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Abstract— We consider the stiffness and damping properties
of the vibro-impact in a backlash pair. Opposed to the existing
and mostly used models of the backlash, we address the
problem of contact and separation, and the associated force
propagation within a mechanical pair, from a viewpoint of
vibroimpact dynamics. We discuss the impact forces with the
coefficient of restitution as a principal factor which shapes
the transient backlash response. We show that a common
approach to modeling the backlash by means of a dead-zone
in a restoring force is unsuitable for correctly capturing the
mechanical impact. We exemplary demonstrate a qualitative
accord between an experimental backlash response and the
postulated modeling approach. Backlash related energy losses
of the vibroimpact damping are also addressed in brief.

I. INTRODUCING REMARKS AND PROBLEM DESCRIPTION

Backlash effect, known also as a mechanical play in which

the displacement of one mechanical part produces an equal

displacement of another mechanical part first after taking

up a defined clearance in the direction of drive, has already

been in focus of earlier studies, i.e. [1], on stability of the

closed-cycle (in the modern terminology closed-loop) control

systems. Since there, the research (and the correspondingly

published literature) in the mechanical engineering and ma-

chines, equally as in the system and control theory, have

time and again addressed the backlash phenomenon. From a

Fig. 1. Schematic representation of a backlash pair.

viewpoint of the principal mechanical structure, the backlash

pair is nothing but a stiff arrangement of two interconnected

masses, cf. Fig. 1, where a parameterizable clearance (with

the size denoted by 2β) allows for a transiently decoupled

motion in the relative (x1, ẋ1) and (x2, ẋ2) coordinates.

Often, one of the masses is also associated with an external

excitation force u, so that the m1 inertial body is sometimes

referred to as the driving and the m2 inertial body as the

driven part; but of course that is a matter of definition

only. No need to say in details that the forces and relative

displacements are in the generalized coordinates, so that the

translational and rotational mechanisms can be understood in
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a same manner. However, we will keep in mind the schematic

structure as in Fig. 1, while the most common applications

are yet associated with the rotary joints, couplings, and

gearing, just like an example that we will show qualitatively

by the end of the paper.

Novel aspects in the backlash modeling and, especially,

in the analysis of a provoked dynamic response of the

entire system with backlash came up from quite different

perspectives and methodologies. A kinematic backlash pair,

in the most simple case, was thought as a (static) input-

output nonlinearity, for which a standard describing-function

analysis (see e.g. [2], [3] for basics of describing functions)

was often performed. This allowed ad-hoc approximating the

backlash behavior within the loop of a dynamic subsystem.

An associated (inherent) disadvantage is to omit the dynamic

behavior of the backlash itself and the force propagation

through it. A more advanced study of the so-called dynamic

backlash, with explicit consideration of two colliding bodies

and associated energy, correspondingly power, losses in the

spectral distribution, was proposed in [4] for the describing

function approach. Also an explicit consideration of the

colliding pair of the backlash has gained popularity by

allowing for a more physical interpretation of the impact,

correspondingly engagement. Such approaches were based

on the Newton’s collision law e.g. [5] and hybrid dynamics

modeling with a variable structure e.g. [6]. Although those

approaches agree with the main laws of conservation of

momentum, they often reveal difficulties with an associated

jump mapping, corresponding with switchings of the variable

structure dynamics. In such cases, the displacement rate

undergoes an instantaneous jump at each backlash contact,

while the forward and backward couplings of both impact-

ing rigid-bodies are governed by a discrete impulse (reset)

map. Also the structural damping aspects remained under

developed. Those issues of an impulse-type switching at

impact were recognized already in [7] and considered to be

less physically justified, once the development and then the

reduction of contact forces at impact and, correspondingly,

separation are considered. Even when assuming a suitable

Fig. 2. One-way signals propagation through the backlash pair.

