
Research Article
ANovelApproach toAutomateComplex SoftwareModularization
Using a Fact Extraction System

Muhammad Zakir Khan ,1 Rashid Naseem ,2 Aamir Anwar ,3 Ijaz Ul Haq,4

Ahmad Alturki ,5 Syed Sajid Ullah ,6 and Suheer A. Al-Hadhrami 7

1James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
2Department of Computer Science, Pak Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Pakistan
3School of Computing and Engineering, University of West London, London W5 5RF, UK
4Faculty of Education, Psychology and Social Work, University of Lleida, 25003 Lleida, Spain
5STC’s Artificial Intelligence Chair, Department of Information Systems, College of Computer and Information Sciences,
King Saud University, Riyadh 11543, Saudi Arabia
6Department of Information and Communication Technology, University of Agder, Norway
7Department of Computer Engineering, College of Engineering, Hadhramout University, Hadhramout, Al Mukalla, Yemen

Correspondence should be addressed to Ahmad Alturki; ahmalturki@ksu.edu.sa, Syed Sajid Ullah; syed.s.ullah@uia.no, and
Suheer A. Al-Hadhrami; s.alhadhrami@hu.edu.ye

Received 6 December 2021; Revised 25 January 2022; Accepted 7 February 2022; Published 30 March 2022

Academic Editor: Naeem Jan

Copyright © 2022 Muhammad Zakir Khan et al. 1is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Complex software systems that support organizations are updated regularly, which can erode system architectures. Moreover,
documentation is rarely synchronized with the changes to the software system. 1is creates a slew of issues for future software
maintenance. To this goal, information extraction tools use exact approaches to extract entities and their corresponding re-
lationships from source code. Such exact approaches extract all features, including those that are less prominent and may not be
significant for modularization. In order to resolve the issue, this work proposes an enhanced approximate information extraction
approach, namely, fact extractor system for Java applications (FESJA) that aims to automate software modularization using a fact
extraction system. 1e proposed FESJA technique extracts all the entities along with their corresponding more dominant formal
and informal relationships from a Java source code. Results demonstrate the improved performance of FESJA, by extracting 74
(classes), 43 (interfaces), and 31 (enumeration), in comparison with eminent information extraction techniques.

1. Introduction

Software systems are essential in our daily lives, businesses,
and governmental organizations, and they require an
updated software system to meet their functional and
nonfunctional requirements. Client requests or changes in
the system’s environment may cause changes in require-
ments [1–3]. Changes deteriorate the architecture of soft-
ware systems, making it difficult to maintain them. In such
situations, the software system must be designed in such a
way that the negative effects of modifications to the software
system are kept to a minimum. Updated documentation is

required for updated software. If the documentation is
outdated, the software systems need to be retired or replaced.

Reverse engineering is the first step in re-engineering, and
it involves understanding the system and acquiring the
necessary information for software systemmaintenance [4, 5].
Information can be extracted from a software system through
documentation, compiled code, development team members,
and source code [6]. 1e most reliable source of information
for restoring software architecture has been observed to be
source code. 1e reason is the most recent version of the
software, and this source code will be built and eventually run,
the information gathered from it is the most reliable.

Hindawi
Journal of Mathematics
Volume 2022, Article ID 8640596, 19 pages
https://doi.org/10.1155/2022/8640596

mailto:ahmalturki@ksu.edu.sa
mailto:syed.s.ullah@uia.no
mailto:s.alhadhrami@hu.edu.ye
https://orcid.org/0000-0003-2405-3222
https://orcid.org/0000-0002-4952-8100
https://orcid.org/0000-0002-2891-7844
https://orcid.org/0000-0001-8047-0181
https://orcid.org/0000-0002-5406-0389
https://orcid.org/0000-0003-2831-416X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8640596


Information extracting from the source code of a software
system, on the other hand, is a challenging task since no
developer can fully know the code of a large and complex
system. As a result, we need tools to automatically extract
information from source code, which will help in the recovery
of software architecture and the comprehension of software
systems [7]. 1e understanding and recovery of architecture
are crucial for software maintenance and evolution.

1e first step in modularizing a software system is to
analyze it since source code is the primary source of in-
formation for extracting artifacts. 1e need for a software
modularization technique that transforms low-level artifacts
(source code) into abstract views (high-level) [1, 5]. Two
approaches can be utilized for code analysis: an exact ap-
proach and an approximate one.1e exact approach utilized
the parser to analyze the whole source code, whilst the
approximate approach utilized it to extract the specified
parts of the information. We propose a methodology for
evaluating Java source code in order to discover entities and
their relationships in a Java software system in this paper.
1e selection of an object-oriented system since it is a more
realistic approach to software development. Object-oriented
software systems developed in the 1990s are now legacy
systems with an unstable structure due to changes made to
them [5, 7]. 1eir documentation is either non-existent or
obsolete. A comprehensive understanding of these software
systems is necessary for future updates and maintenance.

1e proposed system is named “Fact Extractor System
for Java Application,” or FESJA, which gives an approximate
approach to automatic Java application software modula-
rization. Entities such as classes, interfaces, and enumera-
tions and their relationships (formal and informal) can be
extracted using the tool. We utilized FESJA to extract formal
relationships from classes in several Java software systems;
interfaces and informal relationships are 74 and 43, re-
spectively. We have extracted 31 relationships to analyze,
which are divided into seven categories: folder-based, im-
plements-based, composition-based, file-based, generality
based, and router-based relationships. To the list of con-
tributions, the following items could be added:

(1) A framework for extraction of relationships
(2) Introduction of enumeration is an entity
(3) Introduction of additional formal and informal

relationships

1e organization of the paper is composed of the fol-
lowing sections. Section 2 focuses on related work. 1e
source code entities and relationships are described in
Section 3. 1e research methodology for the fact extraction
system is described in Section 4. Section 5 discusses the
experimental setup. Section 6 presents the results. Section 7
contains the outcome of the experiment as well as a
discussion.

2. Related Work

In the literature, several fact extractor systems for extracting
features from source code have been proposed. To

modularize software systems, Raimond and Lovesum [8]
followed Anquetil and Lethbridge employed formal and
informal features. 1ey used files, routines, classes, and
processes as entities. User-defined data types, procedure
calls, file inclusion, macro use, and global variables are some
of the formal features mentioned. Identifiers and comments
are examples of nonformal features. 1ey focused on how to
modularize structured language software systems using
hierarchical clustering algorithms. 1ey came to the con-
clusion that identifiers provide good design results that the
file has a good expert comparison, and those comments have
a good expert comparison, but that bad design results and
routine calls perform poorly.1e authors in [9–12] proposed
a method for improving the accuracy of autonomous
software architecture reconstruction. 1e method uses a
combination of graph clustering and partitioning. 1ey
considered classes as distinct entities and created eleven
relationships between them. 1e following relationships
were discovered: inheritance, implements an interface,
members (A has at least one member of type B), method
parameter (A has at least one method with a parameter of
type B), local variable (A has a local variable of type B in a
method), returned type (A has amethod that returns type B),
field access (A directly accesses at least one field of type B),
static method call (A calls a static method of B), object
instantiation (an object of type B is instant (inside A a cast to
B is done).1eir focus was on object-oriented systems (java).

