
Computational Fluid Dynamics Analy-

sis of two Savonius-type Ocean Current

Turbines with Augmentation Tech-

niqes
A two-dimensional, computational �uid dynamics approach investigating

two Savonius-type blade pro�les, with- and without a de�ector and a barrier.

TOBIAS HAUKELI SKRETTING

SUPERVISOR

Joao Leal

University of Agder, 2022
Faculty of Engineering and Science

Department of Engineering and Sciences

Mandatory Declaration

1. I/We hereby declare that my/our report is my/our own work and that

I/We have not used any other sources or have received any other help

than mentioned in the report.

✔ YES

2. I/we further declare that this report:

• has not been used for another exam at another department/univer-

sity/university college in Norway or abroad;

• does not refer to the work of others without it being stated;

• does not refer to own previous work without it being stated;

• have all the references given in the literature list;

• is not a copy, duplicate or copy of another’s work or manuscript.

✔ YES

3. I/we am/are aware that violation of the above is regarded as cheating and

may result in cancellation of exams and exclusion from universities and

colleges in Norway, see Universitets- og høgskoleloven §§4-7 og 4-8 og

Forskrift om eksamen §§ 31.

✔ YES

4. I/we am/are aware that all submitted reports may be checked for plagia-

rism.

✔ YES

5. I/we am/are aware that the University of Agder will deal with all cases

where there is suspicion of cheating according to the university’s guide-

lines for dealing with cases of cheating.

✔ YES

6. I/we have incorporated the rules and guidelines in the use of sources and

references on the library’s web pages.

✔ YES

Publishing Agreement

Authorization for electronic publishing of the report.

I hereby give the University of Agder a free right to

make the task available for electronic publishing:

✔ YES

Is the report con�dential?

✔ NO

Is the task except for public disclosure?

✔ NO

i

ii

Acknowledgements

This master’s thesis built upon the knowledge I gained through my research project [1] in the

previous year, which acted as a warm up for the current thesis. Prior to my research project I

had only taken a course in �uid dynamics, with little to no experience within computational �uid

dynamics (CFD). Most of what I have learned for CFD is self taught, however, I gained a lot of

knowledge talking with my supervisor, Joao Leal, and also from Moisés Brito, who introduced

me to OpenFOAM, and Ghali Raja Yakoub.

During my research project, I struggled to make the simulations run properly in OpenFOAM for

almost half a year, until I �nally managed to crack the code, thinking I would be ready for my

thesis. This was not the case. Once again, countless of hours went into troubleshooting, despite

following the methodology that had previously worked. Eventually I �gured out the problem.

Having fought through all the hardships and setbacks during this study, I believe I can now say,

con�dently, that I am able to perform turbine CFD simulations. Nevertheless, there is still much

to learn, and I am looking forward to expand my knowledge in the �eld.

iii

iv

Abstract

Ocean current turbines are one of many environmentally friendly, prospective energy sources

out there, however, it is still at an embryonic stage in development. This thesis aims to build on

the existing knowledge in the �eld, by investigating the design of two Savonius type ocean cur-

rent turbines, both with- and without surrounding structures that augment their performances.

The two pro�les evaluated were the semi circular- and the elliptic blade pro�le. For this pur-

pose, the computational �uid dynamics software, OpenFOAM, was utilised, with the geometry

and mesh created in Solidworks and Gmsh, respectively. The Reynolds Average Navier-Stokes

equations were used, employing the k −! SST turbulence closure model, together with the PIM-

PLE pressure-velocity coupling algorithm. Wall functions were implemented to estimate the �ow

parameters in the wall boundaries, using an average y
+

value of 300. However, results show that

this approach provided inaccurate results, most likely due to poor estimations of �ow separa-

tion. Augmentations increased the power coe�cient of the semi circular turbine by 50.78%, from

0.258 to 0.389, whereas the elliptic pro�le saw a 79.71% increase in power coe�cient, from 0.276

to 0.496. Future work regarding this thesis should look at further enhancement of the elliptic

pro�le, optimizing the augmentation around it. Moreover, a �ner grid should be implemented.

v

vi

Contents

Acknowledgements . iii

Abstract . v

List of Figures . xii

List of Tables . xiii

Abbreviations and Nomenclature . xv

1 Introduction 1
1.1 Objective . 1

1.2 Report Structure . 1

2 Computational Fluid Dynamics and Modeling Theory 3
2.1 Navier-Stokes Equations . 3

2.2 Turbulence Modeling . 4

2.3 Mesh . 9

2.3.1 Unstructured Mesh . 9

2.3.2 Structured Mesh . 9

2.3.3 Rotating Mesh . 11

2.3.4 Mesh Quality . 12

2.3.5 Boundary Layers . 13

2.4 Boundary Conditions . 15

2.4.1 Velocity . 15

2.4.2 Turbulent Kinetic Energy . 15

2.4.3 Speci�c Turbulence Dissipation Rate . 16

2.4.4 Pressure . 17

2.4.5 Turbulent Eddy Viscosity . 17

2.5 The PIMPLE Pressure-Velocity Coupling Algorithm 17

3 Literature Review 21
3.1 Rudimentary Concepts . 21

3.2 Overview of Turbines . 23

3.3 Computational Fluid Dynamics of Turbines . 26

4 Research Questions 31

5 Method 33

vii

5.1 SOLIDWORKS . 33

5.1.1 Blade Pro�les . 33

5.1.2 Augmentation Techniques . 33

5.1.3 Splitting the Domain . 34

5.1.4 Mass Properties . 35

5.1.5 Exporting the Domain . 35

5.2 Gmsh . 35

5.3 OpenFOAM . 39

5.3.1 Importing the Mesh . 39

5.3.2 Boundary- and Initial Conditions . 39

5.3.3 Constant Folder . 41

5.3.4 System Folder . 42

6 Results and Discussion 45
6.1 Static Cases . 45

6.2 Validation Against Literature . 46

6.3 Comparing the Studied Cases . 48

7 Conclusions 53

8 Further Work 55

Bibliography 57

A Power Density in Water and Wind. A1

B Blending Function A2

C SIMPLE and PISO �owcharts A3

D Gmsh .geo Code for Semi Circular Savonius with Augmentations A4

E OpenFOAM Set-up, Boundary- and Initial Conditions A6
E.1 dynamicMeshDict . A6

E.2 turbulenceProperties . A9

E.3 transportProperties . A10

E.4 Boundary . A11

E.5 controlDict . A13

E.6 decomposeParDict . A14

E.7 fvSchemes . A15

E.8 fvSolution . A16

E.9 residuals . A18

E.10 yPlus . A19

E.11 Velocity . A20

E.12 Pressure . A22

viii

E.13 Turbulent Eddy Viscosity . A23

E.14 Turbulent Kinetic Energy . A25

E.15 Speci�c Turbulent Dissipation Rate . A27

E.16 pointDisplacement . A29

F Ubuntu Shell Script to Run Cases A30

G Python Script for Post-Processing A32

H Wake Development for the Static Case A35

I Performance Parameter Data A36
I.1 Semi Circular Savonius Turbine without Augmentations A36

I.2 Semi Circular with Augmentations . A36

I.3 Elliptical without Augmentations . A37

I.4 Elliptical with Augmentations . A37

J Velocity Along the Wake A38
J.1 Semi Circular Savonius without Augmentations A38

J.2 Semi Circular Savonius with Augmentations . A39

J.3 Elliptic Savonius without Augmentations . A40

J.4 Elliptic Savonius with Augmentations . A41

ix

x

List of Figures

2.2.1 A comparison of RANS, LES, and DNS [11]. 5

2.2.2 Typical turbulence energy spectrum as a function of the wave number [12]. . . . 7

2.3.1 Unstructured grid with triangles made in Gmsh. 9

2.3.2 Example of a Cartesian, curvilinear, and body-�tted curvilinear grid [43]. 10

2.3.3 Cartesian- and body-�tted curvilinear grid on a 90°bend [38]. 10

2.3.4 Example of a Chimera mesh [44]. 11

2.3.5 Example of the Arbitrary Mesh Interface (AMI) between a �xed domain and a

moving domain [45], [46]. 11

2.3.6 Di�erent parameters that help describe the quality of the mesh. 12

2.3.7 Dimensionless velocity pro�le in the boundary layer as a function of y
+

[53]. . . . 14

2.5.1 Flowchart of the PIMPLE Algorithm. Based on [5], [6], [12] and the OpenFOAM

guides and source codes for SIMPLE [68]–[70], PISO [71], [72], and PIMPLE [73],

[74]. 19

3.1.1 The power coe�cient (Cp) of conventional wind turbines based on the TSR (in

this article, � was used for TSR) [78]. 22

3.2.1 Three di�erent tidal current turbines. 23

3.2.2 The geometric parameters of a typical Savonius rotor [97]. Drag-based con�gu-

ration. 24

3.2.3 Straight bladed cross-�ow hydrokinetic turbine designed for 100 W at 1.2 ms
−1

[101]. Lift-based con�guration. 25

3.2.4 Illustration of overlap and end plates. 26

3.3.1 The barrier utilised in [112], tested with di�erent con�guration combinations (1-

9) to optimize its positioning. 28

3.3.2 Geometrical setup of the turbine and de�ector blades from [114]. 29

3.3.3 Sketch of the sectional cut for the elliptic Savonius turbine in [115]. 29

5.1.1 Sketch of how the elliptic blade pro�le was made, based on the description found

in [106], [107]. 34

5.1.2 Fluid domain split up for multiblock mesh regions for the semi circular blade

without augmentations. A=1.5Dt , B=C=0.375 m. 35

5.2.1 Overview of the mesh for the semi circular Savonius blade pro�le with augmen-

tations. 37

5.2.2 Enlarged image of the mesh close to the de�ector, AMI, turbine blade, and shield. 37

xi

5.2.3 Physical groups of the domain for the semi circular Savonius rotor with augmen-

tations. 38

5.3.1 File structure of a transient OpenFOAM case . 40

6.1.1 Residuals for the static case using the unaugmented semi circular. 45

6.2.1 Power- and torque coe�cient as a function of TSR for the semi circular- and

elliptic blade pro�les without augmentations, compared with similar pro�les in

literature. 46

6.2.2 Pressure �eld around both blade pro�les without augmentations at time of �ow

separation at the blade tip. 47

6.2.3 The wake velocity �eld of the unaugmented turbines. 48

6.3.1 Comparison of the power- and torque coe�cients as a function of TSR for all four

cases. 49

6.3.2 Pressure �eld around the turbines at their respective maximum power points. . . 50

6.3.3 Velocity �eld around the turbines at their respective maximum power points. . . 51

A.0.1 Power density comparison between water and wind. A1

B.0.1 Blending function F1. A2

C.0.1 Simpli�ed �owcharts of the SIMPLE- and PISO algorithm, based on [5], [6], [12]

and the OpenFOAM guides and source codes for SIMPLE [68]–[70] and PISO [71],

[72]. A3

H.0.1 The wake velocity �eld of the static case for the unaugmented semi circular tur-

bine at time 500 and time 3000. A35

J.1.1 Velocity along the wake of the semi circular Savonius without augmentations . . A38

J.2.1 Velocity along the wake of the semi circular Savonius with augmentations A39

J.3.1 Velocity along the wake of the elliptic Savonius without augmentations A40

J.4.1 Velocity along the wake of the elliptic Savonius with augmentations A41

xii

List of Tables

2.2.1 Empirical, dimensionless turbulence closure coe�cients for Menter 2003 k − !
SST [23], [33]. 9

3.2.1 Categorisation of di�erent tidal current turbines [84]. 23

5.0.1 Turbine geometries assigned to case numbers. 33

5.1.1 Geometrical parameters of the two Savonius-type turbines. 34

5.1.2 Mass and principle moment of inertia (x, y, z) after extruding the turbine pro�les

by 2 meters. 35

5.2.1 Calculations required to �nd the �rst cell height corresponding to y
+
= 300 at the

wall boundaries, using Eqs. 2.22, 2.24, 2.25, 2.26, and 2.27 36

5.3.1 Boundary conditions for k and !, calculatd using Eqs. 2.32, 2.34, and 2.35 41

5.3.2 Description of what operations the di�erent numerical schemes perform [119],

[120] . 42

6.3.1 Performance parameters of the Savonius turbines for the corresponding Br 49

6.3.2 Power coe�cient comparison between all cases. 49

6.3.3 Torque coe�cient comparison between all cases. 50

I.1.1 Results for the semi circular Savonius turbine without augmentations A36

I.2.1 Results for the semi circular Savonius turbine with augmentations A36

I.3.1 Results for the elliptic Savonius turbine without augmentations A37

I.4.1 Results for the elliptic Savonius turbine with augmentations A37

xiii

xiv

Abbreviations and Nomenclature

Abbreviations

AMI Arbitrary Mesh Interface

AR Aspect Ratio

CFD Computational Fluid Dynamics

DNS Direct Numerical Simulation

GAMG Geometric-Algebraic Multi-Grid

LES Large Eddy Simulation

OpenFOAM Open Source Field Operation and Manipulation

OR Overlap Ratio

PIMPLE Not an abbreviation, but a combination of PISO and PIMPLE

PISO Pressure-Implisit with Splitting of Operator

RANS Reynolds Average Navier-Stokes

SIMPLE Semi-Implicit Method for Pressure-Linked Equations Extrapolation

SIMPLE Semi-Implicit Method for Pressure-Linked Equations

SIMPLEC Semi-Implicit Method for Pressure-Linked Equations Consistent

SIMPLER Semi-Implicit Method for Pressure-Linked Equations Revised

SST Shear Stress Transport

TSR Tip Speed Ratio

Greek

� Turbulence closure coe�cient blended between �1 and �2 [-]

�1 Turbulence closure coe�cient 5/9 [−]

�2 Turbulence closure coe�cient 0.44 [−]

�r Linear relaxation coe�cient [−]

xv

� Turbulence closure coe�cient blended between �1 and �2 [-]

�
∗

Turbulence closure coe�cient 0.09 [-]

�1 Turbulence closure coe�cient 3/40 [-]

�2 Turbulence closure coe�cient 0.0828 [-]

� Boundary layer thickness [m]

� von Kármán constant [0.41 −]

� Dynamic viscosity [kgm
−1
s
−1

]

�t Turbulent, dynamic eddy viscosity [kgm
−1
s
−1

]

� Kinematic viscosity [m
2
s
−1

]

! Speci�c turbulence dissipation rate [s
−1

]

ΩR Angular velocity of the rotor in RPM [RPM]

!r Angular velocity of the rotor [s
−1

]

!BC Speci�c turbulence dissipation rate inlet and outlet boundary condition [s
−1

]

!log Speci�c turbulence dissipation rate in the inertial region for wall boundaries

[s
−1

]

!vis Speci�c turbulence dissipation rate in the viscous region for wall boundaries

[s
−1

]

!WBC Speci�c turbulence dissipation rate wall boundary condition [s
−1

]

� Density [kgm
−3

]

�k Turbulence closure coe�cient blended between �k1 and �k2 [-]

�!1 Turbulence closure coe�cient 0.5 [-]

�!2 Turbulence closure coe�cient 0.856 [-]

�! Turbulence closure coe�cient blended between �!1 and �!2 [-]

�k1 Turbulence closure coe�cient 0.85 [-]

�k2 Turbulence closure coe�cient 1 [-]

�k" Turbulence closure coe�cient 1.00 [-]

�w Wall shear stress [kgm
−1
s
−2

]

" Turbulent dissipation rate [m
2
s
−3

]

� Model coe�cient of small value to prevent �oating point exception [−]

xvi

Roman

A Swept area of the rotor [m
2
]

a1 Turbulence closure coe�cient 0.31 [−]

Bk Model coe�cient [8.366 −]

Br Rotational friction coe�cient [kgm
2
s
−1

]

C Constant for estimating eddy length scale [-]

C1 Turbulence closure coe�cient [-]

C2 Turbulence closure coe�cient [-]

Cp Power coe�cient of a turbine [-]

Ceps2 Model coe�cient [1.9 −]

Cf ,x Schlichting and Gersten’s local skin-factor correlation [-]

CkBC Model coe�cient [−0.416 −]

CDk! Cross-di�usion term [kgm
−3
s
−2

]

e Overlap length [m]

F1 Blending function, auxiliary turbulence relation [-]

F2 Blending function, auxiliary turbulence relation [-]

G Body accelerations acting on the �uid [meter/s
2
]

g Gravitational acceleration 9.81 [m/s
2
]

k Turbulent kinetic energy [m
2
s
−2

]

kBC Turbulent kinetic energy inlet and outlet boundary condition [m
2
s
−2

]

klog Turbulent kinetic energy in the inertial region for wall boundaries [m
2
s
−2

]

kvis/log Turbulent kinetic energy placeholder for kvis and klog [m
2
s
−2

]

kvis Turbulent kinetic energy in the viscous region for wall boundaries [m
2
s
−2

]

kWBC Turbulent kinetic energy wall boundary condition [m
2
s
−2

]

L Length of the boundary layer [m]

l Reference length scale of energy-containing eddies [m]

LD Equivalent pipe diameter [m]

Lt Length, or height, of the turbine [m]

xvii

Pc The power captured by the turbine [W]

PD Perimeter [m]

Pk Production term for turbulent kinetic energy [kgm
−1
s
−3

]

PKE Kinetic energy available in the �uid �ow [W]

R Radius of the turbine [m
2
]

Re Reynolds number [-]

S Invariant measure of the strain rate [s
−1

]

Tr Torque from shaft and generator [kgm
2
s
−2

]

Tt Turbine torque [kgm
2
s
−2

]

U Average velocity [ms
−1

]

u Velocity [ms
−1

]

u
∗

Friction velocity [ms
−1

]

U
+

Dimensionless velocity [-]

y Normal distance to the nearest wall [m]

y
+

Dimensionless normal distance to the nearest wall [-]

yc Distance from the nearest wall to the cell centroid [m]

P̃k Production term limiter [kgm
−1
s
−3

]

U⃗ Average velocity vector with x , y, z components (U , V , W) [ms
−1

]

u⃗ Velocity vector with x , y , z components (u, v, w) [ms
−1

]

xviii

.

Chapter 1

Introduction

During the last decade, extensive research has targeted a variety of renewable energy sources to

prevent further degradation of the climate, while fossil fuels are gradually being phased out. One

of the branches of research focus on capturing energy from tides and ocean currents, which could

provide stable, clean energy, especially for remote areas close to the ocean that are currently

dependant on fossil fuels. While tidal- and ocean current turbines bear heavy resemblance to

wind turbines, underwater conditions are more demanding, thus this technology is still in its

embryonic stages. When only considering Canada, China, and Norway, an estimated 9078 MW

of tidal turbines can be installed, accounting for grid connectivity, sustainability, shipping routes,

and more [2]. Learning to harness this energy could prove to be a valuable asset to the energy

mix. Doing this as e�ciently as possible requires a well designed turbine.

1.1 Objective

To aid propel the progression of drag based ocean current turbines, this thesis will utilise compu-

tational �uid dynamics (CFD) to evaluate their design. The initial idea was spurred by OceanEnvi,

who look to harvest the energy of the ocean. For the simulations, OpenFOAM version 9 [3] will

be used, along with Solidworks 2021-2022 and Gmsh v4.8.4 [4] for geometry design- and mesh-

ing. This thesis aims at investigating blade pro�les and surrounding structures that augment the

performance of the turbine.

1.2 Report Structure

Following is a comprehensive description of the relevant computational �uid dynamics theory

in Chapter 2. This includes the Navier-Stokes equations, turbulence modeling, di�erent types of

meshes and indicators of what constitutes a good mesh, and �nally the pressure-velocity coupling

algorithms, where large parts of text is taken from the previous work made by the author in

[1]. Some alterations and improvements were made where �t, however, for the most part it is

the same. When the foundation of CFD has been laid out, a literature review of existing ocean

current turbines and CFD simulations of turbines will be presented in Chapter 3, which also

includes parts from the previous research project [1]. Subsequently, the research questions of

the current thesis will be stated in Chapter 4, discussing how this thesis builds on the previous

1

literature. After the research questions have been de�ned, the methodology used to answer them

is presented in Chapter 5, with the results and discussion thereof given in Chapter 6. Finally, the

work is concluded in Chapter 7, ending with recommendations for future work in Chapter 8.

2

Chapter 2

Computational Fluid Dynamics and
Modeling Theory

In the design process of a system containing �uid �ow, the use of computational �uid dynamics

(CFD) has proven very bene�cial. Prior to its formation, around the 1960s [5], engineers had to

perform experiments and calculations by hand, if they wanted to study the behaviour of �uids.

Now, CFD can be used to analyse, test, and optimise designs on a computer, reducing the time and

�nancial assets required. In this chapter, the most important governing equations used in CFD

programs will be presented. Additionally, the meshed cells where these equations are applied,

and the solvers and turbulence models used to calculate them, are also brie�y introduced.

2.1 Navier-Stokes Equations

Fluid �ow is governed by the laws of physics. The equations used to describe its behaviour

are called the Navier-Stokes equations, shown in Eqs. 2.1 and 2.2. They were initially derived

by Claude Louis Marie Henri Navier, a French engineer, in the 19th century, and then later on

George Stokes, a British mathematical physicist, arrived at the same derivation independently

[5], [6]. For incompressible �uids, as is the case of water in our application, the �rst equation is

the continuity equation,

∇ ⋅ u⃗ = 0, (2.1)

which is when the divergence of the velocity vector, u⃗ [ms
−1

], is zero. That is, when the sum of

the rate of change in the x , y, and z direction is zero. The momentum equation, Eq. 2.2, is in

essence Newton’s second law of motion, F⃗ = ma⃗,

�
[

)u⃗

)t

+ (u⃗ ⋅ ∇) u⃗
]
= −∇p + �∇

2
u⃗ + �G⃗, (2.2)

where the left hand side describes mass times acceleration per volume of �uid, and the right

hand side encapsulates all the forces acting on this �uid volume. Here, � [kgm
−3

] is the density,

p [kgm
−1
s
−2

] is the pressure, � [kgm
−1
s
−1

] is the dynamic viscosity, and G⃗ [ms
−2

] is the body

acceleration, often replaced by the gravitational acceleration g⃗, 9.81 [ms
−2

] in the downwards

direction. To build on that, on the left side, mass is described by the density, which is mass divided

3

by volume, and the acceleration is simply the derivative of velocity. Next, the pressure forces are

described by the divergence of pressure, being negative since the pressure force is acting from the

surrounding �uid onto the control volume. Lastly, the viscous forces are the viscosity multiplied

by the Laplacian of velocity. By inserting the full form of the velocity vector and the del (or nabla)

operator ∇,

u⃗ =

⎡

⎢

⎢

⎢

⎣

u

v

w

⎤

⎥

⎥

⎥

⎦

(2.3)
∇ =

[

)

)x

,

)

)y

,

)

)z]
(2.4)

into Eq. 2.2, the complete expression for the Navier-Stokes momentum equation is obtained,

�
(

)u

)t
+ u

)u

)x
+ v

)u

)y
+ w

)u

)z)
= −

)p

)x
+ �

(

)
2
u

)x
2
+

)
2
u

)y
2
+

)
2
u

)z
2)
+ �Gx

�
(

)v

)t
+ u

)v

)x
+ v

)v

)y
+ w

)v

)z)
= −

)p

)y
+ �

(

)
2
v

)x
2
+

)
2
v

)y
2
+

)
2
v

)z
2)
+ �Gy

�
(

)w

)t
+ u

)w

)x
+ v

)w

)y
+ w

)w

)z)
= −

)p

)z
+ �

(

)
2
w

)x
2
+

)
2
w

)y
2
+

)
2
w

)z
2)

+ �Gz

. (2.5)

Solving these equations, however, is no easy task as the instantaneous velocity �eld can vary a lot

in both space and time for turbulent �ows, underlined by being one of the seven Millennium Prize

Problems [7]. Consequently, several models and solvers that estimate the solution accurately have

been developed. An essential part of these methods is the turbulence modeling.

