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Abstract—For antiswing control of underactuated cranes, how to
guarantee the converging speed of cranes through control design is
essential but still remains unsolved. In this paper, the adaptive antiswing
control for underactuated gantry cranes with guaranteed transient
performance under unmodeled dynamics and external disturbances is
investigated. To solve this problem, a set of filters are proposed to
make the backstepping technique applicable for the control of crane
systems. Then through variable transformation the position error and
swing angel could be guaranteed converging to the origin with a given
exponential speed. Hardware experiments are conducted to show that
the proposed scheme achieves better control performance over existing
methods, and it is illustrated that the proposed control scheme possesses
strong robustness to unmodeled uncertainties and external disturbances.

Index Terms—Adaptive control; Robust Control; Underactuated
cranes; Transient performance.

I. INTRODUCTION

The crane systems, including tower cranes, gantry cranes, bridge
cranes etc. which could be used in various industrial applications[1],
[2], [8], [9], are one of the most important mechanical systems in
industry. The cranes belong to the family of underactuated mechan-
ical systems, where the number of available actuator is less than the
degree of freedom (DOF), such as nonholonomic mobile robots[25],
underactuated planar robots[26], pendubot[27] and helicopters[29],
etc. The gantry cranes are consisted of rails, motor-driven carts
and rope suspended to the cart. The cart moves on the railway to
transport the load to the desired position. Therefore the main control
objective for gantry cranes is to design effective control schemes
to achieve both position of the cart and antioscillation of the rope
while admitting strong robustness to external disturbances[36]-[38].
The control of the cranes with guaranteed transient performance,
which means the cart moves to target position and the swing of
the rope is suppressed as soon as possible, is desirable in industrial
application, since it will increase transportation efficiency and ensure
the operations safety under various environments to avoid serious
disasters such as collisions.

Many control schemes have been proposed for the control of
underactuated crane systems based on various control techniques
in literature, such as adaptive control, sliding-mode control, model
predictive control. For example, in [2] an antiswing control scheme
for underactuated gantry cranes is proposed by defining a sliding-like
surface and based on which the control is designed to keep the error
variables staying on the surface. In [3], an adaptive robust control
scheme is proposed for tower cranes which simultaneously rotates

Manuscript received Month xx, 2xxx; revised Month xx, 2xxx; accepted Month xx,
2xxx.

J. Huang is with the School of Automation, Chongqing University, Chongqing,
China, 400044. e-mail: jshuang@cqu.edu.cn.

W. Wang is with the School of Automation and Electrical Engineering, Beihang
University, Beijing 100191, China. E-mail: w.wang@buaa.edu.cn.

J. Zhou is with the Department of Engineering Sciences, University of Agder,
Grimstad, Norway, 4898. Email: jing.zhou@uia.no.

and moves the cart by using sliding mode technique and adaptive
model-reference control approach. In [13] a kind of neural network-
based adaptive control method is proposed which can provide control
for both actuated and unactuated state variables based on the original
nonlinear ship-mounted crane dynamics without any linearizing
operations. In [8] a control design method including path planning
and tracking control is proposed for underactuated crane systems by
combining theoretical analysis with empirical path planning methods.
Online update law is introduced to guarantee that the controller is
valid under different working conditions. In [17] an efficient control
scheme which captures the movement of a three-dimensional over-
head crane is presented. The control scheme keeps the crane system
states stay on the manifold. In [21], a kind of anti-swing control
method is proposed for 3-dimensional (3-D) underactuated overhead
crane systems by partially feedback linearization. In [22] a kind of
quasi-proportional integral derivative control method is proposed to
control the underactuated double-pendulum crane systems. In [23],
adaptive control for the cranes is investigated, where the update law
is designed to achieve accurate identifications of unknown parameters
and exact compensation of the gravity-related lumped term. An
improved feedback controller with an integral term is proposed in
[24] for 3-D tower cranes without linearization, which can achieve
both antiswing and positioning control while being able to reduce
steady errors under inaccurate friction compensation. In [18] an
integral barrier Lyapunov function based control method is proposed
for the underactuated crane systems to suppress the undesirable swing
of the flexible crane system with boundary output constraints. In [19],
the control framework is established by total energy shaping, and an
additional term is proposed into the adaptive control law to prevent
the trolley from running out of the permitted range for underactuated
crane systems. A model predictive control scheme which guarantees
swing of the rope is proposed in [20] for a class of 2-D overhead
crane systems. In [11] a control system for rubber-tired gantry (RTG)
cranes to track three actuated outputs and stabilize two unactuated
outputs is proposed. In [12] the dynamic model of double-pendulum
shipboard cranes is proposed and then a nonlinear antiswing feedback
controller to achieve stable cargo transportation is provided.

