody model was created. The multibody
system uses rigid transforms to place revolute and sliding joints in their respective coordinate
and rotational positions, using measurements from CAD assembly of the crane. The CAD
files of the crane bodies uses CAD models supplied by Ocean Infinity Marine, were then
converted into stl file format which describes the surface geometry of a model. These were
then used to visualize the crane using solid blocks in Simulink and replacing the solid block
models with the stl models. The crane could then be seen within MATLAB‘s mechanics
explorer window and confirmed to be put together correctly.

Figure 3.13: The modeled crane in Simulink, shown in the mechanics explorer of MATLAB

A hydraulic control system was then implemented into the Simulink model, using the same
mathematical setup and programming that is in the PLC, to create an identical system.
The control system was made using MATLAB functions within Simulink, and split into
three subsystems. One subsystem for controlling the slew joint using the hydraulic motor,
and two subsystems for controlling the sliding joints at the main boom and knuckle jib,
using hydraulic actuators. Parameters used for this system are copied from the parameter
STRUCT found in the PLC.

The Simulink joints were then configured to be able to take torque and force from the control
system subsystems as inputs and then automatically compute movement changes accordingly.
The sense feature of the joints were activated for both position and velocity, which values
were sent back to the hydraulic control system and used to continuously calculate forces,
pressures, flow, etc to ensure smooth movement of the crane.
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Figure 3.14: Overview of the Simulink model

The completed Simulink system can be seen above. This is the uppermost layer of the model,
while the contents of each subsystems and their setup can be found in the Appendix DD.

3.5.2 TwinCAT Measurements

To be able to monitor and get good clean overviews of the various variables as the system is
running, TwinCAT‘s own measurement project program was used. This is run as a separate
instance to the PLC software, but is still integrated closely to the PLC running. Through
creating a measurement project, the variables in the PLC that are desirable to be monitored
can be found and pointed to via hierarchy view within TwinCAT measurement. The variables
can then be recorded as the system runs, and can be used to compare improvements to the
system as project progresses.

3.5.3 Test #1 - Simulink vs TwinCAT

To deduct if the hydraulic system was working as intended, an hydraulic simulation and
control subsystems was extracted from the Simulink multibody simulation system. This was
then placed in its own Simulink model to be used without a connection to the multibody
model. Instead this was connected to a Matlab function block containing equation 2.1 set up
in section 2.2.1. The same was done in TwinCAT, where the system ran independently with
no connection to the multibody model made in Unreal Engine. This was done to eliminate
possible sources of error, to be able to check the pure hydraulic calculations.

Figure 3.15: The ramp ups, hold, and ramp downs used for initial testing
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To give the systems directions for running the test, a ramp up and down function was set
up in both Simulink and in TwinCAT PLC. This was then used as the opening value for the
valve, with the goal of making the hydraulic pistons extrude and retract. Figure 3.15 shows
the ramp up/down targets.

3.5.4 Test #2 - Simulink vs TwinCAT & Undreal Engine

For this test setup, the Simulink multibody model was connected to the hydraulics simulation
and control system, as seen in chapter 3.5.1, figure 3.14. The test to be run was fairly simple,
but included use of the limit forces made in equations 2.9 for and 2.10 for simulating the
piston hitting the top or bottom inside the hydraulic housing. The test was to run using a
completely open valve, to reach the maximum position of each arm tested separately, and
to be able to stop there via forces negating further movement.
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Chapter 4

Results

This chapter presents the outcome of the research and development done during the thesis.
The results of running the crane to test the hydraulic system and the dynamic movement
of the arms, were done using both the multibody system in Simulink, and the multibody
system in Unreal Engine combined with TwinCAT. While actuating the crane, resulting
variables for flow, pressure, velocity, positions and force were measured. The measurements
taken were then used to compare the behaviour of the two crane systems.

The two multibody systems has some similarities, whereas they both use the same equa-
tions and parameters to complete the hydraulic simulation aspect. Their major difference
that makes it interesting for comparison however, is their different implementation of the
hydraulic simulation and control system.

Simulink and its multibody system actuates via an hydraulic system placed in the same
Simulink environment as the multibody model. Making it into a complete package where
all computations of both hydraulics and dynamics happen without delay in one and same
software.

