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Abstract

With the outbreak of Covid-19 it has become more important to know how

to deal with a large scale epidemic effectively. Governments utilize different

methods to try and contain the spread of viruses, to different results. But what

does modeling say about the way to approach the problem? The purpose of

the thesis is to introduce a modification of a popular SIR model for the spread

of infectious diseases which allows to explore the impact of travel. The group

of susceptible individuals S is split into two subgroups in accordance with the

travel patterns: S1 (traveling individuals) and S2 (not traveling individuals).

Stability properties of infection-free and endemic equilibria are studied with

respect to the basic reproduction number. Numerous numerical simulations

illustrate the dynamics of the system, including its modifications based on the

introduction of the delayed argument. The results of the theoretical analysis

and numerical simulations are compared to the recent empirical data to provide

practical advice to local and governmental policy makers.
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Chapter 1

Introduction

1.1 Motivation

Since the Covid-19 epedemic started in 2019, governments in different coun-

tries, have imposed strict policies including locking down the entire country

to prevent the spread of disease. For instance in Norway the country went

into lockdown the 12.03.22, and the Prime Minister of Norway is quoted to

have said these are the strictest measures in peacetime [13]. But how efficient

have these measures been? How much do travel restrictions impact the spread

of infections? The central and local governments implemented a number of

measures to restrict travel, and required quarantine depending on the spread

of the infection. These issues are important to address, and mathematical

modeling helps us better prepare for similar situation in the future.

In the beginning when we were exploring the theory I became very interested in

modeling infectious diseases. We explored different infectious diseases includ-

ing those caused by viruses (Corona-19, Rhinovirus, etc.) but also computer

viruses. Since the data about Corona-19 were in abundance whereas for com-

puter viruses we would have used simulated data rather than real values we

focused on the spread of infection. We also considered possibilities for having

more compartments including quarantined and hospitalized in which case the

number of equations and parameters would have increased making the anal-
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ysis more demanding. Further research possibilities are discussed in the final

part of the thesis.

1.2 Aims and objectives

Travel facilitates the transmission of disease from areas affected by the virus,

to areas less affected, since the amount of contacts rises substantially. To take

this into account, we create a model which splits susceptible into two groups,

those who currently travel and those who do not. For simplicity we call them

mobile and non-mobile subgroups. We assume that there is a higher infection

rate in the mobile subgroup. We also analyse the data from different sources

to more accurately find the parameters we should use in our model. To analyse

travel patterns we used statistical data from the Statistisk Sentralbyrå (SSB),

Transportation Security Administration (TSA) and Travel Leaders Corporate.

Since there is a lot of data related to Covid-19 published in the last few years

we model parameter values for Covid-19. The important parameters in the

model were introduced on the basis of the data available, for example, for

the incubation and infection periods in medical and other modeling papers.

Furthermore, Covid-19 was the reason for introducing travel restrictions and

this is why we were in particularly interested in the model describing Covid-

19 were the different travel patterns for different groups affect the dynamics

the most. The research question we address is how a reduction of mobility

impacts the spread of infectious disease. We consider both ordinary and delay

differential equations in our models.

1.3 Structure of the thesis

This thesis is organised as follows. In Chapter 1 we provide our motivation for

the work, describe the aims and objectives, and describe the organisation of

the thesis. Chapter 2 introduces basic mathematical models used in epidemi-

ology. Chapter 3 deals with delay differential equations (DDEs). We introduce
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several classes of DDEs along with the method of steps for solution of DDEs

and conclude the chapter with an overview of methods used for their solution

in Matlab.

Our main contributions are reported in Chapters 4 and 5. The design of the

models with and without delay is described in Chapter 4. First, for the model

without delay we prove positivity of all solutions with positive initial data.

Then we find disease-free and endemic equilibria and study their stability

properties. We also compute the basic reproduction number. In the final part

of Chapter 4 we introduce the delay into our model. Since the analysis of

the model with delay becomes very complicated we limit ourselves only to

numerical simulations for this case. Numerical simulations for models without

and with delay are presented in Chapter 5, where we analyse the impact of

the variation of parameters on the behavior of solutions. We conclude the

thesis with the discussion of the limitations of our models and suggestions for

further work.
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Chapter 2

Mathematical models in

epidemiology

2.1 Compartmental models

Compartmental models are often used for modeling the spread of infectious

diseases. The first models where introduced in the early twentieth century

by Ross in 1916, Ross and Hudson in 1917, Kermack and McKendrick in

1927. The deterministic models are usually described by ordinary differential

equations but if spacial distribution is important partial differential equations

are used. Further extensions may include stochastic (random) perturbations.

Compartmental models are used for example to predict the spread of the

disease, the total number of infected, the duration of the epidemics etc. This

information is useful for governmental and medical authorities and policy mak-

ers.

When modeling diseases we assign the population into compartments. Then

there are equations to describe the flow between the different compartments.

Denote the sum of all the compartments as N. We can either keep the total

population (N) constant over time, or account for changes in the population.

This can be due to natural death and birth or death linked to the disease.

The most common type of model is the SIR Model, with a constant popula-
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tion. The compartments in this model are given by S(t), which is the number

of susceptible at time t, I(t) the number of infected at time t and R(t) the

number of infected at time t where t is described in days. There are always

possibilities to expand this model making it more realistic, but also more dif-

ficult to study. Adding states, for instance a quarantine state, exposed state

[6], and hospitalization state are some of the ideas that have been explored.

Furthermore, one can also change the functions describing the flow between

the states.

2.2 SIR-model

In the SIR model we assume that the population is split in three groups S, I

and R, as defined above where the total population N(t) = S(t) + I(t) + R(t).

It is common for equations describing the transfer between the states that the

transfer between the compartments of susceptible and infected is dependent on

both states. This is to simulate that if there are no, or a low amount of either

susceptible or infected then there are fewer getting infected. In this model we

assume a constant (no deaths and births) population, the advantage of this is

that N(t) adds up to the same value for all times, making the system simpler

to analyse and to simulate. For models describing the spread of infection

over a short period of time, the births and deaths are less important to take

into account, and these will not change dramatically over the period we try to

model. We also normalise the four variables in our equations making assuming

that N(0) = 1 by finding the proportions of people in different categories. Our

initial conditions are given by:


S(0)

I(0)

R(0)

 =


1 − q

q

0


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where q is the proportion of infected at t = 0. Our presentation of an SIR

model follows [3], see also [2]. Consider the system of differential equations:

Ṡ = −αI(t)S(t), (2.1)

İ = αI(t)S(t) − δI(t), (2.2)

Ṙ = δI(t). (2.3)

The following variables and parameters are used in (2.1) - (2.3):

S(t) - the number of people susceptible to get the disease;

I(t) - the number of people infected with the disease;

R(t) - the number of people that have had, and are now immune to the disease;

α - the transmission rate;

δ - the rate of infected leaving the infected state;

Note that since N(0) = S(0) + I(0) + R(0) = 1, it also means that N(t) =

S(t) + I(t) + R(t) = 1 for all t since

Ṅ(t) = Ṡ(t) + İ(t) + Ṙ(t)

= −αI(t)S(t) + αI(t)S(t) − δI(t) + δI(t) = 0.

The following figure illustrates the SIR model:

S I R

SIR-model

2.3 SEIR

In this example we introduce births and deaths, both from natural causes and

due to the disease itself. We also introduce a new compartment E, exposed,

that simulate individuals at the initial stages of the disease who can infect

others but cannot die at this stage. In this type of model we could either still
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keep the population constant by equating the birth and death rates, but we

will in this example assume they are different for illustrating other possibilities.

Thus we no longer assume that N(t)=1. This means that terms dependent on

two or more states, for instance, susceptible and infected αS(t)I(t) have to

be rescaled. This is done by dividing by the total population, the term will

then be αS(t) I(t)
N . Consider the system of differential equations, studied by

Carcione et al. [6]:

Ṡ = γN − µS − αS(t)I(t)
N

,

Ė = αS(t)I(t)
N

− (µ + ϵ)E,

İ = ϵE(t) − (γ + µ + β)I,

Ṙ = γI(t) − µR(t).

In this model the variables and parameters are given by:

S(t) - the number of people susceptible to get the disease;

E(t) - the number of people exposed to the disease;

I(t) - the number of people infected with the disease;

R(t) - the number of people that have had, and are now immune to the disease;

α - disease transmission rate;

β - average fatality;

δ - the rate of infected recovering;

γ - birth rate;

µ - natural death rate;

ϵ - rate of progression from exposed to infected;

γ - recovery rate of infectious individuals;

The following figure illustrates the SEIR model:

S E I R

SEIR-model
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Chapter 3

Introduction to DDEs

In this chapter, following Smith [4], we first define what a delay differential

equation is, look at some examples and discuss different properties of DDEs.

We then introduce the method of steps and the Runge-Kutta method that

in combination is the method dde23 used to solve delay differential equations

numerically.