From the above the literature reviews, it is fair to conclude
that the position and anti-swing control of underactuated cranes,
including tower cranes, overhead cranes and gantry cranes, have
been extensive investigated and various control schemes have been
proposed. However, how to guarantee that the position error and
the swing angel converge to the origin with a pre-defined speed
under parametric uncertainties and external disturbances, which is
essential for industrial application, still remains unsolved. The control
of nonlinear systems with guaranteed transient performance is a hot
research topic and many results have been obtained. For example,
in [39] robust adaptive control schemes for SISO strict feedback
nonlinear systems are proposed which are capable of guaranteeing
prescribed performance bounds by the stabilization of the uncon-
strained system through variable exchange. By following this idea,
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many similar schemes are proposed. In [6] adaptive backstepping
control schemes for parametric strict feedback systems are proposed
to accommodate actuator failures based on a prescribed performance
bound. In [33] a PI control with adaptively adjusting gains is
proposed for uncertain nonlinear systems in Brunovsky form to
guarantee transient and steady-state performance. In [34], [35] the
transient performance of nonlinear systems are guaranteed through a
set of speed functions. However, none of these control schemes could
be applied to the underactuated crane systems directly. This is mainly
because the crane systems are a class of underactuated high-order
nonlinear system in a non-strict-feedback form, hence backstepping
control technique could not be applied directly.

In this paper, we aim to solve this problem by proposing a
filter based control scheme for the non-strict-feedback crane system
which renders the error dynamic system in a low-triangular form.
Meanwhile through transient bound functions the control objective
becomes stabilizing an unconstrained nonlinear system with back-
stepping control technique. The position error and swing angle will
converge to the neighbor of the origin with a given exponential speed.
Some parameters of the crane and the friction are not required to be
known in the control design. Through constraint variable exchange,
the swing angle will be guaranteed within an upper bound, therefore
a common assumption that swing angle is less than a given constant
is no longer needed.

With aforementioned features, the main contributions of this paper
could be summarized as follows:
• As far as we are concerned, this is the first work which solves

the adaptive control problem for underactuated crane systems
with unknown parameters and external disturbances, meanwhile
guaranteeing that the position error and the swing angel will
converge to a ball of the origin whose radius could be arbitrarily
small. Besides, the position error and the swing angel will
converge with a given exponential speed.

• To make the backstepping control technique be applicable to the
crane systems, a filter based control scheme is proposed for the
non-strict-feedback system. Through transient bound functions,
the control objective is equivalently transformed to stabilizing
an unconstrained nonlinear system with backstepping control
technique. Instead of offline experiment tests and data fitting to
obtain the friction force, adaptive control is applied to estimate
the unknown parameters online.

A series of hardware experiments is used to verify the perfor-
mance of our method, which documents that it can achieve better
performance than linear quadratic regulator[31] and sliding mode
control[30], and it is robust against parameter uncertainties, initial
swing perturbation, and external disturbances during the transferring
stage, which illustrates its promising application prospect.

II. PROBLEM FORMULATION

A. Underactuated Crane Model

We consider the underactauted crane systems where the following
equations could be obtained:

(M +mp)ẍ+mplθ̈ cos θ −mplθ̇ sin θ = u+ Fr + d(t) (1)

mpl
2θ̈ +mpl cos θẍ+mpgl sin θ = 0 (2)

where M denotes the weight of the crane system, mp denotes the
weight of the load. l denotes the length of the rope, and g is the
gravitational constant, g = 9.8m/s2. x(t) and θ(t) represent the
position of the cart and the swing angle of the rope, respectively.
u(t) is the control input, Fr denotes friction and viscous damping

forces which is approximately modeled as

Fr = −f1 tanh(ẋ/υ) + f2|ẋ|ẋ (3)

where f1, f2 and υ are the friction parameters. The aim of crane
control is to make the cart moves to the desired potion meanwhile
suppress the swing of the rope at initial stage. To proceed, the
following assumptions are considered.

Assumption 1: The length of the rope l is available for control
design.

Assumption 2: The measurement noise of the sensor is not
considered.

Assumption 3: The initial value of swing angel satisfies θ(0) ∈
(−π/2, π/2).

Remark 1: Assumption 1 is needed since the dynamics of ẋ and θ̇
should be decoupled through a variable exchange due to the reason
that it is an underactuated system, and it is commonly required[2],
[19]. In practice, the length of the rope easily could be obtained since
in the model (1)-(2) l is a constant. The other parameters include
M , mp, f1, f2 and υ are not required to be known.

Remark 2: Note that it is commonly assumed that swing angle
θ(t) satisfies θ(t) ∈ (−π/2, π/2) in almost all existing results, for
example, [2], [19], [20], [23], [24] and many references therein.
In this paper, through variable constraint control, swing angle θ(t)
will be guaranteed within the interval above if θ(0) ∈ (−π/2, π/2).
Therefore such an assumption is no longer needed.