TwinCAT on the other hand, incorporates the use of a second software, the Unreal Engine,
to simulate the crane system. The simulation of an hydraulic system happens in TwinCAT,
while the dynamics are being computed within Unreal Engine, where the crane is also visu-
alized.

The TwinCAT+Unreal Engine system works by sending a piston force from TwinCAT to
Unreal over ADS to actuate each hydraulic cylinder. In return, movement data are sent
back from Unreal Engine into TwinCAT. This back and forth handling of variables, is how
the HIL simulation works.

4.1 Test #1

Comparisons of test scenario 1 where there were no multibody systems connected to Twin-
CAT or Simulink, are shown in this section, this test was run using only the main boom
as it was to test if the hydraulic system was working as intended. The valve opening was
controlled with a ramp up/down input as seen in section 3.5.3 figure 3.15.
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4.1.1 Hydraulics

Figure 4.1: Comparison of pressure pA

Figure 4.2: Comparison of pressure pA

As noticed by inspecting the results from figure 4.1 and 4.2, there is some difference, although
not a large one. This is suspected to be because of the initial value for pressure. It is set as
a start value for both systems. In Simulink it is set as an initial value inside an integrator
simscape block, while in TwinCAT it is set as an initial value in the programmed integrator
function block. There may be a difference how the blocks interprets this.

Figure 4.3: Comparison of flow QA
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Figure 4.4: Comparison of flow QA

The hydraulic flows shown in figures 4.3 and 4.4 closely resembles each other, and in the
ramp up and down sections they are almost inseparable.

4.1.2 Mechanical

Figure 4.5: Comparison of position

Figure 4.6: Comparison of velocity

It can be seen from the motions of the piston in figure 4.5 and 4.6, that the movement of the
pistons in the two systems performs similar to each other, although with some deviations.

29



Figure 4.7: Comparison of piston force

The piston force shown in figure 4.7, shows behaviour that matches with the outputs shown
in figure 4.6 for velocity.

4.2 Test #2

As described in 3.5.4, this test uses the complete system combining both TwinCAT Unreal
Engine to run the simulation. For comparison the Simulink multibody system was also used
with the same setup of hydraulic actuation.

4.2.1 Main Boom

Hydraulics

Figure 4.8: Pressure in (pA) and out (pB) from
running the main boom using the Simulink model

Figure 4.9: Pressure in (pA) and out (pB) from
running the main boom using the real-time Twin-
CAT system
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Figure 4.10: Flowrates QA and QB from running
the main boom using the Simulink model

Figure 4.11: Flowrates QA and QA from running
the main boom using the real-time TwinCAT sys-
tem

Mechanical

Figure 4.12: Piston force acting on the main boom
using the Simulink model

Figure 4.13: Piston force acting on the main boom
using the real-time TwinCAT system

Figure 4.14: Velocity of the piston when running
the main boom using the Simulink model

Figure 4.15: Velocity of the piston when running
the main boom using the real-time TwinCAT sys-
tem
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Figure 4.16: Position of the piston pushing the
main boom using the Simulink model

Figure 4.17: Position of the piston pushing the
main boom using the real-time TwinCAT system

Looking at the plotted results from both the Simulink model and the real-time PLC with
Unreal engine using its PhysX engine for computing physics, it can be seen that there are
big differences between the two systems even though the system that controls the crane are
basically the same.

This is most likely a result of the way physics are handled in Unreal Engine. The physics is
tied to the framerate that the PC running is capable of delivering [5].

Both systems managed to reach their desired cylinder stroke length, moving the crane‘s main
boom up to its maximum position at 3.07 [m], and then stabilizing at that point without
having to put on some kind of saturation limit to the system. To reach the position, the
Simulink system used approximately 92 seconds, while the PLC system used approximately
230 seconds, using 2.5 times more time than Simulink.