2.2 Turbulence Modeling

Turbulence can be described as the volatile component of motion in �ows with high Reynolds

numbers [6]. It is often visually characterised by eddies of di�erent sizes, shapes, and orienta-

tions, swirling around in the �uid, such as the well known von Kármán vortex street. Modeling

this swirling, turbulent behaviour is important, as some applications, such as vortex generators

on an airfoil [8] or in heat exchangers [9], take advantage of it, while others want to avoid turbu-

lence, such as minimizing stall cells in pump-turbines [10]. Several methods modelling turbulence

exist, all with their advantages and disadvantages, characterised by the Reynolds Average Navier-

Stokes (RANS) equations and partly by the Large Eddy Simulation (LES). Another option is to use

Direct Numerical Simulation (DNS), although this calculates all the �ow properties numerically,

thus does not model the turbulence. A comparison between the three is shown in Figure 2.2.1,

which can help indicate the di�erence in accuracy [11]. For RANS, the main focus is directed

towards the mean �ow, and how the turbulence a�ects its properties [12], where the entirety of

the Navier-Stokes equations are modeled [5]. Compared to LES and DNS, the computational re-

sources necessary are small, making it the dominant method for complex engineering purposes

[12]. Variations of RANS, such as unsteady RANS, are also common, and research has been made

using machine learning techniques in combination with RANS [13]–[15]. Additionally hybrid

RANS-LES models are often used [5], [16], [17]. In LES, one ideally wants to resolve about 90%

of Navier-Stokes equations numerically, while the remaining 10% are modelled. This will allow

the large eddies to be resolved, while the small eddies are modelled, providing a better picture

4

of the true behaviour of the �ow. Direct numerical simulation takes this up a notch, resolving

100% of the Navier-Stokes equations numerically, which is mostly used for speci�c, low Reynolds

research and experiments [18], [19], or to aid the validation of lower cost models [20]. [1], [5]

Figure 2.2.1: A comparison of RANS, LES, and DNS [11].

Since both LES and DNS are computationally heavy, RANS will be the main focus of this pa-

per. The RANS equations resemble the original Navier-Stokes equations in Eq. 2.1 and 2.2, al-

though the velocity vector is now the time-averaged velocity U⃗ , and a turbulent eddy viscosity

�t [kgm
−1
s
−1

] appears due to this time-averaging procedure [5], [6],

∇ ⋅ U⃗ = 0, (2.6)

�

[

)U⃗

)t

+
(
U⃗ ⋅ ∇

)
U⃗

]

= −∇P + (� + �t) ∇
2
U⃗ + �G⃗. (2.7)

To solve the RANS equations, several turbulence closure models can be utilised, such as k−" [21],

k − ! [22], and k − ! SST (shear stress transport) [23]. From literature the latter method is the

one that performs the best, [24]–[29], although the realizable k − " (one of the many variants of

k − ") model has also proven to perform well [30]–[32]. In the OpenFOAM software, the Menter

2003 version of k − ! SST, [23], [33] is used. Following is a description of this model, with its

equations, based on Menter 2003 [23] and the OpenFOAM documentation [33]. Some adjustments

to the notation used in the equations were made to stay consistent with the notation used in this

report.

The k − ! SST model is a combination of the k − " and k − ! model, made to mitigate the short-

comings of the two models working individually [23], [34]. Due to a lack of sensitivity to adverse

pressure-gradients, the k − " model predicts notably higher shear-stress levels than what would

actually occur, resulting in a delay in, or even a prevention of, separation [35]. Adverse pressure

gradients often arise in curved geometries, such as for an airfoil, making the k−" unfavourable for

simulations of such geometries. Additionally, it implements highly nonlinear damping functions

in the sublayer, which could impede the convergence properties of the scheme. Conversely, the

5

k−! model does not require damping functions in the sublayer, increasing the numerical stability,

moreover, it also has a superior performance with adverse pressure-gradients in the boundary

layer, i.e. near walls. Despite these advantages, k − ! is heavily dependant on the freestream

values of the speci�c turbulence dissipation rate, ! [s
−1

], such that even a minor di�erence in

this value could drastically a�ect the eddy-viscosity, �t [kgm
−1
s
−1

], and skin friction coe�cient,

Cf ,x [−] [23], [36], [37]. In this regard, k − " is superior. Following is a description of the k − !

SST model, where �rst an explanation of what k, ", and ! are will be presented, followed by their

respective transport equations. Then, the relationship between the two models, k − " and k − !,

including the blending between them in the k − ! SST model, will be explained.

The turbulent kinetic energy, k [m
2
s
−2

], describes the kinetic energy of the eddies in turbulent

�ow [12]. This energy is proportional to the size of the eddies, such that large eddies contain

more energy than small eddies. Figure 2.2.2 represents this, where the spectral energy (kinetic

energy per unit mass and per unit wavenumber) is plotted as a function of the inverse of eddy

size (wavenumber). Larger eddies are formed by the shear forces of the mean �ow, and in turn

their energy generate smaller eddies [5]. As the energy progressively propagates into lesser and

lesser eddies (larger wavenumbers), there comes a point where the viscous forces and the shear

forces are equal. At this point the eddies dissipate into heat, which occurs at a rate " [m
2
s
−3

],

known as the turbulent dissipation rate. To obtain ! [s
−1

], the following relation can be used [1]

! =

"

�
∗
k

⇔ " = !�
∗
k, (2.8)

where ! represents the speci�c turbulence dissipation rate, with �
∗
= 0.09 being an empirical

constant.

As k, ", and ! have been de�ned, their transport equations for the turbulence models will be

presented. Each transport equation follows the same pattern: rate of change of the variable +

transport by convection = transport by di�usion + rate of production - rate of destruction [12].

The transport equations for k − " are as follows

�
[

)k

)t

+ ∇
(
U⃗ ⋅ k

)]
= ∇

[(
� +

�t

�k"
)
∇k

]
+ Pk − �" (2.9)

and

�
[

)"

)t

+ ∇
(
U⃗ ⋅ "

)]
= ∇

[(
� +

�t

�"
)
∇"

]
+ C1

"

k

Pk − C2�

"
2

k

, (2.10)

where Pk [kgm
−1
s
−3

] is a production term representing the conversion of the mean kinetic energy

from the �ow to the turbulent kinetic energy of the eddies [12]. �k" , �" , C1, and C2 are empirical

constants with values 1.44, 1.92, 1.00, and 1.30, respectively.

The transport equations used in the k − ! model are [23]

�
[

)k

)t

+ ∇
(
U⃗ ⋅ k

)]
= ∇ [(� + �k!�t) ∇k] + Pk − ��

∗
k! (2.11)

and

6

Figure 2.2.2: Typical turbulence energy spectrum as a function of the wave number [12].

�
[

)!

)t

+ ∇
(
U⃗ ⋅ !

)]
= ∇ [(� + �!′�t) ∇!] +

��1

�t

Pk − ��1!
2
, (2.12)

where �k! , �!′ , �1, and �1 are empirical constants with values 0.5, 0.5,
5

9
, and

3

40
, respectively, and

�t [m
2
s
−1

] is the turbulent kinematic viscosity.

To construct the transport equations used in the k − ! SST model, it is helpful to look at the

relationship between the k − " and k − ! transport equations by inserting Eq. 2.8 into Eqs. 2.9

and 2.10, resulting in

�
[

)k

)t

+ ∇
(
U⃗ ⋅ k

)]
= ∇ [(� + �k!�t) ∇k] + Pk − ��

∗
k!, (2.13)

and

�
[

)!

)t

+ ∇
(
U⃗ ⋅ !

)]
= ∇ [(� + �!′�t) ∇!] +

��2

�t

Pk − ��2!
2
+ 2��!2

1

!

∇k ∶ ∇!. (2.14)

Comparing these transport equations for k−", written in terms of !, with the transport equations

for k − !, one can see that for k they are both equal, whereas for ! the only di�erence is the

7

term 2��!2
1

!
∇k ∶ ∇!. This term is known as the cross-di�usion term. Now, by implementing a

blending function, F1, in the cross-di�usion term, such as

�
[

)!

)t

+ ∇
(
U⃗ ⋅ !

)]
= ∇ [(� + �!�t) ∇!] +

��

�t

Pk − ��!
2
+ 2 (1 − F1) ��!2

1

!

∇k ∶ ∇!, (2.15)

where F1 varies from 0 to 1 depending on the distance to the nearest wall, y [m],

F1 = tanℎ

{
{

min
[
max

(

√

k

�
∗
!y

,

500�

y
2
!)

,

4��!2k

CDk!y
2]

}4

}

, (2.16)

the k − ! SST will blend smoothly between its two turbulence closure models. Here, CDk! ,

[kgm
−3
s
−2

] is simply a limitation of the cross-di�usion term, such that it never reaches zero to

ensure Eq. 2.16 is not divided by zero, resulting in a �oating point exception, de�ned as

CDk! = max (
2��!2

1

!

∇k ∶ ∇!, 10
−10

)
. (2.17)

For cells close to a wall, F1 is 1 and the cross-di�usion term disappears from Eq. 2.15, resulting

in the transport equation for the standard k − !, Eq. 2.12. Conversely, for cells far away from

a wall, F1 is 0, such that the transport equation corresponds to the one found in k − ", Eq. 2.14.

Since F1 varies between 0 and 1, as seen in Appendix B, the k −! SST model can blend smoothly

between " and !. This now re�ects the advantages of the two turbulence models, where k − !

is used close to the walls, where adverse pressure gradients are likely to occur, whereas k − " is

used in the freestream, since it is not overly sensitive in this region.

Furthermore, with k − ! SST, the turbulent eddy viscosity, �t , is calculated using Eq. 2.18,

�t =

�a1k

max (a1!, SF2)

, (2.18)

where S =

√

2SijSij [s
-1

] is the invariant measure of the strain rate, where Sij is the mean stress

tensor [s
-1

]) and F2 [-] is another blending function,

F2 = tanℎ

[[
max

(

2

√

k

�
∗
!y

,

500�

y
2
!)]

2

]

. (2.19)

For CFD codes, the production term, Pk , is replaced by a production limiter, P̃k [kgm
−1
s
−3

], that

prevents accumulation of turbulence in stagnation regions, de�ned as

Pk = �t

)Ui

)xj
(

)Ui

)xj

+

)Uj

)xi
)
→ P̃k = min (Pk , 10 ⋅ �

∗
�k!) . (2.20)

Turbulence closure coe�cients, such as � , � , �k , and �! , are also subject to the blending between

k − " and k − !, using Eq. 2.21. Here, they replace the place holder variable �. Additionally,

the place holders �! and �" are replaced by the constants corresponding to the variable that is

being calculated, speci�ed in Table 2.2.1. This linear interpolation method is done to improve the

transition between the two turbulence models.

8

� = �!F1 + �" (1 − F1) (2.21)

Table 2.2.1: Empirical, dimensionless turbulence closure coe�cients for Menter 2003 k − ! SST [23], [33].

�! �"

Constant a1 �
∗

�1 �1 �k1 �!1 �2 �2 �k2 �!2

Value 0.31 0.09 5/9 3/40 0.85 0.5 0.44 0.0828 1 0.856

2.3 Mesh

When applying the Navier-Stokes equations and the turbulence models in numerical simula-

tions, the computational domain has to be discretized into small cells, or elements [38]. These

cells comprise what is known as a mesh, often called grid. Every single cell in the mesh repre-

sents a discrete space of the �uid domain, moreover, the governing equations are solved in each

individual cell. In this chapter an overview of the two main types of mesh, unstructured- and

structured mesh, will be presented. Additionally, what constitutes a good mesh will be discussed.

Large parts of this is gathered from the previous work in [1].

2.3.1 Unstructured Mesh

Figure 2.3.1: Unstructured grid with

triangles made in Gmsh.

An unstructured mesh can be characterized by its irregular

connectivity, and is often applied in complex, irregular ge-

ometries [38], as seen in Fig. 2.3.1. This type of meshing is

simpler to automate than the structured mesh, due to its abil-

ity to take on a variety of shapes, including triangular-, and

polygon cells for 2D, and tetrahedral-, pyramid-, or polyhe-

dral shaped for 3D. The process of generating this type of

mesh is quite basic, where points need to be created, and the

connectivity between these points must be de�ned. Due to its

�exibility, this method is often preferred, however, its irreg-

ularities can often yield skewed elements that require more

computational power in numerical simulations compared to

its structured counterpart. This is especially noticeable close

to boundary layers or other sensitive regions. Numerical

computations are easier solved with regular, structured cells. By combining unstructured and

structured grids a hybrid mesh is made [5]. [39]

2.3.2 Structured Mesh

The structured mesh can broadly be divided into Cartesian and curvilinear grids [5], with exam-

ples of these being shown in Fig. 2.3.2 together with a body-�tted curvilinear grid. In curved

geometries the Cartesian method would generate staircase-like steps, shown in Fig. 2.3.3a [38].

9

In Fig. 2.3.3b, however, the grid is �rst made in a curvilinear domain, and subsequently trans-

formed into the physical domain using some transform function. In modern meshing software,

these transformations occur behind the scenes, where the user usually only has to specify the

resolution of the grid [5], [6], [38]. Common for the structured grids, is that they consist of

quadrilateral- or hexahedral cells for 2D and 3D, respectively, with a regular connectivity [38],

[39], contrary to the irregular connectivity of the unstructured grid. If the �uid domain is com-

plex, it is possible to divide it into several areas that are meshed individually, with multiblock

grids. If all these sub-domains have a structured mesh, the grid as a whole will be termed as a

block structured grid [6]. When making block structured grids, it is preferable to have matching

cells in the interface between the multiblocks. That is, the nodes of the cells on either side of

the interface should be connected to each other, otherwise the computational time will increase

[40]–[43].

Figure 2.3.2: Example of a Cartesian, curvilinear, and body-�tted curvilinear grid [43].

(a) Cartesian grid.
(b) Body-�tted grid with both the physical- and the curvi-

linear domain.

Figure 2.3.3: Cartesian- and body-�tted curvilinear grid on a 90° bend [38].

10

2.3.3 Rotating Mesh

When implementing rotating meshes to for example marine current turbines, it is di�cult to

achieve matching grids. One method of generating the rotating mesh is the overset method, also

known as a Chimera mesh, which is a variant of multiblock grid [5], [6]. An example of the

Chimera mesh is shown in Fig. 2.3.4 [44]. Here, blocks that are individually meshed overlap

with each other. The unnecessary cells will subsequently be removed in a process called hole

cutting, which often results non-matching grids at the interface [6], [44]. To alleviate this issue,

interpolation methods are implemented.

Figure 2.3.4: Example of a Chimera mesh [44].

Figure 2.3.5: Example of the Arbitrary Mesh

Interface (AMI) between a �xed domain and a

moving domain [45], [46].

Another method used for moving topologies is the

Arbitrary Mesh Interface (AMI) [46]. Fig. 2.3.5 de-

picts how this could look [45], [46]. This method

also requires interpolations between the cells on ei-

ther side of the sliding interface to determine the

�ow properties (pressure, velocity, speci�c turbu-

lence dissipation rate, etc.). For this procedure, a

weighting system is implemented to determine the

contribution of each cell fraction on the face of the

neighbouring domain/patch [46], [47]. The AMI

method performs well for the rotating behaviour of

a turbine [46], although deviations could occur at

the interface due to poor matching of cells. A good

mesh should de�ne this AMI region some distance

away from sensitive regions to safeguard the accu-

racy of the solution.

11

2.3.4 Mesh Quality

While a straightforward de�nition of what constitutes a good mesh can be di�cult to describe,

parameters such as orthogonality, skewness, smoothness, and aspect ratio can be used to give

an indication of the quality. It is worth noting that OpenFOAM has a command, "checkMesh",

that will evaluate these parameters [48]. The sketches in Figure 2.3.6 can be used to identify

what each of the parameters represent. Orthogonality, Figure 2.3.6a, is de�ned as the angle, pℎi,

between the line connecting two cell centroids and the normal of the face between them. The

desired orthogonality is zero degrees, although OpenFOAM allows angles up to 65°before the

"checkMesh" command issues a warning, according to the source code [49]. Furthermore, the

source code de�nes a maximum internal skewness of 4, where skewness, Figure 2.3.6b, describes

the relationship between the line C1C2 and P1P2. While OpenFOAM describes smoothness by the

di�erence in volume between connected cells, it could be helpful to imagine the growth ratio

between the length a and the length b, Figure 2.3.6c. Too large growth ratios will impede the

computational speed, moreover, the di�erence between the largest and smallest volume should

not be too big. Lastly, the aspect ratio, Figure 2.3.6d, is the ratio between the longest, c, and

shortest, d , face of the cell, where the optimal value is one.

(a) Orthogonality (b) Skewness

(c) Smoothness (d) Aspect ratio

Figure 2.3.6: Di�erent parameters that help describe the quality of the mesh [48], [50], [51]

12

Ultimately, a good mesh should be able to provide an accurate solution, representative of the true-,

analytical solution, while also enabling the required computational time to be small. To safeguard

this, the mesh should be re�ned in regions of importance and areas where large velocity gradients

are likely to occur, while regions of less importance can be coarser [6]. To deduce which regions

will be a�ected by large velocity gradients, a preliminary simulation can be made with a coarse

mesh, giving a rough overview of a�ected areas. Additionally, logic and experience can come

in handy, as regions such as the tip of a blade or at a pipe intersection are bound to have larger

gradients than in the freestream. A poor mesh can increase simulation time, or in worst case

induce numerical di�usions that crash the simulations entirely [52]. This becomes increasingly

important close to walls, as the behaviour of �uids within the so called "boundary layer" di�ers

from that seen in the freestream.

2.3.5 Boundary Layers

In boundary layers, care must be taken when modeling the change of velocity between the no-

slip condition at the wall, where the velocity is zero, to the freestream value [53], shown in Fig.

2.3.7. The y
+

and U
+

are dimensionless values for the normal distance to the nearest wall and the

velocity, respectively de�ned as,

y
+
=

� ⋅ yc ⋅ u
∗

�

, (2.22)

and

U
+
=

U

u
∗
. (2.23)

Here, yc [m] is the distance from the wall to the cell centroid and u
∗
[ms

−1
] is the friction velocity

de�ned as

u
∗
=

√

�w

�

, (2.24)

where �w [kgm
−1
s
−2

] is the wall shear stress in Eq. 2.25.

�w =

1

2

⋅ � ⋅ U
2
⋅ Cf ,x , (2.25)

where Cf ,x is the local skin friction, which Schlichting and Gersten [54] �tted into an empirical

equation from values found in their computations for Reynolds numbers below 10
9
,

Cf ,x = (2 ⋅ log10 (Re) − 0.65)
−2.3

. (2.26)

Note that due to the uncertainty of turbulent �ows, there are several possible ways to calculate

the skin friction coe�cient [55], many of which can be found in [56]. The Reynolds number can

be calculated as,

Re =

� ⋅ U ⋅ L

�

, (2.27)

13

Figure 2.3.7: Dimensionless velocity pro�le in the boundary layer as a function of y
+

[53].

where L [m] is the length of the boundary layer.

The region with 0 < y
+
< 5 can be termed as the viscous (or laminar) sublayer, 5 < y

+
< 30 as

the bu�er (or transient) layer, and 30 < y
+
< 200 as the inertial sublayer. While the roughness of

a surface can play a part in the boundary layer, if it is smaller than the thickness of the viscous

sublayer, one can assume a hydrodynamically smooth surface [54], [57], [58]. Surfaces such

as glass and plastic can often be regarded as hydrodynamically smooth, therefore the e�ect this

roughness has on the velocity pro�le is negligible [55]. In this boundary layer, the mesh should be

very �ne, with the �rst cell height being two times the cell centroid height in Eq. 2.22. Thereafter,

a number of layers, growing in height, are added perpendicular to the wall, atop of the �rst cell,

until the boundary layer is resolved. These layers are known as in�ation layers. The growth rate

depends on the amount of layers desired, as well as the boundary layer thickness. This boundary

layer thickness, � [m], can be estimated based on an equation for turbulent �ow found in [55],

� =

0.38 ⋅ L

(Re)

1

5

. (2.28)

To create a good mesh, the estimated values for y and � can be used in an iterative meshing

process, where the �rst mesh uses these values, and is used for simulations. Then, in the post-

processing, the actual values of y
+

are noted down, and a new mesh is created if the target y
+

value has not been reached. It is important to mention that several of these equations are based

on experiments of a moving �at plate, thus estimations for complex geometries are less likely to

be accurate.

To accurately simulate the near-wall behaviour of the �uid, y
+

should be less than 1, with the �rst

grid points being well within the viscous sublayer. In this scenario, the solution obtained will be

good, however, at the cost of increasing the computational power required, thus also the time

spent simulating. Another option is to use empirical wall functions, where y
+

should be larger

than 11.63, preferably between 30 and 500 [12]. This will provide similar results as with y
+
< 1,

14

with less time spent. The reasoning for a preferred y
+
∈ [30,500] can be illustrated using Fig.

2.3.7, as this is the region where the logarithmic assumption �ts the best, moreover, it is apparent

that it does not describe the bu�er layer su�ciently.

2.4 Boundary Conditions

These empirical wall functions are used in the wall boundaries, and must be de�ned together

with all the other boundaries (inlet, outlet, etc.) to de�ne the system. To achieve the greatest

accuracy, measurements of the system parameters should be taken beforehand, although this is

only possible if the object being simulated already exists. Often this is not the case, however,

therefore estimations of the initial parameters must be made. In this chapter, a brief explanation

of the wall functions and estimations is presented for velocity, turbulent kinetic energy, speci�c

turbulence dissipation rate, pressure, and turbulent viscosity.