To facilitate the control design and stability analysis, some variable
transformations are made firstly. Equations (2) can be organized by
dividing both sides with mpl as follows:

ẍ = −g tan θ − lθ̈

cos θ
(4)

Then substitute (4) into (1) and make some arrangements to obtain

− (M +mp sin2 θ)l

cos θ
θ̈ −mplθ̇

2 sin θ

− (M +mp)g tan θ = u+ Fr + d(t) (5)

where d(t) = − d(t) cos θ
M+mp sin2 θ

. Equation (5) could be further rear-
ranged as

θ̈ = −mpθ̇
2 sin θ cos θ

M +mp sin2 θ
− (M +mp)g sin θ

(M +mp sin2 θ)l

− cos θ

(M +mp sin2 θ)l

(
u+ Fr + d(t)

)
(6)

By letting x1 = x, x2 = ẋ, θ1 = θ, θ2 = θ̇, then the original crane
dynamics can be rearranged into

ẋ1 = x2

ẋ2 = −g tan θ1 −
l

cos θ1
θ̇2

θ̇1 = θ2

θ̇2 = ς1u+ f̄(x1, x2, θ1, θ2) + d1(t) (7)

where ς1 = − cos θ1
(M+mp sin2 θ1)l

, f̄ = −mpθ
2
2 sin θ1 cos θ1

M+mp sin2 θ1
−

(M+mp)g sin θ1
(M+mp sin2 θ1)l

− cos θ1
(M+mp sin2 θ1)l

Fr, d1(t) = − cos θ1d(t)
(M+mp sin2 θ1)l

. To
eliminate θ̇2 in the dynamic of x2 to facilitate the control design, let
a new variable η1 defined as

η1(t) = x1 − xd + µ(θ1) (8)
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where µ(θ1) is a function of θ1 to be introduced later[2]. Then the
time derivative of η1(t) is

η̇1 = x2 +
∂µ

∂θ1
θ2 (9)

and

η̈1 = −g tan θ1 −
l

cos θ1
θ̇2 +

∂µ

∂θ1
θ̇2 +

∂2µ

∂θ2
1

θ2
2 (10)

From (10) we know if let ∂µ
∂θ1

θ̇2 = l
cos θ1

θ̇2, then θ̇2 is eliminated.
Therefore we obtain

µ(θ1) = l ln(
1

cos θ1
+ tan θ1) (11)

The closed-loop system is transformed as

η̇1 = x2 +
l

cos θ1
θ2

ẋ2 = −g tan θ1 +
l tan θ1

cos θ1
θ2

2

θ̇1 = θ2

θ̇2 = ς1u+ f̄(x1, x2, θ1, θ2) + d1(t) (12)

Let

η2 = x2 +
l

cos θ1
θ2

x3 = −g tan θ1

x4 = − g

cos2 θ1
θ2 (13)

and taking time-derivative of η1, η2, x3 and x4, it yields

η̇1 = η2

η̇2 = x3 −
lx3x

2
4

(g2 + x2
3)1.5

ẋ3 = x4

ẋ4 = ςu+ ϑT (t)f + ψ + d̄(t) (14)

where ψ = 2θ2
2 tan θ1, ς = g

(M+mp sin2 θ1)l cos θ1
,

d̄(t) = gd1(t)
(M+mp sin2 θ1)l cos θ1

, ϑ(t) = [
mp

M+mp sin2 θ1
,

M+mp
(M+mp sin2 θ1)l

, −f1 tanh(ẋ/ς)
(M+mp sin2 θ1)l

, f2
(M+mp sin2 θ1)l

]T , and

f = [
gθ22 sin θ1

cos θ1
, g

2 sin θ1
cos2 θ1

, g
cos θ1

, g|ẋ|ẋcos θ1
]T , It is clear that (14) is

not a strict-feedback system, thus the control schemes which are
proposed to guarantee the transient performance of strict-feedback
systems[6], [14], [15], [16], [33], [34], [39] could not be applied
for (14). Also the backstepping control scheme could not be used
directly.

The control objective of this paper is to design an adaptive control
law for u such that position stabilization error x̃1 = x1 − xd and
swing angel θ1 converge to an arbitrarily small ball with a given
exponential converging rate, i.e.,

|x̃1(t)| ≤ (x0 − β)e−αt + β

|θ1(t)| ≤ (θ0 − β)e−αt + β (15)

where α > 0 is a given converging rate and β > 0 could be arbitrarily
small, x0 > max{β, x1(0)} and θ0 > max{β, θ1(0)} are positive
constants. From (12) it can be observed that the system is un-defined
at θ1 = ±π2 . To avoid this, θ0 is set as |θ0| = π

2 − σ1 with σ1 being
a small positive constant.

To proceed, firstly a robust adaptive law for u will be designed
such that η1 and x3 will converge at an exponential speed. Secondly

it will be proved that x̃1 and θ1 will converge satisfying (15) by
properly designing the control parameters.

