
Received November 26, 2020, accepted December 18, 2020, date of publication January 6, 2021, date of current version January 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3049569

Extending the Tsetlin Machine With
Integer-Weighted Clauses for Increased
Interpretability
K. DARSHANA ABEYRATHNA , OLE-CHRISTOFFER GRANMO ,
AND MORTEN GOODWIN
Centre for Artificial Intelligence Research, University of Agder, 4879 Grimstad, Norway

Corresponding author: K. Darshana Abeyrathna (darshana.abeyrathna@uia.no)

ABSTRACT Building models that are both interpretable and accurate is an unresolved challenge for
many pattern recognition problems. In general, rule-based and linear models lack accuracy, while deep
learning interpretability is based on rough approximations of the underlying inference. However, recently, the
rule-based Tsetlin Machines (TMs) have obtained competitive performance in terms of accuracy, memory
footprint, and inference speed on diverse benchmarks (image classification, regression, natural language
understanding, and game-playing). TMs construct rules using human-interpretable conjunctive clauses in
propositional logic. These, in turn, are combined linearly to solve complex pattern recognition tasks. This
paper addresses the accuracy-interpretability challenge inmachine learning by introducing a TMwith integer
weighted clauses – the Integer Weighted TM (IWTM). The intent is to increase TM interpretability by
reducing the number of clauses required for competitive performance. The IWTM achieves this by weighting
the clauses so that a single clause can replace multiple duplicates. Since each TM clause is formed adaptively
by a Tsetlin Automata (TA) team, identifying effective weights becomes a challenging online learning
problem.We solve this problem by extending each team of TAwith another kind of automaton: the stochastic
searching on the line (SSL) automaton. We evaluate the performance of the new scheme empirically using
five datasets, along with a study of interpretability. On average, IWTM uses 6.5 times fewer literals than
the vanilla TM and 120 times fewer literals than a TM with real-valued weights. Furthermore, in terms of
average memory usage and F1-Score, IWTMoutperforms simpleMulti-Layered Artificial Neural Networks,
Decision Trees, Support Vector Machines, K-Nearest Neighbor, Random Forest, Gradient Boosted Trees
(XGBoost), Explainable Boosting Machines (EBMs), as well as the standard and real-value weighted TMs.
IWTM finally outperforms Neural Additive Models on Fraud Detection and StructureBoost on CA-58 in
terms of Area Under Curve, while performing competitively on COMPAS.

INDEX TERMS Tsetlin machine, integer-weighted Tsetlin machine, interpretable AI, interpretable machine
learning, XAI, rule-based learning, decision support system.

I. INTRODUCTION
Interpretable Machine Learning refers to machine learning
models that obtain transparency by providing the reasons
behind their output. Linear Regression, Logistic Regression,
Decision Trees, and Decision Rules are traditional inter-
pretable machine learning approaches. However, as discussed
in [1], the degree of interpretability of these algorithms vary.
More importantly, such methods struggle with obtaining high

The associate editor coordinating the review of this manuscript and

approving it for publication was Pengcheng Liu .

accuracy for complex problems, especially in comparison to
deep learning. On the other hand, deep learning inference
cannot easily be interpreted [2] and is thus less suitable for
high-stakes domains such as credit-scoring [3], [4], medicine
[5], [6], bioinformatics [7], [8], churn prediction [9], [10]
healthcare, and criminal justice [11]. Therefore, developing
machine learning algorithms capable of achieving a better
trade-off between interpretability and accuracy is of signifi-
cant importance and continues to be an active area of research.

One of the ways to tackle the above-stated research prob-
lem is explaining the deep learning inference. Different

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 8233

https://orcid.org/0000-0003-4816-2597
https://orcid.org/0000-0002-7287-030X
https://orcid.org/0000-0003-0677-4421


K. D. Abeyrathna et al.: Extending the TM With Integer-Weighted Clauses for Increased Interpretability

approaches have been proposed for local interpretability, i.e.,
explaining individual predictions [12]. However, they fail to
provide clear explanations of model behavior globally [13].
Recently, Agarwal et al. [11] proposed a novel deep learning
approach that belongs to the family of Neural Additive Mod-
els (NAMs). Even though NAMs are inherently interpretable,
they are still surpassed by regular deep learning algorithms
when it comes to accuracy [11].

Interpretable linear and rule-based methods can sometimes
offer a better trade-off between interpretability and accuracy.
Learning propositional formulae to represent data patterns
has a long history, with association rule learning [14] being
one well-known approach, which has been used to predict
sequential events [15]. Other examples include the work of
Feldman on the hardness of learning formulae in Disjunctive
Normal Form (DNF) [16] and Probably Approximately Cor-
rect (PAC) learning, which has provided fundamental insight
into machine learning as well as a framework for learning for-
mulae in DNF [17]. Approximate Bayesian approaches have
recently been introduced to provide more robust learning of
rules [18], [19]. Furthermore, hybrid Logistic Circuits have
had success in image classification [20]. Logical operators in
one layer of the logistic circuit are wired to logical operators
in the next layer, and the whole system can be represented
as a logistic regression function. This approach uses local
search to build a Bayesian model that captures the logical
expression, and learns to classify by employing stochastic
gradient descent. Yet, in general, rule-basedmachine learning
scales poorly and is prone to noise. Indeed, for data-rich
problems, in particular those involving natural language and
sensory inputs, rule-based machine learning is inferior to
deep learning.

Tsetlin Machines (TMs) are entirely based on logical oper-
ators and summation, founded on TA-based bandit learning
[21]–[27]. Despite being rule-based, TMs have obtained com-
petitive performance in terms of accuracy, memory footprint,
and inference speed on diverse benchmarks, including image
classification, regression, natural language understanding,
and game-playing. Employing a team of TA [28], a TM learns
a linear combination of conjunctive clauses in propositional
logic, producing decision rules similar to the branches in
a decision tree (e.g., if X satisfies condition A and not
condition B then Y = 1) [23].

A. RECENT PROGRESS ON TMS
Recent research on TMs reports several distinct TM prop-
erties. The TM performs competitively on several classic
datasets, such as Iris, Digits, Noisy XOR, and MNIST,
compared to Support Vector Machines (SVMs), Decision
Trees (DTs), Random Forest (RF), Naive Bayes Classifier,
Logistic Regression, and simple Artificial Neural Networks
(ANNs) [21]. The TM can further be used in convolu-
tion, providing competitive performance onMNIST, Fashion-
MNIST, and Kuzushiji-MNIST, in comparison with CNNs,
K-Nearest Neighbour (KNN), SVMs, RF, Gradient Boost-
ing, BinaryConnect, Logistic Circuits and ResNet [29]. The

TM has also achieved promising results in text classifi-
cation by using the conjunctive clauses to capture textual
patterns [23]. Further, hyper-parameter search can be sim-
plified with multi-granular clauses, eliminating the pattern
specificity parameter [25]. By indexing the clauses on the
features that falsify them, up to an order of magnitude faster
inference and learning has been reported [26]. Furthermore,
TM hardware has demonstrated up to three orders of magni-
tude reduced energy usage and faster learning, compared to
neural networks alike [27]. While TMs are binary through-
out, binarization schemes open up for continuous input [30].
Finally, the Regression TsetlinMachine addresses continuous
output problems, obtaining on par or better accuracy on pre-
dicting dengue incidences, stock price, real estate value and
aerofoil noise, in comparison to Regression Trees, RF, and
Support Vector Regression [24].

B. PAPER CONTRIBUTIONS
Although TMs are capable of achieving competitive perfor-
mance levels, they often require a large number of clauses
to do so, which impedes interpretability. To overcome this
accuracy-interpretability challenge in TMs, we propose the
IWTM, encompassing the following contributions.

