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Abstract
Recognizing the vulnerable areas for contamination is a feasible way to protect groundwater resources. The main contribution of
the paper is developing a hybrid statistical decision-making model for evaluating the vulnerability of Shiraz aquifer, southern
Iran, with modified DRASTIC (depth to the water table, net recharge, aquifer media, soil media, topography, impact of the
vadose zone, and hydraulic conductivity) by using the genetic algorithm (GA), the analytical hierarchy process (AHP) method,
and factorial analysis (FA). First, considering the variation of the uncertain parameters, 32 scenarios were defined to perform
factorial analysis. Then using the AHP method and GA, DRASTIC parameters were rated and weighted in all scenarios. To
achieve the optimal weights for parameters, the objective function in GA was maximizing the correlation coefficient between the
vulnerability index and the nitrate concentration. The single and interactive effects of parameters on groundwater vulnerability
were analyzed by factorial analysis. The results revealed that the net recharge had the highest single effect, and the resulted effect
between net recharge and hydraulic conductivity was the most significant interactive effect on the objective function. Besides, the
variation of aquifer media does not change the objective function. The application of the proposed method leads to a precise
groundwater vulnerability map. This research provides valuable knowledge for assessing groundwater vulnerability and enables
decision-makers to apply groundwater vulnerability information in future water resources management plans.

Keywords Hybrid statistical model . Decision-making model . Factorial analysis . Groundwater vulnerability . Genetic
algorithm . DRASTIC

Introduction

Population growth and increasing water demand have
highlighted groundwater resources’ significance and necessi-
tate a feasible preservation method. Groundwater vulnerabili-
ty assessment is an effective method for protecting groundwa-
ter resources and evaluating the feasibility of other manage-
ment approaches such as water, treated wastewater, and waste
load allocation (Daneshmand et al. 2014; Nikoo et al. 2016;
Mooselu et al. 2019, 2020; Yazdian et al. 2021). In recent
years, the DRASTIC approach has been one of the most ap-
plicable methods to assess the vulnerability of groundwater.
This method was first used by Aller et al. in 1987 in US
Environmental Protection Agency (Aller et al. 1987). The
DRASTIC method includes seven hydrogeological parame-
ters of depth to water table (D), net recharge (R), aquifer
media (A), soil media (S), topography (T), the impact of va-
dose zone (I), and hydraulic conductivity (C). These parame-
ters are assigned weights and rates commensurate with their
effects on the transmission of pollution. Since the
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hydrogeological situation of the regions plays a vital role in
calculating the vulnerability index, the DRASTIC method
should be modified by reliable measures to achieve more ac-
curate and consistent results to the site-specific conditions.
The previous researches on developing an accurate model to
assess aquifer vulnerability can be divided into two parts. A
part of this researches has been trying to modify the structure
of the vulnerability model to make it more compatible with the
environmental conditions of the aquifers, and the other part
has utilized methods to minimize errors due to uncertainty in
calculating input parameters.

In recent years, extensive researches have been conducted
to improve the compatibility of the DRASTIC method with
the study areas. For example, the AHP method has been ap-
plied in some investigations to modify the weights and rates of
the DRASTIC parameters (Hu et al. 2018; Jesiya and
Gopinath 2019; Tomer et al. 2019; Arshad et al. 2020;
Mallik et al. 2021; Liu et al. 2021). The relative classes of
each parameter are used as modified rates of the DRASTIC
parameters. These rates and adjusted weights led to more ac-
curate results by creating a better fit between the actual aquifer
conditions and the DRASTIC vulnerability index. In addition,
another group of researchers modified the weight and rate of
the DRASTIC parameters using the Wilcoxon method in
which non-parametric statistical tests evaluate the similarity
of two samples related to the rating scale (Jafari and Nikoo
2016; Barzegar et al. 2019; Bordbar et al. 2019; Balaji et al.
2021). Meanwhile, the adequacy of the number and type of
DRASTIC parameters was the subject of study for many re-
searchers (Kumar and Pramod Krishna 2019; Liu et al. 2021).
Some researchers added parameters to the DRASTIC method
based on the study area (Sener and Davraz 2013; Hu et al.
2018; Kumar and Pramod Krishna 2019; Soyaslan 2020; Liu
et al. 2021), and others removed some of the DRASTIC pa-
rameters (Arezoomand Omidi Langrudi et al. 2016; Nadiri
et al. 2019).

