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Abstract 

The main purpose of this thesis is to evaluate the performance of the dynamic 

turbulence targeting asset allocation strategy, and then match it up against the volatility 

targeting strategy, which is the dynamic benchmark, plus the classic buy-and-hold 

equally-weighted strategy, which is the static benchmark portfolio. The analysis is 

conducted across four data sets, all of which are based on U.S. stock indices, using an 

out-of-sample period from 1973 to 2014, and also sub periods 1973 to 1990 and 1991 

up to 2014. Performances are first of all determined and assessed by the use of the 

Sharpe and Sortino ratios. In addition, the Sharpe ratios of the three strategies are 

tested, in order to identify whether they truly are statistically significantly 

distinguishable from one another. The empirical findings of this examination suggest 

that the turbulence targeting portfolio outperforms the two other portfolios, as stated by 

the numerical values of the Sharpe and Sortino ratios. Though, we cannot conclude that 

the Sharpe ratio of the turbulence targeting portfolio is statistically significantly higher 

than those of the benchmark portfolios. We also document that turbulence and volatility 

both are negatively related to future excess returns. 
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1  Introduction 

1.1 Background and literature review 

Financial investments are to a large degree focused on how you should balance your 

expected return with risk. The main goals for a rational investor are to maximize 

expected return, and at the same time keep the risk as low as possible. In order to do so, 

there are plenty of different strategies to choose from, of which most of them are 

categorized as diversification or hedging.  

  When regarding diversification, this is an expression that we see in a lot of 

different contexts, as well as in finance. For instance, in marketing, diversification would 

be to introduce a new product to a new market, while in corporate finance a well-

diversified enterprise would be an enterprise that are represented in several different 

markets. Typically, enterprises which are heavily involved in shipping (which is a very 

volatile branch), would also have other, more steadily performing divisions that can 

offset possible losses from the shipping division during troughs in the shipping market. 

By using this strategy, the enterprise would still be able to gain substantially when the 

shipping industry is at a peak.  

  Much of the same reasoning can be used in financial investments, where we often 

talk about diversification across assets (i.e. asset allocation), which is how you 

proportion different asset classes (equity, fixed-income (bonds), cash) in your portfolio. 

Stocks are usually more volatile (risky) than bonds, so the question would typically be 

how you should allocate a portfolio so that you can exploit the largest upturns in the 

stock market and, at the same time, avoid the worst and most critical downturns.  

  For many years, the most used asset allocation strategies were the static ones, i.e. 

strategies with a chosen allocation that would stay the same, even during peaks and 

troughs. And in the period from around 1940 and almost to 1970, these strategies were 

in fact sufficient. Nevertheless, from 1970 and onwards things were about to change. 

  Leland (1984) mentions the following drawbacks with static strategies: First, the 

initial simulations, which make the basis of how a portfolio should be allocated, might be 

based on some particular estimated parametrical magnitudes. These simulations will 

probably include a confidence interval which will tell us that returns under a specific 
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level are completely unrealistic. However, if these parameters change later on, the 

simulations would no longer be valid. E.g. if the volatility one year is a lot higher than the 

volatility used in the simulations, then the confidence interval of this portfolio would 

consequently be much wider.  

  Second, these strategies do not offer any assurances of some kind. This has been 

proved during several recessions through history. Jacobsen (2009, p. 1) also came up 

with the following message after the financial crisis of 2007 and 2008: "strategic asset 

allocation is not static asset allocation". And the reason is simple: If markets don't 

behave statically, an asset allocation strategy cannot be static. Still, there might be static 

strategies that can offer almost risk-free returns, but in these cases you will have 

considerable opportunity costs related to the gains (from the more risky assets) that 

you've missed out on.  

  As early as in the 70s investors recognized the fact that static allocations didn't 

perform well, especially during peaks and troughs. In the oil crisis in 73-74 it was 

observed that even fairly conservative static allocation strategies failed to obtain 

positive returns. Perhaps this was a wake-up-call for the financial investors and 

academics, because new methods concerning asset allocation were discovered some 

years later; the dynamic asset allocation strategies.  

  These dynamic strategies have evolved quite a lot, particularly in the recent 

years, due to crises such as the dotcom-bubble crash and the global financial crisis. Also, 

because of these crises, the dynamic strategies have received even more attention 

during the last 6-7 years. Speaking of crises; Jacobsen (2009) specifically studied the 

concept of asset allocation during crises and stated that people should not become too 

smug with their asset allocation strategies. In this case, smugness can be related to the 

static asset allocation strategies where the investor has the same asset allocation over a 

longer period of time, regardless of how the market conditions are. Regarding dynamic 

strategies, Jacobsen declare the following: "True asset allocation is dynamic, it is 

prospective, and it manages risks that extend beyond simple style and size exposure. 

These are simple things an advisor can do to reduce risk and add value to client 

portfolios" (Jacobsen, 2009, p. 12).  

  Regarding the actual execution of such dynamic strategies, it is quite common 

that these portfolios are based on some particular market measure, and thereby 

reallocated according to the level of this measure. Volatility is a popular measure to use 
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in this respect, since it's expected to be negatively correlated with market returns. A 

dynamic strategy based on volatility is the originator to the so called volatility targeting 

(or sometimes volatility responsive) portfolio strategies, and at this point I will present 

some studies related to this type of dynamic strategy.  

  First, Collie, Sylvanus and Thomas (2011) studied a simplified volatility 

responsive strategy, that would invest; 30 per cent in stocks (and 70 per cent in bonds) 

if the volatility was high at the start of a given month; 50/50 if the volatility level was 

moderate; and finally, 70/30 for low-volatility periods. Studying a period from April 

1979 to June 2011, they concluded that fixed weights (static) asset allocation strategies 

didn't provide a steady risk/return ratio over a given period of time. The fixed weights 

strategy had a clear tendency of having high volatility when the market volatility was 

high. When the market volatility was low, fixed weights strategy had slightly lower 

volatility than the dynamic one. Then they argued that volatility-sensitive investors 

instead should adopt the dynamic volatility responsive asset allocation strategy. Another 

interesting implication from their paper is that returns for one period are not a good 

predictor for returns in the next period, while this is the case for volatility. Since the 

volatility seems to be easier to predict, this makes it appealing for dynamic strategies. 

Though, what is not appealing for this purpose, is that they fail to find any obvious 

connection between quarterly returns and the quarterly volatility from the previous 

period.  

 Then, another study conducted by Albeverio, Steblovskaya and Wallbaum (2013) 

aimed to compare a volatility targeting strategy, which was based on a predetermined 

volatility target value, with a pure equity index such as the S&P 500. Investigating the 

monthly performances from 1963 to 2008, conclusions were that "the [volatility 

targeting] strategy works well in specific market environments such as a falling market 

accompanied by high volatility levels or a rising market accompanied by low volatility 

levels" (p. 10). However, as a drawback, they mention that when we, for instance, face a 

falling market with low volatility, the strategy will have a tendency of giving more 

weight to stocks, even though that most possibly will weaken the overall portfolio 

performance. They also argue that it would be advantageous to merge the strategy with 

other asset allocation strategies. And, a more general disadvantage of their approach is 

related to their use of monthly rebalancing, which makes the strategy more vulnerable 

to short-term market shocks. The latter problem can of course be the case for any 
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dynamic strategy which rebalances at a monthly interval.  

 In a newer study conducted by Zakamulin (2014) he uses a long-only variant of 

the volatility responsive strategy as a dynamic benchmark of which he compares it to 

another dynamic portfolio based on a target value of the unexpected volatility. Both 

these portfolios are also compared to a static benchmark portfolio, consisting of 50 per 

cent stocks and 50 per cent of a risk-free asset. As expected, the volatility-responsive 

strategy performs better than the static strategy, at least from 1991-2012 and 1970-

2012. But from 1970 to 1990, the performances of the two are more ambiguous, with 

Sharpe ratios and alpha values which differ in their conclusions. In essence, the volatility 

responsive portfolio only outperforms the passive portfolio in the 2000s. It is also 

interesting to note that the unexpected-volatility-responsive strategy outperforms the 

volatility-responsive strategy as well as the static strategy in all periods considered, 

supported by dominating Sharpe ratios and alpha values.  

 Chew (2011) uses an annual target equity volatility of 16 per cent for his 

volatility targeting portfolio. This is then matched up against a static 80/20 portfolio and 

a dynamic constant proportion portfolio insurance (CPPI) strategy, over the decade of 

the 2000s. Not surprisingly, the target volatility asset allocation strategy tackled the 

volatile period during the global financial crisis in the most satisfying manner. What is 

also quite interesting in this paper, is that Chew emphasizes the importance of "taking 

accurate measure of investor's risk tolerance" (p. 12) when it comes to the assessment 

of the volatility targeting strategy, as compared to other strategies. This is a vital 

consideration which is easy to forget in between the range of conclusions which often 

are based on concrete, numerical results. In other words, one should not forget the 

human aspect among all the facts and figures.   

 It is also worth mentioning that Kirby and Ostdiek (2010) generalized the 

volatility targeting strategy to account for N different assets (not only stocks and fixed 

income), finding the weight of a given asset based on the variance level of that asset as 

opposed to the sum of the N different variances. They found that the volatility timing 

strategy they proposed outperformed the naïve diversification strategy (1/N) for several 

data sets, even when relatively high transaction costs were implemented to the model. 

Although not directly relevant for this thesis, this study does show that it is possible to 

apply a volatility targeting strategy for a higher number of assets (N > 2), with successful 

results. 
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  The results of Kirby et al. were strengthened by the fact that both Giese (2012) 

and Ilmanen and Kizer (2012) arrived at similar conclusions. Based on all these 

empirical results, Hallenbach (2012) also chose to derive a mathematical proof to show 

that volatility targeting indeed improves the Sharpe ratio (and information ratio), using 

only a few assumptions. Although several studies have shown that this active strategy 

does not necessarily improve the Sharpe ratio (compared to some passive portfolio), 

Hallenbach's results do provide for some theoretical foundation in a field that mainly 

has been characterized by empiricism. Another of his conclusions, which is a more 

obvious one (at least from a practical point of view), is that the Sharpe ratio increases 

the better the volatility forecasts are.  