2.4.1 Velocity

Previously, when talking about the mesh quality in Chapter 2.3.4, the no-slip condition was brie�y

introduced. This is a well known concept, where viscous �uids immediately adjacent to a solid

surface will stick to it, such that it does not slip [6], [55]. This happens due to the shear stress

of the �uid being equal to the shear stress of the wall, resulting in a velocity of zero relative to

the wall [12]. Most �uids abide by this condition, including water. Therefore, when simulating

a hydrokinetic turbine, wall-surfaces can be de�ned as no-slip boundaries. A rotating turbine

will act as a moving wall, where the boundary condition has to be de�ned as moving to ensure

that the velocity is zero relative to the wall, and not relative to the starting coordinates. Free

surfaces can be approximated as wall boundaries with slip condition, such that there are zero

shear stresses [55]. Regarding the inlet boundary, the velocity can be de�ned as a Dirichlet con-

dition, meaning it has a �xed value of choice, such that the turbine behaviour can be studied at

whichever velocity desired. For the outlet, as long as the it is placed su�ciently far away from

geometrical disturbances, such that the �ow becomes fully developed, and assuming the area of

the inlet and outlet are equal, the velocity can be de�ned with the same direction and magni-

tude as in the inlet. In cases where the �ow does not fully develop, the outlet should allow for

backward �ow, although this is not recommended. Versteeg and Malalasekera [12] state that the

distance between the last physical obstacle and the outlet should be ten times the height of the

last obstacle to ensure a fully developed �ow, with accurate results. Similarly, the cross sectional

area of the domain, should be ten times larger than the area of the turbine to avoid con�nement

e�ects [59]. If the con�nement is too large, the performance of the turbine will be overestimated,

where both upstream- and downstream conditions can be altered, and the forces on the rotor will

change.

2.4.2 Turbulent Kinetic Energy

The wall boundary condition for turbulent kinetic energy, k, can be found using a wall func-

tion. In OpenFOAM, there are two of these for k: the "kLowReWallFunction" and the "kqRWall-

Function". The "kLowReWallFunction" can be used for both low- and high Reynolds numbers,

15

switching between two equations for k depending on whether the cell is in the viscous or inertial

sublayer. OpenFOAM uses

kWBC = max (kvis/logu
∗2
,�) , (2.29)

for this, where � is a small value to prevent a �oating point exception. kvis/log represents kvis if

the cell is in the viscous sublayer and klog in the inertial sublayer, de�ned as

kvis =

2400Cf ,x

C
2

eps2

(2.30) klog =

ln (y
+
)CkBC

�

+ Bk (2.31)

Here, � = 0.41 [−] is the von Kármán constant, and Bk = 8.366, Ceps2 = 1.9, and CkBC = −0.416 are

dimensionless model coe�cients [60]. This is a discontinuous form of blending between the two

sublayers, however, as long as y
+
∈ [30,500], Eq. 2.31 should be the only one used.

The "kqRWallFunction" can be used for high Reynolds number �ows, simply de�ning the turbu-

lent kinetic energy at the wall as a zero-gradient [61].

As for the non-wall boundaries an estimation of k can be made as

kBC =

3

2

(U I)
2

(2.32)

where I [−] is the turbulence intensity. This equation is embedded in OpenFOAM’s inlet condition

turbulentIntensityKineticEnergyInlet. In [12], a typical turbulence intensity between 1% and 6%

was noted, while in [62], which focuses on river turbines, a value of 15% was used for a turbine

deployed at the bottom of a river. In [63], values between 3.2% and 24% across �ve di�erent

locations were noted in their literature review regarding the e�ect turbulence intensity has on

ocean current turbines. Four of these locations were noted at 5m above the seabed, with velocities

between 1.3 and 3.5 ms
−1

.

2.4.3 Speci�c Turbulence Dissipation Rate

For !, OpenFOAM has a wall function adequately named omegaWallFunction is used. By default

it uses a step wise switch between !vis and !log , similar to the one for kLowReWallFunction,

switching between the following to equations

!vis =

6�

�1y
2

(2.33) !log =

√

k

4

√

�
∗
�y

(2.34)

using !vis in the viscous sublayer and !log in the inertial sublayer. Again, as long as y
+
∈ [30,500],

Eq.2.34 will be used. In the event the mesh resolves the viscous sublayer, and a continuous blend-

ing is desired, there are several options available for the omegaWallFunction, which can be found

in the user guide for omegaWallFunction [64]. It is appreciable that both of these equations are in-

versely proportional to the nearest-wall-distance y, such that ! tends to in�nity as y → 0, which

makes sense considering energy should dissipate quickly near walls with the no-slip condition.

For the inlet and outlet boundaries, as well as in the freestream, the initial value of ! can be

estimated as

16

!BC =

√

kBC

4

√

�
∗
l

(2.35)
l = CLD (2.36)

where l is a reference length scale of the energy-containing turbulent eddies, C is a constant, and

LD is the hydraulic diameter of the inlet [12], [55]. In [12], this constant, C , has a value of 0.07,

whereas in [5] it is 0.1. In OpenFOAM, the inlet can be set to turbulentMixingLengthFrequen-

cyInlet, which incorporates Eq. 2.35 directly. The reference length scale will not be calculated

automatically, thus this needs to be speci�ed, where the hydraulic diameter is de�ned as

LD =

4A

PD

, (2.37)

with A being the area of the inlet, and PD [m] representing the inlet perimeter.

2.4.4 Pressure

When dealing with pressure in boundary conditions, it is common practice to prescribe a Dirichlet

condition at either the inlet or the outlet, serving as a reference value for the rest of the domain

[12], [55]. Note, that both the pressure and the velocity can not be speci�ed simultaneously at

one boundary, as they are coupled in the Navier-Stokes equations, causing the problem to be

over-speci�ed. If one of them are de�ned, then the other will accommodate to its value. When an

inlet velocity is speci�ed, then the pressure at the inlet can be set to the zero gradient condition.

This zero gradient can also be used on walls.

2.4.5 Turbulent Eddy Viscosity

As discussed in Chapter 2.2, the turbulent eddy viscosity will be calculated using Eq. 2.18. This

is not the case for walls where the boundary layer is not fully resolved, thus, once again, wall

functions are required. For this, OpenFOAM has several solutions which can be found in the user

guide for wall conditions in [65]. Most of these de�ne �t as zero in the viscous sublayer, while

having di�erent functions for calculating it in the inertial sublayer.

2.5 The PIMPLE Pressure-Velocity Coupling Algorithm

When the mesh has been constructed and the necessary boundary conditions have been speci�ed,

the governing equations can be solved. This is done iteratively using algorithms like the Semi-

Implicit Method for Pressure-Linked Equations (SIMPLE), the Pressure-Implicit with Splitting of

Operator (PISO), or the combination of the two: PIMPLE [5], [6], [12]. These algorithms will

perform the pressure-velocity coupling in each cell of the mesh, following a procedure as shown

in Figure 2.5.1, which illustrates a simpli�ed �owchart of the main principles of the PIMPLE

algorithm.

Together with the boundary conditions, an initial guess of the �ow parameters is made, where

the pressure is used to solve the momentum equations, Eq. 2.2, for the velocity vector. However,

in most cases, the resulting velocity �eld does not satisfy the continuity equation, Eq. 2.1, at this

17

point, and needs to be corrected by utilising a Poisson equation for pressure. This pressure cor-

rector is derived, in essence, by rearranging the momentum equation for velocity, then inserting

it into the continuity equation. Thereafter, the resulting values for velocity and pressure need to

be under-relaxed, as to ensure a more stable solution,

Xt = �rX

′

t
+ (1 − �r)Xt−1 (2.38)

where Xt is the resulting value to be used, X
′

t
is the calculated value to be relaxed, Xt−1 is the value

for the previous time step, and �r is the relaxation coe�cient. If �r = 1, there is no relaxation,

and the model accepts X
′

t
as the new value. For under-relaxation, values between zero and one

are chosen, with the optimal one often being found through trial and error [66]. The resulting

residuals can be used as an indication of which value of �r is most suited, employing the one

giving the best convergence. Similar to pressure and velocity, the transport equations for the

turbulence modeling are solved and under-relaxed as well. Subsequently, the turbulent eddy

viscosity will be updated in accordance to Eq. 2.18 in Chapter 2.2. When a possible solution has

been acquired, the convergence is evaluated. If the criteria are met, the simulation continues

to the next time step. Conversely, if convergence has not been reached, all the parameters are

updated and a new cycle begins. Up until this point, for the �rst time step, all three algorithms

(SIMPLE, PISO, and PIMPLE) would go through the same procedure. This is not the case going

forward. Since PIMPLE is a combination of SIMPLE and PISO, this is the point where a choice

of whether it should proceed as the SIMPLE- or the PISO algorithm is made. The di�erence

between SIMPLE and PISO is the amount of times they calculate the momentum equations. The

SIMPLE algorithm will solve the momentum equations for every single iteration, whereas the

PISO algorithm only performs this calculation once, before jumping straight into the pressure

corrector, utilising the updated velocity parameter. For SIMPLE, the iterative loop is often called

the outer loop. Similarly, the PISO loop can be termed as the inner loop. When using the PIMPLE

algorithm, the amount of times it runs in either of the loops can be speci�ed in the software.

The SIMPLE algorithm has the advantage of being very stable, and is often used for steady-

state calculations. Variations of SIMPLE, such as SIMPLE Consistent (SIMPLEC), SIMPLE Revised

(SIMPLER) and SIMPLE Extrapolation (SIMPLEX) have been shown to be more robust than their

unmodi�ed version, with SIMPLEC also proving to be the optimal choice [67]. They are all similar

to SIMPLE, albeit with minor modi�cations. PISO is e�cient, but it can su�er from instabilities,

and is more adept in transient simulations. Moreover, it requires a low Courant number to provide

stable results, resulting in low time steps. [5], [6], [12], [68]–[74]

The Courant number, Co [−], is de�ned as the ratio between the time step Δt and the time a �uid

particle spends to convect through a mesh cell Δn while moving at a velocity U [75],

Co = U

Δt

Δn

. (2.39)

Being a combination of SIMPLE and PISO, another key aspect of the PIMPLE algorithm is its

ability to use Courant numbers higher than 1, while still providing accurate results [76]. For

viscous turbomachinery �ow, this Courant number has been found to give adequate results up

to a value of 10 when employing an implicit scheme [77].

18

START

Boundary

conditions

and initial

parameters

Solve momentum

equations for U⃗

Solve pressure

correction

Poisson equation

Correct pressure

and velocities

Solve other

transport equa-

tions (k, !)

Converged?

Update parameters

PISO or
SIMPLE?

STOP

No

PISO

SIMPLE

Yes

Figure 2.5.1: Flowchart of the PIMPLE Algorithm. Based on [5], [6], [12] and the OpenFOAM guides and

source codes for SIMPLE [68]–[70], PISO [71], [72], and PIMPLE [73], [74].

19

20

Chapter 3

Literature Review

While the previous chapters aimed at providing a brief overview of the di�erent aspects and

equations of CFD, this chapter dives further into di�erent types of turbines in literature, as well

as how authors have conducted CFD simulations of them. The aim of this chapter is therefore to

provide a better foundation for the choices made in the current thesis, including which geometry

will be studied and the setup of the simulation.

3.1 Rudimentary Concepts

Compared to wind, the average velocity found in ocean currents is quite small. Nevertheless, due

to the density of water being more than 800 times that of air, an ample amount of power is still

available. Equation 3.1 indicates the potential kinetic power, PKE [W], available in �uid �ow, with

a plot comparing the power density for hydrokinetic- and wind turbines in Appendix A,

PKE =

1

2

⋅ � ⋅ A ⋅ U
3
, (3.1)

where � [kgm
−3

] is the density, A [m
2
] is the swept area of the turbine, and U [ms

−1
] is the

velocity of the �ow. It is important to note that the marine currents seldom surpass velocities of

4ms
−1

, which is not the case for wind. While this equation describes how much power is available

in the �ow, it does not actually describe how much power is captured. For hydrokinetic turbines,

the Betz limit is known as the theoretical maximum amount of power that can be extracted from

the �ow, with a value of approximately 59.3%. Most turbines, however, are not close to this limit.

Fig. 3.1.1 illustrates how the power coe�cient can vary for typical wind turbines at di�erent tip

speed ratios, TSR [-], which can give an idea of how the corresponding hydrokinetic turbines

would behave [78]. The power coe�cient [-] is de�ned as

Cp =

Pc

PKE

=

Pc

1

2
⋅ � ⋅ A ⋅ U

3
, (3.2)

where

Pc = Tt ⋅ !r , (3.3)

is the captured power (power take-o�) [W], where Tt [kgm
2
s
−2

] is the turbine torque, and !r

21

[s
−1

] is the angular velocity. For angular velocity in RPM, Ωr will be used as notation, where the

conversion Ωr =
!r ⋅60

2�
is used. The TSR describes the relationship between the angular velocity

of the turbine, multiplied by its radius, R [m], and the incoming �ow velocity, de�ned as

TSR =

!r ⋅ R

U

. (3.4)

The power coe�cient is one of the key parameters that are used to describe turbines, together

with the torque coe�cient,

CT =

Tt

Ta

=

Tt

1

2
⋅ � ⋅ A ⋅ U

2
⋅ R

Eqs. 3.3 and 3.4

−−−−−−−−−−−−−→

Cp

TSR

, (3.5)

where Ta is the available torque.

When conducting CFD analysis of a rotating turbine there are two ways to study its behaviour.

The �rst method uses a predetermined angular velocity, forcing the rotation of the turbine to be

constant. As the torque reaches quasi-stable conditions, the simulation is �nished. This method

enables a straightforward way to study the turbine at speci�c TSR, as long as the radius and in-

coming velocity are known. Conversely, the second method uses a �ow-induced motion, where

instead of changing the angular velocity directly, a damping coe�cient, Br [kgm s
−1

], represent-

ing the friction of the shaft and generator, is adjusted. The induced torque from this friction can

be calculated as

Tr = Br ⋅ !r , (3.6)

which will act in the opposite direction of the rotation, and can be used to calculate the power

take-o� of the turbine, such that Tt = Tr .

Figure 3.1.1: The power coe�cient (Cp) of conventional wind turbines based on the TSR (in this article, �

was used for TSR) [78].

22

(a) Alstom Oceade [81] (b) OpenHydro [82] (c) SeaGen [83]

Figure 3.2.1: Three di�erent tidal current turbines.

3.2 Overview of Turbines

Zhou et al. [79] review marine tidal current turbines rated above 500 kW that were up-to-date

in 2014, with an update available in [80] from 2017. Most of these bore heavy resemblance to

horizontal axis wind turbines, several of which had megawatt levels of production. Figure 3.2.1

illustrates three of these turbines, namely the Alstom Oceade, OpenHydro, and the SeaGen.

The European Marine Energy Center Ltd. created a list of all the tidal current turbine concepts

known to them, with Table 3.2.1 showing the distribution of these turbines by category [84].

Their list was last updated on the 19. February 2020 when the author last visited their page.

Based on this, it becomes even more apparent the horizontal axis turbines are the most popular.

Table 3.2.1: Categorisation of di�erent tidal current turbines [84].

Total 97

Horizontal Axis 43

Vertical Axis 16

Tidal Kite 2

Other 12

Oscillating Hydrofoil 4

Enclosed Tips (Venturi) 5

Archimedes Screw 2

Unclassi�ed 13

In [85], a review of cross-�ow hydrokinetic turbines was made, investigating its technology, con-

�gurations, and performance. The two main types of con�gurations for cross-�ow turbines are

lift-based and drag-based turbines, with a hybrid of the two also being used. Examples of lift-

based turbines are the Darrieus and Gorlov Helical Darrieus turbines. Common for these is the

use of airfoils to generate the lift force, while minimizing the drag force. Drag-based con�gura-

tions, as the name implies, rely on the drag forces to drive the turbine, with a popular example

being the Savonius rotor shown in Fig. 3.2.2. Compared to lift-based con�gurations they are

typically 20% less e�cient [86], however, they have better self-starting abilities [87] and have a

noticeably lower TSR. A lower TSR makes it less likely to kill marine animals swimming nearby.

Additionally, the risk of cavitation can be decreased, which is a more frequent issue for large

TSR [88]–[90]. The cavitation phenomena occurs when the pressure decreases below the vapour

pressure, causing bubbles to appear which can damage the structure [91]. By employing di�erent

augmentation techniques, the e�ciency and self-starting capabilities of the drag-based turbines

23

can be improved. De�ector blades can be used to de�ect the �ow away from the returning blade,

decreasing the negative drag forces [92]. Moreover, curtaining can be applied to direct the wa-

ter into the leading blade [93]. Similarly, the Savonius can be ducted, which led to a theoretical

power coe�cient of 53% at a TSR of 3.5, and a theoretical cut-in velocity of 0.5 ms
−1

in [94]. This

is a quite signi�cant improvement compared to the general power coe�cient of about 20% at

TSR below 1, recalling Figure 3.1.1. The ducted turbine requires a large construction to achieve

this, however. Designs with hinged blades that close to reduce the negative drag forces were also

reviewed, with the Hunter turbine [95] and the CU turbine [96] being examples of this.

Figure 3.2.2: The geometric parameters of a typical Savonius rotor [97]. Drag-based con�guration.

In [98] a number of small scale hydrokinetic turbines, below 5 kW, were investigated. Some

of the turbine manufacturers claimed to be able to produce power from current velocities as

low as 0.5 ms
−1

, however, several of these designs seem to be obsolete, indicating that this is

not economically feasible. Both axis �ow propeller- and cross-�ow designs were investigated,

with- and without ducts. The ducted designs were able to achieve better performances, which

aids reducing the cost of energy. Although the increase in material usage for these designs may

counter-balance this cost reduction. Due in part to their small size, most of the turbines were

easily installed, using either pontoon boats, �oating buoys with anchors, mooring it to the ground,

or a weighted base with cables to ensure they stayed put.

Bachant and Wosnik [99] performed experiments on two helical cross-�ow turbines — a Gorolov

Helical Turbine and a Lucid Spherical Turbine — using a towing tank with velocities between 0.5

ms
−1

and 1.5 ms
−1

. Results showed that the Helical turbine had superior performance.

Mohammadi et al. [100] optimized a hydrokinetic turbine for low-speed �ow using particle

swarm optimisation and Xfoil for velocities between 0.5 ms
−1

and 3 ms
−1

. Their turbine was

a 3-bladed horizontal axis turbine, achieving a power coe�cient of approximately 0.45 between

0.5 ms
−1

and 2.5 ms
−1

, before it decreased to 0.28 at 3 ms
−1

. They found that thicker hydrofoils

are more impervious to cavitation. The probability of cavitation was low even at the blade tip.

A horizontal axis cross-�ow turbine, designed for 100 W at a velocity of 1.2ms
−1

, was constructed

24

Figure 3.2.3: Straight bladed cross-�ow hydrokinetic turbine designed for 100 W at 1.2 ms
−1

[101]. Lift-

based con�guration.

and tested in both a saltwater channel and the sea in [101]. When creating this design, they

made a number of assumptions, including among other things a transmission e�ciency of 0.7,

mechanical e�ciency of 0.7, three blades, a tip speed ratio at peak power of 1.5, and a length of 1

m. Moreover, they used previous literature to create the basis of calculation for their turbine. The

resulting design is showed in Figure 3.2.3. During their experiments, they exceeded the design

power, reaching a maximum output of 304 W at 1.8 ms
−1

. Experiments showed a cut-in velocity

of 0.8 ms
−1

.

Alom and Saha [102] reviewed the progress and evolution of the Savonius rotor blade pro�le and

shape, comparing several pro�les. It is important to note that this study focused only on wind

turbines. Nevertheless, there are similarities. In [103], the authors compared the performance of

a Savonius hydrokinetic turbine with an identical Savonius wind turbine using experiments and

CFD. They used a simple, three bladed, semi-circular rotor, and found that the power coe�cient

of the hydrokinetic turbine exceeded that of the wind turbine by 61.32%, from 0.24 to 0.39. The

lower performance of the wind turbine was caused in part by �ow circulation at the blade tip,

as well as separation in the concave side of returning blades. This would impose a force acting

against the motion of the turbine. Among the blade pro�les evaluated by Alom and Saha, the

Roy pro�le [104], [105] and the new elliptic pro�le [106] were concluded as the most promising

ones, having Cp values of 0.3 and 0.33, respectively, with Banerjee et al. [107] achieving a Cp of

0.31 for a similar elliptical pro�le. Furthermore, they underlined the importance and impact of

aspect ratio (AR)

AR =

Lt

Dt

, (3.7)

overlap ratio (OR)

OR =

e

Dt

, (3.8)

number of blades, and end plates. Figure 3.2.4 illustrates what is meant by overlap and end plates

for the Savonius turbine. In Eqs. 3.7 and 3.8, Lt [m] is the length, or height, of the turbine, Dt

[m] is the turbine diameter, and e [m] is the overlap distance. While rotor moment and inertia

25

decreases with an increase in AR, angular acceleration increases. They determined that for higher

incoming velocities, a higher AR is desired. For the OR, values between 0.15 and 0.20 seem to

give the highest power coe�cients for single-stage rotors. An overlap between the blades will

allow the �uid to �ow through the gap, such that it can act on the concave side of the returning

blade, aiding the rotation of the rotor. Interestingly, for helical blades they found that an OR of

zero was favourable. Regarding the number of blades, most designs use two to four, however

Cp values have proven to be higher when using only two blades. While end plates increase the

inertia of the turbine, they also prevent �uid from leaking from the concave side of the rotor.

This will ensure a more uniform pressure di�erence along the blades. Regarding the end plates,

usually the diameter should be 1.1 times the diameter of the turbine. Too large end plates could

impact the Cp negatively, as the inertia becomes too large.

(a) Overlap [108]

(b) End plates

Figure 3.2.4: Illustration of overlap and end plates.

3.3 Computational Fluid Dynamics of Turbines

Marsh et al. [109] investigated the in�uence two di�erent turbulence models, k − ! SST and

Baseline-Reynolds Stress Model, have on the results, using both a 3D and 2D domain. More-

over, they compared the performance of using wall functions as opposed to fully resolving the

boundary layer in a 3D case using k −! SST. Two types of straight bladed Darrieus turbines were

used. They found that a 3D case with k − ! SST and a fully resolved boundary layer gave the

most accurate results compared to experimental results, while simulating for 20 hours per rev-

olution. Although being computationally e�cient, 1.5 hours simulation time per revolution, the

two-dimensional k − ! SST cases with fully resolved boundary layers showed poor correspon-

dence to the experimental data, mainly because it could not capture the e�ect of the struts and

ends of the turbine. Here, for most TSR, the power coe�cient was signi�cantly overestimated.

Simulations using wall functions were only made in 3D for k − !. As a result of a lower mesh

resolution requirement, simulation times were lowered to 6 hours and 40 minutes, however, this

came at the cost of inaccurate predictions of Cp . This inaccuracy was caused by poor prediction

26

of separation at low angular velocities.