Hussain et al. [13] adopted an agglomerative approach
for clustering of structured software systems. 1ey con-
sidered functions as entities. 1ey took advantage of formal
features like entity calling functions, global variables that
entities refer to, and user-defined types that entities can
access. Aghdasifam et al. [14] carried out work of software
modularization using agglomerative hierarchical clustering
algorithms. 1ey targeted the structured system. 1ey used
functions as an entity. In their work, they utilized use global
variables, user-specified data types, and function calls.
Based on the results of the experiments, they determined
that the type of feature outperforms the global and call
features. Zahoor et al. [15] presented a tool called the
WAFE tool (Web Application Fact Extractor) which extract
features from web application. Similarly, a similar work
presented by [16, 17], automate extraction dependency
between web component and database resources in java
web applications. 1e Web Page contains classes. 1e
WAFE tool extracted the following information: a class
called from a web page, a class function called from a web
page, web page form submits on another web page or the
same web page, web page link to another web page, web
page redirect to another web page, and web page folder or
directory. Custom Code Files are included in Web Pages,
and Custom Code File functions are called by Web Pages.
Web Pages’ classes are derived from these classes. Classes
derived from Web Page classes, as well as functions of
classes derived from Web page classes.

Shah et al. [1] followed Abdul Qudus Abbasi’s research
work carried out a detailed study about features between
entities. 1ey developed a Fact Extractor that could extract
twenty-six features from the source code of object-oriented

2 Journal of Mathematics



systems to extract the features. Classes, structs, unions, files,
folders, global functions, global variables, and macros were
all considered entities by them. Class to class relationships
based on inheritance, class to class relationships based on
containment, class to class relationships based on genericity,
class to class relationships based on member access, class to
class relationships based on source files and folders, class to
class relationships based on a friend, class to global functions
or data relationships or macro, and global function to global
function are among relationships extracted by fact extractor.
An experimental evaluation of relationships for the mod-
ularization of object-oriented software systems was reported
by1akur et al. [18]. Using Abbasi’s Fact Extractor [13], they
retrieved the twenty-six features. Direct and indirect rela-
tionships were the two types of relationships. 1ey also
found that indirect relationships give better modularization
results than direct relationships based on the experimental
data.

Aljarah et al. [19] improved on the work of Tzerpos and
Andritso, who developed the LIMBO algorithm for software
architecture recovery. 1ey combined structural and non-
structural features to determine the usefulness of non-
structural features to the reverse engineering process.
Developers’ names, directory paths, lines of code, and times
of the last update were among the nonstructural features
they examined at. 1e experiments revealed that directory
structure and ownership information, but not lines of code,
are important factors in software clustering. 1ey also
concluded that weighing schemes are useful in breaking
down software systems.

Krishnan preferred Koschke’s Ph.D. thesis [20] to in-
troduce a classification of component recovery techniques.
1ey used several features for architectural component re-
covery of structured systems. 1e features are function calls,
set (subprogram sets the value of a global variable), use
(subprogram uses the value of object T), take-address-of
(subprogram takes the address of object T), function pa-
rameter (subprogram has a formal parameter of user-de-
fined data type), return (subprogram returns a value of user-
defined type), local-obj-of-type (subprogram has a local
object of user-defined type), actual-parameter of (object is an
actual parameter in a call to subprogram), of type (S is of
type T, where S is an object and T is user-defined type),
same-expression (S and T occur in the same expression
where S and Tare objects) and part-type (S is a part type of T
where both S and T are user-defined types).

Richner and Ducasse proposed an environment for
generating high-level views of object-oriented systems from
both static and dynamic information, and Alshuqayran et al.
[21] followed suit. For modularization of a software system,
they used composition, inheritance, invocation (method of
sender invokes received method on one of the candidates),
access (an attribute of class 1 is accessed by the method of
class 2), andmethod (a class defines amethod that belongs to
another class) as well as dynamic features.

Aljarah et al. [19] proposed MULICsoft, a software
clustering algorithm. For the modularization of software
systems, they exploited both static and dynamic features.
Source files are the objects to be clustered. Procedure calls

and variable references are static features, but dynamic
features on a software system are the results of profiling the
system’s execution, indicating how many times each file
called procedures in other files during the run time. In 2003,
Trifu [22] proposed a technique that combines clustering
with pattern-matching, to automatically recover subsystem
decompositions. For the clustering process, they used in-
heritance, association, aggregation, call, and access features.
1ey also proposed a method for assigning weights to these
relationships.

Rathee and Chhabra [23] used a combination of static
and dynamic features to modularize java software systems.
1ey used inheritance, implementation, containment, calls
to methods, and access to variables and assignment rela-
tionships along with dynamic features for the software
modularization process. Eski and Buzluca [24] presented a
comprehensive comparative study of six software clustering
algorithms. 1ey developed a lightweight C/C++ source
code extractor called CTSX. CTSX is built on CTags and
CScope. CTSX uses CTags to extract program entities
(functions, variables, and data types) and CScope to retrieve
features (function calls).

Teymourian et al. [25] presented an approach for the
evaluation of dynamic clustering. 1ey used both static and
dynamic features for the modularization process. For feature
extraction, they used the CPPX fact extractor system. From
the experimental results, they concluded that static features
perform better than dynamic features. Rafi et al. [26] in-
troduced a systematic study to categorize the critical chal-
lenges associated with best practices of software
implementation for organizations and Akbar et al. [27]
discussed the challenges associated with successful execution
of outsource software development. Using a combined al-
gorithm, Alanazi [28] focused on clustering software sys-
tems. Functions were considered as entities in their study,
and the following features were used: function call (func-
tions called by an entity), global variables (global variables
referred to by an entity), and user-defined types (user-de-
fined types accessed by an entity). Tjortjis [29] proposed a
method for mining association rules from code in order to
capture program structure and achieve a better under-
standing of the system. To classify code chunks as entities,
they used the following characteristics: Code blocks, vari-
ables, and data types are all entitled.

Yadav et al. [30] proposed an approach for analyzing
Java code. 1ey analyzed programs and built tables using a
Java code analyzer. 1ey also used a clustering engine,
which works with such tables and finds relationships be-
tween code elements. 1ey considered files, packages,
classes, methods, and parameters as entities. 1e rela-
tionships they used in their study include entities ID,
entities Name, imported packages, inheritance, implements
relationship, arguments, return value, modifier, parameter
type, and parameter used.

Rathee and Chhabra [6, 23] followed Tonella presented
an approach of using concept analysis for module recon-
struction. Accesses to global variables, dynamic location
accesses, the presence of a user-defined structured type in
the signature, and the presence of a user-defined structured

Journal of Mathematics 3



type in the return type are the relationships he used for
module reconstruction.

3. Source Code Entities and Relationship

1is section focused on entity and relationship relationships
in source code. 1ese source code entities and relationships
have been created based on Java source code entities and
relationships.

3.1. Entities in Java Source Code. Entities are the smallest
significant elements at the architectural level [20]. 1ey are
part of the clustering process and become members of
clusters during the automated software clustering and
modularization process [1].1e proposed “FESJA” extracted
three types of entities, these types are classes, interfaces, and
enumerations.

A class and an interface can be an entity in object-
oriented systems, it has been used widely in software ar-
chitecture reconstruction and recovery [1, 4]. 1e approach
used by [9] helps to create basic, fully automated tools that
can help detect the core classes of a software system based on
its code. 1e study done by [22] used a Model-Driven
Engineering technique to provide support for Micro Service
Architecture Recovery (MiSAR). In their work, they de-
scribed an empirical study that uses manual analysis on eight
microservice-based open-source projects to identify the core
elements of the approach. 1e research helps software de-
velopers andmaintainers in taking steps at the design level to
create maintainable object-oriented software with classes
[22, 23, 31]. “An enum type is a form of data that allows a
variable to be a set of specified constants.” Enums are java
reference types, much as classes. We can add methods,
variables, and constructors to an enum in the same way that
we would in a regular Java class of Java beat version issued in
2013.