• We extend each clause with the Stochastic Searching
on the Line (SSL) automaton [31]. This automaton is
to learn an effective weight for its clause by interacting
with the corresponding TA team. As a result, the set
of clauses can be rendered significantly more compact,
without sacrificing accuracy.

• Through the above scheme, we allow the TM to identify
which clauses are inaccurate. These clauses are given
smaller weights so that they must team up to obtain high
accuracy as a team. Furthermore, the clauses that are
sufficiently accurate are assigned larger weights so that
they can operate more independently.

• Empirically, we evaluate the IWTM using the eight data
sets: Bankruptcy, Balance Scale, Breast Cancer, Liver
Disorders, Heart Disease, Fraud Detection, COMPAS,
and CA-58. The results show that IWTM on average
uses 6.5 times fewer literals than the vanilla TM, and
120.0 times fewer literals than a TM with real-valued
weights [22]. Furthermore, performance is competitive
with recent state-of-the-art machine learning models.

C. PAPER ORGANIZATION
In Section II, we present the IWTM and describe how each
team of TA, composing the clauses, is extended with the
SSL. We further discuss the adaptive learning procedure
which simultaneously update both clauses and weights. Then
in Section III, we evaluate the classification accuracy of
IWTM empirically using five datasets, including a study
of rule extraction for Bankruptcy prediction in detail and
compare against several ANNs, DTs, SVMs, KNN, RF, Gra-
dient Boosted Trees (XGBoost), EBMs (the current state-of-
the-art of Generalized Additive Models (GAMs) [32], [33])

8234 VOLUME 9, 2021



K. D. Abeyrathna et al.: Extending the TM With Integer-Weighted Clauses for Increased Interpretability

FIGURE 1. Transition graph of a two-action Tsetlin Automaton.

and competing TMs. Further, we contrast the performance
of IWTM against reported results on recent state-of-the-art
machine learning models, namely NAMs [11] and Structure-
Boost [34]. Finally, the paper is concluded in Section IV.

II. INTEGER-WEIGHTED TSETLIN MACHINE
In this section, we introduce the integer weighting scheme
for TMs. First, we cover the basics of TA, which determine
the composition of the TM clauses. Then we introduce the
basic TM structure, before we present how integer weights
are assigned to the TM clauses. We cover how the individual
clauses are trained to learn sub-patterns and how the weight
values are updated using SSL. We conclude the section by
analysing the computational complexity of the IWTM.

A. TSETLIN AUTOMATA
In the TM, a collective of two-action TA [28] (reviewed in
[35]) is used for bandit-based learning. FIGURE 1 shows a
two-action TA with 2N states. As illustrated, a TA decides its
next action from its present state. States from 1 to N trigger
Action 1, while states from N + 1 to 2N trigger Action 2.
The TA iteratively interacts with an environment. At each
iteration, the environment produces a reward or a penalty in
response to the action performed by the TA, according to
an unknown probability distribution. Reward feedback rein-
forces the action performed and penalty feedback weakens it.
In order to reinforce an action, the TA changes state towards
one of the ‘‘deeper’’ states, direction depending on the current
state. Conversely, an action is weakened by changing state
towards the center states (N /N +1). Hence, penalty feedback
eventually forces the TA to change action, shifting its state
fromN toN+1 or vice versa. In this manner, with a sufficient
number of states, a TA converges to perform the action with
the highest probability of receiving a reward – the optimal
action – with probability arbitrarily close to unity, as long as
the reward probability is greater than 0.5 [28].

B. TM STRUCTURE
The goal of a basic TM is to categorize input feature vec-
tors X into one of two classes, y ∈ {0, 1}. As shown in
FIGURE 2, X consists of o propositional variables, xk ∈
{0, 1}o. Further, a TM also incorporates the negation ¬xk of
the variables to capture more sophisticated patterns. Together

these are referred to as literals: L = [x1, x2, . . . , xo,
¬x1,¬x2, . . . ,¬xo] = [l1, l2, . . . , l2o].

1) CLAUSE CONSTRUCTION
At the core of a TM one finds a set of m conjunctive clauses.
The conjunctive clauses are to capture the sub-patterns asso-
ciated with each output y. All of the clauses in the TM
receive identical inputs, which is the vector of literals L.
We formulate a TM clause as follows:

cj =
∧
k∈Ij

lk . (1)

Notice that each clause, indexed by j, includes distinct
literals. The indexes of the included literals are contained in
the set Ij ⊆ {1, . . . , 2o}. For the special case of Ij = ∅, i.e.,
an empty clause, we have:

cj =

{
1 during learning
0 otherwise.

(2)

That is, during learning, empty clauses output 1 and during
classification they output 0.
It is the two-action TAs that assign literals to clauses. Each

clause is equipped with 2×o TAs, one per literal k , as shown
in Clause-1 of FIGURE 2. The TA states from 1 to N map
to the exclude action, which means that the corresponding
literal is excluded from the clause. For states from N + 1 to
2N , the decision becomes include, i.e., the literal is included
instead. The states of all the TAs in all of the clauses are
jointly stored in the matrixA:A = (aj,k ) ∈ {1, . . . , 2N }m×2o,
with j referring to the clause and k to the literal. Hence, the
literal indexes contained in the set Ij can be expressed as
Ij = {k|aj,k > N , 1 ≤ k ≤ 2o}.

2) CLAUSE OUTPUT
The output of the clauses can be produced as soon as the deci-
sions of the TAs are known. Since the clauses are conjunctive,
they evaluate to 0 if any of the literals included are of value 0.
For a given input X , let the set I1X contain the indexes of the
literals of value 1. Then the output of clause j can be expressed
as:

cj =

{
1 if Ij ⊆ I1X ,
0 otherwise.

(3)

In the following, we let the vector C denote the complete
set of clause outputs C = (cj) ∈ {0, 1}m, as defined above.

3) CLASSIFICATION IN TM
The TM classifies data into two classes, which means that
sub-patterns associated with both classes must be identified.
This is done by dividing clauses into two groups. Clauses with
odd index are assigned positive polarity (c+j ), and they are
to capture sub-patterns of output y = 1. Clauses with even
index, on the other hand, are assigned negative polarity (c−j )
and they seek the sub-patterns of output y = 0.

VOLUME 9, 2021 8235



K. D. Abeyrathna et al.: Extending the TM With Integer-Weighted Clauses for Increased Interpretability

FIGURE 2. The Integer Weighted Tsetlin Machine structure.

Once a clause recognizes a sub-pattern, it outputs 1, casting
a vote according to its polarity. The final output of the TM
is found by summing up the clause outputs, subtracting the
votes of the clauses with negative polarity from the votes of
the clauses with positive polarity. With v being the difference
in clause output, v =

∑
j c
+

j −
∑

j c
−

j , the output of the TM
is decided as follows:

ŷ =

{
1 if v ≥ 0
0 if v < 0.

(4)

C. INCORPORATING INTEGER WEIGHTS INTO THE TM
In contrast to the weighting scheme proposed by Phoulady et
al. [22], which employs real-valued weights that require mul-
tiplication and an additional hyperparameter, our scheme is
parameter-free and uses increment and decrement operations
to update the weights.

1) CLASSIFICATION IN IWTM
The weights decide the impact of each clause during classifi-
cation, replacing Eq. 4 with:

ŷ =

{
1 if

∑
j w
+

j c
+

j −
∑

j w
−

j c
−

j ≥ 0

0 otherwise.
(5)

Above, w+j is the weight of the jth clause with positive polar-
ity, while w−j is the weight of the jth clause with negative
polarity.

D. LEARNING PROCEDURE
In this sub-section, we first discuss how individual clauses are
trained to learn sub-patterns. Then the procedure of updating
weights is explained in detail.

