2112.12248v1 [cs.RO] 22 Dec 2021

arXiv

Safety assurance of an industrial robotic control system using
hardware/software co-verification

Yvonne Murray®, Martin Sirevag®, Pedro RibeiroP, David A. Anisi®°, Morten Mossige?

@ Dept. of Mechatronics, Faculty of Engineering and Science, University of Agder (UiA), Norway
bDept. of Computer Science, University of York, UK
¢Robotics Group, Faculty of Science & Technology, Norwegian University of Life Sciences (NMBU), Norway
4 ABB Robotics, Bryne, Norway

Abstract

As a general trend in industrial robotics, an increasing number of safety functions are being developed or
re-engineered to be handled in software rather than by physical hardware such as safety relays or interlock
circuits. This trend reinforces the importance of supplementing traditional, input-based testing and quality
procedures which are widely used in industry today, with formal verification and model-checking methods.
To this end, this paper focuses on a representative safety-critical system in an ABB industrial paint robot,
namely the high-voltage electrostatic control system. Safety properties are formally verified using a novel and
general co-verification framework where hardware and software models are decoupled via platform mappings.
This approach enables the pragmatic combination of highly diverse and specialised tools. The paper’s main
contribution includes details on how hardware abstraction and verification results can be lifted between
tools in order to verify system-level safety properties. It is noteworthy that the HVC application considered
in this paper has a rather generic form of a feedback controller. Hence, the co-verification framework and
experiences reported on here-within are also highly relevant for any cyber-physical system tracking a setpoint
reference.

Keywords: Formal Verification, Co-Verification, Model Checking, High-Voltage Controller (HVC), Robots,
Cyber-Physical Systems (CPS)

1. Introduction

he liberation of industrial robots from traditional metal cages and steadily increasing number of co-bots
Tworking side by side with humans are illustrative examples of a general trend in industrial robotics. In
the wake of this, more and more safety-critical functions are now being developed to be handled by soft-
ware and /or firmware components instead of hardware safety relays or interlock circuits. Modern industrial
robots are heavily dependent on software-implemented safety signals to monitor and control various crit-
ical subsystems such as current/voltage supervision and emergency stop or short circuit interrupts. This
trend brings several distinctive advantages such as cost-reduction and increased flexibility. Nevertheless, it
also introduces or reinforces negative side-effects, most notably in the form of higher system complexity,
vulnerability and dependability [I].

To set the stage for and address this ongoing industrial trend, this paper advocates use of formal verifica-
tion techniques, which can provide an extra level of assurance by verifying the logic of a system. Application
of formal methods in the robotics industry will ideally help identify potential pitfalls in a much earlier phase
of the development cycle [2] and serve as an important supplement to the traditional testing and safety

Email addresses: yvonne.murray@uia.no (Yvonne Murray), martin.sirevagQuia.no (Martin Sirevag),
pedro.ribeiro@york.ac.uk (Pedro Ribeiro), david.anisi@nmbu.no (David A. Anisi), morten.mossige@no.abb.com (Morten
Mossige)

Preprint submitted to Elsevier December 24, 2021

risk identification and mitigation actions which are already employed [3]. Obtaining sufficiently high testing
coverage in complex industrial systems can be time-consuming and expensive. In practice, it is most often
not viable to account for every scenario, which means that testing can fail to reveal potential safety-critical
issues.

The High-Voltage Control (HVC) system considered in this paper provides a perfect testimony of this.
As described in [4], there existed some software (SW) errors that went undetected with the potential to
cause harm. This despite passing rigorous and certified quality assurance and testing procedures, including
a priori and systematic identification of risk mitigation plans (e.g., using HAZID/HAZOP), as well as
thorough testing procedures, including: static code analysis, unit testing, component testing, system test I
and system test II. Here, system test I encompass hardware tests with Integrated Painting System (IPS)
and HVC active, while system test II entails testing of the entire robotic system using actual paint.

The robotic spray booth in, e.g., a car factory, may contain flammable solvent and paint particles in the
air. Hence, paint robots are certified for operation in potentially explosive atmospheres in accordance with
regional ATEX/NFPA /IECEx standards (ATEX Directive — 2014/34/EU, IEC 60079). The IRCP controller
units of paint robots are certified with respect to ISO 10218 standard for safety requirement for industrial
robots. Paint robots using HVC are also certified according to the EN50176 standard for using high-voltage
in explosive environments, while the paint atomizer is certified in accordance with ISO9001 and ISO14001.

Industrial paint robots use high-voltage to perform electrostatic painting, where particles are electrically
charged and attracted to the grounded paint object, as seen in Fig. [1| |5, [6]. In this way, painting quality is
ensured while paint consumption and costs are minimized. However, use of high-voltage also poses certain
risks of electric shock and ignition. Fire in the painting cell may result in costly production delays, as well
as damage to the equipment. Therefore, it is of great importance that the HVC is working as intended.

The HVC example illustrates the fact that complete elimination of all errors is most often not practical
or even possible. Formal verification provides us not only with a mathematically sound formalism for
the specification and verification of robotic systems which ensures correctness, but also provides inherent
evidence for safety certification purposes. In fact, a survey on safety-critical robot systems [I| recognizes
formal verification and correct-by-construction control synthesis as two main areas needed to develop safe
robot systems.

Paint particle Negative ion electron

— 7
.»”’--,__ — T 7___7__7_""*—-—._,__7_ =) = = '\-_‘ -/-h'_ _
Applicator /// ~()k TN
- =/ Workpiece |
= N —'I‘}:j:.i-__k_“_:_r///
- High voltage — _ F % 1l

Figure 1: In electrostatic painting, high-voltage (approximately 40-90 kV) charges the paint particles at the applicator. The
particles follow the lines of the electrostatic field from the applicator (cathode) to the earthed object (anode).

Robot control systems, like the HVC, have rather natural and generic properties that are expected to be
fulfilled by any feedback controller tracking a set-point reference. Formally verifying such system properties,
however, requires reasoning over the combined, time-dependent behaviour of software and hardware. For
pragmatic reasons these are often modelled using diverse languages and formalisms, making holistic reasoning
challenging.

Inspired by co-simulation approaches [7], in this paper we propose a novel and generic co-verification
approach for pragmatic verification of system properties. Models are decoupled through platform mappings

2

that relate the inputs and outputs of software and hardware. With our approach, behavioural properties
of individual models — that may be established using separate domain-specific tools — can be combined to
support the verification of system properties, using practical techniques, such as model-checking [§].

To illustrate the use of co-verification in a representative industrial case study, the HVC software is
modelled in RoboChart [9, [10] 1], while the hardware is modelled in Simulink [I2]. RoboChart is a domain-
specific language for model-based software engineering of robotics, with a formal semantics encompassing
timed and functional aspects, that is tailored for formal verification. Simulink, on the other hand, is a
de facto standard for control engineering, as typically used in industry for dynamic simulation. For co-
verification we use the MathWorks Simulink Design Verifier (SDV) toolbox [12], and the CSP model-checker
FDR [I3], as integrated into RoboTool [9] 10} [1T].

Importantly, we demonstrate the value of our approach in identifying errors that existed in an early-
phase HVC software version as described in [4]. In the next phase, once the identified software shortcomings
had been rectified, we were able to show that it satisfies all safety properties of concern. This serves as a
testimony of the strength and suitability of using formal verification methods for industrial safety-critical
systems.

Some initial and preliminary results of our work regarding formal verification of HVC of industrial paint
robot have been previously published in [4]. This paper extends [4] by addressing some fundamental and
important aspects, most notably by:

1. taking into account the timed aspects of the HVC controller using the timed semantics of RoboChart.

2. replacing the simplified, binary representation of the output voltage following the setpoint, with a
real representation and considering timed and dynamic convergence towards the setpoint signal (see
Property P1).

3. providing a crisp dichotomy between control software and physical hardware parts of the HVC system,
together with detailed platform mapping in-between (see Fig. [§| and consult [14] [15]).

4. modelling the system dynamics of the hardware in Simulink [5], [6].

5. using a novel approach to co-verification to combine the results from hardware simulations in Simulink
with model-checking capabilities of RoboTool [16] to verify overall and system-level properties.

The remainder of this paper is structured as follows. Section [2] discusses related work. Section [3]provides
an overview of the HVC system, contains formulation of the properties to be formally verified (Section
and presents a simplified finite state machine of the HVC (Section . Section [4| constitutes the main
bodyof the current paper. It details the co-verification framework and explains how the state machine was
modelled in RoboChart and combined with Mathworks SDV simulation and verification results in order to
verify system properties. Section [5] reports on the verification of software properties. Finally, Section [f]
provides some discussion and conclusions, as well as suggestions for further research.

2. Related Work

The survey on safety-critical robot systems in [I] identifies seven areas that need further focus and
research in order to develop safe, dependable robotic systems. It is notable that at least five of these areas
are relevant in the context of this paper, namely: adaptive safety monitoring, modeling and simulation for
safety analysis, formal methods for verification, correct-by-construction control, and certification.

A recent survey [I7] maps and lists the current challenges, used formalism, tools, approaches, as well
as limitations when considering formal specification and verification of autonomous robotic systems. The
main results there-within, reveal that temporal logic, state-transition and model checking are the main
formalisms and approaches used during the last decade. At the same time, lack of appropriate tools and
sheer resistance to adopt formal verification methods in robotic systems development is recognized as the
main limiting factors for wider impact. Likewise, the lack of interoperability and need to capture the essence
of complex, industrial robotic systems using several heterogeneous set of formalisms and tools is recognized.

3

Simulation plays an important role in the development of robotic systems, and more widely in the domain
of cyber-physical systems (CPS). However, current practice makes it difficult to soundly reason across models
of the software, simulation, and hardware, which can contribute to exacerbate the reality gap. Co-simulation
approaches [7, [I8] bridge the heterogeneity of tools via orchestration, for example, using a common APT as
advocated in the FMI standard [I9]. Besides the issue of code portability, robotics simulators [20] tend to use
different physics engines. A related approach [I5] to our work on co-verification, extends the diagrammatic
simulation language RoboSim [21I] with facilities to cover physical modelling of robotics and establish formal
links between sensors, actuators, and the software, via platform mappings.

Application of formal verification methodology within the control and CPS community have mainly
adopted the hybrid system and automata framework of Alur et. al. [22[23]. In this setting, finite- and infinite-
time reachability constitute the main verification tools, but unfortunately turn out to be an undecidable
problem in general, leaving conservative set approximation as the only viable approach [24], 25]. Hybrid
automata also assumes having infinite accuracy and instantaneous reaction which serves as a noticeable
discrepancy to the real system and implementation; potentially invalidating the verification results [26].

Focusing on formal verification of industrial robot applications, in [3], industrial robot- and PLC-
programs are compiled into PROMELA models as input for the SPIN model checker [27]. The work is
however restricted to Linear Temporal Logic (LTL) formulas. It further differs from our work by solely
considering deadlocks, collisions and kill-switch violations. Narrowing down to industrial paint robots, [28§]
considers formal verification of paint spraying using ARTADNE tool for reachability analysis. The focus
here is solely on parametric design verification.

3. High-Voltage Control (HVC)

A simplified block diagram of the HVC part of the paint robot can be seen in Fig. [2l The HVC module

24V power signal HVC cw

PWM, Outputf EAppIicator
PWM = ~ Transformer :
HV_SetPoint : -

HV_Actual

I

Figure 2: Block diagram of one part of the paint robot, containing the HVC.

runs the control software loops and associated control logic. Here, the r(t) = HV _SetPoint signal is used
as a priori given reference for the desired voltage level on the HVC, while the 24V power signal provides
the HVC with electrical power. The u(t) = PWM _Output signal serves as input signal to the Pulse Width
Modulation (PWM) hardware. It is a percentage, from 0 to 100%, mapped to an analog 0 to 10 voltage
signal, which is then increased in the transformer. In the Cockcroft—-Walton (CW) cascade generator, there
are several voltage doubling circuits, and the voltage is rectified and further increased, before arriving to
the applicator, see Fig. Finally, 3(t) = [IM; HV _Actual]” denote current and voltage measurements,

4

respectively, which are fed back into the HVC. It is further noticeable that from a paint robot application
point of view, it is given that HV _Setpoint € 0U [30 90], kV/, that is, once high-voltage is activated and
turned on, it requires values larger than 30kV, and that r(t) = HV _SetPoint reference value does not
change very often, and never faster than within 10 seconds from the previous change. These facts will be
used subsequently in order to formally capture and verify some basic properties for HVC.