3.2. Relationships. Similarities between entities are always
calculated during the modularization process based on their
connections. It establishes links between the application’s
entities. However, the first step is to analyze feature ex-
traction; afterward when, we applied clustering to group
entities with similar features or attributes [15]. 1e rela-
tionship types extracted by the proposed fact extractor
system, a java-based system, have been identified. Static,
dynamic, informal, direct, and indirect relationships are
examples of these types of relationships.

4. The Research Methodology of Fact
Extraction System

1e proposed methodology uses low-level artifacts (source
code) to build high-level (abstract views) of the software
system in the form of a Java-based Fact Extractor System.
Extraction of features is the first stage in modularization,
and FESJA has utilized an API named java.util.regex to
search for necessary parts (approximated approach).
Regular expressions were utilized to match patterns in this

Java API. FESJA has extracted three categories of entities, as
follows:

\\bclass[\\s][\\s]*[_[a-z[A-Z]]][\\w]*[\\s\\<\\{]

1e regular expression above can be used to extract a
class myClass{, class myClass {, class myClass<.

\\binterface[\\s][\\s]*[_[a-z[A-Z]]][\\w]*[\\s\\{\\<]

For the extraction of interfaces, the below regular ex-
pression is used.

1e regular expression above, for example, can retrieve
interface myInt {, interface myInt{, interface myInt<.

\\benum[\\s][\\s]*[_[a-z[A-Z]]][\\w]*

1e enumerations are extracted using a regular
expression.

1e regular expression above, for example, can extract
the enum myEnum.

1e Process of fact extraction in FESJA starts with some
data being uploaded, folders being extracted, and folder
names that are alike being removed. After the extraction
process of FESJA, the system check whether the source
folder (src) exists or not. 1e process will end if there is no
src folder. 1e same entity names are removed if the src file
exists. Figure 1 shows the whole process of the fact extraction
system, whereas Figure 2 shows entities with relationships.

5. Experimental Setup

1e experiments are conducted using data sets to evaluate
the relationships. 1ese datasets are being designed and
implemented using java (object-oriented methodology).
JFree Chart (an open-source library for graphs and charts),
JUnit (an open-source java unit testing framework), and
Weka (an open-source java testing framework) compensate
our dataset (Machine learning algorithm for data mining
tasks). All these datasets are taken from Github and the
source (https://www.grepcode.com). Entities identified by
the FESJA tool in the above systems are shown below in
Tables 1–4

5.1. Comparative Analysis of Intradataset. 1is study ex-
plores the results of multiple versions of the same data set.

5.1.1. iText. 1e statistics of the iText software system are
shown in Tables 5–9. It has been concluded from the sta-
tistics that:

(i) Class is the most important entity in the iText
software system, and enumerations are not utilized
at all

(ii) Folder-based relationships, composition-based re-
lationships, and access-based relationships are the
most common relations for classes

(iii) In comparison to file-based and access-based rela-
tionships, folder-based relationships occur fre-
quently in interfaces

4 Journal of Mathematics

https://www.grepcode.com


(iv) Generic or outer implement relationships are not
used in the iText software system

(v) Figures 3 and 4 illustrate those formal relationships
in iText are based on formal relationships of classes,
while formal relationships of interfaces contribute
to just 3% of formal relationships

Figures 3–7 providegraphical representations of iText
software system statistics.

5.1.2. JFreeChart. Tables 10–14 summarizes statistics of the
JFreeChart software system. From the statistics, it has been
observed that.

(i) Like iText the most dominant entity in the JFree-
Chart software system is class while enumerations
are not used at all.

(ii) 1e dominant relationships for classes are folder-
based relationships, composition-based relation-
ships, and access-based relationships while imple-
ments-based relationships and inheritance-based
relationships have also good frequency.

(iii) For interfaces the used relationships are folder-
based, file-based, extend based and access-based

relationships while other relationships are infre-
quent. Also, among used relationships, folder-based
relationships have the highest frequency.

(iv) Same as iText generics-based relationships and
outer implements-based relationships are not used
in the JFreeChart software system.

(v) By comparing Figures 8 and 9 it can be calculated
that in JFreeChart 92% of formal relationships are
based on formal relationships of classes while 8% of
formal relationships are based on formal relation-
ships of interfaces.

Figures 8–12 provides a graphical representation of
statistics of the JFreeChart software system.

Due to the absence of enumerations, no relationships for
enumeration exist in the JFreeChart software system.

5.1.3. JUnit. Tables 15–20 summarizes the statistics of a
JUnit software system. From the statistics, it has been ob-
served that.

(i) In the JUnit software system enumerations are
introduced in all versions except JUnit 4.8 but have
a very low frequency of occurrence.

upload
folder

remove
comments

remove same
folder name

remove same
interface name

remove
same Enum

create used
feature table

create number
of used

features table

create entities
name table

open folder

create formal and informal
features table

extract entities
and relationships

create
comments table

create application
property table

remove same
class name

extract files and
folders in src folders

extract folders

create
LOC table

create number of
full features table

create full
feature table

un-used
feature is true

src file
exist

No

No

Yes

Figure 1: Process of fact extraction.

Journal of Mathematics 5



Table 1: Facts about entities in iText dataset.

Entity related information iText 1.3 iText 1.4 iText 1.4.8 iText 2.1.7
Total no. of folders 29 32 34 69
Total no. of files 399 470 502 549
Total no. of entities 462 545 586 669
Total no. of classes 434 513 551 625
Total no. of interfaces 28 32 35 44
Total no. of enumerations 0 0 0 0
Total no. of functions in application 5330 6195 6517 7029
Total no. of functions in class 5258 6117 6431 6905
Total no. of functions in interface 72 78 86 124
Total no. of functions in enum 0 0 0 0
sLOC 76100 86858 90526 94073
Blank lines 12283 13802 14655 14811
LOC 88383 100660 105181 108884
Size in bytes 4938428 5704081 6103967 6696336

Extract
class and
class data

Extract ParentClass
and GrandParent
class relationship

Extract
composition

in class

Extract composition
through genericity

in class

Extract
composition
in interface

Extract composition
through genericity

in interface

Extract inner
entities in
interface

Extract Enum
implements

relation

Extract outer
interface

extends relation

Relation of interface composition
in inner interface with outer

entities

Relation of Enum
composition in inner

interface with outer entities

Extract outer
inheritance

relation

Extract outer
interface

extends relation

Extract outer
implements

relation

Extract interface
through

genericity

Extract Enum parent
and GrandParent
interface relation

Extract method
call of compose

class relation

Relation of class composition
in inner interface with outer

entities

Relation of class
composition in inner

class with outer entities

Extract entities
at return level in

interface

Extract entities
at parameter

level in interface

Extract entities
at return level

in class

Extract
override
relation

Extract parent and
GrandParent interface

relations

Extract
Enum and
Enum data

Extract
interface and
interface data

Extract class
implements

relation

Extract
interface

extends relation

Extract inheritance
through genericity

Extract entities at
parameter level in class

Extract inner
entities in class

Relation of Enum composition in
inner class with outer entities

Extract Enum implements
relation

Extract method call of base
class relation

Extract
comments

Figure 2: Process of Relationship extraction.

6 Journal of Mathematics



Table 2: Facts about entities in JFreeChart dataset.