1) CLAUSE LEARNING
A TM learns online, processing one training example (X , y)
at a time. Within each clause, a local team of TAs decide the
clause output by selecting which literals are included in the
clause. Jointly, the TA teams thus decide the overall output
of the TM, mediated through the clauses. This hierarchical
structure is used to update the state of each TA, with the
purpose of maximizing output accuracy. We achieve this with
two kinds of reinforcement: Type I and Type II feedback.
Type I and Type II feedback control how the individual
TAs either receive a reward, a penalty, or inaction feedback,
depending on the context of their actions. In the following
we focus on clauses with positive polarity. For clauses with
negative polarity, Type I feedback replaces Type II, and vice
versa.

8236 VOLUME 9, 2021



K. D. Abeyrathna et al.: Extending the TM With Integer-Weighted Clauses for Increased Interpretability

Type I feedback: Type I feedback consists of two sub-
feedback schemes: Type Ia and Type Ib. Type Ia feedback
reinforces include actions of TAs whose corresponding literal
value is 1, however, only when the clause output also is 1.
Type Ib feedback combats over-fitting by reinforcing exclude
actions of TAs when the corresponding literal is 0 or when
the clause output is 0. Consequently, both Type Ia and Type
Ib feedback gradually force clauses to output 1.

Type I feedback is given to clauses with positive polarity
when y = 1. This stimulates suppression of false negative
output. To diversify the clauses, they are targeted for Type I
feedback stochastically as follows:

p+j =

1 with probability
T −max(−T ,min(T , v))

2T
,

0 otherwise.
(6)

Here, p+j is the decision whether to target clause j with posi-
tive polarity for feedback. The user set target T for the clause
output sum v decides how many clauses should be involved
in learning a particular sub-pattern. Higher T increases the
robustness of learning by allocating more clauses to learn
each sub-pattern. The decisions for the complete set of posi-
tive clauses are organized in the vector P+ = (p+j ) ∈ {0, 1}

m
2 .

Similarly, decisions for the complete set of negative clauses
can be found in P− = (p−j ) ∈ {0, 1}

m
2 .

If a clause is eligible to receive feedback per Eq. 6, the
individual TAs of the clause are singled out stochastically
using a user-set parameter s (s≥ 1). The decision whether the
k th TA of the jth clause of positive polarity is to receive Type
Ia feedback, r+j,k , and Type Ib feedback, q

+

j,k , are stochastically
made as follows:

r+j,k =

1 with probability
s− 1
s
,

0 otherwise.
(7)

q+j,k =

1 with probability
1
s
,

0 otherwise.
(8)

The above decisions are respectively stored in the two
matrices R+ and Q+, i.e., R+ = (r+j,k ) ∈ {0, 1}

m×2o

and Q+ = (q+j,k ) ∈ {0, 1}
m×2o. Using the complete set

of conditions, TA indexes selected for Type Ia are I Ia =
{(j, k)|lk = 1 ∧ c+j = 1 ∧ p+j = 1 ∧ r+j,k =

1}. Similarly TA indexes selected for Type Ib are I Ib ={
(j, k)|(lk = 0 ∨ c+j = 0) ∧ p+j,y = 1 ∧ q+j,k = 1

}
.

Once the indexes of the TAs are identified, the states of
those TAs are updated. Available updating options are⊕ and
	, where ⊕ adds 1 and 	 subtracts 1 from the current state.
The processing of the training example ends with the state
matrixA+ being updated as follows:A+←

(
A+ ⊕ I Ia

)
	I Ib.

Type II feedback: Type II feedback is given to clauses
with positive polarity for target output y = 0. Clauses to
receive Type II feedback are again selected stochastically.
The decision for the jth clause of positive polarity is made

as follows:

p+j =

1 with probability
T +max(−T ,min(T , v))

2T
,

0 otherwise.
(9)

The idea behind Type II feedback is to change the out-
put of the affected clauses from 1 to 0. This is achieved
simply by including a literal of value 0 in the clause. TAs
selected for Type II can accordingly be found in the index
set: I II = {(j, k)|lk = 0 ∧ c+j = 1 ∧ p+j = 1}. To obtain
the intended effect, these TAs are reinforced to include their
literals in the clause by increasing their corresponding states:
A+← A+ ⊕ I II.
When training has been completed, the final decisions

of the TAs are recorded, and the resulting clauses can be
deployed for operation.

2) WEIGHT LEARNING
The learning of weights is based on increasing the weight of
clauses that receive Type Ia feedback (due to true positive
output) and decreasing the weight of clauses that receive
Type II feedback (due to false positive output). The overall
rationale is to determine which clauses are inaccurate and
thus must team up to obtain high accuracy as a team (low
weight clauses), and which clauses are sufficiently accurate
to operate more independently (high weight clauses).

The weight updating procedure is summarized in Algo-
rithm 1 and in the flowchart in FIGURE 3. Here, wj(n) is the
weight of clause j at the nth training round (ignoring polarity
to simplify notation). The first step of a training round is to
calculate the clause output as per Eq. 3. Theweight of a clause
is only updated if the clause output cj(n) is 1 and the clause
has been selected for feedback (pj = 1). Then the polarity of
the clause and the class label y decide the type of feedback
given. That is, like a regular TM, positive polarity clauses
receive Type Ia feedback if the clause output is a true positive
and Type II feedback if the clause output is a false positive.
For clauses with negative polarity, the feedback types switch
roles.

When clauses receive Type Ia or Type II feedback, their
weights are updated accordingly. We use the stochastic
searching on the line (SSL) automaton to learn appropri-
ate weights. SSL is an optimization scheme for unknown
stochastic environments pioneered by Oommen [31]. The
goal is to find an unknown location λ∗ within a search interval
[0, 1]. In order to find λ∗, the only available information for
the LearningMechanism (LM) is the possibly faulty feedback
from its attached environment (E).

In SSL, the search space λ is discretized into N points,
{0, 1/N , 2/N , . . . , (N − 1)/N , 1}, with N being the dis-
cretization resolution. During the search, the LM has a loca-
tion λ ∈ {0, 1/N, 2/N, . . . , (N−1)/N, 1}, and can freely
move to the left or to the right from its current location. The
environment E provides two types of feedback: E = 1 is
the environment suggestion to increase the value of λ by one

VOLUME 9, 2021 8237



K. D. Abeyrathna et al.: Extending the TM With Integer-Weighted Clauses for Increased Interpretability

FIGURE 3. The complete learning process of the IWTM in a flowchart.

step, and E = 0 is the environment suggestion to decrease
the value of λ by one step. The next location of λ, λ(n + 1)
can thus be expressed as follows:

λ(n+ 1) =

{
λ(n)+ 1/N , if E(n) = 1,
λ(n)− 1/N , if E(n) = 0.

(10)

λ(n+ 1) =

{
λ(n), if λ(n) = 1 and E(n) = 1,
λ(n), if λ(n) = 0 and E(n) = 0.

(11)

Asymptotically, the learning mechanics is able to find a value
arbitrarily close to λ∗ when N →∞ and n→∞.
In our case, the search space of clause weights is [0,∞],

so we use resolution N = 1, with no upper bound for λ.
Accordingly, we operate with integer weights. As seen in
FIGURE 3, if the clause output is a true positive, we simply
increase the weight by 1. Conversely, if the clause output is a
false positive, we decrease the weight by 1.

By following the above procedure, the goal is to make
low precision clauses team up by giving them low weights,
so that they together can reach the summation target T .
By teaming up, precision increases due to the result-
ing ensemble effect. Clauses with high precision, how-
ever, gets a higher weight, allowing them to operate more
independently.

The above weighting scheme has several advantages. First
of all, increment and decrement operations on integers are
computationally less costly than multiplication based updates
of real-valued weights. Additionally, a clause with an inte-
ger weight can be seen as multiple copies of the same
clause, making it more interpretable than real-valued weight-
ing, as studied in the next section. Additionally, clauses
can be turned completely off by setting their weights to
0 if they do not contribute positively to the classification
task.

