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Abstract 

Corkwing wrasse (Symphodus melops) and goldsinny wrasse (Ctenolabrus rupestris) are two 

temperate wrasse (Labridae) species who are targeted by commercial fishery due to their ability 

to reduce sea-lice infections. The scientific community have raised concerns regarding the long-

term sustainability of the wrasse fisheries, as these two species are extensively harvested along 

the Norwegian coast. Studies on a wrasse fishery impact in wild populations of corkwing and 

goldsinny wrasse are therefore needed. Addressing whether harvesting impacts on the growth 

rate in these two species can provide a better understanding on how wild populations of wrasse 

are affected. Giving a better basis for future regulations and directions to maintain a sustainable 

wrasse fishery. 

 

In this study I analyzed five years of catch-mark-recapture (CMR) data on individual growth 

collected in a marine protected area (MPA) on the west coast of Norway. A before-after control-

impact (BACI) approach on two adjacent islands (fished and control (MPA)) allowed me to 

assess the possible effect of a replicated wrasse fishery on growth rates in wild populations of 

corkwing and goldsinny wrasse. A total of 8855 of corkwing and 4993 of goldsinny were tagged 

over thirteen sampling periods between 2017 and 2021. In total 1890 corkwing and 733 

goldsinny were recaptured. My results showed a significant difference in growth rate between 

fished area and control area for male corkwing wrasse. Males in the fished area had a faster 

growth after fishing started compared to before. This could indicate that fishing had a clear 

effect on male corkwing growth. In the long run, this may be a positive sign for the fished 

population since males growing larger quicker could lead to earlier maturation, better male 

parental care, and better population productivity. Female corkwing wrasse did not show 

significant differences in growth rate between the areas, neither before nor after fishing started. 

Earlier maturation could be a possible explanation, with more investment towards gonad growth 

instead of growth. For goldsinny there were little difference in growth between fished and 

control area, neither before nor after fishing started. A possible explanation could be that both 

sexes of goldsinny grow slower than corkwing, meaning that it could take longer time to detect 

any differences in growth. Based on my results, there is reasons to believe that a wrasse fishery 

will have a greater impact on corkwing compared to goldsinny. As corkwing showed more 

difference between the two areas. Goldsinny did not have the same growth variation between 

the areas. This could indicate that fishing can have less negative effect than anticipated, 

especially if faster growing males provide better parental care. 
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Sammendrag  

Grønngylt (Symphodus melops) og bergnebb (Ctenolabrus rupestris) er to av tre tempererte 

leppefisk (Labridae) arter som blir målrettet fisket for å bruke i oppdrettsanlegg, på grunn av 

deres evne til å begrense lakseluspåslag. Forskningsmiljøet har uttrykt bekymring angående 

den langsiktige bærekraften til leppefiskeriene, ettersom fisking på disse to artene er omfattende 

langs norskekysten. Flere studier på hvordan leppefiske påvirket ville populasjoner av 

grønngylt og bergnebb er derfor nødvendig. Ved å adressere mulige påvirkninger fiskeri har på 

vekst rate for disse to artene, kan føre til en bedre forståelse for hvordan ville populasjoner av 

leppefisk blir påvirket. Noe som fører til et bedre fundament for fremtidige reguleringer og 

direktiver for å opprettholde et bærekraftig leppefiske. 

 

I dette studiet brukte jeg fem år med fangst-merking-gjenfangst data fra et marint verneområde 

på vestkysten av Norge. På to nærliggende øyer (fisket og kontroll (marint verneområde)) ble 

det brukt en før-etter tilnærming for å se på effektene av et etterlignet leppefiske på individuell 

vekstrate i populasjoner av grønngylt og bergnebb. Totalt 8855 grønngylt og 4993 bergnebb 

ble merket over tretten perioder mellom 2017 og 2021. Hvorav totalt 1890 grønngylt og 733 

bergnebb ble fanget om igjen.  Mine resultater indikerte at det var en signifikant forskjell i vekst 

rate mellom fisket og kontroll område for grønngylt hanner. Hanner i fisket område hadde 

raskere vekst etter at fisking startet sammenlignet med før fisking. Dette kan indikere at fisking 

hadde en klar effekt på vekst for grønngylt hanner. Lenger fremme i tid kan dette være et 

positivt tegn for den fiskede populasjonen ettersom raskere vekst for hanner kan føre til tidligere 

modning, bedre foreldreomsorg, og bedre produktivitet i populasjonen. Grønngylt hunner 

hadde ikke en signifikant forskjell i vekst rate mellom områdene, og heller ikke før eller etter 

fisking startet. Tidligere modning kan være en mulig forklaring, med mer investering i 

gonadevekst istedenfor vekst. For bergnebb var lite forskjell mellom vekst i fisket område og 

kontroll område og heller ikke før og etter fisking startet. En mulig forklaring kan være at begge 

kjønnene vokser saktere enn grønngylt, som betyr at det kan ta lenger tid å se forskjeller i vekst.  

Basert på mine resultater, så er det grunner til å tro at leppefiske vil ha en større effekt på 

grønngylt enn bergnebb. Ettersom grønngylt viste mer variasjon i vekst mellom de to områdene, 

med klare forskjeller mellom kjønnene. Bergnebb hadde ikke den samme variasjonen i vekst 

mellom områdene. Forvaltning av disse artene kan by på utfordringer ettersom de blir fisket 

opp i store mengder for å bli brukt som rensefisk i lakseoppdrett.  
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1. Introduction  

1.1 Marine fisheries and its impacts 

Commercially and recreationally fisheries are important  to local and national economies, and 

contributes to substantial economic benefits (Arlinghaus et al., 2002; Hilborn et al., 2003). 

However, the sustainability of fisheries has been questioned, and remains as a major problem 

worldwide (Sparholt et al., 2021). Overfishing of the spawning biomass of a population, 

recruitment overfishing, can reduce its ability to replenish and can consequently lead to 

population collapse (Pauly, 1994; Ben-Hasan et al., 2021) which the collapse of north western 

Atlantic Cod (Gadus morhua) is a good example of (Walters and Maguire, 1996).  

