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Abstract 

In this thesis, we first look at the theory concerning efficient markets and anomalies. We then 

look at two effects in January in the Norwegian stock market, using data from the Oslo Stock 

Exchange (OSE) from the period 1980 – 2014. We first test for the existence of a January effect 

at the OSE in both an equally-weighted (EW) and a value-weighted (VW) portfolio. The 

January effect states that there exist abnormally high average returns in January compared to 

the average returns in all the other months of the year. In the testing procedure, we use both 

parametric and non-parametric tests and, find a statistically significant January effect in the EW 

portfolio, with a mean return that is at least 2.6% higher than the returns in the other months. 

Further, we test the EW size portfolios, and find a higher and more statistically significant 

January effect for small size firms, with a mean return that is at least 6.2% higher than the 

returns in the other months. Then, we test for the January effect for three sub-periods to see 

how the effect has changed over the years. For the EW portfolio the January effect has 

disappeared in resent years, whereas for the smallest size portfolio it still exists. Last, we test 

for the existence of the other January effect at the OSE. This effect states that the January return 

has the power to predict the market return for the rest of the year. If January returns are positive 

then the returns for the rest of the year are more likely to be positive and greater than if Januarys 

are negative. We use statistical tests and find a statistically significant other January effect for 

EW excess returns in the Norwegian stock market. We also check if the size of the firms has an 

impact on the other January effect, but we do not find such a connection.    
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1 Introduction 

“Discovery commences with the awareness of anomaly, i.e. with the recognition that nature 

has somehow violated the paradigm-induced expectations that govern normal science.” 

Thomas Kuhn (Allhoff, Alspector-Kelly, & McGrew, 2009, p. 497) 

 

For decade’s researchers have been studying and speculated in different anomalies in the stock 

markets, trying to find evidence for or against the theory of efficient stock markets. A well-

known anomaly in the world stock markets is the January effect. According to this effect, there 

exist an anomaly in the stock markets where the returns in January increase above its normal 

average in all the other months (Haugen, 2011). This means that the January returns exceed the 

returns for the remaining eleven months of the year. If this is true, it should be possible to 

exploit this anomaly and earn extra return on stocks without any additional risk. 

 

In 1976, Michael S. Rozeff and William R. Kinney, wrote a paper about capital market 

seasonality. They found that large January returns contribute to significant differences in 

monthly mean returns (Rozeff, 1976). After their research, it has been done several similar 

studies about the January effect and other seasonalities in the market. The January effect has 

been a hot topic for several years, first in the early 80’s, and has now returned and become 

popular in resent years. Financial newspapers in Norway, such as “Dagens Næringsliv”, 

“Hegnar” and “e24” have written about the January effect the last years. Also, big banks in 

Norway such as “DNB” have been selling “Nyttårseffekten”-warrants to exploit this effect 

(DNB).  

 

If the stock markets are efficient, and it is possible to exploit this anomaly, we would think that 

this opportunity of exploiting the market would have disappeared by now. Still, resent research 

show that this is not the case, and there still exists a January effect several places in the world 

(Anderson, Gerlach, & Ditraglia, 2007). Another effect in January, not as famous as the January 

effect, is the other January effect. According to this effect, the month January has a predictive 

power for the returns the rest of the year (Cooper, McConnell, & Ovtchinnikov, 2006). Because 

there have not been presented a lot of research about these January effects in Norway, it would 

be interesting to see if they exist in Norway as well.  
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In this thesis we want to see if the two January effects are present in the Norwegian stock 

market, and if the size of the firms has an impact. We also want to see how the January effect 

has changed over the years. We will test the effects for the aggregated monthly market returns, 

the decile size portfolios, and we will look closer on the daily returns at the turn of the year. 

We will test if there exists a systematically larger return in January than in the other months, 

and if January returns can predict the returns for the rest of the year.  

 

In the next chapter of this thesis we will go through the efficient markets theories. We take a 

closer look at what anomalies are and mention some of them in chapter 3, we also look at 

possible explanations for the existence of a January effect and the other January effect. In 

chapter 4 we go through the testing procedures we will perform in Stata, and explain the 

statistical theory we use. In chapter 5 we will have a closer look at the data that we have used 

and at some descriptive statistics. We test if there exists a January effect in Norway in chapter 

6, and in chapter 7 the other January effect will be tested. Finally, chapter 8 concludes the thesis.  
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2 Efficient Market Theories 

“The more the theory of efficient markets is believed, the less efficient the markets become” 

George Soros (Soros, 1987, p. 314) 

 

Fama (1970) explains that there are three types of efficient markets: weak form, semi-strong 

form and strong form. The weak form consists only of information about historical prices. The 

semi-strong form consists of other information that is publicly available, this include 

announcements of annual earnings, stock splits, etc. The strong form consists of information 

that investors or groups have monopolistic access to, and that is relevant for the determination 

of prices (Fama, 1970). Now we want to look closer to some theories about the efficient 

markets. 

 

2.1 The Efficient Market Hypothesis 

The efficient market hypothesis discusses the behaviour of the financial markets, and if markets 

behave as economists expects it to. Do the prices in the market reflect the true underlying value? 

(Burton & Shah, 2013, p. 5). Kendall and Hill (1953) analyzed the stock market prices over a 

longer period. They found that there was a much smaller systematic pattern in the price series 

than what was generally believed. The random changes in the data where so large, they 

therefore concluded that it is not possible to predict future price movements without any 

extraneous information (Kendall & Hill, 1953). 

 

If we imagine a situation where this is not the case, and that it is possible to predict future price 

movements, it would be naturally to assume that this would not last for long. If the price of a 

stock were expected to rise, then all investors would want to buy this stock, and if the price 

were expected to fall, then everyone would sell it. The competition in the market causes an 

immediate price increase when the future price is predicted to rise and vice versa. Thus, any 

information that could be used to predict future stock performance would already be reflected 

in current stock prices. Changes in stock prices should be random and unpredictable; they 

should follow a random walk. If it was possible to predict future prices, this would mean that 

there exists market inefficiency (Bodie, Kane, & Marcus, 2011, p. 372). When the stock price 

follows a random walk, it means that the future stock price has a fixed probability that is 

independent of all previous stock prices (Burton & Shah, 2013, p. 9). The idea that stock prices 

already reflect all available information is what is called the efficient market hypothesis (Bodie 
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et al., 2011, p. 373). According to this hypothesis, prices will only change when the information 

changes (Burton & Shah, 2013, p. 6). 

 

As mentioned, there are three types of efficient markets, depending on what information is 

available. This means that there are also three different definitions of the efficient market 

hypothesis. The most common is the semi-strong form, which says that prices precisely 

summarize all information that is publicly known. This means that it will not matter if an 

investor studies the companies he would like to invest in, because this information is already 

reflected in current stock prices. This price will always be the best estimate of the company’s 

values. The weak form of the efficient market hypothesis says that historical stock prices are 

irrelevant when predicting future stock prices (Burton & Shah, 2013, p. 6). Some analysts try 

to beat the market by studying historical prices to try to find patterns, but the weak form says 

that this is not possible (Burton & Shah, 2013, p. 7). The strong form says that both private and 

public information is reflected in stock prices, thus it implies both the weak and semi-strong 

form of the efficient market hypothesis. This form may include illegally obtained information 

or information that is illegal to use. This means that the strong form is depending on that 

investors provide this information to researchers that are trying to confirm if they are beating 

the market, which may not be very likely (Burton & Shah, 2013, p. 8). 

 

The idea of the efficient market hypothesis is that stock prices follow a random walk (Burton 

& Shah, 2013, p. 8). Expressed in formal terms, we can write: 

 

𝑃 = 𝐸[𝑃∗] 

 

This equation says that the current price, P, of a security equals the expected value of all future 

cash flows from owning that security, 𝐸[𝑃∗]. The efficient market hypothesis claims that when 

investors are given a set of information, then P equals the best possible estimate of P*. The 

market price is thus decided by supply and demand, where the supply and demand are functions 

of the security’s current price, and the current market price is decided by the intersection 

between the two functions (Baker & Nofsinger, 2010, p. 334). 

 

According to Baker and Nofsinger (2010), there are three situations where the market will be 

efficient. The first is when all the investors behave rationally. In this case, investors use all the 

information available to decide the expected value of future cash flows. If the current price is 
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lower than this expected value, then they would want to buy more and vice versa (Baker & 

Nofsinger, 2010, p. 334). This means that the aggregate demand curve will be flat at 𝑃 = 𝐸[𝑃∗]. 

The second situation is when some of the investors behave irrationally, but that these 

irrationalities are uncorrelated so that they cancel each other out. Then, these investors can trade 

with each other without affecting the market price, and 𝑃 = 𝐸[𝑃∗] . In the third situation, 

arbitrage is unlimited. This means that even if there exist some systematically irrational 

investors, arbitrageurs can lead the market to efficiency. Knowing the real expected value of 

future cash flows, they make large trades when 𝑃 ≠ 𝐸[𝑃∗]. If there are enough arbitrageurs in 

the market, then this will also lead to a flat demand curve at 𝑃 = 𝐸[𝑃∗] (Baker & Nofsinger, 

2010, p. 335). 

 

2.2 Normal Returns 

Normal returns are the returns that are expected in the market. The contrary to normal returns 

are abnormal returns, which occurs if the return of a stock or a portfolio differs from the 

expected normal return. To be able to examine if markets are efficient we need to have a 

benchmark of what normal returns are. The capital asset pricing model and the Farma French 

factor model are examples of two asset pricing models often used to estimate normal returns.  

 

The Capital Asset Pricing Model  

The capital asset pricing model (CAPM) shows the relationship between the risk of an asset 

and its expected return, and provides us with a benchmark rate of return (Bodie et al., 2011, p. 

308). The model consists of many assumptions, including that individuals are equal, that they 

do not have initial wealth and that they are not risk averse. All these assumptions exclude many 

of the complexities in the real world. However, the model still gives some important insights to 

the security markets (Bodie et al., 2011, p. 309).  

 

According to CAPM, the demand will equal the supply, this means that the prices in the market 

will adjust so that the efficient tangent portfolio and the market portfolio, M, will coincide. The 

market portfolio is thus equal to the tangent portfolio of risky securities (Berk & DeMarzo, 

2014, p. 380). In this model, we will therefore obtain an equilibrium where all the investors 

want to hold the market portfolio. This portfolio consists of all traded stocks, where the 

proportions of these stocks are decided by the market value of the stock divided by the market 

value of all stocks (Bodie et al., 2011, p. 309).  
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The CAPM is given by: 

𝐸(𝑟𝑖) = 𝑟𝑓 + 𝛽𝑖[𝐸(𝑟𝑀) − 𝑟𝑓] 

 

where 𝐸(𝑟𝑖) is the expected return of investment i, 𝑟𝑓 is the risk-free rate of return, 𝛽𝑖 is the 

security beta with respect to the market portfolio, 𝐸(𝑟𝑀) is the expected return of the market 

and [𝐸(𝑟𝑀) − 𝑟𝑓] is the risk premium on the market portfolio (Bodie et al., 2011, p. 321). 

According to the Law of one price, investments with the same level of risk should also have the 

same expected return in a competitive market (Berk & DeMarzo, 2014, p. 382). The CAPM 

predicts that there is no abnormal excess return, 𝛼𝑖 , on any security. This means that if the stock 

is fairly priced, the alpha must be zero (Bodie et al., 2011, p. 322). 

 

Fama-French Factor Model  

CAPM have to a large extent formed the way academics see the relationship between risk and 

return (Fama & French, 1992) but in tests the model perform poorly (Fama & French, 2004). 

Kenneth French and Eugine Fama (1992) proposed a model approach, based on research of 

historical data, called the three-factor model (FF3). This model was an alternative to the well-

known CAPM and the arbitrage pricing model and included factors that had a significantly 

impact on the average return, like the size and price ratios, other than just the market. 

 

The model is (Bodie et al., 2011, p. 363): 

 

𝑟𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖𝑀𝑅𝑀𝑡 + 𝛽𝑖𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑖𝐻𝑀𝐿 𝐻𝑀𝐿𝑡 + 𝑒𝑖𝑡𝑀 

 

where 𝑟𝑖𝑡 is the return of investment i, 𝑅𝑀𝑡 is risk premium on the market portfolio and 𝛽𝑖𝑀  is 

the security beta with respect to the market. 𝑆𝑀𝐵𝑡 (small minus big) is the size effect, showing 

the difference between the return on small and large cap stocks. 𝐻𝑀𝐿𝑡 (high minus low) is the 

difference between the return on high and low book-to-market stocks (Fama & French, 2004). 

The betas are often referred to as factor loadings, and according to this theory these factor 

loading’s risk premiums should fully explain excess returns (Bodie et al., 2011, p. 447). In a 

regression these betas will show the slopes of the variables. The alpha value in this model is 

used as a measure of how fast the prices of stocks react to new information (Fama & French, 

2004). 

 



15 

 

The choice of the factors, SMB and HML, are not obvious from an investor’s point of view, 

but rather based on historical patterns that have been uncovered by research (Fama & French, 

2004). The criticism of the model is based on the empirical approach. Researchers may look 

for factors to explain a phenomenon and find patterns that are there by luck. Although the 

additional factors in the Fama French three-factor model are not clearly relevant sources for 

risk, they may be a good proxy for variables that are still unknown sources of risk today (Bodie 

et al., 2011, p. 363). 

 

2.3 The Joint Hypothesis Problem 

According to the efficient market theory, stock prices reflect all information that is available. 

This means that it is not possible to earn abnormal returns and outperform the market. The 

CAPM and FF3 models also imply that there exists a close to linear relation between risk and 

expected return. This relationship is important when we use time-series data to test market 

efficiency (Kryzanowski & To, 1987). Testing for market inefficiency can be problematic, and 

this is what is called the joint hypothesis problem. According to this hypothesis, it is impossible 

to test if prices significantly differ from normal prices, unless we first formulate a “correct” 

model to determine this normal price (Borghesi, 2014). According to Campbell et al. (1996), 

all tests of market efficiency must assume a model that determines the normal stock returns. If 

one rejects market efficiency this could be because the market actually is inefficient, but it could 

also be because we have assumed a wrong equilibrium model from the beginning, or it could 

be a combination of both. This means that we cannot measure abnormal returns if we do not 

have a model that calculates the expected normal return correctly, and thus we cannot reject 

market efficiency (Campbell, Lo, & MacKinlay, 1996, p. 24). 

 

Grossman and Stiglitz (1980) argues that because collecting information can be costly, markets 

will not always be in equilibrium (Grossman & Stiglitz, 1980). This means that there will occur 

abnormal returns, but that these returns are to compensate investors for the cost of collecting 

the information, and thus the returns are not abnormal after all (Campbell et al., 1996, p. 24). 

The essence of a joint test is that it tests efficiency in accordance to an equilibrium model. Still, 

the joint hypothesis problem argues that it is impossible to test for market efficiency due to the 

difficulty of finding a correct equilibrium model. 
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2.4 Behavioural Finance 

In behavioural finance, it is assumed that individuals’ investment decisions and the market 

outcomes are influenced by the information structure and the characteristics of the participants 

in the market. The human brain is affected by emotions and often processes information using 

different shortcuts or biases (Baker & Nofsinger, 2010, p. 3). This means that there exist 

irrationalities when investors make decisions. Investors do not always process information 

correctly and fails to make correct probability distributions about the returns in the future. Also, 

they often make inconsistent decisions even with a given probability distribution (Bodie et al., 

2011, p. 410). This affects the efficiency of the market. The behavioural theory also argues that 

even if prices in the market are not correct, it can still be difficult to exploit this opportunity 

(Bodie et al., 2011, p. 409).  

