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Abstract - The electrical load prediction is necessary for distributed network

energy management and finding opportunity for flexibility in shifting the oper-

ation of non-critical power intensive loads. The application of regression tools

has showed to be promising for predicting electric load within distributed

network as well as for flexibility analysis. The distributed electrical energy

network is low-capacity networks with low amount of data that need flexible

operation and analysis. Random forest regressor, k-nearest neighbor (kNN)

regressor, and linear regression are considered for analyzing electrical energy

demand forecasting. The methodology, used in this chapter, dealing with the

problems of irregularities and randomness in the time series considering urban

and rural area case studies. Random forest-regressor yields good results on

hourly time prediction in load forecasting. The kNN shows precise prediction

due to its capability to capture the nearest step in a time series based on the

nearest neighbor principle. The presented vertical time approach uses sea-

sonal data for training and inference, as opposed to continuous time approach

that utilizes all data in a continuum from the start of the dataset until the

time used for inference. The regression tools can handle the low amount of

data, and the prediction accuracy matches with other techniques.

Keywords Power system flexibility, load prediction, distributed network, regression tools.
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C.1 Load Flexibility and Management

Load flexibility relates to the ability of power system to shift the operation. The flexi-

bility has to respond to the variability and uncertainty of the net load. The increasing

penetration of variable renewable generation increases the need for flexibility in the load

demand. A flexible power system can adapt to rapid change in supply and demand. The

flexibility of resources is defined by their dynamic capabilities such as ramp time, start-

up/shut-down time, operating range (minimum and maximum operating level) as well as

minimum up and down times of the energy generation system.

The regression tools can be used to understand the variation and uncertainty in load

and supply, as well as to analyze and forecast the expected output. Regression techniques

can be used to model the past behavior, to understand and help to predict the future

scenarios both on demand and generation.

Flexible electric power system operation is going to help in integrating a mix of en-

ergy sources that can respond to the varying demand for electricity. This demand is met

with three types of plants typically referred to as baseload (meeting the constant de-

mand), intermediate load (meeting the diurnal changes), and peaking (meeting the peak

demand). At very high penetration of RG, a key element of system flexibility is the abil-

ity of baseload generators, as well as generators providing operating reserves, to reduce

output to very low levels while maintaining system reliability. Although baseload genera-

tors are a capital incentive, but inexpensive small-unit generators are favored [1, 2, 3, 4, 5].

Demand side management is an umbrella term that describes the utility company efforts

to improve energy consumption at customer site, the demand side of the meter [6]. De-

mand response (DR) is the customers’ adaptation to alter their normal electricity usage in

response to the adjusted electricity prices with grid constraints or other incentives created

to decrease energy consumption at times of shortage or when system reliability is at risk

[64]. The introduction of advanced metering system in the form of smart energy meters

(SEM) allows for an unprecedented granularity in data gathering, and hence unlocking

the potential of DR. The SEM implements an advanced measurement infrastructure, a

two-way communication between the end-user and the distribution management system.

SEM monitors, measures, and reports electric energy load demand in near real-time [8].

Traditionally, utilities have used three types of generating facilities to serve the diurnal

and seasonal changes in load demand: Baseload, intermediate load, and peak load plants

[9]. A load demand curve for a sample European country shown in Fig C.2 illustrates

typical load demand patterns, where the segments indicate natural threshold level typical

for baseload, intermediate load, and peak load. Yearly seasonal load demand of a selected

European country is given in Fig. C.3.

The diurnal changes start with a surge demand in the morning when industrial com-

panies commence activity and domestic end-users start their home appliances; it is the

first peak in the load demand curve. Following the early morning activities, load demand
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stabilizes; there is a dip in the load demand creating a valley in the load curve. When

the working day is over, another surge load follows when people return to home and start

cooking. The last diurnal valley in the load demand curve commences in the night time

when people go to bed.

Depending on the operative flexibility of generators, they serve different load demand

[10]. Efforts have been done to advance more flexible operation for managing the range

between peak power and minimum load. Load cycling has a degenerating effect on units,

impairs power production and leads to frequent breakdowns and unplanned maintenance

[11, 12]. Different techniques are used to create a better match between load and supply.

Peak clipping or peak load shaving is to reduce the peak demand. Another incentive is to

fill up the valleys where demand is low Load shifting as seen in Fig C.1, combines the two

previous techniques by shaving of the peak demand and filling the low-demand valleys [1].

Load shifting regime is crucial to development of microgrids within the distributed net-

work. Microgrids are designed without peaking generator, thus reserve their capacity and

up to 10% of load is not utilised [13]. These tasks can be solved by robust electric energy

load demand forecasting. Demand forecasting is done by understanding how the past

influences the future by learning from the past in order to prophesy the future.
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Figure C.2: The electric load demand curve of a sample European country

for one week, indicating level of load curves. Source: ENTSOE-E
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Figure C.3: The yearly electric load demand curve of a sample European

country, depicting seasonal changes. Source: ENTSOE-E

C.2 Conventional Electric Load Forecasting Techniques

The electrical load forecasting has been carried out using conventional mathematical tech-

niques. The traditional forecasting techniques are based on linear regression series. Most
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of them use statistical techniques. A time series is a collected sequence of events, based on

the assumption of an inherent structure. The inherent structure is analytically observed

trhough means such as autocorrelation, trend, and seasonal behaviour. There are many

different scenarios of how these sequences of events are collected and described. The

most often used time series techniques are in particular autoregressive moving average

(ARMA), autoregressive integrated moving average (ARIMA), autoregressive integrated

moving average with exogenous variables (ARIMAX). For stationary processes ,ARMA is

usually used, and it has been extended to ARIMA for non-stationary processes. ARIMAX

is the most natural tool since electrical load generally depends on exogenous variables such

as weather and historical time series data. Time series forecasting, its data and analysis

will in the future be increasingly important as the availability and scaling of such data

is growing through Internet of things (IOTs), the rise of smart cities, and due to the ad-

vanced infrastructure metering. The continuous monitoring and data mining will pave the

way for adequate time series analysis, both statistical and machine learning techniques,

as well as hybrid models will increase.