4.2.2 Knuckle Jib

Hydraulics

Figure 4.18: Pressure in (pA) and out (pB) from
running the knuckle jib using the Simulink model

Figure 4.19: Pressure in (pA) and out (pB) from
running the knuckle jib using the real-time Twin-
CAT system
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Figure 4.20: Flowrates QA and QB from running
the Knuckle jib using the Simulink model

Figure 4.21: Flowrates QA and QA from running
the knuckle jib using the real-time TwinCAT sys-
tem

Mechanical

Figure 4.22: Piston force acting on the knuckle jib
using the Simulink model

Figure 4.23: Piston force acting on the knuckle jib
using the real-time TwinCAT system

Figure 4.24: Velocity of the piston when running
the knuckle jib using the Simulink model

Figure 4.25: Velocity of the piston when running
the knuckle jib using the real-time TwinCAT sys-
tem
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Figure 4.26: Position of the piston pushing the
knuckle jib using the Simulink model

Figure 4.27: Position of the piston pushing the
knuckle jib using the real-time TwinCAT system

The differences in timing for the knuckle jib to reach its intended position of max reach,
was smaller compared to running the main boom. Using Simulink the knuckle jib used ap-
proximately 65 seconds while the knuckle jib running via the PLC used approximately 103
seconds, making it 1.58 times slower than its Simulink counterpart.

Both the Simulink system and the PLC+Unreal system managed to reach their desired stroke
length of max position at 2.32m, moving the crane‘s knuckle jib arm up to its maximum
position, and then stabilizing at that point without having to put on some kind of saturation
limit to the system. To reach the position, the Simulink system used approximately 92
seconds, while the PLC system used approximately 230 seconds, using 2.5 times more time
than Simulink.

4.3 Latency

Assigning one core as exclusive improved latency a lot and was deemed well within tolerable
levels. The latency stayed mostly below 8µs, although with some deviations at certain stress
points. Overall it yielded a much better total latency level.

Figure 4.28: Latency and core usage of TwinCAT
using a shared core at 80% usage limit

Figure 4.29: Latency and core usage of TwinCAT
using a dedicated core
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Chapter 5

Discussions

5.1 Differences in Results

As the TwinCAT+Unreal system and the Simulink multibody system produced a large
difference in results, where one system used substantially more time than the other, some
thoughts about the reasons for this was made. These include the following.

• The difference in physics computing, with Unreal‘s physics is mainly focused on use
within games and perhaps not completely realistic scenarios, and MATLAB/Simulink
which is targeted at engineering and research.

• Delay between signals sent over the ads could introduce instability to the system, which
is also perhaps why the plots from the PLC system are more sporadic, whereas the plots
from Simulink are consistent and vibrations are registered at quicker smoother intervals.

• Density calculated by Unreal could be wrong, as this is calculated automatically based
on the set mass and the simple collision geometry of each component which could be
inaccurate, without any means of setting them manually.

• Unreal Engine‘s physics are framerate based, and the computational power of the com-
puter running the game engine, has a direct impact

Unreal Engine

Unreal Engine 4 runs using a variable frame rate which the physics computation is tied to.
Meaning that feeding forces to Unreal Engine has very different outcomes depending og the
computational power of the hardware it is run on. An example of this can be sending set
torque to Unreal Engine running on a high-end computer reaching 120 frames per second,
could end up making an object turn around multiple times. While making the same object
rotate slightly on a low-end computer only producing a fraction of the same frame rate [9].

5.2 Future Work

There are improvements that can be made to further make the system into a more complete
digital twin of the C1079 crane, these can be both minor and major changes and additions,
and will be brought up in the subsections below.

Physics simulations in the PLC

A multibody system that was to be provided by Ocean Infinity, was unfortunately not
developed in time for the project to utilize it. However this system would be a part of
the PLC program, and would be able to calculate the placements and rotations of each
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component of the crane. This would eliminate the delay between software as all calculations
are done within the PLC and then the Unreal engine part would only be for visualizing,
not for calculating physics and computing movement. This would also eliminate the time
used for placing crane components and connecting each part together manually in the editor.
This will be added in the future as the project is still to be taken to its final form via Ocean
Infinity‘s development team.

Inverse kinematics

Using inverse kinematics would be preferable, as it would ease the control aspect of the
system. Adding this would let the crane be controlled by tool point coordinates and then
adjusts each joint and actuators to reach the desired point.

Waves and wave compensation

To better simulate the crane in the scenario of being placed on a boat, there needs to be
waves affecting the movement and rotations of the crane. These waves would need to intro-
duce movement to the boat in six degrees of freedom for it to mimic the real behaviour of a
boat on the water. These motions would then need to be implemented into the kinematics
to be used as motion compensation of the tool point of the crane.