switching model, correspondingly hybrid model, of the rela-

tive motion with backlash, an appropriate force transmission

upon the impact and separation remain the most crucial for

capturing the behavior of a backlash pair. This becomes

Author´s accepted manuscript 
The manuscript accepted to publication in  
IEEE International Symposium on Industrial Electronics (ISIE2021)



particularly evident when looking at the simplified signals

flow as depicted in Fig. 2. Note that here, only a one-

directional force propagation is shown, and the relative mo-

tion of both inertial bodies is simplified to solely the double-

integrator case. Although any disturbances, like for example

the kinetic friction and others, are omitted in Fig. 2, the

question of properly capturing the state-varying transmission

force f remains non-trivial. Here, the state-varying refers to

the instantaneous state (in other words operational mode)

of the backlash, which can be either within the gap, or in

engagement, or at the impact or separation, cf. [8]. Moreover,

the uncertainties in modeling the restitution coefficient, from

the one side, and the numerical issues of a jump mapping,

from the other side, can lead to a backlash pair violates

the contact constraints. All these by-effects can render the

mentioned hybrid modeling as less robust and reliable for

practical engineering studies of the systems with backlash.

Another, and actually more frequently chosen, way to

capture the backlash behavior in a coupled mechanical pair

with clearance [9] is based on the dead-zone nonlinearity,

while that case no damping at all is taken into account

in association with the backlash itself. It has been, how-

ever, recognized that if one incorporates a nonzero viscous

damping of the (more specifically) shaft of a gear system

[10], or of the (more generally) vibroimpact system, the

contact forces experience some spurious transitions. Note

that these spurious step-wise force transitions, during the

engagement and disengagement of a mechanical pair, were

already analyzed in [7]. As an evasive way, an extension of

the dead-zone model was proposed in [10], while allowing

for a linear damping in the shaft and introducing an internal

backlash state with the case-difference dynamics. TThis

approach, which experienced certain dissemination in the

several afterwards following researches, does not however

take into account the vibroimpact damping. As a result, the

introduced dynamic state of backlash becomes redundant

and superfluous for the shafts with high stiffness and low

damping coefficients. At the same time, a dead-zone based

modeling does not require discontinuous jumps and can be,

therefore, favorable in several cases. In the recent work, we

will demonstrate the operational conditions, where the dead-

zone based approximation of a backlash pair will, however,

fail to capture the system dynamics.

In view of the above elucidated issues, it is worth noting

that the contact forces of backlash, with the correspondingly

varying stiffness and damping, belong to the not entirely

solved research questions. One can notice that an associ-

ated modeling and identification are essential for various

engineering applications, for an illustrative example see e.g.

[11]. The rest of this note is as follows. In section II, we

will recall the dead-zone based approximation of a backlash

pair and analyze why it is less suitable for capturing the

backlash transitions. In section III, the vibroimpact dynamics

of a backlash is introduced based on the seminal work [7].

In section IV, we will (i) briefly address the energy losses

associated with backlash and (ii) exemplary compare the

measured [12] and modeled backlash response.

II. DEAD-ZONE BASED BACKLASH APPROXIMATION

An often used modeling approach for describing a two-

inertia system, which is interconnected with a clearance, is

utilizing the dead-zone function

Υ(z) =

⎧⎨
⎩

z − β, z ≥ β,
0, |z| < β,
z + β, z ≤ −β.

(1)

The function (1) is then used prior to a high-valued stiffness

K, thus capturing the force transmission (through backlash)

between both moving masses. When assuming, additionally,

some linear damping b1ẋ1 and b2ẋ2 of the first and second

inertial term, correspondingly, the overall dynamics of a

mechanical backlash-pair, cf. Fig. 1, results to a model shown

below as a block diagram. Note that the transfer function

Fig. 3. Block diagram of a two-inertia system with backlash, which is
captured by the dead-zone nonlinearity in feedback.

blocks, as these used in Fig. 3, assume the dynamic model

written in the Laplace domain (i.e. with s to be the complex

variable), while the dead-zone nonlinearity (1) is acting in a

feedback channel. Here we recall that a single-valued static

nonlinearity can be always isolated into a single feedback

loop, this way yielding a classical Lur’e type system, e.g.