 

It has been argued that even if investors behave irrationally, then their biases are unlikely to be 

systematic, and that the different biases of the investors cancel each other out. If the investors’ 

biases are systematic, then investors that are unbiased and rational should be able to take 

advantage of this and drive irrational investors out of the market (Baker & Nofsinger, 2010, p. 

333). However, several studies have concluded that markets are not strong form efficient, and 

there has also been done research where weak and semi-strong forms of market efficiency have 

been violated (Baker & Nofsinger, 2010, p. 336). It is documented over the last decades that 

anomalies can be observed after different corporate events, and that returns after these events 

can be predicted. The question is then why rational investors do not take advantage of this, 

driving the returns down to zero (Baker & Nofsinger, 2010, p. 333).  

 

2.5 Criticism of the Efficient Market Theory 

The efficient market hypothesis is a theory with some controversy, and not all professionals 

agree with it. As explained in section 2.1, this hypothesis suggests that market prices will 

rapidly adjust after news or relevant information is known. Because of this, it is not possible 

for investors to predict price movements and make abnormal returns. The question now is how 

efficient the market really is and if abnormal returns can be the product of a risk premium? The 

empirical evidence for the efficient market hypothesis is also affected by selection bias. Only 

the investors that do not find an investment scheme that makes abnormal profit is sharing their 

experience. If an investor figured out how to invest to make money they would continue to do 

so and not share their investment scheme. Finding a way to make abnormal return can also be 
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a lucky coincidence. If successful investors were to repeat their success in a different period, 

one would be able to test if it is skill or just lucky coincidence. This, however, rarely happens 

(Bodie et al., 2011, p. 384). 

 

There has been done a lot of tests on market efficiency. The first tests of efficient markets were 

weak-form tests to find patterns in the stock returns. Measuring serial correlation is a method 

for testing if there is a pattern in stock returns. Serial correlation is when historical returns relate 

to present return. Although there is evidence of short-term relationship, it is not strong enough 

evidence to make a profit from buying stocks based on past performance. Later studies have 

shown a momentum effect in the intermediate-horizon. The momentum effect refers to resent 

performance that continues over time. If for example, a stock has performed well over the recent 

period, the stock will continue to perform well (Bodie et al., 2011, p. 386). There is also 

evidence that losing groups of stocks will outperform winning stocks after a 3-year period. This 

effect is referred to as the reversal effect, which states that stock markets have a tendency to 

overreact to news that are relevant (Bodie et al., 2011, p. 387). 

 

Test of semi-strong form uses additional public information than just the historical data to 

improve the investment performance. Efficient market anomalies refer to the finding that 

measures like the price earnings ratio seems to predict abnormal risk-adjusted returns. In these 

semi-strong tests we have to adjust for risk, and often that is done by the use of CAPM. The 

CAPM may give us an inappropriate risk adjustment, which can lead to conclude that a portfolio 

performs better than what is the truth. The last test is of the strong form efficiency and deals 

with insider information. It is not expected that markets are strong form efficient, but there are 

still rules against insider trading (Bodie et al., 2011, p. 393). Although researchers test for 

market efficiency, there will always be a joint hypothesis problem.    
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3 Anomalies 

Anomalies is the term used when patterns of returns seems to contradict the efficient market 

hypothesis (Bodie et al., 2011, p. 1023). Anomalies are of the semi-strong form where we find 

portfolios that have an abnormal return compared with their benchmark. One anomaly is the 

small-firm effect. This effect argues that a portfolio consisting of the smallest firms generate a 

higher average annual return than a portfolio consisting of bigger firms. According to the 

CAPM, the size should not matter when it comes to return. The neglected-firm effect is a further 

development of the small-firm effect. Because large institutions do not trade small firms as 

often, the information is not as accessible as for bigger firms. The lack of information makes 

small stocks a more risky investment, which should yield higher returns. Research have found, 

by dividing stocks into portfolios based on the information available, that the portfolios 

consisting of stocks with little information perform better than those with much available 

information (Bodie et al., 2011, p. 390). In efficient markets relevant news should be reflected 

in prices right after the news is reviled. Researchers have shown that the response in prices is 

not as rapid as theory predicts. There is a momentum effect after the news are available for all. 

This means that if good news is reviled about a company, the stock price will continue to grow 

even after the first day the news was available (Bodie et al., 2011, p. 392).  

 

There are also other anomalies in the financial markets, both seasonal and not seasonal effects, 

all of them implicating that the efficient market hypothesis is not accurate. We will now look 

into some of them, before we continue with the January effect and the other January effect, 

which are the two anomalies that we will focus on in this thesis. 

 

The December Effect 

The December effect is the idea that when investors do not sell this years “winning stocks” in 

December, but instead wait to sell until January, then the price of the “winners” will increase 

in December. One explanation for this is tax-gain selling. When investors postpone their sale 

so that the capital gains do not get realized in the current fiscal year, they can defer payment of 

taxes on these gains by almost one year. This leads to an increase in the price of these winners 

(Chen & Singal, 2003). 
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The Weekend Effect 

According to the weekend effect, returns are abnormally low early in the trading week, and 

abnormally high later in the trading week. U.S. stock data shows that Monday is the worst day 

of the week with the lowest returns, and that Friday is the best day with the highest returns 

(Burton & Shah, 2013, p. 181). One explanation of this is that, according to behavioural finance, 

mood tends to influence the behaviour of the investors in the market (Gama & Vieira, 2013). 

We could therefore assume that because the investors are in a happy mood when the weekend 

is close by, they also tend to buy more, pushing the prices up.  

 

The Holiday Effect 

It is shown that returns seems to be abnormally high on the last day before holidays, which is 

consistent with the explanation of Fridays having the highest returns before the weekend 

(Burton & Shah, 2013, p. 182). Lakonishok and Smidt (1988) studied seasonal anomalies and 

found evidence of persistently anomalous returns for several of these effects, including the 

weekend effect and the holiday effect (Lakonishok & Smidt, 1988, p. 403). Ariel (1990) also 

found statistically significant high mean returns on the trading day prior to holidays, with over 

one third of the total returns earned on the days that fall prior to holidays (Ariel, 1990).  

 

The Halloween Effect 

The Halloween effect is also called the Sell-in-May effect. This effect states that the stock 

returns has a tendency to be higher in the period November until April, than in the period May 

until October (Zhang & Jacobsen, 2012). According to this theory the month May is the 

beginning of a bear market, you should therefore sell your stocks in May and by them back 

again in October (Bouman & Jacobsen, 2002). Zhang and Jacobsen (2012) found significant 

evidence for a Halloween effect in the U.K. stock market for their full sample. Bouman and 

Jacobsen (2002) found significant evidence for a Halloween effect in most of the countries 

included in their study, for both developed and emerging markets. 

 

The Presidential Cycle 

Another much discussed anomaly in the stock market that is not seasonal, is the presidential 

cycle. According to this theory, the stock market has higher excess returns during Democratic 

than Republican presidencies in the US. Santa-Clara and Valkanov (2003) studied this effect 

and found that there was a stable, robust and significantly higher return when there was a 

Democratic presidency. They also found that across these presidencies, there was no difference 
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in the riskiness of the stock market, meaning that these higher excess returns remained a 

mystery (Santa-Clara & Valkanov, 2003). 

 

3.1 The January Effect 

One of the most famous seasonal anomalies is called the January effect. The January effect 

states that average returns in January are higher than for all the other months of the year 

(Haugen, 2011, p. 606). This effect is sometimes referred to as the small-firm effect due to the 

fact that the January effect often is sighted in shares of small firms (Bodie et al., 2011, p. 390). 

Not only has there been evidence for an abnormal return in January, but there is also evidence 

stating that most of the abnormal return in January occurs within the first few trading days of 

January (Reinganum, 1983).   

 

There has been done a lot of research during the last decades about the January effect, where 

most of them find evidence for its existence. Already in 1942, Sidney B. Wachtel discovered 

that there existed a January effect in the U.S. stock market (Wachtel, 1942), but it was not 

before the 80’s that the topic became popular among researchers. Michael S. Rozeff and 

William R. Kinney revisited the January effect in 1976. They found evidence for significant 

differences in monthly mean returns, primarily due to high January returns (Rozeff, 1976). 

 

Evidence for the hypothesis that the returns for small firms exceed the returns for large firms, 

and the relationship between this size effect and the January effect, was studied by Keim (1983). 

He found large abnormal returns in January, and a negative relationship between these 

abnormal returns and the size of the firms (Keim, 1983, p. 13). Banz (1981) and Reinganum 

(1981) also found significant evidence for the small-firm effect in the U.S. stock market. They 

found that smaller firms have higher risk-adjusted average returns than larger firms (Banz, 

1981). Haug and Hirschey (2006) also found evidence for the existence of the January effect 

for small cap stocks in the U.S (Haug & Hirschey, 2006). Kohers and Kohli (1991) studied 

mean monthly returns for large firms, and found that these were highest in January compared 

to the rest of the year, thus it was independent of the small-firm effect (Kohers & Kohli, 1991). 

 

There are several international studies about the January effect. Berges, McConnel and 

Schlarbaum (1984) found evidence of the January effect in Canada, and Kato and Schallheim 

(1985) found evidence for the existence of the January effect in Japan. Gultekin and Gultekin 
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(1983) studied seasonal effects in 18 major industrialized countries, and found evidence of 

strong seasonality’s in most of them due to large January returns (Gultekin & Gultekin, 1983). 

Ho (1990) studied twelve markets and found that nine of them, where six were Asian Pacific 

emerging stock markets, had significantly higher January returns than any other months (Ho, 

1990). 

 

There are few studies about the January effect in the Norwegian stock market, but Gultekin and 

Gultekin (1983) included Norway in their study, and found evidence for the existence of the 

January effect in Norway. In a PhD Thesis from Norway, Dai (2004) studies the turn-of-the-

year effect in Norway where she focuses on the tax-loss selling hypothesis as an explanation. 

She found significant evidences for this effect, and that it may be caused by tax-loss selling 

(Dai, 2004).  

 

Because of the awareness of the January effect for so many years, we would assume that the 

effect might have disappeared by now. Still, resent studies in the last decade have found 

significant evidence for the January effect. Both Haug and Hirschey (2006) and Anderson, 

Gerlach and DiTraglia (2007) found statistically significant higher returns in January in the US. 

stock market. This means that there is evidence that the January effect still exists in the global 

stock markets. 



3.2 The Other January Effect 

Another anomaly that has been researched during the recent years is the other January effect. 

This effect says that the returns in January are positively related to the following next 11 months 

of the year (Burton & Shah, 2013, p. 181). If market returns in January are positive, then the 

returns in the next 11 months are more likely to be positive, and higher than if January returns 

are negative. This indicates that January returns have a predictive power for the returns during 

the rest of the year. (Cooper et al., 2006).  

 

Yale Hirsch first discovered the other January effect in 1972, but at that time it was called the 

January Barometer (Bohl & Salm, 2010). Cooper, McConnell and Ovtchinnikov (2006) 

examined if the January returns had any predictive power in the period 1940-2003 for the US. 

stock market. They found evidence that January returns have the power to predict the market 

returns for the rest of the year (Cooper et al., 2006). They controlled their findings for 
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presidential cycles, business cycles and other macroeconomic factors, and yet January had a 

predictive power. When the market return in January was positive, the return over the next 11 

months was significantly much higher than if the return in January was negative. The other 

January effect was evident for both large and small cap stocks and for both value and growth 

stocks (Cooper et al., 2006).  

 

Bohl and Salm (2010) searched for the other January effect in 19 different countries and found 

that only two of the 19 countries, Norway and Switzerland, exhibit the other January effect. 

This means that the other January effect is not a global phenomenon like the January effect. 

Marshall and Visaltanachoti (2010) found evidence of other January effect in the US stock 

market. They wanted to see if the other January effect could be used as a profitable strategy, 

but this effect did not provide significant excess return (Marshall & Visaltanachoti, 2010). 

 

3.3 Possible Explanations for the January Effect  

In earlier studies there are several possible explanations for the existence of a January effect in 

the stock markets, but there is no clear evidence of any of them. Some studies find evidence for 

a hypothesis, whereas others find evidence against the same one. The most logical answer is 

that there are more than one explanation for why we observe abnormal returns in January. 

Already in 1942, Sidney B. Wachtel presented some possible causes for a January effect, 

including tax selling, unusual demand for cash, a pre-holiday effect, and optimistic expectations 

(Wachtel, 1942). We will now look at some of the possible explanations for the January effect, 

that other studies has discussed. 

 

Tax-Loss Selling 

One of the most popular explanations for the existence of a January effect is the tax-loss selling 

hypothesis. This hypothesis is based on the fact that investors might want to realize capital 

losses against their taxable income by selling losing stocks at the end of the year. Because of 

this, there might be a decline in stock prices. In January the pressure of selling losing stocks 

will end, and the stock prices will return to their equilibrium prices. This will then lead to 

abnormally high January returns, due to the depressed levels in stock prices (Wachtel, 1942). 

 

Whereas Haug & Hirschey (2006) does not find a relationship between tax-loss selling and the 

January effect, Starks, Yong, and Zheng (2006) finds evidence supporting the tax-loss selling 
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hypothesis and that this hypothesis to a large extent can explain the January effect (Starks, 

Yong, & Zheng, 2006). Gultekin and Gultekin (1983) test the tax-loss selling hypothesis in 

thirteen countries, and find that there exists a close correlation between the large mean returns 

and the tax year in most countries. Eleven of the countries have January 1st as the beginning of 

the tax year, and they all experience higher returns in January than most of the other months. 

Also the U.K., which has its beginning of the tax year April 1st, show higher returns in April 

than most of the other months. The only country where this is not the case is Australia, which 

has its beginning of the tax year July 1st, but does not have higher July returns (Gultekin & 

Gultekin, 1983). Reinganum (1983) found a correlation with tax-loss selling and market 

capitalization, but it was not the case for all the firms that are categorized as small firms. 

Because the January effect might be a small-firm effect, this indicates that tax-loss selling is 

not the only explanation. 

 

Canada is an interesting case that Berges, McConnell and Schlarbaum (1984) studied. They had 

data from before and after the tax-gain law was implemented. Their results show that there exist 

a January effect in Canada both before and after the tax gain was implemented, therefore they 

concluded that the tax-loss selling hypothesis was not the sole reason for the January effect 

(Berges, McConnell, & Schlarbaum, 1984). Another explanation to why countries without tax 

gain exhibits January effect may be because of foreign investors. To check if foreign investors 

had an impact Tong (1992) searched for a January effect in the Taiwanese and South Korean 

market. These markets have been closed off or hard to enter for foreign investors, in the sample 

period. The conclusion was that there is no significantly abnormal January effect in these Asian 

countries (Tong, 1992). This means that there might be a connection between the share of 

foreign investors and a January effect, both in countries with no tax-gain, and in countries with 

a tax year that does not end in December. 

 

Window Dressing 

There are few fund managers that want to show that they hold loser stocks when they send 

quarterly reports to their clients. Another popular explanation of the January effect is the 

window-dressing hypothesis. This hypothesis states that managers might want to impress 

investors at the end of the year. To do this they sell “embarrassing” losing stocks at the end of 

the year, before the revelation of their portfolio holding, only to buy them back again after the 

revelation (Zhang & Jacobsen, 2013).  