Remark 3: As shown in (14), the crane system is underactuated,
since η1 and x3 should be stabilized at the same time while the
only control input is u. It can be also observed that (14) is not a
strict-feedback nonlinear systems. The control of nonlinear systems
with guaranteed transient performance is a hot research topic and
many results have been obtained. However, all existing control
schemes could not be applied to the underactuated crane ystems
directly. This is mainly because that the crane systems are a class of
underactuated high-order nonlinear systems in non-strict-feedback
form, hence backstepping control technique could not be applied
directly. In this paper, we will solve this problem by proposing a filter-
based backstepping control scheme, which allows the backstepping
control to be applied.

III. CONTROL DESIGN

One of the major difficulties of achieving (15) is that (14) is
not a strict-feedback system, therefore control design methods such
as backstepping [5] and control design skills which can guarantee
transient performance such as prescribed performance bounds [6]
could not be directly applied for (14). To proceed, we modify (14)
as

η̇1 = η2

η̇2 = kηx3

ẋ3 = x4

ẋ4 = ςu+ ϑT (t)f + ψ + d̄(t) (16)

where kη = 1 − lx2
4

(g2+x2
3)1.5

is a control gain, which means control
law u also needs to guarantee

|x4| ≤ $0 (17)

where $0 =
√

g3

l to make kη > 0. To accomplish (15) and (17),
firstly introduce a smooth performance function κ(t) as follows

κ(t) = (κ0 − κ∞)e−at + κ∞,

where a > 0 and κ0 ≥ κ∞ > 0 which will be designed later. Now
define new variables

e1 = S−1
1 (

η1

κ(t)
), e2 = η2

e3 = S−1
2 (

x3

κ(t)
), e4 = S−1

3 (x4) (18)

where

Si(x) =
bie

(x+vi) − aie−(x+vi)

e(x+vi) + e−(x+vi)
, i = 1, 2, 3. (19)

with ai and bi being positive constants to be designed, vi = 1
2 ln ai

bi
.

Si(x) is a strict monotonic function with

(i) −ai < Si(x) < bi (20)
(ii) limγ→+∞ Si(x) = bi,

limx→−∞ Si(x) = −ai (21)

Taking time-derivative of ei, i = 1, ..., 4, yields

ė1 = γ1e2 − λ1e1

ė2 = γ2e3

ė3 = γ3e4 − λ2e3

ė4 = γ4u+ λ3ϑ
T (t)f + λ3ψ + λ3d̄(t) (22)
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where γ1 = 1
2

[
1

η1+α1κ
− 1
η1−β1κ

]
, λ1 = γ1κ̇

S1(e1)
e1

, γ2 = kηκ
S2(e3)
e3

,

γ3 = 1
2
S3(e4)
e4

[
1

x3+α2κ
− 1
x3−β2κ

]
, λ2 = γ3κ̇

S2(e3)
e3

, λ3 = 1
2

[
1

x4+α3
−

1
x4−β3

]
, γ4 = λ3ς . Note that (22) is still not a strict feedback system

due to existence of γ1, γ2 and γ3. Therefore γ1, γ2 and γ3 should
be tackled to facilitate the application of backstepping technique. It
is easy to check that γ1 6= 0, γ2 6= 0 and γ3 6= 0 if all signals in the
closed-loop system are bounded.

Now we are going to propose a set of filters to handle γi. Let αi,
i = 1, 2, 3 be virtual control for ei+1 and αi,f is the filtered signal
of αi

γi

εiα̇i,f + αi,f =
αi
γi

(23)

where εi is a small positive constant to be designed. Furthermore,
define

zj = ej − αj−1,f (24)

where j = 1, ..., 4, α0,f = 0 and let yi, i = 1, 2, 3, be new variables
as

yi = αi,f −
αi
γi

(25)

Now the control design is finished step by step. Firstly let

Vz =
1

2

4∑
i=1

z2
i +

1

2

3∑
k=1

y2
k

and define a set

Ξ = {(zi, yk) : Vz ≤ p1} (26)

where p1 is a positive constant such that Ξ encloses the initial points
zi(0) and yi(0).

Step 1: From (24) and (25) it can be obtained that

e2 = z2 + y1 +
α1

γ1
(27)

Taking (27) into the first equation of (22) yields

ż1 = γ1z2 + γ1y1 + α1 − λ1z1

Considered the first Lyapunov function

V1 =
1

2
z2

1 +
1

2
y2

1

whose time-derivative is

V̇1 = z1(γ1z2 + γ1y1 + α1 − λ1z1) + y1

(
− y1

ε1
+ (

α1

γ1
)′
)

≤ z1γ1z2 + ε1 +
z2

1γ
2
1y

2
1

4ε1
+ z1(α1 − λ1z1)

+ y1

(
− y1

ε1
+ (

α1

γ1
)′
)