3.1 Definitions of different classes of DDEs

In many cases, delayed differential equation is when the derivative of the un-

known function depends on the values of the function in the past but sometimes

derivative itself may contain the delayed argument. The properties of delay τ

change depending on the equation. We classify the DDEs into different cate-

gories depending on the characteristics of the delay.

1. Constant delay

ẋ(t) = f(t, x(t), x(t − τ)). (3.1)

2. Time dependent delay

ẋ(t) = f(t, x(t), x(t − τ(t))). (3.2)
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3. State dependent delay

ẋ(t) = f(t, x(t), x(t − τ(t, x(t)))). (3.3)

4. Neutral

ẋ(t) = f(t, x(t), x(t − τ), ẋ(t − τ)). (3.4)

All of these categories assume that the derivative ẋ at a point t is dependent

on the values of the function in the past at a point shifted by the delay τ

and solutions should match the initial function defined on the given interval

associated with the delay. This is not always the case, as our derivative ẋ

at time t may depend on the the values of the solution over a certain finite

or infinite time interval. This is called a distributed delay. The advantage of

this type of a model is that for some problems it may be more realistic, but

the equation becomes much harder to analyse. There are two main types of

distributed delay equation:

ẋ(t) =
∫ t

t−τ
f(s, x(s)) ds (3.5)

and

ẋ(t) =
∫ t

−∞
f(s, x(t − s)) ds. (3.6)

It is important to note that in all of the cases we are required to know the

function between t0 − τ and t0 in comparison to normal ODEs where we only

require our initial condition at a single point.

Example 3.1.1. Let us consider the delayed negative feedback equation de-

fined as:

ẋ(t) = −x(t − τ). (3.7)

Note that putting τ= 0 gives us the ODE

ẋ(t) = −x(t) (3.8)
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where the solution would be of the form x(t) = x(0)e−t. To solve equation

(3.7) we can use the method of steps discussed in the next section.

3.2 Methods for solving DDEs

One of the methods for solving DDEs is the method of steps. We illustrate

the method of steps for solving DDEs with constant delays. Consider a DDE

of the form

ẋ(t) = f(t, x(t), x(t − τ1), x(t − τ2), ..., x(t − τn)). (3.9)

We want to solve the equation on the interval (t0, t1). Denote

d1 = max(τ1, τ2, ..., τn) and denote d2 = GCD(τ1, τ2, ..., τn), where GCD(·)

denotes the greatest common divisor. Meaning the largest rational number α

for which there are positive integers k1, k2, . . . , kn ∈ N such that τi = ki · α for

i = 1, 2, . . . , n. Our initial condition is given by an initial function g(t),

x(t) = g(t), t0 − d1 ≤ t ≤ t0.

We start by calculating the derivative on the interval (t0, t0 + d2), and then

integrate to obtain the solution on that interval. Using the same procedure

we can now calculate the solution on the next interval (t0 + d2, t0 + 2d2). We

then repeat this procedure until we reach t1. Using the method of steps we

therefore reduce solving a delay differential equation to solving a sequence of

ordinary differential equations on a sequence of intervals. In the case when

the GCD(·) of the delays does not exist, which means that the delays are non-

commensurate, we need to use another approach to calculate the intervals to

solve the equation on, see e.g. [7].

In some special cases we are able to solve the equation analytically. However

it is not always possible and then we use numerical methods to estimate the

values of the function that would be a solution to the equation (3.9). The
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most common way to do this is using the Runge-Kutta methods, which is the

main method used by the program dde23 to solve DDE’s.

Example 3.2.1. Consider equation (3.7) with τ = 1,

ẋ(t) = −x(t − 1),

and assume

x(t) = 1, −1 ≤ t ≤ 0.

Using the initial condition we calculate the derivative of the function x(t) on

the interval 0 ≤ t ≤ 1,

ẋ(t) = −x(t − 1) = −1.

We then integrate the equation on 0 ≤ t ≤ 1 to obtain

x(t) =
∫

−1 dt = C − t.

Since x(0) = 1 =⇒ C = 1, we have that

x(t) = 1 − t, 0 ≤ t ≤ 1.

We then redo the same procedure calculating the right hand side of the differ-

ential equation on 1 ≤ t ≤ 2 using our new function

ẋ(t) = −x(t − 1) = −(1 − (t − 1)) = −(2 − t) = t − 2.

Integrating with respect to t, we obtain

x(t) =
∫

(t − 2) dt = t2

2 − 2t + C,
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Since x(1) = 0 =⇒ C = 3
2 we have that

x(t) = t2

2 − 2t + 3
2 , 1 ≤ t ≤ 2,

and so on.

Example 3.2.2. Now let us consider the equation

ẋ(t) = −2x(t − 1) + x(t − 2),

and assume that

x(t) = t, −2 ≤ t ≤ 0

Using the initial condition, we calculate the right hand side of the differential

equation, and integrate it on the interval 0 ≤ t ≤ 1:

ẋ(t) = −2(t − 1) + (t − 2) = −t, 0 ≤ t ≤ 1.

and

x(t) =
∫

−t dt = − t2

2 + C.

Since x(0) = 0 =⇒ C = 0 we have

x(t) = − t2

2 , 0 ≤ t ≤ 1.

As above we calculate the right hand side of the differential equation, and

integrate on the interval 1 ≤ t ≤ 2:

ẋ(t) = 2(t − 1)2

2 − (t − 2)2

2 ⇒ x(t) =
∫

t2

2 − 1 dt = t3

6 − t + C.
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Since x(1) = 1
2 =⇒ C = 8

6 , we have

x(t) = t3

6 − t + 8
6 , 1 ≤ t ≤ 2.

3.3 Solution of DDEs in Matlab and the Runge-

Kutta method

To solve DDEs we have chosen to use the package dde23 for Matlab, and the

inspiration for the examples is taken from [9]. This package uses numerical

methods to solve DDEs, where a Runge-Kutta type method is applied to the

method of steps to solve equations. Below is a short description of the family

of explicit Runge-Kutta methods.

Consider the initial value problem

dx

dt
= f(t, x), x(t0) = x0

where the initial conditions t0 and x(t0) are given. The next step yn+1 is

defined by

yn+1 = yn + h
s∑

i=1
biki

where

k1 =f(tn, yn),

k2 =f(tn + c2h, yn + h(a21k1)),

k3 =f(tn + c3h, yn + h(a31k1 + a32k2)),
...

ks =f(tn + csh, yn + h(as1k1 + as2k2 + · · · + as,s−1ks−1).

13



Here s is the number of stages. For instance s = 4 is the most common value

in which case it is called the RK4 method. The coefficients are defined as bi

for i = (1, 2, . . . , s), ci for i = (1, 2, . . . , s) and aij for (1 ≤ j < i ≤ s), where bi

are the weights, and ci are the nodes. The method is shown to be consistent

if the weights add up to 1:

s∑
i=1

bi = 1.

The following two examples use dde23, and the code is given in the Appendix

with explanations.

Example 3.3.1. We start with an illustrative example of the system of the

form (3.1). Consider the system

ẋ1(t) = −x1(t − 0.5) + x3(t − 1),

ẋ2(t) = x1(t − 0.5) − x2(t − 2), (3.10)

ẋ3(t) = x2(t − 2) − x3(t − 1),

with the initial conditions x1(t) = 1, x2(t) = 0, x3(t) = 0, for all t < 0. The

solution on the interval [0,20] is plotted in Figure 3.1.

Figure 3.1: Solutions of the system (3.10)

Using another set of initial conditions x1(t) = t, x2(t) = t2, x3(t) = t3, for all

14



t < 0 we obtain solutions plotted in Figure 3.2.

Figure 3.2: Solutions of the system (3.10) with modified initial conditions

Example 3.3.2. The second example, called the Mackey-Glass equation, is

used in biology. It mimics healthy and pathological behaviour in some biolog-

ical models, it is for instance used to analyse relative quantity of mature cells

in the blood. Consider for example DDE

ẋ(t) = 2x(t − 5)
x(t − 5)n + 10 − 0.1x(t) (3.11)

with the initial condition x(t) = 0.1 for all t < 0. We solve the equation on

the interval [0,1000] plotting solutions for different values of n and different

initial conditions in the following figures.
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Chapter 4

Impact of travel on the

spread of infection

In this chapter we introduce the design of the models with and without delay.

We start by proving positivity of all solutions with positive initial data. We

will then find the disease-free and endemic equilibria and study their stability

properties, before we compute the basic reproduction number. In the final

part of this chapter we introduce the delay into our model.