Time series analysis has traditionally been performed in meteorology, energy, and eco-

nomics. The era of modern time series analysis started and the Box-Jenkins model was

introduced [4]. The Box-Jenkins method has been further developed by the research com-

munity to a robust parsimonious ARMA for multivariate forecasting, requiring less human

intervention [5]. Additional improvement has been reached with a combined Box-Jenkins

econometric approach to forecast monthly peak system load. By observing changes in eco-

nomic and weather-related variables in a Box-Jenkins time series model, refined forecasts

are obtained [6]. It is common for these approaches that they use multiplex mathematical

computations and possess a heavy computational burden [7].

Machine learning models seriously contested the classical statistics with the artificial neu-

ral networks (ANN) [18]. The neural networks can aid dispatchers deal with uncertain

loads [19]. ANN is used with updating network parameters, generating plant control and

economic power dispatch problem [20, 21, 22, 23]. A typical neural network model with

back propagating adjusted weights is presented in Fig. C.4. In the following years during

the 1990s, the research on ANN in electric load forecasting was mainly concerned with

regional loads in the MW-scale, resembling the load consumption of a medium size Euro-

pean country and including multivariate time series analysis [24, 25, 26].

Focus has also been attuned towards case and system dependency of ANN [27], the ex-

plainable and interpretative ANN, and the “black box nature” of neural networks. This

has paved the way for ensembles of trees, linear fits, Support Vector Machines (SVM), and

other machine learning models. Some of these models find their origin in the statistics

and overlapping with machine learning (see discussion [28]) [65, 30]. Deep learning tech-

niques based on long- or short-term memory and recurrent neural networks have shown

promising results for optimal scheduling of microgrids [31]. Also, the convolutional neural

networks (CNN) show good results, but need big load schemes in GW-scale to perform

well [32].
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Figure C.4: Neural network model with the propagating adjusted weights

C.3 Learning Systems

Machine learning provides a framework for estimating from the observed data to form an

appropriate model in the time dependencies. Machine learning is a subcategory of arti-

ficial intelligence and usually divided into two main types, supervised and unsupervised

learning. Unsupervised learning is learning without any prior knowledge of the aim of

learning, and is also named as knowledge discovery. Hence, the unsupervised learning can

be state dependent or clustering. For the supervised learning, the aim or independent

variable is known. In supervised learning, data is orchestrated in such a way that it fits

the aim.

In supervised learning, x and y are preserved in a train and test set. Here, D is called the

training set and N is the number of training examples. Test-set, is preserved for inference

purposes. When the inference is performed, the algorithm is normally verified according

to a performance metrics. In the predictive or supervised learning approach, the goal is

to learn a mapping from inputs x to outputs y, given a labeled set of input-output pairs

D = (xi, yi)
N
i=1. Given the inputs, D = xi

N
i=1, the aim is recognizing patterns in the data.

The problem at hand is undefined, and we don’t know what to look for, and no use of

performance metric as we do not have a given x to the observed value; the response vector

y [33].

C.4 Regression tools

Regression is distinguishable from classification by the response vector (y), which is a

continuous output of time, whilst in classification, the y vector is categorical. In this

sense, the classification is a subdivision of regression [71]. For this reason, regression has

been known by machine learning practitioners “learning how to classify among continuous
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classes” [35].

Regression methods vary from purely statistical methods, machine learning techniques

to hybrid models that combine two methods. The regression tools can be parametric,

where a particular distribution constitutes the method, either by direct measures or when

posing a relationship to external parameters. The non-parametric regression methods do

not prescribe any certain distribution, hence regress on pure mathematical foundations.

The semi-parametric regression models combine an underlying distribution with a pure

mathematical relation. A feature used in many of the regression tools is correlation tech-

niques, either to research the data for their general function, or in multivariate time series

that correlates to external parameters. Correlation is a measurement to how two ranges

of data move together. The Pearson Correlation Coefficient (r) computes the linear re-

lationship between two variables, in a range from – 1 to + 1 [36]. If the relationship is

in the proximity of 1, it means that when x increases so does y, and at exact linearity,

the opposite is true for – 1, which means that when one variable increases, the other

decreases.

a = 1 (C.1)

Autocorrelation function (ACF) shows how a time series is correlated to its own lagged

version at each lagk [37]:

ρk(t) =

∑n−k
i=1 (xt − x̂)

∑n−k
i=1 (yt+k − ŷ)√∑n−k

i=1 (xi − x̂)2
√∑n−k

i=1 (yt+k − ŷ)2
(C.2)

Cross-correlation can be found when one of the variables is shifted in time (t), and can

be used to alter the time lags between the variables for a reshaped perspective of the

relationship between them. As the times series are cross-correlated, an evaluation of

temporal similarity is made [38]:

ρxy(t) =

∑n
i=1(xi − x̂)

∑n
i=1(yi−t − ŷ)√∑n

i=1(xi − x̂)2
√∑n

i=1(yi−t − ŷ)2
(C.3)

Autoregression (AR) is a simple and straightforward regression technique, where past

values of the univariate time series are dependent on their own lagged version defined by

a parameter weighting of each input, ϕ, and therefore a parametric model. The current

value of y(t) is expressed by previous values of time yt−1, yt−2, ..., yt−p. The order of an

AR process is defined by the number of past values of y(t) it is regressed on. AR(p) is

defined by the last yt−p, considered in the process, denoted as:

y(t) = ϕ1yt−1 + ϕ2yt−2 + ... + ϕpyt−p + ϵt (C.4)

Where the error term ϵt, is white noise defined by a constant mean and some unknown

fixed variance σ2
ϵ (t), a stationary process. The ACF of a white noise process is zero at

all lags other than lag zero where it is unity, to indicate that the nature of its process is

completely uncorrelated. By using backshift operator (B), the previous value of the time

series is related to the current value yt−1 = Byt, and thus; yt−m = Bmy(t), and the error

term is explained as:

ϕ(B)yt = ϵt (C.5)
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An AR process p-value is defined by the autocorrelation of residuals of the AR process.

If the residuals autocorrelation falls within a confidence interval, normally considered as

95%, the autocorrelation function of the residuals are considered to be white noise. If not,

the AR process will still continue to find another parameter, until its residuals satisfy the

criteria of white noise. If the current and previous values of a white noise series ϵt, ϵt1
are expressed linearly, it is known as moving average process (MA), and an equivalent

implementation of backshift operator (B) would be:

y(t) = θ(B)ϵ(t) (C.6)

A combination of the two processes is the ARMA. If the mean or covariance of the

time series observations change with time, the series is defined as non-stationary, and a

differencing process makes it stationary by introducing the ∇ operator, and the AR, MA

and ARMA processes are transformed into ARI, IMA or ARIMA process.

C.4.1 Linear Regression

Another parametric model is multiple linear regression (MLP) that assumes a linear re-

lationship in the training data and to explanatory variables to explain relationship to the

response-vector (y):

y(t) = a0 + β1x1(t) + ... + βnxn(t) + ϵ(t) (C.7)

where x1(t), ..., xn(t) are independent explanatory variables correlated with the dependent

load variable y(t). The independent variables are found through correlation analysis,

and coefficient estimation normally found through least square estimation, or iteratively

reweighted least squares (IRWLS). All parameters start at 0 and is step-wise improved

using backpropagation through a loss function to find appropriate weights, or through

finding the intercept a0. Each explanatory variable finding its coefficient based on the

covariance and standard deviation of dependent and independent variables is defined as:

βx =
σxy√
σx

(C.8)

C.4.2 k-Nearest Neighbor Regression

Opposite to the linear regression (LR) is the k-nearest neighbor (kNN) regressor, which

is non-paramteric, relying on its own table look-up and mathematical foundation, and

highly non-linear.

yknn(x) =
1

K

K∑

k=1

yk for K nearest neighbours of x (C.9)

The kNN-classifier is illustrated in Fig. E.1, where the left diagram with a small en-

circlement options for k = 1, where simply the nearest neighbor decides the class of

prediction, whilst in the right diagram in Fig. E.1, the number of k is increased to more

then one [70].

122



x2

x
1

x2

x
1

Figure C.5: k-Nearest Neighbour classifying based on the k’th observa-
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Using k = 1 can lead to false prediction, and a set of kNNs is often used. When classi-

fying the dependent variable is categorical, it can easily be made numerical by regression.

The kNN regressor makes a regression based on the number of kNNs to minimize false

predictions. The model considers a range of different kvalues to find the optimal value.

The kNN regressor needs thorough pre-processing and feature engineering to limit the

effect of noise caused by irrelevant features, and is, therefore, dependent on finding the

appropriate distance model [71]:

C.4.3 Distance

A variety of distances is used in the algorithm. As seen in Equations C.10, C.11, C.12,

and C.13, they are mostly used, since it is easy to intersect by changing the variable q.

The variable q is also considered to find the optimal value.

C.4.3.1 Manhattan/City Block Distance

d(x, y) =
k∑

i=1

|xi − yi| (C.10)

C.4.3.2 Euclidean distance

d(x, y) =

√√√√
k∑

i=1

(xi − yi)2 (C.11)

C.4.3.3 Minkowski Distance

d(x, y) =

( k∑

i=1

(|xi − yi|)q
) 1

q

(C.12)
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C.4.3.4 Chebychev Distance

d(x, y) = lim
q→∞

( k∑

i=1

(|xi − yi|)q
) 1

q

(C.13)

C.4.4 Random Forest Regression

Random forest (RF) regression is a combination of decision trees, found through recursive

partitioning to build a piece-wise linear model. From these tree models, it uses a majority

vote for the most popular class. The trees grow dependant on a random vector, and the

outputs are numerical scalars [73]. Each leaf on the tree is a linear model constructed

for the cases at each node by regression techniques. One sole decision tree encompasses

attributes and classes in the data and uses an entropy function gain function to distinguish

its structure. Entropy is known from thermodynamics as a measure of disorder, and

later adopted by the information theory. In information theory, entropy is a measure of

uncertainty of a variable, and defines a pure classifier [74]. In equation (5) p is positive

and n is negative:

Entropy(S) = −p ∗ log2(p) − n ∗ log2(n) (C.14)

The entropy function is then used to evaluate the information gathered (gain) of an

attribute, and thus to know how to choose the highest gaining attribute as the next

branch in the decision tree. The equation yields the expected reduction in entropy, by

imposing another branch in the decision tree.