The virtual controller α1 is designed as

α1 = −k1z1 + λ1z1

where k1 is a positive constant. Clearly (α1

γ1
)′ = h1(z1, y1, t) is

bounded in Ξ and let ω1 and ν1 be upper bounds of h1 and z2
1γ

2
1 in

Ξ, then

y1(
α1

γ1
)′ ≤ ε1 +

ω2
1y

2
1

4ε1

where ε1 is a small positive constant, which means

V̇1 ≤ γ1z1z2 − k1z
2
1 −

( 1

ε1
− ν1 + ω2

1

4ε1

)
y2

1 + 2ε1

Let ε1 = 4ε1
2(ν1+ω2

1)
, then

V̇1 ≤ γ1z1z2 − k1z
2
1 −

1

2ε1
y2

1 + 2ε1

Step 2: Taking time-derivative of z2 yields

ż2 = γ2e3 +
α1,f

ε1
− α1

γ1ε1
(28)

Taking e3 = z3 + y2 + α2

γ2
into (28) yields

ż2 = γ2z3 + γ2y2 + α2 +
α1,f

ε1
− α1

γ1ε1
(29)

Considered the following Lyapunov function

V2 = V1 +
1

2
z2

2 +
1

2
y2

2 (30)

whose time-derivative is

V̇2 = −k1z
2
1 −

1

2ε1
y2

1 + 2ε1 + z2(γ1z1 + γ2z3 + γ2y2

+ α2 +
α1,f

ε1
− α1

γ1ε1
) + y2

(
− y2

ε2
+ (

α2

γ2
)′
)

≤ −k1z
2
1 −

1

2ε1
y2

1 + 2ε1 + γ2z2z3 + ε2 +
z2

2γ
2
2y

2
2

4ε2

+ z2(α2 + λ1z1 +
α1,f

ε1
− α1

γ1ε1
)

+ y2

(
− y2

ε2
+ (

α2

γ2
)′
)

The virtual controller α2 is designed as

α2 = −k2z2 − γ1z1 −
α1,f

ε1
+

α1

γ1ε1
(31)

where k2 is a positive constant. Clearly (α2

γ2
)′ = h2(zi, yi, 1/ε1, t),

i = 1, ..., 4 is bounded in Ξ and let ω2 and ν2 be upper bounds of
h2 and z2

2γ
2
2 in Ξ, then

y2(
α2

γ2
)′ ≤ ε2 +

ω2
2y

2
2

4ε2

which means

V̇2 ≤ γ2z2z3 − k1z
2
1 − k2z

2
2 −

1

2ε1
y2

1 + 2ε1 + 2ε2

−
( 1

ε2
− ν2 + ω2

2

4ε2

)
y2

2

Let ε2 = 4ε2
2(ν2+ω2

2)
, then

V̇2 ≤ γ2z2z3 − k1z
2
1 − k2z

2
2 −

1

2ε1
y2

1 −
1

2ε2
y2

2

+ 2ε1 + 2ε2

Step 3: Taking time-derivative of z3 yields

ż3 = γ3e4 − λ2e3 +
α2,f

ε2
− α2

γ2ε2
(32)

Taking e4 = z4 + y3 + α3

γ3
into (35) yields

ż3 = γ3z4 + γ3y3 + α3 − λ2e3 +
α2,f

ε2
− α2

γ2ε2
(33)
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Considered the following Lyapunov function

V3 = V2 +
1

2
z2

3 +
1

2
y2

3

whose time-derivative is

V̇3 ≤ −k1z
2
1 − k2z

2
2 −

1

2ε1
y2

1 −
1

2ε2
y2

2 + 2ε1 + 2ε2 + ε3

+
z2

3γ
2
3y

2
3

4ε3
+ z3(α3 − λ2e3 + λ2z2 +

α2,f

ε2
− α2

γ2ε2
)

+ y3

(
− y3

ε3
+ (

α3

γ3
)′
)

+ γ3z4z3

The virtual controller α3 is designed as

α3 = −k3z3 − γ2z2 + λ2e3 −
α2,f

ε2
+

α2

γ2ε2

where k3 is a positive constant. Clearly (α3

γ3
)′ =

h3(zi, yi, 1/ε1, 1/ε2, t), i = 1, ..., 4 is bounded in Ξ and let
ω3 and ν3 be upper bounds of h3 and z2

3γ
2
3 in Ξ, then

y3(
α3

γ3
)′ ≤ ε3 +

ω2
3y

2
3

4ε3

which means

V̇3 ≤ γ3z3z4 − k1z
2
1 − k2z

2
2 − k3z

2
3 −

1

2ε1
y2

1 −
1

2ε2
y2

2 + 2ε1

+ 2ε2 + 2ε3 −
( 1

ε3
− ν3 + ω2

3

4ε3

)
y2

3 (34)

Let ε3 = 4ε3
2(ν3+ω2

3)
, then

V̇3 ≤ γ3z3z4 − k1z
2
1 − k2z

2
2 − k3z

2
3 −

1

2ε1
y2

1 −
1

2ε2
y2

2 + 2ε1

+ 2ε2 + 2ε3 −
1

2ε3
y2

3

Step 4: Taking time-derivative of z4 yields

ż4 = γ4u+ λ3ϑ
T (t)f + λ3ψ + λ3d̄(t) +

α3,f

ε3
− α3

γ3ε3
(35)