4.1 Design of the model without delay

In our model, we assume that all susceptible individuals S are divided into two

subgroups, S1 and S2, in accordance with their travel patterns. The former,

larger group, includes less frequent travellers and the latter, smaller group,

accounts for those who travel more often. We assume that both business and

leisure travels are included. Our starting conditions will be given by

S1 = (1 − q)S, S2 = qS

where the coefficient q corresponds to the proportion of active travellers among

all susceptible. Our model is a modification of the SIR [2] model and with

17



the spilt of susceptible in two groups we have equations for S1 and S2. To the

best of our knowledge, there are no similar models in the literature yet. The

system in our case assumes the form

Ṡ1 = −αI(t)S1(t) − γS1(t) + ωS2(t) + θ(1 − ξ)R(t), (4.1)

Ṡ2 = −βI(t)S2(t) + γS1(t) − ωS2(t) + ξθR(t), (4.2)

İ = αI(t)S1(t) + βI(t)S2(t) − δI(t), (4.3)

Ṙ = δI(t) − θR(t) (4.4)

where

N(t) = S1(t) + S2(t) + I(t) + R(t) (4.5)

and

N(0) = S1(0) + S2(0) + I(0) + R(0) = 1. (4.6)

We have the following variables and parameters:

S(t) - the number of people susceptible to get the disease;

S1(t) - the number of people susceptible being non-mobile;

S2(t) - the number of people susceptible being mobile;

I(t) - the number of people infected with the disease;

R(t) - the number of people that have had, and are now immune to the disease;

N(t) - the number of all individuals in the equation;

α - the transmission rate for people in the non-mobile state;

β - the transmission rate for people in the mobile state;

γ - the rate of people moving from non-mobile to mobile;

ω - the rate of people moving from mobile to non-mobile;

δ - the rate of infected leaving the infected state;

θ - the rate of people that can get infected again;

ξ - the rate of people going into the mobile group from recovered;

q - the proportion of people being mobile at t = 0.

The diagram describing the model is presented in the following figure.
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S1 S2

I

R

Main model

In what follows, we explain the meaning of each term in our model.

1. αI(t)S1(t) The number of people being non-mobile that get infected. It

depends both on how many are already infected and how many are susceptible.

If we have few infected or few susceptible then there will be fewer new people

infected.

2. βI(t)S2(t) The number of people being mobile that gets infected. It depends

both on how many are already infected and how many are susceptible. If we

only have a few infected or few susceptible then there will be fewer new people

infected. In general, we assume that he value of β will be higher than α as

traveling gives you a higher chance of getting infected. However, it would be

in principle possible to stud the travel to areas with a lower infection rate, if

needed.

3. θ(1 − ξ)S1(t) Number of people that move from recovered state to the non-

mobile state.

4. θξS2(t) Number of people that move from recovered state to the mobile

state.

5. γS1(t) The number of people that move from the mobile state to the non-

mobile state.

6. ωS2(t) The number of people that move from the non-mobile state to the

mobile state.

7. δI(t) The number of people that move from the infected to recovered state

and remain immune to infection afterwards.
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4.2 Positivity of solutions

Theorem 4.2.1. Assume that S10 , S20 , I0, R0 ≥ 0, then the solution x⃗(t) =

(S1(t), S2(t), I(t), R(t))T to the system (4.1) - (4.4) with the initial conditions

(S1(0), S2(0), I(0), R(0))T = (S10 , S20 , I0, R0)T

is non-negative for all t > 0.

Proof. Let x⃗(t) = (S1(t), S2(t), I(t), R(t))T be the solution to the system (4.1)

- (4.4) with initial condition x⃗(0) = (S10 , S20 , I0, R0)T where S10 ,S20 ,I0,R0 ≥ 0.

If S(t1) = 0 for t1 > 0 and all the other components S2(t1), I(t1), R(t1) are

positive, then the derivative of S1 will be positive:

Ṡ1(t1) = −αI(t1)S1(t1) − γS1(t1) + ωS2(t1) + θ(1 − ξ)R(t1)

= ωS2(t1) + θ(1 − ξ)R(t1) > 0.

This means that if S1(t1) = 0, the function S1(t) is increasing afterwards and

cannot become negative as long as other components are positive. Similarly,

assuming S2(t1) = 0 we get

Ṡ2(t1) = −βI(t1)S2(t1) + γS1(t1) − ωS2(t1) + ξθR(t1) = γS1(t1) + ξθR(t1) > 0.

Assume now that I(t1) = 0, then

İ(t1) = αI(t1)S1(t1) + βI(t1)S2(t1) − δI(t1) = 0,

and this is not enough since the derivative can change the sign at t1 and become

negative. Therefore, we study the component I(t). Integrating equation (4.3),
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we conclude that its solution is

I(t) = Ce
∫

(αS1(u)+βS2(u)−δ)du.

and since the initial condition I(0) ≥ 0, I(t) ≥ 0 for all t > 0. Assuming now

that R(t1) = 0, we get

Ṙ = δI(t1) − θR(t1) = δI(t1) > 0.

Therefore, if the initial conditions are non-negative S10 , S20 , I0, R0 ≥ 0, solu-

tion to the system (4.1) - (4.4) cannot become negative eventually.

Corollary 4.2.2. Let 0 ≤ S10, S20, I0, R0 ≤ 1. Then 0 ≤ S1(t) ≤ 1,

0 ≤ S2(t) ≤ 1, 0 ≤ I(t) ≤ 1 and 0 ≤ R(t) ≤ 1 for all t ≥ 0.

Proof. It follows from the Theorem 4.2.1 that S1(t), S2(t), I(t), R(t) ≥ 0 for

all t ≥ 0. It can be concluded from (4.5) that for all t we have

Ṅ(t) = Ṡ1(t) + Ṡ2(t) + İ(t) + Ṙ(t) = 0.

Taking into account (4.6), we deduce that for all t>0

1 = N(t) = S1(t) + S2(t) + I(t) + R(t). (4.7)

This concludes the proof.
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4.3 Equilibria

To find equilibria, we solve the system of nonlinear algebraic equations at the

equilibrium Ṡ1, Ṡ2, İ and Ṙ equal to zero.

0 = −αI(t)S1(t) − γS1(t) + ωS2(t) + θ(1 − ξ)R(t), (4.8)

0 = −βI(t)S2(t) + γS1(t) − ωS2(t) + ξθR(t), (4.9)

0 = αI(t)S1(t) + βI(t)S2(t) − δI(t), (4.10)

0 = δI(t) − θR(t). (4.11)

We start by finding the disease free equilibrium denoted E0 by assuming that

I = 0. Using (4.11) we get

R = δ

θ
I = δ

θ
· 0 = 0.

Substituting I = 0 and R = 0 into equation (4.8), we obtain first

S1 = ω

γ
S2,

and then, substituting in (4.7), we get

S1 = ω

γ + ω
, S2 = γ

γ + ω
.

The disease free equilibrium E0 is therefore given by

E0 =
(

ω

γ + ω
,

γ

γ + ω
, 0, 0

)
.

We now find the endemic equilibrium E∗ assuming that I(0) ̸= 0 and using

(4.10), we get

I(αS1 + βS2 − δ) = 0 ⇒ S1 = δ

α
− β

α
S2.
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From (4.11) we get

R = δ

θ
I.

Then substituting expressions for S1 and R into (4.7) we can calculate S2 in

terms of I

S2 = 1 − R − I − S1 = 1 − δ

θ
I − I − δ

α
+ β

α
S2.

Simplifying we get

S2 = α

α − β
− αδ

α2 − αβ
− αθ + αδ

αθ − βθ
I.

We can now plug in for S2 to express S1 in terms of I

S1 = δ

α
− β

α − β
+ βδ

α2 − αβ
+ βθ + βδ

αθ − βθ
I.

We substitute the expressions for S1, S2 and R into (4.9) and solve it for I ,

provided that α − β ̸= 0, α ̸= 0, β ̸= 0 and θ ̸= 0:

− βI( α

α − β
− αδ

α2 − αβ
− αθ + αδ

αθ − βθ
I)+

γ( δ

α
− β

α − β
+ βδ

α2 − αβ
+ βθ + βδ

αθ − βθ
I)−

ω( α

α − β
− αδ

α2 − αβ
− αθ + αδ

αθ − βθ
I) + ξδI = 0.

Collecting the terms, we obtain

αβ
( θ + δ

αθ − βθ

)
I2+( αβδ

α2 − αβ
− αβ

α − β
+ γβθ + γβδ

αθ − βθ
+ αωθ + αωδ

αθ − βθ
+ ξδ

)
I+(αωδ + γβδ

α2 − αβ
− γβ + αω

α − β
+ γδ

α

)
= 0
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and

αβ
( θ + δ

θ(α − β)
)
I2+

(αβδθ − α2βθ + αβγθ + αβγδ + α2ωθ + α2ωδ + α2δθξ − αβδθξ

αθ(α − β)
)
I+

(αωδ + γβδ − αγβ − α2ω + αγδ − βγδ

α(α − β)
)

= 0.

Simplifying the second and the third terms, we arrive at

αβ
( θ + δ

θ(α − β)
)
I2+(βδθ − αβθ + βγθ + βγδ + αωθ + αωδ + αδθξ − βδθξ

θ(α − β)
)
I+(ωδ − γβ − αω + γδ

(α − β)
)

= 0.

