
OR I G I N A L A RT I C L E
Jou rna l Se c t i on

AMulti-Step Finite-State Automaton for
Arbitrarily Deterministic Tsetlin Machine Learning

K. Darshana Abeyrathna1 | Ole-Christoffer Granmo1 |
Rishad Shafik2 | Lei Jiao1 | Adrian Wheeldon2 |
Alex Yakovlev2 | Jie Lei2 | Morten Goodwin1

1Centre for Artificial Intelligence Research,
University of Agder, Grimstad, Norway
2Microsystems Research Group, School of
Engineering, Newcastle University, UK

Correspondence
K. Darshana Abeyrathna, Centre for
Artificial Intelligence Research, University
of Agder, Grimstad, Norway
Email: darshana.abeyrathna@uia.no

Funding information

Due to the high arithmetic complexity and scalability chal-
lenges of deep learning, there is a critical need to shift re-
search focus towards energy efficiency. Tsetlin Machines
(TMs) are a recent approach to machine learning that has
demonstrated significantly reduced energy compared to neu-
ral networks alike, while providing comparable accuracy on
several benchmarks. However, TMs rely heavily on energy-
costly random number generation to stochastically guide a
team of Tsetlin Automata (TA) in TM learning. In this paper,
we propose a novel finite-state learning automaton that can
replace the TA in the TM, for increased determinism. The
new automaton uses multi-step deterministic state jumps
to reinforce sub-patterns, without resorting to randomiza-
tion. A determinism parameter d finely controls trading
off the energy consumption of random number generation,
against randomization for increased accuracy. Randomiza-
tion is controlled by flipping a coin before every d ’th state
jump, ignoring the state jump on tails. E.g., d = 1makes ev-
ery update random and d = ∞ makes the automaton com-

Abbreviations: TM, Tsetlin Machine; MVF-LA, Multi-step Variable-structure Finite-state Learning Automaton; ADTM, Arbitrarily Deterministic Tsetlin
Machine.

1

2 K. Darshana Abeyrathna et al.

pletely deterministic. Both theoretically and empirically, we
establish that the proposed automaton converges to the
optimal action almost surely. Further, used together with
the TM, only substantial degrees of determinism reduces
accuracy. Energy-wise, random number generation consti-
tutes switching energy consumption of the TM, saving up
to 11 mW power for larger datasets with high d values.
Our new learning automaton approach thus facilitate low-
energy machine learning.

K E YWORD S

Tsetlin Machine, Learning Automata, Low-power Machine
Learning

1 | INTRODUCTION

State-of-the-art deep learning (DL) requires massive computational resources, resulting in high energy consump-
tion (Strubell, Ganesh, & McCallum, 2019) and scalability challenges (Chen & Ran, 2019). Thus, there is a critical
need to shift research focus towards dealing with energy efficiency (García-Martín, Rodrigues, Riley, & Grahn, 2019;
Shafik, Yakovlev, & Das, 2018). TsetlinMachines (Granmo, 2018) (TMs) are a recent approach to machine learning (ML)
that has demonstrated significantly reduced energy usage compared to neural networks alike (Lei, Wheeldon, Shafik,
Yakovlev, & Granmo, 2020; Wheeldon et al., 2020). Using a linear combination of conjunctive clauses in propositional
logic, the TM has obtained competitive performance in terms of accuracy (Abeyrathna, Granmo, Zhang, Jiao, & Good-
win, 2019; Berge et al., 2019; Granmo et al., 2019), memory footprint (Granmo et al., 2019), energy (Wheeldon et al.,
2020), and learning speed (Granmo et al., 2019; Wheeldon et al., 2020) on diverse benchmarks (image classification,
regression and natural language understanding). Furthermore, the rules that TMs build seem to be interpretable, simi-
lar to the branches in a decision tree (e.g., in the form if X satisfies condition A and not condition B then Y = 1) (Berge
et al., 2019). The reported small memory footprint and low energy consumption make the TM particularly attractive
for addressing the scalability and energy challenge in ML.

Recent progress on TMs. Recent research reports several distinct TM properties. The TM can be used in convolu-
tion, providing competitive performance on MNIST, Fashion-MNIST, and Kuzushiji-MNIST, in comparison with CNNs,
K-Nearest Neighbor, SVMs, Random Forest, Gradient Boosting, BinaryConnect, Logistic Circuits and ResNet (Granmo
et al., 2019). The TM has also achieved promising results in natural language processing, such as text classification
(Berge et al., 2019), word sense disambiguation (Yadav, Jiao, Granmo, & Goodwin, 2021) and sentiment analysis (Ya-
dav, Jiao, Granmo, & Goodwin, 2021). By introducing clause weights, it has been demonstrated that the number of
clauses can be reduced by up to 50×, without loss of accuracy (Phoulady, Granmo, Gorji, & Phoulady, 2020). Fur-
ther, hyper-parameter search can be simplified with multi-granular clauses, eliminating the pattern specificity param-
eter (S. R. Gorji, Granmo, Phoulady, & Goodwin, 2019). By indexing the clauses on the features that falsify them,
up to an order of magnitude faster inference and learning has been reported (S. Gorji et al., 2020). Additionally,
regression TMs compare favorably with Regression Trees, Random Forest Regression, and Support Vector Regres-
sion (Abeyrathna et al., 2019). In (Abeyrathna, Granmo, & Goodwin, 2021), stochastic searching on the line automata

K. Darshana Abeyrathna et al. 3

(Oommen, 1997) learn integer clause weights, performing on-par or better than Random Forest, Gradient Boosting
and Explainable Boosting Machines. While TMs are binary throughout, thresholding schemes open up for continuous
input (Abeyrathna, Granmo, Zhang, & Goodwin, 2019). Finally, TMs have recently been shown to be fault-tolerant,
completely masking stuck-at faults (Shafik, Wheeldon, & Yakovlev, 2020). The convergence property of TM has re-
cently been studied in (Jiao, Zhang, Granmo, & Abeyrathna, 2021; Zhang, Jiao, Granmo, & Goodwin, 2020).

Paper Contributions. TMs rely heavily on energy-costly random number generation to stochastically guide a team
of TAs to a Nash Equilibrium of the TM game. In this paper, we propose a novel finite state learning automaton that
can replace the TAs of the TM, for increased determinism. The new automaton uses multi-step deterministic state
jumps to reinforce sub-patterns. Simultaneously, flipping a coin to skip every d ’th state update ensures diversification
by randomization. The d -parameter thus allows the degree of randomization to be finely controlled. Both theoretically
and empirically, we establish that the proposed new automaton converges to the optimal action almost surely, when
it is trained over an infinite time horizon while having infinite number of memory states. We further evaluate the
performance of TM with this new automaton empirically on five datasets, demonstrating that the d -parameter can
be used to trade off accuracy against energy consumption.