 

Although fish stocks may adapt to fishing through evolution in the long run, fishing operations 

are still deliberately selective (Pauli et al., 2015) not only as a result of regulations enacted to 

protect smaller individuals, but also by fishermen targeting commercially profitable and 

available species (Salas et al., 2004; Andersen et al., 2012). When it comes to selectivity, 

population productivity may negatively be affected by the size selectivity (i.e., removal of large 

individuals) and mortality that is imposed by many commercial and recreational fisheries (Uusi-

Heikkilä et al., 2015b). Earlier studies have suggested that smaller individuals (subjected to low 

fishing mortality) will typically have low fecundity and reproductive success (Shelton, 2006; 

Uusi-Heikkilä et al., 2015a).Large males that are more dominant in male-male competition and 

have a high resource-holding potential are often preferred by the large females (van den Berghe 

and Gross, 1989; Sørdalen et al., 2018). In systems where body size is a sexually selected trait, 

a reduction in size variability can be expected to disrupt the choice of mate and competition 

within the species. Given that a size variability is present in a exploited population as a result 

of size-selective harvesting (Hutchings and Baum, 2005; Nusslé et al., 2017). 

 

Changes in abundance and size structure because of fisheries can have indirect (and often 

negative) effects on other ecosystem components. Removal of predators high in the food web 

can completely restructuring the food web in ecosystems, and possibly resulting in cascading 

effects through the trophic levels below (Frank et al., 2005; Norderhaug and Moland, 2021), 

ultimately affecting nontargeted species (Wood et al., 2018; Perälä and Kuparinen, 2020). In a 

longer timeframe, fish stocks may adapt to fishing through evolution (Roos et al., 2006). Most 

typically, overexploiting harvesting practises tend to select for earlier maturation at smaller size 

causing higher reproductive investment for the individuals in the exploited stock (Reznick et 
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al., 1990; Conover and Munch, 2002; Hutchings and Baum, 2005; De Roos et al., 2006; 

Jørgensen et al., 2007; Hočevar and Kuparinen, 2021). Traits connected to maturation timing 

can change faster than other life-history traits, and therefore may be more responsive to fisheries 

induced evolution (FIE) (Audzijonyte et al., 2013).  

 

Precautionary approaches to promote rebuilding and limit the risk of fish collapse under 

sustained fishing pressure have been supplemented with a reference point for management 

called maximum sustainable yield (MSY) (UNCLOS, 1982). Long-term predictions of yield 

and sustainability generally assume density dependence in the abundance of incoming recruits 

by incorporating a negative relationship between recruitment and spawning stock biomass 

(Cadigan 2013).  

 

1.2 Density dependent growth  

The removal of fish from a population will potentially ease the competition of space and food, 

leaving more resources for the remaining individuals in the populations to increase their growth 

rate. This concept in population ecology is called density dependent ,and occurs when 

population growth rates or survival are regulated by the density of a population (Ricker, 1954; 

Beverton and Holt, 2012). When the number of individuals in a population becomes high, the 

mortality could increase with higher intra-specific competition for limited resources such as 

food and habitat. In addition, diseases, parasites and predators are other mechanisms for density 

dependent mortality (Hixon and Webster, 2002; Stige et al., 2019). High density would also 

increase competition for spawning territories and mates, which could reduce fertility (Anderson 

and May, 1978; Pulliam, 1988; Sinclair et al., 2003). The opposite would be the case when 

population size is low. Mortality rates during the juvenile (pre-recruit) phase is typically very 

high and predation is thought to be the main cause (Cushing, 1974; Sogard, 1992).  Therefore, 

it is believed that fish populations are mainly regulated by density-dependent growth in the 

juvenile phase (Lorenzen and Enberg, 2002). Increase of food availability due to low 

competition could therefore be particularly advantageous for juvenile individuals that are 

dependent on rapid growth in an early, vulnerable life stage (Andersen et al., 2017). Rapid 

growth makes it possible for a newly settled juvenile to leave the most vulnerable size classes 

quicker, resulting in an advantage over slower growing individuals (Sogard, 1992). Density 

regulations can be challenging to detect since populations can fluctuate widely, without 

showing signs of density regulations, this has caused debate regarding how regulations can be 
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detected and whether it is important at all (Turchin, 1995; Hixon and Webster, 2002; Brook and 

Bradshaw, 2006). Fish growth is believed to be an important key in regulating fish populations 

(Lorenzen and Enberg, 2002). Fish species tend to grow indeterminately (somatic growth), with 

very few exceptions, which means fish grow their whole life. This somatic growth can have an 

impact on survival, sexual maturity and productiveness (Rose et al., 2001; Vincenzi et al., 2014; 

Korman et al., 2021). Some strategies to avoid juvenile mortality are rapid growth and early 

sexual maturity, which is expected to give better fitness and incur predation risks (Bacon et al., 

2005).  

 

1.3 Marine protected areas 

The density of populations can be increased by conservation efforts, such as establishing no-

take areas or marine protected areas (MPAs), areas partially or completely closed for fishing. 

It is documented that MPAs create areas with higher fish biomass and size distributions 

compared to unprotected fished areas, if designed correctly (Halpern et al., 2010; Edgar et al., 

2014; Baskett and Barnett, 2015). Support from fishers is still limited, even though MPA 

advocates suggests that these protected areas not only protect the exploited species, but also 

provides “spillover” effects where fish or larvae leave the MPA and are eventually caught 

(McClanahan and Mangi, 2000; Hilborn, 2018). Hoping that spillover from a high biomass area 

within a MPA can offset the assumed loss of catch associated with their establishment (Gell 

and Roberts, 2003; Grorud-Colvert et al., 2014; Marshall et al., 2019).  

For the fished areas, there is reasonable to believe that removal of individuals will have a 

positive effect on population growth, as more food resources are distributed on fewer 

individuals in the population. However, the opposite may be the case inside the MPA as fish 

abundance can affect population growth in a negative way, having more competition on limited 

food resources, leading to overall smaller individuals with slower growth rates over time 

(Gårdmark et al., 1999; Post et al., 1999; Lorenzen and Enberg, 2002; Beverton and Holt, 

2012). It therefore has been hypothesized that MPAs can lead to slowed growth of exploited 

species, reducing its usefulness as a fisheries management tool (Claudet et al., 2006; Gårdmark 

et al., 2006; Marshall et al., 2019). 
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1.4 Wrasse fishery 

MPAs are well suited to protect and manage sedentary fish and crustacean species in shallow 

waters (Knutsen et al., 2022). In Norway, small MPAs have been proven to increase size and 

abundance of two species of wrasse, the corkwing wrasse (Symphodus melops) and goldsinny 

wrasse (Ctenolabrus rupestris) (Halvorsen et al., 2017a). These two species have become 

commercially important in Scandinavia and on the British Isles, where they are used as cleaner 

fish in Salmon Aquaculture (Halvorsen et al., 2021a). Since starting farming on Atlantic salmon 