 



25 

 

Ng and Wang (2004) studied the window-dressing hypothesis, and found a relationship between 

this hypothesis and the trading behaviour at the turn of the year. They argued that institutional 

investors sell small losing stocks at the end of the year and buy back small loser and winner 

stocks at the beginning of the next year, making the January effect stronger. This means that 

their results suggests that it is not only the tax-loss selling hypothesis, but also institutional 

trading that drives the January effect. Even though institutions do not hold a lot of small stocks, 

the combined trading behaviour still affects the stock prices (Ng & Wang, 2004). 

 

Haug and Hirschey (2006) argues that if it is the large institutional investors who perform 

window dressing, then this should mean that window dressing is a large-firm phenomenon. And 

if it is true that the January effect is a small-firm effect, then this contradicts this explanation 

(Haug & Hirschey, 2006). Lakonishok, Shleifer, Thaler and Vishny (1991) studied the window-

dressing hypothesis among pension fund portfolio managers. Overall they found that these 

managers did perform some window dressing, and that it was stronger for small firms 

(Lakonishok, Shleifer, Thaler, & Vishny, 1991). 

 

Information Availability 

The information hypothesis is a possible cause for the January effect. This hypothesis explains 

that the January effect might be due to improper modeling of risk. Firms with a fiscal year that 

ends in December will release important information at the beginning of the subsequent year. 

The information hypothesis argues that the market fail to take into account this increased 

uncertainty in January, before this information is revealed (Zhang & Jacobsen, 2013). Another 

explanation may be the accessibility of information about the firm. This is because small firms 

may be considered more risky due to the lack of information available. If this risk is not 

considered then the return may seem abnormal, because investors will demand a higher risk 

premium. The January effect is not solely affected by the information difference, still if one 

finds another proxy for the information available about a security it might have an impact (Barry 

& Brown, 1984). 

 

Increased Liquidity 

The liquidity hypothesis is the theory that when investors get higher liquidity at the end of the 

year due to the end-of-the-year salaries, extra bonuses, dividend payments etc., the demand for 

stocks will increase at the beginning of the following year (Zhang & Jacobsen, 2013). This will 

lead to an increase in stock prices, and we will observe abnormally high January returns.  
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Ogden (1990) tests the turn-of-the-month liquidity hypothesis in the U.S. This hypothesis 

argues that the payment system in the U.S. is standardized in the way that most wages, 

dividends and other liabilities have a payoff date at the end of each month. This results in an 

increased demand for month-end securities, and thus also increases the security prices. Ogden 

(1990) also presents arguments for why the liquidity hypothesis is related to the January effect.  

He points out that in December there is an increase in business activity, especially in the retail 

industry, which means higher liquidity. This increased liquidity will lead to an increased 

demand for stocks and higher stock returns in the beginning of January. Another argument is 

related to January being a small-firm effect. Ogden argues that individual investors invests more 

in small-firm stocks than institutional investors, and that individual investors gets higher 

liquidity at the end of the year. Because of this, the returns in January will be larger for small-

firm stocks than for large-firm stocks (Ogden, 1990).  

 

Optimistic Expectations 

People might make new-years resolutions because they have optimistic thoughts about the 

future, the same optimism might make investors invest in stocks at the beginning of the new 

year. Ciccone (2011) argues that the January effect can partly be explained by behavioral theory 

due to investors’ optimistic expectations at the end of the year (Ciccone, 2011). The optimistic-

expectation hypothesis suggests that stock prices in January will be bid up due to renewed 

optimism at the turn of the year (Zhang & Jacobsen, 2013). It is shown that investors’ beliefs 

reach a peak in January, and this optimism will lead to an increase in stock prices for firms that 

have a higher uncertainty level in January. It is also argued that the optimistic expectation 

hypothesis is consistent with the January effect being a small-firm effect. This is because 

investors might feel extra optimistic about the performance of small-firm stocks as they have a 

higher uncertainty (Ciccone, 2011). 

 

3.4 Possible Explanations for the Other January Effect 

Because the other January effect is not as well known as the January effect, there is not as much 

research done with regard to possible explanations for the existence of this effect. According to 

Stivers, Sun and Sun (2009), there are three possible explanations for the other January effect. 

The first explanation is that the effect can exist due to a priced risk factor. If this is true, then 

the effect should be both international and persistent over time (Stivers, Sun, & Sun, 2009). 
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Cooper, McConnell and Ovtchinnikov (2006) investigated this possibility in their study, but 

they did not find evidence that risk can explain the other January effect. The second explanation 

is that the other January effect is connected with a behavioral bias, if so, this should also indicate 

that the effect is international and consistent over time. One behavioral bias can be the 

momentum phenomenon. If you use a momentum strategy then you by the stock when you see 

the price increase drastically, because then it is most likely to continue to increase. Then, when 

everyone has bought the stock, you sell it because then it is likely that the stock price will 

decrease in the future (Burton & Shah, 2013). The third explanation is that the other January 

effect might be just a temporarily effect, this in the way that it might be just a statistical 

irregularity without an economic explanation behind it. It could also be that the other January 

effect is related to a certain period of history, meaning that the returns are just a respond to 

economic factors at that time. If this is the case, then the effect is not expected to be international 

or consistent over time (Stivers et al., 2009). All of these possible explanations are quite general 

and can apply in all countries, also in Norway. They can also apply to other anomalies, like the 

January effect.  
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4 Testing Procedure 

To test if there exists anomalies at the Oslo Stock Exchange (OSE), we use the statistical 

software Stata. Here we use the ordinary least square (OLS) method to estimate the parameters 

of the models. Given the estimates, we will perform parametric tests where we do a regular t-

test and interpret the p-values of the test. These test procedures are only valid if the assumptions 

underlying the models hold. If it appears that our residuals are not normally distributed, we will 

perform some non-parametric tests. Another assumption is that the residuals should have a 

constant variance across all values of the predicted value of the dependent variable. We 

therefore need to test for heteroscedasticity as well. Because we use models with dummy 

variables, we will not have a problem with multicollinearity. 

 

4.1 Parametric Tests 

As mentioned above, parametric tests require the residuals we test to be normally distributed. 

This means that the values are symmetrically distributed around the mean, and that it has equal 

tails on each side. To test the significance of our parameters, we use a regular two-tail t-test. 

The formula for the test statistic is: 

𝑇 =
�̂�𝑖 − 𝛼𝑖

∗

√𝑉𝑎𝑟[𝛼𝑖]
 

We carry out the test: 

𝐻0:   𝛼𝑖 = 0      ,    𝑖 = 2,3, … ,12 

𝐻1:   𝛼𝑖 ≠ 0     ,    𝑖 = 2,3, … ,12 

 

Because 𝛼𝑖
∗ = 0, the expression becomes: 

𝑇 =
�̂�𝑖

√𝑉𝑎𝑟[𝛼𝑖]
 

 

This value tells us where in the t-distribution the t-ratio lies. It is possible to use different 

significance levels. When we use a significance level of 5%, the critical values are –1.96 and 

+1.96. If the t-value is less than –1.96 or larger than 1.96, this means that it lies in the rejection 

area. We then reject the null hypothesis, and the test statistics are significant, shown in figure 

5.1: 
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Figure 4.1: Shows at which t-values we can reject H0 with a normal distribution 

 

We can also interpret the p-values of the test. Given that H0 is true, the p-value gives the 

probability of getting a test statistic that is as least as large as the one calculated (Thomas, 2005, 

p. 171). With a significance level of 5%, the critical value is 0.05. If the p-value is less than 

0.05, we reject the null hypothesis and the test statistics are significant. 

 

4.2 Test for Heteroscedasticity  

If the assumption of homoscedasticity holds, a plot of the residuals against the fitted values 

should not reveal any pattern. This means that the variance of the residuals should be constant. 

If the errors do not have a constant variance, they are said to be heteroscedastic. To test if there 

exist this kind of a pattern in our dataset, we perform an IM-test. Due to White (1980) the IM-

test tests the null hypothesis that the variance of the residuals is homogenous, and the alternative 

hypothesis that the variance of the residuals is not homogenous (White, 1980): 

 

𝐻0:     𝑉𝑎𝑟[𝜀𝑡,𝑚] = 𝜎2    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡, 𝑚 

𝐻1:     𝑉𝑎𝑟[𝜀𝑡.𝑚] ≠ 𝜎2                           

 

This means that if we have a small p-value (less than 0.05), then we reject the null hypothesis, 

and conclude that the variance of the residuals is not constant, thus we have a problem with 

heteroscedasticity. If the p-value is larger than 0.05, we fail to reject the null hypothesis. In that 

case we consider the variance of the residuals to be constant and homoscedastic. 
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4.3 Test for Normality 

One of the main assumptions for our models is that the residuals are normally distributed. To 

check if this is true with our dataset we can make a histogram with density lines, test for 

skewness and kurtosis and run a Shapiro-Wilks normality test. 

 

Skewness measures if a distribution deviates in one direction or another, thus if there is an 

asymmetry in the data on the dependent variable and the residuals. When a distribution is 

normal it has a skewness equal to zero. If the distribution is positively skewed (skewness > 0), 

then we have a concentration of values to the left of the mean and more extreme values to the 

right. If the distribution is negatively skewed (skewness < 0), the concentration of the values is 

to the right of the mean with more extreme values on the left side (Acock, 2012, p. 259). 

 

Kurtosis is a measure of the thickness of the tails in a distribution. When a distribution is normal 

it has a kurtosis equal to three (in Stata). If we have a kurtosis that is higher than three, then this 

means that the distribution is too peaked in the middle and the tails are too thin to be normally 

distributed. If we have a kurtosis that is lower than three, this means that the distribution is too 

flat in the middle and the tails are too thick for it to be normally distributed. (Acock, 2012, p. 

259). 

 

Another test we can perform is the Shapiro-Wilks normality test. The null hypothesis states that 

the data tested is normally distributed, whereas the alternative hypothesis say that the data is 

not normally distributed. A formal representation of the test statistic is: 

 

𝐻0:  𝑥~𝒩(0, 𝜎2) 

  𝐻1:  𝑥 ≁ 𝒩(0, 𝜎2) 

 

where the x, in our case, can be both the residuals and the returns. The significance level we 

will use in this test is 5%. This means that if the p-value from the test is higher than 0.05 we 

fail to reject H0, and if the p-value is lower than 0.05 we reject H0. If we reject H0, we cannot 

assume that the estimates are normally distributed (Stata).  
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4.4 Correcting Tests 

If we have a problem with heteroscedasticity we can run a regression with the robust option, 

and obtain the White-corrected standard errors. This method relies on the normality assumption, 

but gives more robust standard errors. This means that the standard errors takes into account 

that the assumption about heteroscedasticity may not hold. 

 

If we do not have residuals that are normally distributed, we can use the bootstrapping method, 

that does not rely on normality. When we use the bootstrap method, Stata draws random 

samples, with the same number of observation as the original sample, from the dataset with 

replacement multiple times. Then Stata estimates the regression for each of the bootstrap 

samples that has been drawn. We use the solution in the bootstrap method to get the new t-

values, called z, and standard errors (Acock, 2012, p. 260). 
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5 Data 

In this thesis we have used data from the Oslo Stock Exchange (OSE) provided by Bernt Arne 

Ødegaard, professor of Finance at the University of Stavanger1. We use the monthly market 

returns, monthly risk free rates, the crossectional portfolios divided into size portfolios with 

monthly returns, and the daily market returns, all from the period January 1980 to December 

2014.  

 

We begin our analysis of the January effect in the Norwegian stock market by examining the 

aggregated monthly returns, both for the Value-Weighted (VW) index and the Equally-

Weighted (EW) index. Further, we expand the analysis by examining the decile size portfolios 

for the EW portfolio. We also take a closer look at the daily returns for December and January, 

using the EW portfolio. Finally, we examine the other January effect using both EW, VW and 

the decile size portfolios. 

 

Regardless of the firm’s size, the EW portfolio puts equal weight to each security that is 

included in the portfolio. This means that the smallest firms at the stock exchange gets the same 

weight as large firms, such as Statoil. The VW portfolio, on the other hand, puts more weight 

on those firms with a large capitalization, and less weight on those firms with a small 

capitalization (Al-khalialeh & Al-Omari, 2004). In sum, this means that small firms get 

relatively more weight in the EW portfolio than in the VW portfolio, which places more weight 

on large firms. 

 

According to Ødegaard, the market returns are constructed from most stocks at the OSE, only 

the smallest and least liquid stocks are omitted. The crossectional portfolios are sorted by 

similar criteria, where the size portfolios consist of 10 portfolios sorted by equity size. The risk 

free returns are given by the interest rate for borrowing the given month, and they are forward 

looking (Ødegaard). For a more detailed description of the data, see appendix A1. 

 

                                                
1https://dl.dropboxusercontent.com/u/8078351/main/financial_data/ose_asset_pricing_data/index.html 

https://dl.dropboxusercontent.com/u/8078351/main/financial_data/ose_asset_pricing_data/index.html
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5.1 History of the Oslo Stock Exchange 

The Oslo Stock Exchange (OSE) has its origin in 1818, when the first Stock Exchange Act in 

Norway was sanctioned. Still, it was not before 1881 that OSE started with fund exchange, this 

in moderate terms with only 30 bonds and shares. Before 1880, stocks and bonds were not very 

common in Norway, but towards the end of the century the activity increased, and in 1919 there 

was 578 securities listed on the OSE. In the aftermath of World War 2, most activities on the 

stock market were characterized by the strict regulatory economy, but from the mid-80s the 

securities market showed an increasing vitality. It was in the 80s that foreigners also became 

interested in Norwegian securities, and in 1981 OSE became a member of the International 

Stock Exchange Federation (FIBV) (OsloBørs). 

 

From the 1980s onwards, securities trading on the OSE increased considerably. Since then the 

stock prices have both decreased and increased in value. The first shock came in late 1987, 

when the all share index fell with 19%. In 1989, the stock prices started to increase, and they 

reached a new historic peak in 1990. This did not last long, until the end of the year in 1990 the 

all share index fell by 46%, this crisis lasted for the next two years. In 1992 there was a new 

upturn in the stock markets, and in 1994, the all share index passed the former peak. Later, the 

all share index has continued to increase and reach new highs, but the period also includes 

crisis, such as the financial crisis in 2008 (OsloBørs). The yearly average returns for the period 

1980 to 2014 are shown in figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Yearly average returns for the EW and VW portfolios from 1980 to 2014 
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5.2 Return Characteristics at the Oslo Stock Exchange 

Now we want to look closer at some descriptive characteristics at the OSE in the period 1980 

to 2014. We have 420 observations in each portfolio. First, we look at monthly returns for the 

EW and the VW portfolios, and at the risk-free monthly returns. 