Paper Organization. In Sect. 2, we introduce our new type of Learning Automaton (LA) – the multi-step variable-
structure finite-state LA (MVF-LA). The convergence of the MVF-LA is studied both theoretically and empirically in
Sect. 3. Replacing the TA with MVF-LA, we describe the Arbitrarily Deterministic TM (ADTM) in Sect. 4. Then, in
Sect. 5, we evaluate ADTM empirically using five datasets. The performance of ADTM is investigated by varying the
d -parameter, contrasting against the regular TM and five other state-of-the-art machine learning algorithms. Effect
of determinism on energy consumption is discussed in Sect. 6. We conclude our work in Sect. 7.

2 | A MULTI-STEP FINITE-STATE LEARNING AUTOMATON

The origins of LA (Narendra & Thathachar, 2012) can be traced back to the work of M. L. Tsetlin in the early 1960s
(Tsetlin, 1961). The objective of an LA is to learn the optimal action through trial and error in a stochastic environment.
Various types of LAs are available depending on the nature of the application (Thathachar & Sastry, 2004). Due to
their computational simplicity, we here focus on two-action finite-state LA, which we extend by introducing a novel
periodically changing structure (variable structure).

An LA interacts with its environment iteratively. In each iteration, the action that a finite-state LA performs next
is decided by its present state (the memory). The environment, in turn, randomly produces a reward or a penalty
according to an unknown probability distribution, responding to the action selected by the LA. If the finite-state LA
receives a reward, it reinforces the action performed by moving to a “deeper” state. If the action results in a penalty,
it instead changes state towards the middle state, to weaken the performed action, ultimately switching to the other
action. In this manner, with a sufficient number of states, a finite-state LA converges to selecting the action with the
highest probability of producing rewards – the optimal action – with probability arbitrarily close to 1.0 (Narendra &
Thathachar, 2012).

The transitions between states can be be deterministic or stochastic. Deterministic transitions occur with prob-
ability 1.0, while stochastic transitions are randomly performed based on a preset probability. If the transition prob-
abilities are changing, we have a variable structure automaton, otherwise, we have one with fixed structure. The
pioneering TA, depicted in FIGURE 1, is a deterministic fixed-structure finite-state automaton (Tsetlin, 1961). The
state transition graph in the figure depicts a TA with 2N states. States 1 to N maps to Action 1 and states N + 1 to 2N

maps to Action 2.

4 K. Darshana Abeyrathna et al.

 1 2 … N-1 N N+1 N+2 ……. 2N-1 2N

Action 1 Action 2

Reward

Penalty

F IGURE 1 Transition graph of a two-action Tsetlin Automaton with 2N memory states.

 1 2 3 … N-3 N-2 N-1 N N+1 N+2 N+3 N+4 ……. 2N-2 2N-1 2N

Action 1 Action 2

 1 2 3 … N-1 N N+1 N+2 ……. 2N-2 2N-1 2N

Action 1 Action 2

Weak penalty (takes place with probability 1 or 0.5)

Weak reward (takes place with probability 1 or 0.5)

 Strong penalty (s=3 and takes place with probability 1 or 0.5)

Strong reward (s=3 and takes place with probability 1 or 0.5)

F IGURE 2 Transition graph of the Multi-Step Variable Structure Finite-State Learning Automaton.

While the TA changes state in single steps, the deterministic Krinsky Automaton introduces multi-step state
transitions (Narendra & Thathachar, 2012). The purpose is to reinforce an action more strongly when it is rewarded,
and more weakly when penalized. The Krinsky Automaton behaves as a TA when the response from the environment
is a penalty. However, when it is a reward, any state from 2 to N transitions to state 1, and any state from N + 1 to
2N − 1 transitions to state 2N . In effect, N consecutive penalties are needed to offset a single reward.

Another variant of LA is the Krylov Automaton. A Krylov Automaton makes both deterministic and stochastic
single-step transitions (Narendra & Thathachar, 2012). The state transitions of the Krylov Automaton is identical
to those of a TA for rewards. However, when it receives a penalty, it performs the corresponding TA state change
randomly, with probability 0.5.

We now introduce our new type of LA, the multi-step variable-structure finite-state LA (MVF-LA), shown in
FIGURE2. TheMVF-LA has two kinds of feedback, strong andweak. As covered in the next section, strong feedback is
required by the TM to strongly reinforce frequent sub-patterns, whileweak feedback is required tomake the TM forget
infrequent ones. To achieve this, weak feedback only triggers one-step transitions. Strong feedback, on the other hand,
triggers s-step transitions. Thus, a single strong feedback is offset by s instances of weak feedback. Further, MVF-
LA has a variable structure that changes periodically. That is, the MVF-LA switches between two different transition
graph structures, one deterministic and one stochastic. The deterministic structure is as shown in the figure, while
the stochastic structure introduces a transition probability 0.5, for every transition. The switch between structure is
performed so that every d ’th transition is stochastic, while the remaining transitions are deterministic.

K. Darshana Abeyrathna et al. 5

3 | PROOF OF THE CONVERGENCE OF MVF-LA

In this section, we discuss the convergence of the proposed Multi-Step Variable Structure Finite-State Learning Au-
tomaton (MVF-LA). In Sec. 3.1 we use a Markov chain model to analyze the convergence property of the MVF-LA.
Thereafter, we simulate the MVF-LA and illustrate its convergence in different conditions in Sec. 3.2.

3.1 | Proof of the convergence of MVF-LA using Markov chain

To build the Markov chain, we utilize the memory states of the MVF-LA, i.e., 1 to 2N , to represent the state space of
Markov chain. The transition probability matrix, P, for the Markov chain of MVF-LA is then to be established. The
transition from any state i to another state j in MVF-LA can happen due to one of four types of feedback: strong
reward, strong penalty, weak reward, and weak penalty. Apart from boundary conditions, the state transition from i

to j may also not happen since the every d t h update is made with probability of 0.5. Considering these conditions,
the probability of making the transition from i to j , pi ,j can be calculated as follows.

Transition probability due to a strong reward, Psr can be calculated as:

Psr = PTrans × (1 − c) × Ps (1)

Here, PTrans is the probability that any transition to other states happens. It includes two possibilities. (1) Tran-
sitions happen d − 1 times for every d iteration. (2) Transitions happen with probability 0.5 at the remaining 1 of d
iterations. Therefore, the overall probability of any transition, PTrans, can be calculated as,

PTrans =
d − 1
d
+ 0.5 × 1

d
(2)

The variable c in (1) is the penalty probability. The penalty probability c is the penalty probability of action 1 (c1)
if the starting state i in a transition from i to j is located in the state space of the action 1, i.e., 0 < i ≤ N . The penalty
probability c on the other hand is the penalty probability of action 2 (c2) if state i is in the state space of action 2, i.e.,
N < i ≤ 2N . The probability Ps in the same equation is the probability of getting a strong feedback.

Similarly, transition probabilities due to strong penalty: Psp , weak reward: Pwr , and weak penalty: Pwp are calcu-
lated as in (3), (4), and (5), respectively.