Following the line of thought in [I4] T5], in order to distinguish and describe both the control software
and physical hardware components of the HVC system, a faithful model of the PWM hardware is needed.
The PWM hardware comprises the components inside the dashed blue box in Fig. [2] that is, the transformer,
CW cascade block and resistors. Fig. [depicts the diodes, capacitors and resistors defining a CW cascade

L

Figure 3: The cascade modelled in Simulink with Simscape components, with the transformer, resistors and the Cockroft
Walton voltage multiplier circuit.

block as modelled in Simulink Simscape, which allows modelling of physical components and systems. It is
noteworthy that by design, each section of the CW block will double the input voltage so that the output
voltage of a CW cascade with NV sections will equal 2NV;,,. The Simulink models used in this work are
based on and extracted from experimental laboratory tests performed in [5] [6] on real ABB paint robots as
depicted in Figs. [f] and [}

Figure 4: Setup for experimental testing with paint using ABB robot. Photo courtesy ABB, from [5].

5

Distance d

O Interbus-S

3

External PC with
Primas data logging
software

Grounded
metal plate

Robot contral cabinet

Manipulator o

Figure 5: Schematic overview of the lab setup for testing ABB paint robot. Photo courtesy ABB, from [5].

The paint robot HVC application has some further distinguishable structure and dynamics that will
need to be considered and incorporated into our formal verification scheme. As detailed in [5] [6], the PWM
hardware model and cascade controller are based on three distinct phases as graphically illustrated in Fig. [}

e Charging: when a new external setpoint, HV _SetPoint(t), with higher value than the current one
arrives and the PWM hardware is ramping up the control signal, u(t) = PWM _Output(t), in order
to increase the value of HV _Actual(t).

e Running: when HV _Actual has converged to HV _Setpoint and reached steady state.

e Discharge: when external HV _Setpoint is set to a lower value and PWM hardware is discharging
so that HV _ Actual converges to HV _Setpoint.

™ Volatge (kV)
Z
/
HV_Actual
HV_Setpoint

~

- , 7
| Charge I Running (steady-state) IDlschargeI Running (steady-state) time (S)

Figure 6: The HVC hardware and controller has three distinct phases. Charge, Running (steady-state) and Discharge. The
Integrated Painting System (IPS) parameters RampLimit and TauPeriod provide upper limit on the duration of the Charge
and Discharge phases respectively.

It is further noticeable that by design and as documented in the IPS structure reference manual (ref-
erence 3HNA025397-001, v4.60), there are additional limits on peak deviation between HV _Actual and
HV _Setpoint as well as time duration of the Charge and Discharge phases. Namely, a parameter Ram-
pLimit determines the maximum time in seconds that it will take to ramp up the high-voltage from minimum
to maximum level, i.e., from 0 to 90 (kV). The default value of RampLimit is 2 seconds. Likewise, it is known
that it will take TauPeriod seconds for HV _Actual to reach a level of 30% above a new lower HV _ Setpoint
value. Default value of TauPeriod is 3 seconds. Additionally, there are maximum allowed over- and under
voltage limits. As mentioned earlier, the HVC application, once activated and turned on, requires high-
voltage values larger than 30V, so that HV _Setpoint € 0U[30 90]kV. Consequently, the aforementioned
limits are only specified at 30 and 90kV and over/under limits at other voltage levels can be calculated
using simple linear interpolation between these values. All these parameters are used for safety supervision
purposes and are hence set in a conservative manner. In the next section, these parameters will be used
to formulate and later formally verify the practical convergence property of the HVC controller to a new
high-voltage setpoint.

3.1. Properties for Formal Verification

In this section, the set of four properties that are to be formally verified will be presented. Recognizing
that HVC has a rather generic form of a feedback controller, it is notable that most of the properties in
this section are rather natural and generic properties to be fulfilled by any feedback controller tracking a
setpoint reference.

Property P1. To start with, it is reasonable to require that the measured process value, which in the case of
HVC is y(t) = HV_ Actual(t), should converge to the reference- or setpoint value, r(t) = HV _SetPoint(t).
To formalize this, it is noted that both voltage signals are non-negative time-series and that convergence
may be defined by setting

E(t) = |r(t) —y(t)| = |[HV _SetPoint(t) — HV _Actual(t)|, (1)

and equivalently considering (asymptotic) Lyapunov stability of the the origin, E = 0.

Taking the particular structure and dynamics of the HVC application as discussed previously into ac-
count, this setpoint convergence property can in practice be decomposed into considering a 10 second time-
interval directly after a new setpoint arrives, within which practical convergence of HV _Actual to a narrow
interval centered around the new external setpoint (HV SetPoint) can be shown. To ease the notation
and provide symmetry between the Charge/Discharge phases, the parameters RampLimit and TauPeriod
are taken to be set conservatively equal to 3, with a peak deviation from new HV _SetPoint as 30% of
the setpoint value. The width of this narrow interval, as well as schematic time changes and evolution of
HV_ SetPoint and HV_ Actual are depicted in Fig. [6]

This system-level property involves both hardware and software components and can be formally specified
as follows:

P1: Practical convergence of the actual system voltage, HV _ Actual, to the external setpoint, HV _SetPoint:

Vt > max(RampLimit, TauPeriod) = 3sec =
e(t) = |HV _SetPoint(t) — HV _Actual(t)] < 0.3 x max(HV _SetPoint(t),1),

Property P2-P3. To avoid residual effects and windup type of behavior in the HVC, it is also reasonable
to verify that both PWM _Output and the software internal representation of HV _SetPoint, denoted mSet-
Point, are set to 0 whenever the 24V power signal, and thereby the HVC-module, is switched off. Here,
mSetPoint is distinguished from HV _SetPoint which is a software extrinsic signal set a priori by human
operator or application engineer.

These two properties can be formulated as follows:

P2: That PWM _ Output is set to 0 whenever the 24V power signal is off:

24V _Power =0 — PWM Output =0

P3: That mSetPoint is set to 0 when the 24V power signal is switched off:

24V _Power = 0 — mSetPoint = 0

Property P4. Finally, in order to increase the confidence in the correctness of the model, it is customary to
verify that the HVC state machine is not able to go into deadlock.

P4: That the HVC software is not able to go into deadlock.

These are the four properties that collectively need to be formally verified for the HVC application.

3.2. Finite State Machine Ouverview

In order to perform model checking on the HVC, its functionalities were modelled as a finite state machine.
This section presents the general finite state machine as depicted in Fig. [7] This high-level state machine
was given by ABB and then further detailed and modelled in RoboTool. This is the topic of Section [£:2.2]

In the state GateDriverRamping, which is the state the HVC first enters when it is switched on, the
PWM duty-cycle is ramped up gradually to ensure stability and gradual increasing of current and voltage.
Then, in the Initialization state, initial parameters are set, as well as upper and lower limits for the
high-voltage.

After the GateDriverRamping and Initialization steps are successfully finished, the state machine
enters the Wait24VPower state. When the HVC has 24V power switched on and stable, the system enters
the ClosedLoop state. This is the ideal state for operation, and is where the controller is regulating the
voltage in relation to the setpoint. In case the voltage is breaching the upper or lower limits, the state
machine moves from ClosedLoop to ErrorMode.

—_—— — —
— —

— ~
- Do Control (1 ms) g
e ~
e AN
/ N
/—»| GateDriverRamping |—GateDriverRamp(trueInitialization N\
/ \
/ \
/ \
/ InitParameter(true) \
/ \
I |
| ClosedLoop |—24V power stable—{ Wait24VPower |
| I
\ /
\ /
\ Low24Vpow(true) /
\ CheckLimit(false) /
\ /
N Erroracknowledged(true) /
AN /
N\ N - — 1A supply voltage check interrupt (10 ms)
> ErrorMode |« = [B] : watchdog interrupt (1 ms)
~ ~
~ < —— [C]: current turn off interrupt (from HW)

— - —

Figure 7: Finite state diagram of the high-voltage Controller (HVC).

8

There is also a possibility to enter ErrorMode from the CloseLoop and Wait24VPower states, if certain
variables are set or any watchdogs or interrupts are triggered. For instance, an interrupt is triggered if the
supply voltage is below a certain threshold, and another is triggered if HV _Actual is above or below the
upper and lower limits, respectively. Getting out of ErrorMode requires manual acknowledgement of the
occurred errors.

4. Hardware/Software Co-Verification

To reason about system properties, such as Property P1, it is necessary to consider the behaviour of both
software and hardware. We propose a novel approach, where properties are established by co-verification
of models decoupled via platform mappings that relate the inputs and outputs of software and hardware,
via sensors and actuators. With this approach, behavioural properties of individual models — that may be
established using domain-specific tools — can be combined to support the verification of system properties.

As an illustrative example, in our case study, the software is modelled in RoboChart, while the hardware
is modelled in Simulink. RoboChart [I0] is a domain-specific language for model-based engineering of
control software for robotics, that caters for timed and functional aspects. Its formal semantics is tailored
for reasoning, namely using the CSP [29] model-checker FDR [I3]. However, it currently lacks facilities to
specify the behaviour of the hardware. Simulink [I2], on the other hand, is a de facto standard for control
engineering, typically used for dynamic simulation in the industrial setting of the HVC [, [6] system.

For modelling, we use Simulink and RoboTool [11 @], that allows the graphical creation of RoboChart
models, and for verification we use Simulink Design Verifier (SDV) [12] and FDR. System property P1 is
co-verified by model-checking, using the formal semantics of the control software, as calculated by RoboTool,
and an abstract specification of the hardware behaviour, as established using SDV. These are formalised in
tock-CSP [29, [30], the timed process algebraic semantics of RoboChart, suitable for checking with FDR.

The complete system behaviour is considered at a suitable level of abstraction for verification by: (1)
defining a platform mapping; (2) using a specification of the hardware that captures at an abstract level
the relation between its inputs and outputs, as verified using SDV; (3) formalising these in tock-CSP. We
depict the approach in Fig. [§]and explain it in detail in the next Section In Section we discuss the
co-verification of system properties, modelling of the hardware and software, and the mechanisation in CSP
of the overall framework. In Section [f verification of properties of the software is also discussed.

4.1. Framework overview

In our framework, the software and hardware models are decoupled via interfaces that capture their
inputs and outputs. On the left-hand side of Fig. [§| we consider the interface of the HVC control software,
defined as a robotic platform (RP1) in RoboChart, that specifies the inputs and outputs as (possibly typed)
events, indicated by solid boxes.

On the right-hand side we have a high-level description of the hardware platform, that captures its
sensors and actuators. In our abstraction of the HVC platform, that comprises the cascade in Fig. [2] the
hardware receives an input voltage, via RPInputV _out, and produces a high-voltage via RPActualHV _out.

We also annotate important assumptions about the hardware that are of relevance for analysis: sensors
are perfect, and, in particular, the voltage produced via RPAcualHV out is assumed to be the same as that
sensed via RPActualHV. The relation between RPInputV out and RPActualHV out is established by the
Simulink model as detailed in Section[£.2.2] but abstracted for verification, as explained later in Section[4.2.4]
The input signals RPerrorAck and RPsetPoint are an abstraction over inputs available to a human operator.

The relation between the software and hardware model is specified by the platform mapping, as illustrated
in the middle of Fig. [It records how the inputs and outputs of the software are connected to sensors and
actuators of the hardware platform, as realised by low-level code and physical interfaces. The mappings
for the software inputs ext ActualHV, ext errorAck and ext newSetPoint are trivial, as the software reads
directly from these idealised sensors. The input ext pow24VStatus, of type Power, has the value On if the
reading from the hardware, via RPpow24V _in is between 18 and 24 Volts, and otherwise has the value Off.