In [110], Kacprzak et al. performed 2D simulations on three di�erent Savonius wind turbines:

the classical Savonius, a Bach-type, and an elliptical Savonius. Both the classical and the elliptical

pro�les had an overlap ratio of 0.15, whereas the Bach type had no overlap. While they state using

the k −! SST turbulence model, they do not specify which pressure-velocity coupling algorithm

they use. Regarding the turbulence, a key point of their project was to investigate the likelihood

of the �ow transitioning between laminar and turbulent in the blade boundary layer. If it was

high then a substantial mesh re�nement would be necessary, as wall functions are inaccurate in

the viscous sublayer. To avoid the need of interpolation at the sliding mesh interface, the time

step was chosen such that it rotated exactly one mesh each step. This is only possible since they

are studying the turbines with a forced rotation, where the angular velocity is constant at all

times. After conducting a grid independence test, they ended up with an average y
+

value of

less than three. All three of the turbines achieved a maximum power coe�cient at a TSR of 0.8,

giving approximately 0.15, 0.18, and 0.17 for the classical-, Bach-, and elliptical Savonius turbines.

Without resolving the viscous sublayer, the simulations overestimated the power output.

In [24] the authors attempted to improve the performance of a low cut-in speed, vertical axis,

hybrid Savonius-Darrieus tidal turbine using OpenFOAM in a 2D case. Tests were also made on

the stand-alone Savonius and Darrieus turbines. For the Savonius rotor, a two-stage setup was

used, with an overlap ratio of 0.298, and an aspect ratio of 2. The inlet velocity was set to 0.5ms
−1

.

They utilised the Unsteady RANS SST k − ! turbulence closure model, solved using the SIMPLE

algorithm. For their mesh, an unstructured, low density, triangular mesh was created upstream of

the turbine, whereas a denser, progressive mesh was used in the blade vicinity and wake region.

For the boundary layer, a y
+

value of 1 was used. Moreover, a mesh re�nement was also made in

the sliding interface between the stationary �uid domain and the rotating domain. Comparisons

were also made with existing literature, where they were able to achieve a marginally higher

power coe�cient, due to the 2D numerical solutions not taking into account the lifted vortex

structures that are present in 3D cases.

Mosbahi et al. [32] used ANSYS FLUENT 17.0 to conduct a performance study of a hydroki-

netic three bladed helical Savonius turbine, with- and without a de�ector. Experiments were also

conducted in an irrigation channel with a 3D printed model. Four di�erent RANS turbulence

coupling models were used, namely the RNG k − ", Realizable k − ", SST k −!, and the transition

SST. Pressure-velocity coupling was done with the SIMPLE algorithm. Contrary to the literature

of the current report, in the literature review of Moshabi et al. They found that the Realizable

k − " model was best suited for this kind of simulation. Due to the complexity of the geometry,

an unstructured mesh was created, with a �ne mesh in the rotating zone. A prismatic mesh was

applied for the rotor blade boundary layer to better model the behaviour in this region. For this,

y
+
< 1 was used to determine the height of the �rst layer, using 20 prismatic layers and a growth

rate of 1.2. The de�ector setup was composed by a NACA 0020 airfoil in conjunction with a

straight ramp. Di�erent combinations of distance between the two de�ector parts and the angle

relative to the incoming �ow were tested. The angle of the airfoil was always equal to that of the

ramp, although in the opposite direction. Without the de�ector, a maximum power coe�cient

of 0.125 was found at a TSR of 0.7, whereas with the de�ector at an angle of 30°and a distance

27

between the two parts of 204 mm (approximately 1.121 times the diameter of the turbine), the

maximum power coe�cient increased to 0.14. These results were validated with experimental

data. Both the experiments and simulations were conducted using a velocity of 0.86 ms
−1

. A

higher Cp might be achieved by using an overlap between the blades, using a di�erent number

of blades, or a di�erent pro�le for the blades.

Khanjanpour and Javadi [111] used ANSYS-Fluent in combination with the Taguchi approach to

perform the CFD analysis and optimization of a horizontal axis tidal turbine. The mesh around the

turbine itself was unstructured, whereas the computational area had a structured mesh. Meshing

was done using ICEM 2019. A sliding mesh was used to simulate the turbine movement. the mesh

was de�ned as sliding to allow simulation of movement. Furthermore, the PISO algorithm was

used for pressure-velocity coupling, in combination with the k − ! SST turbulence model. The

Taguchi method was used to optimize blade size, number of blades, and hub radius- and shape,

resulting in a 10% increase in the power coe�cient. They found that the number of blades had

the most in�uence on Cp , followed by blade size, hub radius, then hub shape.

The optimized position of a barrier for the hydrokinetic, semi circular Savonius rotor was in-

vestigated in [112]. They studied a two bladed turbine with an overlap ratio of 0.15 and blade

thickness of 1 mm in a two-dimensional simulation, investigating several barrier con�gurations.

Figure 3.3.1 illustrates the di�erent con�gurations, where a shield is attached between the end

plates, at a diameter of 1.1 times the turbine diameter. For turbulence modeling they used k − !

SST, with a fully resolved boundary layer, y
+
< 1. Furthermore, the inlet was speci�ed as a ve-

locity inlet, with a constant �ow of 7 ms
−1

, and a pressure outlet with a reference value of zero.

Moreover, the free surface slip condition was used on the top and bottom boundaries. Through

their simulations, the best combination was that of section 4, 5, and 6, increasing the maximum

generated power by 18%. This type of con�guration seems to be easily installed, while also being

area e�cient.

Figure 3.3.1: The barrier utilised in [112], tested with di�erent con�guration combinations (1-9) to optimize

its positioning.

A three dimensional CFD study was performed on a three bladed horizontal axis ocean current

turbine both with- and without a de�ector by Maldar et al. [113]. This de�ector was positioned in

front of the turbine, acting like a ramp. Both a �at- and a curved ramp was simulated, at di�erent

angles, with the optimal con�guration being a �at ramp at 25°. With the de�ector, an optimal Cp

and CT of 0.28 and 0.238, respectively, was found, compared to the turbine without augmentation

at 0.195 for both Cp and CT .

Salleh et al. [114] also investigated the Savonius turbine, employing an augmentation technique

28

consisting of two �at de�ector plates. One positioned in front of the returning blade, and one

above the turbine, as shown in Figure 3.3.2. This Savonius turbine used an overlap ratio of 0.109,

end plates with a diameter of 1.1 times the turbine diameter, and both the de�ectors had lengths

0.556 times the diameter of the turbine. Without the augmentation setup, the maximum power-

and torque coe�cient was 0.13 and 0.16, respectively, whereas when both the de�ectors were

angled at 30°, Cp increased to 0.21 and CT to 0.24.

Figure 3.3.2: Geometrical setup of the turbine and de�ector blades from [114].

In [115], the authors analysed three hydrokinetic Savonius type blade pro�les: both a two- and

three bladed semi circular rotor, and an elliptic rotor. All three turbines used an aspect ratio

of one, overlap ratio of 0.15, diameter of 0.25 m, blade thickness of 1.3E-03 m, and end plate

diameter of 1.1088 timed the turbine diameter. Moreover, all of the blades had a chord length

of 0.144 m. The elliptic turbine was made such that the semimajor- and semiminor axis had a

3/2 relation, with a sectional cut angle of 47.5°, ensuring the proper chord length was applied, as

shown in Figure 3.3.3. Their elliptic turbine had similar dimensions as the one found in [106],

which was recommended by [102]. For turbulence modeling, the k − ! SST model was used,

whereas pressure-velocity coupling was done using SIMPLE. Mesh re�nements were made, such

that y
+
< 1, moreover, a mesh independence study was carried out. The inlet was speci�ed as

velocity inlet, with an incoming �ow of 0.8 ms
−1

, while the outlet was de�ned as a pressure

outlet. Contrary to the results found in [102], [106], the elliptic pro�le performed worse than the

two bladed semi circular pro�le, with the three bladed version showed the worst performance,

showing Cp values of 0.20, 0.28, and 0.17, respectively. The corresponding CT for the maximum

Cp was found to be 0.26, 0.31, and 0.24, respectively.

Figure 3.3.3: Sketch of the sectional cut for the elliptic Savonius turbine in [115].

29

An integrated surrogate optimization to maximize the power coe�cient of an elliptical Savonius

wind turbine was carried out in [116]. Here, the overlap ratio, cut angle, and semimajor axis

varied from 40°to 90°, 0.1 to 0.3, and 0.14 to 0.2m, respectively. Both the rotor height and diameter

were kept constant at 0.5m, with an end plate diameter 1.1 times the rotor diameter. Additionally,

the cut angle was made at a point M , such that the length from the center to this point was equal

to 0.54 times the length of the semimajor axis, similar to the one in Figure 3.3.3. Their results

suggest that the optimal overlap ratio should be between 0.14 and 0.15 and the cutting angle

should stay between 40°and 50°. Compared to other elliptic

30

Chapter 4

Research Questions

In this chapter, the theory and literature review will be boiled down to a set of research questions

that de�ne the goal of this thesis.

Due to a time limitation, the mesh for this project can not safeguard a y
+

value less than 1.

Therefore, wall functions will be implemented to calculate the �ow behaviour close to walls.

Furthermore, simulations will be performed in 2D, due to the same reason, which inevitably will

cause some �ow phenomena to not be captured.

As previously discussed, most turbine ideas are of the horizontal axis kind, with several bear-

ing heavy resemblance to commercial wind turbines. Nevertheless, a large amount of research

has been put into the Savonius type turbine, with optimization of the blade pro�le and the sur-

rounding augmentation techniques being key aspects in these. One of the blade pro�les that

has gotten some attention is the elliptic pro�le, where simulated power coe�cients have been

between 0.1296 in [116] to 0.33 in [106]. The current thesis intends to investigate this elliptical

turbine, using the data found in [102], [106], [115], [116] as reference. Moreover, the standard,

semi circular Savonius will also be taken into consideration for comparison. Regarding augmen-

tation techniques, the author of the current thesis took interest in the design by Alizadeh et al.

[112], due to its simple nature and seemingly easy installment and maintenance. Additionally, the

advancing blade de�ector found in [114] was employed to have de�ectors both for the advancing-

and the returning blade.

Thus, the resulting research questions for this thesis are:

• How does a two dimensional CFD simulation with y
+
∈ [30,500] for the semi circular- and

elliptical hydrokinetic Savonius turbines compare to results found in literature for similar

turbines?

• How does the performance of these turbines change with the added augmentation tech-

niques found in [112] (barrier) and [114] (advancing blade de�ector)?

• How can these designs be further improved?

31

32

Chapter 5

Method

This chapter will go into detail on the important steps of the procedure, from creating the geom-

etry in Solidworks, to meshing in Gmsh, then �nally to the simulation in OpenFOAM. The four

geometries to be studied are recapitulated in Table 5.0.1. For the rotation of the turbine, the AMI

method was chosen, since, in comparison with the overset mesh, it seems to be more frequently

used in literature.

Table 5.0.1: Turbine geometries assigned to case numbers.

Turbine Case number

Semi circular without augmentations 1

Semi circular with augmentations 2

Elliptic without augmentations 3

Elliptic with augmentations 4

5.1 SOLIDWORKS

5.1.1 Blade Pro�les

Both Savonius-type turbines were made with an arbitrary diameter, Dt , of 2 meters, chord length

of 0.575Dt , and blade thickness of 0.015Dt . Moreover, based on literature, an OR of 0.15 was used

with two blades. The chord length was chosen to safguard an overlap ratio of 0.15, whereas the

thickness was based on the relationship between turbine diameter and blade thickness found in

literature. The elliptic blade was made using Figure 5.1.1, where the ratio between OA and OB

was 3/2, the distance OP was 0.54×OA, and the angle, � , was 47.5°.

5.1.2 Augmentation Techniques

Regarding the augmentation techniques found in [112] and [114], they were positioned along

the edge of the supposed end plates, at 1.1 times the turbine diameter. Recalling Figure 3.3.1, the

optimal placement of the barrier in [112] was from section 4 to section 6, corresponding to an arc

of 30°along the end plate. Section 4 started at an angle of -30°relative to the upstream horizontal,

whereas section 6 ended at -60°. The de�ector in [114] was angled 30°with the horizontal, which

was reported to give the best performance, with a length of 0.55623Dt . Table 5.1.1 summarizes

33

Figure 5.1.1: Sketch of how the elliptic blade pro�le was made, based on the description found in [106],

[107].

the geometrical parameters used in this report.

Table 5.1.1: Geometrical parameters of the two Savonius-type turbines.

Semi Circular Elliptic [106], [107]

Number of blades [-] 2 2

Diameter turbine, Dt [m] 2 2

Chord length [m] 0.575Dt 0.575Dt

Semimajor axis (OA) [m] - 0.400495Dt

Semiminor axis (OB) [m] - 0.267Dt

Center to sectional cut (ellipsis, OP) [m] - 0.54×OA

Sectional cut angle (�) [°] - 47.5

Aspect Ratio [-] 1 1

Overlap Ratio [-] 0.15 0.15

Blade thickness [m] 0.015Dt 0.015Dt

Diameter to augmentations (End plates) [m] 1.1Dt 1.1Dt

Shield and de�ector thickness [m] 0.015Dt 0.015Dt

Shield arc angle [°] 30 30

De�ector length [m] 0.55623Dt 0.55623Dt

5.1.3 Splitting the Domain

Thereafter, a rectangle, concentric to the turbine, with a height of 10Dt and length of 30Dt , was

sketched. Using this length, the distance between the turbine and the end of the domain would

be more than 10 times its diameter, which should give the �ow time to develop enough for ac-

curate results, as discussed in Chapter 2.4.1. A surface plane was made from this sketch, which

then represents the �uid domain. The AMI boundary was sketched as a circle concentric to the

turbine. For the cases without augmentations a diameter of 1.5Dt was used for this. Moreover,

two additional circles with diameters 1.875Dt and 1.125Dt were added to ensure a simple way

to accurately control the mesh in the nearby vicinity of the AMI. With the added augmenta-

tion structures, however, the AMI boundary was con�ned to be 1.05Dt to ensure these additional

34

structures did not rotate, with the surrounding circles being 1.025Dt and 1.075Dt . To create re-

gions for a multiblock grid, several split lines were sketched as indicated in Figure 5.1.2. The

square surrounding the turbine and AMI boundary has a side length of 2.5Dt .

Figure 5.1.2: Fluid domain split up for multiblock mesh regions for the semi circular blade without aug-

mentations. A=1.5Dt , B=C=0.375 m.

5.1.4 Mass Properties

The turbine sketch was further utilised to calculate its mass properties. This was done by extrud-

ing it by 2 meters to emulate an AR of 1, then going to Tools - Evaluate - Mass properties. Here,

the density was set to 950 kgm
−3

, resulting in the values noted in Table 5.1.2.

Table 5.1.2: Mass and principle moment of inertia (x, y, z) after extruding the turbine pro�les by 2 meters.

Semi Circular Elliptic

Mass [kg] 200.56 174.48

Principle Moment of Inertia [kgm
2
] (81.05, 99.17, 151.82) (63.69, 78.74, 131.37)

5.1.5 Exporting the Domain

Lastly, to export the domain to the meshing software, two STEP �les had to be created. One

where only the faces within the AMI boundary was selected, and one where only the faces out-

side the AMI boundary was selected. This would represent the rotating- and stationary region,

respectively. These two STEP �les were subsequently merged into the meshing software.

5.2 Gmsh

Gmsh creates a .geo �le where it stores the script describing the mesh. This script is shown

in Appendix D, using the semi circular Savonius with shield and de�ector as an example. When

merging the STEP �les into Gmsh, the "Merge" function was used as shown in the script. For this,

the .geo �le had to be in the same folder as the STEP �les. Note, that to import STEP �les into

Gmsh, the OpenCASCADE factory must be used. In the options tab, under mesh, the "Frontal-

Delaunay for Quads" 2D algorithm was chosen, along with the "Delaunay" 3D algorithm, and the

35

"Blossom" 2D recombination algorithm. Additionally, the setting for recombining all triangular

meshes was turned on, no subdivision algorithm was used, and both the smoothing steps and the

element size factor was set to one. Recombination of triangular meshes would force triangular

shapes to be combined into quadrilateral cells whenever possible, which was the �rst step of

achieving a structured grid.

Thereafter, trans�nite points, describing the resolution of the grid, were de�ned for all the curves,

with a larger number of points being used for regions of interest, where the mesh should be �ner.

Appendix D includes information on the trans�nite mesh made. The regions with the �nest

meshes were the wall boundaries and the arbitrary mesh interface. At the turbine, shield, and

de�ector, the mesh was made such that the �rst cell height corresponded to a y
+

of 300 for a

velocity of 1.5ms
−1

. Note, that the velocity in the nearby vicinity of the turbine is subject to vary

greatly depending on the position of the blades. This means that the y
+

value will also change

continuously, such that despite calculating the theoretical height of the �rst cell to achieve a

y
+

of 300, this might not give the desired results in practice. Table 5.2.1 contains the results

of calculating the height of the �rst cell adjacent to the wall boundaries. An assumption that

the results would not be signi�cantly altered by using a coarser mesh at the bottom and top

boundaries was made, due to being placed four times the turbine diameter above- and below the

turbine. This was done to decrease simulation time.

Table 5.2.1: Calculations required to �nd the �rst cell height corresponding to y
+
= 300 at the wall bound-

aries, using Eqs. 2.22, 2.24, 2.25, 2.26, and 2.27

Top/Bottom Semi Circular De�ector Shield Elliptic

Re [−] 4.50E+07 5.28E+06 1.67E+06 1.67E+06 2.16E+06

Cf ,x [−] 2.08E-03 2.84E-03 3.43E-03 3.43E-03 3.28E-03

�w [kgm−1
s
−2] 2.40 3.28 3.95 3.95 3.79

u
∗ [ms

−1] 4.84E-02 5.66E-02 6.21E-02 6.21E-02 6.08E-02

yH [m] 1.24E-02 1.06E-02 9.66E-03 9.66E-03 9.87E-03

The second step to achieve a structured grid was to make the surfaces trans�nite. This was not

done for the region between the circle around the AMI and the square, nor was it done for the

region around the turbine, inside the inner circle. As a result, the mesh in these regions would

become hybrid meshes, recalling the discussion about this in Chapter 2.3.1. Figures 5.2.1 and

5.2.2 provide a visualisation of the mesh for the semi circular Savonius turbine with the shield

and de�ector, both as an overview of the entire domain, and a zoomed in image of the region

within the square. For the freestream region outside of the square, the mesh is fully cartesian,

using the "Bump" function to make the cells close to the borders smaller than those in the middle.

The reason for this was to have a good smoothness across the multiblock domains, as the cells

adjacent to each other at these interfaces would otherwise have large di�erences in their size.

36

Figure 5.2.1: Overview of the mesh for the semi circular Savonius blade pro�le with augmentations.

Around the AMI, the mesh is curvilinear. Moreover, in this region, the cells become progressively

smaller towards the interface. This was done to provide more accurate results in the interpolation

region.

Figure 5.2.2: Enlarged image of the mesh close to the de�ector, AMI, turbine blade, and shield.

37

Two dimensional simulations in OpenFOAM still require the domain to have one layer in the third

dimension. Therefore, a mesh extrusion of 2 m with only one layer was made on all the faces of

the domain. It is appreciable that neither the points nor the curves were extruded, as this would

create duplicates of them. Following the extrusion, all the physical surfaces and volumes were

de�ned, speci�ed as shown in Figure 5.2.3 for the semi circular blade pro�le with augmentations.

Since two STEP �les were merged into the software, care had to be taken when de�ning the

trans�nite surfaces and physical boundaries in the vicinity of the AMI. In the �gure, ami1 was

de�ned as the surface belonging to the rotating domain. Conversely, ami2 belongs to the patch in

the stationary domain. When saving the mesh, the �le type was speci�ed as .msh, using version 2

of the ASCII, while leaving the two boxes, "Save all elements" and "Save parametric coordinates",

unchecked.

Figure 5.2.3: Physical groups of the domain for the semi circular Savonius rotor with augmentations.

38

5.3 OpenFOAM

Throughout this chapter, whenever a �le is referred to, Figure. 5.3.1 can be used to identify the

location of this �le in the case directory. Moreover, in Appendix E, all the �les can be found for

the semi circular Savonius turbine with augmentations as an example. The �les for the other

three con�gurations will not be included as they are almost identical to this one. Nevertheless,

the values and changes that do occur between them will be described throughout this methodol-

ogy. Initially, the case setups were based on Dr. Tobias Holzmann’s tutorial cases for the Kaplan

turbine [117] and vertical axis wind turbine [118]. Dr. Holzmann is a prominent user of Open-

FOAM, having published several tutorials employing the software, thus his work was regarded

as trustworthy. Additionally, one of OpenFOAM’s own tutorials, the wingMotion tutorial for in-

compressible �ows using the RANS equations with PIMPLE, was used as inspiration. Based on

the latter tutorial, a decision to �rst use SIMPLE on a static case, without a rotating turbine, was

made. This was done to hopefully acquire more accurate results of the �ow �eld, which then

were mapped to the transient case. Also, since the �ow �eld would fully develop in the static

case, the transient case could decrease the simulation time, as quasi stable conditions would be

reached sooner.

5.3.1 Importing the Mesh

Before simulations could be run, the mesh from Gmsh had to be imported into OpenFOAM, done

using the command "gmshToFoam FILENAME". This would create the polyMesh folder, includ-

ing all the �les describing the mesh, most importantly the boundary �le. The mesh could then be

viewed in Paraview to ensure that it had been properly imported before proceeding. Moreover,

the "checkMesh" command was used, providing information on skewness, non-orthogonality,

and the aspect ratio of the cells. Upon importing the mesh, it also had to be scaled down from

millimeters, used in Gmsh, to meters, being the SI unit employed in OpenFOAM. Here, the com-

mand "transformPoints "scale=(1e-3 1e-3 1e-3)"" was used, which was an important step before

simulations could commence. Furthermore, to increase simulation speed, the mesh was renum-

bered to reduce bandwidth, with "renumberMesh -overwrite".

5.3.2 Boundary- and Initial Conditions

Whenever a new mesh was imported, the boundary types for the physical groups in the bound-

ary �le, Appendix E.4, defaulted to "patch". However, this was only desired for the inlet- and

outlet boundaries. Therefore, the top-, bottom-, turbine-, shield-, and de�ector boundaries were

all de�ned as walls, whereas the two AMI boundaries were de�ned as cyclicAMI. As this was a

two-dimensional study, the "frontandback" group was set to type "empty", indicating that a so-

lution was not required in the cells normal to this boundary. In addition to de�ning the AMI

boundaries as cyclicAMI, the neighbouring AMI patch had to be de�ned for each of them, such

that ami2 had ami1 as its neighbour and vice versa. The interpolation method was chosen as

"faceAreaWeightAMI", corresponding to the weighted interpolation method mentioned in Chap-

ter 2.3.3.