 

 EW VW RF 

MEAN 1,67 % 1,89 % 0,61 % 

STD. 5,55 % 6,26 % 0,37 % 

VAR. 0,31 % 0,39 % 0,001 % 

MIN -18,33 % -23,79 % 0,12 % 

MAX 19,06 % 19,72 % 2,07 % 

Table 5.1: EW, VW and risk-free monthly return statistics from 1980 to 2014 

 

From table 5.1 we have a monthly mean return of 1.67% for the EW portfolio and a monthly 

mean return of 1.89% for the VW portfolio. Over the same period, the risk-free monthly mean 

return was 0.61%. In yearly average returns this would equal a return of 20.04% for the EW 

portfolio, a return of 22.68 % for the VW portfolio and a risk-free rate of 7.32%. Even if the 

returns for our two portfolios are high, they also have a much higher volatility (std.). The EW 

and the VW portfolios have an average annually volatility of 19.23% and 21.67% respectively, 

whereas the risk-free average yearly volatility is only 1.28%. The spread between the highest 

and the lowest monthly return is 37.39% for the EW portfolio and 43.51% for the VW portfolio, 

whereas the risk free spread is only 1.95%. The returns vary widely for the EW and the VW 

portfolio over the whole period, this is shown in figure 5.2: 

 

 

Figure 5.2: Monthly returns for the EW (a) and the VW (b) portfolios from 1980 to 2014 
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Now we will look at the monthly characteristics of the ten decile portfolios. Portfolio X1 

represent the 10% smallest firms, X2 the 10% second smallest firms, etc. and portfolio X10 is 

the 10% biggest firms. 

 

 X1 X2 X3 X4 X5 

MEAN 2,87 % 2,16 % 1,57 % 1,50 % 1,95 % 

STD. 7,14 % 6,78 % 6,65 % 6,81 % 6,88 % 

VAR. 0,51 % 0,46 % 0,44 % 0,46 % 0,47 % 

MIN -18,12 % -18,36 % -24,10 % -24,88 % -19,16 % 

MAX 46,71 % 31,94 % 32,27 % 29,06 % 53,34 % 

 

 

 

 

 

Table 5.2: EW decile portfolio’s monthly return statistics from 1980 to 2014 

 

As we see from table 5.2, the monthly average return, with a few exceptions, decreases with 

the increasing size of the firms, ranging from 2.87% to 1.03%. The risk-free monthly average 

return is still much smaller than the average monthly return of all ten deciles. In yearly returns, 

the smallest decile has an average of 34.44%, whereas the largest decile has an average of 

12.36%. We see that the volatility is high for all the portfolios, but it is higher for X10 than for 

X1. This means that one could get a higher return investing in the smallest firms without any 

additional risk. The spread between the highest and the lowest monthly return is large in each 

portfolio, and varies from around 50-75%. If we look at portfolio X5, for example, we see that 

the maximum monthly return is 53.34%, which is extreme. With a few exceptions, the 

minimum monthly return increases with the size of the firms, whereas the maximum value 

decreases with the size of the firms. The variations in the monthly returns for the smallest firms 

(X1) and the largest firms (X10) are shown in figure 5.3. 

 X6 X7 X8 X9 X10 

MEAN 1,69 % 1,47 % 1,35 % 1,12 % 1,03 % 

STD. 6,50 % 7,01 % 6,93 % 7,62 % 7,17 % 

VAR. 0,42 % 0,49 % 0,48 % 0,58 % 0,51 % 

MIN -28,61 % -24,20 % -24,01 % -28,50 % -33,86 % 

MAX 27,78 % 48,97 % 27,11 % 22,85 % 24,91 % 
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Figure 5.3: Monthly returns for the X1 (a) and the X10 (b) portfolios from 1980 to 2014 

 

In figure 5.3 (a) we see that portfolio X1 has more positive returns than negative, and that some 

of the positive returns are very high. In the beginning of the period the returns vary widely, but 

this has smoothed out after around year 2000. In plot (b) there are larger and more negative 

returns, than in plot (a). For portfolio X10, the returns vary widely the whole period.    
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6 Testing for the January Effect 

In this chapter, we will perform both parametric and non-parametric tests for the January effect 

on the EW and the VW portfolios, and on EW size portfolios. We analyze to see if there is 

statistically significant evidence for the existence of the January effect in the Norwegian stock 

market. We expect to find a statistical significant difference between January and at least one 

of the other 11 months. To support our theory about the January effect we expect that January 

returns are significantly higher than the returns for all the other months.  

 

6.1 Methodology 

We base our empirical work on the paper “Are Monthly Seasonals Real? A Three Century 

Perspective” by Zhang and Jacobsen (2013), and use the same model that they use. 

 

To see if there exists a January effect at the OSE, we use a regression model with dummy 

variables. We test the joint significance of parameters 𝛼2 to 𝛼12 using the following regression: 

 

𝑟𝑡,𝑚 = 𝛼1 + 𝛼2𝐷2𝑡 + 𝛼3𝐷3𝑡 + ⋯ + 𝛼12𝐷12𝑡 + 𝜀𝑡,𝑚    (1) 

 

where 𝑟𝑡,𝑚 is the monthly return, t = year and m = month, 𝛼1 denotes the average return for 

January, 𝛼2 to 𝛼12 are the differences between the January returns and the returns in the other 

months. 𝐷2𝑡 to 𝐷12𝑡 are the dummy variables for February to December, where 𝐷𝑖𝑡 is equal to 

one for the i’th month and equal to zero otherwise. 𝜀𝑡,𝑚 is the error term that we assume is 

normally distributed. Taking the expectation of model (1): 

 

𝐸[𝑟𝑡,𝑚] = 𝐸[𝛼1 + 𝛼2𝐷2𝑡 + 𝛼3𝐷3𝑡 + ⋯ + 𝛼12𝐷12𝑡 + 𝜀𝑡,𝑚] 

 

we get the expected regression model: 

 

        𝐸[𝑟𝑡,𝑚] = 𝛼1 + 𝛼2𝐷2𝑡 + 𝛼3𝐷3𝑡 + ⋯ + 𝛼12𝐷12𝑡             (2) 

 

The model states that the expected return of month m is equal to the average return of January 

plus the sum of the difference between January and the other 11 months, times the dummy 

variable. If we for example want to find the expected return in February, model (2) would be: 



40 

 

𝐸[𝑟𝑡,𝑚] = 𝛼1 + 𝛼21 + 𝛼30 + ⋯ + 𝛼120 

𝐸[𝑟𝑡,𝑚] = 𝛼1 + 𝛼2 

 

If 𝛼1 = 5% and 𝛼2 = −2% we would get an expected return in February of 3%. 

 

The F-test’s null hypothesis states that there is no January effect in the Norwegian stock market. 

This means that the differences in monthly returns are equal to zero. The alternative hypothesis 

states that there may exist a January effect in the Norwegian stock market. This means that at 

least one of the other month’s returns is significantly different from the January return. 

Expressed in formal terms: 

𝐻0:     𝛼2 = 𝛼3 = ⋯ = 𝛼12 = 0 

                    𝐻𝐴:     𝛼𝑖 ≠ 0 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑖 ∈ [2, 12] 

 

If the returns for each month of the year are the same, then the parameters 𝛼2 to 𝛼12 should be 

jointly insignificant (Zhang & Jacobsen, 2013). In that case we fail to reject the null hypothesis. 

We will also look at the t-values to see if January returns are significantly higher than the returns 

in all the other months. If that is the case, this indicates that there exists a January effect. 

 

We use the OLS method to estimate the parameters of the model. Given the estimates, we will 

do a regular t-test and interpret the p-values of the test. Because these test procedures are only 

valid if the assumptions underlying model (1) hold, we therefore need to test for 

heteroscedasticity and normality.  

 

6.2 Parametric Testing of Equally- and Value-Weighted Portfolios 

We test the significance of the difference between January and the rest of the year. When doing 

the statistical tests we use three different significance levels, 1%, 5% and 10%, denoted by ***, 

** and * respectively. Table 6.1 shows the result of the linear regression for both portfolios.  
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Table 6.1: Results from the OLS regression of the EW and VW portfolios, with significance levels 

 

We see from table 6.1, that in the EW portfolio all the coefficients are statistically significant, 

this is not the case for the VW portfolio. Because January has the highest return in the EW 

portfolio, this could indicate that we have a January effect for the EW portfolio. To obtain 

heteroscedasticity consistent estimates of the standard errors, we follow the approach due to 

White (1980). This is achieved by running the robust option in connection with the standard 

regression procedure in Stata:  

 

 

Table 6.2: Results from the regression with the robust option 

 

Coef. Std. Err. t P>t Sig. level Coef. Std. Err. t P>t Sig. level 

α1 0.058 0.0089867  6.45 0.000 *** 0.040 0.0103947  3.89 0.000 ***

α2 -0.029 0.0127092 -2.26 0.024 ** -0.020 0.0147004 -1.35 0.179 -

α3 -0.035 0.0127092 -2.75 0.006 *** -0.021 0.0147004 -1.45 0.147 -

α4 -0.026 0.0127092 -2.07 0.039 ** 0.003 0.0147004 0.17 0.863 -

α5 -0.043 0.0127092 -3.38 0.001 *** -0.019 0.0147004 -1.28 0.202 -

α6 -0.063 0.0127092 -4.96 0.000 *** -0.041 0.0147004 -2.81 0.005 ***

α7 -0.031 0.0127092 -2.45 0.015 ** -0.009 0.0147004 -0.63 0.531 -

α8 -0.057 0.0127092 -4.47 0.000 *** -0.032 0.0147004 -2.19 0.029 **

α9 -0.069 0.0127092 -5.42 0.000 *** -0.047 0.0147004 -3.18 0.002 ***

α10 -0.050 0.0127092 -3.96 0.000 *** -0.025 0.0147004 -1.69 0.091 *

α11 -0.055 0.0127092 -4.31 0.000 *** -0.039 0.0147004 -2.65 0.008 ***

α12 -0.037 0.0127092 -2.88 0.004 *** -0.007 0.0147004 -0.51 0.611 -

F P>F Sig. level F P>F Sig. level 

 4.49 0.0000 ***  2.40  0.0067 ***

Equally weighted Value weighted

Coef. Std. Err. t P>t Sig. level Coef. Std. Err. t P>t Sig. level 

α1 0.058 0.0109365  5.3 0.000 *** 0.040 0.0126822  3.18 0.002 ***

α2 -0.029 0.0139397 -2.06 0.040 ** -0.020 0.0154455 -1.28 0.201 -

α3 -0.035 0.0135627 -2.57 0.010 *** -0.021 0.0166255 -1.29 0.199 -

α4 -0.026 0.0138832 -1.89 0.059 * 0.003 0.015639 0.16 0.871 -

α5 -0.043 0.0133105 -3.22 0.001 *** -0.019 0.0156767 -1.20 0.231 -

α6 -0.063 0.0133609 -4.72 0.000 *** -0.041 0.015737 -2.63 0.009 ***

α7 -0.031 0.0130065 -2.40 0.017 ** -0.009 0.0155555 -0.59 0.554 -

α8 -0.057 0.0146673 -3.87 0.000 *** -0.032 0.0166654 -1.93 0.054 *

α9 -0.069 0.0148094 -4.65 0.000 *** -0.047 0.0172161 -2.71 0.007 ***

α10 -0.050 0.0154656 -3.25 0.001 *** -0.025 0.0186333 -1.34 0.182 -

α11 -0.055 0.0142611 -3.84 0.000 *** -0.039 0.0160036 -2.43 0.015 **

α12 -0.037 0.0138684 -2.64 0.009 *** -0.007 0.0152517 -0.49 0.624 -

F P>F Sig. level F P>F Sig. level 

 3.95 0.0000 ***  2.53  0.0042 ***

Equally weighted Value weighted
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The null hypothesis for the F-test states that there exist no difference between January and the 

other 11 months. From table 6.2 we reject the null hypothesis for both portfolios, and state that 

there is at least one of the months that are different from January. For the EW portfolio the 

significance levels for the p-values has not changed much, whereas for the VW portfolio we 

only have four statistical significantly coefficients, compared to the original linear regression 

that had five statistical significant coefficients. When comparing table 6.2 with table 6.1, we 

see that the coefficients are the same, but that there are changes in the standard errors. With the 

robust option we see an increase in the standard errors compared to the linear regression, both 

for the EW and the VW portfolios. This means that the dispersion from the regression line has 

increased, but the increase is only around 0.001, therefore it is hard to spot the difference in a 

graph. Because there are differences in the standard errors, this may indicate that we have a 

problem with heteroscedasticity, we will therefore test for this later.  

 

Table 6.3 shows the percentage monthly mean returns for each month. The returns are 

calculated by taking the coefficient of January, plus the coefficients that states the difference 

between January and the other months. For example, the EW return in May is calculated by 

taking 𝛼1 + 𝛼5 = 0.058 − 0.043 = 0.015 = 1.5%. 

 

MONTHS EW VW 

JANUARY 5,8 % 4,0 % 

FEBRUARY 2,9 % 2,1 % 

MARCH 2,3 % 1,9 % 

APRIL 3,2 % 4,3 % 

MAY 1,5 % 2,2 % 

JUNE -0,5 % -0,1 % 

JULY 2,7 % 3,1 % 

AUGUST 0,1 % 0,8 % 

SEPTEMBER -1,1 % -0,6 % 

OCTOBER 0,8 % 1,5 % 

NOVEMBER 0,3 % 0,1 % 

DECEMBER 2,1 % 3,3 % 

 
Table 6.3: Monthly mean returns for EW and VW portfolios 
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We see from table 6.3, that January has the highest average return for the EW portfolio, with a 

return that is 2.6% higher than the second highest return in April. For the VW portfolio, April 

has the highest mean return, with a return that is 0.3% higher than the return in January. We 

will now discuss our result from the regression in table 6.2, first for the EW portfolio, then for 

the VW portfolio.  

 

Equally-Weighted Portfolio 

The null hypothesis states that there is no difference between the average return in January and 

the other months. From table 6.2, we see that the F-test’s p-value is equal to zero, we reject the 

null hypothesis and conclude that at least one of the months’ average returns is significantly 

different from the average return of January. When performing the t-test, we see that all of the 

EW portfolio’s test statistics are statistically significant with a minimum of 10% significance 

level. When looking at the coefficients, we see that the differences between January and all the 

other months are negative. This means that January has a higher expected average return than 

all the other months. Because the null hypothesis of the F-test and t-tests are rejected, this 

indicates that there exists a January effect. To see if these results are valid, we need to test for 

heteroscedasticity and normality. When testing for heteroscedasticity we first plot the residuals 

against the fitted values to see if there exists any pattern between them: 

 

 

Figure 6.1: Plot of residuals vs. the fitted values for the EW portfolio 

 

As we see in figure 6.1, there is no “visible” convincing systematic pattern with respect to the 

variance in the OLS residuals. To confirm this we also do the IM-test and get a p-value of 

0.4492, because this number is larger than 0.05 we fail to reject the null hypothesis. This means 

that we do not have a problem with heteroscedasticity. 
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To proceed with the linear regression we also have to check if the data on the dependent variable 

and residuals are normally distributed. We do this by looking at a distribution plot, and by 

testing for skewness, kurtosis and running the Shapiro-Wilks normality test. In figure 6.2 we 

see the density of the EW portfolio and the residuals, the normal density line (solid line) and 

the kernel density line (dashed line), which gives the estimated density. 