The software outputs int_ dutyCyclePWM1 and int _enablePWM are used to determine whether a voltage
is produced via RPInputV _out. If the value set via int_enablePWM is true, then the value of RPInputV _out

9

Control Software
(RoboChart Module)

Platform Mapping

ext_ActualHV: real
int_dutyCyclePWMI1: duty

int_enablePWM: boolean

ext_ActualHV = RPActualHV_in

if int_enablePWM = true
then RPInputV_out = duty2volt(int_dutyCyclePWM1)
else RPInputV_out = 0

Platform

Platform Model

(perfect sensor)

(established by Simulink model)

‘ A

i

RPActualHV : real
1 (equal)

RPActualHV_out : real

! RPerrorAck_in |

RPsetPoint_in : real

< —[F(peﬁectsensor)
RPpow24V._in : Volt E’](i(peﬁem sensor) RPpow24V : Volt
J

Figure 8: Co-verification framework, with arrows indicating the direction of the information flow between inputs and outputs,
of the software and hardware models. The platform mapping captures the relation between the software and hardware model
on either side.

i ref RP1
ext_errorAck

ext_errorAck = RPerrorAck_in RPerrorAck

interacts directly with

bstraction where human |
the software;

RPsetPoint : real

ext_setPoint: real ext_setPoint = RPsetPoint_in

ext_pow24VStatus: Power

T if 18 < RPpow24V _in < 24
then ext_pow24VStatus = On
else ext_pow24VStatus = Off

is determined by the value of int_dutyCyclePWM1, otherwise it is 0. This captures the fact that the PWM
needs to be enabled in order to produce a voltage. Here, the function duty?volt maps a percentage, from 0
to 100% to the range of the analog 0 to 10 voltage signal as previously mentioned in Section

4.2. System verification

Using the co-verification framework as illustrated in Fig.|8] in this section we address the formal verifica-
tion of system property P1. As described in Section [3.1] it requires practical convergence of the high-voltage
(RPActualHV _out) to the value of the set-point as set by the user (RPsetPoint). Since the software is mod-
elled in RoboChart, and the hardware in Simulink, our pragmatic verification strategy consists in: (1)
capturing P1 as a specification in tock-CSP; (2) showing practical convergence of the hardware output
RPActualHV out in relation to its input RPInputV_out using SDV; (3) lifting the result obtained from
SDV as a tock-CSP specification; (4) checking with FDR that, when combined with the semantics of the
RoboChart model, via a mechanisation of the framework depicted in Fig. [§ P1 is satisfied. That overall
property P1 holds is justified by the timed process algebraic semantics of RoboChart and the abstract
specification (2-3) as established using SDV, and captured in CSP. A full account of the CSP specifications
for all properties considered in this paper can be found onlineﬂ

Formal Semantics. The formalism we use, tock-CSP, is a dialect of the process algebra CSP, where the
event tock marks the passage of discrete time. As CSP adopts a reactive paradigm, interactions with the
environment are specified using events, and that includes the passage of time in the case of tock-CSP.
Importantly, it allows the specification of timed budgets and deadlines, and has a denotational semantics
for refinement [30]. Relevant for our work, the model-checker FDR has tailored support for tock-CSP.

Specification. Following the description of P1 as presented in Section [3.1) we construct a discrete version
in CSP, as shown in the RoboChart timed csp block named specP1 below, that uses two events, RPsetPoint and
e, of type core_real. The event e models the absolute difference between ActualHV out and RPsetPoint, so
that the specification can capture the relation between changes in RPsetPoint and the absolute difference.

Thttps://github.com/robo-star/hvc-case-study

10

https://github.com/robo-star/hvc-case-study

timed csp SpecPl csp—begin
channel e, RPsetPoint : core_real

Timed(OneStep) {
ADeadline(S,E,d) = EndBy(TRUN(S),d) [|E|> SKIP

SpecPl = timed_priority(Follow(s(3)))
Follow(d) = e?x —> (if x == 0 then Follow(d)
else ((ADeadline({|e|},{]|e.0]},d);TRUN({|e.0]})) /\ RPsetPoint?x —> Follow(d)))
[1
RPsetPoint?x —> Follow(d)
}

csp—end

The process specP1 is specified directly in CSPy, the machine-readable version of CSP accepted by FDR.
Timed processes are defined inside a timed sectiorﬂ7 indicated by the keyword Timed(...), while the built-in
function timed priority ensures the correct timed semantics is calculated by FDR [30]. The behaviour of
specPl is that of Follow, defined as an external choice ([1) over accepting events e or RpsetPoint, via input
prefixing (?x —>). Synchronisation on RpsetPoint, with any value, or e, with value 0, is followed by a recursion
on Follow. Whenever the event e carries a value that is not 0, then Follow behaves as Abeadline({|e|},{|e.0|},d),
that ensures an event e with a value of 0 can only be observed within d time units (instantiated as 3s for
specPl), and afterwards, via sequential composition (;), behaves as TRUN({|e.0|}), that only allows events e
with a value 0, but where an arbitrary amount of time may elapse. This behaviour can be interrupted (/\) at
any time by a new RpsetPoint. We observe that for the purpose of model-checking the reals are instantiated in
the discrete domain 0 to 2, so here we consider the difference e(t), encoded via the event e, to be 0, without
loss of generality.

The auxiliary process ADeadline(S,E,d) takes three parameters, two sets of events, S and E, and a natural
d. It continuously offers events in the set S, but time can only advance time by up to d units, unless an event
from the set E happens, in which case the process terminates. It is defined using the exception operator of
CSP ([|E|>), where initially the behaviour is that of EndBy (TRUN(S),d), that continuously offers events in set
S, and allows time to advance by up to d time units. Thus, within the exception, if TRUN(S) performs an event
that is in E, then the process behaves as SKIP, that terminates immediately. We observe that the auxiliary
processes TRUN and EndBy are included with the RoboTool distribution for convenience. Their definition is
included in for completeness. Next, we focus on the hardware model.

4.2.1. Hardware Modelling and Verification in Simulink Design Verifier (SDV)

Both the co-verification regime detailed in Section [£:1] as well as verification of the system-level prop-
erties presented in Section [1.2.4] require distinct and systematic separation between hardware and software
components of the HVC system. Fig. [§] provides the overview for this separation and the steps toward
implementing this have been set forward in the ingress of Section] To this end, the focus of this section
is centered around hardware modeling, specification, abstraction and verification of hardware properties in
SDV. All these components are naturally combined in Section [£.2.4] where co-verification results of system-
level properties will be be presented.

Simulink is widely adopted as a tool for traditional, input-driven simulation, and the modelling in
SDV is similar to regular modelling used for simulation [I2]. SDV uses Prover Plug-In® products from
Prover® Technology to do the model checking and prove the model properties [3I]. It is built upon Gunnar
Stalmarck’s proof procedure, which uses tautology checks to prove that an assertion holds true in every
possible interpretation [32]. In Property Proving mode, SDV offers three different proof strategies, Prove,
FindViolation and ProveWithViolationDetection where the latter is merely a serial combination of the
two first mentioned. In this work, both Prove and FindViolation have been used. Prove performs an
unbounded property proof, while FindViolation searches for property violations within the number of
steps specified by the Maximum violation steps option, which specifies the maximum number of steps

2https://cocotec.io/fdr/manual/cspm/definitions.html#csp-timed-section

11

https://cocotec.io/fdr/manual/cspm/definitions.html#csp-timed-section

SDV searches for property violations. Thus, verification with increasingly large Maximum violation steps
will help increase confidence in the property.

The Simulink Model. The hardware model in Simulink was created based on previous models found in [5]
[6]. These models have been validated both theoretically and empirically by several lab experiments, and
correspond well with the real-world system. In order to do formal verification with SDV however, the model
had to be converted from continuous to discrete time, since SDV does not support continuous time. In this
process, in addition to converting transfer functions specified in continuous time using Laplace transform
(S-domain) to discrete time Z-domain, some of the Simulink blocks specific to continuous time were replaced
with their discrete counterparts. Fig. [0]shows the overview of the hardware verification model in SDV where
the input/output signals, i.e., RPInputV _out and RPActualHV out denote the same signals as previously
introduced in Section 1] and Fig. The mapping and transfer function between these two signals, and
formal verification of certain hardware properties treated in this section, then correspond naturally to the
extension and scope of the dashed grey box in upper right side of Fig.

It is noteworthy that, as will be detailed in the csp block named Instantiations presented in Section[4.2.4]
RPInputV_out € {0,1,2}, but is in Simulink multiplied by a constant factor 5, effectively corresponding to
having the set of possible values of {0,5,10} volt being fed into the PWM hardware model. This means
that duty2volt maps a percentage, from 0 to 100% to the entire range of the analogue [0 10] voltage signal
as previously mentioned in Section [3] It also implies that the convergence results obtained in this section
using {0,5, 10} volt as input, will also be valid for the real PWM hardware system that has the substantially
richer input set of [0 10] volt.

5 RPInputVCoub——»| - RPAciualHV_out

RPInputV_out RPActualHV_out
RPInputV_out

Hardware Model

Verification Subsystem

Figure 9: Overview of the hardware verification model. The grey box include the modelling of the cascade, while the green
box contains the property for verification.

The test data used to create the model was collected from structured experiments running at many
different HV setpoints, frequencies, distances and number of stages in the CW-cascade, providing a rich
data-set to represent how the actual hardware will behave in the real environment. As detailed in [5] [6] and
depicted in Fig. the Simulink model will, in addition to the ideal transfer function, have two additional
terms describing the cascade loss and ripple effects. Using the Matlab System Identification Toolbox, state-
space models and transfer-functions are fitted to the lab test data to provide the best description of the
PWM hardware dynamics; both during the charge- and discharge phases of operation. The resulting transfer
functions and model components in continuous time can be seen in Fig. Additionally, a Simulink model
describing the bell-cup inside the applicator and that will effect the electrical field at a plane at a given
distance, d, from the paint robot, has been derived in [5] and used here-within.

In order to be able to formally verify system-level property, P1, the mapping and relational properties
between RPInputV _out and RPActualHV _out, effectively describing the hardware, are needed. This allows us

12

.—b setPoint volt_out deal 3 ¢ Voltage in
eal cascade ou
i Voltage out Voltage in Voltage out —] 1
setPoint Y Cascade loss out | Y g
Current load Cascade out
Current load Cascade ripple

Ideal Cascade Cascade loss

Figure 10: Simulink model of the total CW-cascade hardware complementing the ideal model with loss and ripple terms [6].

“ nextState
2*stages » 71 delay fen
setPoint

1 1
s 1
(90/ frequency)z + 1 *,2 volt_out

A4

1
0.09z+1

Figure 11: Simulink model of the ideal cascade including the phase model selector and the two transfer functions describing
the charging- and discharging phases respectively [6].

to obtain a well-defined "closed circuit" or mapping between all components in the co-verification framework
of Fig.[8 To this end, System Identification Toolbox was used to model the transfer function describing the
relation between these two signals. The resulting model:

K

G(s) = P 2
) = G T (15 Tav) @
K, =1.1196
T,1 = 0.087821
Tpo = 0.02042

was then analysed in Simulink with particular attention to time dynamics, stability and convergence prop-
erties as defined by, e.g., rise- and settling-time. Of particular interest in the following, is the settling time,
ts, which was found to be t;, = 0.3668s.

Formal Verification of Hardware Properties. Based on the developed Simulink model, next, we will be
verifying a low-level property that will then be lifted into the co-verification scheme in Section in order
to be able to verify Property P1.
Referring back to the definition of Property P1, the error term Eq. as well as the notion of practical
convergence in Section [3.1] the following hardware property will be considered and verified in this section:
Puw : Practical convergence of actual hardware output voltage, RPActualHV out, to the hardware
input signal, RPInputV _out, within settling time, t:

VE> ey +ts =
e(t) = |[RPInputV_out(t) — RPActualHV out(t)] — 0.15 x max(RPInputV _out(¢),1) < 0. (3)

13

Here, t,, denotes the time instance where a new input command, RPInputV out, is received in PWM
hardware. Property Pgw as defined by Eq. serves as a low-level hardware property that incrementally
contributes towards fulfilment of corresponding equations to verify overall convergence Property P1 later
in Section [£.2.41

The Simulink implementation to verify this property lies within the green Verification Subsystem in Fig.[J]
and has been depicted in Fig. The upper part containing the Detect Change block and an integrator func-
tion, works as a timer that is reset every time there is a change in RPInputV _out. This in order to capture the
t > top+1s constraint in Eq. (3). The lower part takes the absolute value of the error between RPInputV _out
and RPActualHV _out and subtracts the accepted error, which is set to 0.15 x max(RPInputV_out(¢),1). Fi-
nally, the last function on the right, denoted evaluation, gives out false if Eq. is not fulfilled at any time
instance, t > t,, + t5. Otherwise it gives out true. This is verified with the proof assumption block, which
shows if the property is fulfilled or violated.