  However, Zakamulin (2015) derived a solution for an optimal dynamic 

diversification strategy, assuming that the mean returns and variance-covariance matrix 

(of returns) are completely predictable. His findings suggest that the most advantageous 

time diversification strategy is one that allocates assets so that the portfolio's exposure 

to risk follows the inverse of the portfolio's variance. This conclusion implies that the 

volatility-targeting approach is not optimal. Still, when he compares the optimal solution 

strategy with its volatility targeting counterpart, it is revealed  that there are only 

marginal differences in the performances of the two, when considering a real market 

situation (note also that both strategies perform statistically significantly better than the 

static one).  

 Despite that several of these studies mention quite a lot of advantages with the 

volatility timing/targeting/responsive strategies, there are still some empirical 

conclusions which tell us that during some periods, and under some specific market 

conditions, these strategies do not perform as well as we might hope when we compare 

them to some passive (static) strategies. At this point it makes sense to introduce the 

concept of turbulence as a market measure. Kritzman and Li (2010) defined turbulence 

as "a condition in which asset prices, given their historical patterns of behaviour, behave 

in an uncharacteristic fashion, including extreme price moves, decoupling of correlated 

assets, and convergence of uncorrelated assets" (p. 30). In their study, they argued that 

the measure of turbulence captured higher-dimensional information, that returns to risk 

were lower during turbulent periods, and that turbulence is very persistent. They also 

introduced what they called "turbulence-resistant portfolios", that are dynamic 

portfolios conditioned on turbulence, and showed that such a portfolio performed better 
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than its unconditioned counterpart, both during the turbulent out-of-sample periods, 

and during other non-turbulent periods as well.  

 Regarding the performance of the above-mentioned naïve strategy (equally 

weighted portfolio); in a study conducted by DeMiguel, Garlappi and Uppal (2009), they 

were not able to find sufficient statistical evidence that the optimized portfolios 

achieved significantly higher Sharpe ratio than the equally weighted strategy. A paper by 

Plyakha, Uppal and Vilkov (2012) shows that the equally weighted portfolio 

outperforms value and price-weighted portfolios, and they also attempt to discover why 

this is the case. Kritzman, Page and Turkington (2010)1, on the other hand, presented 

results which were in disfavour of the naïve strategy, where it was out conquered by 

both a minimum-variance portfolio and a mean-variance portfolio. Even though the 

studies related to the equally weighted portfolio approach differ slightly in their 

implications, there are still no doubt that this strategy is a good representative for 

passive portfolios, and hence, it's also satisfactory as a benchmark of which we can 

compare the dynamic portfolios with. 

1.2 Research motivation and structure of this thesis 

Inspired by Kritzman and Li's paper from 2010, the main motivation of this thesis is to 

inspect the out-of-sample performance of a turbulence targeting asset allocation 

strategy, and compare this to both a dynamic benchmark, the volatility targeting 

strategy, and indeed a passive benchmark, the naïve equally weighted portfolio. First of 

all, the portfolios will be evaluated according to the Sharpe and Sortino ratios. Then I 

will test if the Sharpe ratios of the dynamic portfolios are statistically significantly 

different from the one of the equally weighted portfolio. I will apply the same procedure 

to test if the Sharpe ratios of the turbulence and volatility targeting portfolios are 

significantly distinguishable as well. Regarding returns, I will calculate the monthly 

mean, and also the standard deviations, skewnesses and kurtoses, of which the latter 

three are terms that can, more or less, be related to the portfolios' downside and upside 

risk. The three portfolios will be tested across different data sets in order to gain 

robustness of the results, and also for three different periods: Total period 1973-2014 

and sub periods 1973-1990 and 1991-2014. I will also execute a simple linear 

                                                        
1 In order to avoid confusion on the two "Kritzman et al." papers from 2010: This is the last time I refer to 
the Kritzman, Page, and Turkington paper in this thesis, so from now on, every time I refer to "Kritzman et 
al. (2010)", I actually refer to the Kritzman and Li paper, which incidentally also was published in 2010. 
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regression in order to provide some evidence to whether the monthly volatility and/or 

turbulence is applicable as predictor for the excess return (which is the equally-

weighted returns of the respective data sets minus the return rate of a risk-free asset) 

for the subsequent month. Finally, the absorption ratio (Kritzman, Li, Page and Rigobon, 

2011) is estimated in order to detect periods of high systemic risk. Though, failing to 

find any significant relationship between the daily equally-weighted returns and the 

absorption ratio, the opportunity of using this measure as a target for a dynamic 

targeting portfolio is disregarded. At this point I will conduct a principal component 

analysis as well, in order to detect differences in the data sets' patterns, which first of all 

is to identify how the risk of the data set portfolios are spread across different 

components. 

  The execution of the turbulence and volatility targeting strategies will be based 

on a similar framework, so differences in their performances will first of all be related to 

the market measures themselves, and their interaction with the returns in question. 

Both strategies will allow for borrowing, short sales, buying stocks on margin, or 

whatever way an investor chooses in order to use leverage.  

 The thesis will be arranged in the subsequent manner: In Chapter 2, I will 

introduce the data sets I will make use of when comparing the performances of the static 

and the dynamic strategies, while in Chapter 3 I give an overview of the methods that 

are relevant. Further, in Chapter 4, I will use statistical software R to conduct some tests 

that will reveal how the different active asset allocation strategies performs in 

comparison to the static benchmark strategy. In this chapter I will also take a brief look 

at the data itself; some words on the estimation, and also the behaviour, of the market 

measures in question (i.e. volatility and turbulence). Estimation and interpretation of 

the absorption ratio, together with a principal component analysis, and indeed some 

predictive regressions, are also included in this chapter. Afterwards, in Chapter 5, I will 

discuss weaknesses of the strategies and compare my results to the most relevant 

previous studies. While Chapter 4 is heavily based on theory, Chapter 5 takes a slightly 

more practically-oriented approach. Finally, in the sixth and last chapter, I will sum up 

and make a conclusion. 
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2  Data 

The data I will be using in this thesis is based on the daily returns of four different data 

sets from Kenneth French's data library2. In addition, I will apply the monthly risk-free 

returns from the Fama/French 3 factors data set, obtained from the same data library. 

These risk-free returns are used to compute the excess returns, which again are used in 

the computation of the Sharpe and Sortino ratios.  

  All data sets initially range from sometime during 1926 and up to the middle of 

the 2010s, but I have chosen to limit the sample period to January 4, 1960 to December 

31, 2014, which is quite in line with the time periods that has been studied in previous 

papers, and it is also a period which solely consists of weeks with 5 working days. It is 

advantageous to use daily observations so that we can estimate more precise figures for 

the volatility, although it does imply that we have to deal with a vast amount of 

observations.  

Data set (daily interval except where noted) N  Time period 
10 Industry Portfolios 10  Jan 4, 1926-Dec 31, 2014 
30 Industry Portfolios 30  Jan 4, 1926-Dec 31, 2014 
25 Portfolios Formed on Size and Momentum 25  Jan 4, 1926-Dec 31, 2014 
25 Portfolios Formed on Size and Book-to-Market 25  Jan 4, 1926-Dec 31, 2014 
Fama/French 3 Factors (monthly interval) -  July 1926-March 20153 
Table 2.1: Data sets employed in this study 

Please note that the initial data sets have been edited so that they only account for the 

period 1960 to 2014, meaning that the data files in use in this thesis is not equivalent to 

the original ones we downloaded directly from French's web page in the first place.  

 The returns in the data sets are computed on the basis of the following formula 

 
t t t

t

t t

p p div
r

p p


 


 1

1 1

 (2.1)  

where      return at time t  

      price at time t  

        dividends at time t 

                                                        
2 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
3 Only used for the purpose of the risk-free returns, hence the dimension is not relevant. This data set is 
later delimited to the same monthly interval as the estimates of the return, volatility and turbulence. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Each data set are constructed based on stocks from major stock exchange indices 

NASDAQ, NYSE and AMEX, which also indicates that the results of this thesis is 

dependent on US stocks only, and that these data sets are reliable and highly comparable 

to each other. I will now give a brief description of each data set to highlight the 

differences between them.  

  The data set 10 Industry Portfolios includes daily returns from ten different 

industries: durable (food, textiles etc.) and nondurable (cars, furniture etc.) goods, 

manufacturing (trucks, planes etc.), energy (oil, gas, coal), hi-tech (computers, software 

etc.), telecom (telephone and television distribution), shops (wholesale and retail), 

health (healthcare, medicine and drugs), utilities and other industries (mines, 

construction, hotels, finance, etc.). Although being a rather compact and sometimes 

deficient set, it is commonly used by scientists. For instance, DeMiguel et al. (2009) 

found that for this particular data set, it was not possible to find statistically significant 

differences between the Sharpe ratio of the 1/N strategy and the Sharpe ratio of all the 

other, more sophisticated strategies. Hence, this data set might "favour" the 1/N strategy 

in this study as well. In addition to DeMiguel et al. (2009), this data set is also applied by 

Kirby et al. (2012) and Kritzman et al. (2010), when taking into consideration the 

studies I mentioned in the literature review in Chapter 1.  

  The data set 30 Industry Portfolios4 does, not surprisingly, consist of daily 

returns from an entire 30 different industries, making it a lot more comprehensive than 

the data set described above. Most of the industries mentioned in parentheses in the 

previous paragraph are now represented by their own columns of returns, which should 

imply that this data set is highly representative for the market as a whole. For the total 

list of industries included, I refer to the industry definition list that is available at the  

website of Kenneth French (see footnote 1). Studies conducted by Zakamulin (2015) and 

Kritzman et al. (2010) utilized this data set.  