The results of deterministic analyses have a certain confi-
dence level due to the uncertainties in measurements and data
analysis. This issue necessitates considering the uncertainty
analysis in aquifer vulnerability assessment to improve the
data reliability and consequently achieving more accurate re-
sults. New algorithm-based methods, e.g., genetic algorithm
(GA) and fuzzy algorithm, help to develop a model close to
the real situation (Ahn et al. 2012; Jafari and Nikoo 2016;
Yang et al. 2017; Barzegar et al. 2019; Jafari and Nikoo
2019; Torkashvand et al. 2020; Baalousha et al. 2021;
Saranya and Saravanan 2021). Moreover, the effect of every
single DRASTIC parameter on aquifer vulnerability has been
assessed by sensitivity analysis (Pacheco et al. 2015; Jafari
and Nikoo 2016; Jafari and Nikoo 2019; Pourkhosravani
et al. 2021).

Different methods such as AHP, GA, and fuzzy have been
applied in the literature to obtain an accurate vulnerability map

that is compatible with the conditions of the case studies.
However, other components such as identifying more effec-
tive parameters and defining various vulnerability scenarios
are yet to be considered. So far, vulnerability maps were
drawn based on the parameters obtained from field studies
showing the vulnerability at specific times and conditions,
but considering the uncertainty of input parameters and their
single or interactive effects on the vulnerability of aquifer is
also of significant importance. In this study, in addition to
using the GA and AHP models in modifying the weights
and rates of parameters in the vulnerability model, a factorial
analysis–based optimization model was developed to gain a
comprehensive view on assessing the vulnerability of aquifer.
Using factorial analysis (FA) in 32 scenarios, the uncertainties
of input parameters were considered, and both single and in-
teractive effects of the parameters on the vulnerability were
evaluated. Applying the proposed method can show how the
different parts of the aquifer will react to the possible changes
in aquifer characteristics (input parameters). Also, the results
of the FA method in the form of single or interactive effects
between parameters can show how small changes in some
parameters affect the vulnerability of the whole system.
Understanding this sensitivity can prevent making the wrong
decision and remove/mitigate irreversible damage. This re-
search measured the impact of every parameter and the inter-
active effect of parameters on groundwater vulnerability.
Hence, the proposed method aims to modify the rate scores
and weights of the DRASTIC method considering the uncer-
tainty of input parameters and then investigate the single and
interactive effects of DRASTIC parameters on the objective
function, which was to maximize the correlation between
DRASTIC vulnerability index and nitrate concentration.
Nitrate is considered one of the primary contaminants of
Shiraz plain’s groundwater to evaluate the accuracy and va-
lidity of the vulnerability investigations (Baghapour et al.
2016; Jafari and Nikoo 2016, 2019). The high concentration
of nitrate in groundwater is mainly due to land use (primarily
residential) and the entry of residential, agricultural, and in-
dustrial wastewater (containing nitrate as the main contami-
nant) into the Shiraz plain. The paper contributes in the fol-
lowing ways:

1) Developing a hybrid statistical decision-making method
that corrects the rate and weights of parameters

2) Evaluating the uncertainty of input parameters and ana-
lyzes their single and interactive effects on the variation of
the objective function utilizing the factorial analysis
method.

Finally, the vulnerability of the aquifer was mapped by
ArcGIS® 10.5 (Bera et al. 2021) for different values of the
objective function and provided more precise information for
decision-makers in future management plans. The feasibility
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of the proposed method was evaluated in the Shiraz aquifer,
southwestern Iran.

Materials and methods

This paper suggests a feasible method for determining the
vulnerability of groundwater which consists of four main
steps, including data gathering (step 1), uncertainty analysis
by defining the lower and upper bounds of uncertain parame-
ters and then determining vulnerability scenarios (step 2), de-
veloping a hybrid AHP-GA-based DRASTIC model in which
the rate and the weight of DRASTIC parameters are modified
and validation of results in different scenarios (step 3), and
analyzing the single and interaction effects of parameters (step
4). A flowchart of the proposed methodology is presented in
Fig. 1.

Case study and data collection

Shiraz plain with an area of 300 km2 is located between lon-
gitudes 52° 29′ to 52° 36′ east and latitudes 29° 33′ to 29° 36′
north. The general direction of groundwater flow is parallel to

the topographic slope and from northwest of the plain to
southeast. Shiraz plain includes calcareous and alluvial aqui-
fers. The alluvial aquifer in the west is coarse-grained and
becomes fine-grained as it approaches the east. The alluvial
aquifer is layered, and clay layers are located between the
water layers. Most of the lands in Shiraz plain are dedicated
to urban and agricultural regions, and its non-agricultural
areas are located in the south and southeast. The study area
includes 30 observation wells. The geographical location of
the Shiraz plain and the location of observation wells are pre-
sented in Fig. 2.