Entity related information JFreeChart 1.0.4 JFreeChart 1.0.7 JFreeChart 1.0.9 JFreeChart 1.0.14
Total no. of folders 61 39 39 40
Total no. of files 500 538 538 594
Total no. of entities 516 559 559 616
Total no. of classes 432 468 468 510
Total no. of interfaces 84 91 91 106
Total no. of enumerations 0 0 0 0
Total no. of functions in application 6705 7468 7522 8629
Total no. of functions in class 6209 6952 7006 8086
Total no. of functions in interface 496 516 516 561
Total no. of functions in enum 0 0 0 0
sLOC 73148 81003 81490 93430
Blank lines 16149 17615 17670 19332
LOC 89297 98618 99160 112762
Size in bytes 6029995 6722638 6774669 7700413

Table 3: Facts about entities in Junit dataset.

Entity related information Junit 4.8 Junit 4.9 Junit 4.10 Junit 4.11
Total no. of folders 33 31 31 31
Total no. of files 175 160 162 164
Total no. of entities 180 165 168 171
Total no. of classes 148 134 137 137
Total no. of interfaces 32 30 30 32
Total no. of enumerations 0 1 1 2
Total no. of functions in application 1079 1013 1036 1143
Total no. of functions in class 1039 972 995 1099
Total no. of functions in interface 40 32 32 33
Total no. of functions in enum 0 9 9 11
sLOC 6727 6429 6579 7439
Blank lines 1466 1348 1381 1603
LOC 8193 7777 7960 9042
Size in bytes 340192 330167 338458 429090

Table 4: Facts about entities in weka dataset.

Entity related information Weka-dev 3.7.5 Weka-dev 3.7.6 Weka-dev 3.7.7 Weka-stable 3.6.6
Total no. of folders 87 88 89 110
Total no. of files 1005 1020 1025 1050
Total no. of entities 1352 1378 1384 1379
Total no. of classes 1162 1185 1190 1236
Total no. of interfaces 149 151 152 119
Total no. of enumerations 41 42 42 24
Total no. of functions in application 17114 17501 17618 18746
Total no. of functions in class 16513 16896 17006 18273
Total no. of functions in interface 427 431 438 336
Total no. of functions in enum 174 174 174 137
sLOC 232297 237797 240029 255774
Blank lines 54985 56319 56633 61449
LOC 287282 294116 296662 317223
Size in bytes 13586516 13828049 13940620 15213130

Table 5: Entities in iText.

iText 1.3 iText 1.4 iText 1.4.8 iText 2.1.7
Classes 434 513 551 625
Interfaces 28 32 35 44
Enumerations 0 0 0 0

Journal of Mathematics 7



Table 9: Formal relationships for interface in iText.

Formal relationships for interface iText 1.3 iText 1.4 iText 1.4.8 iText 2.1.7
Folder-based relationships 140 164 182 283
File-based relationships 28 32 35 44
Extends-based relationships 6 6 6 12
Generics-based relationships 0 0 0 0
Composition-based relationships 0 0 0 0
Access-based relationships 28 35 36 57
Inner-based relationships 0 0 0 0
Outer extends relationships 0 0 0 0
Outer composition relationships 0 0 0 0

Table 8: Formal relationships for class in iText.

Formal relationships for class iText 1.3 iText 1.4 iText 1.4.8 iText 2.1.7
Folder-based relationships 2228 2643 2859 3958
File-based relationships 434 513 551 625
Inheritance-based relationships 680 833 871 839
Implements-based relationships 171 203 208 213
Composition-based relationships 2115 2689 2847 3312
Generics-based relationships 0 0 0 0
Access-based relationships 1122 1318 1358 1630
Inner-based relationships 64 69 78 119
Outer inheritance-based relationships 14 14 17 25
Outer implements-based relationships 0 0 0 0
Outer composition-based relationships 50 68 77 128

Table 6: Formal and informal relationship in iText.

iText 1.3 iText 1.4 iText 1.4.8 iText 2.1.7
Informal 43107 49474 52488 58601
Formal 7080 8587 9125 11245

Table 7: Formal relationship in iText.

Formal relationships iText 1.3 iText 1.4 iText 1.4.8 iText 2.1.7
Formal relationships for class 6878 8350 8866 10849
Formal
Relationships f or interface 202 237 259 396
Formal
Relationships for enum 0 0 0 0

Formal and Informal Relations in iText

43107
49474 52488

58601

7080 8587 9125 11245

iText 1.3 iText 1.4 iText 1.4.8 iText 2.1.7

Formal Relation
Informal Relation

Figure 3: Count of formal and informal relationships in iText.

8 Journal of Mathematics



(ii) For classes the most used relationships are folder-
based relationships while access-based relation-
ships, implements-based relationships, inheritance-
based relationships, and file-based relationships
have a good frequency of occurrence.

(iii) For interfaces outer extends-based relationships,
outer composition-based relationships, and com-
position-based relationships are not used while
extends-based relationships are only used in JUnit
4.8. Also, among used relationships, folder-based

Fo
ld

er
 B

as
ed

Re
la

tio
ns

hi
ps

Fi
le

-B
as

ed
Re

la
tio

ns
hi

ps

In
he

rit
an

ce
 B

as
ed

Re
la

tio
ns

hi
ps

Im
pl

em
en

ts 
Ba

se
d

Re
la

tio
ns

hi
ps

C
om

po
sit

io
n 

Ba
se

d
Re

la
tio

ns
hi

ps

G
en

er
ic

s B
as

ed
Re

la
tio

ns
hi

ps

Ac
ce

ss
 B

as
ed

Re
la

tio
ns

hi
ps

In
ne

r B
as

ed
Re

la
tio

ns
hi

ps

O
ut

er
 In

he
rit

an
ce

Ba
se

d 
Re

la
tio

ns
hi

ps

O
ut

er
 Im

pl
em

en
ts

Ba
se

d 
Re

la
tio

ns
hi

ps

O
ut

er
 C

om
po

sit
io

n
Ba

se
d 

Re
la

tio
ns

hi
ps

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Formal Relations for Class in iText

iText 1.3
iText 1.4

iText 1.4.8
iText 2.1.7

Figure 6: Count of formal relationships for class in iText.

434
513 551

625

28 32 35 44
0 0 0 0

iText 1.3 iText 1.4 iText 1.4.8 iText 2.1.7

Classes
Interfaces
Enumerations

Entities in iText

Figure 5: Count of entities in iText.

6878
8350 8866

10849

202 237 259 3960 0 0 0
iText 1.3 iText 1.4 iText 1.4.8 iText 2.1.7

Formal Relations in iText

Formal Relations for class
formal Relations for Interface
Formal Relations for Enum

Figure 4: Count of formal relationships in iText.

Journal of Mathematics 9



Table 12: Formal relationships in JFreeChart.

Formal relationships JFreeChart 1.0.4 JFreeChart 1.0.7 JFreeChart 1.0.9 JFreeChart 1.0.14
Formal relationships for class 7636 8314 8313 9196
Formal relationships for interface 685 745 745 860
Formal relationships for enum 0 0 0 0

Table 13: Formal relationships for class in JFreeChart.

Formal relationships for class JFreeChart 1.0.4 JFreeChart 1.0.7 JFreeChart 1.0.9 JFreeChart 1.0.14
Folder-based relationships 2184 2385 2385 2599
File-based relationships 432 468 468 510
Inheritance-based relationships 816 917 917 1013
Implements-based relationships 897 970 970 1052
Composition-based relationships 2069 2234 2233 2514
Generics-based relationships 0 0 0 0
Access-based relationships 1217 1308 1308 1475
Inner-based relationships 14 19 19 20
Outer inheritance-based relationships 2 3 3 3
Outer implements-based relationships 0 0 0 0
Outer composition-based relationships 5 10 10 10

Table 10: Entities in JFreeChart.