(Salmo salar Linnaeus, 1758) in Norway in the 1970`s, removal of ectoparasitic salmon lice 

(Lepeophteirus salmonis Krøyer,1837 and Caligus elongatus Nordmann,1832) have been 

challenging (Heuch et al., 2005). In addition to economic losses, the salmon lice also cause 

damage and stress when attached to the skin of the fish and could potentially cause a threat to 

nearby ecosystems (Costello, 2006; Krkošek et al., 2006). After Bjordal (1988) described the 

symbiosis between Atlantic salmon and wrasse (Labridae Cuvier, 1816), harvesting of wrasse 

as a biological delousing tool in the aquaculture industry started (Espeland et al., 2010). The 

demand for wild caught wrasse increased rapidly in the late 2000`s as salmon lice developed 

resilience towards commonly used chemical pesticides (Besnier et al., 2014; Skiftesvik et al., 

2014). Mechanical and thermal delousing methods are now largely replacing chemical 

pesticides in Norway. However, both farmed and wild caught wrasse are still extensively used, 

with corkwing and goldsinny as the most commonly used wild cleaner fish (Faust et al., 2018; 

Overton et al., 2019). Several limitations have been imposed in order to avoid overfishing, 

currently the fishery is managed by seasonal closure from mid-July to mid-October, minimum 

species-specific size limits; 11 cm for goldsinny, rock cook (Centrolabrus exoletus) and cuckoo 

(Labrus mixtus), 12 cm for corkwing and between 22-28 cm for ballan wrasse (Labrus 

bergylta)(Forskrift om regulering av fisket etter leppefisk i 2022, 2021.§8). To avoid 

overfishing it is important to monitor fisheries and investigate how local populations may be 

affected by fishing pressure, since depletion of local populations can occur (Halvorsen et al., 

2017b).   

 

In this study, I explored the impact of fishing on adult growth in two wrasse species. Of these, 

sexual size dimorphism is strongly male-biased in the corkwing wrasse, while male and females 

goldsinny wrasse are more similar. In many species the form and strength of selection on body 

size or correlated traits is rarely identical between the sexes, resulting in sexual size dimorphism 

(SSD) (Parker, 1992; Fairbairn et al., 2007; Halvorsen et al., 2016). Nesting males of corkwing 
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wrasse is a good example, as they are fiercely territorial during nesting season, leading to 

aggressive confrontations, often won by large individuals (Potts, 1974a, 1985). For different 

reasons, sexual size dimorphism is often overlooked when assessing the management of 

commercial fisheries. Size selective harvesting on sexually dimorphic populations would likely 

be sex-selective, which makes the neglection in the management assessment unfortunate(Rowe 

and Hutchings, 2003; Fenberg and Roy, 2008; Hanson et al., 2008; Zhou et al., 2010; Kendall 

and Quinn, 2013; Halvorsen et al., 2016). Moreover, the corkwing wrasse grow generally faster 

and has shorter life span than the goldsinny (Halvorsen et al., 2017a). Thus, the growth response 

to fishing may differ between and within these two species.  

 

The objective with this study was to compare growth in corkwing and goldsinny wrasse 

populations between a MPA and an adjacent fished area. Based on five years of capture-mark-

recapture (CMR) data from 13 sampling periods, I use linear models to investigate if a simulated 

wrasse fishery has an impact on body growth rates. The models for corkwing are separated 

between females and males because of the known differences in growth between the sexes. 

Goldsinny males and females were presented in the same model because both sexes have 

similar growth rates and fewer CMR data. I hypothesize that corkwing individuals in the fished 

area will have faster growth rate based on theories suggesting there will be more space and food 

available for the remaining individuals after larger fish is removed due to fishing. For goldsinny 

I hypothesize that the results will present less difference in growth rates and fishing will have 

a smaller impact compared to corkwing. I imagine goldsinny are more effected by other local 

factors such as density, predation, and habitat.  
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2. Methods 

2.1. Study area 

The study was conducted inside an experimental marine protected area (MPA) nearby the field 

station of Institute of Marine Research in Austevoll, outside of Bergen in Western Norway. 

Three islands are located within the MPA (Fig 1) where commercial fishing for wrasse has been 

prohibited since 2017. The surrounding waters of two of the islands, Bleikjo and 

Saltskjærholmane, was used as the study area. With the southeastern side of the islands facing 

Huftarøy being more sheltered to Bjørnafjorden compared to the east side.  The two islands 

were divided into multiple zones. Bleikjo into 4 zones (1-4) and Saltskjærholmane into 12 zones 

(1-12) (Aasen, 2019). At low tide the average length of the shoreline at each zone is 79.8 at 

Bleikjo and 141.3 at Saltskjærholamen. The distance between the islands are 80 meters and 

with a maximum water depth of about 25 meters. The surrounding habitats mostly consist of 

hardbottom covered by a variety of kelp, which is a suitable habitat for wrasse fishes (Skiftesvik 

et al., 2014). In a before-after control-impact (BACI) approach the smallest island of the two, 

Bleikjo, was chosen as the site for the experimental fishery, called fished area from now on. 

Saltskjærholmane, the unfished site, will be referred to as control area.  

 

Figure 1: Overview map of the geographic positions of Bleikjo and Saltskjærholmane, at Austevoll in Hordaland. Location in 

Norway are marked with a red dot in the top right corner. Saltskjærholmane, Bleikjo and Lambøya/Lambøyskjæret are all a 

part of the MPA. Map are obtained from https://kart.fiskeridir.no/fiskeri and https://www.norgeskart.no  

https://kart.fiskeridir.no/fiskeri
https://www.norgeskart.no/
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2.2. BACI-design 

Before-after control-impact (BACI) are suggested to be statistical powerful designs in 

environmental impacts assessment studies (Smokorowski and Randall, 2017). Even in the early 

days of marine conservation science discipline, the BACI design was suggested (Jones et al., 

1993). An important tool in environmental impact assessment is to detect changes in a site 

before the impact happened and after, and compare this to a control location, where the impact 

persists. A BACI approach will give the unequivocal detection of change between these sites, 

which strengthens this approach (Moland et al., 2021). Wrasse harvesting in an ecosystem is 

an example of an anthropogenic disturbance, in a marine conservation setting.  Removal of one 

or part of these anthropogenic disturbances in this setting will represented the “impact”.  