Some development was done within this field and the boat is able to float on water using a
combination Unreal‘s water physics plugin for and buoyancy points added to various locations
around the hull of the boat. These settings will need to be tweaked in the future for it to
become more realistic in its behaviour.

36



Chapter 6

Conclusions

The research question proposed was to evaluate if TwinCAT could be used to simulate the
hydraulic actuation of a knuckle boom crane in combination with a multibody system in
Unreal Engine in real-time. The concrete objectives for acquiring this was: 1) Build a
simulator of actuation systems in TwinCAT using the Structured Text PLC programming
language; 2) Build a multibody simulation able to compute dynamics in Unreal Engine; 3)
Make TwinCAT and Unreal Engine able to communicate; 4) Performance testing with com-
parison against a Simulink simulation.

A simulation system was built using Beckhoff‘s TwinCAT PLC, written using object-oriented
programming in Structured Text. Further on, the TwinCAT simulation was connected to a
multibody system in Unreal Engine via an ADS plugin for sending variables for piston force,
positions, and velocity between the two software.
Testing the performance of the electro-hydraulic actuation system using systems separate
from the multibody models yielded promising results. However, running the system in co-
simulation with Unreal Engine introduced large deviations, which are strongly believed to
directly result from the physics being tied to the variable frame rate.
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Appendix B

Datasheet B

TwinCAT code

Listing B.1: Main (PRG)
Timer := Timer + 0.001;

ActuationSystems();
P_Joy();

Listing B.2: ActuationSystems (PRG)
fbHPU(
);

fbramp(
bOn := startramp,
y0 := 0,
y1 := 0.6,
y3 := -0.5,
t0 := 5,
t1 := 15,
t2 := 55,
t3 := 65,
t4 := 95,
t5 := 105,
t6 := 120,

);

fbFWKinematics(
L1 := 4.543126+1.097+1.000, ...

//[m]
L2 := 0, ...

//[m]
L3 := 17.939373, ...

//[m]
L4 := 9.548784, ...

//[m]
thetaMainBoom := ...

ActuationSystems.fbKnuckleJibCylinderHyd.AngleJoint, //[rad]
thetaKnuckleBoom := ActuationSystems.fbMainJibCylinderHyd.AngleJoint, ...

//[rad]
thetaSlew := 0 ...

//[rad]
);

//Hyd Model for MainJibCylinder
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fbMainJibCylinderHyd(
uDcvEnable := Inputs.uDcvEnableMainJib,
uDcv := Inputs.uDcvMainJib,
ReturnPressure := G_ActuationSystems.ReturnPressure,
SupplyPressure := G_ActuationSystems.SupplyPressure,
par := Param.pMainJibCylinder,
xPiston := work.XpistonMainBoom,
vPiston := work.VpistonMainBoom,

);
//Hyd Model for KnuckleJibCylinder
fbKnuckleJibCylinderHyd(

uDcvEnable := Inputs.uDcvEnableKnuckleJib,
uDcv := Inputs.uDcvKnuckleJib,
ReturnPressure := G_ActuationSystems.ReturnPressure,
SupplyPressure := G_ActuationSystems.SupplyPressure,
par := Param.pKnuckleJibCylinder,
xPiston := work.XpistonKnuckleJib,
vPiston := work.VpistonKnuckleJib,

);
//Hyd Model for KingRotationCylinder
fbKingRotationCylinderHyd(

uDcvEnable := Inputs.uDcvEnableKingRotation,
uDcv := Inputs.uDcvKingRotation,
ReturnPressure := G_ActuationSystems.ReturnPressure,
SupplyPressure := G_ActuationSystems.SupplyPressure,
par := Param.pMainJibCylinder,
xPiston := fbkingRotationCylinderMech.PistonPosition,
vPiston := fbkingRotationCylinderMech.PistonVelocity,

);

//Temp Mechanical Model for MainJibCylinder
fbMainJibCylinderMech(

F_Hydraulic := fbMainJibCylinderHyd.F_Hydraulic,
param := Param.pMainJibCylinder,
F_Piston => Work.FpistonMainBoom,
PistonVelocity := work.VpistonMainBoom,
PistonPosition := work.XpistonMainBoom,
Spring := 6E9,
Damper := 2E7