 

Figure 6.2: Distribution plots with a normal density line and a kernel density line, both for the data on the 

dependent variable (a) and for the residuals (b) 

 

In figure 6.2, both of the plots show deviations from the normal distribution. In plot (a) we see 

the distribution of the returns in the EW portfolio. We see that the peak is higher than the normal 

density, and the concentration of the values is to the right of the mean. Because the distribution 

deviates from the normal density line, this could indicate that the residuals are not normally 

distributed. This gives us an idea of the distribution of the residuals shown in plot (b). Also here 

the peak is higher than the normal distribution, but not as high as in (a). This indicates that the 

residuals are not normally distributed either. We now test for skewness and kurtosis: 

 

 

 

 

 

Table 6.4: Values for skewness and kurtosis 

 

 EW RESIDUALS 

SKEWNESS -0.253 -0.342 

KURTOSIS 4.376 3.956 
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From table 6.4, we see that the data on the dependent variable and the residuals have a 

negatively skewed distribution (smaller than 0) and a high kurtosis (higher than 3). This is in 

accordance with figure 6.2 and indicates that our residuals and EW returns are not normally 

distributed. To confirm these results, we also do a Shapiro-Wilks normality test: 

 

SHAPIRO – WILK NORMALITY TEST 

 P-value 

EW 0.00000 

RESIDUALS 0.00011 

Table 6.5: Shapiro-Wilk p-values 

 

Because the p-values in table 6.5 are smaller than 0.05, the Shapiro-Wilks normality test tells 

us that we will reject the null hypothesis, and that there is not enough evidence to say that our 

residuals and EW returns are normally distributed. In sum, all our tests tell us that the data on 

the dependent variable and residuals are not normally distributed. 

 

Value-Weighted Portfolio 

When we look at the VW portfolio in table 6.2, we reject the null hypothesis in the F-test and 

conclude that at least one of the month’s average returns is significantly different from 

January’s average return. When we perform the t-test, we see that the test statistics for the VW 

portfolio only have five statistically significant coefficients. June, August, September, October 

and November are the only months significantly different from January, this means that we 

cannot state that there exists a January effect. To see if the results are statistically significant, 

we test for heteroscedasticity and normality. When testing for heteroscedasticity we first plot 

the residuals against the fitted values to see if there exists any pattern between them:  
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Figure 6.3: Plot of residuals vs. the fitted values for the VW portfolio 

 

As we see in figure 6.3, there is no “visible” convincing systematic pattern with respect to the 

variance in the OLS residuals. To confirm this, we also do the IM-test and get a p-value of 

0.2938, because this number is larger than 0.05 we fail to reject the null hypothesis. This means 

that we do not have a problem with heteroscedasticity. 

 

Because the EW portfolio was not normally distributed, we suspect that the VW portfolio is not 

normally distributed either. We check for normality in the VW portfolio by looking at a 

distribution plot, and by testing for skewness, kurtosis and run the Shapiro-Wilks test. In figure 

6.4 we see the density of the VW portfolio and the residuals, the normal density line (solid line) 

and the kernel density line (dashed line).  

 

 

Figure 6.4: Distribution plots with a normal density line and a kernel density line, both for the data on the 

dependent variable (a) and for the residuals (b) 

 

-.
3

-.
2

-.
1

0
.1

.2

R
e
si

d
u
a
ls

-.01 0 .01 .02 .03 .04
Linear prediction



47 

 

The plots show deviations from the normal distribution. Figure 6.4 plot (a) shows the 

distribution of the returns of the VW portfolio. We see that the peak is higher than the normal 

distribution and situated to the right of the mean. Plot (b) shows the estimated densities of the 

residuals, also here the peak is higher than the normal density. This means that both of the plots 

deviate from the normal density line, and indicates that the data on the dependent variable and 

the residuals are not normally distributed. To confirm this, we test for skewness and kurtosis. 

 

 

 

 

 

 
Table 6.6: Values for skewness and kurtosis 

 

From table 6.6, we see that the VW returns and the residuals have a negatively skewed 

distribution (smaller than 0) and a high kurtosis (higher than 3). This is in accordance with 

figure 6.4 and indicates that our residuals and VW returns are not normally distributed. To 

confirm these results, we also do a Shapiro-Wilks normality test: 

 

SHAPIRO – WILK NORMALITY TEST 

 P-value 

VW 0.00000 

RESIDUALS 0.00001 

Table 6.7: Shapiro-Wilk p-values 

 

The test statistics shown in table 6.7 tells us that we will reject the null hypothesis, and that 

there is not enough evidence to say that our residuals and the VW returns are normally 

distributed. All our tests, for both the EW and the VW portfolios, tell us that the data on the 

dependent variable and residuals are not normally distributed, and we have to perform non-

parametric tests. 

 

6.3 Bootstrapping the Equally- and Value-Weighted Portfolios 

In order to increase the statistical validity for our results, we perform the bootstrap method. In 

our case the bootstrap sample contains 480 observations and we choose to draw 10 000 

bootstrap samples. The results are shown in table 6.8: 

 

 VW RESIDUALS 

SKEWNESS -0.547 -0.570 

KURTOSIS 4.543 4.348 
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Table 6.8: Results from the bootstrap regression 

 

The coefficients in table 6.8 are the same as in the “robust” and the original regressions. The 

dispersions in the standard errors in the bootstrap method have changed compared to the 

“robust” regression. The changes are relatively small, and the deviations in the standard errors 

have both increased and decreased.  

 

In the case of the EW portfolio, we see that most of the coefficients are statistically significant 

at a 1% level, except from α2 and α7 that are significant at a 5% level and α4 that has a 10% 

significance level. With a 10% significance level, we can conclude that the EW January returns 

are significantly higher and different compared to all the other months. Because of these results 

we can conclude that there exists a January effect for the EW portfolio. This is not the case for 

the VW portfolio, only four of the coefficients are statistically significant, thus we cannot say 

that there exists a January effect for the VW portfolio. 

 

The VW portfolio weights the firms according to size, while the EW portfolio weights the firms 

equally. Small firms will therefore have a relatively higher weight in the EW portfolio than in 

the VW portfolio. Because our results indicate a January effect in the EW portfolio, this 

supports the theory that the January effect is a small-firm effect. We will therefore examine the 

size effect closer by dividing the EW portfolio into ten size portfolios. 

 

Coef. Std. Err. t P>t Sig. level Coef. Std. Err. t P>t Sig. level 

α1 0.058 .0109547  5.29 0.000 *** 0.040 .0128384  3.15 0.002 ***

α2 -0.029 .0138389 -2.08 0.038 ** -0.020 .0155651 -1.27 0.204 -

α3 -0.035 .013538 -2.58 0.010 *** -0.021 .0167193 -1.28 0.201 -

α4 -0.026 .0136865 -1.92 0.055 * 0.003 .01575 0.16 0.872 -

α5 -0.043 .0132865 -3.23 0.001 *** -0.019 .0158062 -1.19 0.234 -

α6 -0.063 .0133788 -4.71 0.000 *** -0.041 .0159445 -2.59 0.009 ***

α7 -0.031 .0130186 -2.39 0.017 ** -0.009 .0156059 -0.59 0.555 -

α8 -0.057 .014617 -3.89 0.000 *** -0.032 .0167495 -1.92 0.055 *

α9 -0.069 .0147971 -4.65 0.000 *** -0.047 .0173364 -2.70 0.007 ***

α10 -0.050 .0155738 -3.23 0.001 *** -0.025 .0186942 -1.33 0.183 -

α11 -0.055 .0141899 -3.86 0.000 *** -0.039 .016224 -2.40 0.016 **

α12 -0.037 .0137285 -2.67 0.008 *** -0.007 .0152774 -0.49 0.624 -

Equally weighted Value weighted
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6.4 Testing Size Portfolios 

We test the significance of the difference between January and the rest of the year for different 

size portfolios. The tests for normality and heteroscedatisiy can be found in Appendix A2. We 

found no problem with heteroscedatisity, but none of the ten portfolios were normally 

distributed. We therefore use the bootstrap regression in this section. X1 represents the 10% 

smallest firms, X2 the 10% second smallest firms etc., and X10 represents the 10% largest 

firms. Table 6.9 shows the results of the bootstrap regression for the ten portfolios, with 50 000 

bootstrap samples. 

 

 

Table 6.9: Results from the bootstrap regression for the decile portfolios 

 

The null hypothesis states that there is no difference between the average return in January and 

each of the months. From table 6.9 we find that only portfolio X1 have significant coefficients 

for all the months. Portfolio X1 also has the highest coefficient in January, which supports our 

theory that the January effect is a small-firm effect. It is also evident from the coefficients that 

January has a positive return in every size portfolio. 

 

Coef. z sig. level Coef. z sig. level Coef. z sig. level Coef. z sig. level Coef. z sig. level

α1  0.110  6.89 ***  0.068  6.38 ***  0.058  4.48 ***  0.059  4.53 ***  0.065  4.95 ***

α2  -0.069 -3.47 ***  -0.012 -0.64 -  -0.021 -1.18 -  -0.040 -2.27 **  -0.022 -0.98 -

α3  -0.062 -2.77 ***  -0.055 -3.45 ***  -0.028 -1.51 -  -0.039 -2.23 **  -0.043 -2.69 ***

α4  -0.070 -3.68 ***  -0.038 -2.31 **  -0.024 -1.45 -  -0.027 -1.61 -  -0.036 -2.17 **

α5  -0.092 -4.57 ***  -0.048 -3.38 ***  -0.041 -2.68 ***  -0.047 -3.06 ***  -0.049 -3.05 ***

α6  -0.110 -6.22 ***  -0.066 -4.85 ***  -0.065 -3.83 ***  -0.056 -3.26 ***  -0.068 -4.12 ***

α7  -0.077 -4.16 ***  -0.031 -2.11 **  -0.035 -2.43 **  -0.039 -2.58 ***  -0.036 -2.4 **

α8  -0.098 -5.43 ***  -0.057 -3.87 ***  -0.053 -3.31 ***  -0.062 -3.56 ***  -0.059 -3.43 ***

α9  -0.104 -5.68 ***  -0.064 -4.34 ***  -0.071 -4.45 ***  -0.062 -3.68 ***  -0.077 -4.37 ***

α10  -0.101 -5.3 ***  -0.070 -5.09 ***  -0.060 -3.23 ***  -0.038 -2.18 **  -0.050 -2.77 ***

α11  -0.097 -4.96 ***  -0.046 -3.05 ***  -0.058 -3.5 ***  -0.064 -3.38 **  -0.068 -3.92 ***

α12  -0.097 -5.38 ***  -0.067 -4.11 ***  -0.049 -2.91 ***  -0.055 -3.07 **  -0.040 -2.58 ***

Coef. z sig. level Coef. z sig. level Coef. z sig. level Coef. z sig. level Coef. z sig. level

α1  0.062  4.61 ***  0.059  4.8 ***  0.032  2.28 **  0.041  3.09 ***  0.021  1.49 -

α2  -0.033 -1.89 *  -0.038 -2.4 **  -0.012 -0.69 -  -0.026 -1.7 *  -0.012 -0.73 -

α3  -0.041 -2.7 ***  -0.040 -2.68 ***  -0.011 -0.66 -  -0.022 -1.21 -  -0.004 -0.22 -

α4  -0.024 -1.32 -  -0.036 -2.28 **  -0.002 -0.1 -  -0.010 -0.56 -  0.009 0.49 -

α5  -0.049 -3.16 ***  -0.042 -2.7 ***  -0.012 -0.64 -  -0.039 -2.37 **  -0.005 -0.29 -

α6  -0.067 -3.87 ***  -0.067 -4.23 ***  -0.041 -2.4 **  -0.058 -3.35 ***  -0.029 -1.76 *

α7  -0.045 -2.89 ***  -0.036 -2.37 **  -0.003 -0.17 -  -0.004 -0.27 -  0.008 0.47 -

α8  -0.068 -3.72 ***  -0.059 -3.31 ***  -0.037 -1.93 *  -0.055 -2.79 ***  -0.020 -1.04 -

α9  -0.076 -4.22 ***  -0.080 -4.63 ***  -0.058 -3.03 ***  -0.057 -2.74 ***  -0.036 -1.84 **

α10  -0.052 -3.03 ***  -0.056 -3.07 ***  -0.021 -1.14 -  -0.037 -1.73 *  -0.014 -0.63 -

α11  -0.059 -3.54 ***  -0.056 -3.24 ***  -0.026 -1.44 -  -0.048 -2.71 ***  -0.020 -1.09 -

α12  -0.032 -1.89 **  -0.024 -1.21 -  0.005 0.26 -  -0.004 -0.21 -  -0.001 -0.04 -

X6 X7 X8 X9 X10

X1 X2 X3 X4 X5
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In table 6.10, we present the monthly mean returns for the size portfolios. The returns are given 

in monthly percentage. 

Table 6.10: Monthly mean returns for size portfolios (EW) 

 

We see in table 6.10, that January has the highest return in each decile portfolio, except from 

portfolio X10 where April and July are the months with highest returns and portfolio X8 where 

December has the highest return. The January return for portfolio X1 is also largest among the 

decile portfolios, with a monthly return of entire 11%, this is much larger than for portfolio 

X10, which has a January return of only 2,1%. These results support the theory of the January 

effect being a small-firm effect.  

 

6.5 Has the January Effect Changed Over the Years? 

Because we have found significant evidence that there exists a January effect for the EW 

portfolio, and especially for the smallest size portfolios, it would be interesting to see how this 

effect has changed during our test period. Maybe the effect has decreased over the years? To 

find this out, we divide our period into three sub-periods. First sub-period includes the years 

1980 to 1990, second sub-period includes the years 1991 to 2002, and the third sub-period 

includes the years 2003 to 2014. The tests for normality and heteroscadatisity for both portfolios 

can be found in Appendix A3. We found that we had no problem with heteroscedatisity, but the 

samples were not normally distributed. To make the results more valid we use the bootstrap 

regression in this section. We choose to draw 50 000 bootstrap samples. The results are shown 

in table 6.11. 

 

MONTHS X1 X2      X3 X4 X5 X6 X7 X8 X9 X10 

JANUARY 11,0 % 6,8 % 5,8 % 5,9 % 6,5 % 6,2 % 5,9 % 3,2 % 4,1 % 2,1 % 
FEBRUARY 4,1 % 5,6 % 3,7 % 1,9 % 4,3 % 3,0 % 2,1 % 2,0 % 1,5 % 0,9 % 

MARCH 4,8 % 1,3 % 3,0 % 2,0 % 2,2 % 2,1 % 2,0 % 2,1 % 1,9 % 1,7 % 
APRIL 4,0 % 3,0 % 3,4 % 3,2 % 2,9 % 3,8 % 2,3 % 3,0 % 3,1 % 2,9 % 
MAY 1,8 % 2,0 % 1,6 % 1,2 % 1,6 % 1,4 % 1,7 % 2,0 % 0,3 % 1,6 % 
JUNE 0,0 % 0,2 % -0,7 % 0,3 % -0,3 % -0,5 % -0,8 % -1,0 % -1,7 % -0,9 % 
JULY 3,3 % 3,7 % 2,3 % 2,0 % 2,9 % 1,8 % 2,3 % 2,9 % 3,7 % 2,9 % 

AUGUST 1,2 % 1,1 % 0,5 % -0,3 % 0,6 % -0,5 % 0,0 % -0,5 % -1,3 % 0,1 % 
SEPTEMBER 0,6 % 0,4 % -1,3 % -0,3 % -1,2 % -1,3 % -2,0 % -2,7 % -1,6 % -1,6 % 

OCTOBER 0,9 % -0,2 % -0,3 % 2,1 % 1,5 % 1,0 % 0,3 % 1,0 % 0,5 % 0,6 % 
NOVEMBER 1,3 % 2,2 % 0,0 % -0,5 % -0,3 % 0,3 % 0,3 % 0,5 % -0,7 % 0,1 % 
DECEMBER 1,3 % 0,0 % 0,9 % 0,4 % 2,5 % 3,0 % 3,5 % 3,6 % 3,7 % 2,0 % 
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Table 6.11: Results from the bootstrap regression for the EW portfolio, divided into three sub-periods 

 

From table 6.11 we observe that the return in January has decreased over the period, from a 

9,1% monthly mean return in first sub-period to a monthly mean return of 2,8% in the third 

sub-period. We also see that the December return in the third sub-period is higher than the 

return in January, which could indicate that the January effect has shifted more to a December 

effect or a turn-of-the-year effect. According to the results in table 6.11, we only find significant 

evidence for a January effect in the first sub-period. Here, all the coefficients are significant at 

a level of at least 5%. In the second sub-period there are only a few of the coefficients that are 

significant. When we look at the third sub-period, none of the coefficients are significant. This 

means that we do not find significant evidence for a January effect in the period 1991 to 2014, 

only for the period 1980 to 1990. Does this mean that the effect has disappeared totally? To 

find this out, we also see how the effect has changed for the smallest size portfolio (X1) from 

section 6.4. The results are shown in table 6.12. 