(2)—+» U=Uz | — 0 t
rue
RPInputV_out ;
Puty- Detect Change |fimed P dt 4 y >t y
integrator
SampleTime F’ y0 71 P E evaluation
*—Pisp ‘ y .
acceptedError

o U
RPActualHV_out P> -

Figure 12: SDV implantation of the PWM hardware convergence property, Pyyw as detailed in Eq. .

After creating the model and the specification, the Prove strategy was used in order to verify the property.
It was run both using MATLAB online and on a Windows laptop with Intel® Core© i5 CPU @ 2.71GHz.
However, after running continuously for 10 days without producing a result, the verification was manually
terminated. It was instead decided to gain increased confidence in the verification by using FindViolation
with increasing Maximum violation steps. The results of the verification by using FindViolation can
be seen in Table The Maximum violation steps option was gradually increased, until reaching the
maximum value of 2,147,483,647, which is the maximum value for data type int32. As seen in the table,
SDV was able to prove that the property was valid within bound in all cases.

. . . Fixed-step size .
Maximum violation steps (fundamental sample time) Result Elapsed time
1,000 le=© Valid within bound | 0:47:49
1,000,000 le S Valid within bound | 0:46:44
1,000,000,000 le=© Valid within bound | 0:47:15
2,147,483,647 le S Valid within bound | 0:47:15

Table 1: Results of the verification of the hardware, using FindViolation and different values for Maximum violation steps.

4.2.2. Software Modelling in RoboChart

In this section, we present the RoboChart model of the software, that is a formalisation of the sketch
previously shown in Fig. The robotic platform (RP1) — a specification of the services available to the
software in terms of variables, events and operations — is fully specified in Fig. Its events are defined in
the interface |IEvents RP1. RP1 also provides the interface SharedVars_all, that declares all shared variables
used in the model. The interface 10ps specifies the signature of software operations that are used, and

14

defined, in the RoboChart model. In addition to employing built-in data types, such as reals, naturals,
and booleans, three data types are declared: the enumerated types Power and State, and the given type
duty. Two functions ms and s are used to construct time units corresponding to milliseconds and seconds,
respectively. RoboChart adopts the type system of Z [33] [34]. For a full account of the language and its
formal semantics we refer the reader to [IT] [16, [9]. Here, we describe the RoboChart constructs as we use
them to model our example.

& RP1 I0ps @ Power duty
[P] SharedVvars_all disableHV(arg: boolean) Oon
(D IEvents_RP1 checkLimits() Off
supplyVoltCheck()
PID_Control() [l state
AdjustLimits() "
int_dutyCyclePWM1: duty 8setPointRamping(newSetPoint: real) \é\{glstezgtlopooguer
enableHV() ErrorMode
ext_ActualHV: real
IEvents_RP1 SharedVars_all
ext_pow24Vstatus: Power | | 4 oxt ActualHV: real X overLimit: real
4 ext_pow24VStatus: Power X underLimit: real
ext_errorAck 4 ext_errorAck X currentState: State
4 ext_setPoint: real X HVEnabled: boolean
ext_setPoint: real % int_dutyCyclePWM1: duty X pow24VStatus: Power
ﬁ int_enablePWM: boolean X dutyCyclePWM1: duty
int_enablePWM: boolean X mSetPoint: real
IEvents_ext #x ms(t: nat): natf [/ s(t: nat): nat]
% ext_pow24VStatus: Power

Figure 13: RoboChart model components: robotic platform (”ﬁ" RP1), interfaces (IOps, |IEvents RP1, IEvents ext, and Shared-
Vars_all), enumerated (Power and State) and given (duty) data types. % is an event, Xis variable, and O is associated with
an operation. [Pl is used to record that an interface is provided, while ® is a used interface.

Module and Controllers. The top-level component of the software model is defined by the RoboChart module
mod _sys, shown in Fig. It associates the robotic platform with four controllers (ctrl0-3), that capture
specific behaviours. Controller ctrl0 contains the main State machine, that is a recast of that presented
in Fig. [7 ctrll captures the behaviour of the watchdogs, and controllers ctrl2-3 are used to relay events.
Controller ctrl2 relays the input event ext pow24VStatus from RP1 to controllers ctrl0-1, and ctrl3 relays the
output events int_dutyCyclePWM1 and int_enablePWM from ctrl0 and ctrll to RP1, as RoboChart event
connections are point-to-point. Due to their simple nature, we defer the full definition of the controllers
to In RoboChart, connections with the platform are always asynchronous, indicated by the
keyword async, as interactions with the platform cannot be refused, only ignored [10, p.3110].

State Machine. The core behaviour of the HVC controller is captured by the State machine in Fig. In
RoboChart, state machines are self-contained by explicitly stating the required (®) variables and operations,
and the used (®) events. In this case, State _machine requires the software operations declared in IOps, and
the shared variables in IVars_seqSM _shared. It also declares: local variables via the interface IVars _seqSM,
a constant cycleTime with a default value of 10 milliseconds, and a clock (®) CI1. Tt uses the events of
interface IEvents ctrl0, that are also explicitly listed on the left-hand side of Fig.

The execution flow of State _machine starts at the initial junction, followed by a transition whose action,
specified after the dash (/), initializes the value of the variables mSetPoint and HVEnabled, by assigning 0
and false in sequence (;), respectively. It then waits for cycleTime units before entering state Init. This initial
delay is a simplification of the GateDriverRamping behaviour depicted in Fig.[7, which does not concern the
properties of interest for verification. In state Init there is an entry action that calls the software operation
AdjustLimits which calculates the value of variables overLimit and underLimit and is defined by a state
machine as shown in Fig. The required variables of AdjustLimits, as listed in interface IVars__adjustLimits,
are provided by State machine in the context of the call to AdjustLimits, effectively sharing the state.

15

) mod_sys

R

dsync int_enablePWM: boolean

int_enablePWM: boolean

async int_dutyCyclePWM1: duty

int_dutyCyclePWM1: duty

ext_ActualHV: real . ext_ActualHV: real
oQ ref ctr(3
int_dutyCyclePWM1: duty ctrl0_dutyCyclePWM1: duty

i} ref RP1

ext_errorAck| .

ext_errorAck

int_enablePWM: boolean ctrl0_enablePWM: boolean

ctrl1_enablePWM: boolean

o§ ref ctrlo ctrl1_dutyCyclePWM1: duty

ext_setPoint: real .]EXt_SetPoint: real

ext_pow24VStatus: Power

int_dutyCyclePWM1: dut;

async
ext_pow24VStatus: Power

o8 ref ctrl1

ext_pow24VStatus: Power

ext_pow24_1: Power

o§ ref ctrl2
ext_pow24_2: Power

ext_pow24VStatus: Power

Figure 14: RoboChart module mod sys defining the connections between controllers and the robotic platform. Controller
ctrl0 contains the main State machine, a recast in RoboChart of the state machine presented in Fig. The watchdogs have
been combined into one state machine, defined inside controller ctrll. Controller ctrl2 relays the event ext pow24VStatus to
controllers ctrl0 and ctrll, while controller ctrl3 is used for relaying the events int _enablePWM and int_ dutyCyclePWM1 to RP1.

O disableHV(arg: boolean)

IVars_disableHV
IEvents_disableHV

/int_enablePWM!false <{0}; dutyCyclePWM1 = real2duty(0);
int_dutyCyclePWM1!dutyCyclePWM1 <{0}; HVEnabled = false;

mSetPoint =0
F
[arg==false]
[arg==true]/currentState = State::ErrorMode
Q enableHv() QO supplyVoltCheck()
IVars_enableHV

IEvents_enableHV IVars_supplyVoltCheck
- 10ps_disableHV
. IVars_disableHV

] . _
/int_enablePWMttrue <{0); |IEvents_supplyVoltCheck

dutyCyclePWM1 = real2duty(0);
o int_dutyCyclePWM1!dutyCyclePWM1 <{0} @

Jext_pow24VStatus?pow24VStatus <{0}
[pow24VStatus==Power::Off]/disableHV(true)

O AdjustLimits()
® Ivars_adjustLimits [pow24VStatus==Power:0n] é

JoverLimit = overLimitF(mSetPoint+2);
0 underLimit = underLimitF(mSetPoint-2) ®

Figure 15: Subset of software operations.

16

After the initialization is complete, the execution proceeds to the composite state Wait24Vpower on the
next cycle. Its entry action explicitly records that the state has been entered by setting the variable cur-
rentState. The transition to ClosedLoop is only enabled when the current value of setPoint is 0, the 24V power
is stable (pow24VStatus==Power::On), and the ErrorMode is not activated, as indicated by the transition’s
guard. The body of Wait24Vpower monitors the relevant inputs periodically as part of the cycle of transi-
tions between the junctions. Firstly, the operations disableHV and supplyVoltCheck, as defined in Fig.
are called. disableHV disables the high-voltage, while supplyVoltCheck checks the input ext pow24VStatus
and updates the value of the variable pow24VStatus. Secondly, the value of variable setPoint is also updated
via a reading (ext setPoint?setPoint) through event ext setPoint, with a deadline (<{0}) of zero time units.
In RoboChart budgets and deadlines must be specified explicitly, and so here the deadline indicates that
the reading takes a negligible amount of time.

The critical phase of HVC operation is captured in state ClosedLoop, that controls the PWM. Initially the
user-defined setpoint, ext Setpoint, is read into the variable setPoint. If the value is zero, then disableHV is
called to ensure that the high-voltage is disabled. Afterwards, if the value is non-zero and the high-voltage has
not been enabled yet (HVEnabled==false), HVEnabled is set to true, the supply voltage is checked by calling
supplyVoltCheck(), and the high-voltage is enabled by calling enableHV. While the high-voltage is enabled,
the internal setpoint (recorded in variable mSetPoint) is adjusted by calling setPointRamping(setPoint). The
PWM duty-cycle is adjusted by PID _Control that outputs a percentage via int_dutyCyclePWM1, according
to the difference between mSetPoint and ActualHV, the measured high-voltage via the input ext ActualHV.
In state sO of ClosedLoop, the flow of execution may be interrupted by transitioning to ErrorMode when
currentState is set to State::ErrorMode. The error can be acknowledged via the event ext errorAck within
the current cycleTime, after which there is a transition to Wait24Vpower.

The variable currentState may be set to State::ErrorMode by calling disableHV(true), either while in
Wait24Vpower, or from within operations checkLimits or supplyVoltCheck, that checks whether the input 24V
power is stable. The latter is called regularly in states ClosedLoop and Wait24Vpower of State _machine, and
also by the watchdog, which, as will be explained next, is modelled in another state machine.

Watchdog. The watchdog, shown in Fig. executes, over time, in alternation with the main State machine,
that executes on a 10 millisecond cycle, as specified by the constant cycleTime. Therefore, the watchdog’s
behaviour is initially delayed by 4 milliseconds. In state s0 there is a call to AdjustLimits(), and 2 milliseconds

| !int_dutyCyclePWM1: duty I Iext_p0w24VStatus: Powerl Iint_enablePWM: boolean
] —J

£3 watchdog
10ps_ctrl1
IVars_ctrl1
IEvents_ctrll
Jwait (ms(4)) s0 Jwait (ms(2)) s1
°—> entry AdjustLimits() entry supplyVoltCheck()
/wait (ms(8))

Figure 16: Watchdog state machine.

later, the operation supplyVoltCheck() is called. We observe that the transition between sl and sO takes 8
milliseconds, and it is during this time that State machine actually executes its cyclic behaviour.

4.2.8. Framework Mechanisation

Having developed models of the software and hardware, in this section we mechanise the co-verification
framework outlined in Fig. [§] with the aim of verifying system Property P1. We start by defining a CSP
process that captures Property Pyw. This is followed by the complete mechanisation of the platform and
its mapping, and the composition with the semantics of the RoboChart, as calculated by RoboTool.