 The third data set of average value weighted daily returns, consists of 25 

portfolios formed on size and momentum, where size indicates market capitalization, 

while momentum signifies that an asset's price is more likely to move in the same 

direction for a longer period, rather than to vary its directions. The data is constructed 

                                                        
4 The main reason why I use the 30 industries portfolio as opposed to the larger dimensional industries 
portfolios, such as the ones with 38, 48 or 49 industries, is simply owing to the fact that these data sets 
have a considerable amount of missing values for the time period I will be using, which make them more 
cumbersome to work with, and possibly less reliable as well. 
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on a 5 by 5 basis, meaning that the returns are first divided into five groups of firms 

sorted by the level of market capitalization, whereby each of these groups are 

individually sorted into five subgroups based on the degree of momentum in the returns 

from period t250 (minus approximately one year from the present point in time) to 

t21 (around one month backwards in time compared to the current time t), providing 

for 25 columns in total. Zakamulin (2015) makes use of this data set as well.  

  The final daily returns set consists of 25 portfolios shaped on size and the level of 

the boot-to-market ratio. In the same way as the size and momentum based data set, this 

is also put up in a 5 by 5 manner, first sorted by size and then sorted from low 

(overvalued stocks) to high (undervalued stocks) book-to-market ratios. Kirby et al. 

(2012) used this data set in their study of volatility timing strategies and pointed out 

that "sorting firms on these criteria is known to produce a large cross-sectional 

dispersion in average returns" (p. 22), i.e. we should expect substantial variability in the 

returns among these portfolios. In addition, Zakamulin (2015) and DiMiguel et al. 

(2009) employed this data set for their simulations.  

3  Methodology 

In this chapter I will go through the methods I will be using in order to compute the 

results that are given in Chapter 4. Computation itself is done in R, and these 

programming procedures are given in Appendix C. Note that the possible effects of 

transaction costs and taxation are disregarded in this thesis.  

3.1 Central moments 

In this section5, I will introduce the four central moments, which are the mean, variance, 

skewness and kurtosis, respectively. The two first-mentioned are relevant for several 

aspects of this study, including turbulence and volatility estimation, together with the 

Sharpe and Sortino ratios. The two latter-mentioned will be used to examine the 

distributional properties of a given portfolio's monthly returns. These measures could 

also give indications on what type of risk the portfolios are exposed to; downside or 

upside risk. For that matter, I will also describe the Jarque-Bera test of normality. 

                                                        
5 Section 3.1 is mostly based on Tsay (2005) pages 8-10. 
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3.1.1 Mean and variance 

Assume that we're dealing with a random sample X of T different observations, i.e. 

           . In order to make this more tangible, we could, for instance, say that X is 

a series of monthly returns. The first central moment, the realized mean of X, which we 

will denote as    , is given by 

 

 

T

x t
t

x
T


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 
1

1
ˆ , (3.1)  

 while the second moment, the variance,    
 , is defined as 

 T

x t x
t

x
T

 


 

2 2

1

1
ˆ ˆ( )

1
. (3.2)  

However, for our purposes, the standard deviation is even more interesting than the 

variance. As we know from introductory statistics, the standard deviation is given by 

 
x x

  2ˆ ˆ . (3.3)  

The standard deviation is frequently used as a measure of financial risk, and since it is 

being used as the targeting measure for one of the dynamic strategies in this thesis, I will 

come back to this concept later on.  

 To be more specific, the realized mean (of returns) in this thesis is computed at a 

monthly interval. For comparative purposes, it would be convenient to express both the 

mean returns and the standard deviation of returns in annualized figures. Using the 

same notation as above, the annualized mean, represented as    , is computed as follows:  

 
x x

  ˆ12 , (3.4)  

while the annualized standard deviation,    , is found in the subsequent manner: 

 
x

  ˆ12 . (3.5)  
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3.1.2 Skewness and kurtosis 

Using the same notation as Tsay (2005), we can define the skewness (which is the third 

central moment) of a continuous random variable X as 

 

 

3

3
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( ) x

x

X
S x E





 
  

  

. (3.6)  

For a normal distribution, the skewness would be equal to nought, since such a variable 

is expected to have a distribution that is completely symmetrical. As we can see, this 

formula will penalize abnormal observations. The skewness can take both negative and 

positive values, of which both cases would indicate that the distribution is "skewed", 

either to the left (negative values) or the right side (positive values). For practical 

purposes, a left-skewed distribution of returns would indicate that there is a greater risk 

of tremendously negative outcomes (i.e. greater downside risk), but also that the returns 

most frequently are slightly positive. The tendencies are the opposite for right-skewed 

distributions, implying less downside risk, a characteristic which would captivate risk-

averse investors (Sortino and Satchell, 2001).  

  The kurtosis, on the other hand, gives us information on how the distribution is 

curved. It can either be; leptokurtic, indicating that it has fatter tails and a more sharp-

pointed peak, or; platykurtic, which basically implies the opposite specifications. Using 

same notation as above, the kurtosis is defined as 

 

 

4

4
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x

X
K x E





 
  

  

. (3.7)  

A normal distribution does have a kurtosis of 3. When the kurtosis is larger than 3, we're 

dealing with a leptokurtic distribution. For instance, this means that most historical 

returns will be mutually grouped around the mean. Yet, the fatter tails suggest that 

extreme deviations is, to some extent, likely to happen as well. For platykurtic 

distributions, the kurtosis is smaller than 3. This entails that the historical returns are 

generally considered to be less risky, due to the fact that the distribution has fewer large 

deviations than in the case of leptokurtosis. Unexpected incidents, such as the financial 

crisis, is less likely to happen. Though, in this section it should also be mentioned that 

loads of empirical studies have shown that several categories of financial returns are 

leptokurtic (Righi and Ceretta, 2012).  
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  Applied in practice, both kurtosis and skewness are estimated with foundation in 

the estimated values of the first two central moments, and they can also 

straightforwardly be extended to account for T observations. The skewness for a sample 

of T observations is 
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, (3.8)  

while the kurtosis for T observations is 
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. (3.9)  

Jarque-Bera normality test 

By combining properties of the kurtosis and skewness measures, Jarque and Bera 

(1987) came up with a test statistic in order to test for normality of X. The test is 

pursued with normality as the null hypothesis;                   ; and with a 

test statistic that is computed as follows:  

 

 
   

2 2
ˆ ˆ( ) ( ) 3

6 24

S x K x
JB

TT


   (3.10)  

As before, T equals the total number of observations, and the expressions in the 

denominator are the variances of       and       when normality is assumed. The JB test 

statistic is chi-squared distributed and H0 is rejected if pJB is smaller than the level of 

significance. 

3.2 Capital allocation 

Assume that we can choose between two assets; one risky and one risk-free6. Weight 

denoted by w, equals the proportion invested in the risky asset B, which has returns of 

rB, while 1w is the amount invested in the risk-free asset, with rf  as the rate of return. 

In other words, we're dealing with a long only portfolio where the sum of the weights is 

                                                        
6 It is in fact the case that the allocation methods applied in this thesis, both for the volatility targeting and 
turbulence targeting strategies, assumes only one risk-free and one risky asset. Hence, I will in Section 3.2 
describe the very basics of this concept. Also, since the only strategy with multiple (at least more than 2) 
risky assets, is the simple 1/N portfolio, I will not consider the theories of multiple asset allocation. 
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equal to 1, meaning the investor only invests his own wealth in the assets (he doesn't 

need to raise a loan). The expected return of the portfolio p would be  

 
p B f

E r w E r w r    ( ) ( ) (1 )   

  p f B f
E r r w E r r  ( ) ( ) , (3.11)  

and the standard deviation (risk) of portfolio p is 

 
p B

w  . (3.12)  

 

Rewrite equation (3.12) with respect to w, substitute this expression for w in equation 

(3.11) and you will end up with 

 
B f

p f p
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E r r
E r r 



 
    

 

( )
( ) , (3.13)  

 

which is the equation for the capital allocation line, that is a representation of the 

different ways an investor could allocate his wealth in the risky and risk-free asset. The 

expression in the parenthesis correspond to the Sharpe ratio, i.e. the price of risk, and 

the slope of the capital allocation line. All points on this line will have the same Sharpe 

ratio, indicating that the Sharpe ratio will stay at the same level, regardless of how the 

portfolio is allocated (as long as the risk/return point occurs somewhere along the 

capital allocation line). In essence, an investor who is assumed to seek the mean-

variance optimum wants to maximise this measure when he chooses how he wants to 

allocate his portfolio. This follows from the mean-variance criterion7. Being an important 

measure for this thesis, I will go deeper into the subject of the Sharpe ratio in the 

subsequent section. 

 

 

                                                        
7 Portfolio A dominates portfolio B if; E(rA) ≥ E(rB) and; σA ≤ σB  

Given that;    E(rA) > E(rB) or/and;        σA < σB 
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3.3 Performance measures 

In this section I will describe some measures that I will use to evaluate and compare the 

performances of the different portfolio strategies which I will elaborate more on in 

Section 3.4. First subsection describes the Sharpe ratio, while the second explains the 

Sortino ratio. 

3.3.1 Sharpe ratio 

The Sharpe ratio, also known as the reward-to-volatility ratio, was formulated by 

William Sharpe in 1966. It measures the size of excess return (reward given to the 

investor for tolerating risk) in proportion to the degree of risk (volatility). Excess return 

is computed by subtracting a risk-free rate of return from the return of the given 

portfolio. The most common measure of risk is the standard deviation of the portfolio. 

Thus, the estimated monthly Sharpe ratio of a portfolio p (denoted as     ) can be 

computed in the following way:  
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 (3.14)  

where       realized mean return of portfolio p  

      return of a risk-free asset  

       realized standard deviation of portfolio p  

Now, recall from Section 3.2 how the expected return and standard deviation are 

defined for a portfolio p with one risky asset B and one asset which is risk-free. Then we 

substitute the realized equivalents of the expressions from equations (3.11) and (3.12) 

into equation (3.14) and get: 
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This is a simple proof which shows that for such a portfolio, the allocation does not 

affect the level of the Sharpe ratio. The same accounts for the Sortino ratio, a risk-to-

reward measure I will discuss further in Subsection 3.3.2.  