 

Coef. z sig. level Coef. z sig. level Coef. z sig. level

α1 0.096  5.12 *** 0.052  3.15 *** 0.028  1.81 *

α2 -0.060 -2.34 ** -0.020 -0.89 - -0.008 -0.44 -

α3 -0.063 -2.53 ** -0.028 -1.26 - -0.016 -0.89 -

α4 -0.065 -2.68 *** -0.018 -0.80 - -0.002 -0.10 -

α5 -0.094 -3.95 *** -0.026 -1.38 - -0.014 -0.64 -

α6 -0.108 -4.71 *** -0.066 -3.24 *** -0.015 -0.73 -

α7 -0.057 -2.57 *** -0.032 -1.44 - -0.009 -0.49 -

α8 -0.084 -3.92 *** -0.065 -2.20 ** -0.021 -1.09 -

α9 -0.087 -3.62 *** -0.089 -3.89 *** -0.031 -1.28 -

α10 -0.097 -3.48 *** -0.032 -1.4 - -0.021 -0.85 -

α11 -0.097 -4.04 *** -0.052 -2.05 ** -0.018 -0.90 -

α12 -0.089 -3.37 *** -0.035 -1.56 - 0.005 0.29 -

1980-1990 1991-2002 2003-2014
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Table 6.12: Results from the bootstrap regression for the 10% smallest firms in the EW portfolio, divided into 

three sub-periods 

 

From table 6.12 we see that the return in January has decreased considerably from the first sub-

period to the following two sub-periods. In the first sub-period January had a monthly mean 

return of 21% and then it decreased to a monthly mean return around 6-7%. We see that in the 

first sub-period, all the coefficients are significant at a 1% significance level. The second sub-

period only have a few coefficients that are not significant, March, April and May. For the third 

sub-period the coefficients are significant for at least a 5% significance level. This means that 

we only find significant evidence for a January effect for the period 1980 to 1990 and from 

2003 to 2004. It seems like the January effect for the smallest firms existed in the first period 

then it disappeared in the second sub-period, before it reappeared in the third sub-period. The 

results from table 6.12 indicate that the January effect still exists in Norway and that it is mainly 

a small-firm effect. 

 

6.6 The Turn of the Year 

In recent years, the January effect has become more known as the turn-of-the-year effect. 

Researchers have indicated that the days when the returns are abnormally high have moved 

more to the first trading days in January, and even to the last trading days of December 

(Szakmary & Kiefer, 2004). In section 6.5 we found that for the last sub-period in the EW 

portfolio, December had a higher monthly mean return than January and the other ten months. 

We will therefore see which days in December and January that have higher returns than the 

mean return for the whole year. We use the EW daily returns for the last fifteen trading days in 

Coef. z sig. level Coef. z sig. level Coef. z sig. level

α1 0.210  6.85 *** 0.069  4.99 *** 0.060  4.92 ***

α2 -0.145 -3.07 *** -0.039 -2.59 *** -0.030 -2.02 **

α3 -0.127 -3.13 *** -0.015 -0.37 - -0.050 -3.27 ***

α4 -0.148 -3.92 *** -0.015 -0.65 - -0.054 -3.66 ***

α5 -0.196 -4.69 *** -0.031 -1.14 - -0.059 -3.59 ***

α6 -0.228 -6.44 *** -0.064 -3.56 *** -0.046 -3.19 ***

α7 -0.164 -4.47 *** -0.040 -1.67 * -0.036 -2.31 **

α8 -0.192 -5.73 *** -0.058 -2.31 ** -0.053 -3.9 ***

α9 -0.176 -4.60 *** -0.082 -4.5 *** -0.061 -4.27 ***

α10 -0.196 -4.93 *** -0.066 -2.75 *** -0.049 -3.26 ***

α11 -0.182 -4.54 *** -0.065 -2.85 *** -0.051 -2.76 ***

α12 -0.208 -5.85 *** -0.041 -2.22 ** -0.051 -2.98 ***

1980-1990 1991-2002 2003-2014
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December and for the first fifteen trading days in January. We have in total 34 year-turns, 

starting with the end of year 1980 and ending with the beginning of year 2014. 

 

In this case we will use a descriptive approach to see which trading days during December and 

January the returns are higher than the global mean, an if this has changed during the period. 

We use line diagrams to present the results. T1 represents the first trading day in January 

(current month), T2 the second trading day in January, etc. T-1 represents the last trading day 

in December (previous month), T-2 the second last trading day in December, etc. We ignore 

days that do not fall into this interval. We also calculate the global mean return for each period, 

which consists of the average mean returns of all trading days in that period, and we assume 

250 trading days a year. 

 

First, we look at the mean returns for the trading days in December and January in the period 

1980-2014 all at once, then we divide this period into three sub-periods. Global means for each 

period varies from around 0.08% until 0.11%. In figure 6.5 we see the line diagrams where the 

blue lines ( ) represent daily mean returns for each period, and the red lines ( ) represent 

the global daily mean return for each period. Trading days are plotted at the horizontal axes, 

and the daily returns (given in percent) are plotted at the vertical axes. 
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Figure 6.5: Line diagrams showing daily mean returns for trading days in December and January 

 

When looking at the resulting line diagram for the whole period (1980-2014), we see that the 

high positive returns starts at the fourth last trading day of December and last until the sixth 

first trading day of January. This indicates that the “effect” seems to start already a few days 

before the month of January. When looking at the three sub-periods, we see that the daily returns 

vary widely. The first sub-period show most positive, high returns in January, starting on the 

third last trading day in December. Second sub-period show fewer high positive returns in 

January, and the high positive returns start from the fourth last trading day in December. The 

third sub-period does not show many high January returns either, and the high returns starts 

already from the eight last trading day in December. Overall, the line diagrams show that there 

exist higher returns during the trading days in January in the beginning of the period. The last 

trading day in December show higher returns the whole period, and this has expanded during 

the period. It is difficult to draw a conclusion from these graphs, but it seems like the January 

effect starts earlier for each period. One explanation for this change may be that investors are 

aware that the stock returns will increase in January, and thus they try to buy these stocks before 

the expected increase, leading to higher returns in the last trading days of December. 

 

6.7 Possible Explanations for a January Effect in Norway 

Two reasons for the January effect that is frequently mentioned in other studies, is the tax-loss 

selling hypothesis and the window-dressing hypothesis. We therefore want to see if these 

hypotheses could be relevant in Norway as well. First, we will look at tax-loss selling. The 
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Taxation Act in Norway says that, in general, gains on realization of shares etc. are considered 

as taxable income, and losses on realization of shares etc. may be deducted from the taxpayer's 

income, cf. § 10-31 (Skatteloven, 2006). This means that investors may have incentives to keep 

stocks with a high rise in prices in order to postpone tax payments, and to sell stocks that has 

decreased in value in order to get a deduction in tax payments. By the Tax Reform of 2006, a 

new law that prevent chain taxation within the corporate sector was introduced 

(Finansdepartementet, 2013). According to this law, corporate shareholders are exempt from 

taxation of income and does not have the right to deduct losses, cf. § 2-38 (1) (Skatteloven, 

2012). The incentive to sell losing stocks may supports the tax-loss selling hypothesis and the 

January effect, but the Tax Reform of 2006 may have decreased the incentives for tax-loss 

selling in recent years, at least among the corporate shareholders.  

 

Regardless of which country the institutional managers are located; we would guess that all of 

them would be hesitant in showing their portfolio holdings that have declined in value. We 

would therefore assume that the window-dressing hypothesis would exist in Norway just as in 

any other country. According to the Securities Funds Act in Norway, the fund management 

company should for each mutual fund publish an annual report and a half-year report cf. § 8-1 

(Verdipapirfondloven, 2011). Publications of portfolio holdings might give incentives to 

window dressing, but a counterargument to this hypothesis is that is has become more common 

for managers to inform investors what stocks they have traded and when they were traded, this 

to create more transparency and to signal that they are serious with what they do. 

 

It is difficult to conclude what reasons lie behind the existence of a January effect in Norway 

without doing a more thorough investigation. It is reasonable to assume that there is not one 

factor, but that there lies many explanations behind that jointly creates a January effect. This 

can both be behavioral factors, macroeconomic factors and other economic factors in the 

market, like taxes. We are not going to go deeper into this in this thesis, but it could be an 

interesting topic for further investigation. 
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7 Testing for the Other January Effect  

Because many researchers have shown that the January effect exists in global stock markets, 

they have recently been interested in finding out if January returns have a predictive power for 

the following 11 months. This phenomenon is referred to as “the other January effect”. In this 

chapter of the thesis, we want to see if this effect also exists in Norway, and that the mean 

returns for the following 11 months will likely be higher after positive January returns than 

after negative Januarys. To support our theory about the other January effect, we expect to find 

significantly positive coefficients for the remaining 11 months of the year if January returns are 

positive, and significantly smaller coefficients for the remaining 11 months of the year if 

January returns are negative. 

 

7.1 Methodology 

We follow the methodology proposed by Cooper, McConnell, and Octchinnikov (2006). We 

use a regression model with a dummy variable, and test the significance of parameter 𝛼2 using 

the following model for EW and VW raw returns: 

 

𝑟𝑓𝑒𝑏−𝑑𝑒𝑐,𝑡 = 𝛼1 + 𝛼2𝐷𝑗𝑎𝑛,𝑡 + 𝜀𝑡   (3) 

 

For EW and VW excess returns, the model is: 

 

𝑟𝑓𝑒𝑏−𝑑𝑒𝑐,𝑡 − 𝑟𝑓 = 𝛼1 + 𝛼2𝐷𝑗𝑎𝑛,𝑡 + 𝜀𝑡  (4) 

 

where 𝑟𝑓𝑒𝑏−𝑑𝑒𝑐,𝑡 is the yearly average raw return for February to December, 𝑟𝑓𝑒𝑏−𝑑𝑒𝑐,𝑡 − 𝑟𝑓 is 

the yearly average excess return for February to December, t = year, 𝛼1  is a constant, 𝛼2 

denotes the differences between the January returns and the returns in the 11 other months. 

𝐷𝑗𝑎𝑛,𝑡 is a dummy variable that takes the value of one when the January returns are positive and 

the value zero when the January returns are negative. 𝜀𝑡 is the error term that we assume is 

normally distributed. 

 

If we take an example with raw returns, and we have a constant that is -1 % and the difference 

between January and the 11 other months is 3%, model (3) would be: 
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𝑟𝑓𝑒𝑏−𝑑𝑒𝑐,𝑡 = −0.01 + 0.03 ∗ 1 = 0.02 

 

This result tells us that when the return in January is positive, then the rest of the year will have 

an average return of 2%. For negative Januarys the dummy variable would be equal to zero, 

and we would have a negative average return of 1% for the rest of the year.  

 

The F-test’s null hypothesis states that January does not have a predictive power for the 

following 11 months of the year in the Norwegian stock market. The alternative hypothesis 

states that January can predict the returns for the following 11 months of the year in the 

Norwegian stock market. Expressed in formal terms: 

 

𝐻0:     𝛼2 = 0 

𝐻𝐴:     𝛼2 ≠ 0 

 

If the difference between the January returns and the returns in the 11 other months is equal to 

zero, then the parameter 𝛼2 should be insignificant. This means that we fail to reject the null 

hypothesis. 

 

7.2 Parametric Testing of the Equally-Weighted Portfolio 

To test if the other January effect exists at the OSE, we use the OLS-method to estimate the 

parameters of the model. Given the estimates, we will perform parametric tests where we do a 

regular t-test and interpret the p-values of the test. Because these test procedures are only valid 

if the assumptions underlying model (3) and (4) hold, we therefore will perform some non-

parametric tests if it appears that our residuals are not normally distributed. The processed 

results from our regression are shown in table 7.1, the unprocessed results are shown in 

appendix A4. We have divided the table into columns with positive and negative Januarys (𝛼1 +

𝛼2 and 𝛼1 respectively), and the coherent returns for the following 11 months are given under. 

We also show the spread between the 11 months’ returns following positive Januarys and the 

11 months’ returns following negative Januarys. N stands for the number of months with 

positive or negative returns. The p-values for the mean return in the 11 months following 

positive Januarys are given in parentheses ( ), and in brackets [ ] for negative Januarys. 
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PORTFOLIO POSITIVE 

JANUARYS 

NEGATIVE 

JANUARYS 

SPREAD P-VALUE 

 

 
Returns % N Returns % N 

  

EW 1.69 31 -1.74 4 3.43 
(0.005) ** 

[0.110] – 

EW-RF 1.10 31 -2.51 4 3.61 
(0.004) *** 

[0.028] ** 

VW 2.10 25 0.67 10 1.43 
(0.061) * 

[0.293] – 

VW-RF 1.44 25 0.17 10 1.27 
(0.112) – 

[0.801] – 

Table 7.1: Processed results from the OLS regressions 

 

From table 7.1, we see that in the case of the EW portfolio, we have positive mean returns in 

the 11 months following a positive return in January, and negative returns in the 11 months 

following a negative return in January. The spread between positive and negative Januarys is 

3.43% and 3.61% for the raw and excess EW portfolio respectively. For the excess returns, we 

have a significant other January effect with a significance level of 5%, even though we only 

have four negative Januarys. For the raw returns, we see that only the positive returns are valid, 

whereas the negative returns are not statistically significant.  

 

When looking at the VW portfolio, we have positive mean returns in the 11 following months 

both after a positive and a negative return in January, but the return is lower when January is 

negative. The spread between positive and negative Januarys is 1.43% and 1.27% for the raw 

and excess VW portfolio respectively. We only have one significant result, for positive January 

returns in the raw returns, the other values are not significant. We see that the returns for the 

VW portfolio are higher than the returns for the EW portfolio, both for positive and negative 

Januarys, thus the spread is larger for the EW portfolio.  

 

Like the procedure in chapter 6 with the January effect, we will also here check for normality. 

We will look at the raw and excess residuals for both portfolios. We did not find a problem with 

heteroscedasticity, this test is shown in appendix A4. In figure 7.1, we see the density of the 

residuals, the normal density line (solid line) and the kernel density line (dashed line). 