);
//Temp Mechanical Model for KnuckleJibCylinder
fbKnuckleJibCylinderMech(

F_Hydraulic := fbKnuckleJibCylinderHyd.F_Hydraulic,
param := Param.pKnuckleJibCylinder,
F_Piston => Work.FpistonKnuckleJib,
PistonVelocity := work.VpistonKnuckleJib,
PistonPosition := work.XpistonKnuckleJib,
Spring := 5.1E7,
Damper := 0

);
//Temp Mechanical Model for KingRotationCylinder
fbkingRotationCylinderMech(

F_Hydraulic := fbKingRotationCylinderHyd.F_Hydraulic,
param := Param.pKingRotationCylinder,
F_Piston => Work.FpistonKingRotation

);

Listing B.3: ValveControlledCylinder (FB)
//Cylinder Areas [m^2]
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PistonArea := EXPT(par.DBore,2) * (par.pi/4.0);
AnnulusArea := (EXPT(par.DBore,2) - EXPT(par.DRod,2)) * (par.pi/4.0);

//ValveOpeningControl := XboxControl.joyLeft; Commented out xbox ...
control as for now

//ValveDynamics [-1,1]
IF uDcvEnable THEN

fbValveDynamics(
udcv_IN := uDcv,
DynamicValve => ValveOpeningControl
);

ELSE
fbValveDynamics(

udcv_IN := 0,
DynamicValve => ValveOpeningControl
);

END_IF

//VariableBulkModulus [Bar]
fbBulkModulus(

OilBulkModulus := par.OilBulkModulus,
AdiatricAirConstant := par.AdiatricAirConstant,
AtmosphericPressure := par.AtmosphericPressure,
VolumetricAirContentOfOil := par.VolumetricAirConstant
);

//Pressure Gradient pA and Pressure pA [Pa]
fbPressureGradient_pA(

//TotalVolume := par.VA0 + (xPiston * PistonArea),
TotalVolume := 0.01 + (xPiston * PistonArea),
BulkModulus := fbBulkModulus.BulkModulus,
FlowrateIn := FlowQA,
FlowrateOut := (vPiston * PistonArea),
//p0 := par.pA0,
p0 := 0,
param := par,
Pressure => PressurepA
);

//Pressure Gradient pB and Pressure pB [Pa]
fbPressureGradient_pB(

//TotalVolume := par.VB0 + ((par.xMax - xPiston) * AnnulusArea),
TotalVolume := 0.01 + ((par.xMax - xPiston) * AnnulusArea),
BulkModulus := fbBulkModulus.BulkModulus,
FlowrateIn := (vPiston * AnnulusArea),
FlowrateOut := FlowQB + FlowQL,
//p0 := par.pB0,
p0 := 0,
param := par,
Pressure => PressurepB
);

//Flow through orifices Q_P_A, Q_A_R, Q_B_R, Q_P_B [m^3/s]
fbOrificeEquationQ_P_A(

PressureOut := PressurepA,
PressureIn := SupplyPressure,
ValveOpening := ValveOpeningControl,
param := par,
OrificeFlow => FlowQ_P_A
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);

fbOrificeEquationQ_A_R(
PressureOut := ReturnPressure,
PressureIn := PressurepA,
ValveOpening := ValveOpeningControl,
param := par,
OrificeFlow => FlowQ_A_R
);

fbOrificeEquationQ_B_R(
PressureOut := ReturnPressure,
PressureIn := PressurepB,
ValveOpening := ValveOpeningControl,
param := par,
OrificeFlow => FlowQ_B_R
);

fbOrificeEquationQ_P_B(
PressureOut := PressurepB,
PressureIn := SupplyPressure,
ValveOpening := ValveOpeningControl,
param := par,
OrificeFlow => FlowQ_P_B
);

//Change direction of flow depending on valveopening
IF ValveOpeningControl > 0 THEN

FlowQA := FlowQ_P_A;
FlowQB := FlowQ_B_R;

ELSIF ValveOpeningControl < 0 THEN
FlowQA := FlowQ_A_R;
FlowQB := FlowQ_P_B;

ELSE
FlowQA := 0.0;
FlowQB := 0.0;

END_IF

// Hydraulic Force [N] //
F_Hydraulic := PressurepA * PistonArea - PressurepB * AnnulusArea;