 

2.3. Study species 

Corkwing and goldsinny both belong to the family Labridae which includes more than 500 

described species worldwide (Parenti and Randall, 2000; Jansson et al., 2020). These are two 

of six wrasse species inhabiting the Norwegian coast and are the two most abundant cleaner 

wrasse species used in Atlantic salmon farming industry in Norway (Blanco Gonzalez and de 

Boer, 2017). Corkwing functions as intermediate predators in the ecosystem and prey on 

different invertebrates (Helfman et al., 2009; Skiftesvik et al., 2014). In turn, they are preyed 

upon by other larger fishes and piscivorous birds (Svåsand et al., 2000; Nedreaas et al., 2008; 

Dehnhard et al., 2021)Corkwing can reach sizes up to 200-300 millimeters and prefer to inhabit 

shallow coastal areas (<5 meters depth) filled with a rocks and eelgrass, however they can occur 

in depths of 15-18 meters as well. Algae is important in corkwing habitats, both as a nest 

building material and habitats for small crustaceans, gastropods, and bivalves which corkwing 

feed on (Potts, 1974a, 1985; Costello, 1991a; Sayer et al., 1996). Therefore, they are typically 

found in areas with high algal cover, e.g., kelp forests and eelgrass beds, within the 5 meters 

depth (Quignard and Pras, 1986; Gibson, 1993; Skiftesvik et al., 2014). The spawning period 

of both corkwing and goldsinny starts in May and end late July, with June as the most active 

month (Costello, 1991a; Skiftesvik et al., 2015).  
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Figure 2: The wrasses of Norway. Upper left: Ballan wrasse. Upper left: Corkwing wrasse, larger male in the back and female 

in the front. Center: Rock cook wrasse, females are similar, but less blue. Bottom left: Cuckoo wrasse, red female in the front 

and blue male in the back. Bottom center: the rarer Scale-rayed wrasse. Bottom right: Goldsinny wrasse. Illustration by Stein 

Mortensen. Modified with English names and gender signs, with permission from Stein Mortensen 

 

During sexual maturation, corkwing undergoes morphological changes with strong coloration 

in males that lasts through the spawning season. (Potts, 1974a). Reproductive corkwing males 

are dimorphic, with one male morph being distinctively blue and green colored, and one male 

morph employing female mimics (sneaker male). Sneaker males have less distinctive colors 

and possesses a papilla which resembles that of females. This imitation and alternative 

reproductive tactic (ART) may increase the chance to be tolerated by territorial dominant males 

of the same species, leading to a higher likelihood for participating in matings initiated by these 

males(Gross, 1982; van den Berghe and Gross, 1989; Uglem et al., 2000; Uglem and 

Rosenqvist, 2002). On average, most corkwing matures when reaching 2-3 years, with a mean 

length of 100mm. However, size and age at which fish mature can vary between populations 

(Potts, 1974b; Costello, 1991b; Darwall et al., 1992; Halvorsen et al., 2016). Corkwing can 

attain a total length of 28 cm and maximum age of nine years (Darwall et al., 1992; Sayer et 

al., 1996). While goldsinny may reach a body length of 18cm and 20 years of age (Darwall et 

al., 1992; Sayer et al., 1995).  
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Goldsinny inhabits the same inshore, rocky, and algal habitats as corkwing (Hilldén, 1981; 

Sundt and Jørstad, 1998; Jansson et al., 2020). However, it is assumed that corkwing in general 

prefers deeper water and are the least abundant of the two (Halvorsen et al., 2020). Females 

and males can often be visually distinguishable, as females have rib shaped patterns and males 

may have orange horizontal stripes on the lower part of their abdomen (Hilldén, 1981). While 

the nesting corkwing males are brightly colored in green, blue, and orange, the females are 

plainer with mostly a yellowish or brown color, and also a dark urogenital papilla (Potts, 

1974a). Goldsinny males have a red coloration on the abdomen, which separates them from the 

females (Hilldén, 1981).  

 

2.4 Data collection 

Data from thirteen sampling periods spread over 5 years of sampling was used to calculate 

growth (Table 1). For sampling of fish, we used fyke nets with 7.8 m single leader, 70 cm 

entrance ring and leader mesh size of 11 mm. During a period of six days, eight fyke nets were 

placed out per day.  The fyke nets were placed out in the afternoon and left overnight, which 

resulted in a soak time between 15-20 hours approximately. Placement of the fyke nets 

alternated between the zones (n=16), each zone was sampled for a total of three times every 

other day per sampling period. Fyke nets were placed near the shoreline in a perpendicular 

position, attempting not to place it too deep. The leader net extended towards the surface which 

would lead most of the passing individuals that move along the bottom into the chambers of the 

fyke net.  
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Table 1: Overview of the sampling periods for the standardized fyke-net survey. 2017 had three smaller sampling periods.  

Year Period Date (dd.mm/yy) 

2017 1 02.08 - 08.09/ 2017 

 2 11.05 - 18.05/ 2018 

2018 3 02.07 - 09.07/ 2018 

 4 04.09 - 11.09/ 2018 

 5 16.05 -23.05/ 2019 

2019 6 09.07 - 14.07/ 2019 

 7 03.09 - 08.09/ 2019 

 8 04.05 - 09.05/ 2020 

2020 9 27.06 - 02.07/ 2020 

 10 26.08 - 31.08/ 2020 

 11 06.05 - 11.05/ 2021 

2021 12 28.06 - 03.07/ 2021 

 13 23.08 - 28.08/ 2021 

 

 

 

 

Individuals caught was determined to species level and measured for total length to the nearest 

millimeter. Further, light pressure was applied on the abdomen to gather information about the 

sex and spawning state (female, male or sneaker), based on sexual products extruded. When 

there were no sexual products present, sex was determined by looking at phenotype for 

goldsinny and corkwing wrasse. Sneaker males were only distinguishable in the mating season 

when sexual products where extruded, because of their female phenotype. After each fyke, we 

gently released all catch at the same location as capture.  
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2.5 PIT-tagging 

Passive Integrated Transponder (PIT) tags were used to monitor the fate of the wrasse 

individuals. These are glass-encapsuled passive transponders that are sealed in biocompatible 

glass to protect the electronics and prevent tissue irritation (Gibbons and Andrews, 2004). For 

corkwing, PIT-tags have been used previously to estimate fishing mortality (Halvorsen et al., 

2017c), and the use of PIT-tags are well-documented for wrasse and as an identification method 

for studies on fish (PRENTICE and F., 1990; Bolland et al., 2009).   