Multiplying by θ(α − β) and collecting terms, we have

αβ
(
θ + δ

)
I2+(
β(δθ − δθξ + γθ + γδ) + α(ωθ + ωδ + δθξ − βθ)

)
I+

θ
(
ω(δ − α) + γ(δ − β)

)
= 0.

We write the quadratic equation for I in the form

A1I2 + A2I + A3 = 0, (4.12)

where we define A1, A2 and A3 as follows:

A1 = αβ
(
θ + δ

)
,

A2 = β(δθ − δθξ + γθ + γδ) + α(ωθ + ωδ + δθξ − βθ),

A3 = θ
(
ω(δ − α) + γ(δ − β)

)
.

(4.13)
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The solutions of equations (4.12) are

I1,2 =
−A2 ±

√
A2

2 − 4A1A3

2A1
. (4.14)

Substituting (4.14) into the terms of S1, S2 and R we get

S11,2 = δ

α
− β

α − β
+ βδ

α(α − β
+

−A2 ±
√

A2
2 − 4A1A3

2αθ(α − β) ,

S21,2 = α

α − β
− αδ

α2 − αβ
−

−A2 ±
√

A2
2 − 4A1A3

2βθ(α − β) ,

R1,2 = θ
−A2 ±

√
A2

2 − 4A1A3

2δA1
.

Lemma 4.3.1. Assume that δ < α < β. Then the quadratic equation (4.12)

has one positive and one negative solution.

Proof. Note that A1 is always positive. Since the first factor θ in the expression

for A3 is always positive, the sign of A3 is determined by the sign of the second

factor ω(δ − α) + γ(δ − β). Note that if δ < α < β, then A3 is less than zero

since:

A3 = ω (δ − α)︸ ︷︷ ︸
<0

+γ (δ − β)︸ ︷︷ ︸
<0

< 0

In that case by Vieta’s theorem the quadratic equation (4.12) must have one

positive and one negative root. The proof is complete.

The following simple biological argument explains why the quadratic equations

can have two positive solutions. The roots of quadratic equation (4.14) depend

continuously on the parameters α, β and δ. Therefore, by increasing the value

of δ we can make one root zero and another negative for some α < δ⋆ < β

which corresponds to asymptotically stable disease free equilibrium. Increasing

further δ does not generate new equilibria with positive value of I. This

argument is illustrated in Figure 4.1 (a)-(c).
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(a) (b) (c)

Figure 4.1: (a) α < β ≤ δ; (b) δ⋆; (c) δ < α < β.

4.4 Stability

We now rewrite our system as a system of three equations, using the condi-

tion (4.7). This is done because condition (4.7) relates all four variables thus

making one of the differential equations in our system redundant. The system

assumes the form

İ = αI(t)S1(t) + βI(t)S2(t) − δI(t),

Ṡ1 = −αI(t)S1(t) − γS1(t) + ωS2(t) + θ(1 − ξ)(1 − I − S1 − S2),

Ṡ2 = −βI(t)S2(t) + γS1(t) − ωS2(t) + θξ(1 − I − S1 − S2).

We calculate the Jacobian to study the stability of the equilibria:


αS1 + βS2 − δ α · I β · I

−α · S1 − θ · (1 − ξ) −γ − θ · (1 − ξ) − α · I ω − θ · (1 − ξ)

−β · S2 − ξ · θ γ − θ · ξ −ω − θ · ξ − β · I

 .

We start with the stability for the disease free equilibrium E0:


α · ω

γ+ω + β · γ
γ+ω − δ 0 0

−α · ω
γ+ω − θ · (1 − ξ) −γ − θ · (1 − ξ) ω − θ · (1 − ξ)

−β · γ
γ+ω − ξ · θ γ − θ · ξ −ω − θ · ξ

 .

The eigenvalues of this matrix are

λ1 = −ω − γ, λ2 = αω + βγ − δ(ω + γ)
ω + γ

, λ3 = −t.
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The equilibrium is asymptotically stable when the real parts of all eigenvalues

are negative. Observe that λ1 and λ3 are always negative, but λ2 is negative

only if
αω + βγ

δ(ω + γ) < 1.

The expression on the left hand side of the latter inequality will be used in

Section 4.5 to define the basic reproduction number R0 of the system. The

disease free equilibrium is asymptotically stable if R0 < 1.

For the endemic equilibrium E∗, we need to find the characteristic polynomial

for the Jacobian matrix at E∗. Note that for the endemic equilibrium αS1 +

βS2 − δ = 0 and our Jacobian matrix then becomes.


0 α · I β · I

−α · S1 − θ · (1 − ξ) −γ − θ · (1 − ξ) − α · I ω − θ · (1 − ξ)

−β · S2 − ξ · θ γ − θ · ξ −ω − θ · ξ − β · I

 .

Note that for the endemic equilibrium αS1 + βS2 − δ = 0. The characteristic

polynomial is given by:

λ3 + (γ + ω + θξ + αI + βI − θ (ξ − 1)) λ2

((γ + αI − θ (ξ − 1)) (ω + θξ + βI) − (γ − θξ) (ω + θ (ξ − 1))) λ

+ (αI (αS1 − θ (ξ − 1)) + βI (θξ + βS2)) λ

I
(
θβ2S2 + β2γS2 + α2ωS1 + θβγ + θαω + θα2ξS1 − θβ2ξS2 + α2βIS1

)
+ I

(
αβ2IS2 + θαβI − θαβS2 + αβγS1 + αβωS2 − θαβξS1 + θαβξS2

)
.

We do not try to solve this equation as it is too complex, but we use the

Routh–Hurwitz criterion to derive the stability conditions.

Theorem 4.4.1. The third-order polynomial P (s) = s3 + b2b2 + b1s + b0 has

all roots with negative real parts if and only if b2, b1, and b0 are positive and

b2b1 > b0.

Denote the coefficient for λ2 in our characteristic polynomial as B2, the coef-
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ficient for λ as B1 and the free term as B0.

Theorem 4.4.2. The endemic equilibrium for the system (4.1) - (4.4) is

asymptotically stable if and only if B2, B1, and B0 are positive and B2B1 >

B0.

For the simulation we verify the asymptotic stability for all the plots used in the

thesis by inserting the specific values and verifying the negative eigenvalues.

4.5 Basic reproduction number

The basic reproduction number R0 is the expected number of cases generated

by one case in a population. It is important for the analysis of the spread of

infection because it gives us an indication of the development of the disease.

An increasing basic reproduction number might indicate a outbreak, affecting

decisions made by a government. We can obtain R0 by using the next genera-

tion method described by van den Driessche and Watmough’s [10]. We define

m as the number of states in our system, and n as the number of infected

states. In this section it is convenient to rewrite our system so that we can

apply the theory described in [10]:

İ = αI(t)S1(t) + βI(t)S2(t) − δI(t),

Ṡ1 = −αI(t)S1(t) − γS1(t) + ωS2(t) + θ(1 − ξ)(1 − I − S1 − S2),

Ṡ2 = −βI(t)S2(t) + γS1(t) − ωS2(t) + θξ(1 − I − S1 − S2).

We use the following notation

x = (I, S1, S2)T

Fi(x), i = 1, ..., n - the rate of appearance of new infections in compartment

i;

V +
i (x), i = 1, ..., n - the rate of transfer of individuals into compartment i by

all other means;

V −
i (x), i = 1, ..., n - the rate of transfer of individuals out of compartment i;
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Vi = V −
i − V +

i ;

Xs = {x ≥ 0 | xi = 0, i = 1, ..., m} - the set of all disease free states.

To use [10, Lemma 1] we write our system in the form

ẋi = fi(x) = Fi(x) − Vi(x) i = 1, ..., n (4.15)

and check that it satisfies the following conditions:

If x ≥ 0 then Fi, V
−

i , V +
i ≥ 0 i = 1, ..., n (4.16)

If xi = 0 then V −
i = 0 i = 1, ..., m, (4.17)

Fi = 0 ∀ i > m (4.18)

If x ∈ Xs then Fi(x) = 0 and V +
i (x) = 0 ∀ i = 1, ..., m (4.19)

If F (x) is set to zero, then all eigenvalues of Df(x0)

have negative real parts (4.20)

where x0 is the disease free equilibrium.

Lemma 4.5.1. The system (4.1) - (4.4) is of the form (4.15) and satisfies

the conditions (4.16) - (4.20).

Proof. We start by defining the vectors describing the generation of new in-

fected and the flow between the states:

F (x) =
[
αIS1 + βIS2 0 0

]T

,

V (x) =


δI

αI(t)S1(t) + γS1 − ωS2 − θ(1 − ξ)(1 − I − S1 − S2)

βI(t)S2(t) − γS1 + ωS2 − θξ(1 − I − S1 − S2)

 ,
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V +(x) =


0

ωS2 + θ + θξ(I + S1 + S2)

γS1 + θξ

 ,

V −(x) =


δI

αIS1 + γS1 + θ(I + S1 + S2) + θξ

βIS2 + ωS2 + θξ(I + S1 + S2)

 .