Psp = PTrans × c × Ps . (3)

Pwr = PTrans × (1 − c) × (1 − Ps) . (4)

Pwp = PTrans × c × (1 − Ps) . (5)

6 K. Darshana Abeyrathna et al.

Using the above transition probabilities, we form the transition probability matrix, P for the MVF-LA in FIGURE 2.
Matrix P exhibits the Markov chain property that the sum of the probabilities of each raw equals to one: ∑j pi ,j = 1.
For instance, consider the MVF-LA in FIGURE 2. Here, when the starting state of a transition is N , a strong reward
moves the state from N to N − 3 (s = 3). Similarly, a weak reward moves the state from N to N − 1. Weak and strong
penalties, on the other hand, move the state N in the state space of action 1 to the state space of action 2. While a
weak penalty moves the state from N to N + 1, a strong penalty moves it to N + 3. The state N stays on the same
state with probability Pnon, where Pnon is equal to (1 − PTrans) . At boundaries, if any of the above transitions can’t be
made, that transition probability is accommodated in Pnon.

P =

1 2 3 .. N − 1 N N + 1 N + 2 .. 2N − 2 2N − 1 2N

1 Pnon Pwp — .. — — — — .. — — —
2 Pwr Pnon Pwp .. — — — — .. — — —
3 — Pwr Pnon .. — — — — .. — — —
: : : : : : : : : : : : :

N − 1 — — — .. Pnon Pwp — Psp .. — — —
N — — — .. Pwr Pnon Pwp — .. — — —

N + 1 — — — .. — Pwp Pnon Pwr .. — — —
N + 2 — — — .. Psp — Pwp Pnon .. — — —
: : : : : : : : : : : : :

2N − 2 — — — .. — — — — .. Pnon Pwr —
2N − 1 — — — .. — — — — .. Pwp Pnon Pwr

2N — — — .. — — — — .. — Pwp Pnon

The Algorithm 1 shows the step-by-step procedure of building the transition matrix of MVF-LA.
Clearly, this Markov chain is indeed recurrent and non-periodical, and thus it is a ergodic Markov chain. As in (Jiao,

2020), the probability of staying at a particular state at time n , π (n) , in the Markov chain can be computed as,

π (n) = π (n − 1)P = π (n − 2)P2 = · · · = π (0)Pn (6)

Here, π (n) represents all the states in MVF-LA, π (n) = [π1 (n), π2 (n), . . . , π2N (n)] and
∑

i πi (n) = 1. When n

goes to infinity, we obtain the steady state probabilities, π∗. The steady state probabilities π∗ are independent of the
initial state. Hence, we can also calculate π∗ by,

π∗ = π∗P (7)

Theoretically, from (6) and (7), π∗ can be obtained by multiplying P itself for infinite number of times, π∗ = (P)∞.
In practice, we multiply P itself for a sufficiently large number of times until its entries converge and then the steady
state probabilities are obtained. Oncewe know the steady state probabilities, we sum up the steady state probabilities
that correspond to the action that has the lowest probability of penalty. If the sum of the probabilities converges to
1 when N approaches to infinity, we can conclude that, with sufficiently large number of memory states per actions,

K. Darshana Abeyrathna et al. 7

Algorithm 1 Calculating the stationary distribution of the Makov chain for MVF-LA
1: Input: Number of states per action, N ; Number of strong jumps, s ; Deterministic parameter, d ; Probability of

getting a strong feedback, Ps ; Penalty probability for action 1, c1; Penalty probability for action 2, c2.
2: Output: Limiting Matrix
3: Initialize: Transition Probability Matrix P ▷ P requires 2N by 2N space
4: Function:
5: for i = 1, ..., 2N do
6: if i ≤ N then
7: c = c1 ▷ c = Penalty probability for action 1
8: else
9: c = c2 ▷ c = Penalty probability for action 2

10: end if
11: for j = 1, ..., 2N do
12: Compute PT r ans ▷ (2)
13: if (i ≤ N and i − s = j) or (i > N and i + s = j) then ▷ strong reward
14: Pi ,j = PTrans × Ps × (1 − c)
15: else if (i ≤ N and i + s = j) or (i > N and i − s = j) then ▷ strong penalty
16: Pi ,j = PTrans × Ps × c
17: else if (i ≤ N and i − 1 = j) or (i > N and i + 1 = j) then ▷ weak reward
18: Pi ,j = PTrans × (1 − Ps) × (1 − c)
19: else if (i ≤ N and i + 1 = j) or (i > N and i − 1 = j) then ▷ weak penalty
20: Pi ,j = PTrans × (1 − Ps) × c
21: else (staying on the same state)
22: if i = j = 1 or i = j = 2N then ▷ both weak and strong updates can’t be made
23: Pi ,j = (1 − PTrans) + PTrans × (1 − c) × (1 − Ps) + PTrans × (1 − c) × Ps
24: else if i = j then
25: if (i ≤ N and i − s < 0) or (i > N and i + s > 2N) then ▷ only weak updates can be made
26: Pi ,j = (1 − PTrans) + PTrans × (1 − c) × Ps
27: else ▷ both weak and strong updates can be made
28: Pi ,j = 1 − PTrans
29: end if
30: else
31: Pi ,j = 0

32: end if
33: end if
34: end for
35: P[i , j] ← Update ▷ P[i , j] = pi ,j

36: end for
37:

38: End Function
39: Return: (P)∞ ▷ Return the stationary distribution

8 K. Darshana Abeyrathna et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
State

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

St
ea

dy
 S

ta
te

 P
ro

ba
bi

lit
ie

s

c1=0.1, c2=0.9, Pr[Action 1]=0.9998
c1=0.4, c2=0.6, Pr[Action 1]=0.8181
c1=0.6, c2=0.9, Pr[Action 1]=0.7547
c1=0.2, c2=0.4, Pr[Action 1]=0.9461

F IGURE 3 The steady state probabilities of an MVF-LA with different penalty probabilities when N = 10.

the LA converges to the correct action. For MVF-LA, based on the calculation of Algorithm 1, we conclude that as
long as the best action’s penalty probability is less than 0.5, the action selection probability converges to 1 when N

goes to infinity.
To illustrate the convergence property of MVF-LA, we form different transition matrices with distinct parameter

configurations using Algorithm 1. We keep s , Ps , and d as constant at 3, 0.67, and 10, respectively for the analysis.
Without loss of generality, we always set action 1 as the best action. The steady state probability distribution over
the states of MVF-LA can be seen in FIGURE 3 when N = 10. The sum of the steady state probabilities of action
1, Pr[Action 1], for different penalty probability configurations are also illustrated in the figure. Although with only
N = 10 memories, the action selection probability for action 1 is convincingly higher (> 0.94) when c1 = 0.1, c2 = 0.9

and c1 = 0.2, c2 = 0.4.
The probability of selecting action 1 for the remaining penalty probability setups are higher than 0.75. However,

the probability distribution of these two setups show that the MVF-LA has not made the decision of selecting action
1 confidently as the steady state probabilities of the end states of action 1 are relatively lower than those of the
previous two setups.