For this study, we used half duplex PIT-tags (2,12 x 12 mm; RFID Solutions Stavanger, 

Norway). Every wrasse species in the catch were scanned (HPR lite from Biomark Inc. USA) 

to check for presence of a PIT-tag from earlier tagging periods. For previously tagged 

individuals, PIT-tag ID numbers were also noted in addition to the method described above. 

Individuals of ballan, goldsinny and corkwing wrasse >100 mm that were not previously tagged 

were anesthetized prior to tagging in 50-100 mg 1 - 1 tricaine methanesulfonate (MS-222) in 

8-10 l of seawater until loss of equilibrium. The loss of equilibrium occurred differently 

depending on size and species, most of the individuals were ready for tagging within 1-3 

minutes. A tag injector with a needle fitted were used to inject a PIT-tag into the body cavity. 

Between each tag injection, the tag injector was cleaned in 96% ethanol and the needle was 

replaced after tagging approximately 20-40 individuals. After tagging, scales were collected 

from corkwing with a tweezer and put into an empty Eppendorf tube for further processing. Fin 

clippings on the caudal fin were collected by using a small scissor for future DNA analysis. 

 

2.6 Data analysis  

Statistical analyses were carried out using the R software, version 4.0.2 (R Core Team, 2018). 

The ggplot2 package was used to create all graphics (Wickham, 2016). Linear models were 

used to test for fishing impact on individual growth. All data was modelled with a gaussian 

error distribution using the function lm (). A series of assumptions such as independence, 

normality, homogeneity, fixed X, and correct model specifications ((Zuur et al., 2009). A model 

validation process is necessary when applying a linear model to your data, to verify these 

assumptions. By following instructions I: 1) plotted the residuals vs fitted values to check for 

homogeneity of variance, 2) plotted a QQ plot to check for normality, and 3) plotted the 

residuals against each explanatory variable to check for independence (Zuur et al., 2009). The 

growth models were fitted separately for each species and corkwing was also divided between 

females and males. The response variable in the models included growth (mm per month), 
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length (mm), and CPUE (number of individuals caught in fyke net). Area (fished and control) 

and sampling year are the explanatory variables.  

 

To detect if there is an impact of fishing on growth a significant interaction between area and 

year is needed. The reason for this is that I assume that there is a difference between areas 

(fished, control). However, to conclude that the difference in growth is directly related to 

fishing, a significant interaction between area and year is needed. I therefore chose two models 

including one with an interaction effect and one with only an additive effect: A likelihood ratio 

test (LRT) was used on each growth model for corkwing female, corkwing male and goldsinny.  

 

 

Growth rate = Previous length + Area + Year 

Growth rate = Previous length + Area * Year 
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3. Results 

3.1.  Overview  

Overall, 16 471 individuals of corkwing (n=10 745) and goldsinny (n=5726) was captured 

(>100mm). From these, 8 855 corkwing and 4 993 goldsinny was tagged with a total recapture 

of 1890 and 733 individuals respectively.  

 

 

Table 2: Total number of tagged individuals of corkwing and goldsinny between the last tagging period every year (fall) and 

the following spring + summer following year.  

Sampling intervals Fall-Spring Fall-Summer Total (Fall – Spring + Summer 

Corkwing    

2017-2018 89 58 147 

2018-2019 64 27 91 

2019-2020 20 59 79 

2020-2021 38 41 79 

    

Goldsinny    

2017-2018 20 13 33 

2018-2019 21 16 37 

2019-2020 10 17 27 

2020-2021 17 13 30 
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3.2. Mean CPUE and length  

Mean CPUE indicates that there were some variations for both goldsinny wrasse (2.4-12.5) and 

corkwing wrasse (4.9-17.5) between 2018 and 2021 (Fig 3). Goldsinny indicated relatively 

similar CPUE between the areas, with a high top in September of 2018 and a smaller one in 

September of 2020. Corkwing had overall higher CPUE compared to goldsinny and indicated 

that there was more variation in CPUE between the sampling periods, with the highest value 

from the fished area in May of 2019. There seems to be a trend with higher CPUE values in the 

fished area compared to control for both species before fishing started. After fishing, the control 

area seems to have a higher CPUE than fished area for both species. In addition, overall CPUE 

values for goldsinny seems to follow each other more compared to corkwing.  

 

 

 

Figure 3: Mean CPUE for tagged individuals of corkwing and goldsinny in the control and fished area between the first period 

in 2018 and last period in 2021.  Black vertical line indicates when the replicated wrasse fishery on Bleikjo was started, August 

2019. Grey vertical lines highlight the continuation of harvesting in the fished area in August every year until 2021.  
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Findings showed some trends with variations in mean length for corkwing (141-147mm) and 

goldsinny (115.6- 119mm) between area and year (Fig 4). Corkwing indicated a relatively 

stable mean length for fished and control area from 2017 to 2018, with slightly higher mean 

length in control area. While goldsinny had more variations, with a lower mean length in control 

overall. The mean length also seemed to increase after fishing was started in the fished area, 

which could indicate a possible effect of fishing. The opposite was for goldsinny in control 

area, which resulted in decreasing mean length after fishing started.   

 

 

 

Figure 4: Mean length for individuals of corkwing and goldsinny in fished and control area over all sampling years. Year 

markers are placed in the last sampling period for each year. Black vertical line shows when the replicated wrasse fishery 

was started on Bleikjo, August 2019. 
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3.3. Growth rate analysis   

3.3.1. Corkwing 

For female corkwing, there were no significant differences in between fished and control area, 

neither before nor after the fishery (lm; area x year effect, likelihood ratio test L=-16.165, d.f. 

= 7, P = 0.4369) (Fig 5, table 3). Growth rates for female corkwing indicated that the smallest 

fish had the highest growth rate, before growth declined with increased length. There were some 

variations in growth rate between the sampling years, with a span around 0-2 mm monthly 

overall. Length varied between 100(minimum size limit for tagging) and 180mm. The 

recaptured individuals caught in the tagging periods in 2019 and 2020 had an overall higher 

estimated growth per month. The lowest growth was observed in 2020-2021, approximately 

three years after the first experimental fishing was conducted for the first time in the fished 

area.  