The system can then be described as in (4.15). Since our parameters are

always positive then we observe that if x ≥ 0, then V +
i , V −

i and Fi as defined

above is greater than zero for i = 1, 2, 3, 4. Therefore, condition (4.16) holds.

The verification of condition (4.17) follows immediately, as when I = 0 then

V −
1 (x) = δI = 0. For when i > 1, Fi = 0 and thus (4.18) holds. When we

are in the disease free state and I is equal to zero, F1 = 0. This implies that

(4.19) holds. To prove (4.20), we calculate the Jacobian matrix of the system

when F (x) is equal to zero:

Df(x) = D(F (x) − V (x)) = D(−V (x)).

and

Df(x) =


−δ 0 0

−αS1 − θ(1 − ξ) −αI − γ − θ(1 − ξ) ω − θ(1 − ξ)

−βS2 − ξθ γ − ξθ −ω − ω − ξθ)

 .

Substituting the disease free equilibrium, we get:

Df(x0) =


−δ 0 0

−α ω
γ+ω − θ(1 − ξ) −γ − θ(1 − ξ) ω − θ(1 − ξ)

−β γ
γ+ω − ξθ γ − ξθ −ω − ξθ

 .

The eigenvalues λ = (−δ, −θ, −ω − γ) are all negative. All conditions in [10,
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Lemma 1] are verified.

Following [10], we can find the basic reproduction number.

Theorem 4.5.2. The basic reproduction number of the system (4.1) - (4.4)

is given by

R0 = αω + βγ

δ(γ + ω) . (4.21)

Proof. To calculate, we need the equilibrium point for the disease free equi-

librium, F (x) and V (x). These are given by

x0 =
[
0 ω

γ+ω
γ

γ+ω

]T

,

F (x) =
[
(αIS1 + βIS2) 0 0

]T

,

V =


δI

αI(t)S1(t) + γS1 − ωS2 − θ(1 − ξ)(1 − I − S1 − S2)

βI(t)S2(t) − γS1 + ωS2 − θξ(1 − I − S1 − S2)

 .

We need two Jacobian matrices

F =
[

∂Fi

∂xj
(x0)

]
, V =

[
∂Vi

∂xj
(x0)

]
, where 1 ≤ i, j ≤ m

which in our case simplify to

F = αω

γ + ω
+ βγ

γ + ω
= αω + βγ

γ + ω

and

V = δ ⇒ V −1 = 1
δ

.
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Multiplying F and V −1, we obtain the reproduction number (4.21).

Theorem 4.5.3 ([10], Theorem 2). Consider the disease transmission model

given by (4.15) with f(x) satisfying conditions (4.16) - (4.20). If x0 is a

disease free equilibrium of the model, then x0 is locally asymptotically stable if

R0 < 1, but unstable if R0 > 1, where R0 is defined by (4.21)

The next result follows from Theorem 4.5.3.

Theorem 4.5.4. Consider the system (4.1) - (4.4). Then the disease free

equilibrium x0 is locally asymptotically stable if R0 < 1, but unstable if R0 > 1

where R0 is defined by (4.21).

4.6 Introducing delay

Now we introduce the delay into the system. The reason for doing this is that

the delay allows us to transfer infected to recovered after τ days, where τ is the

duration of the disease, which makes the system more realistic. In addition

we introduce a cosine function, ϕ(t), dependent on time that simulates the

change in travel throughout the week. This cyclic behavior can be observed,

for example, in the Transportation Security Administration data [14] plotted

in Figure 4.2, with Saturdays being outliers we do not account for. Note that

we assume here that everyone takes the exact same amount of time to recover

and become susceptible to the disease again. Consider now the system:

dS1
dt

= −αI(t)S1(t) − ∆γS1(t) + ωS2(t) + (1 − ξ)ϕ(t − τ − η)I(t − τ − η),

(4.22)
dS2
dt

= −βI(t)S2(t) + ∆γS1(t) − ωS2(t) + ξϕ(t − τ − η)I(t − τ − η), (4.23)

dI

dt
= αI(t)S1(t) + βI(t)S2(t) − Φ(t − τ)I(t − τ), (4.24)

dR

dt
= Φ(t − τ)I(t − τ) − ϕ(t − τ − η)I(t − τ − η), (4.25)

32



with initial condition:

N(0) = S1(0) + S2(0) + I(0) + R(0) = 1, (4.26)

where

S1(t) - is the number of people susceptible being non-mobile;

S2(t) - is the number of people susceptible being mobile;

I(t) - is the number of people infected with the disease;

R(t) - is the number of people that have had, and are now immune to the

disease;

Φ(t − τ) = αS1(t − τ) + βS2(t − τ);

ϕ(t − τ − η) = αS1(t − τ − η) + βS2(t − τ − η);

∆(t) = θ cos(2πt
κ ) + 1;

θ - is the scaling factor for how large is the difference between periods of more

and less travel;

κ - is the number of days between two periods where the population travels a

lot;

τ - is the time it takes to recover from the disease;

η - is the time from when one have recovered until one can catch the disease

again;

α - is the transmission rate for people in the non-mobile state;

β - is the transmission rate for people in the mobile state.

We have the following terms in the system.

1. αI(t)S1(t) The number of people being non-mobile that gets infected. It

depends both on how many are already infected and how many are suscepti-

ble. If we have a few infected or a few susceptible then there will be fewer new

people infected.

2. βI(t)S2(t) The number of people being mobile that get infected. It depends

both on how many are already infected and how many are susceptible. If we

have a few infected or a few susceptible then there will be fewer new people
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infected.

3. Φ(t − τ) The number of people infected τ days ago and is now recovering.

4. γS1(t) The number of people that move from the mobile state to the non-

mobile state

5. ωS2(t) The number of people that move from the non-mobile state to the

mobile state

6. ∆ The function describing cyclic changes in the travel pattern during the

week

7. ϕ(t − τ − η) The number of people infected τ+η days ago and is now be-

coming susceptible the distribution between the two susceptible states is given

by η

Figure 4.2: Travel patterns on different weekdays. Data is taken from 3/7/22
to 09/05/22 from [14]

Analytical analysis of the system (4.22) - (4.25) with delayed arguments and

cyclic travel patterns is much more challenging. Therefore, we provide only

numerical simulations that illustrate the possible scenario in Chapter 5.
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Chapter 5

Simulation and discussion

In this chapter we will first look at how the different parameters are deter-

mined. We will then introduce data we will use to calculate the parameters,

before we simulate and show how the different parameters affect the simu-

lation. Finally we discuss the impact of travel restrictions on the spread of

infection.

5.1 Parameters

One of the difficulties arising during the model developments is the need to

"convert" proportions of quantities into the rate of change of quantities. That

is we need to move from a discrete model to a continuous model. To give an

example let us assume the average amount of days to recover from the disease

to be 10 days. This means that in a continuous model we want 1
10 = 0.1 = 10%

to be removed from the infected state x(t) in one day. Consider the differential

equation, where we assume that the "rate of change", that is, the coefficient

of removal is 0.1:

ẋ(t) = αx(t) = −0.1x(t)

Note that there is a minus sign in the equation because we remove people

from the infected population. The solution to this equation is given by x(t) =
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e−0.1t, where x(1) = e−0.1 = 0.9048. This estimation is quite good considering

our target after one day is 1 − 0.1 = 0.9, but note that the accuracy of the

estimation decreases with higher values of α. Now consider another equation

ẋ(t) = −0.33x(t).

In this case the solution is x(t) = e−0.33t, where x(1) = 0.7189 with 0.66

being our target. The discrepancy becomes even more striking when looking

at x(10) = 0.03688 where our target is 0.6610 = 0.0156833688. To "correct"

this we know that x(1) = 0.66, and we want to find an α that better fits our

target which is one third of the quantity being removed in one day. We find

α by solving the following equation

1 − 0.33 = 0.66 = x(1) = e−α ⇒ α = − ln(0.66) = 0.41551544396.

Recalculating the solution to the differential equation with the value of α =

0.41551544396, we get x(1) = 0.66 and x(10) = 0.0156833688 compared to

our targets of 0.661 = 0.66 and 0.6610 = 0.0156833688. The general formula

for finding the "adjustment" for a single differential equation is therefore given

by

α = − ln(1 − p), (5.1)

where p is the target proportion we want to remove from the quantity x in

one time unit (day, month, year, etc.).