Nevertheless, theoretically, the probability of selecting action 1 increases with N and it will reach 1 as N goes
to infinity, given that the best action has a penalty probability less than 0.5. This is verified by the plots in FIGURE 4
where the probability of selecting action 1 reaches 1 when N increases for all the cases except when c1 = 0.6 and
c2 = 0.9. This is because the lowest penalty probability (c1 in this case) is not less than 0.5. Therefore, even though
the difference between penalty probabilities of the case c1 = 0.4 and c2 = 0.6 (0.2) lower than the case c1 = 0.6 and
c2 = 0.9 (0.3), the case of c1 = 0.4 and c2 = 0.6 can be perfectly learned when N increases while the other case
struggles.

OurMarkov chain based analysis thus uncovers similar convergence properties aswhat is achievedwith traditional
Tsetlin Automata. However, with increasing determinism, the stochasticity of learning is reduced. This reduction
makes the individual learning runs more predictable.

Additionally, the Markov property of Tsetlin Machine learning has been utilized previously to analyze learning
convergence (Jiao et al., 2021; Zhang et al., 2020). Because Tsetlin Machine learning can be formulated as a Markov
chain, we canmathematically prove convergence properties. Indeed, apart from proving convergence of the individual
learning elements (Tsetlin Automata or MVF-LA) within the Tsetlin Machine, one can also analyze the complete Tsetlin
Machine as one unit. Other state-of-the-art machine learning algorithms do not necessarily decompose into a simple
Markov chain, making exact convergence analysis more difficult.

K. Darshana Abeyrathna et al. 9

0 5 10 15 20 25 30 35 40
Number of N

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
[A

ct
io

n
1]

c1=0.1, c2=0.9
c1=0.4, c2=0.6
c1=0.6, c2=0.9
c1=0.2, c2=0.4

F IGURE 4 The increase of the probability of selecting the correct action with N .

3.2 | Simulation analysis of MVF-LA

In this section, we simulate the MVF-LA and see if it behaves similar to the above stated convergence properties.
First, we build the MVF-LA and iteratively update its states by stochastically generating feedbacks for MVF-LA’s
actions according to known penalty probabilities. Then we analyse the behavior of the MVF-LA and compare with its
theoretical outputs.

Here we introduce the new quantity M (n) , which is the average penalty after n training iterations. The M (n)
for a two-action automaton is computed asM (n) = c1P r [Act i on1] + c2P r [Act i on2] (Narendra & Thathachar, 2012).
According to the theory stated in Sec. 3.1, when n and N go to infinity, the probability of selecting the action which
has the lowest penalty probability should reaches 1 (consequently, the probability of selecting the other action goes
to 0). Therefore, when n and N go to infinity, the average penalty, M (n) should approximate to the lowest penalty
probability.

In our simulation, to make the analysis easier, we always set the lowest penalty probability to the action 1. Then,
we first analyse the variation of Pr[Action 1] against the number of training iterations, n . FIGURE 5 depicts the 20-
iterations moving average of Pr[Action 1] against the number of iterations. At each experiment round, the number of
training iteration, n is increased and the final Pr[Action 1] is recorded. The N , s , d , and Ps in this simulation are fixed

0 100 200 300 400 500
Iterations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

20
-it

er
at

io
ns

 m
ov

in
g

av
er

ag
e

of
 P

r[A
ct

io
n

1]

c1=0.1, c2=0.9
c1=0.4, c2=0.6

c1=0.6, c2=0.9
c1=0.2, c2=0.4

F IGURE 5 The variation of the Pr[Action 1] against the number of training iterations, n for different penalty
probabilities.

10 K. Darshana Abeyrathna et al.

0 100 200 300 400 500
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5-
ite

ra
tio

ns
 m

ov
in

g
av

er
ag

e
of

 M
(n

)

c1=0.1, c2=0.9
c1=0.4, c2=0.6

c1=0.6, c2=0.9
c1=0.2, c2=0.4

F IGURE 6 The variation of average penalty M (n) against the number of training iterations, n for different
penalty probabilities.

0 100 200 300 400 500
Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5-
ite

ra
tio

ns
 m

ov
in

g
av

er
ag

e
of

 P
r[A

ct
io

n
1] N=2 N=6 N=15 N=40

F IGURE 7 The variation of the Pr[Action 1] against the number of training iterations, n for different number of
states per action, N .

at 20, 3, 10, and 0.67. As expected, the Pr[Action 1] increases with n . The case with c1 = 0.1 and c2 = 0.9 has already
approaches probability 1. The probabilities of selecting action 1 in experiments with c1 = 0.4, c2 = 0.6 and c1 = 0.2,
c2 = 0.4 are slowly approaching 1. From these two, Pr[Action 1] variation of the case c1 = 0.4 and c2 = 0.6 is more
stable than the other. The Pr[Action 1] variation of the experiment with c1 = 0.6 and c2 = 0.9 has stabilized around
0.8.

The change of the average penalty, M (n) over n for the same experiment is illustrated in FIGURE 6. Except for
the experiment with c1 = 0.6 and c2 = 0.9, M (n) has approximated to the lowest penalty probability with n . The
5-iterations moving average for the experiment with c1 = 0.2 and c2 = 0.4 is again unsteady. The reason here is both
c1 and c2 are lower then 0.5 and therefore, there is a higher chance to get a reward for both the actions.

In the next arrangement, the change of Pr[Action 1] against n is studied for distinct N values. For this experiment,
the c1 and c2 are fixed at 0.4 and 0.6, respectively. As expected, FIGURE 7 displays that Pr[Action 1] of MVF-LA with
higher N reaches highest possible probability faster.

K. Darshana Abeyrathna et al. 11

 𝑥1 ……… 𝑥𝑜

𝑥1 ¬𝑥1 ……… 𝑥𝑜 ¬𝑥0

𝑇𝐴1 𝑇𝐴0+1 …….. 𝑇𝐴𝑜 𝑇𝐴2𝑜

 In ex …….. ex in

𝑥1 Ʌ … . . Ʌ ¬𝑥0

𝐋 = [𝑙1, 𝑙2, 𝑙3, 𝑙4 … … 𝑙2𝑜]

1/0 1/0 1/0 ……….

𝑣

+

Clause-1

Clause-2

….

−
−

Clause-m

Ʌ Ʌ

F IGURE 8 The ADTM structure.

4 | THE ARBITRARILY DETERMINISTIC TM (ADTM)

In this section, we introduce the details of the ADTM, shown in FIGURE 8, where the TA is replaced by the MVF-LA.
The purpose of the ADTM is to control the amount of stochasticity generated, thus allowing management of energy
consumption during learning.

4.1 | ADTM Inference

Input Features. Like the TM, anADTMtakes a feature vector of o propositional variables as input,X = [x1, x2, x3, . . . , xo],
to be classified into one of two classes, y = 0 or y = 1. These features are extended with their negation, to produce
a set of literals: L = [x1, x2, . . . , xo , ¬x1,¬x2, . . . ,¬xo] = [l1, l2, . . . , l2o].