 

 
Figure 5: Estimated growth per month (mm) of recaptured female corkwing individuals from both areas in the survey. Figure 

are based on the total number of recaps for every tagging period (May, July, and September) between 2018 and 2021, where 

every point represents a recaptured individual. Shaded areas present the upper and lower confidence interval for the estimated 

growth. Before refers to the two first sampling periods before the simulated fishery was started. After refers to the two periods 

after.  
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Table 3: Summary of linear model on female corkwing growth rates between year and area. The table shows response variable, 

coefficients, estimate, standard error (SE), T value an P value. Significant terms are illustrated with a p-value in bold. 

Response Coefficients Estimate SE T value P value 

Growth (Intercept) 1.753 0.279 6.290 <0.0001 

 length at capture -0.006 0.001 -4.533 <0.0001 

 year 2019 0.139 0.211 0.657 0.512 

 year 2020 -0.069 0.243 -0.283 0.778 

 year 2021 -0.393 0.222 -1.772 0.079 

 area (control) -0.180 0.203 -0.887 0.378 

 year 2019: area (control) 0.024 0.222 0.108 0.914 

 year 2020: area (control) 0.310 0.262 1.186 0.238 

 year 2021: area (control) 0.076 0.233 0.327 0.744 
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For male corkwing there were a significant difference between the fished and control area, from 

before and after the fishery (lm; area x year effect, likelihood ratio test L=-130.83, d.f. = 7, 

P<0.001) (Fig 6, table 4). In the fished area, male corkwing grew slower before fishing and 

faster after fishing (started August 2019). These interesting results could indicate that fishing 

had a positive effect on male corkwing growth rate in the fished area. In addition, male 

corkwing showed similar trends as female corkwing with highest growth for smaller fish, 

declining with increased length. The growth per month span from around 0 mm to just below 4 

mm monthly overall. Length varied between 100 -190mm.  

 

 

 

Figure 6: Estimated growth per month (mm) of recaptured male corkwing individuals from both fished and control area. Figure 

are based on the total number of recaps for every tagging period (May, July, and September) between 2018 and 2021, where 

every point represents a recaptured individual. Shaded areas present the upper and lower confidence interval for the estimated 

growth. Before refers to the two first sampling periods before the simulated fishery was started. After refers to the two periods 

after 
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Table 4: Summary of linear model on male corkwing growth rates between year and area. The table shows response variable, 

coefficients, estimate, standard error (SE), T value an P value. Significant terms are illustrated with a p-value in bold. 

Response Coefficients  Estimate   SE  T value    P value 

Growth (Intercept) 2.920 0.262 11.163 <0.0001 

 length at capture -0.014 0.002 -7.620 <0.0001 

 year 2019 0.966 0.226 4.281 <0.0001 

 year 2020 0.828 0.189 4.400 <0.0001 

 year 2021 0.551 0.190 2.896 0.004 

 area (control) 0.441 0.160 2.755 0.007 

 year 2019: area (control) -0.530 0.272 -1.952 0.053 

 year 2020: area (control) -0.271 0.219 -1.236 0.218 

 year 2021: area (control) -0.978 0.229 -4.284 <0.0001 
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3.3.2. Goldsinny 

As for corkwing, goldsinny did not show any significant difference in growth before or after 

fishery in the fished and control area (lm; area x year effect, likelihood ratio test L=31,70, d.f. 

= 7, P=0.4774) (Fig 7, table 5). Individuals had also faster growth for smaller fish, which 

declined at increased length. Length varied between 100-130mm. Overall, the growth per 

month was lower for goldsinny compared to corkwing, with approximately 0-0.6 mm per 

month, independent of year, areas, and length. Results indicated relatively similar growth rates 

between sampling periods from 2017 to 2020 in both areas, where 2017-2018 and 2018-2019 

was sampling periods before simulated wrasse fishery started. 2020-2021 had the slowest 

growth rates, but also resulted in many zero values in growth, that may explain the reason for 

this.  

 

 

Figure 7: Estimated growth per month (mm) of recaptured goldsinny individuals (males and females) from both areas in the 

survey. Figure are based on the total number of recaps for every tagging period (May, July and September) between 2018 and 

2021, where every point represents a recaptured individual. Shaded areas present the upper and lower confidence interval for 

the estimated growth. Before refers to the two first sampling periods before the simulated fishery was started. After refers to 

the two periods after 
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Table 5: Summary of linear model on goldsinny wrasse growth rates between year and area. The table shows response variable, 

coefficients, estimate, standard error (SE), T value an P value. Significant terms are illustrated with a p-value in bold. 

Response        Coefficients Estimate   SE T value P value 

Growth (Intercept) 0.767 0.320 2.394 0.021 

 length at capture -0.005 0.003 -1.924 0.06 

 year 2019 -0.032 0.086 -0.369 0.714 

 year 2020 0.150 0.121 1.237 0.223 

 year 2021 -0.122 0.106 -1.155 0.254 

 area (control) -0.053 0.084 -0.626 0.534 

 year 2019: area (control) 0.091 0.112 0.814 0.420 

 year 2020: area (control) -0.097 0.142 -0.684 0.498 

 year 2021: area (control) 0.058 0.124 0.470 0.640 
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4. Discussion 

The aim of this study was to assess the effects of wrasse fishery on individual growth in wild 

wrasse populations. By using a before-after control-impact (BACI) approach, and several years 

of data, I estimated the monthly growth rate for corkwing and goldsinny wrasse from two 

different sites, a fished area, and inside a MPA established by the IMR (Institute of Marine 

Research) as control. The main findings were that there was a significant difference in male 

corkwing growth rate per month between fished and control area. Male corkwing grew faster 

in the fished area after fishing started, which supports my initial hypothesis where I suggested 

that corkwing would grow faster in fished area. Therefore, it is reasonable to believe that fishing 

had a positive effect on this population, with males attaining larger size quicker. The population 

could benefit from having quick growing males as they provide important parental care for 

offspring, and removal of the caring sex could have direct consequences for offspring survival 

(Suski et al., 2003; Sutter et al., 2012). In addition, achieving large sizes quickly can also bring 

benefits regarding mating opportunities and mate selection by females (Robertson and 

Hoffman, 1977). Even though my findings suggest that fishing could have a positive effect on 

male growth rates there are previous studies that suggesting that size selective harvesting of  

large individuals could reduce body size and age structures within a population (Swain et al., 

2007; Fenberg and Roy, 2008). This makes for an interesting contradiction. As fisheries is 

expected to catch fast growing individuals, but at the same time increase growth for the 

remaining individuals when density is reduced. Where density dependent seems to affect 

corkwing males the most. In addition, a previous study in the same MPA did find that the 

capture probability was negatively correlated with body size (Ruud, 2020). Female corkwing 

did not show any significant differences in growth rate between the two areas, neither before 

nor after fishing started. For both areas, estimated growth per month was between 0 - 2 mm. 