Gain(S,A) = Entropy(S) −
∑

ν∈V alues(A)

|Sv|
|S| Entropy(Sv) (C.15)

In equation (C.15), A are attributes used for splitting the data into subsets (S). S is

the sum of subsets, and Sv is the value of subsets. Using prior known input/output

relationships, the algorithm searches for a model for the best prediction in the training

set. The mathematical equations are structured in the algorithm, see Fig. C.6, based on

the past knowledge.

C.4.4.1 Normalising

The pre-processing of data is a transformed so that the machine learning algorithm can

learn the patterns and generate a sound forecast. In a standard normalization process,

input data are transformed with values from zero to one. This is done to make the

predictive algorithm more robust [42].

X̂ −Xmin

Xmax −Xmin

(C.16)

X̂

Xsum

(C.17)

X̂

Xmax

(C.18)
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X̂ −Xavg

Xmax −Xavg

(C.19)
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Figure C.6: Random Forest Regression diagram sampling and voting from n trees

126



C.4.4.2 Performance metrics

To evaluate the performance of load forecasting, a performance metric is used, including

mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error

(MSE), and symmetric mean absolute percentage error (SMAPE) [43]. They are defined

as:

MAE =
1

n

n∑

i=1

|yi − ŷ| (C.20)

SMAPE =
1

n

n∑

i=1

( |yi − ŷ|
(|yi| + |ŷ|)/2

)
∗ 100 (C.21)

MSE =
1

n

n∑

i=1

(yi − ŷ)2 (C.22)

MAPE =
1

n

n∑

i=1

|yi − ŷ

yi
| ∗ 100 (C.23)

C.4.5 Visual Inspection

The first thing is to plot the time series of the data shown in Fig. C.7 and C.8. In these

plots, the time series are plotted as univariate time series with y-axis representing the

univariate or dependent variable, and x-axis being the time axis. By visual inspection,

these plots are giving the main features of the time series. Important information such

as time span, trends, and cycles are emerging in the figures. When applying intuition to

visually inspect these time series, they certainly display some repetitive patterns, as in

Fig. C.7, where load pattern seems to be taken a U-wave form that repeats itself over

time. Fig. C.8 is much more dense then Fig. C.7, and looks to contain more information.

In some instances, a univariate time series can be explained by itself as is the case for

univariate analysis; even then a univariate series can and most likely will be affected by

other influences, but remains self-explanatory for this purpose. For the multivariate case

where explanatory independent features are added, they are not directly connected to the

dependent/response variable such as weather parameters, yet correlation exists to aid the

time series analysis.

C.5 Applications of Regression Techniques for Elec-

tric Load Forecasting

Recent research from 2018 on computational intelligence approaches for energy load fore-

casting that reviewed more than 50 research papers related to the subject outlines the

complexity of demand patterns as potentially influenced by factors such as climate, time

periods, holiday or working days and other factors such as social activities, economic
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Figure C.7: Rural Load
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Figure C.8: Urban Load

factors, including power market policies. Electrical energy demand is influenced by me-

teorological weather conditions; therefore, it is necessary to include the impact of me-

teorological weather parameters on electrical energy demand forecasting; also renewable

electrical energy production is nature-dependent. The future electrified grid will increas-

ingly depend on renewable intermittent energy sources (solar, wind), and the individual

load profiles of such a system will change radically as home appliances include new energy

demanding appliances (e.g., heat pump, electric vehicles, and induction stove) [44].

The regression models kNN, LR, and RF are supervised machine learning algorithms

with a numerical outcome. The model is trained to find rules for pattern recognition in
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the input to output relation. The inputs to the model are known as features. Neural

networks are the preferred machine learning tool and are known as both feedforward and

back propagating networks, where a number of inputs are weighted in order to provide a

predictive outcome. Neural networks are good for detecting non-linearities, and therefore

preferred as a predictive tool in electrical load forecasting, yet also often criticized for low

transparency and lack of interpretability because of the black box approach and using a

large amount of data. Overfitting is still a challenging issue when applying neural net-

works to electrical demand prediction. It is known as the bias-variance trade-off. When a

model is of very low complexity and yet scores well, it is highly biased, which signifies that

the data fits the model accurately (the training set), and it will often perform poorly on

new data (from the test set). The model should contain a complexity that is in coherence

with the level of information embedded in the data. Somewhere in between is the optimal

model, also referred to as the suitable model [45].

Urban area load is influenced by meteorological conditions; therefore, it is important

to include impact of weather parameters on load prediction, yet this impact is governed

by the prediction time, greater for long term, and decreases as the prediction time is

narrowed. The electrical energy demand is influenced by the user behavior as well as

weather conditions. Individual human behavior and weather are so random that a com-

plex neural network would not predict the outcome better than a coin toss. Hence, if one

has to analyze the load demand of larger area such as the urban area, systematic load

behavior with correlation to weather parameters and continuous load profile should be

investigated. This work has uniqueness in electrical demand forecasting using regression

tools through vertical approach, and it also considers the impact of meteorological param-

eters. This vertical approach uses less amount of data compared to continuous time series

as well as neural network techniques. The objectives of this work are to explore the use

of regression tools for regional electrical load forecasting by correlating lower distinctive

categorical levels (season, day of the week) and weather parameters, see Fig.C.9. The

vertical time approach is to consider a sample time period (e.g., seasonally and weekly)

of data for four years, which will be tested for the same time period for the consecutive

year. A vertical axis approach is shown to be competitive to ANN.