 



60 

 

 

Figure 7.1: Distribution plots for the residuals 

 

 RESIDUALS 

EW (a) VW (b) EW-Rf (c) VW-Rf (d) 

SKEWNESS 0.418 0.147 0.260 0.042 

KURTOSIS 2.941 2.527 2.859 2.435 

Table 7.2: Skewness and kurtosis variables 

 

In figure 7.1 and table 7.2, we see that the distribution of all the residuals slightly deviates from 

normality. The columns in table 7.2 are marked (a) to (d), corresponding to plots (a) to (d) in 

figure 7.1. In (a) we have the residuals for the EW portfolio (raw returns). We observe more 

values to the left of the mean, giving us a positive skewness (>0). The kurtosis is close to three, 

but the distribution is a little flatter than the normal distribution. For (b) we have the residuals 

for the VW portfolio (raw returns). The skewness is slightly positive (>0) and lies closer to the 

normal distribution. We see that the density is flatter with thicker tail than the normal density, 

this is confirmed by the kurtosis value lower than three. (c) shows the residuals for the EW 



61 

 

excess returns. The residuals are positively skewed (>0) and the kurtosis is lower than three, 

giving a flatter density. (d) shows the residuals for the VW excess returns. The skewness lies 

close to the normal density (≈0), but the kurtosis is lower than three. Because we have so few 

sample years with negative Januarys, it is hard to draw a conclusion just from these histograms. 

Therefore, to determine if we can assume normality, we run a Shapiro-Wilks normality test.  

 

SHAPIRO – WILK NORMALITY TEST 

 P-VALUES 

EW 0.636 

EW-RF 0.726 

VW 0.851 

VW-RF 0.860 

Table 7.3: Test statistics for the Shapiro-Wilk normality test 

 

According to the values from table 7.3, we fail to reject the null hypotheses, which states that 

the residuals are normally distributed. This means that we do not need to perform any non-

parametric tests, and we can use the original results and assume that our data and residuals are 

normally distributed. 

 

We will now see if there exists a correlation between the average January returns and the 

average returns for the following 11 months of the year. This relationship can formally be 

represented by: 

𝑟𝑓𝑒𝑏−𝑑𝑒𝑐,𝑡 = 𝛼1 + 𝛼2𝑟𝑗𝑎𝑛,𝑡 + 𝜀𝑡                (5) 

𝑟𝑓𝑒𝑏−𝑑𝑒𝑐,𝑡 − 𝑟𝑓 = 𝛼1 + 𝛼2𝑟𝑗𝑎𝑛,𝑡 + 𝜀𝑡        (6) 

 

where 𝑟𝑗𝑎𝑛,𝑡  represents the mean return in January. In figure 7.2, the x-axis represents the 

average January returns, whereas the y-axis represents the average returns in the following 11 

months of the year. To support the other January effect, this relationship (shown by the fitted 

line) should be increasing and positive. 
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Figure 7.2: January vs. the other 11 months, for each portfolio 

 

We see from the plots in figure 7.2, that there seems to be a positive correlation between January 

returns and the returns of the 11 following months, but the points are widely spread around the 

fitted line. Even if there are deviations from the fitted line, this indicates that if January has 

positive returns then the rest of the year tend to have positive average returns. If January has 

negative returns then the rest of the year tend to be negative or at least lower than if January 

has positive returns. This can be shown by the correlation coefficients in table 7.4. 

 

CORRELATION 

EW VS JAN 0.469 

EW-RF VS JAN-RF 0.427 

VW VS JAN 0.389 

VW-RF VS JAN-RF 0.343 

Table 7.4: Correlation coefficients between Januarys and the following 11 months 

 

We see in table 7.4, that all the average returns for the following 11 months are positively 

correlated with January returns. This suggests that when January has positive (negative) returns, 

then the rest of the year also tend to have positive (negative) average returns.  
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Even though there exists a positive correlation between the average return of the portfolios and 

the average returns in January, it is only the excess return for the EW portfolio that has 

statistically significant values for both the positive and negative Januarys. The EW and VW 

raw returns have significant values only for positive Januarys. Our results finds evidence for 

the theory of the other January effect for the positive Januarys, except in the case of the excess 

VW portfolio, but we do not find evidence for the theory regarding the negative Januarys.  

 

7.3 Testing Size Portfolios 

Because we found evidence of the other January effect when looking at the EW portfolio, but 

not when looking at the VW portfolio, it would be interesting to compare the returns for the 

smallest firms with the returns for the largest firms to see if there is a difference with respect to 

the size of the firms. We do a linear regression for the 10% smallest firms, the second 10% 

smallest firms, and for the 10% largest firms, denoted by X1, X2 and X10 respectively. Our 

regression models are model (3) and (4) from section 7.1. For these portfolios we did  not find 

a problem with heteroscedasticity. We failed to assume normality, therefore we will use the 

bootstrap method in this section. The tests are shown in appendix A5. We choose to draw 

50 000 bootstrap samples for both the raw and the excess return. The results for the EW raw 

returns are shown in table 7.5.  

 

 

Table 7.5: Results from the bootstrap regression for portfolios X1, X2 and X10 for EW raw returns 

 

Coef. t P>t Sig.level Spread

α1 -0.001 -0.05 0.962 -

α2 0.023  1.70 0.088 *

Coef. t P>t Sig.level Spread

α1 0.015 0.63 0.527 -

α2 0.003 0.10 0.919 -

Coef. t P>t Sig.level Spread

α1 0.008  1.07 0.287 -

α2 0.003 0.36 0.721 -
0.003

X1

X2

X10

0.023

0.003
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From table 7.5 we can take an example with X1. If January returns were positive then the mean 

return for the 11 following months would be: 

 

𝛼1 + 𝛼2 = (−0,001) + 0,023 = 0,022 

 

If January returns are negative, then the mean return in the 11 other months is: 

 

𝛼1 = −0,001 

 

In table 7.5 we see that the results are coherent with the theory of the other January effect, but 

only one coefficient is statistically significant at a 10% level. This means that we do not find 

significant evidence for the other January effect for any of the decile portfolios. We also see 

that the spreads are narrow, indicating that the difference between the returns in the 11 months 

following a positive and a negative January are quite small. This indicates that the other January 

effect is independent of the size of the firms. We now want to see if this is also the case when 

using EW excess returns, the results are shown in table 7.6. 

 

 

Table 7.6: Results from the bootstrap regression for portfolios X1, X2 and X10 for EW excess returns 

 

In table 7.6, we have results that are coherent with the other January effect. We fail to reject the 

null hypotheses for portfolio X1 and X2, but we reject the null hypothesis for the X10 portfolio. 

We also see that the spreads are low, indicating that the difference between the returns in the 

11 months following a positive and a negative January are small. According to these results, 

the other January effect do not seem to be affected by the size of the firm.   

 

Coef. t P>t Sig.level Spread

α1  -0.004 -0.36 0.720 -

α2  0.020  1.86 0.062 *

Coef. t P>t Sig.level Spread

α1  0.008 0.36 0.718 -

α2  0.003 0.14 0.887 -

Coef. t P>t Sig.level Spread

α1  -0.011 -1.87 0.061 *

α2  0.022  3.11 0.002 ***

X1

 0.020

X2

 0.003

X10

 0.022
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8 Conclusion 

In this thesis we have examined the two anomalies “the January effect” and “the other January 

effect”. The January effect was first discovered by Wachtel in 1942, and has since then been 

widely discussed and researched. The other January effect is a more unfamiliar anomaly that 

was discovered by Hirsch in 1972, it has not been studied to the same extent as the January 

effect, but has become more familiar in recent years. Research has confirmed the January effect 

on a global scale, whereas the other January effect is not a global phenomenon. 

 

When we tested for the existence of the January effect we used the non-parametric procedure 

because we failed to fulfil the assumption of normality. We found that the EW portfolio exhibit 

a January effect with a 10% significance level, whereas the VW portfolio did not show 

significant results. The mean return for the EW portfolio in January was 5.8%, whereas the 

other months had significantly lower mean returns. For example, April had the highest mean 

return among the other months with a return of 3.2%, whereas September had the lowest mean 

return with a return of -1.1%. The mean return in January was 2.6% higher than in April, and 

6.9% higher than in September. For the VW portfolio there was only four of the other months 

that were significant, and the returns were much lower than the returns in the EW portfolio.  

 

Because all coefficients for the EW portfolio were significant, and the EW portfolio gives 

relatively higher weight to small firms than the VW portfolio, we also tested for the January 

effect based on firm size. Our results showed that the January mean returns decreased with the 

size of the firms, with only two exceptions. The portfolio with the 10% smallest firms had a 

11% monthly mean return in January, this was much higher than the second highest January 

mean return in the portfolio with the 10% second smallest firms, with a 6.8% mean return. We 

found that the smallest decile portfolio had significant levels of difference in the return between 

January and all the other months, at a 1% level. The largest size portfolios did not show a 

significant January effect.  

 

During our period from 1980 to 2014, the January effect did change. When we divided the 

period into three sub-periods, we only found a significant January effect for the EW portfolio 

in the first sub-period. When we divided the EW portfolio consisting of the 10% smallest firms 

into three sub-periods, we found that the January effect was not significant in the period 1991 

to 2002, whereas for the sub-periods before and after it was significant at a 1% level. 
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When testing for the other January effect we only found significant values for the EW excess 

return portfolio, though we only had four observations with negative January returns. Our result 

from the excess EW portfolio, indicated that if January returns were positive then the average 

returns for the following 11 months would be 1.10%, whereas it would be - 2.51% if January 

exhibited negative returns. We also found significant evidence for the positive Januarys, both 

for the EW and the VW raw portfolios. There was a slightly positive correlation between the 

return in January and the returns for the rest of the year. This contributed to the conclusion that 

if January exhibited positive returns, then the other 11 months of the year were more likely to 

have positive returns. We also tested if the other January effect was affected by the size of the 

firms, but we did note find such a relationship.  

 

Our results indicate that there exists a January effect for the EW portfolio and a other January 

effect for the EW excess portfolio in the Norwegian stock market. We also find evidence that 

the January effect has disappeared in the latest years for the EW portfolio as a whole, but that 

it still exists for the smallest firms. According to these finding, the January effect seems to be 

a small-firm effect. The existence of the January effect might be due to a combination of tax-

loss selling, window-dressing, and other economic factors. 
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A APPENDIX 

A1 More Details About the Data 

As mentioned in chapter 5, the data we use is provided by Bernt Arne Ødegaard, Professor in 

finance at the University of Stavanger. He describes the data more closely in his two papers 

“Empirics of the Oslo Stock Exchange: Basic Results” and “Empirics of the Oslo Stock 

Exchange: Asset Pricing Results”. We will here present some of it, but to get a more detailed 

description and some more descriptive information we recommend that you read Ødegaard’s 

papers (links in the reference list). 

 

Ødegaard’s data starts in 1980 and ends in 2014. The raw data that he used was from the Oslo 

Stock Exchange Data Service, it contained volume and daily observations of prices of all stocks 

traded at the Oslo Stock Exchange (OSE), as well as dividends and factors necessary when 

calculating returns. When calculating representative returns for the OSE he did not use all the 

stocks. He omitted stocks that had less than 20 trading days, stocks that had a price below 10 

NOK, and stocks with a total value outstanding of less than 1 million NOK. When constructing 

the market portfolios he constructed two indices, equally-weighted and value-weighted. For 

value-weighting, he has used end of year values at the previous yearend. He mostly used 

monthly and annual NIBOR rates as the estimate of the risk-free rate, and calculated two interest 

rates: one monthly risk-free rate and one yearly risk-free rate (Ødegaard, 2015b). Ødegaard also 

calculated several portfolios that are sorted by similar criteria. He constructed the portfolios by 

grouping stocks at the OSE according to for example industries, momentum, and spread. The 

one we use in our thesis is the portfolio with stocks at the OSE sorted by company equity size. 

This portfolio is divided into ten portfolios with increasing firm size from 1980 to 2014 

(Ødegaard, 2015a) 

 

A2 Testing Size Portfolios 

We test for heteroscedasticity and normality for all of the ten decile portfolios. X1 represent the 

10% smallest firms, X2 represent the 10% second largest firms etc, and X10 represent the 10% 

biggest firms. First, we present the OLS regression result in table A2.1: 
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Table A2.1: Results from the OLS regression for the decile portfolios 

 

Heteroscedatisity 

Second, we test for heteroscedasticity. We do this by plotting the residuals versus the fitted 

values, for all decile portfolios, to check for any patterns. 

 

 

Coef. t sig. level Coef. t sig. level Coef. t sig. level Coef. t sig. level Coef. t sig. level

α1 0.110  9.84 *** 0.068  6.15 *** 0.058  5.31 *** 0.059  5.23 *** 0.065  5.78 ***

α2 -0.069 -4.38 *** -0.012 -0.74 - -0.021 -1.35 - -0.040 -2.48 ** -0.022 -1.37 -

α3 -0.062 -3.92 *** -0.055 -3.50 *** -0.028 -1.82 * -0.039 -2.45 ** -0.043 -2.71 ***

α4 -0.070 -4.42 *** -0.038 -2.44 ** -0.024 -1.57 - -0.027 -1.70 * -0.036 -2.25 **

α5 -0.092 -5.84 *** -0.048 -3.08 *** -0.041 -2.70 *** -0.045 -2.92 *** -0.049 -3.07 ***

α6 -0.110 -6.93 *** -0.065 -4.21 *** -0.065 -4.22 *** -0.056 -3.49 *** -0.068 -4.28 ***

α7 -0.077 -4.89 *** -0.031 -1.98 ** -0.035 -2.27 ** -0.039 -2.45 ** -0.036 -2.27 **

α8 -0.098 -6.22 *** -0.057 -3.67 *** -0.053 -3.42 *** -0.062 -3.88 *** -0.059 -3.69 ***

α9 -0.104 -6.58 *** -0.064 -4.09 *** -0.071 -4.60 *** -0.062 -3.90 *** -0.077 -4.81 ***

α10 -0.101 -6.41 *** -0.070 -4.50 *** -0.060 -3.94 *** -0.038 -2.39 ** -0.050 -3.16 ***

α11 -0.097 -6.11 *** -0.046 -2.98 *** -0.058 -3.76 *** -0.064 -4.02 ** -0.068 -4.25 ***

α12 -0.097 -6.10 *** -0.067 -4.33 *** -0.049 -3.18 *** -0.055 -3.44 *** -0.040 -2.49 **

F-test  7.18 ***  4.15 ***  3.75 ***  2.60 ***  3.61 ***

Coef. t sig. level Coef. t sig. level Coef. t sig. level Coef. t sig. level Coef. t sig. level

α1 0.062  5.90 *** 0.059  5.16 *** 0.032  2.77 *** 0.041  3.29 *** 0.021  1.72 *

α2 -0.033 -2.18 ** -0.038 -2.34 ** -0.012 -0.72 - -0.026 -1.49 - -0.012 -0.72 -

α3 -0.041 -2.74 *** -0.040 -2.44 ** -0.011 -0.67 - -0.022 -1.24 - -0.004 -0.24 -

α4 -0.024 -1.61 - -0.036 -2.21 ** -0.002 -0.11 - -0.010 -0.58 - 0.009 0.50 -

α5 -0.049 -3.26 *** -0.042 -2.59 *** -0.012 -0.73 - -0.039 -2.18 ** -0.005 -0.30 -

α6 -0.067 -4.48 *** -0.067 -4.12 *** -0.041 -2.56 ** -0.058 -3.28 *** -0.029 -1.72 *

α7 -0.045 -2.98 *** -0.036 -2.23 ** -0.003 -0.17 - -0.004 -0.25 - 0.008 0.45 -

α8 -0.068 -4.52 *** -0.059 -3.65 *** -0.037 -2.29 ** -0.055 -3.07 *** -0.020 -1.16 -