Females do not provide the same parental care as the males. Investment of more energy towards 

gonad growth instead of growth and achieving greater reproductive output by earlier maturation 

could be a possible explanation.  
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Findings did also indicate clear differences between corkwing sexes, however, it is worth 

mentioning that this was not tested for in this study. Males grew faster than females, which is 

also supported by a recent study on factors affecting growth in corkwing in the same area (Vik, 

2019). Faster growth for male fish have also been presented in other studies (Treasurer, 1994; 

Sayer et al., 1995). A possible explanation for slower growth on female corkwing attributed 

slower female growth to earlier maturation and not the same intrasexual competition as the 

male-male competition for females will cause (Treasurer, 1994). On the other hand, previous 

research has suggested that attaining large sizes quickly could be beneficial as large females in 

general tend to have better fecundity from spawning over longer time periods, higher 

production of eggs, and create larger sized eggs (Wright and Trippel, 2009; Halvorsen et al., 

2016). 

 

For goldsinny sexes were presented in the same model as differences in growth between male 

and females are negligible. My initial hypothesis was that the smaller-sized goldsinny would 

have increased growth rate over time, having benefits from being in the fished area where 

traditional minimum size limit management tool is applied (Halvorsen et al., 2017a). However, 

my results did not find any significant difference in growth rate between the areas, neither 

before nor after fishing started. Estimated growth per month for goldsinny was 0 - 0.6 mm. 

During modelling, some individuals presented negative growth. Possible explanation for this 

could be human errors in manually plotting length, and written individual length is shorter 

compared to previous sampling of the same fish. These had to be corrected to zero growth as 

the correct length on these individuals are unknown. 

 

In general, smaller fish had the fastest growth per month, and growth gradual declined with 

length. This result was expected beforehand as high growth rates in smaller individuals can be 

explained by the vulnerability of being small. Faster growing individuals will be more likely to 

survive compared to individuals that remain small over a longer time, because slower growth 

increases the chances for predation(Nilsson and Brönmark, 2000). The reason for that is 

because most predators are gape-size limited, they are dependent on small enough prey that can 

fit into their mouths (Post and Parkinson, 2001). Based on adaption strategies among other fish 

species it is reasonable to believe that corkwing minimize the risk of predation by having high 

growth rates at small sizes (Tonn et al., 1992; Persson et al., 1996).  
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The growth predictions for both corkwing wrasse and goldsinny wrasse are based on the 

hypothesis that growth is density dependent, meaning that growth rates could increase in 

populations where the largest fish are regularly removed, leaving more food and space available 

for the remaining fish to grow faster. Density dependent growth have been shown on other fish 

species where growth opportunities was restricted because of limited food availability and 

reduced feeding success (Doherty, 1983; Victor, 1986; Jones, 1987; Forrester, 1990; Cowan et 

al., 2000). Since corkwing and goldsinny have overlapping habitats requirements and depends 

on the same resources it is reasonable to believe that some sort of resource competition will 

occur (Costello, 1991a; Sayer et al., 1996; Thangstad, 1999). No fish were removed in the 

control area, which could lead to a higher density of corkwing and goldsinny competing for the 

same resources. This might restrict the growth rate over time. Yearly variations in total captures 

(Appendix A) could be a result of slow growth, inactivity, and low metabolic rates. Studies on 

ballan wrasse showed that juveniles grow faster at temperatures over 16°C (Cavrois-Rogacki 

et al., 2019). Larger individuals showed low metabolic rates and inactivity at low temperatures 

(5-10°C), while physiological performance increased at rising temperatures (Yuen et al., 2019). 

  

Habitat variations will most likely not play an important role in impacting wrasse growth in the 

two study areas. As a recent study in the same area did not find that variation in habitat 

influenced corkwing growth. However, the habitats could be too similar to provide differing 

growth rates (Vik, 2019). On the other hand, previous studies on bluehead wrasse (Thalassa 

fasciotomy) did find higher growth rates in sheltered inshore populations compared to high 

exposure populations, claiming that this difference in growth could be a result of different 

habitat qualities (Warner, 1995). Habitats on the two different islands and zones in this study 

was generally similar, moderately covered with algae growth with some variation dominating 

algae type, substrate, and degree of exposure. This has previously been documented as the 

preferred habitat for wrasse, were corkwing and goldsinny was typically found in sheltered or 

exposed rocky shores, mudflats and kelp forests, were they feed on slow-moving or sessile prey 

(Thangstad, 1999; Skiftesvik et al., 2015). The fished area was the smallest and most exposed 

island of the two and would potentially have different habitats compared to control area, 

although some zones in the control area was also affected by exposure, mainly by waves. 

Growth rates should also be expected to be different between the two islands if the nature types 

have sufficient differences. For instance, places with a higher degree of exposure such as the 

fished area might provide less vegetation and scree for the fish to use as hiding places in 
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addition to less available nutrients, compared to the more sheltered control area. However, it 

might not be as one-sided as this, as corkwing could move between different habitats. Fish 

movement between the island in this study is limited because of the deeper waters (>20m) 

prevents this (Halvorsen et al., 2021b). A previous study on inshore and offshore populations 

with many kilometers apart, showed that there was a great variation in exposure between the 

populations of bluehead wrasse (Schultz and Warner, 1991). 

 

Catch per unit effort (CPUE) indicated little variation between the areas, although there were 

indications that CPUE had some higher values prior to when the simulated fishery was started 

in August 2019. Control and fished were the two adjacent islands within the MPA in this study. 

Estimated catch per unit effort (CPUE) between the two islands showed trends that there are 

differences between the species, as corkwing have a higher CPUE compared to goldsinny. 

Variations between sampling periods are also visible, which could be explained by changes in 

sea temperature in the different sampling periods, affecting fish movement(Deady and Fives, 

1995). However, the differences in CPUE between fished area and control area were also 

relatively similar in 2021, at a point were fish over the minimum size limit (>100mm) had been 

removed annually from the fished area since 2018, when a simulated wrasse fishery started. 