  Also, in order to once again obtain figures that are, to a larger extent, comparable 

to former studies in this field, the annualized Sharpe ratio would be more suitable. 

According to equations (3.4) and (3.5), the annualized Sharpe ratio of portfolio p,     , 

should be expressed as8: 

 
p f

p

p

r
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ˆ 12
 

p p
SR SR ˆ 12  

 

(3.16)  

When comparing the performance of different portfolios, the best performing portfolio 

would be the one with the highest Sharpe ratio, i.e. the portfolio with the highest excess 

return for a certain level of risk. Although it has its faults (see below), the Sharpe ratio is 

an extremely popular measure, among practitioners as well as academics. As long as one 

is familiar with its weaknesses, it's easy to interpret, and also quite straightforward to 

estimate. Being one of the most common performance measures, used in numerous 

previous empirical studies and such, it is natural that it soldiers on, since new studies 

often will use exactly this measure in order to compare their results with the former 

outcomes in a convenient manner. 

Hypothesis testing with the Sharpe ratio 

Assume that we're dealing with two different portfolios, labelled '1' and '2'. It is expected 

that portfolio 1 and 2 would have different Sharpe ratios. However, one could actually 

enquire whether these measures are significantly different by using the test given by 

Jobson and Korkie (1981), which was corrected by Memmel (2003). The null and 

alternative hypotheses are as follows: 

 H SR SR H SR SR    
0 1 2 1 1 2

ˆ ˆ ˆ ˆ:    0                    :    0 ,  

 

                                                        
8 Although this is a common way of annualizing the Sharpe ratio, one should be aware of some of the 
implications made in Lo (2002), where he points out that monthly Sharpe ratios can be converted into 
annual terms, but only in some particular situations. 
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while the test statistic is given by: 
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(3.17)  

 

where      realized standard normal distributed test statistic  

      number of observations 

       realized correlation coefficient 

Assuming normally distributed variables, the p-value is estimated on the basis of the z-

value given in equation (3.17). If the p-value is lower than some critical value α, the null 

can be rejected at a α per cent significance level, indicating that the data generates 

sufficient evidence against the hypothesis that the Sharpe ratios of two different 

portfolios are similar. In this thesis it would be natural to compute this p-value to see 

whether the Sharpe ratio of the dynamic turbulence aiming portfolio is statistically 

significantly different from both the passive and dynamic benchmark portfolios, 

meaning that we have to conduct the test twice. 

Disadvantages of the Sharpe ratio 

It is often the case that the assumption of normality is violated when we're dealing with 

financial returns. Consequences of non-normality can be quite severe for the 

implications that can be drawn from the Sharpe ratio estimates. For instance, Gatfaoui 

(2010) concluded in his study from 2010, that non-normality in an asset's returns did 

provide for changes in the performance rankings given by the Sharpe ratio, as compared 

to an unbiased Sharpe ratio in a Gaussian setting.  

  Moreover, the Sharpe ratio fails to make a distinction between positive and 

negative variation, penalizing both directions equally. Although, here we should keep in 

mind that the Sharpe ratio initially was introduced as a reward-to-volatility ratio (not 

reward-to-risk), and one should therefore be aware of the fact that volatility is not 

necessarily the same as risk.   

  It is also a problem that for negative returns, the level of the Sharpe ratio makes 

no sense. The general advice for such cases, would be to just disregard the Sharpe ratio. 

  And finally, Schwager (1996) mentions that the Sharpe ratio does not 
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discriminate between irregular and successive losses. This is a direct consequence of the 

fact that it only uses the standard deviation of the period as a whole.  

3.3.2 Sortino ratio 

As implied above, the Sharpe ratio is often criticised for its use of the standard deviation. 

Problem is that the standard deviation punishes both downside risk (the amount an 

investor risks to lose) and upside return potential equivalently.  

 As a response to this, Brian Rom and Frank Alphonse Sortino introduced a 

"mean-lower partial moment ranking ratio"9 already in the beginning of the 1980s. 

Though, what later became known as the Sortino ratio, was not officially established 

until 1994, by Sortino and Price (1994). The Sortino ratio attempts to deal with this 

standard deviation-problem by introducing lower partial moment (LPM) as an 

alternative measure of risk. Then, by taking the square root of the LPM we get a measure 

of downside risk. The main difference from the normal standard deviation is that we 

now only focus on observed values below the mean. Based on that assumption, we can 

write the expression for the realized downside risk of portfolio p,     , as this: 

 

 
 

n

p p f
i

DR r
n




  
2

1

1ˆ ˆmin , 0  (3.18)  

where     number of observations below the mean 

In practice, the downside risk is the risk that rational investors fear the most. Hence, we 

will now substitute the standard deviation of equation (3.14) with the expression for the 

downside risk from equation (3.18), to obtain the Sortino ratio: 
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This ratio can be annualized by using the same method as the one we used for the 

Sharpe ratio above:  

 
p p

SoR SoR ˆ 12  (3.20)  

                                                        
9 Which in fact was the proposed name for the ratio by Sortino himself, "but Brian [Rom] didn't think that 
name would catch on" (Sortino, 2010, p. 23). Hence, Rom suggested to name it the Sortino ratio. 
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In this case, the risk-free rate is often referred to as the minimum acceptable return. 

Regarding the downside risk measure, this is also related to skewness, which we defined 

in Section 3.1. For instance, if the returns are characterized by positive skewness, most 

of the portfolio variability would consist of the risk of upward movements. Accordingly, 

the downside risk would be relatively low, providing for a better portfolio performance, 

according to the Sortino ratio. In such cases, the Sharpe ratio would underestimate the 

portfolio's performance. For negative skewness, on the other hand, the Sharpe ratio 

tends to overestimate the performance of the strategy.  

  Regarding the pros and cons of the Sortino ratio as compared to the Sharpe ratio, 

these are mostly related to the benefits and drawbacks of the downside deviation and 

standard deviation measures. Ridley (2004) mentions that the Sortino ratio is less 

efficient in cases where the fund (or asset) has extraordinarily low volatility levels, since 

this will imply that the downside risk measure is computed on the basis of very few 

observations. Also, someone might argue that upside deviations also is a sign of risk, and 

hence, they favour the use of the ordinary Sharpe ratio instead. 

3.4 Asset allocation strategies 

This section covers the asset allocation strategies that are relevant for this study. First, 

Subsection 3.4.1 describes the only static strategy, namely the equally-weighted 

portfolio. As is the case for all static strategies, it will follow the same allocation strategy 

during the whole sample period.  

  Then, Subsections 3.4.2 and 3.4.3 incorporate the concepts of the two dynamic 

strategies, that is the volatility and turbulence targeting portfolios. Dynamic asset 

allocation is an active strategy where the investor persistently reallocate his portfolio in 

accordance to some specific measure in the market, such as in this study; volatility or 

turbulence. While the first-mentioned is a pretty recognizable term in finance, the latter 

one is not. Hence, I will devote a larger amount of space to the definition of turbulence, 

than for the volatility. Also, for simplicity, I will use the equally-weighted portfolio's 

returns to represent the risky asset in the two dynamic strategies, since both the 

volatility targeting and the turbulence targeting approaches I use in this thesis are 

assumed to include one risky asset, and  one risk-free.  
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3.4.1 Equally-weighted portfolio 

As indicated earlier, this strategy allocates an equal fraction 1/N to each of the N 

obtainable risky assets. With wi equal to 1/N, the expected returns of the equally- 

weighted portfolio (EWP) are therefore given by 

 N

EWP i
i

E r E r
N 

 
1

1
[ ] [ ]. (3.21)  

Being equally weighted, the returns of the naïve strategy is in fact the equivalent to the 

mean return of N different assets. Another implication of this strategy is that it's only 

dedicated to risky assets, as opposed to the two dynamic strategies we will examine. 

According to its definition, there is no doubt that this is a very simple strategy, which 

also is one of its main benefits. It does not involve any estimations of some sort, implying 

that it's less costly to conduct, and risk of estimation errors is negligible. Also, many 

studies suggest that it works well as a benchmark strategy, of which we could compare 

other, probably recently developed strategies with. 

3.4.2 Volatility targeting portfolio 

The volatility-responsive strategy rebalances the portfolio in order to maintain the same 

volatility level as the initial portfolio. This protects the portfolio from getting 

exceptionally large volatility during recessions. 

Estimating the volatility 

As I briefly brought up in Chapter 2, I will use daily returns to calculate the monthly 

volatility. The realized daily volatility for period i can simply be calculated in the 

following manner: 
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 where     
   estimated daily volatility for period  i 

      returns for a given day  

                 number of days in a given period   

         daily realized mean return for period i 



 

21 
 

Due to the approximation of the daily mean return, we will often (in practice at least) 

use the following approach: 

 T
d

i t
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1

1
ˆ  (3.23)  

 

Yet, computational software R will automatically adopt the approach from equation 

(3.22). To convert the daily volatility into monthly volatility, I just multiply the number I 

get from equation (3.22) with the square root value of the N days that there are in a 

month m 

 m d

i i
N  ˆ ˆ  (3.24)  

Predicting the volatility 

In order to implement the volatility targeting strategy, one also has to predict the 

volatility for the next period. In this thesis I will make use of the naïve prediction 

method (also called the random walk), which simply says that the predicted volatility for 

the next period i + 1 is equal to the volatility in the current period i 

 
i i

 



1
ˆ  (3.25)  

This is an approach which often is used as a benchmark in forecast comparison. The 

main advantage of this method, which is also the main reason why I use it as opposed to 

the more sophisticated methods, is that it's very cost-efficient in use. Also, implications 

of several former comparative studies, all of which aim to find the most accurate 

volatility forecasting model, are highly ambiguous. For instance, Poon and Granger 

(2003) wrote a rather comprehensive paper in 2003, where they summarized results 

from 93 different studies related to this given topic. First of all, they concluded that, yes, 

financial volatility is possible to predict, but to what extent is still not known for sure. 

Then, another implication of their study is that "historical volatility methods [which, 

among others, include the naïve prediction model] work equally well compared with 

more sophisticated ARCH [autoregressive conditional heteroscedasticity] and SV 

[stochastic volatility] models" (Poon et al., 2003, p. 507).  