Let

θ = sup
t>0
‖ϑ(t)‖, D = sup

t>0
‖d̄(t)‖

and

V4 = V3 +
1

2
z2

4 +
1

2
θ̃2 +

1

2
D̃2 +

1

2ς̄
p̃2

where θ̂ and D̂ are estimate of θ and D, θ̃ = θ − θ̂, D̃ = D − D̂, ς̄
and p̃ will be defiend later, then time-derivative of V4 is

V̇4 = −k1z
2
1 − k2z

2
2 − k3z

2
3 −

1

2ε1
y2

1 −
1

2ε2
y2

2 −
1

2ε3
y2

3 + 2ε1

+ 2ε2 + 2ε3 + γ3z3z4 + z4(γ4u+ λ3ϑ
T (t)f + λ3ψ

+ λ3d̄(t) +
α3,f

ε3
− α3

γ3ε3
)− θ̃ ˙̂

θ − D̃ ˙̂
D − p̃ ˙̂p

Clearly from Lemma 3 of [7],

z4λ3ϑ
T (t)f ≤ θ z2

4λ
2
3f
T f√

z2
4λ

2
3f
T f + χ2

+ θχ

z4λ3d̄(t) ≤ D z2
4λ

2
3√

z2
4λ

2
3 + χ2

+Dχ

where χ = e−at, a > 0, then

V̇4 ≤ −k1z
2
1 − k2z

2
2 − k3z

2
3 −

1

2ε1
y2

1 −
1

2ε2
y2

2 −
1

2ε3
y2

3 + 2ε1

+ 2ε2 + 2ε3 + γ3z3z4 + z4(λ3ςu+
z4θ̂λ

2
3f
T f√

z2
4λ

2
3f
T f + χ2

+ λ3ψ

+
z4D̂λ

2
3√

z2
4λ

2
3 + χ2

+
α3,f

ε3
− α3

γ3ε3
)− θ̃( ˙̂

θ − z2
4λ

2
3f
T f√

z2
4λ

2
3f
T f + χ2

)

− D̃(
˙̂
D − z2

4λ
2
3√

z2
4λ

2
3 + χ2

)− p̃ ˙̂p+Dχ+ θχ

Furthermore, from the definition of ς in (14), |ς| > ς̄ := g
(M+mp)l ,

let

u =
ū

λ3

ū = − z4p̂
2α2

u√
z2

4 p̂
2α2

u + χ2
(36)

where p = 1
ς̄ and p is the estimate of p, then

z4λ3ςu = −ς z2
4 p̂

2α2
u√

z2
4 p̂

2α2
u + χ2

≤ −ς̄ z2
4 p̂

2α2
u√

z2
4 p̂

2α2
u + χ2

≤ ς̄χ− ς̄z4p̂αu

= ς̄χ− z4αu + ς̄z4p̃αu

Then

V̇4 ≤ −k1z
2
1 − k2z

2
2 − k3z

2
3 −

1

2ε1
y2

1 −
1

2ε2
y2

2 −
1

2ε3
y2

3 + 2ε1

+ 2ε2 + 2ε3 + z4(−αu + γ3z3 +
z4θ̂λ

2
3f
T f√

z2
4λ

2
3f
T f + χ2

+ λ3ψ

+
z4D̂λ

2
3√

z2
4λ

2
3 + χ2

+
α3,f

ε3
− α3

γ3ε3
)− θ̃( ˙̂

θ − z2
4λ

2
3f
T f√

z2
4λ

2
3f
T f + χ2

)

− D̃(
˙̂
D − z2

4λ
2
3√

z2
4λ

2
3 + χ2

)− p̃( ˙̂p− z4αu) +Dχ+ θχ+ ς̄χ

The control input and parameter estimator are designed as

αu = k4z4 + γ3z3 +
z4θ̂λ

2
3f
T f√

z2
4λ

2
3f
T f + χ2

+ λ3ψ

+
z4D̂λ

2
3√

z2
4λ

2
3 + χ2

+
α3,f

ε3
− α3

γ3ε3
(37)

and

˙̂
D = −kdD̂ +

z2
4λ

2
3√

z2
4λ

2
3 + χ2

˙̂
θ = −kθ θ̂ +

z2
4λ

2
3f
T f√

z2
4λ

2
3f
T f + χ2

˙̂p = −kpp̂+ z4αu (38)

then

V̇4 ≤ −k1z
2
1 − k2z

2
2 − k3z

2
3 − k4z

2
4 −

1

2ε1
y2

1 −
1

2ε2
y2

2

− 1

2ε3
y2

3 −
kθ
2
θ̃2 − kd

2
D̃2 − kp

2
p̃2 + 2ε1 + 2ε2

+ 2ε3 +Dχ+ θχ+ ς̄χ+ kθθ
2 + kdD

2 + kpp
2 (39)
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Remark 4: As stated previously, in terms of control design, the
main difficulty of stabilizing the underactuated crane system lies on
the fact that kη in (16) contains x3 and x4, therefore backstepping
control design could not be applied directly to (16), so as to the γi in
(22). To solve this problem, we propose a filter based backstepping
control with introducing a set of filters (23). With these filters, the
virtual control law in ith step only involves signals e1,...,ei as shown
in (22). Therefore transient bounds technique could be applied to
guarantee the transient performance of the crane system.