However, this does not solve the problem for higher dimensional systems. Let

us take a look at what happens when we consider two dimensions, in our case

S1 and S2. To find the exact values of parameters γ and ω in our model, we

use an algorithm suggested by one of the supervisors. Consider the following
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discrete system

s1(n + 1) = as1(n) + bs2(n),

s2(n + 1) = (1 − a)s1(n) + (1 − b)s2(n), (5.2)

which describes evolution of a population consisting of two groups s1(n) and

s2(n) day by day (n = 0, 1, . . .). Here a is the proportion of s1 that remains

in s1 and b is the proportion of s1 moving from s2 to s1 in one time unit. We

assume that b ≤ a and the sum of the two population adds up to one:

s1(n) + s2(n) = 1.

We can find the equilibrium [s1, s2] of the system for s1(n) and s2(n) by

assuming that s1(n) = s1(n + 1) and s2(n) = s2(n + 1)

s1 = as1 + b(1 − s1) ⇒ s1 = b

1 − a + b
, (5.3)

and:

(1 − s2) = a(1 − s2) + bs2 ⇒ s2 = 1 − a

1 − a + b
. (5.4)

We assume that we are given real constants s1 and b, and we need to calculate

the value of a. We find the corresponding value of a using the formula (5.3):

s1 = b

1 − a + b
⇒ a = 1 + b − b

s1
.

Now we can write the discrete system (5.2) in a matrix form:

Xn+1 =

 a b

1 − a 1 − b

Xn

or

Xn+1 = AXn (5.5)
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where Xn = [s1(n), s2(n)]T. Recall that b ≤ a, which will guarantee positive

eigenvalues. The characteristic equation is

∣∣∣∣∣∣∣
a − λ b

1 − a 1 − a − λ

∣∣∣∣∣∣∣ = λ2 + (b − 1 − a)λ + (a − b) = 0.

We calculate the eigenvalues λ1 = 1, λ2 = a − b. The corresponding eigenvec-

tors are found by solving the linear systems

a − λ1 b

1 − a 1 − b − λ1

 =

a − 1 b

1 − a −b

 ⇒ v⃗1 =

 1
1−a

b

 ,

a − λ2 b

1 − a 1 − b − λ2

 =

 b b

1 − a 1 − a

 ⇒ v⃗2 =

−1

1

 .

Using the eigenvalues and eigenvectors we have obtained, we can write the

general solution to the system (5.5) as

Xn =

s1(n)

s2(n)

 = c1v1λn
1 + c2v2λn

2 .

Now we use Xn for constructing the fundamental matrix of the continuous

system that will have the same general solution. Our aim is to find the matrix

B of the continuous system

ẋ(s) = Bx(s) (5.6)

where x(s) = [x1(s), x2(s)]T represents a continuous vector function. The first

step is to convert the general solution Xn into the general solution to the
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system (5.6):

x(s) =

x1(s)

x2(s)

 = c1v1λs
1 + c2v2λs

2.

Because x(s) is the general solution, we can write the fundamental matrix of

(5.6) as

X(s) =

v11λ1 v12λs
2

v21λ1 v22λs
2

 =

v11 v12λs
2

v21 v22λs
2

 .

Recall that λ1=1. Moreover, 0 ≤ λ2 ≤ 1 because λ2 = a − b and both a and b

are between 0 and 1. The fundamental matrix X(s) must satisfy the equation

Ẋ(s) = BX(s). (5.7)

We need to calculate the derivative of X(s):

Ẋ(s) =

0 v12λs
2 ln (λ2)

0 v22λs
2 ln (λ2)

 .

Taking into account that the fundamental matrix X(s) is regular, we can

calculate the matrix B as

B = Ẋ(s)X−1(s).

Using the above described algorithm we find the parameters γ and ω determin-

ing the transitions between S1 and S2. We might also consider using similar

algorithm to calculate the parameters α, β δ and θ, but the transition from S1

and S2 to I is represented by nonlinear terms and it is therefore not possible

to apply the algorithm that works for linear systems. We therefore use an

approach based on (5.1) instead.
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5.2 Selection of parameters

When we want to simulate, it is important to find reliable parameter values

to make the simulations as accurate as possible. The difficulties with finding

right values for the parameters vary a lot. According to [5], the average time of

the infectious period of Covid-19 is 15.2 days, this gives a δ = − ln
(
1− 1

15.2
)

=

0.06805346324 using our method for estimating (5.1). Note that the average

time of infections period has a high standard deviation of 10.3 days so the

value of δ might vary quite a lot.

We also want to know how many and how often people are traveling on aver-

age, this can be found by collecting data from the Norwegian statistics bureau

[12]. To estimate the number of regular travelers, we chose a year without

Covid-19, namely 2019. The data is given quarterly, and we therefore add

the numbers for each quarter to get the total for 2019. There are four types

of categories in the survey, short trips (1-3 days), long trips (4+ days), busi-

ness trips domestic and business trips outbound. We assume that the average

amount of days spent traveling on a short trip is 2 days, and average time

spent on long trips is 9.5 days. Based on an article written by Travel Leaders

Corporate [15], we assume that an average number of days traveled on busi-

ness trips to be 3.05 for domestic, and 5.82 for outbound trips. We can then

calculate the number of days traveled in millions per year, and divide it by

the amount of days that would be possible to travel per year in millions, given

the population of Norway was 5,348 million in 2019.

Short trips (1-3 days) in millions

3.43+2.41+2.40+2.43=10.67

10.67 · 2 = 21.34

Long trips (4+ days) in millions 2019

1.11+2.07+2.99+1.66=7.83

7.83 · 9.5 = 74.385
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Business trips domestic in millions 2019

1.31+0.80+0.51+1.00=3.62

3.62 · 3.05 = 11.041

Business trips outbound in millions 2019

0.36+0.36+0.42+0.34=1.48

1.48 · 5.82 = 8.6136

In total this gives 21.34+74.385+11.041+8.6136=115.3796 million days trav-

eled in a year. The maximum number of days the Norwegian population could

travel would be 365 · 5.348 = 1952.02 in millions. This means that an average

of 115.3796
1952.02 = 0.0591 = 5.91% of the Norwegian population are traveling at a

given time. Note that there are a lot of assumptions made, both in the average

amount of traveling days and in that we assume that the traveling is equally

distributed throughout the year. Using that in our model we want the quota

of travelers to be 0.0591, and one quarter of travelers daily move from mobile

to non-mobile on average so that the trip is completed in four days. to move

from mobile to non-mobile we can calculate what the proportion of travelers

staying in S2 as

a = 1 − b − b

s1
= 0.986565.

We can then set up the discrete system (5.5)

Xn+1 =

0.986565 0.25

0.013435 0.75

Xn.

Converting it into a continuous system using the algorithm introduced in Sec-
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tion 5.1, we obtain

B =

 0.0591 ln(1.36185) −0.9409 ln(1.36185)

−0.0591 ln(1.36185) 0.9409 ln(1.36185).

 .

This means that

γ = 0.0591 ln(1.36185) = 0.0182526845

and

ω = 0.9409 ln(1.36185) = 0.29059138499.

These parameters will be used as reference values in equations (4.1), (4.2) and

(4.22), (4.23). We can also use the reproduction number from [5], it is assumed

to be 4.18 for Covid-19 with a standard deviation of 2.26. Note that since the

reproduction number for our model computed in Section 4.5 is

R0 = αω + βγ

δ(ω + γ) ,

and we also know δ, ω and γ we can calculate α given β and vice versa. Un-

fortunately, R0 varies greatly during an outbreak depending on the measures

taken by the government and it is therefore not a very reliable way to calcu-

late α depending on β but it can be used to model a specific outbreak. When

determining the rate at which individuals move from recovered to susceptible

there is a significant variation in data and not enough arguments to support

any firm conclusion; we assume 14 days in our models. It means that we set

θ = − ln
(
1 − 1

14
)

= 0.07410797215 for the model without delay.

5.3 Simulations for the model without delay

To take a look at what effect the different parameters we choose a set of initial

conditions as a reference point, and then change one parameter to see the
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impact of the perturbation. We use the initial conditions



S1(0)

S2(0)

I(0)

R(0)


=



0.999(1 − q)

0.999q

0.001

0


(5.8)

where q = 0.0591. We set the variables to the values seen in Table 5.1. When

Parameters Meaning Value
α Infection rate non-mobile 0.15
β Infection rate mobile 0.6
γ Transition rate to mobile 0.0182526845
ω Transition rate to non-mobile 0.29059138499
δ Percentage leaving infected 0.06805346324
θ Percentage leaving recovered 0.07410797215
ξ Distribution between S1 and S2 arriving from R 0.0591
q Proportion of travelers at t = 0 0.0591

Table 5.1: Reference values for parameters

we want to reduce the number of travelers we have to recalculate the values

for γ, ω, and change the values of ξ and q. This recalculation can be seen for

γ and ω and change in parameters in Table 5.2 where σ is the change in the

intensity of travel.