Figure 3 shows the zoning map of nitrate concentration in
the study area in which the nitrate concentration is higher in
the southern and southeastern regions. The correlation coeffi-
cient between the DRASTIC index and nitrate concentration
was chosen to validate the study area’s DRASTIC method.
According to Fars RegionalWater Organization, this aquifer’s
overall water balance is −8 M m3/year. Most of the extracted
water from 872 discharge wells is applied for agricultural
activities.

The hydrogeological information, including DRASTIC pa-
rameters, i.e., depth to water table (D), net recharge (R), aqui-
fer media (A), soil media (S), topography (T), the impact of

Fig. 1 The structure of the
proposed method for the
assessment of groundwater
vulnerability

Environ Sci Pollut Res



vadose zone (I), and hydraulic conductivity (C), were obtain-
ed through the piezometric wells, geotechnical boreholes, and
the spatial distribution map of precipitation, evaporation, and
hydraulic conductivity provided by the Fars Regional Water

Organization. Data were analyzed for homogeneity and using
geostatistical methods, the defects and errors were addressed.

Quantitative data related to 30 observation wells, including
depth, net recharge, topography, and conductivity, are shown

Fig. 2 The location of the Shiraz aquifer and piezometric wells

Fig. 3 The zoning map of nitrate
concentration in the study area
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in Fig. 4. The thematic layers of the study area related to
qualitative data, including aquifer media (A), soil media (S),
and impact of vadose zone (I), can be seen in Fig. 5. For
example, as shown in Fig. 4, the average depth is about 17
m, and its standard deviation is about 14 m, and the depth to
the water table in observation wells has varied from 0.9 to 59
m. According to the data presented in Fig. 5, it can be seen that
the material of the Shiraz aquifer is mainly composed of clay,
clay and gypsum, and clay and sand. In addition, the material
related to the impact of vadose zone (I) was mainly clay and
clay and silt. Soil media (S) in the northern and northwestern
parts of loamy sand, while in the southern and southeastern
regions, the soil layer was thin or non-existent. In Fig. 4,
topography (T) is defined as the natural slope (%) of the plain
surface.

Uncertainty analysis

The available data were obtained by sampling in the field. Due
to the possibility of error in field sampling of these parameters,
they can be modeled as uncertain parameters. Performing un-
certainty analysis can help better understand the variability of
the parameters in the aquifer. In most cases, for uncertainty
analysis in groundwater vulnerability assessment, the quality
of the available data is not satisfactory to determine the prob-
ability distribution functions. In large-scale modeling, even if
the probability distribution functions exist due to many com-
ponents, probability optimization is a time-consuming process
and not feasible. In comparison, determining the variations’
interval for the uncertain parameters is more applicable

(Tavakoli et al. 2014, 2015). Hence, the interval factorial anal-
ysis was utilized for uncertainty analysis.

The factorial analysis is a complete sensitivity analysis
method that considers each parameter’s effect on the output.
It can identify and quantify the interactive impact of all uncer-
tain parameters with the help of a purposeful choice of test
conditions. In factorial analysis, the lower and upper bounds
of each uncertain parameter’s variation interval are considered
the lower and upper levels. If there are k uncertain parameters,
then it will be necessary to perform 2k different tests. A facto-
rial design of 2k is a design with k-factors (operator), each one
in two levels (i.e., lower and upper), containing k original

effects,
K
2

� �
two-factor interaction effect,

K
3

� �
three-

factor interaction effect, etc., and finally, one k-factor interac-
tion effect. Therefore, for a 2k factorial design, the complete
statistical model has 2k results. The single and impact of the
interaction of parameters can be calculated by the following
formulas: (Montgomery 2017)

Ex ¼ 2� contrastxð Þ
n� 2k−1

� � ð1Þ

SSx ¼ contrastxð Þ2
n� 2k

ð2Þ

kThe number of uncertain parameters
nRun numbers
ExThe standardized single and interaction effect of

parameters
SSxThe sum of squares of any effect

Fig. 4 Statistical data of DRASTIC quantitative parameters
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contrastxObtained from plus and minus signs table in
(Montgomery 2017)

In this study, because of the monotonicity of the objective
function’s variations in the interval of uncertain parameters,
the factorial analysis method effectively considers the uncer-
tainties in DRASTIC parameters. Hence, using factorial de-
sign in Minitab® 17.1.0 software, 25 different scenarios were
defined considering five uncertain parameters of the
DRASTIC method, including hydraulic conductivity (C),
aquifer media (A), soil media (S), impact of the vadose zone
(I), and net recharge (R).