Entities JFreeChart 1.0.4 JFreeChart 1.0.7 JFreeChart 1.0.9 JFreeChart 1.0.14
Classes 432 468 468 510
Interfaces 84 91 91 106
Enumerations 0 0 0 0

Table 11: Formal and informal relationships in JFreeChart.

Relationships JFreeChart 1.0.4 JfreeChart 1.0.7 JFreeChart 1.0.9 JFreeChart 1.0.14
Informal 48877 53862 54105 61294
Formal 8321 9059 9058 10056

Fo
ld

er
 B

as
ed

Re
la

tio
ns

hi
ps

Fi
le

-B
as

ed
Re

la
tio

ns
hi

ps

Ex
te

nd
s B

as
ed

Re
la

tio
ns

hi
ps

G
en

er
ic

s B
as

ed
Re

la
tio

ns
hi

ps

C
om

po
sit

io
n 

Ba
se

d
Re

la
tio

ns
hi

ps

Ac
ce

ss
 B

as
ed

Re
la

tio
ns

hi
ps

In
ne

r B
as

ed
Re

la
tio

ns
hi

ps

O
ut

er
 E

xt
en

ds
Re

la
tio

ns
hi

ps

O
ut

er
 C

om
po

sit
io

n
Re

la
tio

ns
hi

ps

0

50

100

150

200

250

300
Formal Relations for Interface in iText

iText 1.3
iText 1.4

iText 1.4.8
iText 2.1.7

Figure 7: Count of formal relationships for interface in iText.

10 Journal of Mathematics



relationships have the highest frequency of
occurrence.

(iv) Generics bases relationships have been introduced
for classes and interfaces.

(v) 1e used relationships in enumerations are folder-
based, file-based, and access relationships while
composition-based relationships are only used in
JUnit 4.11. Among them, the dominant relationship
is folder-based relation.

(vi) By comparing Figures 13 and 14 it can be calculated
that in JUnit 89% of formal relationships are based
on formal relationships of classes while 10% of
formal relationships are based on formal

relationships of interfaces. Similarly, formal rela-
tionships in JUnit 4.9, JUnit 4.10, and JUnit 4.11 are
based on 0.57%, 0.55%, and 0.92% of formal rela-
tionships of enumerations respectively.

Figures 15–18 provide a graphical representation of
statistics of a Junit software system.

5.1.4. Weka. Table 21–26 summarizes the statistics of the
Weka software system. From the statistics, it has been ob-
served that.

(i) In the Weka software system the dominant entity is
class while enumerations have a low frequency of
occurrence.

48877
53862 54105

61294

8321 9059 9058 10056

Formal and Informal Relationships in JFreeChart

JFreeChart
1.0.4

JFreeChart
1.0.7

JFreeChart
1.0.9

JFreeChart
1.0.14

Informal
Formal

Figure 8: Count number of formal and informal relationships in JfreeChart.

Table 14: Formal relationships for interface in JFreeChart.

Formal relationships for interface JfreeChart 1.0.4 JFreeChart 1.0.7 JfreeChart 1.0.9 JFreeChart 1.0.14
Folder-based relationships 411 450 450 526
File-based relationships 84 91 91 106
Extends-based relationships 81 91 91 95
Generics-based relationships 0 0 0 0
Composition-based relationships 0 0 0 0
Access-based relationships 109 113 113 133
Inner-based relationships 0 0 0 0
Outer extends relationships 0 0 0 0
Outer composition relationships 0 0 0 0

JFreeChart
1.0.4

JFreeChart
1.0.7

JFreeChart
1.0.9

JFreeChart
1.0.14

7636
8314 8313

9196

685 745 745 860
0 0 0 0

Formal Relationships in JFreeChart

Formal Relationships for Class
Formal Relationships for Class
Formal Relationships for Class

Figure 9: Count number of formal relationships in JfreeChart.

Journal of Mathematics 11



Fo
ld

er
 B

as
ed

Re
la

tio
ns

hi
ps

Fi
le

-B
as

ed
Re

la
tio

ns
hi

ps

Ex
te

nd
s B

as
ed

Re
la

tio
ns

hi
ps

G
en

er
ic

s B
as

ed
Re

la
tio

ns
hi

ps

C
om

po
sit

io
n 

Ba
se

d
Re

la
tio

ns
hi

ps

Ac
ce

ss
 B

as
ed

Re
la

tio
ns

hi
ps

In
ne

r B
as

ed
Re

la
tio

ns
hi

ps

O
ut

er
 E

xt
en

ds
Re

la
tio

ns
hi

ps

O
ut

er
 C

om
po

sit
io

n
Re

la
tio

ns
hi

ps

0

100

200

300

400

500

600
Formal Relationships for Interface in JFreeChart

JFreeCh art 1.0.9
JFreeCh art 1.0.14

JFreeCh art 1.0.4
JFreeCh art 1.0.7

Figure 12: Count number of formal relationships for interface in JfreeChart.

Fo
ld

er
 B

as
ed

Re
la

tio
ns

hi
ps

Fi
le

-B
as

ed
Re

la
tio

ns
hi

ps
In

he
rit

an
ce

 B
as

ed
Re

la
tio

ns
hi

ps
Im

pl
em

en
ts 

Ba
se

d
Re

la
tio

ns
hi

ps
C

om
po

sit
io

n 
Ba

se
d

Re
la

tio
ns

hi
ps

G
en

er
ic

s B
as

ed
Re

la
tio

ns
hi

ps
Ac

ce
ss

 B
as

ed
Re

la
tio

ns
hi

ps
In

ne
r B

as
ed

Re
la

tio
ns

hi
ps

O
ut

er
 In

he
rit

an
ce

Ba
se

d 
Re

la
tio

ns
hi

ps
O

ut
er

 Im
pl

em
en

ts
Ba

se
d 

Re
la

tio
ns

hi
ps

O
ut

er
 C

om
po

sit
io

n
Ba

se
d 

Re
la

tio
ns

hi
ps

0

500

1000

1500

2000

2500

3000
Formal Relationships for Class in JFreeChart

JFreeCh art 1.0.4
JFreeCh art 1.0.7

JFreeCh art 1.0.9
JFreeCh art 1.0.14

Figure 11: Count number of formal relationships for class in JfreeChart.

432
468 468

510

84 91 91 106

0 0 0 0

Entities in JfreeChart

JFreeChart
1.0.4

JFreeChart
1.0.7

JFreeChart
1.0.9

JFreeChart
1.0.14

Classes
Interfaces
Enumerations

Figure 10: Count of entities in JfreeChart.

12 Journal of Mathematics



(ii) For classes composition-based relationships are the
most dominant relationships. Other relationships
having a good frequency of occurrence are folder-
based and access-based relationships.

(iii) Folder-based relationships, file-based relationships,
and access-based relationships have a high fre-
quency of occurrence in interfaces while other re-
lationships are either have a very low frequency of

occurrence or not used at all. Among used rela-
tionships, folder-based relationships have the
highest frequency.

(iv) Generics-based relationships are used in classes and
interfaces but have very low usage.

(v) Like JUnit the used relationships in enumerations
are folder-based, file-based, access relationships,
and composition-based relationships. Among them,

Table 19: Formal relationships for interface in Junit.