8238 VOLUME 9, 2021



K. D. Abeyrathna et al.: Extending the TM With Integer-Weighted Clauses for Increased Interpretability

Algorithm 1 The Complete IWTM Learning Process
1: Input: Training data (X, y), m, T , s
2: Initialize: Random initialization of TAs
3: Begin: nth training round
4: for j = 1, . . . ,m do if pj = 1 F Eq. (6) and (9)
5: if (y = 1 and j is odd) or (y = 0 and j is even) then
6: if cj = 1 then F Eq. (3)
7: wj(n+ 1)← wj(n)+ 1 F Eq. (10-11)
8: for feature k = 1, . . . , 2o do
9: if lk = 1 then

10: Type Ia Feedback
11: else:
12: Type Ib Feedback
13: end if
14: end for
15: else:
16: wj(n+ 1)← wj(n) F Eq. (10-11)
17: Type Ib Feedback
18: end if
19: else: (y = 1 and j is even) or (y = 0 and j is odd)
20: if cj = 1 then F Eq. (3)
21: if wj(n) > 0 then
22: wj(n+ 1)← wj(n)− 1 F Eq. (10-11)
23: end if
24: for feature k = 1, . . . , 2o do
25: if lk = 0 then
26: Type II Feedback
27: else:
28: Inaction
29: end if
30: end for
31: else:
32: wj(n+ 1)← wj(n) F Eq. (10-11)
33: Inaction
34: end if
35: end if
36: end for

E. COMPUTATIONAL COMPLEXITY OF THE IWTM
To evaluate computational complexity, we introduce the three
constants α, β, and γ , where α represents the computational
cost to perform the conjunction of two bits, β is the com-
putational cost of computing the summation of two integers,
and γ is the computational cost to update the state of a single
automaton (TA or SSL) in IWTM.

We here consider worst-case computational costs for train-
ing and testing, assuming all the TAs in all of the clauses
are operative and updated. In a TM with m clauses and
when the input vector consists of o features, the TM per-
forms 2o × m number of TA updates for a single training
sample. In the IWTM, this becomes (2o + 1) × m updates
due to the weights. Hence, we compute the computational
cost of updating TA states during the IWTM training as
γ ×(2o + 1) × m. The cost is simply d times higher when

there are d number of training samples in the dataset, i.e.,
d×γ ×(2o+ 1)× m.
The other two TM operations are to compute the output of

clauses and to sum up the outputs to get the vote difference.
Assuming all the TAs in all of the clauses have decided to
include their corresponding literals in the clause, the com-
putational cost for obtaining the clause outputs becomes
α × 2o × m. Once the clause outputs are ready, the vote
difference is calculated. This requires a computational cost of
β×(m−1).We only encounter the above stated computational
requirements during the testing phase. However, both these
components have to bemultipliedwith the number of samples
to obtain the training cost, i.e., d[α× 2o×m+β× (m− 1)].
Accordingly, we can formulate the computational com-

plexity as a function of d which exhibits how the com-
putational complexity of the IWTM varies with d during
the IWTM training. Combining the costs of updating TAs,
computing clause outputs, and calculating the vote difference,
we get a linear function f (d):

f (d) = d[γ × (2o+ 1)× m+ α × 2o× m+ β × (m− 1)].

Then, using the Big O notation [36], the computational com-
plexity of IWTM training becomes O(d), which means that
the complexity of the IWTM increases linearly with the
number of training samples d . Similarly, complexity grows
linearly with the number of clausesm and with the number of
inputs o.

III. EMPIRICAL EVALUATION
In this section, we empirically evaluate the impact of integer
weighting on the TM using five real-world datasets. Three
of these datasets are from the health sector: Breast Cancer
dataset, Liver Disorder dataset, and Heart Disease dataset,
while the two other ones are the Balance Scale andCorporate
Bankruptcy datasets. We use the latter dataset to examine
interpretability more closely.

In the comparison, the IWTM is compared with the vanilla
TM as well as the TM with real-valued weights (RWTM).
Additionally, we contrast performance against the standard
machine learning techniques Artificial Neural Networks
(ANNs), Support Vector Machines (SVMs), Decision Trees
(DTs), K-Nearest Neighbor (KNN), Random Forest (RF),
Gradient Boosted Trees (XGBoost) [37], Explainable Boost-
ingMachines (EBMs) [32] alongwith two recent state-of-the-
art machine learning approaches: Neural Additive Models
[11] and StructureBoost [34]. For comprehensiveness, three
ANN architectures are used: ANN-1 – with one hidden layer
of 5 neurons; ANN-2 – with two hidden layers of 20 and 50
neurons each, and ANN-3 – with three hidden layers and 20,
150, and 100 neurons.

In the experiments, we use the binarization scheme based
on thresholding proposed in [30] for continuous and categor-
ical features. The results are average measures over 50 inde-
pendent experiment trials. We used 80% of the data for
training and 20% for testing. Hyperparameters were set using
manual binary search.

VOLUME 9, 2021 8239



K. D. Abeyrathna et al.: Extending the TM With Integer-Weighted Clauses for Increased Interpretability

TABLE 1. Binarizing categorical features in the Bankruptcy dataset.

TABLE 2. Clauses produced by TM, RWTM, and IWTM for m = 10.

A. BANKRUPTCY
In finance, accurate prediction of bankruptcy is important to
mitigate economic loss [38]. However, since the decisions
made related to bankruptcy can have critical consequences,
interpretable machine learning algorithms are often preferred
over black-box methods.

Consider the historical records of 250 companies in
the Bankruptcy dataset.1 Each record consists of six fea-
tures pertinent to predicting bankruptcy: 1) Industrial Risk,
2) Management Risk, 3) Financial Flexibility, 4) Credibility,
5) Competitiveness, and 6) Operation Risk. These are cate-
gorical features where each feature can be in one of three
states: Negative (N), Average (A), or Positive (P). The two
target classes are Bankruptcy and Non-bankruptcy. While
the class output is binary, the features are ternary. We thus
binarize the features using thresholding [30], as shown in
TABLE 1. Thus, the binarized dataset contains 18 binary
features.

We first investigate the behavior of TM, RWTM, and
IWTM with very few clauses (10 clauses). The clauses pro-
duced are summarized in TABLE 2.

Five out of the ten clauses (clauses with odd index) vote
for class 1 and the remaining five (those with even index)
vote for class 0. In the TM, the first clause contains just
one literal, which is the negation of feature 11. From the
binarized feature set, we recognize that the 11th feature
is Negative Credibility. Likewise, clauses 2, 4, 6, 8, 10
contain the same two literals – the negation of Average
Competitiveness and Negative Competitiveness non-negated.
The clauses 3, 5, and 9, on the other hand, include Nega-
tive Competitiveness negated. There is also a free vote for
class 1 from the ‘‘empty’’ clause 7, which is ignored during
classification.

1Available from https://archive.ics.uci.edu/ml/datasets/qualitative_
bankruptcy.

TABLE 3. Clauses produced by TM, RWTM, and IWTM for m = 2.

The clause outputs of the TM in TABLE 2 are visualized
in FIGURE 4. From the figure, it is clear how the trained TM
operates. It uses only two features, Credibility and Compet-
itiveness, and their negations. Further, observe how the TM
implicitly introduces weighting by duplicating the clauses.