The range of variation in uncertain parameters was deter-
mined considering historical time series and engineering judg-
ment. For example, the soil media can vary from sand to clay.
Historical time series and engineering judgment also were
applied in determining the upper and lower limits of aquifer
media (A), and vadose zone (I) impact. The impact of vadose
zone (I) is between the saturation zone and the soil environ-
ment that is essentially unsaturated or intermittently saturated
and controls the passage and dilution of contaminants to the
saturation zone. The impact of the vadose zone parameter in
the calculation of aquifer pollution is similar to soil media and

depends on the permeability of the ingredients and the prop-
erties of the unsaturated zone. Information about this param-
eter and other qualitative parameters were determined by in-
vestigating the well-log data collected by the Fars Regional
Water Organization. The range of variation in uncertain pa-
rameters was determined considering historical time series
and engineering judgment. The lower and upper bounds of
the uncertain parameters are mapped in Fig. 6. As shown,
the aquifer media in the lower bound of analysis is mostly
clay, while in the upper bound is predominantly gravel and
clay.

DRASTIC method

The DRASTICmethod was first developed in 1987 by the US
Environmental Protection Agency (EPA) to assess groundwa-
ter vulnerability using existing aquifer hydrogeological char-
acteristics (Aller et al. 1987). The DRASTIC method consists
of seven hydrogeological parameters. Each of these parame-
ters is given a value between 1 and 10 according to their effect
on the entry of pollution into groundwater, with the number 1
corresponding to the lowest pollution potential and the

Fig. 5 Spatial distribution of DRASTIC qualitative parameters
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number 10 indicating the highest pollution potential. In addi-
tion, each of these parameters is assigned a weight coefficient
based on their degree of importance. These parameters include
depth to water table (D), net recharge (R), aquifer media

(A), soil media (S), topography (T), the impact of va-
dose zone (I), and hydraulic conductivity (C). The
DRASTIC index is calculated through the following for-
mula (Aller et al. 1987).

Fig. 6 The lower and upper
bounds of the uncertain
parameters over the aquifer area
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DRASTIC ¼ DrDw þ RrRw þ ArAw þ SrSw þ TrTw

þ I rIw þ CrCw ð3Þ

r Rate of DRASTIC parameters
w Weight of DRASTIC parameters

AHP method

The basis of AHP is the paired comparisons matrix, which
provides a linear relationship between the criteria and sub-
criteria. For example, if the preference of element A over B
is n, the preference of element B over A would be 1/n, while at
different levels of element A, the desirability of B varies. The
consistency of the results obtained from the pairwise compar-
ison matrices must be confirmed by calculating the compati-
bility matrix. The consistency index (CI) is determined based
on Eq. 4 (Saaty 1980):

CI ¼ λmax−nð Þ
n−1ð Þ ð4Þ

CR ¼ CI
RI

ð5Þ

nThe order of the matrix
λmaxThe eigenvalue of the matrix
CRConsistency ratio
RIThe random index
CR must be calculated to verify the reliability of the

pairwise comparison matrices created by personal decisions.
As a general rule, the CR value should be less than 0.01
(Soyaslan 2020).

GA method

The genetic algorithm (GA) was first introduced by Holland
et al. in 1975. This optimization method is mainly used to
optimize very complex and nonlinear problems (Holland
1975). GA is a comprehensive probabilistic search method
that follows natural biological evolution. In this method, ini-
tial generations (initial answers) are generated randomly or
pre-calculated. Several superior chromosomes (superior re-
sponses) of the initially developed community whose value
of the objective function (fitness function) is more significant
in maximization problems and more minor in minimization
problems are selected as the parents’ chromosomes to gener-
ate the next generation (selection operator). These chromo-
somes are then randomly grouped into binary clusters to pro-
duce the next generation. During this process, new genera-
tions are driven to the optimal answers, and the calculations
continue until, with more repetition, no improvement in the
final response (the last generation of superior chromosomes)
is observed.