[2], [3]. This backlash pair model (Fig. 3) became particu-

larly popular in the motion control communities due to its

simplicity and ease of representation and analysis in both, the

time and frequency domains. Apart from an uncertain, and

mostly high-valued, stiffness K which can cause difficulties

of a numerical implementation, the drawbacks of this model,

i.e. of (1) with z = x1−x2, become particularly visible in the

relative (x1, x2) and (z, f) coordinates. Here we recall that

apart from the stiffness force K · Υ(z), the overall contact

force f is often including an additional linear damping term

∼ ż; that case is however not shown in Fig. 3.

An exemplary backlash map, in the relative (x1, x2)-
coordinates, is shown in Fig. 4. The response of the dead-

zone based model is plotted in (a), and an excerpt from the

experimental measurements [12] is plotted in (b). One can

recognize an appearance of the spurious transient waves in

the shape of the modeled backlash map. On the contrary, the

measured backlash is heavily damped upon few oscillating

waves. The spurious oscillations of the backlash state z
are also exemplary shown in Fig. 5. A typical response of

the model (i.e. Fig. 3) is depicted versus that one of the

vibroimpact model (i.e. f as eq. (5)), both using the same

slow periodic excitation u(t). If the frequency of u-excitation
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Fig. 4. Dead-zone based modeling and measured [12] backlash response.
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Fig. 5. Typical response of the backlash state z when using the dead-zone
based model with f = KΥ(z) and vibroimpact model with f as eq. (5).

increases, the backlash pattern of the dead-zone based model

becomes even more oscillating and does not converge to

the coupling state, correspondingly engagement mode, of the

backlash. In the worth case, the modeled backlash becomes

chaotically oscillating between both ±β boundaries and the

state trajectories become largely unpredictable.

III. VIBROIMPACT DYNAMICS OF BACKLASH SYSTEM

Throughout the rest of the paper we will further deal with

a mechanical system of two rigid bodies, with the lumped

inertial masses m1 and m2, cf. Fig. 1. The system dynamic

equations, coupled through the contact force f , are given by

m1ẍ1 = u1 − b1ẋ1 − f, (2)

m2ẍ2 = u2 − b2ẋ2 + f. (3)

Both rigid bodies, moving in the generalized coordinates x1

and x2, are driven by the generalized forces u1 and u2 and

allow for an additional viscous damping with the coefficients

b1 and b2. In the following, for the sake of simplicity and

without losing generality, we assume u2 = 0, thus meaning

the first body of a backlash pair is the driving and the second

is the driven one. The dead-zone, as a clearance between

both bodies with the size 2β, is captured (in a same and

usual way) by the piecewise smooth nonlinear function

z =

⎧⎨
⎩

x1 − x2 − β, (x1 − x2) ≥ β,
0, |x1 − x2| < β,
x1 − x2 + β, (x1 − x2) ≤ −β.

(4)

For the vibroimpact system can deal with not only ideal elas-

tic contacts and, therefore, allow also for structural damping,

Hunt and Crossley [7] proposed a nonlinear damping term.

This one is well in accord with the restitution coefficient

e which is driven by e = 1 − αżi. Here we recall that the

vibroimpact dynamics assumes żo = −eżi, where the relative

displacement rates are denoted by the subscripts {i, o} – for

the before (“in”) and, correspondingly, after (“out”) collision.

The restitution coefficient itself is usually 0 ≤ e ≤ 1, with

the left and right boundaries representing an absolute plastic

and absolute elastic impact, respectively. According to [7],

the overall contact force can be captured by

f = λznż + kzn, (5)

while through choosing λ = 1.5αk one can approach the

above introduced coefficient of restitution. For the construc-

tion materials (like e.g. steel or bronze) α will have a rela-

tively small value, thus keeping impact in a predominantly

elastic region, that for a limited range of the vibroimpact

velocities. It is also worth noting that (5) reveals a certain

physical sense, since the structural damping increases with

the depth of penetration, i.e. with the growing |z|. The

contact force is namely zero immediately at the instant of

an engagement or disengagement and, then, evolves contin-

uously upon the contact. Note that this is independent of the

velocity magnitude |żi| at impact, – the feature which cannot

be provided by a linear damping of the vibroimpact.