TABLE 2 also contains the clauses learnt by RWTM and
IWTM. The most notable difference is that RWTM puts little
emphasis on the clauses for class 0, giving them weight
0.0001. Further, it puts most emphasis on the negation ofNeg-
ative Credibility and Negative Competitiveness. The IWTM,
on the other hand, like the TM, focuses on the negation of
Average Competitiveness and non-negated Negative Compet-
itiveness. Note also that, without loss of accuracy, IWTM
simplifies the set of rules by turning off negated Negative
Credibility by giving clause 5 weight zero. The three literals
remaining are the negation of Average Competitiveness and
Negative Competitiveness, negated and non-negated. Because
Negative Competitiveness implies negated Average Compet-
itiveness, IWTM ends up with the simple classification rule
(ignoring the weights):

Outcome =

{
Bankruptcy if Negative Competitiveness
Non-bankruptcy otherwise.

(12)

By asking the TMs to only produce two clauses, we can
obtain the above rule more directly, as shown in TABLE 3.
As seen, again, TM, RWTM, and IWTM achieve similar
accuracy. Further, IWTM turns off Negative Competitive-
ness negated, producing the simplest rule set of the three
approaches.

The previous accuracy results represent the majority of
experiment trials. However, some of the trials fail to reach
an optimal TM configuration. Instead of re-running learning
a few times, one can increase the number of clauses for
increased robustness in every trial. This comes at the cost of
reduced interpretability, however. TABLE 4, TABLE 5, and
TABLE 6 contain average performance (Precision, Recall,
F1-Score, Accuracy, Specificity) over 50 experiment trials,
showing how robustness increases with more clauses, up to a
certain point.

TABLE 4 reports the results for a standard TM. Our goal is
to maximize F1-Score, since accuracy can be misleading for
imbalanced datasets. Notice how the F1-Score increases with
the number of clauses, peaking when m equals 2000. At this
point, the average number of literals (include actions) across
the clauses is 3622 (rounded to nearest integer). The RWTM
behaves similarly, as seen in TABLE 5. However, it peaks
with an F1-Score of 0.999 at m = 2000. Then 3478 literals
have been included on average.

8240 VOLUME 9, 2021

https://archive.ics.uci.edu/ml/datasets/qualitative_bankruptcy
https://archive.ics.uci.edu/ml/datasets/qualitative_bankruptcy


K. D. Abeyrathna et al.: Extending the TM With Integer-Weighted Clauses for Increased Interpretability

FIGURE 4. TM classification process for the Bankruptcy dataset.

TABLE 4. Performance of TM on Bankruptcy dataset.

TABLE 5. Performance of RWTM on Bankruptcy dataset.

TABLE 6. Performance of IWTM on Bankruptcy dataset.

The IWTM, on the other hand, achieves its best F1-Score
when m is 500. At that point, an average of 379 literals are
included (only considering clauses with a weight larger than
0), which is significantly smaller than what was obtained with
TM and RWTM.

How the number of literals increases with the number
of clauses is shown in FIGURE 5. The IWTM consistently

FIGURE 5. The number of literals included in different TM setups to work
with Bankruptcy dataset.

produces fewer literals than the other two schemes, and the
difference increases with the number of clauses.

We finally compare the performance of TM, RWTM, and
IWTM against several standard machine learning algorithms,
namely ANN, DT, SVM, KNN, RF, XGBoost, and EBM.
The performance of all of the techniques is compiled in
TABLE 7. The best F1-Score is obtained by RWTM and
IWTM, which produce identical results expect that IWTM
uses fewer literals, less memory during training, and less
training time per epoch. Also, in terms of Accuracy, RWTM
and IWTM obtains the best average results. Further notice
that all of the TMs achieve a Recall of 1.0. Additionally,

VOLUME 9, 2021 8241



K. D. Abeyrathna et al.: Extending the TM With Integer-Weighted Clauses for Increased Interpretability

TABLE 7. Performance comparison for Bankruptcy dataset.

FIGURE 6. Sample complexity analysis for the Bankruptcy dataset.

only DT, TM, and IWTM require memory close to zero, both
during training and testing. RWTM uses more memory in
training than the other two TMs since it has to represent the
weights of those 2000 clauses as floating point numbers.

We also perform a sample complexity analysis for all
the techniques. As FIGURE 6 manifests, all the techniques
except RF andXGBoost surpasses an F1-Score of 0.975when
training on 40 percent of the data. The F1-Scores of RF and
XGBoost start relatively low and fluctuate around 0.950 after
40% of the training samples have been processed.

B. BALANCE SCALE
For the remaining datasets, we focus on TM, RWTM and
IWTM configurations that provide robust performance over
interpretability, comparing with selected machine learning
techniques.

We first cover the Balance Scale dataset,2 which contains
three classes: balance scale tip to the right, tip to the left, or is
in balance. The dataset also contains four features: 1) size of
the weight on the left-hand side, 2) distance from the center to
the weight on the left, 3) size of the weight on the right-hand
side, and 4) distance from the center to the weight on the right.
To make the output binary, we remove the ‘‘balanced’’ class
ending up with 576 data samples.

TABLE 8, TABLE 9, and TABLE 10 contain the results of
TM, RWTM, and IWTM, respectively, with varying m. For

2Available from http://archive.ics.uci.edu/ml/datasets/balance+scale.

TABLE 8. Performance of TM on Balance Scale dataset.

TABLE 9. Performance of RWTM on Balance Scale dataset.

TABLE 10. Performance of IWTM on Balance Scale dataset.

FIGURE 7. The number of literals included in different TM setups to work
with Balance Scale dataset.

the TM, F1-Score peaks at 0.945 when m = 200. At the
peak, 790 literals are used on average. RWTM obtains its

8242 VOLUME 9, 2021

http://archive.ics.uci.edu/ml/datasets/balance+scale


K. D. Abeyrathna et al.: Extending the TM With Integer-Weighted Clauses for Increased Interpretability

TABLE 11. Performance comparison for Balance Scale dataset.

FIGURE 8. Sample complexity analysis for the Balance Scale dataset.

best F1-Score with 500 clauses, using an average of 4406
literals overall. In contrast, IWTM reaches its best F1-Score
using only 120 literals, distributed among 100 clauses. Again,
IWTM uses significantly fewer literals than TM and RWTM.

The average number of literals used for varying number
of clauses is plotted in FIGURE 7. IWTM uses the least
number of literals, with the difference increasingwith number
of clauses.

TABLE 11 summarises the performance also of the other
machine learning techniques we contrast against. Here, EBM
obtains the highest F1-Score and Accuracy. Out of the three
TMs, IWTM achieves the highest F1-Score and Accuracy,
using similar or less training memory. The training time
required by IWTM is close to the training time of TM, and
roughly 60 times less compared to RWTM. According to the
sample complexity analysis in FIGURE 8, IWTM reaches an
F1-Score of 0.90 with merely 10% of the training data, and
approaches 0.95 from 20%.

C. BREAST CANCER
The Breast Cancer dataset3 covers recurrence of breast can-
cer, and consists of nine features: Age, Menopause, Tumor
Size, Inv Nodes, Node Caps, Deg Malig, Side (left or right),
the Position of the Breast, and Irradiation Status. The dataset
contains 286 patients (201 with non-recurrence and 85 with

3Available from https://archive.ics.uci.edu/ml/datasets/Breast+Cancer

TABLE 12. Performance of TM on Breast Cancer dataset.

TABLE 13. Performance of RWTM on Breast Cancer dataset.

TABLE 14. Performance of IWTM on Breast Cancer dataset.

recurrence). However, some of the patient samples miss some
of the feature values. These samples are removed from the
dataset in the present experiment.

The accuracy and number of literals included for
TM, RWTM, and IWTM are respectively summarized in
TABLE 12, TABLE 13, and TABLE 14. In contrast to the
previous two datasets, the F1-Score peaks at m = 2, and then
drops with increasing m. For m = 2, the average number of
literals used by TM, RWTM, and IWTM are 21, 4, and 2,
respectively. As seen in FIGURE 9, IWTM requires the least
amount of literals overall.