Developing an AHP-GA-based DRASTIC model

The ordinary DRASTIC index only provides a relative eval-
uation of the aquifer’s pollution. To achieve an accurate as-
sessment of the vulnerability, the weights and rates of
DRASTIC parameters should be compatible with the nature
of the site. DRASTIC parameters were rated using the AHP
method, given the lower and upper bounds of uncertain pa-
rameters derived from factorial analysis, and then, these mod-
ified rates were utilized in the GAmodel to achieve optimized
weights. Each parameter’s rates in the upper and lower bounds
were adjusted by AHP considering the region’s hydrological
conditions. Accordingly, 32matrices of 30×7were considered
for the 32 scenarios defined by factorial analysis, which are
the rates of DRASTIC parameters in calculating the aquifer’s
vulnerability index. In these matrices, the array Ai, j shows the
value of jth parameter in the ith piezometric well. As a critical
step in the proposed methodology, this optimization model
considers uncertainties related to net recharge, aquifer media,
soil media, vadose zone media, and the aquifer hydraulic con-
ductivity to achieve the optimum weights for DRASTIC pa-
rameters. Since the primary purpose of modifying the weight
and rate of DRASTIC parameters was to increase the correla-
tion coefficient between DRASTIC vulnerability index and
nitrate concentration, the objective function in calculating
the optimal weight of DRASTIC parameters by GA was to
maximize the correlation between the vulnerability index and
nitrate concentration, and the decision variables were weights
of seven DRASTIC parameters. The objective function of the
optimization model is presented as follow:

Max F� ¼ corr X�; Y
� � ð6Þ

F ¼ −
∑n

j¼1 X�
j −X

�� �
Y j−Y

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

j¼1 X�
j −X

�� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
j¼1 Y j−Y

� �2
r j ¼ 1; 2;…; n

ð7Þ

X�
j ¼ ∑

7

i¼1
r�j � w�

i

� �
ð8Þ

r�i ¼ f C�
1 ;C

�
2 ;…;C�

m

� � ð9Þ

X
�
¼ 1

n
∑
n

j¼1
X j

� ð10Þ

Y j ¼ CNo3 j ð11Þ

Y ¼ 1

n
∑
n

j¼1
Y j ð12Þ

1〈w�
i 〈10 ð13Þ

where Fis the objective function of the optimization model,
n is the number of wells, Xj is the vulnerability index of jth
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well, X is the mean of vulnerability indices, Yjis the nitrate

concentration (mg/l) in jth well, Y is the mean of nitrate con-
centration, wi is the weight of DRASTIC model parameters,
riis the rate of DRASTIC model parameters, m is the number
of intervals of each parameter, and fis the AHP-based sub-
model used to modify rates of DRASTIC model parameters.

In these equations, input parameters have upper and lower
bounds (the positive and negative signs), and the output of the
objective function is in the form of intervals.

After modifying the rates, the developed interval-based
AHP-GA optimization model was run for different scenarios
and provided a set of optimized weights for DRASTIC param-
eters in each scenario. These optimized weights are utilized to
calculate the vulnerability index (VI) of the aquifer using the
DRASTIC method in each scenario as follow:

VI ¼ ∑
7

i¼1
r � wð Þ ð14Þ

where r and w stand for the rating score and optimum weight
assigned to the ith parameter. The hybrid AHP-GA optimiza-
tion model indicates the aquifer’s exact vulnerability propor-
tional to the aquifer’s hydrogeological characteristics in dif-
ferent aquifer areas. The greater the index, the higher the risk
of contamination. The correlations between the calculated vul-
nerability index and nitrate concentration in different scenar-
ios were calculated to verify the model’s results.

Interaction of parameters and mapping the
vulnerability

Utilizing factorial analysis, the single and interaction effects of
parameters on the objective function were analyzed using dif-
ferent scenarios. The values of DRASTIC parameters in other
aquifer areas were imported into GIS, where the interpolation
was made using the inverse distance weighted (IDW) method.
Finally, the DRASTIC parameters’ optimized weights were
considered in layers and overlaid to plot the final vulnerability
map.

Result and discussion

Simple DRASTIC

The vulnerability of the aquifer was first investigated by the
conventional DRASTIC method. The vulnerability of the
aquifer is mapped in Fig. 7, in which the vulnerability of the
aquifer is increased from the northwest to the southeast. The
conventional DRASTICmethod led to the average correlation
coefficient of 59% between the DRASTIC index and the ni-
trate concentration in 30 piezometric wells, indicating that the

simple DRASTIC process cannot reflect the precise estima-
tion of the groundwater vulnerability.