//Crane angles
fbCraneAngleJoint(

a := (par.LengthCylinder + xPiston),
b := (par.LengthAdjacentLeft),
c := (par.LengthAdjacentRight),
thetaAngle => AngleJoint

);

//Hydraulic Motor
fbHydraulicMotor(

PressureIn := PressurepA,
PressureOut := PressurepB,

);

Listing B.4: PressureGradient (FB)
//PressureGradient in [Pascal/s]
PressureGradient := (FlowrateIn - FlowrateOut) * (BulkModulus / TotalVolume);

//Pressure in [Pascal]
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fbPressurePascal(
ssMethodType := ssMethodType,
tCycle := param.tCycle,
In := PressureGradient,
Init := p0,
//minOut := G_ActuationSystems.ReturnPressure,
minOut := 0,
//maxOut := param.pAmax,
maxOut := 10000000000000000,
Out => Pressure
);

Listing B.5: CylinderMech (FB)
// Upper Stroke Limit Contact Force [N] //
IF PistonPosition >= param.xMax THEN

SpringContactCoefficient := Spring;
ELSIF PistonPosition < param.xMax THEN

SpringContactCoefficient := 0;
END_IF;

IF PistonPosition >= param.xMax THEN
DamperContactCoefficient := Damper;

ELSIF PistonPosition < param.xMax THEN
DamperContactCoefficient := 0;

END_IF;

F_Upper_Stroke_Limit := ((PistonPosition - param.xMax) * ...
SpringContactCoefficient) + (DamperContactCoefficient * PistonVelocity);

// Lower Stroke Limit Contact Force [N] //
IF PistonPosition > 0 THEN

SpringContactCoefficient := 0;
ELSIF PistonPosition <= 0 THEN

SpringContactCoefficient := Spring;
END_IF;

IF PistonPosition > 0 THEN
DamperContactCoefficient := 0;

ELSIF PistonPosition <= 0 THEN
DamperContactCoefficient := Damper;

END_IF;

AbsPosition := ABS(PistonPosition);
F_Lower_Stroke_Limit := (SpringContactCoefficient * AbsPosition) + ...

(DamperContactCoefficient * (-1) * PistonVelocity);

IF Main.Timer < 0 THEN
y_tmp := 0;

ELSIF Main.Timer >= 0 THEN
y_tmp := EXP((PistonVelocity * ...

param.FrictionForceApproximationConstant) * 2.0);
y_tmp := (y_tmp - 1.0) / (y_tmp + 1.0);

END_IF;

F_Stribeck_Friction := (((EXP(( -(PistonVelocity * y_tmp)) / ...
param.StaticFrictionTimeConstant) * ABS(param.StaticFrictionForce)) + ...
param.ColoumbFriction) * y_tmp) + (PistonVelocity * ...
param.ViscousFrictionCoefficient);
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// Piston Force Total [N]
F_Piston := ( (F_Hydraulic - F_Upper_Stroke_Limit + F_Lower_Stroke_Limit - ...

F_Stribeck_Friction) );

//The below is not used anymore, since movement comes from unreal via ads:
//PistonAcceleration := (F_Piston - param.ExternalForce) / ...

param.EffectiveMass;

//These are for running the hydraulic-mechanical system without any ...
connection to Unreal.

//fbPistonVelocity(
// ssMethodType := ssMethodType,
// tCycle := param.tCycle,
// In := PistonAcceleration,
// Init := param.v0,
// minOut := -param.vMax,
// maxOut := param.vMax,
// Out => PistonVelocity
// );

//fbPistonPosition(
// ssMethodType := ssMethodType,
// tCycle := param.tCycle,
// In := PistonVelocity,
// Init := param.x0,
// minOut := -5000,
// maxOut := param.xMax+5000,
// Out => PistonPosition
// );

Listing B.6: HydraulicMotor (FB)
dpsum := (PressureIn - PressureOut);

Torque := ( dpsum * Dm * nhm * EXPT(10,(-6))) / (2 * par.pi);

Listing B.7: HPU (FB)
//Pump
fbPump(
MotorSpeedRPM := 413.2,
PumpDisplacement := 10.6E-6,
DeltaMaxPressure := 250.0E5,
PumpTorque => PumpTorque,
PumpFlowRate => PumpFlowRate
);