Percentage of Travel flow γ ω
travelers σ = ξ = q

0.1 % 0.001 0.00028801701 0.28772899933
1 % 0.01 0.00291056373 0.28814580936
5.91 % 0.0591 0.0182526845 0.29059138499
15 % 0.15 0.05224635708 0.29606269012

Table 5.2: Values of parameters for different traveling patterns
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We also have to recalculate δ when we change the recovery rate as in Table

5.3.

Days to complete recovery δ

8.2 0.13005312824
10.2 0.10318423623
15.2 0.06805346324
20.2 0.05077232537

Table 5.3: Values of recovery rate for different duration of recovery periods

(a) (b)

(c) (d)

Figure 5.1: The dynamics of the system (4.1) - (4.4) for different values of
α. Values for other parameters are in Table 5.1. (a) α = 0.08; (b) α = 0.15
(Reference); (c) α = 0.3; (d) α = 0.9.
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(a) (b)

(c) (d)

Figure 5.2: The dynamics of the system (4.1) - (4.4) for different values of
β. Values for other parameters are as in Table 5.1. (a) β = 0.2; (b) β = 0.6
(Reference); (c) β = 1.2; (d) β = 2.4.

(a) (b)

(c) (d)

Figure 5.3: The dynamics of the system (4.1) - (4.4) for a different travel
pattern given in Table 5.2. Values for other parameters are as in Table 5.1.
(a) δ = 0.13; (b) δ = 0.1; (c) δ = 0.07 (Reference); (d) δ = 0.05.

45



(a) (b)

(c) (d)

Figure 5.4: The dynamics of the system (4.1) - (4.4) for different recovery
rates given in Table 5.3. Values for other parameters are as in Table 5.1 (a)
σ = 0.001; (b) σ = 0.01; (c) σ = 0.591 (Reference); (d) σ = 0.15.

In Figure 5.1 we observe that in response to the change of α there is a clear

change in the shape of the graph for infected individuals - the curve becomes

steeper and the outbreak comes earlier. This coincides with what we would

expect from the spread of infection if the transmission rate increases. Similarly,

in Figure 5.2 we observe the same behavior when β changes, but the impact

is not as noticeable as for the variation of α. This is natural as a change that

applies to a smaller number of individuals is expected to have a lower impact.

These changes are also noticeable in Figure 5.3 where δ is varied and when we

increase the number of mobile travelers in Figure 5.4.

5.4 Simulation of the model with delay

We use the same initial conditions defined by equation (5.8), and set the

reference values for parameters in Table 5.4.
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Parameters Meaning Value
α Infection rate non-mobile 0.15
β Infection rate mobile 0.6
γ Transition rate to mobile 0.0182526845
ω Transition rate to non-mobile 0.29059138499
τ Recovery in days 15.2
η Days needed before being susceptible 14
ξ Distribution between S1 and S2 arriving from R 0.0591
κ Duration of cyclic behavior in days 7
θ Intensity of the cycle 0.8
q Proportion of travelers at t = 0 0.0591

Table 5.4: Reference values for parameters in the model with delay

(a) (b)

(c) (d)

Figure 5.5: The dynamics of the system (4.22) - (4.25) for different values of
α. Values for other parameters are as in Table 5.4. (a) α = 0.08; (b) α = 0.15
(Reference); (c) α = 0.3; (d) α = 0.9.
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(a) (b)

(c) (d)

Figure 5.6: The dynamics of the system (4.22) - (4.25) for different values of
β. Values for other parameters are as in Table 5.4. (a) β = 0.2; (b) β = 0.6
(Reference); (c) β = 1.2; (d) β = 2.4.

(a) (b)

(c) (d)

Figure 5.7: The dynamics of the system (4.22) - (4.25) for a different travel
equilibrium given in Table 5.2. Values for other parameters are as in Table
5.4. (a) τ = 8.2; (b) τ = 10.2 (Reference); (c) τ = 15.2; (d) τ = 20.2.
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(a) (b)

(c) (d)

Figure 5.8: The dynamics of the system (4.22) - (4.25) for different τ . Values
for other parameters are as in Table 5.4 (a) σ = 0.001; (b) σ = 0.01; (c)
σ = 0.591 (Reference); (d) σ = 0.15.

Compared to the case without delay there are big differences caused by the

oscillations. The solutions continue to oscillate in most cases. In Figure 5.5

we observe large differences of steepness for different values of α as well as the

shifts corresponding to the start of the outbreak. The response to changes

of β is more noticeable in Figure 5.6 compared to the model without delay

but still not as extreme as for α. Note that the graphs of S1 and S2 have

oscillations of a small amplitude that we do not observe in the graphs of I and

R. The same observation regarding the steepness of the graph in response to

change of τ in Figure 5.7 and to the increase in number of people traveling in

Figure 5.8 is valid. It is important to note that the reduction in the amplitude

of oscillations is natural for lower values of σ corresponding to the number of

people traveling.
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5.5 Discussion

At the start of the pandemic most governments adapted different strategies

on how to handle the outbreak. For instance, Sweden allowed the stores and

schools to stay open while most western countries opted for a lockdown [1]. It

is obvious that the restrictions on travel reduce the spread of infection, but to

what extent? Many studies report the research on this topic. For example,

“At the international level, studies consistently estimated that the Wuhan

travel measures led to a 70%–80% reduction in cases exported in the first few

weeks, and likely had a smaller effect within Mainland China, where estimates

of effectiveness ranged from 10% to 70%. Also, the Wuhan travel ban likely led

to delays of up to a few weeks in the importation of cases to other countries.

Additional travel measures, namely a reduction in the number of flights to

countries, had additional effects at reducing the number of imported cases”

[8, p.13].

We will now use the reproductive number for Corona-19, R0 = 4.18, to calcu-

late β given that under our assumptions there is a four time higher chance to

get infected when traveling. Recalling that

R0 = αω + 4αγ

δ(ω + γ)

for α = 0.07440240299 we calculate β=0.29760961196. The results of modeling

with different travel rates can be observed in Figure 5.9. The impact is quite

noticeable as it takes a lot longer for the outbreak to start, and the curve is

a lot milder. It is also important to note that even though the infection level

for endemic equilibrium looks small it still corresponds to approximately 10%

for (a) and 15.4% for (b) of the population being infected respectively.

It is interesting to note that there is a substantial reduction of the infection

level from 0.15 to 0.1 corresponding to 33% and a increase by 80% from 250

to 450 days for the moment the outbreak settles when the intensity of travel

σ is reduced to 0.001.
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(a) (b)

Figure 5.9: The dynamics of the system (4.1)-(4.4) for different intensity of
travel given in Table 5.2. Values for other parameters are as in Table 5.1 (a)
σ = 0.001; (b) σ = 0.0591 (Reference).

Note that these calculations assume the same basic reproduction number so

the figures are limited in what we can conclude, but we can still observe the

importance of reducing travel which agrees with other studies in the field

[8, 16].

5.6 Limitations and further work

There are many possibilities for modifying the model to include more options

eliminating the limitations of the models described by (4.1) - (4.4) and (4.22)

- (4.25). In our models we assume that population remains constant, but we

run the simulations for a long time which means the birth and death rate

should be included. Another limitation is that we combine rather dispersed

real data with the parameters we introduced ourselves corresponding to the

infection rate of those who travel or do not travel. Furthermore our model

does not account for quarantine, hospitalization or vaccination.

What happens if we introduce a quarantine state as a prevention measure as

the Norwegian government did with quarantine hotels? Would it be better

to apply a home quarantine model because the risks of the infection spread

in quarantine hotels can be high as reported in the media? There is also

the possibility of adding an exposed compartment to describe the outbreak

more accurately, or to model the effect of vaccination using the Dirac delta
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function. There are many other important questions we do not answer in this

thesis which we hope to address in the future.
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Matlab

Example 3.3.1

1 function l = Plot()

2 sol = dde23("File",[0.5, 2,1],"Initialcondition",[0, 20]);

3 plot(sol.x,sol.y);

4 title("Solution with initial conditions x_1=1, x_2=0, x_3=0")

5 xlabel("time t");

6 ylabel("y(t)");

7 end

8

9 function v = Initialcondition(t)

10 v = zeros(3,1)

11 v(1)= t

12 v(2)= t^2

13 v(3)= t^3

14

15 function v = File(t,y,Z)

16 ylag1 = Z(1,:); % The estimates for y_1 at different time delays

17 ylag2 = Z(2,:); % The estimates for y_2 at different time delays

18 ylag3 = Z(3,:); % The estimates for y_3 at different time delays

19 v = zeros(3,1);

20
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21 % The equation we are trying to solve

22 v(1) = ylag3(3)-ylag1(1);

23 v(2) = ylag1(1) - ylag2(2);

24 v(3) = ylag2(2)-ylag3(3);

25 end

Example 3.3.2

1 function x = Plot2()

2 q=5;

3 %dde23(f(x),delay,x(0),Interval)

4 sol = dde23("Equation",q,0.5,[0, 10000]);

5 %creating the plot

6 t = linspace(q,1000,1000);

7 y = deval(sol,t);

8 ylag = deval(sol,t - q);

9 %Below is function to plot x(t) in relation to x(t-5)

10 plot(y,ylag);

11 %Below is function to plot x(t) against time

12 %plot(t,y,'-');

13 title("Solution with n=8 and x=0.5 for t<5")

14 xlabel("t");

15 ylabel("y(t)");

16 end

17

18 function v = Equation(t,y,Z)

19 v = 2*Z/(Z^10+10)-0.1*y;

20 end

Model without delay

1 All the values are set to their baseline settings.

2 function v = InitialconditionSSIR(t)
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3 %We set the initial conditions, where v(1)=S_1 v(2)=S_2 ...

v(3)=I and v(4)=R

4 v = zeros(4,1);

5 p=0.0591;

6 S=0.999;

7 v(1)= (1-p)*S;

8 v(2)= p*S;

9 v(3)= 0.001;

10 v(4)= 0;

11 end

12

13 %Note that the code is the same layout with and without ...

delay, but in our equation we do not use ylag in the code ...

without delay

14

15 function sol = PlotSSIR()

16 sol = dde23("SSIR",[15.2, 29.2, ...