  In this thesis, I will not examine the forecasting accuracy of the random walk 

model. Nevertheless it is reassuring to observe from former studies that this method, 
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despite its simplicity,  does not necessarily perform worse than its more refined 

counterparts. 

Implementing the strategy 

If you have two assets, say stocks and a risk-free asset, one way to estimate the weight of 

stocks in the portfolio would be to divide the target volatility by the forecasted volatility: 

 
, 

*

ˆS t

t

w



  (3.26)  

where         weight of stocks at time t  

      target volatility  

       forecasted volatility   

     number of time periods 

Note first that the level of target volatility actually can be an arbitrary chosen value. In 

principle we can choose whatever value we want, it's only a yardstick (constant), and 

the value of this will not affect the performance measures of the portfolio.  

  Interpretation-wise; if the forecasted volatility for the next period turns out to be 

larger than the target volatility, the weight of stocks would be reduced, which seems to 

be a sensible response. However, by using this simple approach, we will almost 

immediately stumble upon an issue; that is, if the target volatility is larger than the 

forecasted volatility, the weight of stocks would be larger than one, indicating that we 

should implement a strategy that could require borrowing. Hence, this violates the 

borrowing restriction property. Still, this restriction is not totally rigid. We might very 

well relax the borrowing restriction property and use equation (3.26) to compute the 

weight of stocks for the volatility targeting strategy. Notice that when using this 

approach, we should be aware of the fact that the portfolio most probably will be 

substantially riskier than a portfolio which takes care of the borrowing restriction 

assumption. In other words, this strategy is not a decent alternative for the faint-hearted 

and risk-averse investors.  

 Giving a short interpretation of equation (3.26), we see that if the predicted 

volatility is lower than the target volatility, the strategy implies that the investor should 

borrow money in order to invest an even larger amount in stocks, due to the fact that 

stocks, at the moment, are considered to be relatively less risky, at least compared to the 
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target risk (volatility). If the forecasted volatility is approx equal to the target volatility, 

the investor should invest 100 per cent in stocks. And finally, if       , the investor 

ought to invest a smaller amount in stocks, and invest the remaining percentage (up to 

100 %) in the risk-free asset. 

Scenarios Stock allocation 

               

                 

               

                 

                10 

Table 3.1: Allocation properties of the volatility targeting portfolio 

Finally, the return of this strategy follows from the simple methods we discussed in 

Section 3.2. Also, recall that the return of the risky asset is transferred directly from the 

return of the naïve asset diversification strategy. This means that the volatility targeting 

returns are given by: 

 
vol S t EWP S t f
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[ ] [ ] (1 )  (3.27)  

Using this approach, we have to assume that the borrowing rate (when ws,t   ) is 

equivalent to the risk-free rate of return. Assume an investor who has $10 000 of which 

he wants to invest in risky stocks and risk-free bonds. Then, for instance if ws = 1.4, he 

would have to borrow 0.4 · $10 000 =  $4 000 at an interest rate identical to the risk-free 

rate and invest the amount 1.4 · $10 000 = $ 14 000 in stocks. 

3.4.3 Turbulence targeting portfolio 

Chow, Jacquier, Lowrey, and Kritzman first introduced the concept of financial 

turbulence in 1999. Mathematically, the turbulence is based on a measure initiated by 

Mahalanobis as early as in 1936, which again was based on a paper written by the same 

Mahalanobis, from 1927. This measure is known as Mahalanobis' distance. The aim of 

Mahalanobis' distance is to detect how far a given observation is from a sample mean 

                                                        
10 If this property causes some problems, or if one simply wants to use a more cautious strategy, one could 

put a borrowing restriction, at some level, into equation (3.26). This alternative approach will impose a 

borrowing restriction at the level of  
    
 a , which in principle can be set to any value. For an illustration of 

this method, see for instance Albeverio et al. (2013) where they enforced a restriction such that maximum 

exposure to the risky asset would never exceed 200 per cent.  
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compared to the sample's variance. In financial terms, and for "turbulence purposes", 

this observation will typically be a return of some sort. In more intuitive terms, one can 

say that the turbulence measures the distance, which is normalized by the standard 

deviation, between a given level of return and the mean value, i.e. the center of the 

returns mass. For illustrational purposes, one can consider a simplified two-dimensional 

case where we assume that the returns of the two assets have no covariation. For this 

particular scenario, the turbulence at time t is computed as follows: 
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where      financial turbulence at time t  

         asset return at time t for asset i, where          

      mean return for asset i, where         

      standard deviation of      

Now it's easy to see that if the observed returns of assets 1 and 2 deviates by a large 

margin from the sample's mean returns, a margin which also is a lot larger than the 

standard deviations, then we are dealing with a relatively high turbulence value. This 

also indicates that we can use this measure to detect outliers in a sample. Moreover, 

equation (3.28) states that the turbulence, by definition, will increase as the 

dimensionality increases, ceteris paribus.   

Estimating the turbulence 

In order to compute the turbulence for multivariate purposes, with n different assets 

that are correlated in some way, Chow et al. (1999) defined the financial turbulence at 

time t, denoted     as: 

 
t t t

d r r    1( ) ( ) (3.29)  

where      financial turbulence at time t (scalar) 

                           vector of n different historical asset returns 

                     mean value of historical returns of each asset 

       inverse of the variance-covariance-matrix of historical returns 

While    is already given by the data set, both the mean value and the variance-

covariance matrix have to be estimated. When estimating these figures, I will apply a 
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rolling window approach to make sure that both the mean value and variance-

covariance are updated according to the relevant point in time. Assuming a rolling 

window of T periods, the realized mean value of a given asset at time t is calculated in 

the subsequent manner: 
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In rough terms, the variance-covariance matrix is a way of expressing the variance to 

multiple dimensions. For instance, when we are dealing with a historical returns matrix 

with n columns (i.e. n assets with their respective returns), the general n-dimensional 

variance-covariance matrix will look like this: 
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Using the same rolling window approach as I did for the mean, the variance-covariance 

matrix at time t is given by: 
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 (3.31)  

A variance-covariance matrix is non-singular, i.e. it is a square matrix that is invertible. 

Now, assume a covariance matrix, Σ, of n dimensions. Then, inversion implies finding a 

square matrix, let's just call it Λ, so that the following property holds: ΣΛ = ΛΣ = In. 

When applied in practice, the inverse matrix is often denoted by the symbol of the given 

matrix, raised to the power of minus one, as seen from equation (3.29). The inverse of 

the covariance matrix is sometimes called the precision matrix. While the ordinary 

covariance matrix measures how the variables are scattered (spread) around the mean, 

the precision matrix measures how tightly clustered the variables are around the mean. 

  With a rolling window ranging from     to     (i.e. one lookback period), the 

turbulence measure will always be estimated using the latest figures of the means and 

the variance-covariance matrices. 



 

26 
 

Figure 3.1: Out-of-sample prediction  variance-covariance matrix 

The figure above illustrates an example on how the rolling window approach works. In 

the in-sample-periods, we estimate the predictions of the variance-covariance matrix for 

the period which is straight after the end of the in-sample-period. The colours in the 

figure show how this process goes on. For instance, the predicted covariance matrix for 

time t+1 is actually based on the covariance matrix which was estimated for the in-

sample-period from time (t+1)-T to t. This process can obviously be generalized further 

ahead in time than this example, which only goes to time t+3.   

  Now, back to the theories regarding turbulence. Based on the properties of the 

variance-covariance matrix, we can now say that turbulence relies heavily on both the 

individual variance of all variables, and also the covariance in between them, making it a 

more comprehensive measure than the standard deviation.  

  Studies have shown that relatively high historical values of this measure 

coincided with periods that are generally considered to be turbulent, i.e. periods 

characterized by irregular returns, abnormal asset correlations, illiquidity, risky asset 

devaluation and unusual high degree of risk aversion. Then, if we recall from above that 

turbulence (or in fact Mahalanobis' distance) could be a method to detect outliers in a 

sample, the results of these studies make sense, because such an outlier might very well 

be one of those "irregular returns" that we observe from time to another.  

 Finally, to sum up this brief review of the turbulence measure, I will emphasize 

two important empirical features of turbulence, both mentioned by Kritzman et al. 

(2010). First empirical feature says that "returns to risk are substantially lower during 

turbulent periods than during nonturbulent periods, irrespective of the source of 

turbulence" (Kritzman et al., 2010, p. 34). Also, figure 5 (p. 35) in this paper gives an 

excellent illustration of this statement. The second feature is that turbulence is 

extremely "sticky". It might turn up in an unpredicted manner, but when it does, it will 

typically carry on for a number of weeks. 

time 
In-sample-period = T 

(t+4)-Tt-T        (t+1)-T t                                    (t+2)-T t+                         t-1 (t+3)-T t                 +            1  2  t+3  

   t t+ t+3t 21 +
ˆOut-of-sample predictions                                              ˆ           ˆˆ  
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Implementing the strategy 

A turbulence responsive asset allocation strategy would typically be a portfolio that 

adjusts its weight in stocks according to the predicted level of turbulence. As for the 

volatility, we will also use the naïve prediction method here, which says that         . 

The aim of the strategy would be to keep the portfolio  at a predetermined target 

turbulence level. There may be several possible ways of achieving this, but the method I 

will be using is very similar to the method I used for the volatility targeting strategy: 
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 (3.32)  

Due to its similarities with the volatility targeting strategy, the general behaviour of this 

strategy is quite similar as well: If the predicted turbulence turns out to be higher 

(lower) than the target turbulence, the fraction of stocks will be reduced (increased). 

How the strategies' behaviour will differ, will therefore depend on how their underlying 

market measures, i.e. the volatility and the turbulence, behave over time.  