Remark 5: εi, i = 1, 2, 3 are control parameters to be chosen
in the designing. Smaller εi mean the radius of the ball which
the position error and swing anle converge into will be smaller.
However, the magnitude if control signal will be larger. Therefore
this is a trade-off problem between the control cost and transient
performance.

IV. STABILITY AND TRANSIENT PERFORMANCE ANALYSIS

Now we are at the position of establishing the main result of this
paper in the following theorem.

Theorem 1: Consider the closed-loop system including the under-
actuated crane system (1)-(2) with parametric uncertainties and ex-
ternal disturbance, control input (36) and parameter estimators (38).
All signals in the closed-loop systems are bounded. Furthermore,
the position error and swing angel will converge to an arbitrarily
small region of the origin with a given exponential converging speed
satisfying (15).
Proof : From (39) one could obtain that

V̇4 ≤ −kV4 + σ1 (40)

where k = 2 min{k1, k2, k3, k4,
1

2ε1
, 1

2ε2
, 1

2ε3
, kθ2 ,

kD
2 , kpς̄} and σ1 =

2ε1 + 2ε2 + 2ε3 +Dχ+ θχ+ ς̄χ+ kθθ
2 + kDD

2 + kpp
2. Therefore

V̇4 ≤ 0 when V4 ≥ σ1

k . By properly choosing the control parameters
and p1 in (26), it is shown that Ξ is an invariant set. Therefore z1, z2,
z3, z4, y1, y2, y3, θ̃, D̃ and p̃ are bounded, which from (24) further
implies that e1, e2, e3 and e4 are bounded. From (18) we know η1,
η2, x3 and x4 are bounded. Therefore all signals in the closed-loop
system are bounded. Thus from (18)

−α3 < x4 < β3 (41)

Therefore by choosing α3 = β3 = $0, (17) is satisfied. Also from
(18)

|η1| < β1κ(t)

|x3| < β2κ(t) (42)

where α1 = β1 and α2 = β2. From (13) we know

tan θ1 <
β2

g
(κ0 − κ∞)e−at +

β2

g
κ∞ (43)

Therefore one can obtain

θ1 <
β2κθ
g

(κ0 − κ∞)e−at +
β2κθ
g

κ∞

where

κθ = sec2(arctan(
β2κ0

g
))

From (8) and (11) we know∣∣∣x1 − xd + l ln(
1

cos θ1
+ tan θ1)

∣∣∣ < β1κ(t)

then one can obtain

|x1 − xd| < (β1 + lκxβ2κθ)κ(t)

where

κx = sec(arctan(
β2κ0

g
)).

Therefore by properly choosing β1, β2, κ0 and κ∞ such that

β2κθκ∞ ≤ gβ, (β1 + lκxβ2κθ)κ∞ ≤ β
β2κθκ0 ≤ gxθ, (β1 + lκxβ2κθ)κ0 ≤ x0

then

|x̃1(t)| ≤ (x0 − β)e−αt + β

|θ1(t)| ≤ (θ0 − β)e−αt + β

This ends the proof of theorem 1. �

V. EXPERIMENTAL RESULTS

To verify the effectiveness of the control scheme, a series of
experimental tests are carried out on a gantry crane system, which is
shown in Fig.1. The physical parameters for the gantry crane system
are given as M = 1.6kg, mp = 1.2kg, l = 0.8m, g = 9.8m/s2.
Throughout the experiments the control gains are designed as follow:
k1 = 1, k2 = 1.8, k3 = 2, k4 = 1.5, kd = 2, kθ = 2, kp = 3,
ε1 = 0.08, ε2 = 0.03, ε3 = 0.01, χ = e−0.5t. The control parameters
given for the exponential speed are: α = 0.4, β = 0.05, x0 = 0.4,
θ0 = 2. The initial value of the states are x(0) = 0 and θ(0) = 0.

The trolley position signal is measured by the encoder embedded
in the servo motor SGW7J-02AFC6S, and the swing angel is
detected by angle sensors that are equipped under the trolley. For
digital computation, the sampling period is set as 1 ms, and the
control algorithm runs in the environment of Microsoft Visual Studio
2018 under Windows 10. A GTS-400-PV(G)-PCI motion control
board is applied to collect data from the sensors and convey the
control commands generated by the computer to the servo actuators
controlling the motor.