Clauses. Patterns are represented by m conjunctive clauses. As shown for Clause-1 in the figure, a clause in the TM
comprises 2o MVF-LAs, each controlling the inclusion of a specific literal. Let the set I j , I j ⊆ {1, . . . , 2o } denote the
indexes of the literals that are included in clause j . When evaluating clause j on input literals L, the literals included
in the clause are ANDed: cj =

∧
k ∈Ij lk , j = 1, . . . ,m. Note that the output of an empty clause, I j = ∅, is 1 during

learning and 0 during inference.

Classification. In order to identify the sub-patterns associated with both of the classes of a two-class ADTM, the
clauses are grouped in two. The number of clauses employed is a user set parameterm. Half of the clauses are assigned
positive polarity (c+

j
). The other half is assigned negative polarity (c−

j
). The clause outputs, in turn, are combined into

a classification decision through summation and thresholding using the unit step function u (v) = 1 if v ≥ 0 else 0:

ŷ = u
©«
m/2∑
j=1

c+j (X) −
m/2∑
j=1

c−j (X)
ª®¬ . (8)

That is, classification is based on a majority vote, with the positive clauses voting for y = 0 and the negative for y = 1.

12 K. Darshana Abeyrathna et al.

4.2 | The MVF-LA Game and Orchestration Scheme

The MVF-LAs in ADTM are updated by so-called Type I and Type II feedback. Depending on the class of the current
training sample (X , y) and the polarity of the clause (positive or negative), the type of feedback is decided. Clauses
with positive polarity receive Type I feedback when the target output is y = 1, and Type II feedback when the target
output is y = 0. For clauses with negative polarity, Type I feedback replaces Type II, and vice versa. In the following,
we focus only on clauses with positive polarity.
Type I feedback: The number of clauses which receive Type I feedback is controlled by selecting them stochastically
according to (9):

T −max(−T ,min(T ,v))
2T

. (9)

Above, v =
∑m/2

j=1
c+
j
(X) −∑m/2

j=1
c−
j
(X) is the aggregated clause output andT is a user set parameter that decides how

many clauses should be involved in learning a particular sub-pattern. IncreasingT proportionally with the number of
clauses introduces an ensemble effect, for increased learning accuracy. Type I feedback consists of two kinds of sub-
feedback: Type Ia and Type Ib. Type Ia feedback stimulates recognition of patterns by reinforcing the include action of
MVF-LAs whose corresponding literal value is 1, however, only when the clause output also is 1. Note that an action
is reinforced either by rewarding the action itself, or by penalizing the other action. Type Ia feedback is strong, with
step size s (FIGURE 2). Type Ib feedback, on the other hand, combats over-fitting by reinforcing the exclude actions
of MVF-LAs when the corresponding literal is 0 or when the clause output is 0. Type Ib feedback is weak (FIGURE. 2)
to facilitate learning of frequent patterns.
Type II feedback: Clauses are also selected stochastically for receiving Type II feedback:

T +max(−T ,min(T ,v))
2T

. (10)

Type II feedback combats false positive clause output by seeking to alter clauses that output 1 so that they instead
output 0. This is achieved simply by penalizing exclusion of literals of value 0. Thus, when the clause output is 1 and
the corresponding literal value of an MVF-LA is 0, the exclude action of the MVF-LA is penalized. Type II feedback is
strong, with step size s . Recall that in all of the aboveMVF-LA update steps, the parameter d decides the determinism
of the updates.

5 | EMPIRICAL EVALUATION

We now study the performance of ADTM empirically using Bankruptcy, Balance Scale, Breast Cancer, Liver Disorders,
and Heart Disease datasets.1 Note that since we seek to achieve a trade-off between Tsetlin Machine accuracy and
interpretability, we have selected datasets that facilitate interpretation.

The ADTM is compared against regular TMs to assess to what degree learning accuracy suffers from increased
determinism. TheADTM is also compared against seven other state-of-the-aremachine learning approaches: Artificial
Neural Networks (ANNs), Support VectorMachines (SVMs), Decision Trees (DTs), K-Nearest Neighbor (KNN), Random
Forest (RF), Gradient Boosted Trees (XGBoost) (Chen & Guestrin, 2016), and Explainable Boosting Machines (EBMs)
(Nori, Jenkins, Koch, & Caruana, 2019). For comprehensiveness, three ANN architectures are used: ANN-1 – with

1An implementation of ADTM can be found at https://github.com/cair/Deterministic-Tsetlin-Machine.

https://github.com/cair/Deterministic-Tsetlin-Machine

K. Darshana Abeyrathna et al. 13

TABLE 1 Performance of TM and ADTM with different d on Bankruptcy

TM ADTM

d=1 d=10 d=100 d=500 d=1000 d=5000

F1 0.998 1.000 1.000 1.000 0.999 0.999 0.988

Acc. 0.998 1.000 1.000 1.000 0.999 0.999 0.987

0 50 100 150 200
Epoch

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

d = 1 d = 10 d = 100 d = 500 d = 1000 d = 5000

0 50 100 150 200
Epoch

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Ac
cu

ra
cy

F IGURE 9 Training and testing accuracy per epoch on Bankruptcy

one hidden layer of 5 neurons; ANN-2 – with two hidden layers of 20 and 50 neurons each, and ANN-3 – with three
hidden layers and 20, 150, and 100 neurons. Performance of these predictive models are summarized in Table 6. We
compute both F1-score (F1) and accuracy (Acc.) as performance measures. However, due to class imbalance, we
emphasize F1-score when comparing the performance of the different predictive models.

5.1 | Bankruptcy

The Bankruptcy dataset contains historical records of 250 companies2. The outcome, Bankruptcy or Non-bankruptcy,
is characterized by six categorical features. We thus binarize the features using thresholding (Abeyrathna et al., 2019)
before we feed them into the ADTM. We first tune the hyper-parameters of the TM and the best performance is
reported in Table 1, for m = 100 (number of clauses), s = 3 (step size for MVF-LA), and T = 10 (summation target).
Each MVF-LA contains 100 states per action. The impact of determinism is reported in Table 1, for varying levels of
determinism. As seen, performance is indistinguishable for d -values 1, 10, and 100, and the ADTM achieves its highest
classification accuracy. However, notice the slight decrease of F1-score and accuracy when determinism is further
increased to 500, 1000, and 5000.

FIGURE 9 shows how training and testing accuracy evolve over the training epochs. Only high determinism seems
to influence learning speed and accuracy significantly. The performance of the other considered machine learning
models is compiled in Table 6. The best performance in terms of F1-score for the other models is obtained by ANN-3.
However, ANN-3 is outperformed by the ADTM for all d -values except when d = 5000.