C.5.1 Feature engineering for electric load demand forecasting

The following three parameters are important for system electrical energy demand:

(i) Time

(ii) Weather

(iii) Random effects

C.5.1.1 Time

Apart from the seasonal effects, underlying patterns emerge in the system load demand.

There are different peaks throughout the seasons, whether it is a winter peak or a summer

peak. Emerging under this seasonal patterns are daily- and weekly-cycles. The daily

routines of human behavior are manifested in systematic load patterns on a daily basis.
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Figure C.9: The regressor model for electric load demand forecasting

Day of the week is also significant. Working day or off day or non-working day (weekend

or other calendar event) changes human activities, and whether it is a working day or not,

influences load patterns. People might also during weekends shift their sleeping habits,

as to wake up later, and thus change the diurnal load demand to delay the morning peak

load demand. Sub-categorical levels such as working/non-working days are referred to

in the literature as an indicator variable. Such an indicator variable composes a lower

indicator level, with a binary switch of working days and non-working days/holidays (0

and 1). To give this property to our algorithms is very important as it makes prediction

of forecast load more efficient. The use of such type of variables has been successfully

employed in the forecasting of electric market [42, 22, 47, 48, 49].

C.5.1.2 Weather

Weather variables play an important rule in changing load patterns. The effect of ambient

temperature as well as past temperature on the load is necessary for prediction analysis;

the indoor temperature on a hot summer day may reach its peak after sunset due to heat

buildup in the construction materials of buildings. In addition to the daily heat buildup,

a sequence of days with high temperature creates a new system peak. The time delay

from shift in temperature until the change in electric is observed and should be evalu-

ated through the temporal similarity of cross-correlation between the load and different

weather parameters: DryBulb, DewPnt, WetBulb, and Humidity. Dry bulb temperature

(DBT) is the temperature measured from air, yet not exposed to solar radiation or mois-

ture. Wet bulb temperature (WBT) is measured from a thermometer where the bulb of

the measurement device is soaked by a wet cloth. As long as the air is not saturated,

evaporation from the moist cloth keeps the WBT lower than the DBT. From the DBT
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and WBT, one can then derive the relative humidity of the air and the dew point from

a Mollier Chart by psychometric. In humid and hot conditions, it is likely that humidity

will effect the load pattern in similar ways as temperature. Humidity explains the com-

plex relation between temperature and load, and therefore mathematical models are not

enough in a thorough analysis. Humidity is the amount of water vapor in the air, and

might increase the gap between the actual and the apparent or felt temperature. When

regulating temperature, the body utilizes evaporative cooling, and the rate of evaporation

through the skin is correlated to humidity, and because of the conductive properties of

water, we feel warmer at high humid conditions. Also, due to the seasonal changes of

weather data, the correlation to the electrical load will vary during the year. Many elec-

trical utilities are weather-sensitive such as heating and air conditioning. Electric loads

are often classified as weather-sensitive load and non-weather-sensitive load. Temperature

data is obviously a very important factor affecting the load. However, its value is often

limited to the confidence level on weather forecasting. Therefore, unless the weather fore-

casting is very accurate, an underlying deterministic model is its premise. The complexity

in the control system engineering of maintaining thermal comfort as well as optimizing

for energy is important to know. At the same time, it is important to acknowledge that

most houses are designed to resist the worst meteorological conditions. There are also

limitations in the heating system itself that might cause load peaks, such as the inertia in

the floor heating system, known as thermal lag. Therefore machine learning can help to

use the weather parameters for load predictions in the built-environment [50, 51, 52, 53].

C.5.1.3 Random effects

Random disturbances lead to increase the number of electricity consumers due to many

factors. Infrastructural changes in the urban area and maintenance work are random

effects that are not detected by pattern recognition. Load patterns are consistent from

year to year, and show reoccurring seasonal pattern. When the yearly load curves do

not vary from year to year, it means that there are no economic trends. Load prediction

analysis using machine learning can take care of random effects.

The effect of external parameters on load predictions can be considered through the

machine learning approaches for different type of loads (e.g. rural area and urban area

loads).

C.6 Case study 1: Rural Area Electric Energy Load

In this study, the dataset for rural area electric energy load is the data collected by a smart

meter at a electric substation providing Nissedal Cabin Area in Bjønntjønn with power. It

is a typical Norwegian rural power network with 125 cottages, and 478 kW peak demand.

The dataset is hereby referred to as the Bjønntjønn dataset. The rural area load profile

is illustrated in Figure 4.7. The smart meter collects data at every hour, as a point value,

making it a dataset of hourly values. The weather information by Norwegian Institute of

Bioeconomy Research (NIBIO) runs 52 weather stations with detailed information down
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to hourly resolution and freely downloadable on their web service (lmt.nibio.no). Among

the 52 weather stations, three weather stations closest to Bjønntjønn Cabin Area are

Bø, Gvarv, and Gjerpen. Based on the correlation analysis, the weather station with

the strongest correlation of temperature to the load data from Bjønntjønn Cabin Area is

identified, and used for the analysis.