Factorial analysis

The effect of parameters’ variation on the objective function
should be investigated by data compliance assessment to en-
sure that factorial analysis can be performed. By changing the
values of uncertain input parameters between the upper and
lower bounds, the variation of the objective function in Eq. (1)
(maximum correlation between vulnerability index and nitrate
concentration) was investigated (see Fig. 8). The horizontal
axis in Fig. 8 represents the corresponding states in which the
values of the parameters change from the lowest possible
(state 1) to the highest possible values (state 10). As shown,
the variation of the objective function is decreasing uniformly
(e.g., R, S, I, and A) or increasing (e.g., C). As a result, it is
sufficient to consider only the upper and lower values of the
uncertain parameters for uncertainty analysis.

Considering the uncertain parameters (R, A, S, I, and C),
32 scenarios (Table 1) were defined for the hybrid AHP-GA
DRASTIC method based on the factorial analysis method. In
addition, for each scenario, the modified rates of the
DRASTIC parameters (Table 2) were determined by the
AHP multi-criteria decision-making method. Having the re-
vised rates, the AHP-GAmodel was implemented based on 32
defined scenarios, and the modified values of the objective
function were determined. These values were used as the re-
sults of testing each scenario in the factorial analysis.

Factorial analysis was performed for all 32 scenarios con-
sidering the corrected rates of the DRASTIC parameters. The
effects of uncertain parameters on the objective function are
presented in Fig. 9. The parameters’ effects are directly related
to the slope of the graphs. The slope of the parameters such as
R, A, S, and I is negative, which means that their increase
decreases the correlation coefficient value. In contrast, hy-
draulic conductivity has a positive effect on the objective
function. Besides, the higher slope of the parameter, the more
significant the impact on the objective function. For example,
R is the most affecting parameter on the correlation
coefficient.

Figure 10 shows the interactive effect of uncertain param-
eters on the objective function in which when both parameters
change between their lower and upper bounds, parallel lines
represent the constant variation rate for the objective function
(not significant interactive effect) and non-parallel lines indi-
cate the noticeable interactive effect of the uncertain parame-
ters on the objective function. For example, the analysis of the
interactive effect between the parameters of R and A (Fig.
10a) shows that the effect of variation in R on the objective
function is independent of variation in A. In other words, there
is no interactive effect between R and A on the objective
function. The parameters of I and C also do not have an
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interactive effect (see Fig. 10j). In comparison, the effects of R
on the objective function are dependent on the value of the
parameter I (Fig. 10b), so that when R is changing from lower
bound to upper bound, the value of the parameter I can change
the rate of variation in the objective function.

The normal probability graph of the effects (Fig. 11a) eval-
uates the significance of the single and interactive effects of
parameters on the objective function. In this diagram, the
standard effects of the parameters are assessed based on the
distribution fitted line, for which all effects are zero (the green
line in Fig. 11a, b).

Accordingly, parameters whose effects are far from the
distribution fitted line are essential. The greater the distance,
the greater the effect on the objective function. The single
effect of the parameters such as R, S, and I and the interactive
effect of R and C (RC) are the most critical effects on the
objective function. Also, in Fig. 11 a, the position of the points

compared to the distribution fitted line is significant. The
points on the right side of the line (e.g., the interactive effect
of RC and the single effect of C) are consistent with the ob-
jective function, which means their changes are directional. In
contrast, the parameters on the left side of this line (e.g., R, S,
and I) are inconsistent with the objective function. In other
words, the variation of such parameters and changes in the
objective function are non-directional. The normal prob-
ability diagram cannot accurately quantify the effect of
each parameter as the absolute value of the effect.
Hence, the half-normal plot of the effects (Fig. 11b)
shows the magnitude of the effects. As shown, the R
has the most significant effect on the objective function,
which, compared to that, 97.8% of the data have a less
than or equal effect. Similarly, the parameters of S and
I and the interactive effect of RC with 94.6, 91.4, and
88.2% are in the following ranks (R > S > I > RC).

Fig. 7 The vulnerability map of
the aquifer derived from simple
DRASTIC

Fig. 8 Variation of the objective
function according to different
values of uncertain parameters
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The variation of the objective function in multiple scenar-
ios is shown in Fig. 12. The values of the objective function in
various scenarios (Fig. 12) and information of Table 1 show
that in scenario no. 1, no. 2, no. 9, and no. 12, where the
objective function has the highest value, the parameters of R
and S are at their lower bound and A is at the upper bound.
Conversely, in scenario no. 10 that the objective function has
the lowest value, R and S parameters are at their upper bound,
and A is at its lower bound. This point clearly shows the
considerable importance of the parameters such as R, S, and
I in the objective function variation.