17

£3 State_machine

8 10ps
IVars_seqSM_shared
TC cycleTime: nat = ms(10)
Cl1

®
(i) IEvents_ctrlo
(D IVars_seqsM

ext_ActualHV: real

ext_pow24VStatus: Power

/mSetPoint = 0; HVEnabled = false;

Wait24Vpower

wait (cycleTime)

ext_errorAck

entry currentState = State::Wait24Vpower

Init

ext_setPoint: real

entry AdjustLimits()

/wait (cycleTime)

int_dutyCyclePWM1: duty

int_enablePWM: boolean

[setPoint==0/\currentState!=State::ErrorMode/\pow24VStatus==Power::On]

[not ((setPoint!=0)\/(pow24VStatus==Power::0n))]/wait (cycleTime)

/disableHV/(false); supplyVoltCheck(); ext_setPoint?setPoint <{0}

[pow24VStatus==Power::0n/\setPoint==0]/wait (cycleTime)

Cé}
[setPoint!=0]/disableHV(true); wait (cycleTime)

[since(Cl1)>=cycleTime/\currentState==State::Wait24Vpower]

[currentState==State::ErrorMode]

ClosedLoop

ErrorMode

entry currentState = State::ClosedLoop

entry currentState = State::ErrorMode

[setPoint==0\HVEnabled==true]

[HVEnabled==true]
/enableHV()

[HVEnabled==true]
/ext_setPoint?setPoint <{0};
setPointRamping(setPoint)

[currentState==State::ClosedLoop]/wait (cycleTime)

/ext_setPoint?setPoint <{0}; if (setPoint==0) then
disableHV(false) else skip end

[setPoint!=0/AHVEnabled==false]
/HVEnabled = true

/supplyVoltCheck()

[HVEnabled==false]

/checkLimits()

? H

entry disableHV(false);

t)

[since(Cl1)==cycleTime]

ext_errorAck[since(Cl1)<cycleTime]
/currentState = State::Wait24Vpower

®

J

[currentState==State::ErrorMode]/wait (cycleTime)

[HVEnabled==false] s0

/PID_Control()

Figure 17:

18

Main State machine corresponding to that of Fig. m recast in RoboChart

Platform. The hardware platform is specified within the following csp block named Hvc_Platform. It defines,
first of all, the CSPy events of the sensors and actuators, following the naming conventions of Fig.

csp HVC_Platform csp—begin

Power_Voltage = {0,24} —— Data type used to characterise input RPpow24V

channel RPActualHV_out : core_real —— 'Actuator’ output

channel RPInputV_out : core_real —— Output from software via platform mapping
channel RPActualHV, RPActualHV_in : core_real —— Sensor input and platform mapping

channel RPpow24V, RPpow24V_in : Power_Voltage —— Sensor input and platform mapping

channel RPsetPoint_in : core_real —— Sensor platform mapping

channel RPerrorAck, RPerrorAck_in —— Untyped ’'sensor’ input and platform mapping
channel get HV, set HV, change : core_real —— Used for abstraction of the hardware

Timed (OneStep) {
HVC_Platform = timed_priority((HV(0)[[get_HV <— RPActualHV_out 1]
[l {Iset_HV[} [|I]
HVC_Hardware)\{|set_HV|})
HV(x) = set_HV?nv —> HV(nv) [] get_HV!x —> HV(x)
HVC_Hardware = (Detector [| {| change, get_HV |} |] StatefulEvolution) \{|change, get_HV|}
Detector = RPInputV_out?nv —> get_HV?x —> (if (nv != x) then (change!nv —> Detector) else Detector)
StatefulEvolution = (Evolution [| {| change |} |] HV(O)[[set_HV <— change 1])
Evolution = change?x —> ((WAIT(ms(370)); set_HV!x —> Evolution) [] Evolution)
}

csp—end

The process HvC_Platform is a discrete, and reactive, model of the hardware, constructed from the property
established in Section It is defined as a parallel composition (| |1), synchronising on event set_Hv,
of Hv(e), that models the current value of the high-voltage, and HvC_Hardware, that captures how the value
of RPActualHv_out may change over time in response to changes in RPInputV _out. The process Hv(x) offers the
event set_Hv to change the value, and the event get_Hv to query the current value x. It is specialised in Hv(x)
[[get_HV <— RPActualHV_out]] by renaming the event get_Hv to RPActualHv_out. The event set_Hv is hidden (\),
as it is just an artefact of the CSP model.

The evolution of the value available via RPActualHV _out is modelled by the process HvC_Hardware. It is
defined as the parallel composition of the process betector, synchronising on events change and get Hv, and
the process statefulEvolution. The latter models how changes to the voltage evolve over time, while Detector,
named analogously to the SDV block in Fig. models how an input via RPInputV _out may affect the be-
haviour. First it offers to receive a new value nv via RPInputV_out, and then synchronises with statefulEvolution
on get_Hv to query the current value x being targeted. If the value is different, it synchronises on change with
value nv, otherwise it behaves as betector.

The core of hardware property Pgw is abstractly captured by the process statefulEvolution. It is defined
as the parallel composition of Evolution, synchronising on event change, with Hv(e) where the event set_Hv
is renamed to change. Evolution accepts a change event at anytime, and afterwards waits 370 milliseconds, a
conservative natural approximation, before synchronising on set_Hv, which is used to update the high-voltage,
whose value is available via RPActualHV _out, as modelled by the process hv(e) in Hvc_Platform. Thus, a change
via RPInpuv_out leads to a change in the value available via RPActualHv_out over time, mirroring property Paw
as established in Section [£.2.1] Next, we describe the mechanisation of the platform mapping.

Platform Mapping. The process PlatformMapping, defined next, captures the non-trivial mapping between
int_ dutyCyclePWML, int _enablePWM, and RPInputV _out, and between RPpow24V in and ext pow24VStatus.

csp PlatformMapping csp—begin
duty2volt(x) = if member(x,{0..19}) then 0
else (if member(x,{20..60}) then 1
else (if member(x,{61..100}) then 2 else 0))
Timed (OneStep) {
PlatformMapping = timed_priority((RPInputV_out!® —> PWM_Map(false)) ||| Pow24_Map(true))

19

PWM_Map (pwm) = mod_sys::int_enablePWM.out?x —>
((if x == false then RPInputV_out!® —> SKIP else SKIP) ; PWM_Map(x))
[1
mod_sys::int_dutyCyclePWMl.out?x —>
((if pwm == true then RPInputV_out!duty2volt(x) —> SKIP else SKIP); PWM_Map(pwm))

Pow24_Map(pwr) = RPpow24V_in?x:{x | x <— Power_Voltage, (x <= 24 and x >= 18)} —> Pow24_Map(true)
[1
RPpow24V_in?x:{x | x <— Power_Voltage, (not (x <= 24 and x >= 18))} —> Pow24_Map(false)
[1
(if (pwr==true)
then mod_sys::ext_pow24VStatus.in!Power_On —> Pow24_Map(pwr)
else mod_sys: :ext_pow24VStatus.in!Power_0ff —> Pow24_Map(pwr))
}

csp—end

It is an interleaving (|||) of two processes, Pow24v_Map, that models the mapping between RPpow24V in and
the software input ext extPow24VStatus, and the prefixing on RPInputV _out with value 0, that initializes
the hardware with value zero, followed by the behaviour of pwM Map, that models the mapping between the
output int _dutyCyclePWM1 and int_enablePWM, and the input to the platform RPInputV _out.

PWM_Map is parametrised to keep track of whether the PWM has been turned on or off. The first process
in the external choice allows this value to be toggled depending on whether int_enablePwM.out is received
with value false, in which case the value zero is passed to the platform via RPInputv_out, and otherwise
there is a recursion on pPwM_Map(x) with the updated value of x. In the second process, values received via
int_dutyCyclePwMl.out are passed to the platform via RPInputv_out, mapped via the function duty2volt, if the
value of pwn is currently true. This function maps a percentage to a voltage, which, as previously discussed
in Section encodes three possible values.

The CSP process Pow24_Map is defined analogously to model the mapping between the sensor of the 24V
voltage, and the input ext pow24VStatus of the software, whereby a value between 18 and 24 is considered
as On and otherwise as Off. This concludes the non-trivial mappings, which are used in the definition of the
overall system next.

Mapped System. The complete system, as envisioned in Fig. |8 is defined next by the process MappedSystem.

csp MappedSystem csp—begin
Timed (OneStep) {
Software = mod_sys::0__(0,ms(10),1) [[mod_sys::ext_ActualHV.in <— RPActualHV_in,
mod_sys::ext_errorAck.in <— RPerrorAck_in,
mod_sys::ext_setPoint.in <— RPsetPoint_in]]
Software_PMap = (Software
[| {|mod_sys::int_enablePWM.out,mod_sys::int_dutyCyclePWMl.out,mod_sys::ext_pow24VStatus|} |]
PlatformMapping
)\{|mod_sys::int_enablePWM.out,mod_sys::int_dutyCyclePWMl.out,mod_sys::ext_pow24VStatus|}

MappedSoftware = Software_PMap[[RPActualHV_in <— RPActualHV,
RPerrorAck_in <— RPerrorAck,
RPpow24V_in <— RPpow24V,
RPsetPoint_in <— RPsetPoint]]

MappedSystem = timed_priority(MappedSoftware
[| {] RPInputV_out, RPActualHV |} |]
(HVC_Platform[[RPActualHV_out <— RPActualHV_out,
RPActualHV_out <— RPActualHV]])
\{|RPInputV_out,RPActualHV|})
}

csp—end

It is defined as the parallel composition of MappedSoftware and HVC_Platform, as defined previously, synchronising
on the events RPInputv_out and RPActualhv. Here, HvC Platform is relationally renamed [29, p. 105], so that
the event RPActualHv_out is both an output of the platform and also a sensor input, with the same value,
via RPActualHv, as depicted in Fig. [8] The hiding on RPInputv_out and RPActualHv completes the abstraction.
The process MappedSoftware captures the connections between the composition of the platform mapping
and the software, as established by Software_PMap, and the platform, by renaming the events of the former to

20

the latter. The sensors of the platform, in particular, are assumed to be perfect, and so in this abstraction
the functional renaming is a record of their ideal functional behaviour.

Sofware_PMap captures the composition of the RoboChart CSP semantics, and the PlatformMapping, as defined
earlier. It is a parallel composition of processes Software and PlatformMapping, synchronising on the events of
the RoboChart model, int_enablePWM.out, int_dutyCyclePwMl, and ext_pow24VStatus. The process Software, which
explicitly instantiates the RoboChart model semantics, is defined analogously to MappedSoftware, whereby the
trivial mappings are captured via renaming. The hiding completes the abstraction.

The process mod_sys::0__(0,ms(10),1) is an explicit instantiation of the CSPy semantics of mod sys,
automatically calculated by RoboTool, where 0 is a default identifier, ms (10) is the value of constant cycleTime
of State__machine, and 1 the value of constant rampStep of operation setPointRamping. Events in the CSP
semantics of RoboChart are named according to the model hierarchy, where :: is a delimiter, and have a
parameter in or out to indicate whether an event is an input or output.

4.2.4. Formal Verification of System-level Property P1
With the framework outlined in Fig. [§] mechanised in CSP, in this section we address the verification of
Property P1. Its specification in CSP, described in Section [£.1] is reproduced below for convenience.

timed csp SpecPl csp—begin
Timed(OneStep) {
SpecPl = timed_priority(Follow(s(3)))
Follow(d) = e?x —> (if x == 0 then Follow(d)
else ((ADeadline({|e]|},{]|e.0]},d);TRUN({|e.0]|})) /\ RPsetPoint?x —> Follow(d)))
[1
RPsetPoint?x —> Follow(d)
}

csp—end

// Actual check for P1
timed assertion P1 : ImplPl refines SpecPl in the traces model

Verification of Property P1 is stated as a refinement assertion P1 in the traces model of CSP, that ensures
safety [29] p.36]. That is, an implementation P refines Spec, if, and only if, every behaviour of the implemen-
tation is a behaviour permitted by the specification. For assertion P1, SpecP1 is the specification and ImplP1
is the implementation. As previously discussed in Section [£:1] specp1 is stated in terms of a new event e, that
is not part of the Fig. [8] but useful to specify Property P1 in terms of the absolute difference between the
value of output RPActualHv_out and input RPsetPoint. To facilitate the verification, process ImplP1, is defined
next to relate events e and RPActualHV_out, and RPsetPoint, based on the process MappedSystem.