C.7 Case study 2: Urban Area Electric Load

The dataset for urban area electric load contains 87648 collected datapoints from the

urban area of Sydney in the region of New South Wales in Australia. It is called the

Sydney dataset. These datapoints are collected at every 30 minutes, spanning from five

years. Since it is the granularity of collected data observations that decides the lower

limit of forecast window, this dataset gives the oppurtunity of 30 minutes predictions.

The historical data is gathered by Australian Energy Market Operator (AEMO) and

Bureau of Meteorology (BOM) from years 2006 to 2010, and hereafter referred to as the

Sydney dataset. During the years 2006–2010, the maximum load was 14274.2 MW. In

this study the purpose is to test the regression tools on the available real data of urban

area.

C.8 Results and Discussion

In this work, several regression tools have been analyzed and compared for different

datasets. Based on the analysis of the data and regressors, a new vertical approach

has been further developed and inferred to deal with the relatively low amount of data

and load pattern; it has been in particular validated for the case studies (i) in the rural

area and (ii) in the urban area.

The vertical time approach also uses seasonal data for training and inference. The hori-

zontal approach uses continuous datasets, i.e., it utilizes all data in a continuum from the

start of the dataset until the time period used for inference. The illustration of horizontal

and vertical approaches is presented in Fig. C.10.

Vertical approach can be performed with minimum amount of data compared to con-

tinuous approach. Also, the vertical time approach predictive results are compared with

prediction based on continuous time series data. In vertical approach, the training set,

D = {xi}Ni=1, is partitioned into subsets by each season of the year, and then are merged

together only containing seasonally information about the load pattern. In a dataset con-

taining time observation for five years (e.g., 2016–2020), time is separately selected season-

wise, and then merged to contain only the specific season for training, D = {xspringi}2019i=2016.

In this study, the inferred test-set is for a week in the middle of the selected trained season

for the following year D = {xweek}sundayi=monday. Seasons are divided by months, as seen in

Table C.1, where Season 1 is Winter, and Season 4 is Autumn.
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C.8.1 Case Study 1: Rural Area

In the case study of rural area load prediction, the regression analysis has been done

on continuous time basis as well as using vertical time axis approach. The correlation

analysis of load and weather parameters has been analyzed to study the relation between

meteorological parameters and electricity consumption. The hourly electrical loads of

each season have been juxtaposed to the seasonal temperature, and negative correlation

has been observed (Fig C.11).

From this observation, it can be seen that vertical approach enables the algorithm to

reveal complexity of load and temperature for better prediction results [54]. The relation

between working days and non-working days affects the cycles of load consumption, and

is noticeable in the latter part of of the holiday where load demand increases even more

(Fig. C.12).

The load pattern shows autocorrelation (AC) to previous lags, as seen in Fig. C.13.

The AC aids the feature extraction procedure in engineering for the optimal previous

k-lag values to be selected for the predictive algorithm. The observed results from the

the autocorrelation function (ACF) plot (Fig C.13), shows a steep linear decline in lags

0–5; after that the slope is almost horizontal (lags 6–15) before it makes a small bump

at lag 17–20, for then again to increase its value for the 23rd lag (which is the 24th hour

since unity lag is zero), and then a deep decrease. The ACF plot also shows strong de-

pendencies on historical data values, which indicate that the time series is autoregressive.

The further correlation analysis of the rural electrical load demand patterns reveals also

a strong dependency on the day of the week. For the considered Norwegian rural load

of holiday cabins, the Norwegian holidays are identified as Easter, labor day, national

day, ascension day, Pentecost, and X-mas. The observed correlations between the load

and temperature, load and working days/non-working days, and the intercorrelation of

temperature and working days/non-working days for the rural area have been well within

the good heuristic model for correlation-based feature selection. The heuristics of good

correlation-based feature selection is based on the level of intercorrelation within the class

and subset features. In the rural area, there is no correlation between the working days

and temperature. A good feature set contains independent variables that have high pos-

itive or negative correlation to the dependent variable, and no correlation amongst the

other dependent variables [55].

Season Months

Season 1 December January February

Season 2 March April May

Season 3 June July August

Season 4 September October November

Table C.1: Seasons
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Figure C.10: Illustration of vertical and horizontal approach.
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Figure C.11: Load consumption and temperature profiles on seasonal

basis

In the further evaluation of the regressors performance metrics are used (Table C.2

and C.3)

In this work, different features in the regression tools (kNN and RF) have been studied to
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Figure C.13: Autocorrelation of load consumption of the first 30 lags

for Bjønntjønn Cabin Area 2014-2018

analyze how they perform. In Tables (C.2, C.3), the autocorrelation (AC), autoregression

(AR), temperature (T) and holiday effects (H) have been studied separately and together

(AC, AR, T, H) combined with the regressors. The performance metrics SMAPE, MAPE,

and MAE have been chosen to make appropriate analysis of their performance (see para-

graph C.4.4.2). MAE is the most straightforward error estimation, but is poor in order to

understand the context it is given; therefore MAPE is more used, since it is normalized to

the true value of time series. Typially for the rural area, the load demand is low, opposite

to the urban area, and occasionally the rural area load reaches zero. At zero values the

MAPE is obsolete and the performance is also measured by SMAPE.
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The Table C.2, compares the vertical and continuous approach for the winter season,

whilst Table C.3, compares the vertical and continuous approach for summer season.