Formal relationships for interface Junit 4.8 Junit 4.9 Junit 4.10 Junit 4.11
Folder-based relationships 125 120 120 127
File-based relationships 32 30 30 32
Extends-based relationships 1 0 0 0
Generics-based relationships 3 1 1 1
Composition-based relationships 0 0 0 0
Access-based relationships 15 12 12 12
Inner-based relationships 2 1 1 1
Outer extends relationships 0 0 0 0
Outer composition relationships 0 0 0 0

Table 15: Entities in Junit.

Entities Junit 4.8 Junit 4.9 Junit 4.10 Junit 4.11
Classes 148 134 137 137
Interfaces 32 30 30 32
Enumerations 0 1 1 2

Table 16: Formal and informal relationships in Junit.

Relationships Junit 4.8 Junit 4.9 Junit 4.10 Junit 4.11
Informal 6616 6171 6286 6705
Formal 1746 1572 1609 1629

Table 17: Formal relationships in Junit.

Formal relationships Junit 4.8 Junit 4.9 Junit 4.10 Junit 4.11
Formal relationships for class 1568 1399 1436 1441
Formal relationships for interface 178 164 164 173
Formal relationships for enum 0 9 9 15

Table 18: Formal relationships for class in Junit.

Formal relationships for class Junit 4.8 Junit 4.9 Junit 4.10 Junit 4.11
Folder-based relationships 653 602 617 615
File-based relationships 148 134 137 137
Inheritance-based relationships 161 153 154 157
Implements-based relationships 35 30 34 34
Composition-based relationships 207 178 182 188
Generics-based relationships 19 14 14 14
Access-based relationships 320 262 270 265
Inner-based relationships 16 16 17 18
Outer inheritance-based relationships 0 0 0 0
Outer implements-based relationships 0 0 0 0
Outer composition-based relationships 9 10 11 13

Journal of Mathematics 13



the dominant relationship is folder-based relation.
Access-based and composition-based relationships
have the same frequency of occurrence.

(vi) By comparing Figures 19 and 20, it can be calculated
that in Weka 95% of formal relationships are based
on formal relationships of classes, 4% of formal

148
134 137 137

32 30 30 32

0 1 1 2

JUnit 4.8 JUnit 4.9 JUnit 4.10 JUnit 4.11

Entities in JUnit

Classes
Interfaces
Enumerations

Figure 15: Count of entities in Junit.

6616 6171 6286 6705

1746 1572 1609 1629

Formal and Informal Relationships in JUnit

JUnit 4.8 JUnit 4.9 JUnit 4.10 JUnit 4.11

Informal
Formal

Figure 13: Count of formal and informal relationships in Junit.

1568 1399 1436 1441

178 164 164 1730 9 9 15

Formal Relationships in JUnit

JUnit 4.8 JUnit 4.9 JUnit 4.10 JUnit 4.11

Formal Relationships for Class
Formal Relationships for Interface
Formal Relationships for Enum

Figure 14: Count of formal relationships in Junit.

Table 20: Formal relationships for enum in Junit.

Formal relationships for enumeration Junit 4.8 Junit 4.9 Junit 4.10 Junit 4.11
Folder-based relationships 0 6 6 10
File-based relationships 0 1 1 2
Implements-based relationships 0 0 0 0
Composition-based relationships 0 0 0 1
Genericity-based relationships 0 0 0 0
Access-based relationships 0 2 2 2
Outer implements relationships 0 0 0 0

14 Journal of Mathematics



Fo
ld

er
 B

as
ed

Re
la

tio
ns

hi
ps

Fi
le

-B
as

ed
Re

la
tio

ns
hi

ps

Im
pl

em
en

ts 
Ba

se
d

Re
la

tio
ns

hi
ps

C
om

po
sit

io
n 

Ba
se

d
Re

la
tio

ns
hi

ps

G
en

er
ic

ity
 B

as
ed

Re
la

tio
ns

hi
ps

Ac
ce

ss
 B

as
ed

Re
la

tio
ns

hi
ps

O
ut

er
 Im

pl
em

en
ts

Re
la

tio
ns

hi
ps

0

2

4

6

8

10

12
Formal Relationships for Enum in JUnit

Junit 4.10
Junit 4.11

Junit 4.8
Junit 4.9

Figure 18: Count of formal relationships for enum in junit.

Fo
ld

er
 B

as
ed

Re
la

tio
ns

hi
ps

Fi
le

-B
as

ed
Re

la
tio

ns
hi

ps

Ex
te

nd
s B

as
ed

Re
la

tio
ns

hi
ps

G
en

er
ic

s B
as

ed
Re

la
tio

ns
hi

ps

C
om

po
sit

io
n 

Ba
se

d
Re

la
tio

ns
hi

ps

Ac
ce

ss
 B

as
ed

Re
la

tio
ns

hi
ps

In
ne

r B
as

ed
Re

la
tio

ns
hi

ps

O
ut

er
 E

xt
en

ds
Re

la
tio

ns
hi

ps

O
ut

er
 C

om
po

sit
io

n
Re

la
tio

ns
hi

ps

0
20
40
60
80

100
120
140

Formal Relationships for Interface in JUnit

Junit 4.10
Junit 4.11

Junit 4.8
Junit 4.9

Figure 17: Count of formal relationships for interface in Junit.

Fo
ld

er
 B

as
ed

Re
la

tio
ns

hi
ps

Fi
le

-B
as

ed
Re

la
tio

ns
hi

ps
In

he
rit

an
ce

 B
as

ed
Re

la
tio

ns
hi

ps
Im

pl
em

en
ts 

Ba
se

d
Re

la
tio

ns
hi

ps
C

om
po

sit
io

n 
Ba

se
d

Re
la

tio
ns

hi
ps

G
en

er
ic

s B
as

ed
Re

la
tio

ns
hi

ps
Ac

ce
ss

 B
as

ed
Re

la
tio

ns
hi

ps
In

ne
r B

as
ed

Re
la

tio
ns

hi
ps

O
ut

er
 In

he
rit

an
ce

Ba
se

d 
Re

la
tio

ns
hi

ps
O

ut
er

 Im
pl

em
en

ts
Ba

se
d 

Re
la

tio
ns

hi
ps

O
ut

er
 C

om
po

sit
io

n
Ba

se
d 

Re
la

tio
ns

hi
ps

0
100
200
300
400
500
600
700

Formal Relationships for Class in JUnit

Junit 4.10
Junit 4.11

Junit 4.8
Junit 4.9

Figure 16: Count of formal relationships for class in Junit.

Journal of Mathematics 15



Table 25: Formal relationships for interface in weka.

Formal relationships for interface Weka-dev 3.7.5 Weka-dev 3.7.6 Weka-dev 3.7.7 Weka-stable3.6.6
Folder-based relationships 556 563 566 442
File-based relationships 149 151 152 119
Extends-based relationships 43 45 45 40
Generics-based relationships 6 7 7 6
Composition-based relationships 0 0 0 0
Access-based relationships 132 133 134 113
Inner-based relationships 1 1 1 0
Outer extends relationships 0 0 0 0
Outer composition relationships 0 0 0 0

Table 21: Entities in weka.

Entities Weka-dev 3.7.5 Weka-dev 3.7.6 Weka-dev 3.7.7 Weka-stable 3.6.6
Classes 1162 1185 1190 1236
Interfaces 149 151 152 119
Enumerations 41 42 42 24

Table 22: Formal and informal relationships in weka.

Relationships Weka-dev 3.7.5 Weka-dev 3.7.6 Weka-dev 3.7.7 Weka-stable 3.6.6
Informal 124080 129103 129948 136926
Formal 20358 20847 20932 22695

Table 23: Formal relationships in weka.