15.2],"InitialconditionSSIR",[0, 200]);

17 plot(sol.x,sol.y);

18 title("Reference")

19 xlabel("time t");

20 ylabel("y(t)");

21 legend({'S1','S2','I','R'},'Location','northeast')

22 end

23

24 function v = SSIR(t,y,Z)

25 ylag1 = Z(:,1); %The estimates for y_1 at different time delays

26 ylag2 = Z(:,2); %The estimates for y_2 at different time delays

27 ylag3 = Z(:,3); %The estimates for y_3 at different time delays

28 v = zeros(4,1);

29 %Value of parameters:

30 alpha=0.15;

31 beta=0.6;

32 Delta=0.06805346324;

33 gamma=0.01855134772;

34 omega=0.29063778101;

35 theta=0.07410797215;
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36 epsilon=0.0591;

37 %The equation we are trying to solve,

38 %y(1)=S_1(t), y(2)=S_2(t), s(3)=I(t) and s(4)=R(t)

39 %v(1) derivative of S_1(t), v(2) derivative of S_2(t)

40 %v(3) derivative of I(t), v(4) derivative of R(t)

41 v(1)=-alpha*y(3)*y(1)-gamma*y(1)+omega*y(2)+ ...

theta*(1-epsilon)*y(4);

42 v(2)=-beta*y(3)*y(2)+gamma*y(1)-omega*y(2)+epsilon*theta*y(4);

43 v(3)=alpha*y(3)*y(1)+beta*y(3)*y(2)-Delta*y(3);

44 v(4)=Delta*y(3)-theta*y(4);

45 end

Model with delay

1 function v = InitialconditionSSIR(t)

2 v = zeros(4,1);

3 p=0.0591;

4 S=0.999;

5 v(1)= (1-p)*S;

6 v(2)= p*S;

7 v(3)= 0.001;

8 v(4)= 0;

9 end

10

11

12 function sol = PlotSSIR()

13 sol = dde23("SSIRD",[15.2, 29.2, ...

15.2],"InitialconditionSSIR",[0, 200]);

14 plot(sol.x,sol.y);

15 title("Reference")

16 xlabel("time t");

17 ylabel("y(t)");

18 legend({'S1','S2','I','R'},'Location','northeast')

19 end

20
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21 function v = SSIRD(t,y,Z)

22 ylag1 = Z(:,1); %The estimates for y_1 at different time delays

23 ylag2 = Z(:,2); %The estimates for y_2 at different time delays

24 ylag3 = Z(:,3); %The estimates for y_3 at different time delays

25 v = zeros(4,1);

26

27 $\%$Parameters:

28 alpha=0.15;

29 beta=0.6;

30 gamma=0.0182526845;

31 omega=0.29059138499;

32 kappa=7;

33 theta=0.8;

34 xi=0.0591;

35 v(1)=-alpha*y(3)*y(1)-gamma*(theta*cos((2*pi*t)/kappa)+1) ...

*y(1)+omega*y(2)+(1-xi)*alpha*ylag2(3)*ylag2(1) ...

+(1-xi)*beta*ylag2(3)*ylag2(2);

36 v(2)=-beta*y(3)*y(2)+gamma*(theta*cos((2*pi*t)/kappa)+1)*y(1) ...

-omega*y(2)+xi*alpha*ylag2(3)*ylag2(1) ...

+xi*beta*ylag2(3)*ylag2(2);

37 v(3)=alpha*y(3)*y(1)+beta*y(3)*y(2) ...

-alpha*ylag3(3)*ylag3(1)-beta*ylag3(3)*ylag3(2);

38 v(4)=alpha*ylag3(3)*ylag3(1)+beta*ylag3(3)*ylag3(2) ...

-alpha*ylag2(3)*ylag2(1)-beta*ylag2(3)*ylag2(2);

39 end

Mathematica codes for analytic computations

Testing asymptotic stability

1 Clear[s1, s2, i, a1, a2, a3, u, v, n, a, b, t, e, w, y, d]

2 a = 0.15;

3 b = 0.6;

4 y = 0.00028801701;

5 w = 0.28772899933;
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6 d = 0.06805346324;

7 t = 0.07410797215;

8 e = 0.001;

9 a1 = a*b*(t + d);

10 a2 = b*(d*t - d*t*e + y*t + y*d) + a*(w*t + w*d + d*t*e - b*t);

11 a3 = t*(w*d - w*a + y*d - y*b);

12 u = -a2 + Sqrt[a2^2 - 4*a1*a3];

13

14 s1 = d/a - (b/(a - b)) + (b*d/(a*(a - b))) + (u/(2*a*t*(a - b)));

15 s2 = a/(a - b) - (a*d/(a*(a - b))) - (u/(2*b*t*(a - b)));

16 i = (u/(2*a*b*(t + d)));

17

18 v = {{0, a*i, b*i}, {-a*s1 - t*(1 - e), -a*i - y - t*(1 - e),

19 w - t*(1 - e)}, {-s2*b - e*t, y - e*t, -b*i - w - e*t}};

20 n = Eigenvalues[v]

21 m = y (b - d) + w (a - d)

Calculating γ and ω

1 Clear[v]

2 Clear[e, b, a, v, t, q, r, p, l]

3 e = 0.0591; %equilibrium target

4 b = 0.25; %transition probability from S_2 to S_1 in this ...

case 25 percent since we want 4 days to be the average or ...

(1/4)

5 a = 1 + b - b/(1 - e)

6 v = {{a, b}, {1 - a, 1 - b}};

7 t = Eigensystem[v];

8 q = {{0, t[[2, 2, 1]]*ln[(1/t[[1, 2]])]*(1/t[[1, 2]])^-s}, {0,

9 t[[2, 2, 2]]*ln[(1/t[[1, 2]])]*(1/t[[1, 2]])^-s}};

10 r = {{t[[2, 1, 1]], t[[2, 2, 1]]*(1/t[[1, 2]])^-s}, {t[[2, 1, ...

2]],

11 t[[2, 2, 2]]*(1/t[[1, 2]])^-s}};

12 p = Inverse[r];

13 l = Dot[q, p]
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Solution calculator for I(t)

1 Clear[a, b, t, e, d, y, w]

2 a = 0.15; %alpha

3 b = 0.6; %beta

4 t = 0.07410797215; %tau

5 d = 0.06805346324; %Delta

6 y = 0.00028801701; %gamma

7 w = 0.28772899933; %omega

8 e = 0.001; %xi

9 q = (a*b*t + a*b*d)*x^2 + (b*(d*t - d*t*e + y*t + y*d) + ...

a*(w*t + w*d + d*t*e - b*t))*x + t*(y*d - y*b + d*w - a*w)

10 v = Solve[q == 0, x]

11 Simplify[v]

Calculating eigenvalues at the disease-free equilibrium

1 Clear[s, z, i, o, p, u, q, v, n, l, a, b, t, e, w, y, d]

2 v = {{a*(w/(y + w)) + b*(y/(y + w)) - d, 0,

3 0}, {-a*(w/(y + w)) - t*(1 - e), -y - t*(1 - e),

4 w - t*(1 - e)}, {-b*(y/(y + w)) - e*t, y - e*t, -w - e*t}};

5 n = Eigenvalues[v];

6 q = Simplify[n]

Calculating eigenvalues at the endemic equilibrium

1 Clear[s, z, i, o, p, u, q, v, n, l, a, b, t, e, w, y, d]

2 v = {{-d, 0, 0}, {-a*(w/(y + w)) - t*(1 - e), -y - t*(1 - e),

3 w - t*(1 - e)}, {-b*(y/(y + w)) - e*t, y - e*t, -w - e*t}};

4 n = Eigenvalues[v];

5 q = Simplify[n]
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