α9 -0.076 -5.08 *** -0.080 -4.90 *** -0.058 -3.61 *** -0.057 -3.24 *** -0.036 -2.13 **

α10 -0.052 -3.50 *** -0.056 -3.44 *** -0.021 -1.33 - -0.037 -2.07 ** -0.014 -0.85 -

α11 -0.059 -3.97 *** -0.056 -3.46 *** -0.026 -1.62 - -0.048 -2.71 *** -0.020 -1.16 -

α12 -0.032 -2.17 ** -0.025 -1.52 - 0.005 0.28 - -0.004 -0.22 - -0.001 -0.04 -

F-test  4.08 ***  3.31 ***  2.83 ***  3.06 ***  1.37 -

X10X6 X7 X8 X9

X5X1 X2 X3 X4
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Figure A2.1: Plots of the residuals vs the fitted values for all decile portfolios 
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In figure A2.1, plot X1 represent the residuals versus the fitted values for portfolio X1, plot X2 

represent the residuals versus the fitted values for portfolio X2  etc. We do not see any “visible” 

pattern from the plots, to confirm this we do an IM-test, the p-values are presented in table 

A2.1: 

 

IMTEST P-VALUES 

X1 0.2452 

X2 0.4994 

X3 0.3551 

X4 0.6290 

X5 0.3059 

X6 0.2096 

X7 0.6040 

X8 0.2676 

X9 0.0382 

X10 0.0443 

Table A2.2: IM-test for all the decile portfolios 

 

From the p-values in table A2.2, we can conclude that we do not have a problem with 

heteroscedasticity for all the portfolios. Because of this, we will not perform a regression with 

the robust option. Now we have to test for normality. We plot the distribution for all portfolios 

and for the residuals. The solid line is the normal density line and the dashed line is the kernel 

density line.  
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Figure A2.2: Distribution plots for all portfolios and residuals 

 

In figure A2.2, plot (a) show the distribution for the X1 portfolio and plot (b) show the 

distribution of the residual for the X1 portfolio, plot (c) present the distribution of the X2 

portfolio and plot (d) show the distribution of the residuals for the X2 portfolio, etc. We see 

deviations from the normal distribution in all the plots. The kurtosis and the skewness are 

presented in table A2.3 
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 SKEWNESS KURTOSIS 

 EW Residuals EW Residuals 

X1 1.591 1.387 9.499 8.699 

X2 0.818 0.780 5.293 5.241 

X3 0.416 0.372 5.836 5.378 

X4 0.261 0.259 5.028 4.813 

X5 1.168 1.152 10.636 10.540 

X6 -0.039 -0.158 5.264 4.761 

X7 0.548 0.579 8.683 8.355 

X8 -0.208 -0.116 4.020 3.739 

X9 -0.457 -0.426 4.403 4.052 

X10 -0.621 -.0582 5.829 5.736 

Table A2.3: Values for skewness and kurtosis 

 

The ten portfolios do not seem to be normally distributed. To confirm this we perform the 

Shapiro-Wilks test for normality: 

 

 P-VALUE 

 EW Residuals 

X1 0.00000 0.00000 

X2 0.00000 0.00000 

X3 0.00000 0.00000 

X4 0.00000 0.00000 

X5 0.00000 0.00000 

X6 0.00000 0.00009 

X7 0.00000 0.00000 

X8 0.00090 0.02460 

X9 0.00001 0.00018 

X10 0.00000 0.00000 

Table A2.4: The Shapiro-Wilks  normality test 

 

We reject the null hypothesis. This means that the ten decile portfolios are not normally 

distributed, and we have to use the bootstrap method. 
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A3 Testing of the Sub-Periods for the EW and the X1 Portfolio 

In this section we will test if the three sub-periods, both for the EW portfolio and the smallest 

EW size portfolio, are normally distributed and if we have a problem with heteroscedasticity. 

First, we perform the linear regression for the three sub-periods of the EW portfolio and the X1 

portfolio. 

 

 

Table A3.1: Results from the linear regression or the three sub-periods for the EW portfolio 

 

 

Table A3.2: Results from the linear regression or the three sub-periods for the X1 portfolio 

 

Now we will see if we have a problem with heteroscedasticity in these two portfolios. 

Coef. t sig. level Coef. t sig. level Coef. t sig. level

α1  0.096  5.98 ***  0.052  3.25 ***  0.028  2.13 **

α2  -0.060 -2.68 ***  -0.020 -0.88 -  -0.008 -0.44 -

α3  -0.063 -2.79 ***  -0.028 -1.24 -  -0.016 -0.84 -

α4  -0.065 -2.88 ***  -0.018 -0.80 -  -0.002 -0.11 -

α5  -0.094 -4.15 ***  -0.026 -1.13 -  -0.014 -0.73 -

α6  -0.108 -4.79 ***  -0.066 -2.93 ***  -0.015 -0.79 -

α7  -0.057 -2.53 **  -0.032 -1.41 -  -0.009 -0.46 -

α8  -0.084 -3.74 ***  -0.065 -2.88 ***  -0.021 -1.09 -

α9  -0.087 -3.84 ***  -0.089 -3.93 ***  -0.031 -1.62 -

α10  -0.097 -4.31 ***  -0.032 -1.41 -  -0.021 -1.14 -

α11  -0.097 -4.28 ***  -0.052 -2.28 **  -0.018 -0.97 -

α12  -0.089 -3.92 ***  -0.035 -1.54 -  0.005 0.28 -

F-test  3.29 ***  2.42 ***  0.58 -

1980-1990 1991-2002 2003-2014

Coef. t sig. level Coef. t sig. level Coef. t sig. level

α1  0.210  8.49 ***  0.069  3.62 ***  0.060  6.20 ***

α2  -0.145 -4.15 ***  -0.039 -1.43 -  -0.031 -2.22 **

α3  -0.127 -3.63 ***  -0.015 -0.54 -  -0.050 -3.66 ***

α4  -0.148 -4.23 ***  -0.015 -0.56 -  -0.054 -3.90 ***

α5  -0.196 -5.63 ***  -0.031 -1.14 -  -0.059 -4.27 ***

α6  -0.228 -6.54 ***  -0.064 -2.38 **  -0.046 -3.38 ***

α7  -0.164 -4.70 ***  -0.040 -1.48 -  -0.036 -2.59 **

α8  -0.192 -5.49 ***  -0.058 -2.15 **  -0.053 -3.88 ***

α9  -0.176 -5.04 ***  -0.082 -3.05 ***  -0.061 -4.40 ***

α10  -0.196 -5.63 ***  -0.066 -2.46 **  -0.049 -3.60 ***

α11  -0.182 -5.21 ***  -0.065 -2.39 **  -0.051 -3.70 ***

α12  -0.208 -5.96 ***  -0.041 -1.51 -  -0.051 -3.67 ***

F-test  5.72 ***  1.71 *  2.89 ***

1980-1990 1991-2002 2003-2014
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Figure A3.1: Residuals versus the fitted line  

 

In figure A3.1, plot (a) represent the residuals versus the fitted values for the first sub-period 

for the EW portfolio (EW-1), plot (b) represent the residuals versus the fitted values for the 

second sub-period for the EW portfolio (EW-2), etc, plot (f) show the residuals versus the fitted 

line for the third sub-period for the X1 portfolio (SEW-3). We see no “visible” pattern in these 

plots. To confirm this we perform the IM-test. 

 

IM P-VALUE 

EW-1 0.7467 

EW-2 0.2207 

EW-3 0.4900 

SEW-1 0.6189 

SEW-2 0.2257 

SEW-3 0.0715 

Table A3.3: The IM-test for the three sub-periods 

 

Beacause we fail to reject the null hypothesis we have no problem with heteroscedasticity, and 

we do not have to perform a regression with a robust option.   
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Normality  

We will now test for normality, first by looking at the distribution plots. We plot the distribution 

for all portfolios and for the residuals. The solid line is the normal density line and the dashed 

line is the kernel density line.  
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Figure A3.2: Distribution plots for the EW portfolio and size portfolio 

 

In figure A3.2, plot (a) show the distribution for the first sub-period for the EW portfolio and 

plot (b) show the distribution of the residual for the first sub-period for the EW portfolio, etc., 

plot (k) present the distribution of the third sub-period for the X1 portfolio and plot (l) show 

the distribution of the residuals for the third sub-period for the X1 portfolio. We see deviations 
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from the normal distribution in all the plots. The kurtosis and the skewness are presented in 

table A2.3 

 

 SKEWNESS KURTOSIS 

 EW Residuals EW Residuals 

EW-1 0.064 -0.227 3.855 3.216 

EW-2 -.0354 -.0225 3.872 3.332 

EW-3 -0.829 -0.744 5.410 4.968 

SEW-1 1.140 0.729 6.225 5.248 

SEW-2 1.542 1.529 8.979 8.785 

SEW-3 0.241 -0.106 2.764 2.687 

Table A3.4: Values for skewness and kurtosis 

 

The ten portfolios do not seem to be normally distributed. To confirm this we perform the 

Shapiro-Wilks test for normality: 

 

SWILKS P-VALUES 

 EW Residuals 

EW-1 0.03759 0.64463 

EW-2 0.03718 0.37806 

EW-3 0.00012 0.00031 

SEW-1 0.00001 0.00072 

SEW-2 0.00000 0.00000 

SEW-3 0.46862 0.77612 

Table A3.5: The Shapiro-Wilks normality test 

 

Only the residuals for EW-1, EW-2, SEW-3 and data on the dependent variable for SEW-3 are 

normally distributed. Because not all of the residuals are normally distributed we use the 

bootstrap method for all portfolios.  

 

A4 The Other January Effect 

In table A4.1 we present the unprocessed OLS regression results: 
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Table A4.1: The results from the OLS regression for the other January effect 

 

Heteroscedasticity  

To test for heteroscedasticity we plot the residuals against the fitted values to see if there exists 

any pattern between them. Plot (a) represents the residuals for EW raw returns, plot (b) the 

residuals for EW excess returns, plot (c) the residuals for VW raw returns, and plot (d) the 

residuals for VW excess returns. 

 

 

 

Figure A4.1: Plots showing the residuals against the fitted values 

Coef. t P>t Sig.level Coef. t P>t Sig.level

α1 -0.0174 -1.64 0.005 *** 0.0067 1.07 0.293 -

α2 0.0343 3.04 0.110 - 0.0143 1.94 0.061 *

F-test 9.24 0.0046 *** F-test 3.76 0.0610 *

Coef. t P>t Sig.level Coef. t P>t Sig.level

α1 -0.0251 3.11 0.004 *** 0.0017 0.25 0.801 -

α2 0.0361 -2.30 0.028 ** 0.0128 1.63 0.112 -

F-test 9.65 0.0039 *** F-test 2.66 0.1124 -

EW

EW-RF

VW

VW-RF
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As we see in figure A4.1, there is no “visible” convincing systematic pattern with respect to the 

variance in the OLS residuals. This indicates that the residuals are homogeneous. To confirm 

this, we also perform the IM-test: 

 

 IM–TEST 

EW 0.319 

EW – RF 0.683 

VW 0.831 

VW – RF 0.662 

Table A4.2: The IM-test for the other January effect 

 

Because the test statistics are larger than 0.05, we fail to reject the null hypothesis. This means 

that we do not have a problem with heteroscedasticity, and we can assume that the residuals are 

homoscedastistic. 

 

A5 Testing Decile Portfolios  

In this section, we will check if the six decile portfolios (raw and excess) are normally 

distributed and if we have a problem with heteroscedasticity. First, we present the OLS results: 

 

 

Table A5.1: Results from the OLS regression for portfolios X1, X2 and X10 for EW raw returns 

 

Coef. t P>t Sig. level Spread

α1 -0.001 -0.03 0.976 -

α2 0.023  1.15 0.260 -

F-test  1.31  0.2603 -

Coef. t P>t Sig. level Spread

α1 0.015  1.15 0.257 -

α2 0.003  0.18 0.862 -

F-test 0.03  0.8617 -

Coef. t P>t Sig. level Spread

α1 0.008  1.31 0.198 -

α2 0.003  0.38 0.704 -

F-test 0.15 0.7038 -

X1

X2

X10

0.023

0.003

0.003
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Table A5.2: Results from the OLS regression for portfolios X1, X2 and X10 for EW excess returns 

 

Heteroscedasticity  

We plot the fitted line against the residuals. Plot (a), (b) and (c) refers to the raw portfolios X1, 

X2, X10, respectively, whereas plot (d), (e), (f) refers to the excess portfolios X1, X2, X10, 

respectively. 

 

 

Figure A5.1: Fitted line versus the residuals for all six portfolios 

 

Coef. t P>t Sig. level Spread

α1 -0.004 -0.22 0.826 -

α2 0.020  1.23 0.228 -

F-test  1.31  0.2603 -

Coef. t P>t Sig. level Spread

α1 0.008 0.63 0.530 -

α2 0.003 0.24 0.815 -

F-test 0.03  0.8617 -

Coef. t P>t Sig. level Spread

α1 0.003 0.48 0.637 -

α2 0.001 0.09 0.931 -

F-test 0.15 0.7038 -

X10

0.001

X1

0.020

X2

0.003
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There are no “visible” pattern in the plots, this indicates that the residuals are homoscedastic, 

to confirm this we do the IM-test. In table A5.3 we have the p-values from the IM-test on all 

six portfolios. 

 

IM TEST P-VALUES 

 Raw Excess 

X1 0.5412 0.3964 

X2 0.0749 0.0985 

X10 0.0771 0.2148 

Table A5.3: The IM-test for three decile portfolios 

 

Because the test statistic are larger than 0.05 we fail to reject the null hypothesis and we do not 

have a problem with heteroscedasticity. Because of these results, we do not use the robust 

option regression.  

 

Normality 

We will now test if the dependent variable and the residuals are normally distributed. We first 

look at the distribution plots. Plot (a) and (b) show the distribution of the raw X1 portfolio and 

the residuals, respectively, plot (c) present the distribution of the raw X2 portfolio and the 

residuals, respectively, etc., and plots (e) and (f) show the of the excess X10 portfolio and the 

residuals, respectively. 
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Figure A5.2: Distribution plots for the three decile portfolios 

 

There are deviations from the normal density line. We will now look at the skewness and 

kurtosis. 

 SKEWNESS KURTOSIS 

RAW EW Residuals EW Residuals 

X1 0.716 0.699 3.147 3.139 

X2 1.596 1.665 6.766 6.851 

X10 -0.243 -0.157 3.018 3.097 

EXCESS     

X1 0.594 0.530 3.105 3.126 

X2 1.499 1.583 6.405 6.490 

X10 -0.266 -0.254 2.790 2.811 

Table A5.4: The values for skewness and kurtosis 

 

We see from table A5.4 that all portfolios deviate from the normal density, some more than 

others. To confirm this we do the Shapiro-Wilks test for normality. 
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SWILKS P-VALUES 

RAW EW Residuals 

X1 0.14959 0.14145 

X2 0.00017 0.00027 

X10 0.14959 0.74050 

EXCESS   

X1 0.34444 0.41451 

X2 0.00061 0.00039 

X10 0.65626 0.65321 

Table A5.5: Shapiro-Wilks normality test 

 

From table A5.5 we see that only the X2 and excess X2 portfolios are normally distributed. 

Because not all of the portfolios are normally distributed, we will use the bootstrap regression 

for all of them.  

 

 

 