39

OpenFOAM Case

constant

dynamicMeshDict

transportProperties

turbulenceProperties

polyMesh

boundary

_0.orig

U

p

k

nut

omega

pointDisplacement

system

controlDict

decomposeParDict

fvSchemes

fvSolution

functions

residuals yPlus

Figure 5.3.1: File structure of a transient OpenFOAM case

Velocity The inlet- and internal �eld velocity was set to 1.5 ms
−1

, with the outlet being de�ned

as an "inletOutlet", in case there was an occurrence of reverse �ow. However, due to the length

of the domain, reverse �ow was unlikely to be a problem, so the inletOutlet was only de�ned as

a precaution. Since the turbine rotates it was given the moving wall velocity type, in accordance

with the discussion of moving walls in Chapter 2.4.1. Note, that even though the top boundary

was de�ned as a wall, it was given the slip condition to simulate it as a free surface �ow. All other

wall boundaries were given the no slip condition.

Turbulent Kinetic Energy By setting the inlet to turbulentIntensityKineticEnergyInlet, Eq. 2.32

was used, recalling the discussion in Chapter 2.4.2. Here, a turbulent intensity of 0.1 was chosen,

based on the values found in literature. For the walls, tests were made using both the kLowRe-

WallFunction and the kqRWallFunction, with no signi�cant di�erence between them.

Speci�c Turbulence Dissipation Rate Eq. 2.35 was used to estimate the inlet- and internal �eld

value, with the inlet using the turbulentMixingLengthFrequencyInlet type to automatically em-

ploy this equation. Using Eq. 2.37, a hydraulic diameter LD of approximately 3.64 m was found,

40

based on the inlet height and width of 20 m and 2 m, respectively. A value of 0.085 was chosen

for C , being the average of what was found in literature. All walls used the omegaWallFunction,

with initial values for k and ! shown in Table 5.3.1.

Table 5.3.1: Boundary conditions for k and !, calculatd using Eqs. 2.32, 2.34, and 2.35

kBC [m
2
s
−2

] !BC [s
−1

] !turbine/aug [s
−1

] !top/bot [s
−1

]

3.38E-02 1.09 109.08 8.18

Pressure For these simulations, the outlet was speci�ed as the pressure reference for the do-

main, with a uniform value of zero. The inlet and wall boundaries were given the zero gradient

condition.

Turbulent Eddy Viscosity As discussed in Chapter 2.4.5, there are several wall functions to

choose from for �t . Assuming the coating on the turbine is su�cient enough to make the surface

hydrodynamically smooth, as discussed in Chapter 2.3.4, attention was averted from wall func-

tions made for rough walls. Based on the tutorial cases from Dr. Holzmann and OpenFOAM, the

nutkWallFunction was chosen.

Point Displacement As the name suggests, the point displacement describes the displacement

of the points in the mesh. The initial condition for this was naturally set to zero, as no movement

of the mesh had occurred at time zero.

5.3.3 Constant Folder

Dynamic Mesh Dictionary This �le was only employed in the transient simulations.

To specify the employment of a �ow induced turbine, the motion solver "sixDoFRigidBodyMo-

tion" (six degrees of freedom rigid body motion) was chosen. For this, the turbine patch had to be

speci�ed as the solid body subject to rotation. The inner- and outer morphing distances had to be

set to values that prevented excessive morphing. In cases where this was done poorly, the mesh

close to the AMI border would morph, such that large gaps in the mesh would emerge, causing

the weighted interpolation method to give �oating point exceptions.

The density of water was speci�ed as 1025 kgm
−3

, while the mass and moment of inertia corre-

sponded to the values calculated in Solidworks, from Table 5.1.2. Moreover, the center of mass

and center of rotation was speci�ed, based on the turbine coordinates in Gmsh.

Since this study involves a �ow induced rotation of the turbine, the velocity, acceleration, angular

momentum, and torque were all set to zero. Also, an acceleration relaxation coe�cient of 0.05

was chosen. Values above 0.1 would often instigate large discrepancies between expected- and

simulated angular velocities.

Rotational movement was �xed around the z-axis, and translational movement was �xed at the

center of mass. Lastly, the damping coe�cient, Br was speci�ed as a restraint, using the following

values: 200, 800, 900, 1000, 1200, 2000 kgm
2
s
−1

. These values were chosen using the trial and error

method.

41

Transport Properties The kinematic viscosity, � , was de�ned in the "transportProperties" �le,

which for water is 1E-06 m
2
s
−1

. Additionally, the transport model was set to Newtonian, assum-

ing a constant viscosity.

Turbulence Properties In this �le, the turbulence closure model was speci�ed as k − ! SST.

5.3.4 System Folder

Control Dictionary In this dictionary, the pressure-velocity coupling algorithm was speci�ed.

For the static case, "simpleFoam" was used (SIMPLEC), whereas for the transient case, pimple-

Foam (PIMPLE) was used. To achieve a fully developed, converged �ow, the static case would

simulate 3000 seconds, with a time step of 1 second. The transient case would simulate 50 sec-

onds, such that the turbine could reach a quasi-stable behaviour. An initial time step of 0.0001

seconds was set, however, the simulation was allowed to adjust this automatically based on the

maximum Courant number of 5. Recalling the theory in Chapter 2.5, the Courant number in

PIMPLE could be higher than 1, with values up to 10 giving accurate results. Inside the control

dictionary, the functions for the residuals and y
+

were called upon, providing the residuals for Ux ,

Uy , k, !, and p, and the minimum, maximum, and average y
+

values for all the wall boundaries.

Parallel Decomposition Dictionary Simulations were run on two AMD EPYC-Milan 2 GHz pro-

cessors with 16 cores each, having 64 GB of RAM allocated to the system. To enable all 32 cores

to work on the simulations in parallel, the case had to be decomposed using the "decomposePa-

rDict". In this dictionary, the hierarchical method was used, splitting the domain into 32 (8x4x1)

subdomains. This was upgraded to four processors and 128 GB RAM, however, running each

simulation with only 12 cores seemed to be the most e�cient.

Finite Volume Schemes In this �le, the numerical schemes used to perform mathematical oper-

ations are speci�ed. Table 5.3.2 speci�es which operation each of the categories perform, while

the setup used for this �le can be found in Appendix E.7.

Table 5.3.2: Description of what operations the di�erent numerical schemes perform [119], [120]

Category Performed Operation

ddtSchemes First and second order time derivatives

gradSchemes Gradients ∇

divSchemes Divergences ∇⋅

laplacianSchemes Laplacians ∇
2

interpolationSchemes Interpolations between points

snGradSchemes Components of gradients normal to a cell face

wallDist Calculates the distance to a wall

Finite Volume Solution This �le speci�es which solvers should be used for the equations, the

algorithm used, as well as the relaxation factors and tolerances for all the parameters.

42

The solver used for the pressure equations was the generalised geometric-algebraic multi-grid

solver (GAMG), whereas for the velocity, turbulent kinetic energy, and speci�c turbulence dis-

sipation rate the smooth solver was employed. This was copied from the aforementioned wing-

Motion tutorial case. All solvers utilised the Gauss-Seidel smoother, although this is strictly only

used by the smooth solver.

Obtaining the best values of tolerances and relaxation factors was done by simulating the static

case of the semi circular Savonius turbine without augmentations using three di�erent coe�cient

combinations. The combination yielding the lowest, most stable residuals, as well as providing

the quickest convergence, was chosen. This combination, see Appendix E.8, was employed for

all simulations.

For the PIMPLE algorithm, �ve outer correctors and three inner correctors were speci�ed, using

the SIMPLEC algorithm for the outer correctors. This means that for each outer loop, three inner

loops would be made, resulting in each time step performing a total of 5 outer loops (SIMPLEC)

and 15 inner loops (PISO).

43

44

Chapter 6

Results and Discussion

6.1 Static Cases

Recalling the methodology, to decrease simulation time, all turbines were initially run as static

cases until the �ow had fully developed. The development of the velocity �eld for the static SIM-

PLEC simulation using case 1 can be found in Appendix H. Running this case took 94 seconds

using 32 processor cores, reducing the simulation time needed for the transient cases by almost

40%. The total simulation time needed for the four cases was approximately 105 hours when im-

plementing the initial static simulation, when counting only the simulations used in this chapter.

Thus, assuming all cases reduced their simulation time by 40%, the total time saved is estimated

to 70 hours.

The residuals for the static case 1 are provided in Figure 6.1.1. All the residuals seem to stabilize

within the 3000 seconds simulated. However, the observed values of the residuals are high, which

should be recti�ed by setting stricter residual criteria.

(a) Residuals for k, !, Ux , and Uy (b) Residuals for pressure, p

Figure 6.1.1: Residuals for the static case using the unaugmented semi circular.

45

6.2 Validation Against Literature

A comparison between the current blade pro�les, without augmentation, and similar blade pro-

�les in literature [106], [112], [115], can be found in Figure 6.2.1. It is apparent that neither of

the performance metrics in the current thesis give the same results as the literature. For the semi

circular pro�le, it seems like it is able to accurately predict the performance around a TSR of 0.60,

however it overestimates its performance at lower TSR, and underestimates it at higher TSR. The

elliptic turbine seems to resemble the results found by Talukdar et al. for TSR of 0.88, however,

between 0.38 and 0.65 it follows the same trend as in Alom et al., albeit with slightly lower values.

(a) Semi circular power coe�cient (b) Semi circular torque coe�cient

(c) Elliptic power coe�cient (d) Elliptic torque coe�cient

Figure 6.2.1: Power- and torque coe�cient as a function of TSR for the semi circular- and elliptic blade pro�les

without augmentations, compared with similar pro�les in literature [106], [112], [115].

There are several possible explanations for this, one of which is that the turbine mesh is not �ne

enough. Although an average y
+

of roughly 300 was achieved at the turbine boundaries, there

are regions that surpass this at times, such as the blade tip during �ow separation, where adverse

pressure gradients can be observed, as seen in Figure 6.2.2. Due to the large deviation from

y
+
∈ [30,500], at most 1230 at the tip, the �ow parameters most likely were not accurate, leading

to inaccurate portrayal of separation. The low pressure during �ow separation will increase

the pressure drag force, therefore, if this e�ect is not captured properly, the performance of the

turbine will act accordingly. Thus, if the simulated separation is smaller than the real separation,

46

the power- and torque coe�cients would appear lower than expected, which seems to be the

case for TSR above 0.6. Conversely, if the separation is overestimated, the performance metrics

would be higher than the real values, similar to what is observed at TSR below 0.6. Note, as long

as convergence was reached, the impact of changing the relaxation coe�cients were negligible

on the �ow properties, thus this was not deemed as a cause for the di�erences between literature

data and the current data. Simulation time was, however, in�uenced by changing the relaxation

values.

Figure 6.2.2: Pressure �eld around both blade pro�les without augmentations at time of �ow separation at

the blade tip.

While the separation issue seems like the main cause of the poor correspondence to data in liter-

ature, the mesh at the top- and bottom boundaries might also a�ect the behaviour of the turbine,

despite the distance between them. The assumption that a coarser mesh in these boundaries is

su�cient might not hold, thus, a grid independence study should be performed. For the cells to

achieve an average y
+

of 300, the �rst cell height would have to be 1.24E+02, as calculated in

Chapter 5.2. However, with a domain of this size, a large amount of cells would be required to

secure this re�nement. To circumvent this a smaller turbine could be used, consequently decreas-

ing the domain size. This would in turn make it more feasible, with regard to simulation time,

to use a y
+
< 1, such that the separation can be properly captured. Disregarding the mesh, the

size of the domain might not be su�cient enough with respect to the turbine, despite the theory

in Chapter 2.4.1 suggesting so. Judging by the wake illustrated in Figure 6.2.3, which has a von

Kármán vortex street shape, the �ow has not fully developed following the obstruction by the

turbine. Nevertheless, it is appreciable that the velocity seems to be stabilizing at 1.2 ms
−1

in the

x direction, and zero in the y direction, for both case 1 and case 3, which is further illustrated in

Appendix J.1 and J.3, respectively. Corresponding plots for the augmented turbines are presented

in Appendix J.2 for case 2 and J.4 for case 3, where they seem to stabilize at 1.3 ms
−1

and 1.25

ms
−1

, respectively, for the x direction and zero in the y direction. For the �ow to become fully

developed, the velocity should reach the same value as the inlet velocity of 1.5 ms
−1

. A domain

size independence test could indicate if the �ow not fully developing has an impact on the turbine

performance, moreover, the domain height could also be evaluated to see if any con�nement ef-

47

fects are present. These con�nement e�ects could be more prelevant for the augmented turbines,

due to the obstruction of the augmentation geometries.

(a) Semi circular Savonius without augmentations

(b) Elliptic Savonius without augmentations

Figure 6.2.3: The wake velocity �eld of the unaugmented turbines.

6.3 Comparing the Studied Cases

When comparing all four cases in Figure 6.3.1, it is apparent that case 4, the elliptic turbine with

augmentations, has the highest performance, followed by the augmented semi circular turbine,

elliptic turbine without augmentations, and the standard semi circular Savonius, respectively.

Exact values for the data points corresponding to the maximum power coe�cient can be found

in Table 6.3.1, with tables containing data for all the points found in Appendix I.

All four turbines operate at TSR between 0.559 and 0.775, which is typical for Savonius type

turbines. However, as previously discussed, the simulated power coe�cients may have discrep-

ancies with their actual values, therefore, the results can only be used as general indicators. For

case 4, a Cp,max of 0.496 seems high compared to other augmented drag turbines in literature, thus

48

(a) Power coe�cient (b) Torque coe�cient

Figure 6.3.1: Comparison of the power- and torque coe�cients as a function of TSR for all four cases.

it is plausible this value has been overestimated. Both the elliptical cases display a sudden step at

a TSR of 0.651 (case 3) and 0.773 (case 4) in the power- and torque coe�cient. At these TSR, it is

plausible that signi�cant overestimations of the separation and depression zones on the convex

side of the advancing blade occur.

Table 6.3.1: Performance parameters of the Savonius turbines for the corresponding Br .

Case nr. TSR at Cp,max Cp,max CT at Cp,max Br at Cp,max

1 0.559 0.258 0.462 1200

2 0.687 0.389 0.567 1200

3 0.621 0.276 0.444 1000

4 0.775 0.496 0.640 1200

Table 6.3.2 provides a comparison of the maximum power coe�cient for all four cases, further

underlining the di�erences between them. Adding augmentations to the semi circular pro�le

increased its e�ciency by 50.78%, whereas the elliptical pro�le e�ciency increased by 79.71%

with the addition of augmentations.

Table 6.3.2: Power coe�cient comparison between all cases.

Case nr. 1 2 3 4

1 0 +50.78% +6.98% +92.25%

2 -33.68% 0 -29.05% +27.51%

3 -6.52% +40.94% 0 +79.71%

4 -47.98% -21.57% -44.35% 0

49

Similarly, the torque coe�cients corresponding to the maximum power coe�cients are compared

in Table 6.3.3. This comparison highlights that despite providing a better power coe�cient, case

3 has a 3.90% lower torque coe�cient than case 1.

Table 6.3.3: Torque coe�cient comparison between all cases.

Case nr. 1 2 3 4

1 0 +22.73% -3.90% +38.53%

2 -18.52% 0 -21.69% +12.87%

3 +4.05% +27.70% 0 +44.14%

4 -27.81% -11.41% -30.63% 0

Studying the pressure �elds for the four cases at their maximum power point in Figure 6.3.2, it

is apparent that the augmentation techniques have signi�cant impact on the pressure on both

the concave- and convex side of the blades. The upper de�ector guides the �ow towards the

concave side of the advancing blade, increasing the pressure. Additionally, the addition of the

de�ector causes the pressure immediately downstream to drop, due the �ow separation at this

obstruction. Together, the pressure increase upstream and the pressure decrease downstream

induce a greater drag force, due to the pressure di�erence. This pressure di�erence is observed to

be largest for case 4, which is why it achieves a greater power coe�cient. Immediately upstream

of the returning blade, a region of high pressure is observed for all four cases, which acts against

the preferred rotation.

(a) Case 1 (left) and case 2 (right)

(b) Case 3 (left) and case 4 (right)

Figure 6.3.2: Pressure �eld around the turbines at their respective maximum power points.

50

The e�ect of the augmentation techniques is further observed using the velocity �elds in Figure

6.3.3, where the barrier is seen to block a portion of the incoming �ow from making contact with

the returning blade. Furthermore, the e�ect of the overlap is also noticeable, where the �ow

is guided from the concave side of the advancing blade into the concave side of the returning

blade. In this overlap region, there are two overlapping jets with di�erent velocities. Between

the de�ector blade and the turbine, a high velocity jet is observed, which occurs due to the small

cross sectional area and large pressure di�erence. Looking at the direction of the velocity �eld,

this jet separates and continues towards the concave side of the returning blade.

(a) Case 1 (left) and case 2 (right)

(b) Case 3 (left) and case 4 (right)

Figure 6.3.3: Velocity �eld around the turbines at their respective maximum power points.

51

52

Chapter 7

Conclusions

In this thesis, two Savonius type turbines, the semi circular- and the elliptic blade pro�le, have

been simulated both with- and without augmentation techniques for a �ow induced rotation in

OpenFOAM. These simulations were performed with the Reynolds Average Navier-Stokes equa-

tions, where the k − ! SST turbulence closure model was utilised, together with the PIMPLE

pressure-velocity coupling algorithm. Prior to running the transient simulations, a static case

simulation using SIMPLEC was performed to achieve a fully developed �ow, saving an estimated

time of 70 hours. Furthermore, wall functions were used to estimate the �ow properties in the

wall boundaries, using an average y
+

value of 300. Judging by the comparison with literature,

this did not provide accurate results, as the wall functions could not estimate the �ow separation

properly. Nevertheless, if the obtained data are used as a general indicator of the performance

of the turbines, it is apparent that the elliptical pro�le with augmentations has a superior per-

formance, caused by the large pressure di�erence this augmentation induces. The power- and

torque coe�cient of this turbine was 0.496 and 0.640, respectively, at a tip speed ratio of 0.775,

seeing a 79.71% and 44.14% increase, respectively, compared to its unaugmented counterpart. For

the semi circular pro�le, the augmentation increased the power coe�cient by 50.78%, from 0.258

to 0.389, whereas the torque coe�cient improved by 22.73%, from 0.462 to 0.567. By evaluating

the velocity �elds of the wake, they seem to stabilize at constant values between 1.2 and 1.3ms
−1

in the x direction, and zero in the y direction, meaning they do not fully develop, as the inlet

velocity was 1.5 ms
−1

.

53

54

Chapter 8

Further Work

This chapter aims to provide a guideline of how the results could be improved, as well as recom-

mendations for future studies, based on the previous chapters.

• Decrease the turbine- and domain size

– Fewer cells can be used, while providing similar results

– Smoothness improved, as di�erence between the smallest and largest cells decrease

– Using y
+

values below one may become feasible, with regard to simulation time.

∗ Fully resolves boundary layer, increasing accuracy

∗ In�ation layers should be used across the height of the boundary layer to ensure

a smooth mesh.

– Perform a domain size independence test to ensure the length and height of the domain

do not impact the results signi�cantly.

• Regardless of whether wall functions or fully resolved boundary layers are used, a grid

independence test should be performed.

• Recommendations for future geometry studies:

– Focus on the elliptical pro�le

– Test with di�erent con�gurations of the barrier and de�ector

∗ Use di�erent arc lengths and positions for the barrier

∗ Use di�erent lengths, angles, and positions for the de�ector

• Adjust the residual control criteria to smaller values

• Consider using a forced rotation, as opposed to a �ow induced rotation

– Better control on the orientation of the turbine

– Easier to study the turbine at speci�c tip speed ratios

– Easier to evaluate which time step to use

• To fully simulate the �ow phenomena around the turbine, three dimensional simulations

should be performed.

– This will also allow for studies of helical blades, aspect ratio, and end plates.

55

56

Bibliography

[1] T. H. Skretting, “Innovative kinetic turbines for hydro kinetic energy conversion (hec),” M.S. thesis,

University of Agder, 2021.

[2] S. J. Sangiuliano, “Turning of the tides: Assessing the international implementation of tidal current

turbines,” Renewable and Sustainable Energy Reviews, vol. 80, pp. 971–989, 2017, issn: 1364-0321.

doi: https://doi.org/10.1016/j.rser.2017.05.045. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S13640321173

06810.

[3] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial approach to computational continuum

mechanics using object-oriented techniques,” Computers in Physics, vol. 12, no. 6, pp. 620–631, 1998.

doi: 10.1063/1.168744. eprint: https://aip.scitation.org/doi/pdf/10

.1063/1.168744. [Online]. Available: https://aip.scitation.org/doi/abs

/10.1063/1.168744.

[4] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-d �nite element mesh generator with built-in pre-

and post-processing facilities,” International Journal for Numerical Methods in Engineering, vol. 79,

no. 11, pp. 1309–1331, 2009. doi: https://doi.org/10.1002/nme.2579. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2579. [On-

line]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme

.2579.

[5] P. G. Tucker, Advanced computational �uid and aerodynamics, eng, New York, 2016.

[6] P. A. Durbin, Fluid dynamics with a computational perspective, eng, New York, 2013.

[7] Millennium problems | clay mathematics institute, https://www.claymath.org/mille

nnium-problems, (Accessed on 03/11/2021).

[8] D. De Tavernier, C. Ferreira, A. Viré, B. LeBlanc, and S. Bernardy, “Controlling dynamic stall using

vortex generators on a wind turbine airfoil,” Renewable Energy, vol. 172, pp. 1194–1211, 2021, issn:

0960-1481. doi: https://doi.org/10.1016/j.renene.2021.03.019. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0960

148121003736.

[9] S. Saedodin, M. Zaboli, and S. S. Mousavi Ajarostaghi, “Hydrothermal analysis of heat transfer and

thermal performance characteristics in a parabolic trough solar collector with turbulence-inducing

elements,” Sustainable Energy Technologies and Assessments, vol. 46, p. 101 266, 2021, issn: 2213-

1388. doi: https://doi.org/10.1016/j.seta.2021.101266. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S22131388210

02769.

57

[10] G. Cavazzini, J.-B. Houdeline, G. Pavesi, O. Teller, and G. Ardizzon, “Unstable behaviour of pump-

turbines and its e�ects on power regulation capacity of pumped-hydro energy storage plants,”

Renewable and Sustainable Energy Reviews, vol. 94, pp. 399–409, 2018, issn: 1364-0321. doi: http

s://doi.org/10.1016/j.rser.2018.06.018. [Online]. Available: https://ww

w.sciencedirect.com/science/article/pii/S1364032118304532.