Scenarios Stock allocation 

               

                 

               

                 

                

Table 3.2: Allocation properties of the turbulence targeting portfolio 

The return of this strategy, denoted rtur, is given in the same way as the volatility 

targeting strategy: 

 
tur S t EWP S t f

E r w E r w r  
, , 

[ ] [ ] (1 )  (3.33)  

 

3.5 Simple linear regression model 

One of the main reasons why we would want to implement dynamic asset allocation 

strategies that target turbulence and volatility, is due to the fact that we expect some 

kind of relationship between these market measures and the level of stock returns. 

Hence, in this section I will give a brief review of some basic concepts related to linear 

regression. 
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3.5.1 Estimating the model 

For our purposes, the simple regression model with one explanatory variable is highly 

sufficient. At time t, the general version of this model is given by the following equation: 

 
t t t

y x      (3.34)  

where y is the stochastic dependent variable while x is the deterministic independent 

variable. ε is a random error term (residual), which indicate the difference between the 

value estimated by the model and the actual observed value.  

  There are some important assumptions related to this model. First, we have to 

assume linearity. Then it is assumed that the expected value of the parameter ε is zero 

for all t. Third assumption is that all observations should have equal variance, i.e. 

homoscedasticity. Fourth, all error terms are uncorrelated. Finally, the residuals should 

be normally distributed. Initially, I will not conduct any tests related to these 

assumptions, unless it should be the case that my simple regressions deliver some very 

unexpected or bizarre results.  

  The aim of this ordinary least squares (OLS) model is to minimize the sum of the 

squared residuals with respect to both    and    in order to get the levels of   (slope) and 

  (intercept) so that the final estimated line is as close to the real data as possible. 

Without further derivation11, the solution to these minimization problems are the 

following (each 'bar' denotes a mean value): 
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 (3.35)  

   

 y x   ˆˆ  (3.36)  

where the upper expression represents the estimate of the true (but unknown) 

parameter, while the lower one is the slope coefficient estimator. In this thesis, we will 

pay most attention to the former of these two. 

                                                        
11 For the whole derivation of this minimization problem, see for instance Brooks (2008) p. 81. 
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3.5.2 Predictive regression 

As mentioned in the introduction to this section, I will apply regression to detect 

possible relationships between (monthly) turbulence and return, and the same 

regarding volatility and return. To be more specific, such relationships can be related to 

whether current values of turbulence or volatility are capable of predicting future rate of 

returns. Accordingly, I will introduce two predictive variants of the simple regression 

model, both of which are more specifically related to our intentions than the one from 

equation (3.34):  
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Equations (3.37) and (3.38) regress the monthly return of a risky asset, in excess of the 

risk-free return, on the lagged values of volatility and turbulence, respectively. This way 

we can find out whether there are any relationship between past values of these 

measures and the current excess return. Now, for the sake of illustration, consider only 

the relationship between the present excess return and the lagged turbulence. Assuming 

β is negative, then, the higher the turbulence is, the lower is the excess return, and vice 

versa if β is positive. If β equals zero, there are no linkages between the two measures. 

These properties can be used to project future excess returns based on the current value 

of the turbulence (obviously, the same applies for the volatility as well). 

3.6 Data analysis 

In this section I will review some concepts related to multidimensional data set analysis. 

Using several data sets, ranging from 10 to 30 different columns of returns, it would be 

interesting to examine these underlying data to see if there are any differences in 

between them that are worth mentioning. Also, the absorption ratio (below) should give 

an indication on the general fragility of the market throughout a given period, assuming 

that we have at least one data set which is quite representative for the total market. 

3.6.1 Absorption ratio 

The absorption ratio was introduced by Kritzman, Li, Page and Rigobon in 2011, in a 

paper that dealt with the implementation of principal component analysis (PCA) in 
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portfolio management. In this paper they define absorption ratio as an implied measure 

of systemic risk. To put it briefly, if the systemic risk in a financial system is high, then the 

risk of facing a total collapse of the entire financial system is highly enhanced.  

  Further, Kritzman et al. (p. 113, 2011) state the reason why the absorption ratio 

is a good technique to determine systemic risk: "The absorption ratio  captures the 

extent to which markets are unified or tightly coupled.  When markets are tightly 

coupled, they are more fragile in the sense that negative shocks propagate more quickly 

and broadly than when markets are loosely linked." To get a further understanding of 

how the absorption ratio can measure this, I will bring in the main ideas of a PCA. 

3.6.2 Estimating the absorption ratio: Principal Component Analysis 

A natural point of departure when we apply a PCA, is to define the variance-covariance 

matrix. Assume we have a data set of returns from n different assets. Thus, we have a n-

dimensional covariance matrix with               different covariance values (Smith, 

2002), in the same way as the one we defined above: 
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First we should notice that this is a square     matrix, meaning that it's possible to 

calculate an assembly of n eigenvectors and n eigenvalues. An eigenvector v of the 

covariance matrix Σ has the following property: 

 v v   (3.39)  

In other words, if a square     matrix Σ is multiplied by a non-zero     vector v, and 

we thereby get a new vector which is a λ-multiple of the same vector v, we can define v 

as an eigenvector. The multiple is classified as an eigenvalue. Each eigenvector will have 

an associated eigenvalue. And if you multiply an eigenvector by the square root of its 

corresponding eigenvalue, you will obtain the factor loadings, which basically show the 

correlation of a given variable with an underlying eigenvector (or preferably, the 

correlation with a principal component eigenvector, which is defined further down in 

this text).     
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  In more plain words, we can say that an eigenvector corresponds to a direction 

into a n-dimensional space. For instance, in a simple 2-dimensional      -plane, a on 

vector represents a line which starts out from the origin and takes a direction so that it 

intersects the point where x equals 7 and y equals 9. Before I introduce the intuition 

behind eigenvalues, it is worth noticing that all eigenvectors' lengths should be scaled so 

they have a length of one. This is a way of normalizing the eigenvectors. How this is 

done, is shown in Appendix B. Keep in mind that the software I'm using, R, does this 

operation automatically.  

  An eigenvalue, on the other hand, tells us how much of the total variance that is 

explained by a given eigenvector (direction). The eigenvector with the highest 

eigenvalue is known as the principal component, which also brings us to the main point 

of a principal component analysis, i.e. to find patterns in the data we have in hand. After 

we have found the eigenvalue of each eigenvector, we can order the eigenvectors from 

highest to lowest eigenvalue. Furthermore, the eigenvalues are a measure of 

significance, so we can now choose to leave out the eigenvectors with least significance. 

By doing this, we will also reduce the dimensions of the final data set. This is also the 

point where we return to the absorption ratio. According to Kritzman et al. (2011), the 

absorption ratio is the same as the variance explained by a restricted number of 

eigenvectors. Again, following the example of Kritzman et al. (2011), I will restrict the 

number of eigenvectors to one-fifth of the number of assets involved. Based on this, the 

equation for the absorption ratio, is given by 

 







   




1

1

        0,1          

k

jj

n

jj

AR          (3.40)  

where      absorption ratio 

     number of assets or indices  

     (restricted) number of eigenvectors used to compute the AR 

      eigenvalue of the j'th eigenvector 

If we for instance take the data set 10 industry portfolios (see Chapter 2) into 

consideration, an absorption ratio close to 1 would practically imply that only a couple 

of components are necessary to explain the total variance of the entire portfolio. This 

will  also indicate that the different industries are closely coupled together and if one of 
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the industries experiences a massive drop in returns, or perhaps even a total collapse, 

the rest of the industries would most likely go down the drain as well. If the absorption 

ratio lies closer to 0.5, this total market collapse scenario is less likely to happen, and 

even if one industry should collapse, there's a smaller probability that the other 

industries will face the same problems, by means that the market in total stands a 

greater chance of getting recovered.  

4  Results 

4.1 Data analysis 

4.1.1 Absorption ratio: Estimation and interpretation 

The daily absorption ratio is first computed on the basis of a variance-covariance matrix, 

which is estimated over a rolling-window of 10 years, i.e. 2520 days. Then, the matrix's 

eigenvalues are computed, which is simply done by a built-in function in R called eigen. 

Finally, a fixed number of these eigenvalues are summed up and divided by the sum of 

the total amount of eigenvalues. For instance, for the 30 industry data set, each 

industry's returns represent one column in the data set matrix, meaning that the 

covariance matrix is of dimensions 30 by 30, and accordingly we have 30 eigenvectors 

with 30 corresponding eigenvalues. Following the same procedure as the one Kritzman 

et al. (2011) applied, this means I will be dividing the sum of the six largest eigenvalues 

(i.e. 20 per cent of 30) by the sum of all 30 eigenvalues. Note that both plots below are 

estimated on the basis of the 30 industry portfolios.  

 

Figure 4.1: Monthly absorption ratio and S&P 500 index  1973-2014 

The main idea is that the absorption ratio has large values in periods with high systemic 

risk. At first glimpse, what we can see from Figure 4.1 that this measure at least has a 

slight  tendency of shifting upwards in times when the estimated returns are in a trough. 
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The most apparent examples of this are the Black Monday in 1987, and when the 

financial crisis escalated around 2008. For both these cases, the absorption ratio exhibits 

an almost vertical upward shift.  

 

Figure 4.2: Monthly absorption ratio and S&P 500 index  1998-Jan 2010 

And especially when we take a more thorough look at the rather turbulent period from 

1998 to the beginning of 2010 (which is the same period as the one Kritzman et al. 

(2011) examined), it is easy to deduce that the absorption ratio has a tendency of being 

relatively high in the periods when the stock index is fairly low, and vice versa. At most, 

the six principal components explain over 80 per cent of the total data variance, which is 

during the financial crisis.  

  For the exact period which Kritzman et al. (2011) inspect, the absorption ratio 

(or measures derived from it, like the standardized shift of the absorption ratio) might 

very well be a variable that is suitable as a targeting variable for some sort of dynamic 

portfolio (in the same way as the volatility and turbulence are applied as targeting 

measures in for two different dynamic portfolios in this thesis). Though, when we 

consider a longer time period, as for instance 1973-2014, we see from Figure 4.1 that 

the relationship between the stock index and the absorption ratio is more ambiguous. 