System Interface for Verification of P1. We observe that in specP1, the event RPsetPoint is used as an interrupt,
which emerges naturally in the reactive CSP setting. However, the event RPsetPoint as used so far in the
definition of MappedSystem models readings of a sensor, that can be performed periodically despite no change
in the actual value. Therefore, to relate SpecP1 and ImplP1, in the next csp block we define a suitable mapping
for the RPsetPoint event. We also capture the relationship between the event e and the current value of both
the setpoint and the actual high-voltage, as required for the comparison with Specp1.

timed csp ImplP1l csp—begin
channel int_RPsetPoint : core_real
abs_diff(x,y) = if (x—y >= 0) then (x — y) else (y — x)

Timed (OneStep) {
Assumption_RPerrorAck = STOP
Assumption_RPpow24V = RPpow24V!24 —> STOP
Assumption_SetPoint = EndBy(RPsetPoint.0 —> SKIP,0); WAIT(ms(22)); RPChange
RPChange = RPsetPoint?x —> WAIT(s(1)); RPChange

SystemPl = (((MappedSystem [| {| RPerrorAck |} |] Assumption_RPerrorAck\{|RPerrorAck]|})
[l {I RPpow24V [} |]
Assumption_RPpow24V)\{| RPpow24V |})

RPSystemPl = (SystemP1l[[RPsetPoint <— int_RPsetPoint]]
[l {|int_RPsetPoint|} |]

21

RPEventMapping(0))\{|int_RPsetPoint|}
RPEventMapping(x) = RPsetPoint?nv —> RPEventMapping(nv)
[
int_RPsetPoint!x —> RPEventMapping(x)

Error(actualhv,setpoint) = RPsetPoint?x —> Error(actualhv,x)

[]

RPActualHV_out?x —> Error(x,setpoint)

[1
elabs_diff(actualhv,setpoint) —> Error(actualhv,setpoint)

Sampler = EndBy(RPActualHV_out?x —> e?x —> SKIP,0); WAIT(1l); Sampler
ESystemPl = (RPSystemPl

[| {|RPsetPoint,RPActualHV_out|} |]

(Error(0,0) [| {|RPActualHV_out, e|} |] Sampler)

)\{|RPActualHV_out|}

ImplP1l = timed_priority(ESystemPl [| {|RPsetPoint|} |] Assumption_SetPoint)
}

csp—end

Moreover, we also explicitly capture three assumptions, that are implicitly required for the verification of
P1: (1) the 24V power is stable, as reported via the input RPpow24V (2) no error is to be acknowledged via
RPerrorAck (3) the HVC control software is correctly initialised, that is, RPsetPoint has a value of zero during
the first two cycles of StateMachine, so as not to trigger an error, and that the value of RPsetPoint changes
no more often than once per second. It should be noted that this third assumption regarding frequency of
change of RPsetPoint, is more conservative than necessary, as RPsetPoint is known to never change faster
than within 10 seconds from the previous change, as mentioned in Section [3] These assumptions together
define the normal working behaviour of the HVC, where the State machine operates within the ClosedLoop
state, during which P1 is required to hold.

Process 1mp1p1 is defined by the parallel composition of ESystemP1, synchronising on event RPsetPoint with
Assumption_SetPoint. The latter captures the first assumption by requiring that initially the set-point is set to
zero, with immediate effect, via the use of the EndBy construct of tock-CSP, and where, after 22 milliseconds,
its value can change arbitrarily, at most once per second, as defined by the process RPChange. Here 22 ms
corresponds to at least two cycles of execution of State machine, given that for verification we consider
each time unit as encoding 2ms. The process ESystemP1 introduces the event e in the context of the system
behaviour, as defined by RPsystemP1, that captures the other two assumptions and relates the RPsetPoint
of Fig. [8] a sampled input, with the RPsetPoint of SpecP1, which is used as an interrupt for the purpose of
specification.

ESytemP1 is defined as the parallel composition of RPSystemP1 and two processes Error and Sampler, that are
also composed in parallel, synchronising on RPsetPoint and RPActualHV_out. The process Error synchronises on
these events so that it offers to synchronise on event e with a value given by the absolute difference, specified
by the application of abs_diff. This follows the definition of Property P1 as presented in Section The
process Sampler ensures that the actual high-voltage, via RPActualHv_out, and the difference, via e, are updated
exactly every time unit. This is specified by imposing a deadline of zero time units on events RPActualHV_out
and e, using a deadline, followed by a delay of exactly one time unit. This is just a modelling mechanism to
ensure that events corresponding to sampled inputs or outputs, namely RPActualHV_out, are updated regularly
without introducing erroneous Zeno behaviours in the CSP model.

The next process RPSystemP1 is also defined as a parallel composition of a process SystemP1, where the event
RPsetPoint is renamed to a new event int_RPsetPoint, used in the synchronisation set, with RPEventMapping(0).
The latter process takes in new values via RPsetPoint, and then offers to synchronise on int RPsetPoint with
the same value. The hiding of event int_RPsetPoint makes it possible for systemP1 to query the set-point value
periodically via int_RPsetPoint, rather than directly via RPsetPoint, as required for the comparison with specP1.
This is a modelling mechanism to ensure the event RPsetPoint can be treated in the interrupt style of specpi.

Finally, systemp1 is the composition of the behaviour established by the co-verification framework, that ac-
counts for the software and hardware modelling, as defined by MappedSystem and processes Assumption_RPerrorAck
and Assumption_RPpow24V that capture the second and third assumption for the purpose of verifying Prop-

22

erty P1. Here Assumption_RPpow24v initially sets the input RPpow24v to the value 24, while Assumption_RPerrorAck
refuses to acknowledge any error via RPerrorAck by behaving as stop, the process that deadlocks. As before,
the use of hiding completes the abstraction as the events RPerrorAck and RPpow24v are not of relevance for
refinement checking of specP1. Next, we report on the use of FDR for checking assertion p1.

Verification Parameters and Results. For model-checking with FDR, not only constants of the RoboChart
model have to be instantiated, but the domain of data-types must also be defined as discrete finite sets.
These are defined in a special csp block named Instantiations, reproduced below.

timed csp Instantiations csp—begin
nametype core_nat = { 0..1}
nametype core_real = { 0..2}
nametype core_int = { 0..1}
nametype core_boolean = Bool
nametype duty = { 0..100}

overLimitF(x) = if x > 2 then 2 else x
underLimitF(x) = if x < 0 then 0 else x

ms(t) = t1/2
s(t) = t1x1000/2
/..

csp—end

Besides, in this block we also give a CSPy definition for all functions declared in the RoboChart model.
overLimitF and underLimitF, used by the software operation AdjustLimits, ensure the result is closed. Since
in the software model all time units are divisible by 2, the smallest time unit is chosen as encoding 2
milliseconds, thus the function ms, halves the argument, and s, encoding seconds, is defined analogously.
The reals are instantiated as the set {0, 1,2} as this is a realistic representation of the different inputs and
outputs, namely RPsetPoint, where values from 0, 1 and 2 naturally map to high-voltage values 0, 40 and
80 kV. Bearing in mind that HV _Setpoint € 0U [30 90] kV/, it is noticed that this representation is rich
enough to capture all possible combinations for HV setpoint changes.

The assertion P1 is successfully verified by FDR. On a dual AMD EPYC 7501 32-core machine with 1TiB
of RAM, it took FDR 1456s to compile the Labelled Transition System (LTS), and 1394s to verify that the
property holds, having visited 126,481,225 states and 517,333,656 transitions. For comparison, in Table
we include this result together with those concerning only software verification, which we address next.

5. Formal Verification of Software Properties

In what follows we discuss the verification of properties P2-P4 of Section [3.I} which concern only the
software. Property P4 concerning deadlock freedom can be specified directly using the assertion language
provided by RoboTool. Properties P2 and P3, on the other hand, are specified directly in CSPy.

Property P2. Taking into account the RoboChart model, P2 can be restated as requiring that the obser-
vation of the input ext pow24VStatus with value Power::Off is followed by the output int _dutyCyclePWM1
with value 0. As CSP adopts a reactive paradigm, the process SpecP2, specified below, is defined in terms of
events. It considers the case when the output int_dutyCyclePWM1 has been set to a value other than zero
and subsequently ext pow24VStatus is observed with value Power:Off.

timed csp SpecP2 csp—begin
Timed (OneStep) {
ADeadline(S,E,d) = EndBy(TRUN(S),d) [|E|> SKIP
SpecP2 = timed_priority(PWM_off)
PWM_Behaviour = mod_sys::int_dutyCyclePWMl.out?x:{x | x <— duty, x > 0} —> PWM_on
[1
mod_sys::int_dutyCyclePWMl.out.0 —> PWM_off

PWM_off = PWM_Behaviour [] mod_sys::ext_pow24VStatus.in.Power_Off —> PWM_off

23

PWM_on = PWM_Behaviour
[1
mod_sys::ext_pow24VStatus.in.Power_Off —>
ADeadline({|mod_sys::ext_pow24VStatus.in.Power_0ff,mod_sys::int_dutyCyclePWMl.out]|},
{|mod_sys::int_dutyCyclePWMl.out.0|},ms(10)) ; PWM_off
}

csp—end

The behaviour of SpecP2 is that of PWM_off, defined as an external choice over behaving as PWM_Behaviour or ac-
cepting the event mod_sys: :ext_pow24VStatus.in.Power_0ff, followed by the recursion on PWM_off. PWM_Behaviour
tracks the changes of the output int_dutyCyclePWM1 by offering a value greater than 0 and then behaving as
PWM_on, or, a value of 0, and then behaving as PWM_off. In PWM_on we capture the core of Property P2, where,
following the event mod_sys::ext_pow24VStatus.in.Power_0ff we require mod_sys::int_dutyCyclePWMl.out.0 to
be observed within 10 milliseconds (matching the cycleTime used by State machine) using the process
ADeadline, after which the process behaves as PWM_off again as specified by the sequential composition (;).
The specification for verifying Property P2 is written as a RoboChart assertion P2, reproduced below.

timed csp mod_sys_pwm associated to mod_sys csp—begin
Timed (OneStep) {
mod_sys_pwm = timed_priority(mod_sys::0__(0,ms(10),1)
|\ {|mod_sys::ext_pow24VStatus.in.Power_0ff,mod_sys::int_dutyCyclePWMl.out,tock]|})
}
csp—end
timed assertion P2 : mod_sys_pwm refines SpecP2 in the traces model // Actual check for P2.

It is stated as a refinement assertion in the traces model. The process mod_sys_pwm is defined by constraining
the timed semantics of mod _sys and hiding every CSPy event other than those mentioned by SpecP2 using
the projection operator (|\) so that the comparison is meaningful.

Property P3. The next property, P3, is specified in CSPy by the process SpecP3, defined below.

timed csp SpecP3 csp—begin
Timed(OneStep) {
SpecP3 = timed_priority(mSetPoint_zero)
mSetPoint = mod_sys::set_mSetPoint?x:{x | x <— core_real, x > 0} —> mSetPoint_non_zero
[1

mod_sys::set_mSetPoint.® —> mSetPoint_zero
mSetPoint_zero = mSetPoint [] mod_sys::ext_pow24VStatus.in.Power_Off —> mSetPoint_zero

mSetPoint_non_zero = mSetPoint_zero
[1
mod_sys: :ext_pow24VStatus.in.Power_O0ff —>
ADeadline({|mod_sys::ext_pow24VStatus.in.Power_Off,mod_sys::set_mSetPoint|},
{|mod_sys::set_mSetPoint.0|},ms(10)) ; mSetPoint_zero
}
csp—end
// Constrained form of mod_sys for P3
timed csp mod_sys_setpoint associated to mod_sys csp—begin
Timed (OneStep) {
mod_sys_setpoint = timed_priority(mod_sys::AS_0__(0,ms(10),1)
|\ {|mod_sys: :ext_pow24VStatus.in.Power_0ff,mod_sys::set_mSetPoint,tock]|})
}
csp—end
timed assertion P3 : mod_sys_setpoint refines SpecP3 in the traces model // Actual check for P3

The structure is similar to SpecP2, and it also uses the event ext pow24VStatus. Unlike SpecP2, however,
SpecP3 tracks changes in the assignment of values to the shared variable mSetPoint, encoded in the RoboChart
semantics via events set_mSetPoint. We observe that since mSetPoint is a variable of the software, rather
than an output of mod _sys, such an assignment is not visible in the semantics of a RoboChart module.
Instead, we use a tailored version of the semantics, calculated by RoboTool, that supports this type of
analysis, in a similar way to how state reachability checks are implemented. The actual check for Property
P3 is specified by assertion P3, a refinement that considers the process mod_sys_setpoint, a constrained form
of mod_sys, defined similarly to process mod_sys_pwm in assertion P2.

24

Property P4. The fourth property requires that the software is deadlock free. This can be directly specified
using the following RoboChart assertion.

//P4: Checks if the model is deadlock free
timed assertion P4 : mod_sys is deadlock—free

A timed deadlock manifests when the system refuses to perform any event, but time may pass indefinitely.
Its absence, is checked in FDR in the failures-divergences semantic model of CSP, using a technique inspired
by Roscoe [35], that effectively checks no state configuration is reached whereby an infinite amount of time
can pass while refusing to perform every regular event.