[11] S. Rodriguez, “Les and dns turbulence modeling,” in Applied Computational Fluid Dynamics and

Turbulence Modeling: Practical Tools, Tips and Techniques. Cham: Springer International Publishing,

2019, pp. 197–223, isbn: 978-3-030-28691-0. doi: 10.1007/978-3-030-28691-0_5.

[Online]. Available: https://doi.org/10.1007/978-3-030-28691-0_5.

[12] H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, 2nd ed.

Harlow, Essex, United Kingdom: Pearson Education Limited, 2007, isbn: 978-0-13-127498-3.

[13] N. Thuerey, K. Weißenow, L. Prantl, and X. Hu, “Deep learning methods for reynolds-averaged

navier–stokes simulations of airfoil �ows,” AIAA Journal, vol. 58, no. 1, pp. 25–36, 2020. doi: 10

.2514/1.J058291. eprint: https://doi.org/10.2514/1.J058291. [Online].

Available: https://doi.org/10.2514/1.J058291.

[14] W. Liu, J. Fang, S. Rolfo, C. Moulinec, and D. R. Emerson, “An iterative machine-learning framework

for rans turbulence modeling,” International Journal of Heat and Fluid Flow, vol. 90, p. 108 822, 2021,

issn: 0142-727X. doi: https://doi.org/10.1016/j.ijheatfluidflow.2021.1

08822. [Online]. Available: https://www.sciencedirect.com/science/artic

le/pii/S0142727X21000527.

[15] M. Xu, H. Cheng, and B. Ji, “Rans simulation of unsteady cavitation around a clark-y hydrofoil with

the assistance of machine learning,” Ocean Engineering, vol. 231, p. 109 058, 2021, issn: 0029-8018.

doi: https://doi.org/10.1016/j.oceaneng.2021.109058. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S00298018210

04935.

[16] L. J. Voet, R. Ahlfeld, A. Gaymann, S. Laizet, and F. Montomoli, “A hybrid approach combining

dns and rans simulations to quantify uncertainties in turbulence modelling,” Applied Mathematical

Modelling, vol. 89, pp. 885–906, 2021, issn: 0307-904X. doi: https://doi.org/10.1016/j

.apm.2020.07.056. [Online]. Available: https://www.sciencedirect.com/sc

ience/article/pii/S0307904X20304212.

[17] J. Weatheritt and R. D. Sandberg, “Hybrid reynolds-averaged/large-eddy simulation methodology

from symbolic regression: Formulation and application,” AIAA Journal, vol. 55, no. 11, pp. 3734–

3746, 2017. doi: 10.2514/1.J055378. eprint: https://doi.org/10.2514/1.J05

5378. [Online]. Available: https://doi.org/10.2514/1.J055378.

[18] M. E. Nakhchi, S. W. Naung, and M. Rahmati, “Dns of secondary �ows over oscillating low-pressure

turbine using spectral/hp element method,” International Journal of Heat and Fluid Flow, vol. 86,

p. 108 684, 2020, issn: 0142-727X. doi: https://doi.org/10.1016/j.ijheatfluid

flow.2020.108684. [Online]. Available: https://www.sciencedirect.com/sc

ience/article/pii/S0142727X20307074.

58

[19] H. Cao, X. Jia, Y. Li, C. Amador, and Y. Ding, “Cfd-dns simulation of irregular-shaped particle

dissolution,” Particuology, vol. 50, pp. 144–155, 2020, issn: 1674-2001. doi: https://doi.org

/10.1016/j.partic.2019.08.003. [Online]. Available: https://www.science

direct.com/science/article/pii/S1674200119301233.

[20] A. Tamburini, A. Brucato, M. Ciofalo, G. Gagliano, G. Micale, and F. Scargiali, “Cfd simulations of

early- to fully-turbulent conditions in unba�ed and ba�ed vessels stirred by a rushton turbine,”

Chemical Engineering Research and Design, vol. 171, pp. 36–47, 2021, issn: 0263-8762. doi: https

://doi.org/10.1016/j.cherd.2021.04.021. [Online]. Available: https://ww

w.sciencedirect.com/science/article/pii/S0263876221001830.

[21] B. Launder and D. Spalding, “The numerical computation of turbulent �ows,” Computer Methods in

Applied Mechanics and Engineering, vol. 3, no. 2, pp. 269–289, 1974, issn: 0045-7825. doi: https:

//doi.org/10.1016/0045-7825(74)90029-2. [Online]. Available: https://ww

w.sciencedirect.com/science/article/pii/0045782574900292.

[22] D. WILCOX, “A half century historical review of the k-omega model,” in 29th Aerospace Sciences

Meeting. DCW Industries Inc., 1991, p. 615. doi: 10.2514/6.1991-615. eprint: https:

//arc.aiaa.org/doi/pdf/10.2514/6.1991-615. [Online]. Available: https:

//arc.aiaa.org/doi/abs/10.2514/6.1991-615.

[23] F. R. Menter, M. Kuntz, and R. Langtry, “Ten years of industrial experience with the sst turbulence

model,” Turbulence, heat and mass transfer, vol. 4, no. 1, pp. 625–632, 2003. [Online]. Available:

https://cfd.spbstu.ru/agarbaruk/doc/2003_Menter,%5C%20Kuntz

,%5C%20Langtry_Ten%5C%20years%5C%20of%5C%20industrial%5C%20exp

erience%5C%20with%5C%20the%5C%20SST%5C%20turbulence%5C%20model

.pdf.

[24] S. ed-Din Fertahi, T. Bouhal, O. Rajad, T. Kousksou, A. Arid, T. El Rha�ki, A. Jamil, and A. Benbas-

sou, “Cfd performance enhancement of a low cut-in speed current vertical tidal turbine through

the nested hybridization of savonius and darrieus,” Energy Conversion and Management, vol. 169,

pp. 266–278, 2018, issn: 0196-8904. doi: https://doi.org/10.1016/j.enconman.2

018.05.027. [Online]. Available: https://www.sciencedirect.com/science

/article/pii/S0196890418305041.

[25] S. Zanforlin, “Advantages of vertical axis tidal turbines set in close proximity: A comparative cfd

investigation in the english channel,” Ocean Engineering, vol. 156, pp. 358–372, 2018, issn: 0029-

8018. doi: https://doi.org/10.1016/j.oceaneng.2018.03.035. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0029

801818303007.

[26] H. W. Ren, F. A. Z. Mohd Saat, F. Shikh Anuar, M. A. Abdul Wahap, E. Mat Tokit, and T. B. Tuan,

“Computational �uid dynamics study of wake recovery for �ow across hydrokinetic turbine at

di�erent depth of water,” CFD Letters, vol. 13, no. 2, pp. 62–76, Mar. 2021. doi: 10.37934/cfd

l.13.2.6276. [Online]. Available: https://akademiabaru.com/submit/index

.php/cfdl/article/view/3362.

59

[27] W. Schleicher, J. Riglin, and A. Oztekin, “Numerical characterization of a preliminary portable

micro hydrokinetic turbine rotor design,” Renewable Energy, vol. 76, pp. 234–241, 2015, issn: 0960-

1481. doi: https://doi.org/10.1016/j.renene.2014.11.032. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0960

148114007472.

[28] J. Riglin, C. Daskiran, J. Jonas, W. C. Schleicher, and A. Oztekin, “Hydrokinetic turbine array charac-

teristics for river applications and spatially restricted �ows,” Renewable Energy, vol. 97, pp. 274–283,

2016, issn: 0960-1481. doi: https://doi.org/10.1016/j.renene.2016.05.081.

[Online]. Available: https://www.sciencedirect.com/science/article/pii

/S0960148116304918.

[29] M. Zhao, D. Wan, and Y. Gao, “Comparative study of di�erent turbulence models for cavitational

�ows around naca0012 hydrofoil,” Journal of Marine Science and Engineering, vol. 9, no. 7, 2021,

issn: 2077-1312. doi: 10.3390/jmse9070742. [Online]. Available: https://www.mdpi

.com/2077-1312/9/7/742.

[30] G. Saini and R. P. Saini, “Performance study of cross �ow hybrid hydrokinetic turbine,” in Hy-

drological Extremes: River Hydraulics and Irrigation Water Management, A. Pandey, S. Mishra, M.

Kansal, R. Singh, and V. P. Singh, Eds. Cham: Springer International Publishing, 2021, pp. 249–257,

isbn: 978-3-030-59148-9. doi: 10.1007/978-3-030-59148-9_17. [Online]. Available:

https://doi.org/10.1007/978-3-030-59148-9_17.

[31] A. Kumar and R. Saini, “Performance analysis of a single stage modi�ed savonius hydrokinetic

turbine having twisted blades,” Renewable Energy, vol. 113, pp. 461–478, 2017, issn: 0960-1481. doi:

https://doi.org/10.1016/j.renene.2017.06.020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S09601481173

05219.

[32] M. Mosbahi, A. Ayadi, Y. Chouaibi, Z. Driss, and T. Tucciarelli, “Performance study of a helical

savonius hydrokinetic turbine with a new de�ector system design,” Energy Conversion and Man-

agement, vol. 194, pp. 55–74, 2019, issn: 0196-8904. doi: https://doi.org/10.1016/j

.enconman.2019.04.080. [Online]. Available: https://www.sciencedirect.c

om/science/article/pii/S0196890419305242.

[33] Openfoam: User guide: K-omega shear stress transport (sst), https://www.openfoam.com

/documentation/guides/latest/doc/guide-turbulence-ras-k-omega

-sst.html, (Accessed on 03/12/2021).

[34] L. Könözsy, “The k-! shear-stress transport (sst) turbulence model,” in A New Hypothesis on the

Anisotropic Reynolds Stress Tensor for Turbulent Flows: Volume I: Theoretical Background and Devel-

opment of an Anisotropic Hybrid k-omega Shear-Stress Transport/Stochastic Turbulence Model. Cham:

Springer International Publishing, 2019, pp. 57–66, isbn: 978-3-030-13543-0. doi: 10.1007/97

8-3-030-13543-0_3. [Online]. Available: https://doi.org/10.1007/978-3-0

30-13543-0_3.

[35] F. R. Menter, Improved two-equation k-omega turbulence models for aerodynamic �ows - nasa tech-

nical reports server (ntrs), https://ntrs.nasa.gov/citations/19930013620,

(Accessed on 02/11/2022), Oct. 1992.

60

[36] ——, “In�uence of freestream values on k-omega turbulence model predictions,” AIAA journal,

vol. 30, no. 6, pp. 1657–1659, 1992. [Online]. Available: https://cfd.spbstu.ru/aga

rbaruk/doc/1992_Menter_Influence%5C%20of%5C%20Freestream%5C%20

Values%5C%20on%5C%20k-w%5C%20Turbulence%5C%20Model%5C%20Predic

tions.pdf.

[37] J. C. Kok, Resolving the dependence on free-stream values for the k-omega turbulence model, http

s://reports.nlr.nl/xmlui/handle/10921/1141, (Accessed on 02/11/2022), Jul.

1999.

[38] A. Lintermann, Computational meshing for cfd simulations, Oct. 2020. doi: 10.1007/978-981

-15-6716-2_6.

[39] I. Sadrehaghighi, Unstructured Meshing for CFD. CFD Open Series, May 2021. [Online]. Available:

https://www.researchgate.net/publication/339285304_Unstructure

d_Meshing_for_CFD.

[40] A. de Boer, A. van Zuijlen, and H. Bijl, “Comparison of conservative and consistent approaches for

the coupling of non-matching meshes,” Computer Methods in Applied Mechanics and Engineering,

vol. 197, no. 49, pp. 4284–4297, 2008, issn: 0045-7825. doi: https://doi.org/10.1016/j

.cma.2008.05.001. [Online]. Available: https://www.sciencedirect.com/sc

ience/article/pii/S0045782508001916.

[41] M. Surendran, C. Lee, H. Nguyen-Xuan, G. Liu, and S. Natarajan, “Cell-based smoothed �nite ele-

ment method for modelling interfacial cracks with non-matching grids,” Engineering Fracture Me-

chanics, vol. 242, p. 107 476, 2021, issn: 0013-7944. doi: https://doi.org/10.1016/j

.engfracmech.2020.107476. [Online]. Available: https://www.sciencedirec

t.com/science/article/pii/S0013794420310365.

[42] X. Tunc, I. Faille, T. Gallouët, M. C. Cacas, and P. Havé, “A model for conductive faults with non-

matching grids,” Computational Geosciences, vol. 16, no. 2, pp. 277–296, 2012. [Online]. Available:

https://link.springer.com/content/pdf/10.1007/s10596-011-9267

-x.pdf.

[43] All there is to know about di�erent mesh types in cfd! https://www.manchestercfd.co.u

k/post/all-there-is-to-know-about-different-mesh-types-in-cfd,

(Accessed on 06/12/2021).

[44] P. Pölzlbauer, A. Kümmel, D. Desvigne, and C. Breitsamter, “Numerical investigation of an opti-

mized rotor head fairing for the racer compound helicopter in cruise �ight,” Aerospace, vol. 8, p. 66,

Mar. 2021. doi: 10.3390/aerospace8030066.

[45] Ijasar-s1-001�g9.jpg (945×555), https://scidoc.org/images/artical/IJASAR/S

PL/S1/IJASAR-S1-001fig9.jpg, (Accessed on 07/12/2021).

[46] J. Kampman, “Dynamic moving mesh analysis of airfoil passing a down wind tower wake in open-

foam,” 2-B Energy Holding B.V., Tech. Rep., Jul. 2019. doi: 10.13140/RG.2.2.31851.084

88.

[47] Openfoam 2.3.0: Arbitrary mesh interface | openfoam, https://openfoam.org/release

/2-3-0/non-conforming-ami/, (Accessed on 07/12/2021).

61

[48] Checkmesh - openfoamwiki, https://openfoamwiki.net/index.php/CheckMesh,

(Accessed on 05/07/2022).

[49] Openfoam-9/meshqualitydict.cfg at master · openfoam/openfoam-9 · github, https://github

.com/OpenFOAM/OpenFOAM-9/blob/master/etc/caseDicts/mesh/genera

tion/meshQualityDict.cfg, (Accessed on 05/07/2022).

[50] F. Aqilah, M. Islam, F. Juretic, J. Guerrero, D. Wood, and F. N. Ani, “Study of mesh quality improve-

ment for cfd analysis of an airfoil,” IIUM Engineering Journal, vol. 19, no. 2, pp. 203–212, 2018. doi:

https://doi.org/10.31436/iiumej.v19i2.905. [Online]. Available: https:

//journals.iium.edu.my/ejournal/index.php/iiumej/article/view

/905.

[51] R. Gullberg, “Computational �uid dynamics in openfoam,” Report TKP, vol. 4555, 2017.

[52] R. Lantz, “Quantitative Evaluation of Numerical Di�usion (Truncation Error),” Society of Petroleum

Engineers Journal, vol. 11, no. 03, pp. 315–320, Sep. 1971, issn: 0197-7520. doi: 10.2118/2811

-PA. eprint: https://onepetro.org/spejournal/article-pdf/11/03/315

/2156613/spe-2811-pa.pdf. [Online]. Available: https://doi.org/10.2118

/2811-PA.

[53] J. Bredberg, “On the wall boundary condition for turbulence models,” Chalmers University of Tech-

nology, Department of Thermo and Fluid Dynamics. Internal Report 00/4. G oteborg, pp. 8–16, 2000.

[Online]. Available: http://www.tfd.chalmers.se/~lada/postscript_files

/jonas_report_WF.pdf.

[54] H. Schlichting and K. Gersten, Boundary-layer Theory, 7th ed. McGraw-Hill, 1979, isbn: 0-07-

055334-3. [Online]. Available: %5Curl%7Bhttp://ae.sharif.edu/~viscousflo

w/Schlichting%5C%20-%5C%20Boundary%5C%20Layer%5C%20Theory.pdf

%7D.

[55] Y. Cengel and J. Cimbala, Fluid Mechanics: Fundamentals and Applications, 3rd ed. McGraw-Hill,

2006, isbn: 978-0-07-338032-2. [Online]. Available: %5Curl%7Bhttp://bayanbox.ir/v

iew/8663792249632045937/Fluid-Cengel-3ed.pdf%7D.

[56] Skin friction coe�cient – cfd-wiki, the free cfd reference, https://www.cfd-online.com

/Wiki/Skin_friction_coefficient, (Accessed on 04/22/2022).

[57] I. A. Yeginbayeva and M. Atlar, “An experimental investigation into the surface and hydrodynamic

characteristics of marine coatings with mimicked hull roughness ranges,” Biofouling, vol. 34, no. 9,

pp. 1001–1019, 2018, PMID: 30537869. doi: 10.1080/08927014.2018.1529760. eprint:

https://doi.org/10.1080/08927014.2018.1529760. [Online]. Available:

https://doi.org/10.1080/08927014.2018.1529760.

[58] Laws of �ow in rough pipes - nasa technical reports server (ntrs), https://ntrs.nasa.gov

/citations/19930093938, (Accessed on 12/12/2021).

[59] A. Segalini and P. Inghels, “Con�nement e�ects in wind-turbine and propeller measurements,”

Journal of Fluid Mechanics, vol. 756, pp. 110–129, 2014. doi: 10.1017/jfm.2014.440.

[60] Openfoam: User guide: Klowrewallfunction, https://www.openfoam.com/documentat

ion/guides/latest/doc/guide-bcs-wall-turbulence-kLowReWallFun

ction.html, (Accessed on 03/31/2022).

62

[61] Openfoam: User guide: Kqrwallfunction, https://www.openfoam.com/documentatio

n/guides/latest/doc/guide-bcs-wall-turbulence-kqRWallFunction

.html, (Accessed on 04/06/2022).

[62] V. Neary, B. Gunawan, and D. Sale, “Turbulent in�ow characteristics for hydrokinetic energy con-

version in rivers,” Renewable and Sustainable Energy Reviews, vol. 26, pp. 437–445, 2013, issn: 1364-

0321. doi: https://doi.org/10.1016/j.rser.2013.05.033. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S13640321130

03365.

[63] P. Mycek, B. Gaurier, G. Germain, G. Pinon, and E. Rivoalen, “Experimental study of the turbulence

intensity e�ects on marine current turbines behaviour. part i: One single turbine,” Renewable En-

ergy, vol. 66, pp. 729–746, 2014, issn: 0960-1481. doi: https://doi.org/10.1016/j.re

nene.2013.12.036. [Online]. Available: https://www.sciencedirect.com/sc

ience/article/pii/S096014811400007X.

[64] Openfoam: User guide: Omegawallfunction, https://www.openfoam.com/documenta

tion/guides/latest/doc/guide-bcs-wall-turbulence-omegaWallFun

ction.html, (Accessed on 04/22/2022).

[65] Openfoam: User guide: Wall conditions, https://www.openfoam.com/documentat

ion/guides/latest/doc/guide-bcs-derived-wall.html, (Accessed on

04/22/2022).

[66] N. FUEYO and J. A. BLASCO, “Relaxation control in the solution of cfd problems,” International

Journal of Computational Fluid Dynamics, vol. 13, no. 1, pp. 43–63, 1999. doi: 10.1080/106

18569908940889. eprint: https://doi.org/10.1080/10618569908940889.

[Online]. Available: https://doi.org/10.1080/10618569908940889.

[67] M. Zeng and W. Tao, “A comparison study of the convergence characteristics and robustness for

four variants of simple-family at �ne grids,” Engineering Computations, 2003.

[68] Openfoam guide/the simple algorithm in openfoam - openfoamwiki, https://openfoamwi

ki.net/index.php/The_SIMPLE_algorithm_in_OpenFOAM, (Accessed on

08/12/2021).

[69] Openfoam: User guide: Simplefoam, (Accessed on 08/12/2021). [Online]. Available: %5Curl%7Bh

ttps://www.openfoam.com/documentation/guides/latest/doc/guide

-applications-solvers-incompressible-simpleFoam.html#sec-appl

ications-solvers-basic-simpleFoam-equations%7D.

[70] Applications/solvers/incompressible/simplefoam ·master · development / openfoam · gitlab, https:

//develop.openfoam.com/Development/openfoam/-/tree/master/appl

ications/solvers/incompressible/simpleFoam, (Accessed on 08/12/2021).

[71] Openfoam guide/the piso algorithm in openfoam - openfoamwiki, https://openfoamwiki

.net/index.php/OpenFOAM_guide/The_PISO_algorithm_in_OpenFOAM,

(Accessed on 08/12/2021).

[72] Applications/solvers/incompressible/pisofoam · master · development / openfoam · gitlab, https:

//develop.openfoam.com/Development/openfoam/-/tree/master/appl

ications/solvers/incompressible/pisoFoam, (Accessed on 08/12/2021).

63

[73] Openfoam guide/the pimple algorithm in openfoam - openfoamwiki, https://openfoamwik

i.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_in_Open

FOAM, (Accessed on 08/12/2021).

[74] Applications/solvers/incompressible/pimplefoam · master · development / openfoam · gitlab, https

://develop.openfoam.com/Development/openfoam/-/tree/master/app

lications/solvers/incompressible/pimpleFoam, (Accessed on 11/12/2021).

[75] F. Balduzzi, A. Bianchini, G. Ferrara, and L. Ferrari, “Dimensionless numbers for the assessment

of mesh and timestep requirements in cfd simulations of darrieus wind turbines,” Energy, vol. 97,

pp. 246–261, 2016, issn: 0360-5442. doi: https://doi.org/10.1016/j.energy.201

5.12.111. [Online]. Available: https://www.sciencedirect.com/science/ar

ticle/pii/S0360544215017569.

[76] T. Holzmann, Mathematics, Numerics, Derivations and OpenFOAM®. Nov. 2019.

[77] R. Amano and B. Sundén, Computational �uid dynamics and heat transfer: emerging topics. WIT

Press, 2011, vol. 23.

[78] I. Marinić-Kragić, D. Vučina, and Z. Milas, “Numerical work�ow for 3d shape optimization and

synthesis of vertical-axis wind turbines for speci�ed operating regimes,” Renewable Energy, vol. 115,

pp. 113–127, 2018, issn: 0960-1481. doi: https://doi.org/10.1016/j.renene.201

7.08.030. [Online]. Available: https://www.sciencedirect.com/science/ar

ticle/pii/S096014811730784X.

[79] Z. Zhou, F. Scuiller, J. F. Charpentier, M. Benbouzid, and T. Tang, “An up-to-date review of large

marine tidal current turbine technologies,” in 2014 International Power Electronics and Application

Conference and Exposition, 2014, pp. 480–484. doi: 10.1109/PEAC.2014.7037903.

[80] Z. Zhou, M. Benbouzid, J.-F. Charpentier, F. Scuiller, and T. Tang, “Developments in large ma-

rine current turbine technologies – a review,” Renewable and Sustainable Energy Reviews, vol. 71,

pp. 852–858, 2017, issn: 1364-0321. doi: https://doi.org/10.1016/j.rser.2016

.12.113. [Online]. Available: https://www.sciencedirect.com/science/art

icle/pii/S1364032116311698.