Table C.2: Forecasting Results (24 hours prediction) for season 1 (winter) trained with

time feature lags of 24-, 48- and 168-hours

Features Vertical winter Continous winter

SMAPE MAPE MAE SMAPE MAPE MAE

kNN AC 9.88 10.06 26.07 9.72 9.74 25.60

RF AC 10.43 10.67 27.85 9.56 9.49 25.24

kNN AC AR 10.05 10.20 26.39 9.25 9.24 24.42

RF AC AR 10.87 11.03 28.67 10.34 10.34 26.91

kNN AC T H 9.48 9.66 25.09 9.05 9.09 23.89

RF AC T H 11.39 11.53 29.86 11.50 11.53 29.81

kNN AC AR T H 9.75 9.92 25.65 8.88 8.86 23.45

RF AC AR T H 12.03 12.18 31.56 10.88 10.96 28.06

Table C.3: Forecasting Results (24 hours prediction) for season 3 (summer) trained with

time feature lags of 24-, 48- and 168-hours

Features Vertical summer Continous summer

SMAPE MAPE MAE SMAPE MAPE MAE

kNN AC 12.74 12.74 6.87 13.17 13.35 7.17

RF AC 14.70 14.78 8.07 15.27 15.47 8.49

kNN AC AR 13.17 13.24 7.11 13.28 13.43 7.23

RF AC AR 14.16 14.14 7.70 13.89 14.07 7.54

kNN AC T H 14.79 14.46 7.94 15.07 14.75 8.08

RF AC T H 16.53 16.10 8.80 17.05 16.48 9.14

kNN AC AR T H 14.27 14.07 7.68 14.41 14.14 7.71

RF AC AR T H 16.98 16.66 9.02 17.21 16.91 9.19

Note the big difference in MAE between the seasons; however, MAPE and SMAPE have

more or less the same values. This is due to relatively higher load consumption in winter

time that leads to a higher absolute error, but when compared in absolute percentage

error, the error is not noticeable.

The kNN regressor is compared to RF regressor, and it also uses autoregression. In the

analysis, a visual inspection might aid to understand the predictive outcome. Prediction

results are compared with and without error estimation (see Fig. C.14 and C.15). The

kNN and RF alone has no information about the finite gradient of the curvature. In Fig.

C.14, the two graphs mostly appear to merely be shifted in time. To overcome this, the

real value was compared to the error estimation (see Fig. C.15)), and increasingly peak-

ing errors were shown. A simple form of autoregression is tried in order to mitigate the
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without error estimation
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Figure C.15: Prediction result

with error estimation

problem of peaking errors. It is a possible remedy, since the correlation analysis showed

a strong autocorrelation to the first historical instances of the time series. Instead of

a cumbersome ordinary least square-search (OLS) for the backshift operator parameter,

only a backshift value is found based on Equation C.24. The autoregressor is used to find

the curvature and gives a finite gradient based on the latest update from the targeted

vector (in this case, the load). The autoregressor is used to find the curvature and give a

finite gradient based on the latest update from the targeted vector, in this case the load.

c = (Lt−1 − Lt−2)
1
p (C.24)

Autoregression is the simplest and most straightforward predictive model, based on the

targeted vector itself, and at certain time window, it indicates the decline and incline

of the time window, and gives a finite gradient for the curvature of load profiles. The

joint learning of regression tools with autoregression predicts time series components of

different characteristics. Other hybrid combinations can be done with MA, ARMA, and

ARIMA models, to aid the regressor model in the predictions.

The load profile of the considered holiday resort (rural area) is categorized seasonally.

In this work, regression tools are used for load predictive analysis. In the load predictive

analysis, vertical time approach is used for a particular holiday time period. Vertical

approach can be performed with minimum amount of data compared to continuous ap-

proach. Also, in vertical time approach, predictive results are compared with the predic-

tion based on continuous time series (i.e., horizontal approach). The presented vertical

approach methodology can also deal with the problems of irregularities and randomness

in the dataset [56].

C.8.2 Case Study 2: Urban Area

The dataset for urban area electric load contains 87648 collected datapoints from the

urban area of Sydney in the region of New South Wales in Australia. The relative com-

parison of load prediction with MAPE for considered regression tools for 30 minutes and
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24 hours is done using both horizontal and vertical approaches for all seasons. The re-

sults are shown in Table C.4. It is found that the lowest MAPE is achieved with the use

of previous load patterns together with indicator variables, and noticeably disregarding

weather variables. This goes well with the previous analysis of correlation, which confirms

that previous load patterns and indicator variables have higher correlation to the actual

load than the weather parameters.

It has been observed from the test results, the lowest MAPE is found through RF re-

gressor for 30 minutes prediction using vertical approach. For the 24-hour time period,

kNN provides the lowest MAPE through vertical approach.

MAPE for 30 minutes prediction results using RF regressor varies between 1% and 2%,

and provides very good results compared to other regressions techniques, which have been

used in this work. The 24 hours prediction results using kNN regressor technique have

MAPE of 2.61%, which is much better compared to other regressors. From the results,

it has been observed that for short-term predictions (30 minutes), RF regressor should

be used; and for long-term predictions (24 hours), kNN regressor should be considered [53].

Urban area electrical energy demand forecasting is very important for generation schedul-

ing and flexibility with consideration of renewable energy sources and possible demand

side management. Urban area electrical energy demand predictions for short term (30

minutes) and long term (24 hours) are necessary for scheduling power generation units as

well as for participating them in short term and day ahead energy market.