2Available from https://archive.ics.uci.edu/ml/datasets/qualitative_bankruptcy.

https://archive.ics.uci.edu/ml/datasets/qualitative_bankruptcy

14 K. Darshana Abeyrathna et al.

TABLE 2 Performance of TM and ADTM with different d on Balance Scale

TM ADTM

d=1 d=10 d=100 d=500 d=1000 d=5000

F1 0.945 0.982 0.983 0.982 0.968 0.951 0.911

Acc. 0.948 0.980 0.981 0.980 0.935 0.894 0.793

0 50 100 150 200
Epoch

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

d = 1 d = 10 d = 100 d = 500 d = 1000 d = 5000

0 50 100 150 200
Epoch

0.7

0.8

0.9

1.0

Te
st

in
g

Ac
cu

ra
cy

F IGURE 10 Training and testing accuracy per epoch on the Balance Scale

5.2 | Balance Scale

The Balance Scale dataset3 contains three classes: balance scale tip to the right, tip to the left, or in balance. The
class is decided by the size of the weight on both sides of the scale and the distance to each weight from the center.
Hence the classes are characterized by four features. However, to make the output binary, we remove the “balanced"
class ending up with 576 data samples. The ADTM is equipped with 100 clauses. Each MVF-LA is given 100 states per
action. The remaining two parameters, i.e., s value andT are fixed at 3 and 10, respectively. Table 2 contains the results
obtained with TM and ADTM. Even though ADTM uses the same number of clauses as the TM, the performance with
regards to F1-score and accuracy is better with ADTMwhen all updates onMVF-LAs are stochastic. The performance
of the ADTM remains the same until the determinism-parameter surpasses 100. After that, performance degrades
gradually.

Progress of training and testing accuracy per epoch can be found in FIGURE 10. Each ADTM setup reaches
its peak training and testing accuracy and becomes stable within a fewer number of training epochs. As can be seen,
accuracy is maintained up to d = 100, thus reducing random number generation to 1%without accuracy loss. From the
results listed in Table 6 for the other machine learning approaches, EBM achieves the highest F1-score and accuracy.

5.3 | Breast Cancer

The Breast Cancer dataset4 contains 286 patients records related to the recurrence of breast cancer (201 with non-
recurrence and 85 with recurrence). The recurrence of breast cancer is to be estimated using nine features: Age,
Menopause, Tumor Size, Inv Nodes, Node Caps, Deg Malig, Side (left or right), the Position of the Breast, and Irra-

3Available from http://archive.ics.uci.edu/ml/datasets/balance+scale.
4Available from https://archive.ics.uci.edu/ml/datasets/Breast+Cancer

http://archive.ics.uci.edu/ml/datasets/balance+scale
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer

K. Darshana Abeyrathna et al. 15

0 50 100 150 200
Epoch

0.65

0.70

0.75

0.80

0.85

Tr
ai

ni
ng

 A
cc

ur
ac

y

d = 1 d = 10 d = 100 d = 500 d = 1000 d = 5000

0 50 100 150 200
Epoch

0.62

0.64

0.66

0.68

0.70

0.72

Te
st

in
g

Ac
cu

ra
cy

F IGURE 11 Training and testing accuracy per epoch on Breast Cancer

diation. However, some of the patient samples miss some of the feature values. These samples are removed from
the dataset in the present experiment. The ADTM is arranged with the following parameter setup: m = 100, s = 5,
T = 10, and the number of states in MVF-LA per action is 100. The classification accuracy of the TM and ADTM are
summarized in Table 3. The performance of both TM and ADTM is here considerably lower than for the previous two
datasets, and further decreases with increasing determinism. However, the F1 measures obtained by all the other
considered machine learning models are also low, i.e., less than 0.500. The highest F1-score is obtained by ANN-1 and
KNN.

TABLE 3 Performance of TM and ADTM with different d on Breast Cancer

TM ADTM

d=1 d=10 d=100 d=500 d=1000 d=5000

F1 0.531 0.568 0.531 0.501 0.490 0.501 0.488

Acc. 0.703 0.702 0.698 0.691 0.690 0.690 0.693

The training and testing accuracy progress per epoch is reported in FIGURE 11, showing a clear degradation of
performance with increasing determinism.

5.4 | Liver Disorders

The Liver Disorders dataset5 was created by BUPA Medical Research and Development Ltd. (hereafter “BMRDL”)
during the 1980s as part of a larger health-screening database. The dataset consists of 7 attributes. However, Mc-
Dermott and Forsyth (2016) claim that many researchers have used the dataset incorrectly, considering the Selector
attribute as the class label. Based on the recommendation of McDermott and Forsythof, we here instead use the
Number of Half-Pint Equivalents of Alcoholic Beverages as the dependent variable, binarized using the threshold ≥ 3.
The Selector attribute is discarded. The remaining attributes represent the results of various blood tests, and we use
them as features.

Here, ADTM is given 10 clauses per class, with s = 3 and T = 10. Each MVF-LA action possesses 100 states.
The performance of ADTM for different levels of determinism is summarized in Table 4. For d = 1, the F1-score of

5Available from https://archive.ics.uci.edu/ml/datasets/Liver+Disorders.

https://archive.ics.uci.edu/ml/datasets/Liver+Disorders

16 K. Darshana Abeyrathna et al.

TABLE 4 Performance of TM and ADTM with different d on Liver Disorders

TM ADTM

d=1 d=10 d=100 d=500 d=1000 d=5000

F1 0.648 0.705 0.694 0.692 0.692 0.689 0.692

Acc. 0.533 0.610 0.610 0.612 0.612 0.610 0.611

0 50 100 150 200
Epoch

0.60

0.65

0.70

0.75

0.80

Tr
ai

ni
ng

 A
cc

ur
ac

y

d = 1 d = 10 d = 100 d = 500 d = 1000 d = 5000

0 50 100 150 200
Epoch

0.56

0.58

0.60

0.62

Te
st

in
g

Ac
cu

ra
cy

F IGURE 12 Training and testing accuracy per epoch on Liver Disorders

ADTM is better than what is achieved with the standard TM. In contrast to the performance on previous datasets,
the performance of ADTM on Liver Disorders dataset with respect to F1-score does not decrease significantly with
d . Instead, it fluctuates around 0.690.

As shown in FIGURE 12, unlike the other datasets, the ADTMwith d = 1 requires more training rounds than with
larger d -values, before it learns the final MVF-LA actions. It is also unable to reach the training accuracy obtained
with higher d -values. Despite the diverse learning speed, testing accuracy becomes similar after roughly 50 training
rounds. The other considered machine learning models obtain somewhat similar F1-scores, however,only DT, RF, and
EBM surpass an F1-score of 0.700.

5.5 | Heart Disease

The Heart Disease dataset6 concerns prediction of heart disease. To this end, 13 features are available, selected
among 75. Out of the 13 features, 6 are real-valued, 3 are binary, 3 are nominal, and one is ordered.

In this case, the ADTM is built on 100 clauses. The number of state transitions when the feedback is strong, s is
equal to 3 while the target,T is equal to 10. The number of states per MVF-LA action in the ADTM is 100.

As one can see in Table 5, the ADTM provides better performance than TM in terms of F1-score and accuracy
when d = 1. F1-score then increases with d and peaks at d = 100. After some fluctuation, it drops to a value of 0.605
when d = 5000.

FIGURE 13 shows similar training and testing accuracy for all d -values, apart from the significantly lower accuracy
of d = 5000.