[81] Dnv gl issues statement of feasibility for alstom’s oceade tidal turbine, https://www.windpo

werengineering.com/dnv-gl-issues-statement-of-feasibility-for

-alstoms-oceade-tidal-turbine/, (Accessed on 05/08/2022).

[82] Open hydro : Emec: European marine energy centre, https://www.emec.org.uk/about

-us/our-tidal-clients/open-hydro/, (Accessed on 05/08/2022).

[83] Seagen turbine, northern ireland, uk, https://www.power-technology.com/projec

ts/strangford-lough/, (Accessed on 05/08/2022).

[84] EMEC, Tidal developers : Emec: European marine energy centre, http://www.emec.org.uk

/marine-energy/tidal-developers/, (Accessed on 02/10/2021).

[85] G. Saini and R. P. Saini, “A review on technology, con�gurations, and performance of cross-�ow

hydrokinetic turbines,” International Journal of Energy Research, vol. 43, no. 13, pp. 6639–6679, 2019.

doi: https://doi.org/10.1002/er.4625. eprint: https://onlinelibrary

.wiley.com/doi/pdf/10.1002/er.4625. [Online]. Available: https://online

library.wiley.com/doi/abs/10.1002/er.4625.

64

[86] D. Gorelov and V. Krivospitsky, “Prospects for development of wind turbines with orthogonal ro-

tor,” Thermophysics and Aeromechanics, vol. 15, pp. 153–157, Aug. 2008. doi: https://doi.o

rg/10.1134/S0869864308010149.

[87] M. Mohamed, G. Janiga, E. Pap, and D. Thévenin, “Optimal blade shape of a modi�ed savonius tur-

bine using an obstacle shielding the returning blade,” Energy Conversion and Management, vol. 52,

no. 1, pp. 236–242, 2011, issn: 0196-8904. doi: https://doi.org/10.1016/j.enconma

n.2010.06.070. [Online]. Available: https://www.sciencedirect.com/scien

ce/article/pii/S0196890410002918.

[88] E. Commission, D.-G. for Research, and Innovation, Non-nuclear energy - Joule II : Wave energy:

The exploitation of tidal and marine currents. Publications O�ce, 1996.

[89] H. Chen, T. Tang, N. Aït-Ahmed, M. E. H. Benbouzid, M. Machmoum, and M. E.-H. Zaïm, “Attrac-

tion, challenge and current status of marine current energy,” IEEE Access, vol. 6, pp. 12 665–12 685,

2018. doi: 10.1109/ACCESS.2018.2795708.

[90] P. A. S. F. Silva, L. D. Shinomiya, T. F. de Oliveira, J. R. P. Vaz, A. L. Amarante Mesquita, and

A. C. P. Brasil Junior, “Analysis of cavitation for the optimized design of hydrokinetic turbines

using bem,” Applied Energy, vol. 185, pp. 1281–1291, 2017, Clean, E�cient and A�ordable Energy

for a Sustainable Future, issn: 0306-2619. doi: https://doi.org/10.1016/j.apener

gy.2016.02.098. [Online]. Available: https://www.sciencedirect.com/scie

nce/article/pii/S0306261916302549.

[91] P. Kumar and R. Saini, “Study of cavitation in hydro turbines—a review,” Renewable and Sustainable

Energy Reviews, vol. 14, no. 1, pp. 374–383, 2010, issn: 1364-0321. doi: https://doi.org/1

0.1016/j.rser.2009.07.024. [Online]. Available: https://www.sciencedire

ct.com/science/article/pii/S1364032109001609.

[92] K. Golecha, T. Eldho, and S. Prabhu, “In�uence of the de�ector plate on the performance of modi�ed

savonius water turbine,” Applied Energy, vol. 88, no. 9, pp. 3207–3217, 2011, issn: 0306-2619. doi:

https://doi.org/10.1016/j.apenergy.2011.03.025. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S03062619110

01826.

[93] B. D. Altan and M. Atılgan, “An experimental and numerical study on the improvement of the

performance of savonius wind rotor,” Energy Conversion and Management, vol. 49, no. 12, pp. 3425–

3432, 2008, issn: 0196-8904. doi: https://doi.org/10.1016/j.enconman.2008.0

8.021. [Online]. Available: https://www.sciencedirect.com/science/artic

le/pii/S0196890408003063.

[94] J. N. Goundar, M. R. Ahmed, and Y.-H. Lee, “Design and Optimization of a Ducted Marine Current

Savonius Turbine for Gun-Barrel Passage, Fiji,” Journal of O�shore Mechanics and Arctic Engineer-

ing, vol. 141, no. 2, Oct. 2018, 021901, issn: 0892-7219. doi: 10.1115/1.4041459. eprint:

https://asmedigitalcollection.asme.org/offshoremechanics/arti

cle-pdf/141/2/021901/6250439/omae_141_02_021901.pdf. [Online].

Available: https://doi.org/10.1115/1.4041459.

65

[95] B. Yang and C. Lawn, “Fluid dynamic performance of a vertical axis turbine for tidal currents,”

Renewable Energy, vol. 36, no. 12, pp. 3355–3366, 2011, issn: 0960-1481. doi: https://doi.or

g/10.1016/j.renene.2011.05.014. [Online]. Available: https://www.scienc

edirect.com/science/article/pii/S0960148111002400.

[96] T. Harries, A. Kwan, J. Brammer, and R. Falconer, “Physical testing of performance characteristics

of a novel drag-driven vertical axis tidal stream turbine; with comparisons to a conventional savo-

nius,” International Journal of Marine Energy, vol. 14, pp. 215–228, 2016, issn: 2214-1669. doi: ht

tps://doi.org/10.1016/j.ijome.2016.01.008. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S2214166916300054.

[97] P. Jaohindy, S. McTavish, F. Garde, and A. Bastide, “An analysis of the transient forces acting on

savonius rotors with di�erent aspect ratios,” Renewable Energy, vol. 55, pp. 286–295, 2013, issn:

0960-1481. doi: https://doi.org/10.1016/j.renene.2012.12.045. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0960

148113000074.

[98] K. Sornes, “Small-scale water current turbines for river applications,” Zero Emission Resource Or-

ganisation (ZERO), pp. 1–19, 2010.

[99] P. Bachant and M. Wosnik, “Performance measurements of cylindrical- and spherical-helical cross-

�ow marine hydrokinetic turbines, with estimates of exergy e�ciency,” Renewable Energy, vol. 74,

pp. 318–325, 2015, issn: 0960-1481. doi: https://doi.org/10.1016/j.renene.201

4.07.049. [Online]. Available: https://www.sciencedirect.com/science/ar

ticle/pii/S0960148114004479.

[100] S. Mohammadi, M. Hassanalian, H. Arionfard, and S. Bakhtiyarov, “Optimal design of hydrokinetic

turbine for low-speed water �ow in golden gate strait,” Renewable Energy, vol. 150, pp. 147–155,

2020, issn: 0960-1481. doi: https://doi.org/10.1016/j.renene.2019.12.142.

[Online]. Available: https://www.sciencedirect.com/science/article/pii

/S096014811932021X.

[101] P. Dudhgaonkar, N. Duraisamy, and P. Jalihal, “Energy extraction from ocean currents using straight

bladed cross-�ow hydrokinetic turbine,” The International Journal of Ocean and Climate Systems,

vol. 8, no. 1, pp. 4–9, 2017. doi: 10.1177/1759313116673081. eprint: https://doi.o

rg/10.1177/175931311667308. [Online]. Available: https://doi.org/10.117

7/17593131166730.

[102] N. Alom and U. K. Saha, “Evolution and Progress in the Development of Savonius Wind Turbine

Rotor Blade Pro�les and Shapes,” Journal of Solar Energy Engineering, vol. 141, no. 3, Nov. 2018,

030801, issn: 0199-6231. doi: 10.1115/1.4041848. eprint: https://asmedigitalco

llection.asme.org/solarenergyengineering/article-pdf/141/3/03

0801/6409979/sol_141_03_030801.pdf. [Online]. Available: https://doi

.org/10.1115/1.4041848.

[103] N. Sarma, A. Biswas, and R. Misra, “Experimental and computational evaluation of savonius hy-

drokinetic turbine for low velocity condition with comparison to savonius wind turbine at the same

input power,” Energy Conversion and Management, vol. 83, pp. 88–98, 2014, issn: 0196-8904. doi:

https://doi.org/10.1016/j.enconman.2014.03.070. [Online]. Available:

66

https://www.sciencedirect.com/science/article/pii/S01968904140

02714.

[104] S. Roy, “Aerodynamic performance evaluation of a novel savonius0style wind turbine through

unsteady simulations and wind tunnel experiments,” Ph.D. dissertation, 2014. [Online]. Available:

http://gyan.iitg.ernet.in/handle/123456789/604.

[105] S. Roy and U. K. Saha, “Wind tunnel experiments of a newly developed two-bladed savonius-style

wind turbine,” Applied Energy, vol. 137, pp. 117–125, 2015, issn: 0306-2619. doi: https://doi

.org/10.1016/j.apenergy.2014.10.022. [Online]. Available: https://www.s

ciencedirect.com/science/article/pii/S0306261914010630.

[106] Aerodynamic Design Optimization of Elliptical-Bladed Savonius-Style Wind Turbine by Numerical

Simulations, vol. Volume 6: Ocean Space Utilization; Ocean Renewable Energy, International Con-

ference on O�shore Mechanics and Arctic Engineering, V006T09A009, Jun. 2016. doi: 10.111

5/OMAE2016-55095. eprint: https://asmedigitalcollection.asme.org

/OMAE/proceedings-pdf/OMAE2016/49972/V006T09A009/2570244/v006t

09a009-omae2016-55095.pdf. [Online]. Available: https://doi.org/10.1115

/OMAE2016-55095.

[107] Unsteady Flow Analysis Around an Elliptic-Bladed Savonius-Style Wind Turbine, vol. ASME 2014 Gas

Turbine India Conference, Gas Turbine India Conference, V001T05A001, Dec. 2014. doi: 10.111

5/GTINDIA2014-8141. eprint: https://asmedigitalcollection.asme.org

/GTINDIA/proceedings-pdf/GTINDIA2014/49644/V001T05A001/4240726

/v001t05a001-gtindia2014-8141.pdf. [Online]. Available: https://doi.org

/10.1115/GTINDIA2014-8141.

[108] K. Kacprzak and K. Sobczak, “Computational assessment of the in�uence of the overlap ratio on

the power characteristics of a classical savonius wind turbine,” Open Engineering, vol. 5, Jan. 2015.

doi: 10.1515/eng-2015-0039.

[109] P. Marsh, D. Ranmuthugala, I. Penesis, and G. Thomas, “The in�uence of turbulence model and two

and three-dimensional domain selection on the simulated performance characteristics of vertical

axis tidal turbines,” Renewable Energy, vol. 105, pp. 106–116, 2017, issn: 0960-1481. doi: https:

//doi.org/10.1016/j.renene.2016.11.063. [Online]. Available: https://ww

w.sciencedirect.com/science/article/pii/S0960148116310473.

[110] K. Kacprzak, G. Liskiewicz, and K. Sobczak, “Numerical investigation of conventional and modi�ed

savonius wind turbines,” Renewable Energy, vol. 60, pp. 578–585, 2013, issn: 0960-1481. doi: htt

ps://doi.org/10.1016/j.renene.2013.06.009. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0960148113003029.

[111] M. H. Khanjanpour and A. A. Javadi, “Optimization of a horizontal axis tidal (hat) turbine for

powering a reverse osmosis (ro) desalination system using computational �uid dynamics (cfd) and

taguchi method,” Energy Conversion and Management, vol. 231, p. 113 833, 2021, issn: 0196-8904.

doi: https://doi.org/10.1016/j.enconman.2021.113833. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S01968904210

00108.

67

[112] H. Alizadeh, M. H. Jahangir, and R. Ghasempour, “Cfd-based improvement of savonius type hy-

drokinetic turbine using optimized barrier at the low-speed �ows,” Ocean Engineering, vol. 202,

p. 107 178, 2020, issn: 0029-8018. doi: https://doi.org/10.1016/j.oceaneng.202

0.107178. [Online]. Available: https://www.sciencedirect.com/science/ar

ticle/pii/S0029801820302377.

[113] N. R. Maldar, C. Y. Ng, L. W. Ean, E. Oguz, A. Fitriadhy, and H. S. Kang, “A comparative study on the

performance of a horizontal axis ocean current turbine considering de�ector and operating depths,”

Sustainability, vol. 12, no. 8, 2020, issn: 2071-1050. doi: 10.3390/su12083333. [Online].

Available: https://www.mdpi.com/2071-1050/12/8/3333.

[114] M. B. Salleh, N. M. Kamaruddin, and Z. Mohamed-Kassim, “Experimental investigation on the ef-

fects of de�ector angles on the power performance of a savonius turbine for hydrokinetic applica-

tions in small rivers,” Energy, vol. 247, p. 123 432, 2022, issn: 0360-5442. doi: https://doi.o

rg/10.1016/j.energy.2022.123432. [Online]. Available: https://www.scien

cedirect.com/science/article/pii/S0360544222003358.

[115] P. K. Talukdar, A. Sardar, V. Kulkarni, and U. K. Saha, “Parametric analysis of model savonius

hydrokinetic turbines through experimental and computational investigations,” Energy Conversion

and Management, vol. 158, pp. 36–49, 2018, issn: 0196-8904. doi: https://doi.org/10.10

16/j.enconman.2017.12.011. [Online]. Available: https://www.sciencedire

ct.com/science/article/pii/S0196890417311627.

[116] M. A. Moreno-Armendáriz, E. Ibarra-Ontiveros, H. Calvo, and C. A. Duchanoy, “Integrated surro-

gate optimization of a vertical axis wind turbine,” Energies, vol. 15, no. 1, 2022, issn: 1996-1073. doi:

10.3390/en15010233. [Online]. Available: https://www.mdpi.com/1996-1073

/15/1/233.

[117] T. Holzmann, Kaplan turbine, https://holzmann-cfd.com/community/training

-cases/kaplan-turbine, (Accessed on 05/06/2022).

[118] ——, Vertical axial wind turbine, https://holzmann-cfd.com/community/traini

ng-cases/vertical-axial-wind-turbine, (Accessed on 05/06/2022).

[119] Openfoam v6 user guide: 4.4 numerical schemes, https://cfd.direct/openfoam/user

-guide/v6-fvschemes/, (Accessed on 05/06/2022).

[120] 6.2 numerical schemes, https://www.openfoam.com/documentation/user-gui

de/6-solving/6.2-numerical-schemes, (Accessed on 05/06/2022).

68

Appendix A

Power Density in Water and Wind.

Fig. A.0.1 was made in Python using the following script.

from matplotlib import pyplot as plt
import numpy as np

x=np.linspace(0,20,100)
yH=0.5*1025*x**3
yW=0.5*1.225*x**3

fig=plt.figure(figsize=(12,6), dpi=300)
plt.plot(x, yH, color='blue', linewidth=3, label='Hydro')
plt.plot(x, yW, color='green', linewidth=3, label='Wind')
plt.xlim((0,20))
plt.ylim((0,2000))
plt.ylabel('Power Density [W/m2]', size=16)
plt.xlabel('Wind Speed [m/s]', size=16)
plt.xticks(size=12)
plt.yticks(size=12)
plt.legend(loc='best')

Figure A.0.1: Power density comparison between water and wind.

A1

Appendix B

Blending Function

The blending function F1 would look somewhat like Fig. B.0.1. It was made in Python for a range

of x between zero and �ve, which replaced the argument inside tanh in Eq. 2.16, see below the

�gure. Note, that this graph would look the same for F2, although due to the argument inside

tanh being di�erent, F1 and F2 would not be equal in value at all times. If, however, the argument

for F1 and the argument for F2 were the same, the values for the blending functions would also

be the same.

Figure B.0.1: Blending function F1.

from matplotlib import pyplot as plt
import numpy as np

x=np.linspace(0,5,100)
y=np.tanh(x)

fig = plt.figure(figsize=(6,6), dpi=300)
plt.plot(x,y, linewidth=3)
plt.xlabel('arg', size=18)
plt.ylabel('F1', size=18)
plt.xticks(size=16)
plt.yticks(size=16)

A2

Appendix C

SIMPLE and PISO �owcharts

START

Guess

initial p

Solve momentum
equations

Solve pressure

correction

Poisson equation

Correct pressure

and velocities

Solve other

transport equa-

tions (k, !)

Converged?

Update parameters

STOP

Yes

No

(a) SIMPLE.

START

Guess

initial p

Solve momen-

tum equations

Solve pressure
correction

Poisson equation

Correct pressure

and velocities

Solve other

transport equa-

tions (k, !)

Converged?

Update parameters

STOP

Yes

No

(b) PISO.

Figure C.0.1: Simpli�ed �owcharts of the SIMPLE- and PISO algorithm, based on [5], [6], [12] and the

OpenFOAM guides and source codes for SIMPLE [68]–[70] and PISO [71], [72].

A3

Appendix D

Gmsh .geo Code for Semi Circular
Savonius with Augmentations

SetFactory("OpenCASCADE");

Merge "InnerDomain.STEP";
Merge "OuterDomain.STEP";

// Long
Transfinite Curve {40, 42, 57, 63, 34, 36, 44, 59} = 60 Using Bump 0.2;
// Medium
Transfinite Curve {58, 60, 62, 64, 33, 35, 39, 41} = 40 Using Bump 0.2;
// Short
Transfinite Curve {47, 56, 46, 61, 43, 45, 37, 38} = 51 Using Progression 1;
// AMI + circles
Transfinite Curve {11, 12, 31, 32, 2, 4, 28, 30, 6, 7, 25, 27, 8, 9, 21, 23}

= 221 Using Progression 1;
// Line between AMI and circles
Transfinite Curve {10, 3, 1, 5} = 6 Using Progression 0.8;
Transfinite Curve {24, 22, 26, 29} = 6 Using Progression 1/0.8;
// Blade
Transfinite Curve {17, 19, 13, 15} = 201 Using Progression 1;
// Blade tip
Transfinite Curve {20, 14, 18, 16} = 5 Using Progression 1;
// Shield tip
Transfinite Curve {49, 51} = 5 Using Progression 1;
// Shield
Transfinite Curve {48, 50} = 81 Using Progression 1;
// Deflector
Transfinite Curve {53, 55} = 121 Using Progression 1;
// Deflector tip
Transfinite Curve {52, 54} = 5 Using Progression 1;

// Surfaces
Transfinite Surface {18} = {48, 47, 44, 35};
Transfinite Surface {17} = {47, 46, 35, 34};
Transfinite Surface {16} = {46, 45, 34, 33};
Transfinite Surface {15} = {44, 35, 31, 30};
Transfinite Surface {13} = {34, 33, 26, 28};
Transfinite Surface {12} = {31, 30, 32, 29};
Transfinite Surface {11} = {30, 26, 29, 25};
Transfinite Surface {10} = {26, 28, 25, 27};
Transfinite Surface {9} = {24, 20, 23, 18};
Transfinite Surface {6} = {20, 19, 18, 17};
Transfinite Surface {7} = {19, 22, 17, 21};
Transfinite Surface {8} = {22, 24, 21, 23};

A4

Transfinite Surface {4} = {4, 8, 3, 7};
Transfinite Surface {3} = {8, 6, 7, 5};
Transfinite Surface {2} = {6, 2, 5, 1};
Transfinite Surface {1} = {2, 4, 1, 3};

Extrude {0, 0, 2000} {Surface{18}; Surface{17}; Surface{16};
Surface{15}; Surface{13}; Surface{12};
Surface{11}; Surface{10}; Surface{14};
Surface{5}; Surface{9}; Surface{4};
Surface{6}; Surface{3}; Surface{7};
Surface{2}; Surface{1}; Surface{8};
Layers {1}; Recombine;

}
// Physical groups
Physical Surface("inlet", 177) = {21, 32, 40};
Physical Surface("outlet", 178) = {29, 36, 49};
Physical Surface("top", 179) = {30, 26, 20};
Physical Surface("bottom", 180) = {41, 44, 48};
Physical Surface("frontandback", 181) = {9, 80, 23, 18, 35, 15, 43,

12, 50, 10, 39, 13, 31, 16,
17, 27, 47, 11, 63, 14, 3,
90, 6, 87, 2, 96, 7, 93, 98,
1, 100, 8, 5, 76, 4, 84};

Physical Surface("turbine", 182) = {68, 70, 69, 71, 73, 72, 74, 75};
Physical Surface("shield", 183) = {53, 52, 51, 54};
Physical Surface("deflector", 184) = {56, 58, 57, 55};
Physical Surface("ami1", 185) = {83, 89, 95, 97};
Physical Volume("internalVolume", 186) = {12, 14, 10, 17, 16};
Physical Surface("ami2", 187) = {78, 85, 91, 99};
Physical Volume("externalVolume", 188) = {1, 2, 3, 5, 8, 6, 7, 4, 11, 13, 15, 18, 9};

A5

Appendix E

OpenFOAM Set-up, Boundary- and Initial
Conditions

E.1 dynamicMeshDict

FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "constant";
object dynamicMeshDict;

}
// * //

dynamicFvMesh dynamicMotionSolverFvMesh;

motionSolverLibs ("libsixDoFRigidBodyMotion.so");

motionSolver sixDoFRigidBodyMotion;

sixDoFRigidBodyMotionCoeffs
{

//- List of mesh patches associated with the solid body
patches (turbine);

//- Inner morphing distance (limit of solid-body region)
innerDistance 1.0; //1.15;

//- Outer morphing distance (limit of linear interpolation region)
outerDistance 10; //1.49;

rho rhoInf;

//- For incompressible cases [kg/m^3]
rhoInf 1025;

mass 200.559; //112906;
momentOfInertia (81.05 99.17 151.82);

//- Intial center of mass (default) and centre of rotation of the rigid-body
centreOfMass (0 0 1);

A6

//- Initial orientation of the rigid-body (default) and rotational orient.
orientation
(

1 0 0
0 1 0
0 0 1

);

//- Linear velocity of the rigid-body
velocity (0 0 0);

//- Total linear acceleration of the rigid-body
acceleration (0 0 0);

//- Angular momentum of the rigid-body in local reference frame
angularMomentum (0 0 0);

//- Total torque on rigid-body in local reference frame
torque (0 0 0);

//- Report motion data
report on;

//- Acceleration relaxation coeff [0-1]
accelerationRelaxation 0.05;

//- Acceleration dumping coeff (for steady-state simulations) [0-1]
//accelerationDumping 0.1;

solver
{

type Newmark;
}

//- Section for constraints
// Checkout the openfoamwiki or the source code
constraints
{

zAxis
{

//- Fix the axis
sixDoFRigidBodyMotionConstraint axis;
axis (0 0 -1);