The GA method’s optimized weights, which lead to the
highest correlation coefficient between vulnerability index
and nitrate concentration, were selected as the optimal weight
of DRASTIC parameters in various scenarios. The optimized
weights of uncertain DRASTIC parameters in minimum
(0.28) and maximum (0.8) values of the objective function
are presented in Fig. 13.

The R parameter adopted a high weight in both cases (max-
imum and minimum values of the objective function), which
indicates the importance of this parameter on the vulnerability
of the aquifer. When it comes to S, I, and C parameters, their
weights vary in the maximum and minimum values of the
objective function, and this variation is visible in calculating

Table 1 The defined scenarios by the Factorial Analysis given
uncertain parameters

Scenario Uncertain parameter Scenario Uncertain parameter

R A S I C R A S I C

1 −1* 1** −1 −1 −1 17 1 1 1 −1 −1
2 −1 1 −1 1 1 18 1 1 1 1 −1
3 1 −1 1 −1 −1 19 1 1 −1 1 −1
4 1 1 −1 −1 −1 20 1 −1 −1 1 1

5 −1 −1 −1 −1 −1 21 1 1 1 1 1

6 −1 −1 1 1 1 22 −1 −1 −1 −1 1

7 −1 1 1 −1 1 23 1 −1 −1 −1 1

8 −1 −1 1 1 −1 24 1 −1 −1 −1 −1
9 −1 1 −1 1 −1 25 −1 1 1 1 −1
10 1 −1 1 1 −1 26 1 1 −1 −1 1

11 −1 −1 −1 1 −1 27 1 −1 −1 1 −1
12 −1 1 −1 −1 1 28 −1 −1 1 −1 −1
13 1 1 1 −1 1 29 −1 1 1 1 1

14 1 −1 1 −1 1 30 −1 1 1 −1 −1
15 1 1 −1 1 1 31 1 −1 1 1 1

16 −1 −1 −1 1 1 32 −1 −1 1 −1 1

*−1= lower bound of the parameter, **1= upper bound of parameter

Table 2 The modified rate of DRASTIC parameters by the AHP method

Parameters Sub-criteria Rate Parameters Sub-criteria Rate

Depth to water table (m) 0.9–1.75 0.264 Impact of vadose zone Clay 0.103

1.75–5.51 0.212 Clay and silt 0.174

5.51–7.84 0.147 Sand and gravel with clay 0.722

7.84–9.47 0.108 Hydraulic conductivity (m/day) 0.47–5.05 0.023

9.47–10.58 0.094 5.05–9.27 0.030

10.58–14 0.070 9.27–19.3 0.057

14–20.27 0.052 19.3–30.83 0.086

20.27–28.89 0.037 30.83–41.24 0.122

28.89–45.24 0.023 41.24–56.84 0.207

45.24< 0.012 >56.84 0.475

Soil media Thin and absent 0.377 Topography (%) 0–0.5 0.320

Gravel and sand and clay 0.310 0.5–1.5 0.213

Sandy loam 0.113 1.5–2.9 0.163

Loam 0.080 2.9–5 0.120

Silty loam 0.051 5–8.2 0.081

Clay loam 0.041 8.2–12.5 0.056

Clay 0.029 12.5–18 0.033

Aquifer media Clay 0.032 18< 0.015

Clay and gypsum 0.055 Net recharge (Piscopo) 5–7 0.145
Clay and sand 0.094

Clay and sand and gravel 0.118 7–8 0.230

Clay and gravel 0.253 8–12 0.625
Gravel and sand and clay 0.448
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Fig. 9 The effects of uncertain
parameters on the objective
function

Fig. 10 a–j The interactive effect of uncertain parameters on the objective function
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the objective function. For the parameter of A, the
weight of the parameter does not change. Hence, due
to its low weight and stability, it may conclude that
the objective function is independent of the changes in
parameter A.

To obtain the vulnerability zoning maps, 32 uncertain
states (32 scenarios) were used in the factorial analysis.
Each of these different states expresses a situation that
may happen to the aquifer due to uncertainties embed-
ded in the input parameters. These maps would indicate
the probable vulnerability zoning of the site regardless
of the corresponding correlation coefficients. Figure 14
depicts two vulnerability zoning maps for Shiraz plain
corresponding to the maximum and minimum values of
the correlation coefficient. Selecting these two specific
states is because of assessing the aquifer situation in the
best and worst conditions. In addition, comparing vul-
nerability zoning maps in maximum and minimum
values of the correlation coefficient revealed that the
northern parts of the aquifer have the slightest vulnera-
bility in the most probable scenarios. Conversely, the
southern regions will experience the highest vulnerabil-
ity in any situation.