The performance of the other machine learning techniques
is similar in terms of F1-Score, with DT, RF, SVM, XGBoost,
and EBM providing the worst performance as summarized
in TABLE 15. The best F1-Score is obtained by TM while
IWTM provides the second-best. Yet, the moderate increase
of F1-Score from 0.511 to 0.531 for TM comes at the cost
of 19 extra literals. The three TMs also uses the least mem-
ory, requiring negligible memory both during training and

VOLUME 9, 2021 8243

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer


K. D. Abeyrathna et al.: Extending the TM With Integer-Weighted Clauses for Increased Interpretability

TABLE 15. Performance comparison for Breast Cancer dataset.

FIGURE 9. The number of literals included in different TM setups to work
with Breast Cancer dataset.

FIGURE 10. Sample complexity analysis for the Breast Cancer dataset.

testing. Training time per epoch for the TM approaches is also
small, amounting to 0.001 seconds, which is the lowest of
all the algorithms. The TMs also maintain better F1-Scores
across all training data sizes in comparison with the other
techniques, as seen from the sample complexity analysis in
FIGURE 10.

D. LIVER DISORDERS
The Liver Disorders dataset4 was created by BUPA Medical
Research and Development Ltd. (hereafter ‘‘BMRDL’’) dur-
ing the 1980s as part of a larger health-screening database.
The dataset consists of 7 attributes, namely Mean Cor-
puscular Volume, Alkaline Phosphotase, Alamine Amino-
transferase, Aspartate Aminotransferase, Gamma-Glutamyl
Transpeptidase, Number of Half-Pint Equivalents of Alco-
holic Beverages (drunk per day), and Selector (used to split
data into training and testing sets). However, McDermott
and Forsyth [39] claim that many researchers have used
the dataset incorrectly, considering the Selector attribute
as class label. Based on the recommendation of McDer-
mott and Forsythof, we here instead use Number of Half-
Pint Equivalents of Alcoholic Beverages as the dependent
variable, binarized using the threshold ≥ 3. The Selec-
tor attribute is discarded. The remaining attributes repre-
sent the results of various blood tests, and we use them as
features.

TABLE 17, TABLE 18, and TABLE 19 summarizes
the performance of TM, RWTM, and IWTM, respectively.
As seen, all of the TM F1-Scores peak at m = 2. TM uses an
average of 27 literals, RWTM uses 29, while IWTM uses 9.
FIGURE 11 plots how the number of literals increases with
number of clauses, again confirming that IWTM uses fewer
literals overall.

Considering the other machine learning techniques
(TABLE 16), RF produces the highest F1-Score 0.729,
obtained with the smallest memory usage for both training
and testing. However, this performance is comparable to the
DT F1-Score of 0.728, spending negligible testing memory.
Of the three TM approaches, RWTM obtains the highest
F1-Score - the fourth highest among all of the techniques.
All three TMs use insignificant memory during both training
and testing, requiring the same amount of training time per
epoch.

4Available from https://archive.ics.uci.edu/ml/datasets/Liver+Disorders.

8244 VOLUME 9, 2021

https://archive.ics.uci.edu/ml/datasets/Liver+Disorders


K. D. Abeyrathna et al.: Extending the TM With Integer-Weighted Clauses for Increased Interpretability

TABLE 16. Performance comparison for Liver Disorders dataset.

TABLE 17. Performance of TM on Liver Disorders dataset.

TABLE 18. Performance of RWTM on Liver Disorders dataset.

TABLE 19. Performance of IWTM on Liver Disorders dataset.

With 10% of the training data available, IWTM obtains the
highest F1-Score among all the techniques – a score of 0.725.
After that, the score fluctuates with increasing training data
size, as depicted in FIGURE 12.

E. HEART DISEASE
The Heart Disease dataset5 concerns prediction of heart dis-
ease. To this end, 13 features are available, selected among
75. Out of the 13 features, 6 are real-valued, 3 are binary, 3
are nominal, and one is ordered.

TABLE 21, TABLE 22, and TABLE 23 summarize the per-
formance of TM, RWTM, and IWTM on the Heart Disease
dataset. For the TM, the best F1-Score occurs with m = 10,
achieved by using 346 literals on average. The RWTM F1-
Score peaks at m = 2000 with 18 528 literals. IWTM peaks

5Available from https://archive.ics.uci.edu/ml/datasets/Statlog+
%28Heart%29.

FIGURE 11. The number of literals included in different TM setups to
work with the Liver Disorders dataset.

FIGURE 12. Sample complexity analysis for the Liver Disorders dataset.

atm = 10, with slightly lower F1-Score, however, employing
only 226 literals on average.

Considering the number of literals used with increasing
number of clauses (FIGURE 13), TM and IWTM behave
similarly, while RWTM requires significantly more literals.

Out of the considered machine learning models, EBM
obtains the best F1-Score, while RWTM, IWTM, and ANN-2
follow closely behind (TABLE 20). However, EBM needs
the highest training time and uses the second largest training

VOLUME 9, 2021 8245

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29
https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29


K. D. Abeyrathna et al.: Extending the TM With Integer-Weighted Clauses for Increased Interpretability

TABLE 20. Performance comparison for Heart Disease dataset.

TABLE 21. Performance of TM on Heart Disease dataset.

TABLE 22. Performance of RWTM on Heart Disease dataset.

TABLE 23. Performance of IWTM on Heart Disease dataset.

memory, while all three TMs use negligible memory during
both training and testing. Apart from DT, all of the machine
learning models surpass an F1-Score of 0.5 using only 10%
of the training data, as shown in FIGURE 14. From 30%
onward, the F1-Score of all the models behaves similarly,
with EBM being superior after 60%.

F. SUMMARY OF EMPIRICAL EVALUATION
To compare overall performance of the various techniques,
we calculate average F1-Score across the datasets. Further to
evaluate overall interpretability of TM, RWTM and IWTM,
we also report average number of literals used, overall.

In all brevity, the average F1-Score of ANN-1, ANN-2,
ANN-3, DT, SVM, KNN, RF, TM, XGBoost, EBM, RWTM,
and IWTM are 0.770, 0.757, 0.744, 0.742, 0.713, 0.737,
0.724 0.728, 0.775, 0.762, 0.774, and 0.777, respectively. Out
of all the considered models, IWTM obtains the best average
F1-Score, which is 0.777. Also notice that increasing ANN
model complexity (from ANN-1 to ANN-3) reduces overall

FIGURE 13. The number of literals included in different TM setups to
work with Heart Disease dataset.

FIGURE 14. Sample complexity analysis for the Heart Disease dataset.

F1-Score, which can potentially be explained by the small
size of the datasets.

The F1-Score of RWTM is also competitive, however,
it requires much more literals than IWTM. Indeed, the
average number of literals employed are 961 for TM, 17 670
for RWTM, and 147 for IWTM. That is, IWTM uses 6.5
times fewer literals than TM, and 120 times fewer literals than
RWTM.

The average combined memory requirement (training +
testing) by TM, RWTM, and IWTM are 3.27 KB, 79.46 KB,
and 3.27, respectively. The combined memory usage of

8246 VOLUME 9, 2021



K. D. Abeyrathna et al.: Extending the TM With Integer-Weighted Clauses for Increased Interpretability

TABLE 24. Performance (in AUC) comparison against recent
state-of-the-art machine learning models.

IWTM is significantly less compared to the other models –
ANN-1: ≈ 305 times, ANN-2: ≈ 1 278 times, ANN-3: ≈
11 096 times, DT: ≈ 34 times, SVM: ≈ 255 times, KNN: ≈
106 times, RF: ≈ 45 times, XGBoost: ≈ 877 times, EBM: ≈
1226 times, and RWTM: ≈ 24 times.