TankPressure := 1.2E5; //[Pa]
SupplyPressure := 250E5; //[Pa]

G_ActuationSystems.ReturnPressure := TankPressure;
G_ActuationSystems.SupplyPressure := SupplyPressure;

Listing B.8: TimeIntegrator (FB)
IF bEnableLimits THEN
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fOut := LIMIT(fMinVal, fOut + fIn*fStepTime, fMaxVal);
ELSE

fOut := fOut + fIn*fStepTime;
END_IF

Listing B.9: DiscreteTimeIntegratosinit(FB)

CASE ssMethodType OF
0:

c_DiscreteTimeIntegrator_IC := 1;

1:

IF c_DiscreteTimeIntegrator_IC <> 0 THEN
c_DiscreteTimeIntegrator_DS := Init;

IF c_DiscreteTimeIntegrator_DS >= maxOut THEN
c_DiscreteTimeIntegrator_DS := maxOut;

ELSIF c_DiscreteTimeIntegrator_DS <= minOut THEN
c_DiscreteTimeIntegrator_DS := minOut;

END_IF;

END_IF;

IF c_DiscreteTimeIntegrator_DS >= maxOut THEN
c_DiscreteTimeIntegrator_DS := maxOut;

ELSIF c_DiscreteTimeIntegrator_DS <= minOut THEN
c_DiscreteTimeIntegrator_DS := minOut;

END_IF;

Out := c_DiscreteTimeIntegrator_DS;

c_DiscreteTimeIntegrator_IC := 0;
c_DiscreteTimeIntegrator_DS := (tCycle * In) + ...

c_DiscreteTimeIntegrator_DS;

IF c_DiscreteTimeIntegrator_DS >= maxOut THEN
c_DiscreteTimeIntegrator_DS := maxOut;

ELSIF c_DiscreteTimeIntegrator_DS <= minOut THEN
c_DiscreteTimeIntegrator_DS := minOut;

END_IF;
END_CASE;

Listing B.10: ValveDynamics (FB)
IF (wn = 0.0) THEN

RETURN;
END_IF

a := 1/EXPT(wn, 2.0);
b := dr/wn;

fAcceleration := (udcv_IN - 2*fbVelocity.fOut*b - fbPosition.fOut)/a;

fbVelocity(
fIn := fAcceleration,
fStepTime := fDeltaTime,

);

fbPosition(
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fIn := fbVelocity.fOut,
fStepTime := fDeltaTime,
bEnableLimits := TRUE,
fMinVal := -1.0,
fMaxVal := 1.0,
fOut => DynamicValve

);

Listing B.11: OrificeEquation (FB)

rtb_Sum := (PressureIn - PressureOut)*1E-5;

IF rtb_Sum < 0.0 THEN
y := -1.0;

ELSIF rtb_Sum > 0.0 THEN
y := 1.0;

ELSE
y := rtb_Sum;

END_IF;

lmin_to_m3s := 1.0/60000.0;

temp1 := ABS(rtb_Sum);
OrificeFlow := param.Kv * ValveOpening * y * SQRT(temp1) * lmin_to_m3s;

Listing B.12: Inputs
VAR_GLOBAL

uDcvEnableMainJib : BOOL := TRUE; //Enable/Disable manual ...
control of MainJibCylinder valve

uDcvMainJib : LREAL;
uDcvEnableKnuckleJib : BOOL := TRUE; //Enable/Disable ...

manual control of BoomCylinder valve
uDcvKnuckleJib : LREAL;
uDcvEnableKingRotation : BOOL := TRUE; //Enable/Disable manual ...

control of KingRotationCylinder valve
uDcvKingRotation : LREAL;

END_VAR

Listing B.13: Work (GVL)
VAR_GLOBAL

//To Unreal engine
FpistonMainBoom : LREAL;
FpistonKnuckleJib : LREAL;
FpistonKingRotation : LREAL;

//From Unreal engine
VpistonMainBoom : LREAL;
VpistonKnuckleJib : LREAL;
VpistonKingRotation : LREAL;

XpistonMainBoom : LREAL;
XpistonKnuckleJib : LREAL;
XpistonKingRotation : LREAL;