This result was different compared to a similar study on corkwing and goldsinny (Halvorsen et 

al., 2017a), which resulted in a higher CPUE for targeted species in MPAs, were corkwing was 

consistently larger and older inside MPAs. In the same study, goldsinny had less clear growth 

effects from harvesting. A higher CPUE inside the control area was predicted in advance, as 

increased density is an anticipated effect of MPAs (McCoy et al., 2010). However, the results 

showed little differences between the areas. The CPUE estimates was based on tagged fish of 

corkwing and goldsinny and not total captures, for that reason it is reasonable to believe that 

limited data samples of these tagged fish could affect the CPUE estimates, even though it may 

take decades before increased density of a species inside a MPA are detectable (Nickols et al., 

2019).  

 

My results indicated that fishing could have an impact on growth in fished populations, and 

there have been raised concerns on whether and how the Norwegian wrasse fishery impacts the 

wild populations of wrasse (Espeland et al., 2010; Skiftesvik et al., 2014; Halvorsen et al., 

2016). Species-specific size limits, establishments of regional quotas and shorter fishing 

seasons are some of the recent management regulations (Forskrift om regulering av fisket etter 
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leppefisk i 2022, 2021. §§2,4,5,8). Still, the Norwegian wrasse fishery is sex- and size selective, 

with nesting males having higher growth rate, and reaching the minimum size limit before 

females and sneaker males, which could alter the sex ratios within populations. Previously 

suggested in corkwing populations on the west coast of Norway, with a strong male-biased 

dimorphism (Halvorsen et al., 2016, 2017c). Other consequences could be changes in 

population structure, sex ratios and reproduction (Halvorsen et al., 2016)Reduction and changes 

in size structure for corkwing and goldsinny populations have previously been connected to 

wrasse fisheries (Darwall et al., 1992; Sayer et al., 1996). Such depletion of corkwing and 

goldsinny densities from wrasse fishery may also have a wider consequence on the coastal 

ecosystems, as removal of wrasse densities can lead to cascade effects through altered predator-

prey dynamics (Selden et al., 2017). As a top-down effect mesograzers or as a bottom-up effect 

as a reduced food source for large piscivores (Kraufvelin et al., 2020; Dehnhard et al., 2021). 

Wrasse prey on a variety of small grazers in seaweed which could potentially contribute to 

reduce herbivory/grazing, and hence the community control that small-sized consumer species 

imposes. In turn, changes in numbers of mesopredatory fish (increase or decrease in abundance) 

could result in community changes (Norderhaug et al., 2005; Kraufvelin et al., 2020).  

 

Data from this study is based on a catch-mark-recapture (CMR) analysis, which could 

potentially alter the results if errors occur. The potential for human errors in CMR studies are 

very much present as catch needs to be handled, tagged, and data are manually recorded in this 

study. In this study, the negative growth values for goldsinny could be an example of a potential 

human errors when manually noting the fish length in field. Passive integrated transponders 

(PIT) are being used to tag individuals, which could potentially lead to tag-loss and/or affect 

fish survival. Although, usage of PIT is well tested, with minimal chances of tag-loss and little 

effect on fish`s survival (Peterson et al., 1994; Achord et al., 1996; Gries and Letcher, 2002; 

Halvorsen et al., 2016). Based on previous testing, I assumed that PIT tags did not affect growth 

(Kimball and Mace, 2020) 
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For future research on growth rates for corkwing and goldsinny it would be interesting to 

continue the CMR-studies in the same area, to see if the fishing impacts on males persist in 

fished population and maybe affect females and goldsinny as well. Since this study is based on 

two relatively small islands inside an MPA, it would also be interesting to do more similar 

studies on other wild wrasse populations in other marine protected areas, to compare with my 

results. Not only in the western part of Norway, but also in Skagerrak where populations are 

being harvested and translocated (Skiftesvik et al., 2014; Halvorsen et al., 2017b).  
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5. Concluding remarks  

In my thesis, I found a significant difference in growth rate for male corkwing wrasse in the 

fished area, with males growing faster after fishing was started. This matched with my initial 

hypothesis, that fish in the fished area would grow faster compared to control area. In addition, 

this indicated that fishing had an impact on growth rates in the fished population. For female 

corkwing wrasse there were no significant difference in growth rate between the areas, neither 

before nor after fishing started. I hypothesized that goldsinny would not have much difference 

in growth and not be impacted by fishing in the same way as corkwing. This turned out to also 

be the case, as goldsinny wrasse did not have any significant difference in growth rate between 

area, neither before nor after fishing. Smaller individuals grew fastest, and corkwing male was 

found to have the fastest growth per month independent from area. Secondly, the CPUE for 

corkwing and goldsinny had little variations between the fished are and the control area. Both 

species showed relatively similar values over several sampling periods.  

 

Lastly, I conclude to say that the impact fishing seemed to have on male corkwing growth in 

the fished population could have a positive effect on the population. The findings from this 

study make contributions to future management of wrasse fisheries. As a result of the different 

impact fishing had on growth rates between males and female corkwing, they should be 

managed as two different populations in the Western Norway given the difference. Despite that 

goldsinny did not show any indications of fishing impact on growth rates, it is important with 

future research on both species to ensure sustainable harvesting.  
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Appendix A 

Table A.1: Total number of tagged and recaptured individuals of corkwing and goldsinny over the 5 

years of sampling, with numbers from each year instead of each interval.  

 

 

Recapture rate: Using numbers of recaptures in relation to total number of captured individuals 

larger than 100mm. 

Recap total/total captures) x 100 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling year Total captures 
(>100mm) 

Tagged 
individuals 

Recap total Recapture rate 
(in %) 

Corkwing     

2017 2038 1804 234 11.5 % 
2018 2852 2387 465 16.3 % 
2019 1787 1399 388 21.7 % 
2020 2171 1776 395 18.2 % 
2021 1897 1489 408 21.5 % 

Total 10745 8855 1890 17.8 % (mean) 

     
Goldsinny     

2017 1285 1248 37 2.9 
2018 1511 1366 145 9.6 
2019 1094 908 186 17 
2020 1142 920 222 19.4 
2021 694 551 143 20.6 

Total  5726 4993 733 13.9 % (mean) 
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Appendix B 

Table B.1: Overview of the numerated zone divisions in the control area (Saltskjærholmane) and fished 

area (Bleikjo). Blue arrows indicate norths direction. Illustration from (Aasen, 2019).  

 

 

 

Coordinates for the marine protected area in Austevoll: 

N 60° 05,514’ Ø 005° 16,099 

N 60° 05,638’ Ø 005° 16,439 

N 60° 04,877’ Ø 005° 17,809 

N 60° 04,736’ Ø 005° 17,497 

 

 

 

 

 

 

 

 

 