}

fixedPt
{

//- Fix the point
// Here: motion also avoided in z direction
// Only possibility now -> rotate around z axis
sixDoFRigidBodyMotionConstraint point;
centreOfRotation (0 0 1);

}
}

//- Section for restraints
// Checkout the openfoamwiki or the source code
restraints
{

//- Some dumping functions

A7

translationDamper
{

//- Nms/rad
// Acts against motion as friction
sixDoFRigidBodyMotionRestraint sphericalAngularDamper;
coeff 1000;

}

}
}

A8

E.2 turbulenceProperties

FoamFile
{

version 2.0;
format ascii;
class dictionary;
object transportProperties;

}

// *** //

transportModel Newtonian;

nu [0 2 -1 0 0 0 0] 1e-06;

A9

E.3 transportProperties

FoamFile
{

version 2.0;
format ascii;
class dictionary;
object turbulenceProperties;

}
// * //

simulationType RAS;

RAS
{

RASModel kOmegaSST;
turbulence on;
printCoeffs on;

}

A10

E.4 Boundary

FoamFile
{

format ascii;
class polyBoundaryMesh;
location "constant/polyMesh";
object boundary;

}
// * //

10
(

frontandback
{

type empty;
nFaces 201836;
startFace 200037;

}
top
{

type wall;
nFaces 168;
startFace 401873;

}
inlet
{

type patch;
nFaces 128;
startFace 402041;

}
outlet
{

type patch;
nFaces 128;
startFace 402169;

}
bottom
{

type wall;
nFaces 168;
startFace 402297;

}
shield
{

type wall;
nFaces 168;
startFace 402465;

}
deflector
{

type wall;
nFaces 248;
startFace 402633;

}
turbine
{

type wall;
nFaces 816;
startFace 402881;

}
ami2

A11

{
type cyclicAMI;
nFaces 880;
startFace 403697;

neighbourPatch ami1;
matchTolerance 0.0001;
transformType none;
method faceAreaWeightAMI;

}
ami1
{

type cyclicAMI;
nFaces 880;
startFace 404577;

neighbourPatch ami2;
matchTolerance 0.0001;
transformType none;
method faceAreaWeightAMI;

}
)

A12

E.5 controlDict

FoamFile
{

version 2.0;
format ascii;
class dictionary;
object controlDict;

}
// * //

application pimpleFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 50;

deltaT 1e-4;

writeControl adjustableRunTime;

writeInterval 0.1;

purgeWrite 0;

writeFormat ascii;

writePrecision 10;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

adjustTimeStep yes;

maxCo 5.0;

functions
{

#include "functions/residuals"
#include "functions/yPlus"

}

A13

E.6 decomposeParDict

FoamFile
{

version 2.0;
format ascii;
class dictionary;
object decomposeParDict;

}

// * //

numberOfSubdomains 32;

method hierarchical;
//method scotch;

hierarchicalCoeffs
{

n (8 4 1);
delta 0.001;
order xyz;

}

A14

E.7 fvSchemes

FoamFile
{

version 2.0;
format ascii;
class dictionary;
object fvSchemes;

}
// * //

ddtSchemes
{

default Euler;
}

gradSchemes
{

default Gauss linear;
grad(p) Gauss linear;
grad(U) Gauss linear;

}

divSchemes
{

default none;
div(phi,U) Gauss linearUpwind grad(U);
div(phi,k) Gauss limitedLinear 1;
div(phi,omega) Gauss limitedLinear 1;
div((nuEff*dev2(T(grad(U))))) Gauss linear;

}

laplacianSchemes
{

default Gauss linear limited corrected 0.5;
}

interpolationSchemes
{

default linear;
}

snGradSchemes
{

default corrected;
}

wallDist
{

method meshWave;
}

A15

E.8 fvSolution

FoamFile
{

version 2.0;
format ascii;
class dictionary;
object fvSolution;

}
// * //

solvers
{

p
{

solver GAMG;
smoother GaussSeidel;
tolerance 1e-10;
relTol 0.01;

}

pFinal
{

$p;
tolerance 1e-10;
relTol 0;

}

"pcorr.*"
{

solver GAMG;
smoother GaussSeidel;
tolerance 1e-10;
relTol 0;

}

"(U|k|omega)"
{

solver smoothSolver;
smoother GaussSeidel;
tolerance 1e-08;
relTol 0.1;

}

"(U|k|omega)Final"
{

solver smoothSolver;
smoother GaussSeidel;
tolerance 1e-08;
relTol 0;

}
}

PIMPLE
{

correctPhi yes;
nOuterCorrectors 5;
nCorrectors 3;

consistent true;
}

relaxationFactors

A16

{
fields
{

p 0.3;
pFinal 0.3;

}
equations
{

"(U|k|omega)" 0.4;
"(U|k|omega)Final" 0.4;

}
}

cache
{

grad(U);
}

A17

E.9 residuals

Description
For specified fields, writes out the initial residuals for the first
solution of each time step; for non-scalar fields (e.g. vectors), writes
the largest of the residuals for each component (e.g. x, y, z).

---/

residuals
{

type residuals;
libs ("libutilityFunctionObjects.so");

writeControl adjustableRunTime;
writeInterval 0.1;

fields (p U e k omega nuTilda);
}

A18

E.10 yPlus

Description
Calculates the turbulence y+, outputting the data as a yPlus field.

---/

yPlus
{

libs ("libfieldFunctionObjects.so");
type yPlus;
writeControl adjustableRunTime;
writeInterval 0.1;

}

A19

E.11 Velocity

FoamFile
{

version 2.0;
format ascii;
class volVectorField;
location "0";
object U;

}
// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (1.5 0 0);

boundaryField
{

turbine
{

type movingWallVelocity;
value uniform (0 0 0);

}
inlet
{

type fixedValue;
value uniform (1.5 0 0);

}
outlet
{

type inletOutlet;
inletValue uniform (0 0 0);
value $internalField;

}
top
{

type slip;
}

bottom
{

type noSlip;
}
frontandback
{

type empty;
}

"shield|deflector"
{
type noSlip;
}

ami1
{

type cyclicAMI;
value uniform (0 0 0);

}
ami2
{

type cyclicAMI;
value uniform (0 0 0);

A20

}
}

A21

E.12 Pressure

FoamFile
{

version 2.0;
format ascii;
class volScalarField;
location "0";
object p;

}
// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField
{

turbine
{

type zeroGradient;
}
inlet
{

type zeroGradient;
value uniform 0;

}
outlet
{

type fixedValue;
value uniform 0;

}
top
{

type zeroGradient;
}

bottom
{

type fixedFluxPressure;
}
frontandback
{

type empty;
}

"shield|deflector"
{

type fixedFluxPressure;
}

ami1
{

type cyclicAMI;
value uniform 0;

}
ami2
{

type cyclicAMI;
value uniform 0;

}
}

A22

E.13 Turbulent Eddy Viscosity

FoamFile
{

version 2.0;
format ascii;
class volScalarField;
location "0";
object nut;

}
// * //

dimensions [0 2 -1 0 0 0 0];

internalField uniform 0;

boundaryField
{

turbine
{

type nutkWallFunction;
value uniform 0;

}
inlet
{

type calculated;
value uniform 0;

}
outlet
{

type calculated;
value uniform 0;

}
bottom
{

type nutkWallFunction;
value uniform 0;

}
top

{
type nutkWallFunction;
value uniform 0;

}
frontandback
{

type empty;
}

"shield|deflector"
{

type nutkWallFunction;
value uniform 0;

}

ami1
{

type cyclicAMI;
value uniform 0;

}
ami2
{

type cyclicAMI;

A23

value uniform 0;
}

}

A24

E.14 Turbulent Kinetic Energy

FoamFile
{

version 2.0;
format ascii;
class volScalarField;
location "0";
object k;

}
// * //

dimensions [0 2 -2 0 0 0 0];

kInlet 0.03375;

internalField uniform $kInlet;

boundaryField
{

turbine
{

type kqRWallFunction;
value uniform $kInlet;

}
inlet
{

type turbulentIntensityKineticEnergyInlet;
intensity 0.1;

value uniform $kInlet;
//inletValue uniform $kInlet;
//value uniform $kInlet;

}
outlet
{

type zeroGradient;
//inletValue uniform $kInlet;
//value uniform $kInlet;

}
bottom
{

type kqRWallFunction;
value uniform $kInlet;

}
top

{
type zeroGradient;

//type kqRWallFunction;
//value uniform $kInlet;

}
frontandback
{

type empty;
}

"shield|deflector"
{

type kqRWallFunction;
value uniform $kInlet;

}
ami1

{
type cyclicAMI;

A25

value uniform $kInlet;
}
ami2
{

type cyclicAMI;
value uniform $kInlet;

}
}

A26

E.15 Speci�c Turbulent Dissipation Rate

FoamFile
{

version 2.0;
format ascii;
class volScalarField;
location "0";
object omega;

}
// * //

dimensions [0 0 -1 0 0 0 0];

omegaInlet 1.0851506361396042;
omegaWallTurbine 102.25920628810017;
omegaWallTopBot 8.180736503048013;

internalField uniform $omegaInlet;

boundaryField
{

turbine
{

type omegaWallFunction;
value uniform $omegaWallTurbine;

}
inlet
{

type turbulentMixingLengthFrequencyInlet;
//inletValue uniform $omegaInlet;

mixingLength 3.6363636363636362*0.085;
// Inlet hydraulic diameter * 0.085 --> Dh=4*Area/Perimeter

value uniform $omegaInlet;
}
outlet
{

type inletOutlet;
inletValue uniform $omegaInlet;
value uniform $omegaInlet;

}
bottom
{

type omegaWallFunction;
value uniform $omegaWallTopBot;

}
top

{
type omegaWallFunction;
value uniform $omegaWallTopBot;

}
frontandback
{

type empty;
}

"shield|deflector"
{

type omegaWallFunction;
value uniform $omegaWallTurbine;

}

A27

ami1
{

type cyclicAMI;
value uniform 0;

}
ami2
{

type cyclicAMI;
value uniform 0;

}
}

A28

E.16 pointDisplacement

FoamFile
{

version 2.0;
format ascii;
class pointVectorField;
location "0";
object pointDisplacement;

}
// * //

dimensions [0 1 0 0 0 0 0];

internalField uniform (0 0 0);

boundaryField
{

ami1
{

//type fixedValue;
type cyclicAMI;
value uniform (0 0 0);

}

ami2
{

//type calculated;
type cyclicAMI;
value uniform (0 0 0);

}

inlet
{

type fixedValue;
value uniform (0 0 0);

}

outlet
{

type fixedValue;
value uniform (0 0 0);

}

"top|bottom|shield|deflector"
{

type fixedValue;
value uniform (0 0 0);

}

turbine
{

type calculated;
value uniform (0 0 0);

}

frontandback
{

type empty;
}

}

A29

Appendix F

Ubuntu Shell Script to Run Cases

#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
. $WM_PROJECT_DIR/bin/tools/RunFunctions
processors=12
echo "Absolute start time:" $(date)
echo "Enter simpleFoam directory"
cd simpleFoam
if [-e residuals.dat] && [-d ./3000]; then
echo "simpleFoam has already been run, continue to pimpleFoam"
elif [-e log.simpleFoam] && [! -d ./3000] && [-d ./processor1]; then
echo "Restarting simpleFoam at:" $(date)
export OMPI_MCA_btl_vader_single_copy_mechanism=none
mpirun -np $processors simpleFoam -parallel >> log.simpleFoam
echo "Ending simpleFoam at:" $(date)
echo "Reconstruct the latest time"
reconstructPar -latestTime > log.reconstructPar
cp postProcessing/yPlus/0/yPlus.dat .
cp postProcessing/residuals/0/residuals.dat .
grep "ClockTime" log.simpleFoam | tail -1 > runTime.dat
else
cp -r _0.orig 0
echo "Decompose case"
decomposePar > log.decomposePar
echo "Starting simpleFoam at:" $(date)
export OMPI_MCA_btl_vader_single_copy_mechanism=none
mpirun -np $processors renumberMesh -overwrite -parallel >> log.decomposePar
mpirun -np $processors simpleFoam -parallel > log.simpleFoam
echo "Ending simpleFoam at:" $(date)
echo "Reconstruct the latest time"
reconstructPar -latestTime > log.reconstructPar
cp postProcessing/yPlus/0/yPlus.dat .
cp postProcessing/residuals/0/residuals.dat .
grep "ClockTime" log.simpleFoam | tail -1 > runTime.dat
fi

for i in Br200 Br800 Br900 Br1000 Br1200 Br2000
do
echo "Enter pimpleFoam $i at:" $(date)
cd ../$i
if [-d ./processor1/50] && [-e omega.dat]; then
echo "$i has already been run, continue to next run"
elif [! -e omega.dat] && [-d ./processor1]; then
echo "Restarting $i Run at:" $(date)
export OMPI_MCA_btl_vader_single_copy_mechanism=none
mpirun -np $processors pimpleFoam -parallel >> log.pimpleFoam
echo "Ending $i Run at:" $(date)

A30

grep "Angular velocity" log.pimpleFoam | cut -d ":" -f 2 | tr -d "()" > omega
grep -e "^Time =" log.pimpleFoam | cut -d " " -f 3 > times
paste times omega > omega.dat
grep "ClockTime" log.pimpleFoam | tail -1 > runTime.dat
rm omega times
cp postProcessing/yPlus/0/yPlus.dat .
cp postProcessing/residuals/0/residuals.dat .
rm -r postProcessing
echo "Data extracted"
else
cp -r ../simpleFoam/constant/polyMesh constant
runApplication mapFields ../simpleFoam -sourceTime latestTime -consistent
cp _0.orig/pointDisplacement 0/pointDisplacement
echo "Initial conditions mapped to transient case"
echo "Decompose case"
decomposePar > log.decomposePar
echo "Finished decomposing"
echo "Starting $i Run at:" $(date)
export OMPI_MCA_btl_vader_single_copy_mechanism=none
mpirun -np $processors renumberMesh -overwrite -parallel >> log.decomposePar
mpirun -np $processors pimpleFoam -parallel > log.pimpleFoam
echo "Ending $i Run at:" $(date)
grep "Angular velocity" log.pimpleFoam | cut -d ":" -f 2 | tr -d "()" > omega
grep -e "^Time =" log.pimpleFoam | cut -d " " -f 3 > times
paste times omega > omega.dat
grep "ClockTime" log.pimpleFoam | tail -1 > runTime.dat
rm omega times
cp postProcessing/yPlus/0/yPlus.dat .
cp postProcessing/residuals/0/residuals.dat .
rm -r postProcessing
echo "Data extracted"
#echo "Reconstruct case, starting at:" $(date)
#reconstructPar -time ':5, 45:' > log.reconstructPar
#echo "Finished reconstructing at:" $(date)
echo "Exit pimpleFoam $i at:" $(date)
fi
done
echo "Absolute end time:" $(date)

A31

Appendix G

Python Script for Post-Processing

import matplotlib.pyplot as plt
import os
import numpy as np
import pandas as pd

list_Br= [200, 800, 900, 1000, 1200, 2000]
path=os.getcwd()

meanTime = 1105 # Depends on when quasi stability has been achieved

Cp = []
meantsr = []
Ct = []
for Br in list_Br:

file="omega.dat"
f = open(path+'\\Br'+str(Br)+'\\'+file,'r')
M = []
n = 1
for line in f.readlines():

M.append([float (x) for x in line.split (' ')])
n+= 1

f.close();
M = np.array(M) # convert class list to array

time = M[:,0]
omega = M[:,-1]*(-1)
rpm = omega*60/(2*np.pi)
meanrpm = np.mean(rpm[meanTime:])
meanrpmplot = rpm*0 + meanrpm
meanrpm = np.round(meanrpm, 2)
ymin = min(rpm)-0.1*abs(min(rpm))
ymax = max(rpm)+0.1*abs(max(rpm))

plt.plot(time,rpm,label="Angular velocity")
plt.xlabel("Time [s]")
plt.ylabel("Ω_r [RPM]")
plt.plot(time,meanrpmplot, label="Mean angular velocity = "+str(meanrpm)+' rpm',

color = 'darkred')
plt.xlim(0, time[-1])
plt.ylim(ymin, ymax)
plt.grid()
plt.legend()
plt.savefig("Omega"+' '+str(Br)+'.png', dpi=300)

A32

plt.clf()

R = 1 # Radius
U = 1.5 # Inlet velocity
tsr = omega*R/U
meantsr_prov = np.mean(tsr[meanTime:])
meantsrplot = tsr*0 + meantsr_prov
meantsr.append(np.round(meantsr_prov, 4))
ymin_tsr = min(tsr)-0.1*abs(min(tsr))
ymax_tsr = max(tsr)+0.1*abs(max(tsr))

plt.plot(time,tsr,label="Tip-speed ratio")
plt.plot(time,meantsrplot, label="Mean TSR = "+str(np.round(meantsr_prov,3)),

color = 'darkred')
plt.xlabel("Time [s]")
plt.ylabel("TSR [-]")
plt.xlim(0, time[-1])
plt.ylim(ymin_tsr, ymax_tsr)
plt.grid()
plt.legend()
plt.savefig("TSR"+' '+str(Br)+'.png', dpi=300)
plt.clf()

power = np.absolute(Br*omega**2)

meanpower = np.mean(power[meanTime:])
meanpowerplot = power*0 + meanpower
meanpower = np.round(meanpower, 1)
yminP = min(power)-0.1*abs(min(power))
ymaxP = max(power)+0.1*abs(max(power))
textpower_y = meanpower/2 # 21029 corresponds to time 420

plt.plot(time[0:],power[0:],label="Instantaneous power")
plt.plot(time[0:],meanpowerplot[0:],label="Mean power = "+str(meanpower)+' W/m',

color = 'darkred')
plt.xlabel("time [s]")
plt.ylabel("Power [W/m]")
plt.ylim(yminP, ymaxP)
plt.xlim(0, time[-1])
plt.grid()
plt.legend()
plt.savefig("power"+' '+str(Br)+'.png', dpi=300)
plt.clf()

rho = 1025
P_ke_L = rho*R*U**3 # Power per length or rotor, 1/2 rho height U^3
Cp_prov = meanpower/P_ke_L
Cp.append(meanpower/P_ke_L) # height = 2*R
Ct.append(Cp_prov/meantsr_prov)

file="residuals.dat"
f = open(path+'\\Br'+str(Br)+'\\'+file,'r')
next(f)
next(f)
next(f)
M = []
n = 1
for line in f.readlines():

M.append([float(x) for x in line.split()])

n+= 1

A33

M = np.array(M) # convert class list to array
Residuals = pd.DataFrame(M, columns=['Time','p','Ux','Uy','k','omega'])

plt.plot(Residuals['Time'],Residuals['p'],label="p")
plt.xlabel("Time [s]")
plt.ylabel("Residuals")
plt.grid()
plt.legend()
plt.savefig("pRessidual"+' '+str(Br)+'.png', dpi=300)
plt.clf()
plt.plot(Residuals['Time'],Residuals['Ux'],label="Ux")
plt.plot(Residuals['Time'],Residuals['Uy'],label="Uy")
plt.plot(Residuals['Time'],Residuals['k'],label="k")
plt.plot(Residuals['Time'],Residuals['omega'],label="ω")
plt.xlabel("Time [s]")
plt.ylabel("Residuals")
plt.grid()
plt.legend()
plt.savefig("otherRessiduals"+' '+str(Br)+'.png', dpi=300)
plt.clf()

table=pd.DataFrame({'TSR': meantsr, 'Cp': Cp, 'Ct': Ct, 'Br': list_Br})

plt.plot(table['TSR'],table['Cp'])
plt.xlabel("TSR [-]")
plt.ylabel("C_p [-]")
plt.ylim(0, 0.6)
plt.xlim(0, max(table['TSR'])+0.1)
plt.grid()
plt.savefig('CpVStsr.png', dpi=300)
plt.clf()

plt.plot(table['TSR'],table['Ct'])
plt.xlabel("TSR [-]")
plt.ylabel("C_T [-]")
plt.ylim(0, max(table['Ct'])+0.05)
plt.xlim(0, max(table['TSR'])+0.1)
plt.grid()
plt.savefig('CtVStsr.png', dpi=300)
plt.clf()

A34

Appendix H

Wake Development for the Static Case

(a) Time 500

(b) Time 3000

Figure H.0.1: The wake velocity �eld of the static case for the unaugmented semi circular turbine at time 500 and

time 3000.

A35

Appendix I

Performance Parameter Data

I.1 Semi Circular Savonius Turbine without Augmentations

Table I.1.1: Results for the semi circular Savonius turbine without augmentations

TSR Cp CT Br

0.948 0.12184281842818429 0.12851975467352153 200

0.6472 0.2290587172538392 0.3539026726414282 800

0.6081 0.2278446251129178 0.37468226883030087 900

0.5922 0.2409683830171635 0.40687777876613257 1000

0.5589 0.25839927732610657 0.462335714292622 1200

0.4129 0.2433676603432701 0.5894749403980865 2000

I.2 Semi Circular with Augmentations

Table I.2.1: Results for the semi circular Savonius turbine with augmentations

TSR Cp CT Br

1.3623 0.24307859078590785 0.17843454347229884 200

0.7944 0.34061065943992774 0.4287581311747343 800

0.7674 0.35775248419150857 0.46617248131851824 900

0.7509 0.381542908762421 0.5081259272074625 1000

0.6865 0.38946341463414635 0.5672788838694328 1200

0.3586 0.22307497741644083 0.6220897141688105 2000

A36

I.3 Elliptical without Augmentations

Table I.3.1: Results for the elliptic Savonius turbine without augmentations

TSR Cp CT Br

0.8824507 0.11160976 0.12647704 200

0.65143046 0.24004336 0.36848655 800

0.65161265 0.2709449 0.41580669 900

0.62092022 0.2755122 0.44371594 1000

0.55413717 0.2688925 0.48524538 1200

0.3835356 0.22217886 0.57929136 2000

I.4 Elliptical with Augmentations

Table I.4.1: Results for the elliptic Savonius turbine with augmentations

TSR Cp CT Br

1.46044 0.280947 0.192371 200

0.909788 0.447364 0.491724 800

0.818196 0.410421 0.501617 900

0.771956 0.410855 0.532226 1000

0.774684 0.49613 0.640429 1200

0.571502 0.485695 0.849856 2000

A37

Appendix J

Velocity Along the Wake

J.1 Semi Circular Savonius without Augmentations

Figure J.1.1: Velocity along the wake of the semi circular Savonius without augmentations

A38

J.2 Semi Circular Savonius with Augmentations

Figure J.2.1: Velocity along the wake of the semi circular Savonius with augmentations

A39

J.3 Elliptic Savonius without Augmentations

Figure J.3.1: Velocity along the wake of the elliptic Savonius without augmentations

A40

J.4 Elliptic Savonius with Augmentations

Figure J.4.1: Velocity along the wake of the elliptic Savonius with augmentations

A41