Moreover, as a sanity check, we also verify that all of the states of State Machine and Watchdog are
reachable, using the following RoboChart assertions.

timed assertion Reach_Init : State_machine::Init is reachable in mod_sys

timed assertion Reach_Wait24VPower : State_machine::Wait24Vpower is reachable in mod_sys
timed assertion Reach_ClosedLoop : State_machine::ClosedLoop is reachable in mod_sys
timed assertion Reach_ErrorMode : State_machine::ErrorMode is reachable in mod_sys
timed assertion Reach_Watchdog_s0 : Watchdog::s0 is reachable in mod_sys

timed assertion Reach_Watchdog_sl : Watchdog::sl is reachable in mod_sys

Similarly to the verification of Property P3, for checking reachability, RoboTool uses a tailored version of
the semantics whereby the entrance of states is visible, as detailed in [10].

. Elapsed Time Complexit,

Assertion Result Compilatirc))n Verification States T ’I‘rarz,sitions
Pl v 14565 1394s 126,481,225 | 517,333,656
P2 v 1456s 247s 1,460,749 3,855,659
P3 v 1539s 248s 1,452,829 3,831,246
P4 v 1253s 334s 1,920,070 5,795,521
Reach_Init v 789s 1.07s 3,292 12,455
Reach_Wait24VPower | v/ 789s 5.51s 2,229,843 9,672,801
Reach_ClosedLoop v 789s 11.62s 8,148,391 35,349,260
Reach_ErrorMode v 789s 10.38s 6,756,722 29,260,634
Reach_Watchdog_s0 v 789s 0.60s 352 976
Reach_Watchdog_s1 v 789s 0.80s 1,420 4,667

Table 2: Results of model-checking Properties P1-P4, as well as reachability analysis using FDR.

Verification Results. The results of model-checking are summarised in Table[2] The time elapsed is the sum
of the time taken to compile and verify the Labelled Transition System (LTS), as calculated by FDR, on
a dual AMD EPYC 7501 32-core machine with 1TiB of RAM. Complexity is broken down into number of
states and transitions visited when verifying the assertions. Compilation takes longer than verification as
the CSPy automatically generated by RoboTool employs compression functions to minimize the LTS. The
compression algorithms used by FDR are largely sequential, whereas verification can exploit multiple cores
efficiently. Verification of P1 is more complex than the verification of software-only properties, due to the
mechanisation of both the framework and the hardware abstraction.

6. Concluding Remarks and Future Work

Co-simulation, e.g., effectively combining various types of models and simulation tools in order to reach
system-level results, is a rather well-known and established industrial practice that has received recent
attention [36]. This paper advocates extension of the same school of though and practice into the formal
verification domain. Centering the focus around the paint robot HVC application, this paper guides the
reader through an industrial use-case of co-verification where modelling and verification results from different
tools are lifted into a unifying framework, thereby allowing the verification of overall, system-level properties.

25

In our case study, we have used RoboChart for modelling the software, and Simulink for hardware
modelling. RoboChart models are typically of a higher abstraction level than those used for dynamic
simulation. Therefore, abstractly capturing the behaviour of low-level software, like that of the HVC, can
be challenging, especially for practitioners who are more familiar with dynamic simulation. Another aspect
of practical concern is finding the right level of abstraction to achieve computationally tractable results for
model-checking. Simulink, on the other hand, is convenient for modelling and simulation of dynamics, but
is limited in the ability to perform verification. Continuous blocks need to be discretized for use with SDV,
and, on a more practical level, it is not always clear whether counter-example generation is feasible.

Because of the general form of our approach, we envision that the principle of decoupling via platform
mappings, also advocated in [I5], could constitute a useful, and pragmatic, basis for use with other formal
verification tools and techniques. An avenue for future work could include the complete formalisation and
mechanisation of decomposition patterns using a unifying semantic framework like the UTP [37], that caters
for multiple paradigms, with support for interactive theorem proving available via Isabelle/UTP [3§].

On a more practical level, we anticipate that the automatic generation of proof models from a declarative
notation capturing the framework outlined in Fig. [§] namely for model-checking as we do in our case study,
could be useful for practitioners. Such work could also address the dichotomy between the use of events to
represent sampling of inputs, and their use as interrupts in the style of CSP, that facilitates the specification
of properties like P1. Not surprisingly, this is a paradigm shift also seen in the conformance relation between
RoboChart and the closely-related simulation language RoboSim [21].

The results presented earlier in this paper, were extended by performing verification against an older
version of the HVC software, which was known to be faulty, e.g., had been observed in practice to gener-
ate solutions contradicting some of the properties listed in Section Our results revealed that neither
Property P2 nor P3 were satisfied. This gives credence to our ability in successfully capturing the crit-
ical behavioural aspects of the HVC. Moreover, it reinforces the relevance of practical formal verification
techniques for identifying problems early in the development cycle, supplementing traditional testing in
industrial settings.

Related to our motivation on addressing the ongoing industrial trends in robotics, where an increasing
number of safety features and functions are handled in software, we also acknowledge the emergence of
adaptive or learning-based software components. The use of machine learning methods, and their inherent
opaqueness, presents significant challenges in fulfilling certification requirements and obtaining wide-scale
market acceptance. To push forward the socio-technical research frontier drastically and improve current
practices of robotic system design, analysis and verification is scope of future research.

Related work is ongoing, for example, to provide facilities in RoboChart to capture properties of neural
networks at a suitable level of abstraction, which could be a useful basis in the future to extend our co-
verification approach. In addition, RoboTool also supports the generation of reactive modules for analysis
with PRISM [39] [40], which features both probabilistic and statistical model-checking. In the future, we
plan to explore this avenue for verification, namely for reasoning in the presence of faults and uncertainty.

Acknowledgements

The authors would like to gratefully acknowledge all the support, guidance and inspiration provided by
Prof. Ana Cavalcanti during this work. The research presented in this paper has received funding from the
Norwegian Research Council, SFT Offshore Mechatronics, project number 237896. Pedro Ribeiro is funded
by the UK EPSRC (grant EP/M025756/1), and by the Royal Academy of Engineering (grant CiIET1718/45).

26

Appendix A. RoboChart Model: Controllers

The controllers ctrl0-3 referenced in mod _sys are shown in Figs. to

og ctrlo

IVars_seqSM_shared
IEvents_ctrlo

---------------------- _Dint_enablePWM: boolean

ext_setPoint: real
) disableHV(arg: boolean)

| iint_dutyCyclePWM1:duty
| !int_enablePWM:boolean

O enableHV()

1
1
I
I
1
1
I
I
1
1
I
I
1
:
I
. I
i £3 ref stm_ref0 = State_machine 1
I | | iint_dutyCyclePWM1:duty

I
1
1
I
I
1
1
I
I
1
1
I
I
I

int_enablePWM: boolean int_enablePWM: boolean
_Dint_enablePWM: boolean

int_dutyCyclePWM1: duty

1

1

)

1

1

1

)

'Iext_setPoint: real

ext_ActualHV: real ext_ActualHV: real

ext_pow24VStatus: Power ext_pow24VStatus: Power

ext_errorAck ext_errorAck

m/nmn

int_dutyCyclePWM1: duty
O checkLimits()

| iint_dutyCyclePWM1:duty

e .
int_enablePWM: boolean _I !ext_ActualHV. real

O PiD_Control()

(0] setPointRamping(newSetPoint: real) O AdjustLimits()

int_dutyCyclePWM1: dut
int_dutyCyclePWM1: duty —DI -ouvhy uy

int_dutyCyclePWM1: dut

O supplyVoleCheck() ext_pow?24VStatus: Power

int_enablePWM: boolean

Figure A.18: Controller ctrl0, showing its inputs and output connections to Sate machine, and references of operations.

Appendix B. Extended RoboTool Definitions

Here we include the definition of the auxiliary processes EndBy and TRUN, which are provided built-in with
RoboTool for modelling of timed behaviour using tock-CSP.

—— Events are not followed by implicit delays, so the function OneStep is defined as zero for every input.
OneStep(_) = 0

—— Outside a Timed section, the process STOP prevents time from passing, thus USTOP is a timelock.
USTOP = STOP

—— Version of RUN that includes the event ’tock’ for modelling convenience.
TRUN(S) = RUN(union(S,{tock}))

Timed(OneStep

{
EndBy(P,d) =

)
) timed priority(P /\ (WAIT(d);USTOP))
}

27

IVars_ctrl1
IEvents_ctrl1

1int_enablePWM: boolean ! |int_enablePWM: boolean

I
I
I
E
int_dutyCyclePWM1: duty ! |int_dutyCyclePWM1:duty]
: &2 ref stm_ref0 = Watchdog i
1
I
I
I
I
I
I

ext_pow24VStatus: Power ! |ext_pow24VStatus: Power
.

int_dutyCyclePWM1: duty

O supplyVoltCheck() ext_pow?24VStatus: Power

int_enablePWM: boolean

int_enablePWM: boolean

O disableHV(arg: boolean) O AdjustLimits

int_dutyCyclePWM1: duty

Figure A.19: Controller ctrll, showing its inputs and output connections to Watchdog, and references of operations.

o ctrl2

(@ IEvents_ctrl2

&g stmo0
X power: Power
X fresh: boolean
® |IEvents_ctrl2

s0

entry ext_pow24VStatus?power; fresh = true
during ext_pow24_1!power; fresh = false

s0
°-> during ext_pow24_2!power; fresh = false

ext_pow2avstatus: Power | ext_pow24VStatus: Power

[fresh==False]

ext_pow24_1: Power ext_pow24_1: Power

xt_pow24_2: Power ext_pow24_2: Power

Figure A.20: Controller ctrl2 with state machine stm0 that relays input events from ext pow24VStatus through ext pow24 1
and ext pow24 2. Initially stm0 accepts a reading through ext pow24VStatus, stores the value in the local variable power and
sets the variable fresh to true, indicating that a new value is present. It then offers, in interleaving via two during actions the
possibility to output the value of power via ext pow24 1 and ext pow24 2, after which it sets fresh to false, triggering the
self transition of state s0.

28

of ctrl3

@ IEvents_ctrl3

£3stmo

X duty: duty
X enabled: boolean
(@ IEvents_ctrl3

¢

0] ctrl1_dutyCyclePWM12duty/int_dutyCyclePWM1!duty <{0}
ctrlo_enablePWM?enabled/int_enablePWM!enabled <{0}
ctrl1_enablePWM?enabled/int_enablePWM!enabled <{0}
ctrlo_dutyCyclePWM12duty/int_dutyCyclePWM1!duty <{0}

.lctrlo_dutyCyclePWM1 : duty I ctrl0_dutyCyclePWM1: duty

ctrl0_enablePWM: boolean ctrl0_enablePWM: boolean

ctrl1_dutyCyclePWM1: duty ctrl1_dutyCyclePWM1: duty

ctrl1_enablePWM: boolean ctrl1_enablePWM: boolean

int_dutyCyclePWM1: duty int_dutyCyclePWM1: duty

int_enablePWM: boolean int_enablePWM: boolean

Figure A.21: Controller ctrl3 with state machine stm0 that relays input events from ctrl0 _dutyCyclePWM]1, ctrl0 enablePWM,
and ctrll _dutyCyclePWM1 and ctrll _enablePWM, through int _dutyCyclePWM1 and int_enablePWM.

References

(1]
2]
(3]

[4]

5]
(6]
71
:
(10]

(11]

[12]

[13]

J. Guiochet, M. Machin, H. Waeselynck, Safety-critical advanced robots: A survey, Robotics and Autonomous Systems
94 (2017) 43-52. |doi:10.1016/j.robot.2017.04.004.

E. Seligman, T. Schubert, M. Kumar, Formal Verification: An Essential Toolkit for Modern VLSI Design, Morgan Kauf-
mann Publishers Inc., 2015.

M. Weiimann, S. Bedenk, C. Buckl, A. Knoll, Model checking industrial robot systems, in: A. Groce, M. Musuvathi
(Eds.), Model Checking Software, Springer, 2011, pp. 161-176. |doi:10.1007/978-3-642-22306-8_11.

Y. Murray, D. A. Anisi, M. Sirevag, P. Ribeiro, R. S. Hagag, Safety assurance of a high voltage controller for an industrial
robotic system, in: G. Carvalho, V. Stolz (Eds.), Formal Methods: Foundations and Applications., Vol. 12475 of Lecture
Notes in Computer Science, Springer, 2020, pp. 45—63. doi:10.1007/978-3-030-63882-5_4.