A. Experiment 1
Firstly, the proposed control scheme will be compared with

existing controllers to show its effectiveness and superiority. The
LQR control method [31] and SMC control method [30] are used
for comparison. A LQR controller with an expression

u = −K1(x− xd)−K2ẋ−K3θ −K4θ̇ (44)

where J =
∫∞

0
(XTQX + Ru2)dt is designed as the cost function

for LQR where X = [x − xd, ẋ, θ, θ̇]
T denotes the state, Q =

diag{10, 10, 50, 0.1} and R = 0.1. The control parameters for LQR
are chosen as follows: K1 = 3.1623, K2 = 4.3898, K3 = −5.7902,
K4 = −2.7238. The sliding mode control is given by

u =
(M +mp sin 62θ)l

l − α21 cos θ
kssgn(s)−mp sin θ(g cos θ + lθ̇2)

− (M +mp sin2 θ)l

l − α21 cos θ

(
λ11ẋ+ λ21θ̇ −

α21g

l
sin θ

)
(45)

where s = ẋ + λ11(x − xd) + α21θ̇ + λ21θ is the sliding surface
with λ11 = 1.2, λ21 = −2, α21 = 0.2, ks = 1.2. To avoid chattering
phenomenon, sng(s) is replaced with tanh(10s) in the experiment.

Fig.2-Fig.4 show the position of the cart x, swing angel θ and
control input u(t) of LQR control method, sliding mode control
method and the control scheme proposed in this paper respectively.
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Fig. 1. Experimental setup of the crane system.

As shown in the experiment, the consumed control time is 2.78s
for LQR control method, 4.61s for the SMC controller, and 2.12s
for the control scheme proposed in this paper, where the ultimate
positioning errors are all within 3mm. As for the swing angel, the
LQR controller makes the maximum amplitude 3.32◦ and the residual
amplitude 0.96◦. The SMC controller makes the maximum amplitude
1.85◦ and the residual amplitude 0.16◦. Our proposed control scheme
makes the maximum amplitude 1.69◦ and the residual amplitude
0.03◦. The ultimate position stabilization error of our control scheme
is 0.3cm. Therefore in terms of position stabilization and anti-
swing control, the control scheme proposed in this paper outperforms
existing control schemes such as LQR and SMC schemes.

Fig.5 shows the new defined signal ξ =
√

(x1 − xd)2 + θ2
1 ,

which also verify the conclusion that our control scheme outperforms
existing control schemes such as LQR and SMC schemes. To verify
(15), Fig.6 and Fig.7 shows x̃1 and θ1 against (x0−β)e−αt+β and
(θ0− β)e−αt + β. Therefore the position error and swing angel will
converge with a given exponential speed compared with the existing
control schemes.

B. Experiment 2
Next, we want to illustrate the robustness of the presented method

under external disturbances. Specifically, the payload is externally
perturbed at a certain point and with which the controller should act
efficiently to suppress the swing of the payload.

Fig.8-Fig.10 show the position of the cart x, the swing angel θ and
the control input u(t) of LQR control method, sliding mode control
method and the control scheme proposed in this paper respectively
under external disturbance. It could be shown that all control schemes
preserve certain robustness under external disturbance, but in terms
of anti-swing control and control performance, the control scheme
proposed in this paper outperforms LQR and SMC controllers.

VI. CONCLUSION

In this paper, the adaptive antiswing control for underactuated
gantry cranes with guaranteed transient performance under unmod-
eled dynamics and external disturbances is investigated. To sovle
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Fig. 2. Experiment 1: the LQR control method: position of the cart x, payload swing
θ(t), and control input u(t).
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Fig. 3. Experiment 1: the SMC control method: position of the cart x, payload swing
θ(t), and control input u(t).
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Fig. 4. Experiment 1: the control method proposed in this paper: position of the cart
x, payload swing θ(t), and control input u(t).

this problem, a set of filters are proposed to make the backstepping
technique applicable for the control of crane systems. Then through
variable transformation the position error and swing angel could
be guaranteed to be able to converge to the origin with a given
exponential speed. Hardware experiments are conducted to show
that the proposed scheme achieves better control performance over
existing methods, and it is illustrated that the proposed control
scheme possesses strong robustness to unmodeled uncertainties and
external disturbances. Some possible future works include extending
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Fig. 5. Experiment 1: signal ξ = ‖(x̃1, θ1)‖ for t ∈ (0, 10].
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Fig. 6. Experiment 1: the control method proposed in this paper: position of the cart
x, payload swing θ(t), and control input u(t).
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Fig. 7. Experiment 1: the control method proposed in this paper: position of the cart
x, payload swing θ(t), and control input u(t).
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Fig. 8. Experiment 2: the LQR control method under external disturbance: positioning
of the cart x, payload swing θ(t), and control input u(t).

the control scheme to three-dimensional crane systems, considering
the issues of output feedback, event-triggering control and measure-
ment noise.
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