For curiosity I regressed daily equally-weighted returns (from the 30 industry set, which 

is believed to represent the total market rather well) on the daily absorption ratio 

(based on the same data set) and ended up with a model with literally no explanatory 

power and a highly insignificant regressor with a coefficient approximately equal to 

zero. Of course note that this doesn't have to be the case for other data sets and periods, 

after all Kritzman et al. (2011) did indeed find an inverse relationship between some US 

stock price index and the absorption ratio.   

 Still, even if we're not using the absorption ratio as a direct target for dynamic 

portfolios, it's an interesting measure when it comes to data analysis. From the figures in 

Table 4.1, we get an indication on how closely unified the different data sets are. 
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~ 1973-2014 ~ 
Portfolio data set Mean absorption ratio 
10 industry 0.809 
30 industry 0.800 
25 formed on size and momentum 0.931 
25 formed on size and boot-to-market 0.925 
Table 4.1: Monthly mean absorption ratio for all data sets 

Again, the sum of the 20 per cent of the largest eigenvalues are divided by the total 

variance. As expected, the two data sets which are partly sorted on size and partly on 

momentum and book-to-market, achieves the highest absorption ratios. As expected, 

because both data sets' returns are first sorted into five groups based on firm size. Thus, 

one of these groups contains five columns of returns from the biggest firms, and it is 

very likely to assume that the variance of the biggest firms' returns would explain a 

large proportion of the total variance. Hence, there would only be a few components 

necessary to explain as much as 93.1 and 92.5 per cent of the overall variance. In general 

one could state that these two data sets in fact are completely inappropriate when it 

comes to the estimation of the absorption ratio, mostly because they usually would 

imply extremely high levels of systemic risk. This is so due to how the data sets' returns 

are sorted initially, which make them incompatible as market portfolio representatives. 

4.1.2 Principal component analysis 

The PCA procedures one has to go through in order to estimate the absorption ratio 

does also have quite a few interesting features related to analysis of the underlying 

returns data. In this subsection, I will apply, and in fact comment briefly, on some of 

these statistical features. All plots in this subsection are based on the 10 industry 

portfolios daily returns, and they are included in order to illustrate and clarify the main 

points of this conceptual area.  
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Figure 4.3: Percentage variance explained by each component  1973-2014 

Over the total period, the first principal component accounts for around 70 per cent of 

the total variance in this particular data set. In other words, it is believed that the 10 

industries' returns, in general, are quite closely coupled together, at least when we look 

at the explained variance for the whole period 1973-2014. The second principal 

component does only explain around 8 per cent. 

~ 1973-2014 ~ 
Amount of 

eigenvectors 
10 industry 30 industry 

25 on size and 
momentum 

25 on size and 
book-to-market 

10 % 
20 % 
30 % 
40 % 
50 % 
60 % 
70 % 
80 % 
90 % 

0.693 
0.773 
0.827 
0.875 
0.917 
0.942 
0.964 
0.979 
0.992 

0.668 
0.757 
0.811 
0.855 
0.893 
0.923 
0.949 
0.970 
0.987 

0.839 
0.920 
0.944 
0.955 
0.964 
0.974 
0.983 
0.988 
0.993 

0.854 
0.911 
0.933 
0.945 
0.955 
0.968 
0.980 
0.986 
0.992 

Table 4.2: Daily variance explained for all data sets 

This table provides the variance explained for different amount of eigenvectors used. 

Recall that the eigenvectors are sorted according to their levels of significance (i.e. 

eigenvalue levels). The first row represents variance explained by the 10 % (N/10) of 

eigenvectors with the largest eigenvalues, the second applies the N/5 number of 

eigenvectors with the largest eigenvalues, and so on. By definition, the second row is 

equal to the absorption ratio, as we defined it in Section 3.6. Note that these are daily 

figures, hence there might be some variations compared to the figures in Table 4.1.  

  In particular, if we consider the two data sets to the right in this table, we would 
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see that around half of the components (eigenvectors), i.e. the ones with the lowest 

eigenvalues, only account for about 5 per cent of the total variance. At this point one can 

therefore choose to ignore these components in order to simplify and reduce the 

dimension of the data sets, without losing too much information.  

 At this point we can also compute to what degree the N different variables 

correlate with the N eigenvectors, i.e. the factor loadings. A graphical illustration can 

also be made for the 2D-case, which includes two principal axes that each represent the 

directions of the two principal components. A 3D plot is also feasible, but in general it 

does not add much extra information.  

 

Figure 4.4: Factor loadings (two principal axes)  1973-2014 

Each point in Figure 4.4 represents a factor loading, which shows how a given industry 

is related to either the first principal component ("Comp.1"), or the second ("Comp.2").12 

This plot (and loadings in general) can give us additional illustration on how the 

different industries' data seem to be coupled together, and for this particular case we 

can also see quite fast how the data seems to create a horizontal line which goes in the 

same direction as the principal component (Comp.1) axis does. This proves why the 

explained variance of component 1 is as high as 70 %. In practice, such a component 

might be represented by some sort of market portfolio. 

4.2 Estimation process and outcomes 

In this section I will give a short review on the estimation procedures for the out-of-

sample monthly returns, volatility and turbulence, respectively. Throughout this section, 

I will centre my attention towards the period which covers the years from 1973 to 2014 

(if else, this will be remarked explicitly). The average number of days in a year is, as near 

                                                        
12 For a plot with three principal axes, I refer to Figure A-1. 



 

37 
 

as makes no difference, 252 days, while the corresponding number for each month is 21. 

This indicates I will not distinguish between leap years and ordinary years, and neither 

between the different number of days in the calendar months. The total period 

(including in-sample period) does not include any years where six workdays in a week 

were the applicable standard. Hence, there will not be any obvious estimation errors 

that are related to dislocation of time.  

  I will also add some supplementary plots here and there in this section in order 

to give an intuitive illustration of some of the concepts we go through. And finally, for 

further details on the computation itself, I refer to Appendix C.  

4.2.1 Return 

The returns from the data sets mentioned in Chapter 2, are initially on a daily basis and 

divided into N different columns of returns, either depending on size, momentum, type 

of industry or a combination of those criteria. In order to make these returns 

appropriate for the methods I'll be using for the volatility and turbulence targeting 

strategies (see Subsections 3.4.1 and 3.4.2), I have to be reduce their number of 

dimensions, from N to one. The single column that remains will represent the risky asset 

for these two dynamic strategies. The dimensions are reduced simply by taking the 

mean daily return of the N different columns. As we recall from Subsection 3.4.1, this 

will also correspond to the returns of the naïve diversification strategy. In the end, each 

monthly return are estimated from the cumulative daily returns, on a rolling interval of 

21 days. 

4.2.2 Volatility and turbulence 

First, the daily volatility is computed by taking the standard deviation of the equal-

weighted returns, from each and every data set individually. Then, based on equation 

(3.24), this daily standard deviation is multiplied by the square-root of the average 

number of days in a month (21), to convert it into monthly figures.  

  The turbulence estimation is based on a rolling window of 120 months (i.e. 2520 

days). First, I calculate the necessary figures, which is; the mean daily return of the N 

different columns of returns in the given data set; and the inverse of the variance-

covariance matrix. Second, I subtract the mean return from the daily returns on a 

monthly interval. Large deviations here will provide for high figures of turbulence. 

Third, I use these figures to compute the turbulence in accordance with equation (3.29). 
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I've also added a plot which aims to compare the turbulence and volatility levels. These 

figures are based on the 30 industries data set, which, for purely illustrational purposes, 

works as a representative for all four data sets. 

 

Figure 4.5: Monthly volatility and turbulence  1973-2014  

Comparing the turbulence and volatility levels, it is apparent that the turbulence 

measure shares quite a lot of similarities with the volatility. The most striking common 

feature is the spike they both exhibit in the end of the 1980s, which was due to the Black 

Monday. This refers to a day in October 1987 which is, percentage-wise, considered to be 

the worst stock market downturn in history. Hence, both volatility and turbulence 

ascended to sky-high levels in this particular month.  

  Also, in more recent years, we've had times which are regarded to be both 

turbulent and volatile, such as the recession following the IT bubble crash in the early 

2000s, and the subprime mortgage crisis (or simply the financial crisis) from 2007 to 

2009. Take notice that the turbulence exhibits a relatively higher peak during the dot-

com bubble burst than during the financial crisis (although it is high in both periods, it 

has to be said), while the opposite is the case for the volatility. So, there are in fact some 

differences in the plots here and there, and, only by the look of it, it seems like the 

turbulence is somewhat more persistent than the volatility.  

  Finally, Table 4.3 shows how these market measures varies across the different 

data sets. While the volatility exhibits relatively identical behaviour, the turbulence 

appears to increase, when the dimension of the data set increases, which is in line with 

what was clearly observed in the simplified composition used in equation (3.28). So, in 
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principle, for data sets with very high dimensions, the turbulence measure would exhibit 

quite large values.13 

~ 1973-2014 ~ 

Panel A: 10 industry portfolios 
 Return (%) Standard dev. (%) Turbulence 
Mean values 1.01 3.98 14.92 
Minimum values -27.46 1.34 6.29 
Maximum values 13.71 22.32 48.92 

 
Panel B: 30 industry portfolios 

Mean values 1.05 4.08 26.00 
Minimum values -31.95 1.29 13.20 
Maximum values 16.80 22.19 73.34 

 
Panel C: 25 portfolios formed on size and momentum 

Mean values 1.15 4.03 22.86 
Minimum values -30.51 1.19 12.65 
Maximum values 20.65 22.45 62.63 

 
Panel D: 25 portfolios formed on size and book-to-market 

Mean values 1.12 3.85 22.95 
Minimum values -30.61 1.12 12.28 
Maximum values 16.60 20.69 65.09 
Table 4.3: Monthly return, standard deviation and turbulence  main features   

4.3 Volatility and turbulence as predictors for excess returns 

In this section I will investigate the actual relationship between monthly excess returns, 

and monthly volatility and turbulence, where the focus primarily lies on whether lagged 

values of these two market measures are able to predict the returns, at least to some 

extent. The returns will be based on the equally-weighted returns from the four data 

sets described in Chapter 2. To determine this possible relationship, the excess returns 

are regressed on volatility and turbulence, respectively, using the simple linear 

regression model. Here it is important to note that both returns and volatility values are 

in percentage terms (i.e. multiplied by 100). Again, to gain the strength of this enquiry, I 

will consider the total period, plus the same sub periods as in the former section. The 

results are presented in Table 4.4 below, where the coefficient of the explanatory 

variables (volatility and turbulence) are included, together with the p-values of these in 

                                                        
13 If this feature should cause some trouble, one could alternatively opt for the method applied by Kinlaw 
and Turkington (2014), where they divide the turbulence measure, as of equation (3.29), by the number of 
assets (N). 
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order to establish if they are statistically significantly different from zero, at a 

significance level of 5 per cent. Finally, the table contains the R-squared measure (R2), 

which tells us to what extent the given model explains the total variation in the 

regressand. 