G. COMPARISON AGAINST RECENT STATE-OF-THE-ART
MACHINE LEARNING MODELS
In this section, we compare IWTM accuracy with reported
results on recent state-of-the-art machine learning mod-
els. First, we perform experiments on Fraud Detection and
COMPAS: Risk Prediction in Criminal Justice datasets to
study the performance of IWTM in comparison with Neu-
ral Additive Models [11]. A Neural Additive Model is a
novel member of so-called general adaptive models. In Neu-
ral Additive Models, the significance of each input feature
towards the output is learned by a dedicated neural network.
During the training phase, the complete set of neural networks
are jointly trained to learn complex interactions between
inputs and outputs.

To compare the performance against StructureBoost [34],
we use the CA weather dataset [40]. For simplicity, we use
only the CA-58 subset of the dataset in this study. Struc-
tureBoost is based on gradient boosting and is capable of
exploiting the structure of categorical variables. Structure-
Boost outperforms established models such as CatBoost and
LightBoost on multiple classification tasks [34].

Since the performance of both of the above techniques has
beenmeasured in terms of Area under the ROCCurve (AUC),
we here use a soft TM output layer [41] to calculate AUC. The
performance characteristics are summarized in TABLE 24.

TABLE 24 shows that on Fraud Detection, IWTM outper-
forms NAMs and all the other techniques mentioned in [11].
On the COMPAS dataset, IWTM exhibits competitive per-
formance compared to NAMs, EBM, XGBoost, and DNNs.
IWTM shows, however, superior performance compared to
Logistic Regression and DT on COMPAS. The performance
of IWTM on CA-20 is better in comparison to Structure-
Boost, LightBoost, and CatBoost models, reported in [34].

IV. CONCLUSION
In this paper, we proposed a novel Tsetlin Machine (TM)
having integer weights attached to clauses, to address

the accuracy-interpretability challenge in machine learning.
In our proposed TM (denoted IWTM), the weights are learnt
using the stochastic searching on the line (SSL) automa-
ton. The weights attached to the clauses help the TM to
the represent sub-patterns in a more compact way. Since
integer weights can turn off unimportant clauses by setting
their weight to 0, this allows the TM to create a classi-
fier with fewer number of literals compared to the vanilla
TM and the Real-Value Weighted TM (RWTM). We have
provided empirical evidence by generating rules for several
datasets. In conclusion, the IWTM obtains on par or better
accuracy compared to the vanilla TM and the RWTM while
using respectively 6.5 and 125 times fewer literals. Further-
more, in terms of average F1-Score, the proposed IWTM
also outperforms several state-of-the-art machine learning
algorithms.

In our future work, we intend to investigate more advanced
SSL schemes, such as Continuous Point Location with Adap-
tive Tertiary Search (CPL-ATS) [42] and Random Walk-
based Triple Level Learning Algorithm (RWTLA) [43],
including their impact on interpretability.

REFERENCES
[1] C. Molnar, Interpretable Machine Learning. Morrisville, NC, USA: Lulu,

2019.
[2] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, ‘‘Deep learning

for healthcare: Review, opportunities and challenges,’’ Briefings Bioinf.,
vol. 19, no. 6, pp. 1236–1246, Nov. 2018.

[3] B. Baesens, C. Mues, M. De Backer, J. Vanthienen, and R. Setiono,
‘‘Building intelligent credit scoring systems using decision tables,’’ in
Enterprise Information Systems V. Dordrecht, The Netherlands: Springer,
2004, pp. 131–137.

[4] J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and B. Baesens,
‘‘An empirical evaluation of the comprehensibility of decision table, tree
and rule based predictive models,’’ Decis. Support Syst., vol. 51, no. 1,
pp. 141–154, Apr. 2011.

[5] R. Bellazzi and B. Zupan, ‘‘Predictive data mining in clinical medicine:
Current issues and guidelines,’’ Int. J. Med. Informat., vol. 77, no. 2,
pp. 81–97, Feb. 2008.

[6] S. Mani, W. R. Shankle, andM. J. Pazzani, ‘‘Acceptance of rules generated
by machine learning among medical experts,’’Methods Inf. Med., vol. 40,
no. 5, pp. 380–385, 2001.

[7] A. A. Freitas, D. C. Wieser, and R. Apweiler, ‘‘On the importance of
comprehensible classification models for protein function prediction,’’
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 7, no. 1, pp. 172–182,
Jan. 2010.

[8] D. Szafron, P. Lu, R. Greiner, D. S. Wishart, B. Poulin, R. Eisner, Z. Lu,
J. Anvik, C. Macdonell, A. Fyshe, and D. Meeuwis, ‘‘Proteome analyst:
Custom predictions with explanations in a Web-based tool for high-
throughput proteome annotations,’’ Nucleic Acids Res., vol. 32, no. 2,
pp. W365–W371, Jul. 2004.

[9] E. Lima, C.Mues, and B. Baesens, ‘‘Domain knowledge integration in data
mining using decision tables: Case studies in churn prediction,’’ J. Oper.
Res. Soc., vol. 60, no. 8, pp. 1096–1106, Aug. 2009.

[10] W. Verbeke, D. Martens, C. Mues, and B. Baesens, ‘‘Building compre-
hensible customer churn prediction models with advanced rule induction
techniques,’’ Expert Syst. Appl., vol. 38, no. 3, pp. 2354–2364, Mar. 2011.

[11] R. Agarwal, N. Frosst, X. Zhang, R. Caruana, and G. E. Hinton, ‘‘Neural
additive models: Interpretable machine learning with neural nets,’’ 2020,
arXiv:2004.13912. [Online]. Available: http://arxiv.org/abs/2004.13912

[12] M. T. Ribeiro, S. Singh, and C. Guestrin, ‘‘Why should I trust you?’
Explaining the predictions of any classifier,’’ in Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2016, pp. 1135–1144.

[13] C. Rudin, ‘‘Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,’’ Nature Mach.
Intell., vol. 1, no. 5, pp. 206–215, May 2019.

VOLUME 9, 2021 8247



K. D. Abeyrathna et al.: Extending the TM With Integer-Weighted Clauses for Increased Interpretability

[14] R. Agrawal, T. Imieliński, and A. Swami, ‘‘Mining association rules
between sets of items in large databases,’’ ACM SIGMOD Rec., vol. 22,
no. 2, pp. 207–216, Jun. 1993.

[15] T. McCormick, C. Rudin, and D. Madigan, ‘‘A hierarchical model for
association rule mining of sequential events: An approach to automated
medical symptom prediction,’’ MIT Sloan Res. Paper, Jan. 2011. [Online].
Available: https://ssrn.com/abstract=1736062

[16] V. Feldman, ‘‘Hardness of approximate two-level logic minimization and
PAC learning with membership queries,’’ J. Comput. Syst. Sci., vol. 75,
no. 1, pp. 13–26, Jan. 2009.

[17] L. G. Valiant, ‘‘A theory of the learnable,’’ Commun. ACM, vol. 27, no. 11,
pp. 1134–1142, Nov. 1984.

[18] T. Wang, C. Rudin, F. Doshi-Velez, Y. Liu, E. Klampfl, and P. MacNeille,
‘‘A Bayesian framework for learning rule sets for interpretable classifica-
tion,’’ J. Mach. Learn. Res., vol. 18, no. 1, pp. 2357–2393, 2017.

[19] J. R. Hauser, O. Toubia, T. Evgeniou, R. Befurt, and D. Dzyabura, ‘‘Dis-
junctions of conjunctions, cognitive simplicity, and consideration sets,’’
J. Marketing Res., vol. 47, no. 3, pp. 485–496, Jun. 2010.

[20] Y. Liang andG. Van den Broeck, ‘‘Learning logistic circuits,’’ inProc. 33rd
AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 4277–4286.