The seasonal patterns are repeating with the same upper and lower limits (e.g., repeat-

ing on annual basis), and can be further investigated for economic effects on the load

behavior in the urban area of Sydney during the years 2006–2010. When investigating

the Sydney dataset, we find that the load curves, yet containing cyclic and seasonal dif-

ferences, do not contain significant changes on the system load due to changing economic

trends [57]. When inspecting the daily and weekly load cycle, we can clearly see a load

pattern emerging from a very low activity during the early hours of the day, into one

peak at morning (between 8 and 10 hours), and another peak in the evening (between

19 and 21 hours). The same daily repeating patterns, with a low activity followed by

two peaks, are also evident in the weekly cycle, except for the last two days of the week

(Saturday and Sunday) when the peaks and general load are lower. It can be seen that

urban area load predominantly reflects the domestic load, and it can be correlated to

human behavior. The periodicity in the load patterns reveals a load demand that reflects

a consumer lifestyle. When examining the features enlisted in the Sydney dataset, it has

indicators “Date” and “Hour”, four weather parameters, information about the electricity

price, “ElecPrice” and information about the electricity load consumption, “SYSLoad”.

These features have been developed in the pre-processing to match the requirements of

the prediction tool.

RF regressor, kNN regressor, and LR are used for analyzing the urban area electrical
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Table C.4: MAPE for Urban Area Load and Indicator aggregated version

test results)

Regressor

Time Random Forest k-Nearest Neighbour Linear Regression

Season One Horizontal Approach

30 minutes 1.11(9*) 1.98(7**,1***) 2.04

24 hours 5.32(13*) 6.53(4**,1***) 5.15

Season One Vertical Approach

30 minutes 0.94(16*) 1.85(8**,1***) 1.76

24 hours 5.88(13*) 5.49(5**,2***) 5.83

Season Three Horizontal Approach

30 minutes 1.12(17*) 2.36(5**,1***) 2.29

24 hours 4.76(9*) 5.41(19**,1***) 5.27

Season Three Vertical Approach

30 minutes 0.86(17*) 1.19(6**,1***) 2.15

24 hours 2.71(17*) 2.61(17**,1***) 4.26

* n-estimator

** k-value

***q-value

energy demand forecasting, using larger dataset of Sydney region. Data correlation over

seasonal changes have been argued by means of improving MAPE. By examining the

structure of various regressors, they are compared for the lowest MAPE. The regressors

show good MAPE for short term (30 minutes) prediction, and RF regressor scores best

in the range of 1–2% MAPE. kNN shows the best results for 24 hours prediction, with

a MAPE of 2.61%. The prediction of the short-term 30 minutes electrical energy using

vertical approach is relatively better through RF regression tool. For long-term prediction

of 24 h, kNN regression tool can provide better results using vertical approach.

C.9 Conclusions

This work has explored the use of regression tools for electrical energy load forecasting

through correlating weather parameters as well as the time period. Load prediction anal-

ysis using regression tools has been done on continuous time basis (horizontal) as well as

using vertical time approach. The Pearson method and visual inspection of the vertical

approach depict meaningful relation among pre-processing of data, test methods, and re-

sults for the examined regressors.

The application of regression tools has shown to be promising for predicting electric load
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within distributed network as well as for flexibility analysis. The distributed network are

low-capacity networks with low amount of data that need flexible operation and analysis.

RF regressor, kNN regressor, and are considered for analyzing the rural area and urban

area electrical energy demand forecasting. In addition, LR is used for urban area due to

the continous load patterns.

The methodology presented is developed to deal with the problems of irregularities and

randomness in the time series. RF regressor yields good result on hourly time prediction

in load forecasting. The kNN regressor has shown precise prediction in time series due to

its capability to capture the nearest step in a time series based on the nearest neighbor

principle.

Autocorrelation is a neat and practical approach to feature engineering that saves time

for the appropriate actions to be made for feature extraction. The regression tools can

handle the low amount of data, typical for the rural area, for day-ahead forecasting. In

this work, the regression analysis for load prediction of rural area is done using vertical

and continuous time approaches for day-ahead planning with 24 hours prediction. The

vertical time approach uses seasonal data for training and inference, as opposed to con-

tinuous time approach that utilizes all data in a continuum from the start of the dataset

until the time period used for inference. The regression tools can handle the low amount

of data, and the prediction accuracy (through MAPE) matches with other techniques. It

is observed that through load predictive analysis, the autocorrelation by vertical approach

with kNN-regressor gives a low SMAPE. The kNN captures the lower boundaries of the

load demand quite well. When analyzing the error, we find that the algorithms struggle for

identifying and predicting the high peaks of the load demand. When the autoregression

is given, it helps the algorithm to find the curvature of high peaks; even without captur-

ing the overall trend of the load peak demand, MAPE can be improved by autoregression.

RF regressor, kNN regressor, and LR are used for analyzing the urban area electrical

energy demand forecasting. The presented regression techniques can forecast electrical

demand for short term (30 minutes) and long term (24 hours) using limited datasets. Ver-

tical axis approach can have more competitiveness to ANN due to the use of low amount

of data and considering the impact of meteorological parameters.

Load forecasting is the most fundamental application of smart grid, which provides essen-

tial input for flexibility such as demand response, topology optimization, and abnormally

detection, facilitating the integration of intermittent clean energy sources.
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