END_VAR
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Listing B.14: Param (GVL)
{attribute 'qualified_only'}
VAR_GLOBAL PERSISTENT

pMainJibCylinder : ST_pValveControlledCylinder; ...
//Parameters for MainJibCylinder uses values from ...
ST_pValveControlledCylinder

pKnuckleJibCylinder : ST_pValveControlledCylinder; ...
//Parameters for KnuckleJib uses values from ...
ST_pValveControlledCylinderv

pKingRotationCylinder : ST_pValveControlledCylinder; ...
//Parameters for KingRotation uses values from ...
ST_pValveControlledCylinderv

END_VAR

Listing B.15: Ramp (FB)
falling(CLK := bOn);
IF falling.Q THEN

y := y0;
t := 0;

END_IF

IF bOn THEN
IF t < t0 THEN

y := y0;
ELSIF t < t1 THEN

y := y0 + (y1-y0)*(t-t0)/(t1-t0);
ELSIF t < t2 THEN

y := y1;
ELSIF t < t3 THEN

y := y1 + (y3-y1)*(t-t2)/(t3-t2);
ELSIF t < t4 THEN

y := y3;
ELSIF t < t5 THEN

y := y3 + (y0-y3)*(t-t4)/(t5-t4);
ELSE

y := y0;
END_IF

t := t + Steptime;
END_IF

Listing B.16: STpV alveControlledCylinder(STRUCT )

TYPE ST_pValveControlledCylinder :
STRUCT

tCycle : LREAL := 1E-4;
gravity : LREAL := 9.81;
Kv : LREAL := 10 / SQRT(7); //[L/min / sqrt(bar)]
DBore : LREAL := 280E-3; //[m]120E-3
DRod : LREAL := 180E-3; //[m]80E-3
xMax : LREAL := 3.07; //[m]
pi : LREAL := 3.14159265359; //Value of pi
VA0 : LREAL := 0.01; //[m^3]
VB0 : LREAL := 0.01; //[m^3]
FrictionConstant : LREAL := 10000; //[N/(m/s)]
pA0 : LREAL := 0;
pB0 : LREAL := 0;
pAmax : LREAL :=250E5; //[pa]
pBmax : LREAL :=250E5; //[pa]
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OilBulkModulus : LREAL := 12000E5; //[Pa]
AdiatricAirConstant : LREAL := 1.4; //[-]
AtmosphericPressure : LREAL := 1.01325E5; //[Pa]
VolumetricAirConstant : LREAL := 0.007; //[%]
ViscousFrictionCoefficient : LREAL := 1500; //[kg/s]
FrictionForceApproximationConstant : LREAL := 250; //[-]
ColoumbFriction : LREAL := 75; //[N] Force
StaticFrictionForce : LREAL := 10000; //[N]
StaticFrictionTimeConstant : LREAL := 0.02; //[s/m]
cyl_k_end : LREAL := 6E9; //[N/m] spring ...

constant for spring at the stroke limits of a cylinder
cyl_c_end : LREAL := 2E7; //[N*s/m] Viscous ...

constant for damper at the stroke limits of a cylinder
END_STRUCT
END_TYPE

Listing B.17: Sign (FUN)
IF in > 0.0 THEN

Sign := 1.0;
ELSE

Sign := -1.0;
END_IF

Listing B.18: XboxControl
XboxControl.joyLeft := ...

INT_TO_LREAL(XboxControl.controller.LeftJoystickX)/32767.0;

Listing B.19: Controller (STRUCT)
TYPE Controller :
STRUCT

LeftJoystickX : INT;
LeftJoystickY : INT;
RightJoystickX : INT;
RightJoystickY : INT;
LeftTrigger : INT;
RightTrigger : INT;
LeftBumper : BOOL;
RightBumper : BOOL;
ButtonA : BOOL;
ButtonB : BOOL;
ButtonX : BOOL;
ButtonY : BOOL;
LeftThumb : BOOL;
RightThumb : BOOL;
Back : BOOL;
Start : BOOL;
DPadX : INT;
DPadY : INT;

END_STRUCT
END_TYPE
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Appendix C

Datasheet C

Unreal Engine Blueprint code
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Figure C.1:
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Figure C.2:
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Figure C.3:
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Figure C.4:
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Figure C.5:
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Figure C.6:
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Figure C.7:
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Figure C.8:
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Figure C.9:
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Figure C.10:
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Appendix D

Datasheet D

Simulink model
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