Out of othermachine learning algorithms, EBMprovides the best F1-score, as summarized in Table 6. Even though
ANN-1, ANN-2, DT, RF, and XGBoost obtain better F1-scores than TM, the F1 scores of ADTM when d equals to 1,

6Available from https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29.

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29

K. Darshana Abeyrathna et al. 17

0 50 100 150 200
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

d = 1 d = 10 d = 100 d = 500 d = 1000 d = 5000

0 50 100 150 200
Epoch

0.5

0.6

0.7

0.8

Te
st

in
g

Ac
cu

ra
cy

F IGURE 13 Training and testing accuracy per epoch on Heart Disease

10, 100, 500, and 1000 are higher.

6 | EFFECTS OF DETERMINISM ON ENERGY CONSUMPTION

Energy consumption of all TM implementations can be positively reduced by using ADTM, since random choice is a key
mechanism in learning (see Section 4). This effect is especially notable in ASIC implementations aimed at low energy
on-chip learning applications, where energy overheads are low (compared to a personal computer, for example).

While software implementations of the TM use centralized pseudorandom number generators (PRNGs) to facili-
tate the random choices (Figure 14a), the ASIC implementation uses many smaller PRNGs localized to individual TAs
to maximize parallelism (Figure 14b). In the ASIC implementation of TM, linear feedback shift registers (LFSRs) are
used as PRNGs due to their small size and simplicity Wheeldon et al. (2020). Power is consumed by the PRNGs in
the process of generating a new random number. This is referred to as switching power. In the TM, every TA update
is randomized, and switching power is consumed by the PRNGs on every cycle. Additionally, power is also consumed
by the PRNGs whilst idle. We term this leakage power. Leakage power is always consumed by the PRNGs whilst they
are powered up, even when not generating new numbers.

In the ADTM with hybrid TA where the determinism parameter d is introduced, d = 1 would be equivalent to a
TM where every TA update is randomized. d = ∞ means the ADTM is fully deterministic, and no random numbers
are required from the PRNG. If a TA update is randomized only on the d th cycle, the PRNGs need only be actively
switched (and therefore consume switching power) for 1

d portion of the entire training procedure. The switching power
consumed by the PRNGs accounts for 7% of the total system power when using a traditional TA (equivalent to d = 1).
With d = 100 this is reduced to 0.07% of the system power, and with d = 5000 this is reduced further to 0.001% of
the same. It can be seen that as d increases in the ADTM, the switching power consumed by the PRNGs tends to

TABLE 5 Performance of TM and ADTM with different d on Heart Disease

TM ADTM

d=1 d=10 d=100 d=500 d=1000 d=5000

F1 0.687 0.759 0.766 0.767 0.760 0.762 0.605

Acc. 0.672 0.778 0.780 0.783 0.773 0.781 0.633

18 K. Darshana Abeyrathna et al.

TABLE 6 Classification accuracy of selected machine learning models

Bankruptcy Balance Scale Breast Cancer Liver Disorder Heart Disease

F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc.

ANN-1 0.995 0.994 0.990 0.990 0.458 0.719 0.671 0.612 0.738 0.772

ANN-2 0.996 0.995 0.995 0.995 0.403 0.683 0.652 0.594 0.742 0.769

ANN-3 0.997 0.997 0.995 0.995 0.422 0.685 0.656 0.602 0.650 0.734

DT 0.993 0.993 0.986 0.986 0.276 0.706 0.728 0.596 0.729 0.781

SVM 0.994 0.994 0.887 0.887 0.384 0.678 0.622 0.571 0.679 0.710

KNN 0.995 0.994 0.953 0.953 0.458 0.755 0.638 0.566 0.641 0.714

RF 0.949 0.942 0.859 0.860 0.370 0.747 0.729 0.607 0.713 0.774

XGBoost 0.983 0.983 0.931 0.931 0.367 0.719 0.656 0.635 0.701 0.788

EBM 0.993 0.992 1.000 1.000 0.389 0.745 0.710 0.629 0.783 0.824

TA TA

PRNG

TA TA

TATA

(a) Centralized PRNG

PRNG

TA

PRNG

TA

PRNG

TA

PRNG

TA

(b) Decentralized PRNG

F IGURE 14 PRNG strategies for a) software TM; and b) hardware TM.

zero.

In the special case of d = ∞ the PRNGs are no longer required for TA updates since the TAs are fully deterministic
– we can omit these PRNGs from the design and prevent their leakage power from being consumed. The leakage
power of the PRNGs accounts for 32% of the total system power. On top of the switching power savings this equates
to 39% of system power, meaning large power and therefore energy savings can be made in the ADTM.

Figure 15 shows the number of randomisation events for different d values in the case of Heart Disease dataset.
As expected, for lower d values, the number of events reduces drastically. For example, in the first iteration this
number reduces by 4219X from d=1 to d=5000. Notice, how the number of these events also reduces further for
both cases as the number of iterations increase Granmo (2018). The reduced number of events can be positively
leveraged towards power minimization.

Table 7 shows comparative training power consumption per datapoint (i.e. all TAs being updated concurrently)
for two different d values: d=1 and d=5000. Typically, the overall power is higher for bigger datasets as they require
increased number of concurrent TAs as well as PRNGs. As can be seen, the increase in d value reduces the power
consumption by 11 mW in the case of Heart Disease dataset. This saving is made by reducing the switching activity in
the PRNGs as explained above. More savings are made by larger d values as the PRNG concurrent switching activities
are reduced.

K. Darshana Abeyrathna et al. 19

0 20 40 60 80 100
Epoch

103

104

105

106

No
. o

f r
an

do
m

 n
um

be
r g

en
er

at
io

ns
 (l

og
)

d = 1 d = 10 d = 100 d = 500 d = 1000 d = 5000

F IGURE 15 Number of randomisation events per epoch for the Heart Disease dataset.

TABLE 7 Comparative power per datapoint with two different d values.

Dataset Bankruptcy Breast Cancer Balance Scale Liver Disorder Heart Disease

Power

(d=1)
6.94 mW 15.8 mW 7.7 mW 12.6 mW 148.0 mW

Power

(d=5000)
6.45 mW 14.7 mW 7.2 mW 11.8 mW 137.6 mW

7 | CONCLUSION

In this paper, we proposed a novel finite-state learning automaton (MFV-LA) that can replace the Tsetlin Automaton
in TM learning, for increased determinism, and thus reduced energy usage. The new automaton uses multi-step
deterministic state jumps to reinforce sub-patterns. Simultaneously, flipping a coin to skip every d ’th state update
ensures diversification by randomization. The new d -parameter thus allows the degree of randomization to be finely
controlled. E.g., d = 1 makes every update random and d = ∞ makes the automaton fully deterministic. First,
theoretically, using Markov chain properties, we showed that MVF-LA is able to select the action which has the
lowest penalty probability almost surely when both the number of training iterations and memory states are set
to infinity. Then, we simulated the MVF-LA and analyzed its convergence empirically to support our theoretical
inferences. Further, used together with TM, empirical results on five real-world datasets show that overall, only
substantial degrees of determinism reduces accuracy. Energy-wise, the pseudorandom number generator contributes
to switching energy consumptionwithin the TM, which can be completely eliminatedwith d = ∞. We can thus use the
new d -parameter to trade off accuracy against energy consumption, to facilitate low-energy machine learning. The
proposed scheme can be used as an alternative to any of the low-power machine learning algorithms. Low-power
machine learning algorithms are mainly used on edge devices of Internet of Things (IoT) networks. Our approach is

20 K. Darshana Abeyrathna et al.

particularly useful for robust on-chip learning (Shafik et al., 2020; Wheeldon et al., 2020).