[21] O.-C. Granmo, ‘‘The tsetlin machine—A game theoretic bandit driven
approach to optimal pattern recognition with propositional logic,’’ 2018,
arXiv:1804.01508. [Online]. Available: http://arxiv.org/abs/1804.01508

[22] A. Phoulady, O.-C. Granmo, S. R. Gorji, and H. A. Phoulady,
‘‘The weighted tsetlin machine: Compressed representations with
weighted clauses,’’ 2019, arXiv:1911.12607. [Online]. Available:
https://arxiv.org/abs/1911.12607

[23] G. T. Berge, O.-C. Granmo, T. O. Tveit, M. Goodwin, L. Jiao, and
B. V. Matheussen, ‘‘Using the tsetlin machine to learn human-interpretable
rules for high-accuracy text categorization with medical applications,’’
IEEE Access, vol. 7, pp. 115134–115146, 2019.

[24] K. D. Abeyrathna, O.-C. Granmo, X. Zhang, L. Jiao, and M. Goodwin,
‘‘The regression Tsetlinmachine: A novel approach to interpretable nonlin-
ear regression,’’ Phil. Trans. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 378,
no. 2164, Feb. 2020, Art. no. 20190165.

[25] S. R. Gorji, O.-C. Granmo, A. Phoulady, and M. Goodwin, ‘‘A Tsetlin
machine with multigranular clauses,’’ in Proc. 39th Int. Conf. Innov.
Techn. Appl. Artif. Intell. (SGAI), in Lecture Notes in Computer Science,
vol. 11927. Cham, Switzerland: Springer, 2019, pp. 146–151.

[26] S. Gorji, O. C. Granmo, S. Glimsdal, J. Edwards, and M. Goodwin,
‘‘Increasing the inference and learning speed of Tsetlin machines with
clause indexing,’’ in Proc. Int. Conf. Ind., Eng. Other Appl. Appl. Intell.
Syst. Cham, Switzerland: Springer, 2020, pp. 695–708.

[27] A. Wheeldon, R. Shafik, A. Yakovlev, J. Edwards, I. Haddadi, and
O.-C. Granmo, ‘‘Tsetlin machine: A new paradigm for pervasive AI,’’
in Proc. SCONA Workshop Design, Automat. Test Eur. (DATE), 2020.
[Online]. Available: https://www.date-conference.com/node/468

[28] M. L. Tsetlin, ‘‘On behaviour of finite automata in random medium,’’
Avtomatika I Telemekhanika, vol. 22, no. 10, pp. 1345–1354, 1961.

[29] O.-C. Granmo, S. Glimsdal, L. Jiao, M. Goodwin, C. W. Omlin, and
G. T. Berge, ‘‘The convolutional Tsetlin machine,’’ 2019,
arXiv:1905.09688. [Online]. Available: http://arxiv.org/abs/1905.09688

[30] K. D. Abeyrathna, O.-C. Granmo, X. Zhang, and M. Goodwin, ‘‘A scheme
for continuous input to the Tsetlin machine with applications to forecasting
disease outbreaks,’’ in Proc. Int. Conf. Ind., Eng. Other Appl. Appl. Intell.
Syst. Cham, Switzerland: Springer, 2019, pp. 564–578.

[31] B. J. Oommen, ‘‘Stochastic searching on the line and its applications to
parameter learning in nonlinear optimization,’’ IEEE Trans. Syst. Man,
Cybern. B, Cybern., vol. 27, no. 4, pp. 733–739, Aug. 1997.

[32] H. Nori, S. Jenkins, P. Koch, and R. Caruana, ‘‘InterpretML:
A unified framework for machine learning interpretability,’’ 2019,
arXiv:1909.09223. [Online]. Available: http://arxiv.org/abs/1909.09223

[33] Y. Lou, R. Caruana, and J. Gehrke, ‘‘Intelligible models for classification
and regression,’’ in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining (KDD), 2012, pp. 150–158.

[34] B. Lucena, ‘‘StructureBoost: Efficient gradient boosting for structured
categorical variables,’’ 2020, arXiv:2007.04446. [Online]. Available:
http://arxiv.org/abs/2007.04446

[35] K. S. Narendra and M. A. Thathachar, Learning Automata: An Introduc-
tion. Chelmsford, MA, USA: Courier Corporation, 2012.

[36] I. Chivers and J. Sleightholme, ‘‘An introduction to algorithms and the
big O notation,’’ in Introduction to Programming With Fortran. Cham,
Switzerland: Springer, 2015, pp. 359–364.

[37] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 785–794.

[38] M.-J. Kim and I. Han, ‘‘The discovery of experts’ decision rules from
qualitative bankruptcy data using genetic algorithms,’’ Expert Syst. Appl.,
vol. 25, no. 4, pp. 637–646, Nov. 2003.

[39] J. McDermott and R. S. Forsyth, ‘‘Diagnosing a disorder in a classification
benchmark,’’ Pattern Recognit. Lett., vol. 73, pp. 41–43, Apr. 2016.

[40] B. Lucena, ‘‘Exploiting categorical structure using tree-based meth-
ods,’’ 2020, arXiv:2004.07383. [Online]. Available: http://arxiv.org/
abs/2004.07383

[41] K. D. Abeyrathna, O.-C. Granmo, and M. Goodwin, ‘‘On obtaining classi-
fication confidence, ranked predictions and AUC with Tsetlin machines,’’
in Proc. IEEE Symp. Series Comput. Intell. (ISSC), 2020.

[42] B. J. Oommen and G. Raghunath, ‘‘Automata learning and intelligent
tertiary searching for stochastic point location,’’ IEEE Trans. Syst. Man,
Cybern. B, Cybern., vol. 28, no. 6, pp. 947–954, Dec. 1998.

[43] W. Jiang, D.-S. Huang, and S. Li, ‘‘Random walk-based solution to triple
level stochastic point location problem,’’ IEEE Trans. Cybern., vol. 46,
no. 6, pp. 1438–1451, Jun. 2016.

K. DARSHANA ABEYRATHNA received the
B.Sc. degree in mechatronics engineering from
AIT University, Thailand, in 2015, and the M.Sc.
degree from the Big Data Research Group, Tham-
masat University, Thailand, in 2017. He is cur-
rently a Ph.D. Research Fellowwith the University
of Agder. He is also with CAIR, working on a
project which develops a global grid that facilitates
real-time compilation, and management and anal-
ysis of spatio-temporal data. His research interests

include artificial neural networks, data mining, optimization, and operations
research.

OLE-CHRISTOFFER GRANMO received the
master’s and Ph.D. degrees from the University
of Oslo, Norway, in 1999 and 2004, respectively.
He is currently a Professor with the University
of Agder and the Founding Director of the Cen-
tre for Artificial Intelligence Research (CAIR).
He has authored in excess of 140 refereed arti-
cles within machine learning, encompassing learn-
ing automata, bandit algorithms, Tsetlin machines,
Bayesian reasoning, reinforcement learning, and

computational linguistics. Apart from his academic endeavors, he co-
founded the company Anzyz Technologies AS. He is also a Co-Founder of
the Norwegian Artificial Intelligence Consortium (NORA).

MORTEN GOODWIN received the master’s
degree from the University of Agder, Norway,
in 2005, and the Ph.D. degree from the Depart-
ment of Computer Science, Aalborg University,
Denmark, in 2011, where he applied machine
learning algorithms on eGovernment indicators
which are difficult to measure automatically. He is
currently an Associate Professor with the Univer-
sity of Agder. His research interests include data-
mining, optimization, machine learning, swarm

intelligence, deep learning, and adaptive learning. He has written more
than 40 peer-reviewed scientific publications in this area and supervisedmore
than 60 student projects at the master’s and Ph.D. level.

8248 VOLUME 9, 2021