M. Mossige, “Automated Electrostatic Painting; principles and models”’, Master’s thesis, University of Stavanger, Norway
(2005).

N. R. Svensen, “Automated Electrostatic Painting; Safety and Control”, Master’s thesis, University of Stavanger, Norway
(2005).

C. Gomes, C. Thule, D. Broman, P. G. Larsen, H. Vangheluwe, Co-simulation: A survey, ACM Computing Surveys 51 (3)
(2018) 49:1-49:33. |doi : 10.1145/3179993!

C. Baier, Principles of model checking, MIT Press, Cambridge, MA, USA, 2008.

A. L. C. Cavalcanti, W. Barnett, J. Baxter, G. Carvalho, M. C. Filho, A. Miyazawa, P. Ribeiro, A. C. A. Sampaio,
Software Engineering for Robotics, Springer, 2021, Ch. RoboStar Technology: A Roboticist’s Toolbox for Combined
Proof, Simulation, and Testing, pp. 249-293. doi:10.1007/978-3-030-66494-7_9.

A. Miyazawa, P. Ribeiro, L. Wei, A. L. C. Cavalcanti, J. Timmis, J. C. P. Woodcock, RoboChart: modelling and
verification of the functional behaviour of robotic applications, Software & Systems Modeling 18 (2019) 3097—-314. doi:
10.1007/s10270-018-00710-z.

A. Miyazawa, A. Cavalcanti, P. Ribeiro, W. Li, J. Woodcock, J. Timmis, RoboChart Reference Manual, Technical report,
University of York (Feb. 2016).

URL https://www.cs.york.ac.uk/circus/publications/techreports/reports/robochart-reference.pdf

MathWorks, Simulink Design Verifier| (visited April 15, 2021).

URL https://wwu.mathworks.com/products/simulink-design-verifier.html

T. Gibson-Robinson, P. Armstrong, A. Boulgakov, A. Roscoe, FDR3 — A Modern Refinement Checker for CSP, in:
E. Abraham, K. Havelund (Eds.), Tools and Algorithms for the Construction and Analysis of Systems, Vol. 8413 of
Lecture Notes in Computer Science, Springer, 2014, pp. 187—201. |doi:10.1007/978-3-642-54862-8_13.

29

https://doi.org/10.1016/j.robot.2017.04.004
https://doi.org/10.1007/978-3-642-22306-8_11
https://doi.org/10.1007/978-3-030-63882-5_4
https://doi.org/10.1145/3179993
https://doi.org/10.1007/978-3-030-66494-7_9
https://doi.org/10.1007/s10270-018-00710-z
https://doi.org/10.1007/s10270-018-00710-z
https://www.cs.york.ac.uk/circus/publications/techreports/reports/robochart-reference.pdf
https://www.cs.york.ac.uk/circus/publications/techreports/reports/robochart-reference.pdf
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://doi.org/10.1007/978-3-642-54862-8_13

[14]

[15]
[16]
(17]

(18]

[19]

(20]
21]

[22]

23]

[24]

[25]

[26]

27]
28]

[29]
[30]

31]
32]

[33]
[34]

(35]

(36]

37]
[38]

(39]

[40]

A. Miyazawa, A. L. C. Cavalcanti, S. Ahmadi, M. Post, J. Timmis, Robosim physical modelling diagrammatic physical
robot models, Tech. rep., University of York, Department of Computer Science, RoboStar (2021).

URL https://robostar.cs.york.ac.uk/publications/techreports/reports/physmod-reference.pdf

A. Miyazawa, A. L. C. Cavalcanti, S. Ahmadi, M. Post, J. Timmis, Diagrammatic physical robot models(Submitted)
(2021).

J. Baxter, A. Miyazawa, P. Ribeiro, K. Ye, RoboTool RoboChart Tool Manual, University of York (December 2021).
URL https://wwu.cs.york.ac.uk/circus/publications/techreports/reports/robotool-manual.pdf

M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, M. Fisher, Formal specification and verification of autonomous robotic
systems: A survey, ACM Computing Surveys 52 (5) (2019) 1-41. doi:10.1145/3342355,

A. Cavalcanti, A. Miyazawa, R. J. Payne, J. Woodcock, Sound simulation and co-simulation for robotics, in: M. Mazzara,
B. Meyer (Eds.), Present and Ulterior Software Engineering, Springer, 2017, pp. 173-194. doi:10.1007/978-3-319-67425-
4_11.

T. Blockwitz, M. Otter, J. Akesson, M. Arnold, C. Clauf, H. Elmqvist, M. Friedrich, A. Junghanns, J. Mauss,
D. Neumerkel, H. Olsson, A. Viel, Functional mockup interface 2.0: The standard for tool independent exchange of
simulation models, in: 9th International Modelica Conference, Linkdping Electronic Conference Proceedings, 2012, pp.
173-184. |[doi:10.3384/ecp12076173.

A. Afzal, D. S. Katz, C. L. Goues, C. S. Timperley, A study on the challenges of using robotics simulators for testing,
CoRR. abs/2004.07368 (2020). |arXiv:2004.07368,

A. Cavalcanti, A. Sampaio, A. Miyazawa, P. Ribeiro, M. C. Filho, A. Didier, W. Li, J. Timmis, Verified simulation for
robotics, Science of Computer Programming 174 (2019) 1-37. doi:10.1016/j.scic0.2019.01.004.

R. Alur, C. Courcoubetis, T. A. Henzinger, P. H. Ho, Hybrid automata: An algorithmic approach to the specification and
verification of hybrid systems, in: R. L. Grossman, A. Nerode, A. P. Ravn, H. Rischel (Eds.), Hybrid Systems, Vol. 736
of Lecture Notes in Computer Science, Springer, 1993, pp. 209-229. doi:10.1007/3-540-57318-6_30.

R. Alur, Formal verification of hybrid systems, in: Proceedings of the Ninth ACM International Conference on Embedded
Software, Association for Computing Machinery, New York, NY, USA, 2011, p. 273-278. |[doi:10.1145/2038642.2038685.
T. A. Henzinger, V. Rusu, Reachability verification for hybrid automata, in: T. A. Henzinger, S. Sastry (Eds.), Hybrid
Systems: Computation and Control, Vol. 1386 of Lecture Notes in Computer Science, Springer, 1998, pp. 190-204.
doi:10.1007/3-540-64358-3_40.

T. A. Henzinger, P. W. Kopke, A. Puri, P. Varaiya, What’s decidable about hybrid automata?, Journal of Computer and
System Sciences 57 (1) (1998) 94 — 124. |[doi:10.1006/jcss.1998.1581,

D. Bresolin, L. Di Guglielmo, L. Geretti, R. Muradore, P. Fiorini, T. Villa, Open problems in verification and refinement
of autonomous robotic systems, in: 15th Euromicro Conference on Digital System Design, IEEE, 2012, pp. 469-476.
doi:10.1109/DSD.2012.96.

G. J. Holzmann, The model checker SPIN, IEEE Transactions on Software Engineering 23 (5) (1997) 279-295. doi:
10.1109/32.588521.

L. Geretti, R. Muradore, D. Bresolin, P. Fiorini, T. Villa, Parametric formal verification: the robotic paint spraying case
study, IFAC-PapersOnLine 50 (1) (2017) 9248 — 9253, 20th IFAC World Congress. |doi:10.1016/j.ifac01.2017.08.1287,
A. W. Roscoe, Understanding Concurrent Systems, Springer, 2010.

J. Baxter, P. Ribeiro, A. Cavalcanti, Sound reasoning in tock-CSP, Acta Informatica (online) (Apr 2021). doi:10.1007/
s00236-020-00394-3.

MathWorks, Acknowledgments, https://se.mathworks.com/help/sldv/ug/acknowledgments.html, visited April 15, 2021.
M. Sheeran, G. Stadlmarck, A Tutorial on Stalmarck‘s Proof Procedure for Propositional Logic, Formal Methods in System
Design 16 (1) (2000) 23-58. |[doi:10.1023/A: 1008725524946|

J. C. P. Woodcock, J. Davies, Using Z — Specification, Refinement, and Proof, Prentice-Hall, 1996.

I. Toyn (Ed.), Information Technology - Z Formal Specification Notation - Syntax, Type System and Semantics, ISO,
2002, ISO/IEC 13568:2002(E).

A. W. Roscoe, The automated verification of timewise refinement, in: First Open EIT ICT Labs Workshop on Cyber-
Physical Systems Engineering, 2013.

P. G. Larsen, J. S. Fitzgerald, J. Woodcock, P. Fritzson, J. Brauer, C. Kleijn, T. Lecomte, M. Pfeil, O. Green, S. Basagian-
nis, A. Sadovykh, Integrated tool chain for model-based design of cyber-physical systems: The INTO-CPS project, in:
2nd International Workshop on Modelling, Analysis, and Control of Complex CPS, IEEE Computer Society, 2016, pp.
1-6. [doi:10.1109/CPSData.2016.7496424,

C. A. R. Hoare, J. He, Unifying Theories of Programming, Prentice-Hall, 1998.

S. Foster, J. Baxter, A. Cavalcanti, J. Woodcock, F. Zeyda, Unifying semantic foundations for automated verification
tools in Isabelle/UTP, Science of Computer Programming 197 (2020) 102510. |doi:10.1016/j.scic0.2020.102510.

M. Z. Kwiatkowska, G. Norman, D. Parker, PRISM: probabilistic symbolic model checker, in: T. Field, P. G. Harrison,
J. T. Bradley, U. Harder (Eds.), Computer Performance Evaluation, Modelling Techniques and Tools 12th International
Conference, Proceedings, Vol. 2324 of Lecture Notes in Computer Science, Springer, 2002, pp. 200—204. doi:10.1007/3-
540-46029-2_13|

J. Woodcock, A. Cavalcanti, S. Foster, A. Mota, K. Ye, Probabilistic semantics for RoboChart - A weakest completion
approach, in: P. Ribeiro, A. Sampaio (Eds.), Unifying Theories of Programming - 7th International Symposium, UTP
2019, Dedicated to Tony Hoare on the Occasion of His 85th Birthday, Vol. 11885 of Lecture Notes in Computer Science,
Springer, 2019, pp. 80-105. [doi:10.1007/978-3-030-31038-7_5|

30

https://robostar.cs.york.ac.uk/publications/techreports/reports/physmod-reference.pdf
https://robostar.cs.york.ac.uk/publications/techreports/reports/physmod-reference.pdf
https://robostar.cs.york.ac.uk/publications/techreports/reports/physmod-reference.pdf
https://www.cs.york.ac.uk/circus/publications/techreports/reports/robotool-manual.pdf
https://www.cs.york.ac.uk/circus/publications/techreports/reports/robotool-manual.pdf
https://doi.org/10.1145/3342355
https://doi.org/10.1007/978-3-319-67425-4_11
https://doi.org/10.1007/978-3-319-67425-4_11
https://doi.org/10.3384/ecp12076173
http://arxiv.org/abs/2004.07368
https://doi.org/10.1016/j.scico.2019.01.004
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1145/2038642.2038685
https://doi.org/10.1007/3-540-64358-3_40
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1109/DSD.2012.96
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://doi.org/10.1016/j.ifacol.2017.08.1287
https://doi.org/10.1007/s00236-020-00394-3
https://doi.org/10.1007/s00236-020-00394-3
https://se.mathworks.com/help/sldv/ug/acknowledgments.html
https://doi.org/10.1023/A:1008725524946
https://doi.org/10.1109/CPSData.2016.7496424
https://doi.org/10.1016/j.scico.2020.102510
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/978-3-030-31038-7_5

	1 Introduction
	2 Related Work
	3 High-Voltage Control (HVC)
	3.1 Properties for Formal Verification
	3.2 Finite State Machine Overview

	4 Hardware/Software Co-Verification
	4.1 Framework overview
	4.2 System verification
	4.2.1 Hardware Modelling and Verification in Simulink Design Verifier (SDV)
	4.2.2 Software Modelling in RoboChart
	4.2.3 Framework Mechanisation
	4.2.4 Formal Verification of System-level Property P1

	5 Formal Verification of Software Properties
	6 Concluding Remarks and Future Work
	Appendix A RoboChart Model: Controllers
	Appendix B Extended RoboTool Definitions