References

Abeyrathna, K. D., Granmo, O.-C., & Goodwin, M. (2021). Extending the tsetlin machine with integer-weighted clauses for
increased interpretability. IEEE Access, 9, 8233–8248.

Abeyrathna, K. D., Granmo, O.-C., Zhang, X., &Goodwin,M. (2019). A scheme for continuous input to the TsetlinMachinewith
applications to forecasting disease outbreaks. In International conference on industrial, engineering and other applications of
applied intelligent systems (pp. 564–578).

Abeyrathna, K. D., Granmo, O.-C., Zhang, X., Jiao, L., & Goodwin, M. (2019). The Regression Tsetlin Machine - A Novel
Approach to Interpretable Non-Linear Regression. Philosophical Transactions of the Royal Society A, 378.

Berge, G. T., Granmo, O.-C., Tveit, T. O., Goodwin, M., Jiao, L., & Matheussen, B. V. (2019). Using the Tsetlin Machine
to Learn Human-Interpretable Rules for High-Accuracy Text Categorization with Medical Applications. IEEE Access, 7,
115134-115146. doi: 10.1109/ACCESS.2019.2935416

Chen, J., & Ran, X. (2019). Deep Learning With Edge Computing: A Review. Proc. of the IEEE, 107(8), 1655-1674.
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international

conference on knowledge discovery and data mining (pp. 785–794).
García-Martín, E., Rodrigues, C. F., Riley, G., & Grahn, H. (2019). Estimation of energy consumption in machine learning.

Journal of Parallel and Distributed Computing, 134, 75 - 88. doi: https://doi.org/10.1016/j.jpdc.2019.07.007
Gorji, S., et al. (2020). Increasing the Inference and Learning Speed of Tsetlin Machines with Clause Indexing. In International

conference on industrial, engineering and other applications of applied intelligent systems.
Gorji, S. R., Granmo, O.-C., Phoulady, A., & Goodwin, M. (2019). A Tsetlin Machine with Multigranular Clauses. In Lecture

notes in computer science: Proceedings of the thirty-ninth international conference on innovative techniques and applications
of artificial intelligence (sgai-2019) (Vol. 11927). Springer.

Granmo, O.-C. (2018). The Tsetlin Machine - A Game Theoretic Bandit Driven Approach to Optimal Pattern Recognition
with Propositional Logic. arXiv:1804.01508.

Granmo, O.-C., Glimsdal, S., Jiao, L., Goodwin, M., Omlin, C. W., & Berge, G. T. (2019). The Convolutional Tsetlin Machine.
arXiv preprint arXiv:1905.09688.

Jiao, L. (2020). Markov chain and stationary distribution. In Channel aggregation and fragmentation for traffic flows (pp. 17–28).
Springer.

Jiao, L., Zhang, X., Granmo, O.-C., & Abeyrathna, K. D. (2021). On the Convergence of Tsetlin Machines for the XOROperator.
arXiv preprint arXiv:2101.02547.

Lei, J., Wheeldon, A., Shafik, R., Yakovlev, A., & Granmo, O.-C. (2020). From arithmetic to logic based ai: A comparative analysis
of neural networks and tsetlin machine. In 2020 27th ieee international conference on electronics, circuits and systems (icecs)
(pp. 1–4).

McDermott, J., & Forsyth, R. S. (2016). Diagnosing a disorder in a classification benchmark. Pattern Recognition Letters, 73,
41–43.

Narendra, K. S., & Thathachar, M. A. (2012). Learning Automata: An Introduction. Courier Corporation.
Nori, H., Jenkins, S., Koch, P., & Caruana, R. (2019). Interpretml: A unified framework for machine learning interpretability.

arXiv preprint arXiv:1909.09223.
Oommen, B. J. (1997). Stochastic searching on the line and its applications to parameter learning in nonlinear optimization.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 27(4), 733–739.
Phoulady, A., Granmo, O.-C., Gorji, S. R., & Phoulady, H. A. (2020). The Weighted Tsetlin Machine: Compressed Representa-

tions with Clause Weighting. In Ninth international workshop on statistical relational ai (starai 2020).
Shafik, R., Wheeldon, A., & Yakovlev, A. (2020). Explainability and Dependability Analysis of Learning Automata based AI

Hardware. In Ieee 26th international symposium on on-line testing and robust system design (iolts).
Shafik, R., Yakovlev, A., & Das, S. (2018). Real-power computing. IEEE Transactions on Computers, 67(10), 1445–1461.
Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and Policy Considerations for Deep Learning in NLP. In Acl.
Thathachar, M. A. L., & Sastry, P. S. (2004). Networks of Learning Automata: Techniques for Online Stochastic Optimization.

Kluwer Academic Publishers.
Tsetlin, M. L. (1961). On behaviour of finite automata in random medium. Avtomat. i Telemekh, 22(10), 1345–1354.
Wheeldon, A., Shafik, R., Rahman, T., Lei, J., Yakovlev, A., & Granmo, O.-C. (2020). Learning Automata based Energy-efficient

K. Darshana Abeyrathna et al. 21

AI Hardware Design for IoT. Philosophical Transactions of the Royal Society A.
Yadav, R. K., Jiao, L., Granmo, O.-C., & Goodwin, M. (2021). Human-Level Interpretable Learning for Aspect-Based Sentiment

Analysis. In Proceedings of aaai, vancouver, canada.
Yadav, R. K., Jiao, L., Granmo, O.-C., & Goodwin, M. (2021). Interpretability in word sense disambiguation using tsetlin

machine. In Proceedings of icaart, vienna, austria.
Zhang, X., Jiao, L., Granmo, O.-C., & Goodwin, M. (2020). On the Convergence of Tsetlin Machines for the IDENTITY- and

NOT Operators. arXiv preprint arXiv:2007.14268.

	Introduction
	A Multi-Step Finite-State Learning Automaton
	Proof of the convergence of MVF-LA
	Proof of the convergence of MVF-LA using Markov chain
	Simulation analysis of MVF-LA

	The Arbitrarily Deterministic TM (ADTM)
	ADTM Inference
	The MVF-LA Game and Orchestration Scheme

	Empirical Evaluation
	Bankruptcy
	Balance Scale
	Breast Cancer
	Liver Disorders
	Heart Disease

	Effects of Determinism on Energy Consumption
	Conclusion