It is obvious that the transient dynamics of vibroimpact

and, thus, the contact response of a backlash pair depend

on the choice of free parameters in (5). Here it is worth

recalling that for n = 3/2 it is consistent with the Herzian

theory of contacting spheres under static conditions, while

for n = 1 it captures the most simple case of two flat surfaces

under impacting, cf. [7]. While the stiffness k will (naturally)

determine the oscillating transient upon the contact, the

restitution shaping factor α is predominant for the damping

and, correspondingly, energy losses during the penetration,

i.e. for |z| > β, see Fig. 6. Here both, the backlash contact

force f and the penetration state |z| > β, are exemplary

shown and plotted as unitless, while the k-variation is by

the factor 5 and α-variation is by the factor 10, these for the

sake of a better comparison.
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Fig. 6. Exemplary map of the backlash contact force f over the penetration
state |z| > β, for different stiffness k and restitution shaping factor α.

IV. CONTACT ENERGY LOSSES AND EXPERIMENTAL

EXAMPLE

The above discussion and contact modeling, which follows

[7], allows for assuming the backlash force (5) which cap-

tures both, the nonlinear stiffness and structural damping of



the impact and engagement modes. In the following, we will

briefly discuss the energy losses which are associated with

backlash dynamics. Afterwards, an experimental example of

the measured backlash response is qualitatively compared

with the modeling, but without an explicit identification of

the free parameters.

A. Energy losses of backlash
Often, a mechanical pair {m1,m2} is subject to the

transient or even steady oscillations, so that the dynamic

state z(t) of the backlash is under a periodic impact. This

corresponds to a classical vibroimpact dynamics, where

the oscillation cycles are also associated with the damping

energy losses. In engineering practice, it is well known that

the undesired clearances in the multi-body structures can

reduce the nominal eigenfrequency to some extent, while the

overall system damping increases. The structural dissipation

of a kinetic energy of the moving pair {m1,m2} is mostly

not of a pure viscoelastic nature, and is rather of a hysteresis-

type, when being expressed in the relative (z, f) coordinates.
Since the energy losses, denoted by ΔE, upon one full

and symmetric backlash cycle Γ are twice the area of the

corresponding closed hysteresis loop, cf. Fig. 6, one can find

the analytic solution for the dissipated energy. Integrating (5),

with respect to z, and taking it twice one obtains

ΔE = 3αk

∮
Γ

znż dz, (6)

for which evaluation the knowledge of z and its rate are

only required. For the bounded system forces and, therefore,

relative velocities |ẋ1|, |ẋ2| < const and penetrations |z| <
const, one can estimate an upper bound Δ̂E ≈ const for the

cyclic energy dissipation through the vibroimpact. Then, for

the known oscillation frequency ω0, it is possible to predict

the energy losses since these are proportional to ω0Δ̂E.

B. Experimental example
For qualitatively evaluating the above modeling, we com-

pare the numerical simulation of (2)-(5), made for the varying

α, with the measured transient backlash response, i.e. in

terms of the z(t) time series. The measured (see [12] for

details) z-response is shown in Fig. 7 (a). Its modeled

counterpart is shown in Fig. 7 (b) for different α values. Note

that since no explicit parameters identification is performed,

the simulated z value is without units. This is mainly due

to the fact of double-integrators, cf. (2), (3), which accurate

prediction is impeded by inherent integration errors (u is the

only used input) and weakly known initial conditions of the

backlash state. At the same time, one can recognize that an

appropriately chosen α-factor, which primarily determines

the restitution coefficient, allows a good agreement with the

measurement in the form of the transient oscillations of z(t).
One can also recognize that further decreasing of α (see

green line in Fig. 7 (b)), results in a more elastic impact,

with multiple ’bouncing ball’-type oscillations. When the α-

factor is increased (see red line in Fig. 7 (b)), the impact is

close to be ’critically damped’ and no transient z-oscillations

occur.
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Fig. 7. Fragments from the experimentally measured [12] backlash
response z in (a), versus the computed z for varying α-factor in (b)
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