Formal relationships Weka-dev 3.7.5 Weka-dev 3.7.6 Weka- dev 3.7.7 Weka-stable 3.6.6
Formal relationships for class 19250 19720 19800 21852
Formal relationships for interface 887 900 905 720
Formal relationships for enum 221 227 227 123

Table 24: Formal relationships for class in weka.

Formal relationships for class Weka-dev 3.7.5 Weka-dev 3.7.6 Weka-dev 3.7.7 Weka-stable3.6.6
Folder-based relationships 4705 4794 4816 5003
File-based relationships 1162 1185 1190 1236
Inheritance-based relationships 1955 1976 1984 2141
Implements-based relationships 1532 1595 1604 1697
Composition-based relationships 6289 6457 6482 7671
Generics-based relationships 8 10 10 6
Access-based relationships 2775 2858 2868 3300
Inner-based relationships 357 368 369 335
Outer inheritance-based relationships 97 97 97 78
Outer implements-based relationships 14 14 14 6
Outer composition-based relationships 356 366 366 379

Table 26: Formal relationships for enum in weka.

Formal relationships for enumeration Weka-dev 3.7.5 Weka-dev 3.7.6 Weka-dev 3.7.7 Weka-stable3.6.6
Folder-based relationships 176 181 181 99
File-based relationships 41 42 42 24
Implements-based relationships 0 0 0 0
Composition-based relationships 2 2 2 0
Genericity-based relationships 0 0 0 0
Access-based relationships 2 2 2 0
Outer implements relationships 0 0 0 0

16 Journal of Mathematics



relationships are based on formal relationships of
interfaces and, 1% of formal relationships are based
on formal relationships of enumerations.

Figures 19–24 provide a graphical representation of
statistics of the Weka software system.

6. Discussion and Analysis

1e above Tables 5–26, we have provided the result and
analysis of datasets that we have used to conduct our ex-
periment. Different tables and graphs are provided for result
analysis, and it can be concluded that the most dominant
entity is class, informal relationships have higher occurrence

1162 1185 1190 1236

149 151 152 11941 42 42 24

Weka-dev 3.7.5 Weka-dev 3.7.6 Weka-dev 3.7.7 Weka-stable 3.6.6

Entities in Weka

Classes
Interfaces
Enumerations

Figure 19: Count of entities in weka.

124080 129103 129948 136926

20358 20847 20932 22695

Weka- dev 3.7.5 Weka- dev 3.7.6 Weka- dev 3.7.7 Weka- stable 3.6.6

Formal and Informal Relationships in Weka

Informal
Formal

Figure 20: Count of formal and informal relationships in weka.

19250 19720 19800

2185887 900 905 720221 227 227 123
Weka-dev 3.7.5 Weka-dev 3.7.6 Weka-dev 3.7.7 Weka-stable 3.6.6

Formal Relationships in Weka

Formal Relationships For Class
Formal Relationships For Interface
Formal Relationships For Enum

Figure 21: Count of formal relationships in weka.

Fo
ld

er
 B

as
ed

Re
la

tio
ns

hi
ps

Fi
le

-B
as

ed
Re

la
tio

ns
hi

ps
In

he
rit

an
ce

 B
as

ed
Re

la
tio

ns
hi

ps
Im

pl
em

en
ts 

Ba
se

d
Re

la
tio

ns
hi

ps
C

om
po

sit
io

n 
Ba

se
d

Re
la

tio
ns

hi
ps

G
en

er
ic

s B
as

ed
Re

la
tio

ns
hi

ps
Ac

ce
ss

 B
as

ed
Re

la
tio

ns
hi

ps
In

ne
r B

as
ed

Re
la

tio
ns

hi
ps

O
ut

er
 In

he
rit

an
ce

Ba
se

d 
Re

la
tio

ns
hi

ps
O

ut
er

 Im
pl

em
en

ts
Ba

se
d 

Re
la

tio
ns

hi
ps

O
ut

er
 C

om
po

sit
io

n
Ba

se
d 

Re
la

tio
ns

hi
ps

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Formal Relationships for Class in Weka

Weka- dev 3.7.7
Weka-stable3.6.6

Weka- dev 3.7.5
Weka- dev 3.7.6

Figure 22: Count of formal relationships for class in weka.

Fo
ld

er
 B

as
ed

Re
la

tio
ns

hi
ps

Fi
le

-B
as

ed
Re

la
tio

ns
hi

ps

Ex
te

nd
s B

as
ed

Re
la

tio
ns

hi
ps

G
en

er
ic

s B
as

ed
Re

la
tio

ns
hi

ps

C
om

po
sit

io
n 

Ba
se

d
Re

la
tio

ns
hi

ps

Ac
ce

ss
 B

as
ed

Re
la

tio
ns

hi
ps

In
ne

r B
as

ed
Re

la
tio

ns
hi

ps

O
ut

er
 E

xt
en

ds
Re

la
tio

ns
hi

ps

O
ut

er
 C

om
po

sit
io

n
Re

la
tio

ns
hi

ps

0

100

200

300

400

500

600
Formal Relationships for Interface in Weka

Weka- dev 3.7.7
Weka-stable3.6.6

Weka- dev 3.7.5
Weka- dev 3.7.6

Figure 23: Count of formal relationships for interface in weka.

Fo
ld

er
 B

as
ed

Re
la

tio
ns

hi
ps

Fi
le

-B
as

ed
Re

la
tio

ns
hi

ps

Im
pl

em
en

ts 
Ba

se
d

Re
la

tio
ns

hi
ps

C
om

po
sit

io
n 

Ba
se

d
Re

la
tio

ns
hi

ps

G
en

er
ic

ity
 B

as
ed

Re
la

tio
ns

hi
ps

Ac
ce

ss
 B

as
ed

Re
la

tio
ns

hi
ps

O
ut

er
 Im

pl
em

en
ts

Re
la

tio
ns

hi
ps

0
20
40
60
80

100
120
140
160
180
200

Formal Relationships for Enum in Weka

Weka- dev 3.7.7
Weka-stable3.6.6

Weka- dev 3.7.5
Weka- dev 3.7.6

Figure 24: Count of formal relationships for enum in weka.

Journal of Mathematics 17



than formal relationships, and formal relationships are
mostly based on formal relationships for classes. We pro-
vided a framework for the extraction of entities and rela-
tionships that exist t in a Java software system. Our Fact
Extractor can extract three types of entities which are classes,
interface, and enumerations. 1e fact extractor can be used
to extract both formal and informal relationships. For
classes, interfaces, and enumerations, the total number of
formal relationships retrieved is 74, 43, and 31, respectively.
Similarly, the fact extractor extracted a total of 73 informal
relationships.

7. Conclusion

Fact Extractor System for Java Applications (FESJA) is an
automatic software modularization tool, used to extract
entities and relationships from java source code. 1e entities
extracted by the fact extractor system are classes, interfaces,
and enumerations. 1e Fact Extractor can extract both
formal and informal relationships. 1e formal relationships
are categorized into three parts which are formal relation-
ships for classes, formal relationships for interfaces, and
formal relationships for enumerations. For evaluation of
relationships, we performed our experiment on four systems
(dataset). 1e systems are iText, JFreeChart, Junit, andWeka
software systems. We have provided different graphs and
tables for analysis of results and presented our observations
which can help researchers to carry out tasks related to
software modularization process, software architecture re-
covery, and software clustering.

Data Availability

1e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

1e authors declare no conflicts of interest.

Acknowledgments

1e authors are grateful to the Deanship of Scientific Re-
search, King Saud University for funding through Vice
Deanship of Scientific Research Chairs.