The results were also compared to researches conducted by
Jafari and Nikoo (2019) and Baghapour et al. (2016). The first
one has the same data and case study area (Shiraz plain) to use
the uncertainty analysis methods for groundwater vulnerabil-
ity assessment. Meanwhile, there was a difference in method-
ology to modify the rate of the DRASTIC parameters where
the AHPmethod was employed in this research, but Jafari and
Nikoo (2019) used the Wilcoxon method. In addition, in this
research, the method used to determine the uncertainty was
factorial analysis. However, Jafari and Nikoo (2019) provided
a fuzzy model to consider the uncertainties embedded in the
input parameters. They presented the results of fuzzy analysis
by a membership function related to the correlation coeffi-
cient, which shows how the range of correlation coefficient
changes at different levels of the parameters’ uncertainty (α-
cuts) with plotting the vulnerability zoning maps at different
α-cuts. By comparing the evaluation process, the following
results can be obtained:

1. Factorial analysis is a complete sensitivity analysis meth-
od that considers the interactive effects of uncertain pa-
rameters in different possible scenarios (e.g., all 32
scenarios presented in Table 1). However, one-

Fig. 11 The probability graph of the parameter effects on the objective function a normal graph, and b half-normal graph

Fig. 12 The values of the
objective function in different
scenarios
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parameter-at-a-time (OAT) sensitivity analysis performed
by Jafari and Nikoo (2019) could not consider these pa-
rameters’ interactive effect. In addition, the results show a
clear difference between the DRASTIC parameters’ cate-
gorization based on their importance degree. Thanks to
the factorial analysis method, the authors assert that the
factorial analysis method efficiently recognizes the sensi-
tive parameters.

2. Comparing the results of the AHP-GA model used
in this research with those of the Wilcoxon-GA
model used by Jafari and Nikoo (2019) revealed
that both models yielded much better results than
the simple DRASTIC method. However, the AHP
model provided a higher value of the maximum
correlation coefficient than the Wilcoxon model’s
value (0.8 vs. 0.78).

3. Finally, the vulnerability maps obtained by Jafari and
Nikoo (2019) indicated a relatively similar zoning pattern

with our results, in which the East and southeastern parts
of the Shiraz plain are more susceptible to contamination
than the north and northwestern regions. However, a
point-to-point comparison of the maps showed differ-
ences in the vulnerability zoning, mainly due to the selec-
tion of different uncertain parameters with different
intervals.

Another case selected for the result’s comparison was the
research adopted by Baghapour et al. (2016) in which a com-
posite DRASTIC vulnerability model of Shiraz plain was
employed. They added land use as a new parameter to the
DRASTIC index, optimizing the weight and rate of the
DRASTIC parameters using an artificial neural network.
Their results showed a similar vulnerability pattern of the
Shiraz aquifer so that the southeastern parts were the most
vulnerable zones and northwestern areas were less susceptible
to contamination.

Fig. 13 The weights of uncertain
parameters in minimum and
maximum values of the objective
function

Fig. 14 The vulnerability map of the aquifer in minimum and maximum values of the objective function
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Summary and conclusions

In this research, a hybrid AHP-GA-based DRASTIC model
was developed, taking into account the uncertainty of the pa-
rameters. Considering the variation bounds of uncertain pa-
rameters, the factorial analysis defined 32 scenarios. AHP
method was utilized to rate DRASTIC parameters, and then
the genetic algorithm (GA) optimized the weight of the pa-
rameters in all scenarios. The objective function was the cor-
relation coefficient between the vulnerability index and the
nitrate concentration. The efficiency of the proposed method
was evaluated in the Shiraz aquifer, southwestern Iran, which
revealed that the net recharge parameter had the highest single
effect on the objective function. Also, the effect between net
recharge and hydraulic conductivity was the most significant
interactive effect, and the aquifer media was ineffective in the
variation of the objective function. Investigating the variation
trend of the objective function over the aquifer approved that
the proposed method provides a more accurate groundwater
vulnerability map. This research provides valuable knowledge
for assessing groundwater vulnerability, enabling decision-
makers to apply more precise information on groundwater
vulnerability in future water resource management plans.
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