References

[1] Z. Shah, R. Naseem, M. A. Orgun, A. Mahmood, and
S. Shahzad, “Software clustering using automated feature
subset selection,” in Proceedings of the International Con-
ference on Advanced Data Mining and Applications, pp. 47–
58, Hangzhou, China, December 2013.

[2] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using co-
hesion and coupling for software remodularization,” ACM
Transactions on Software Engineering and Methodology,
vol. 25, no. 3, pp. 1–28, 2016.

[3] P. Behnamghader, D. M. Le, J. Garcia, D. Link, A. Shahbazian,
and N. Medvidovic, “A large-scale study of architectural
evolution in open-source software systems,” Empirical Soft-
ware Engineering, vol. 22, no. 3, pp. 1146–1193, 2017.

[4] S. Muhammad, Experimental Evaluation of Relationships for
the Modularization of Object-Oriented Software Systems,
Quaid-e-Azam University Islamabad, Islamabad, Pakistan,
2010.

[5] Q. Alsarhan, B. S. Ahmed, M. Bures, and K. Z. Zamli,
“Software module clustering: an in-depth literature analysis,”
IEEE Transactions on Software Engineering, 2020.

[6] R. Naseem, M. M. Deris, O. Maqbool, and S. Shahzad,
“Euclidean space-based hierarchical clusters combinations: an
application to software clustering,” Cluster Computing,
vol. 22, no. 3, pp. 7287–7311, 2019.

[7] R. Naseem, M. B. M. Deris, O. Maqbool, J.-p. Li, S. Shahzad,
and H. Shah, “Improved binary similarity measures for
software modularization,” Frontiers of Information Technol-
ogy & Electronic Engineering, vol. 18, no. 8, pp. 1082–1107,
2017.

[8] K. Raimond and J. Lovesum, “A novel approach for automatic
modularization of software systems using extended ant colony
optimization algorithm,” Information and Software Technol-
ogy, vol. 114, pp. 107–120, 2019.

[9] I. Şora and C. B. Chirila, “Finding key classes in object-ori-
ented software systems by techniques based on static analy-
sis,” Information and Software Technology, vol. 116, Article ID
106176, 2019.

[10] H. Li, T. Wang, W. Pan et al., “Mining key classes in java
projects by examining a very small number of classes: a
complex network-based approach,” IEEE Access, vol. 9,
pp. 28076–28088, 2021.

[11] W. Jiang and N. Dai, “Identifying key classes algorithm in
directed weighted class interaction network based on the
structure entropy weighted leaderrank,” Mathematical
Problems in Engineering, vol. 2020, Article ID 9234042,
12 pages, 2020.

[12] X. Du, T. Wang, W. Pan et al., “COSPA: identifying key
classes in object-oriented software using preference aggre-
gation,” IEEE Access, vol. 9, pp. 114767–114780, 2021.

[13] I. Hussain, A. Khanum, A. Q. Abbasi, and M. Y. Javed, “A
novel approach for software architecture recovery using
particle swarm optimization,” ?e International Arab Journal
of Information Technology, vol. 12, no. 1, pp. 32–41, 2015.

[14] M. Aghdasifam, H. Izadkhah, and A. Isazadeh, “A new
metaheuristic-based hierarchical clustering algorithm for
software modularization,” Complexity, vol. 2020, Article ID
1794947, 25 pages, 2020.

[15] I. Zahoor, O. Maqbool, and R. Naseem, “Web application fact
extractor (WAFE),” in Proceedings of the Eighth International
Conference on Digital Information Management (ICDIM 2013),
pp. 379–384, IEEE, Islamabad, Pakistan, September 2013.

[16] J. Oh, S. Lee, A. H. Kim, and W. H. Ahn, “An automatic
extraction scheme of dependency relations between web
components and web resources in Java web applications,”
Journal of the Korea Institute of Information and Commu-
nication Engineering, vol. 22, no. 3, pp. 458–470, 2018.

[17] J. Oh, W. H. Ahn, and T. Kim, “Automatic extraction of
dependencies between web components and database re-
sources in java web applications,” Journal of Information and
Communication Convergence Engineering, vol. 17, no. 2,
pp. 149–160, 2019.

[18] M. 1akur, K. Patidar, S. Chouhan, and R. Kushwah, “A
clustering based on optimization for object oriented quality
prediction,” International Journal of Advanced Technology
and Engineering Exploration, vol. 5, no. 41, pp. 62–69, 2018.

[19] I. Aljarah, H. Faris, S. Mirjalili, N. Al-Madi, A. Sheta, and
M. Mafarja, “Evolving neural networks using bird swarm

18 Journal of Mathematics



algorithm for data classification and regression applications,”
Cluster Computing, vol. 22, no. 4, pp. 1317–1345, 2019.

[20] M. Krishnan, Feature-Based Analysis of the Open-Source
Using Big Data Analytics, University of Missouri-Kansas City,
Kansas City, MO, USA, 2015.

[21] N. Alshuqayran, N. Ali, and R. Evans, “Towards microservice
architecture recovery: an empirical study,” in Proceedings of
the IEEE International Conference on Software Architecture
(ICSA), pp. 47–4709, IEEE, Seattle, WA, USA, April 2018.

[22] M. Trifu, “Architecture-aware, adaptive clustering of object-
oriented systems,” Diploma 1esis, Forschungszentrum
Informatik Karlsruhe, Karlsruhe, Germany, 2003.

[23] A. Rathee and J. K. Chhabra, “Software remodularization by
estimating structural and conceptual relations among classes
and using hierarchical clustering,” in Proceedings of the In-
ternational Conference on Advanced Informatics for Com-
puting Research, pp. 94–106, Jalandhar, India, March 2017.

[24] S. Eski and F. Buzluca, “An automatic extraction approach:
transition to microservices architecture from a monolithic
application,” in Proceedings of the 19th International Con-
ference on Agile, pp. 1–6, Porto, Portugal, May 2018.

[25] N. Teymourian, H. Izadkhah, and A. Isazadeh, A Fast Clus-
tering Algorithm for Modularization of Large-Scale Software
Systems, IEEE Transactions on Software Engineering, Pis-
cataway, NJ, USA, 2020.

[26] S. Rafi, W. Yu, M. A. Akbar, S. Mahmood, A. Alsanad, and
A. Gumaei, “Readiness model for DevOps implementation in
software organizations,” Journal of Software: Evolution and
Process, vol. 33, no. 4, Article ID e2323, 2021.

[27] M. A. Akbar, S. Mahmood, C. Meshram, A. Alsanad,
A. Gumaei, and S. A. AlQahtani, Barriers of Managing Cloud
Outsource Software Development Projects: A Multivocal Study,
Multimedia Tools and Applications, Berlin, Germany, 2021.

[28] R. N. Alanazi, Software Analytics for Improving Program
Comprehension, University of Missouri-Kansas City, Kansas
City, MO, USA, 2021.

[29] C. Tjortjis, “Mining association rules from code (MARC) to
support legacy software management,” Software Quality
Journal, vol. 28, no. 2, pp. 633–662, 2020.

[30] V. K. Yadav, S. Kumar, and M. Mittal, “Prediction of software
maintenance effort of object-oriented metrics based com-
mercial systems,” African Journal of Computing & ICTs, vol. 8,
no. 1, pp. 163–172, 2015.

[31] M. A. Akbar, W. Naveed, A. A. Alsanad et al., “Requirements
change management challenges of global software develop-
ment: an empirical investigation,” IEEE Access, vol. 8,
pp. 203070–203085, 2020.

Journal of Mathematics 19