 Volatility: 

, t f t t t
r r   


   

1
 

 Turbulence: 

, t f t t t
r r d  


   

1
 

Panel A: 10 industry portfolios 
   -coeff. p-value R2    -coeff. p-value R2 

1973-2014 -0.626 0.000 0.096  -0.152 0.000 0.034 
1973-1990 -0.878 0.000 0.108  -0.221 0.002 0.046 
1991-2014 -0.548 0.000 0.104  -0.121 0.004 0.029 

 
Panel B: 30 industry portfolios 

1973-2014 -0.642 0.000 0.093  -0.083 0.002 0.019 
1973-1990 -1.086 0.000 0.138  -0.140 0.010 0.030 
1991-2014 -0.509 0.000 0.085  -0.062 0.035 0.015 

 
Panel C: 25 portfolios formed on size and momentum 

1973-2014 -0.515 0.000 0.063  -0.127 0.000 0.027 
1973-1990 -1.338 0.000 0.164  -0.251 0.000 0.066 
1991-2014 -0.402 0.000 0.053  -0.083 0.039 0.015 

 
Panel D: 25 portfolios formed on size and book-to-market 

1973-2014 -0.679 0.000 0.102  -0.174 0.000 0.049 
1973-1990 -1.384 0.000 0.177  -0.292 0.000 0.077 
1991-2014 -0.572 0.000 0.102  -0.139 0.000 0.043 
Table 4.4: Excess returns regressed on volatility and turbulence 

As we see from our results, all beta coefficients are significant at a 5 per cent level. The 

p-values are in general very small, indicating that the lagged turbulence and volatility 

regressors at least have some importance in the prediction of the subsequent excess 

return. Also, all coefficients exhibit negative signs, which mean that volatility and 

returns, and indeed turbulence and returns, have negative relationships. Regarding 

volatility and excess returns, this negative relationship is as one would anticipate, when 

we base our expectations on the conclusions of the majority of previous studies. Same 

accounts for the turbulence, although one should be aware of the fact that there are a lot 

less previous research in this field. This negative relationship with returns is after all 

one of the main empirical features of turbulence, as stated by Kritzman et al. (2010). 

With respect to the R-squared figures, we see that the volatility apparently is better 

fitted to explain the variability of future excess returns than the turbulence. It is also 



 

41 
 

worth pointing out that, in general, both volatility and turbulence predictors achieve the 

highest R-squared during the sub period 1973-1990, a period where stocks mostly 

performed worse compared to the other periods examined.  

  In conclusion, we can say that there are a negative relationship between the 

variables we have looked at, which insinuate that monthly volatility and turbulence both 

can be used to predict future returns. This also supports the argument that these 

variables are useful as targets for dynamic asset allocation strategies. Still, it is 

important to note that these simple predictive models we have been estimating are not 

particularly solid, and especially the models which use turbulence as predictor exhibits 

very low coefficients of determination. 

4.4 Performance evaluation 

In this section I will evaluate the performances of the different portfolio strategies. First 

of all, this is done by assessing the annualized Sharpe and Sortino ratios. The p-value of 

the Jobson-Korkie-Memmel-test is computed as well, to see whether the Sharpe ratios of 

the two dynamic strategies, independently, are statistically distinguishable from the 

static benchmark portfolio. The same test will be applied to see if the same accounts for 

the Sharpe ratio of the turbulence strategy when compared to the dynamic benchmark 

strategy (the volatility targeting approach). For both cases, I will use a significance level 

of 5 per cent.  

  I will also evaluate statistical concepts related to how the returns are distributed, 

such as the skewness and the kurtosis. At this point I've conducted the Jarque-Bera 

normality test too, again using a 5 per cent level of significance, to see if there actually 

are statistical support that the returns are normally distributed.  

  Note that the monthly target (benchmark) turbulence is set to 25, while the 

corresponding number of the volatility is 5 per cent. These are both regarded as 

relatively high target values, and would most likely be inappropriate for the risk-averse 

investors, since the active portfolios quite often will suggest exposures to the risky asset 

at way over 100 per cent. But, even though these benchmark values do have an effect on 

the return and volatility levels, we should bear in mind that they will not have any 

influence on the risk-adjusted performance of these active strategies.  

  The out-of-sample simulations are carried out for the period from January 1973 

up to December 2014. In order to provide more robustness to my results, I will also 



 

42 
 

compute the same measures as the ones I mentioned at the beginning of this section for 

two sub-periods. These sub-periods are 1973-1990 and 1991-2014, where both are 

characterized by having longer bull periods (80s and 90s), and indeed longer bear 

periods (70s and 2000s) as well.  

  Before I present the tables which summarize the empirical results, I will go 

through the system of notations. These symbols and abbreviations will be in force 

throughout all the tables in this section. 

Abbreviation Complete expression 
Pas Passive portfolio. Also expressed as the static, the equally-weighted, the 

naïvely diversified, or the buy-and-hold portfolio. 
Vol Active (or dynamic) volatility targeting portfolio. 
Tur Active (or dynamic) turbulence targeting portfolio. 
JB-test Jarque-Bera-test. 
JK-test Jobson-Korkie-test (note: correction by Memmel (2003) is included). 
Table 4.5: Abbreviations and notations 
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~ 1973-2014 ~ 

Panel A: 10 industry portfolios 
 Pas Vol Tur 
Mean returns (%) 12.18 13.88 18.74 
Standard dev. (%) 16.03 21.69 28.20 
Sharpe ratio 0.45 0.41 0.49 
p-values JK-test, Pas: - 0.53 0.48 
p-values JK-test, Vol: 0.53 - 0.16 
Sortino ratio 0.62 0.58 0.69 
Skewness -1.19 -0.78 -1.03 
Kurtosis 5.11 2.59 4.38 
p-value JB-test 0.00 0.00 0.00 

 
Panel B: 30 industry portfolios 

 Pas Vol Tur 
Mean returns (%) 12.64 13.78 13.08 
Standard dev. (%) 17.91 23.93 17.73 
Sharpe ratio 0.43 0.37 0.46 
p-values JK-test, Pas: - 0.38 0.54 
p-values JK-test, Vol: 0.38 - 0.15 
Sortino ratio 0.59 0.51 0.64 
Skewness -1.21 -0.78 -1.17 
Kurtosis 5.71 2.81 5.36 
p-value JB-test 0.00 0.00 0.00 

 
Panel C: 25 portfolios formed on size and momentum 

 Pas Vol Tur 
Mean returns (%) 13.77 15.20 14.72 
Standard dev. (%) 19.49 28.94 21.06 
Sharpe ratio 0.45 0.35 0.46 
p-values JK-test, Pas: - 0.19 0.80 
p-values JK-test, Vol: 0.19 - 0.07 
Sortino ratio 0.64 0.49 0.65 
Skewness -0.92 -0.86 -0.97 
Kurtosis 4.24 3.94 3.73 
p-value JB-test 0.00 0.00 0.00 

 
Panel D: 25 portfolios formed on size and book-to-market 

 Pas Vol Tur 
Mean returns (%) 13.46 16.09 14.72 
Standard dev. (%) 18.32 28.38 19.73 
Sharpe ratio 0.46 0.39 0.49 
p-values JK-test, Pas: - 0.31 0.44 
p-values JK-test, Vol: 0.31 - 0.08 
Sortino ratio 0.64 0.54 0.70 
Skewness -1.16 -0.87 -0.97 
Kurtosis 4.71 3.88 3.58 
p-value JB-test 0.00 0.00 0.00 
Table 4.6: Performance measures and statistical figures  1973-2014 
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First of all, note that the mean returns and standard deviations are in fact just straws in 

the wind; they may give a slight indication on the risk-to-return proportion, but still, in 

general, I will not give emphasis to any interpretation of these. The reason for this is that 

they both are highly dependent on the level of stock exposure, which again is extremely 

dependent on the volatility and turbulence target levels, i.e.    and   . Recall that these 

target values are only arbitrary chosen values, and that the weight in stocks does not 

affect the most important measures of the ones we consider, namely the risk-adjusted 

performance measures.  

  What we first observe is that the turbulence targeting strategy consistently 

performs better than both the active and passive benchmark portfolios, across all four 

data sets, and according to both the Sharpe ratio and the Sortino ratio. Still, in all four 

data sets, there are insufficient statistical evidence that the Sharpe ratio of the 

turbulence strategy in fact is significantly distinguishable from the ones of the naïve 

diversification and volatility-targeting strategies. There are however a couple of 

incidents where the Sharpe ratios of the turbulence and volatility targeting strategies 

are significantly different at a 10 per cent level. This brings us to the second observation, 

which is the fact that the volatility targeting strategy achieves the lowest performance 

measures for all data sets. Although former studies have shown that the volatility 

targeting, and also volatility responsive (which is a long-only approach) strategies first of 

all have their strength in the decade of the 2000s, these results are rather unexpected. 

However, the differences in Sharpe ratios between this strategy and the naïve 

diversification one are not statistically significant, either at a 5 or 10 per cent level.  

  Regarding skewness, all strategies are consistently displaying negative values, 

and as a result of this, they are skewed to the left (i.e. the left tail of the distribution is 

longer). This indicates that downside risk is, to some extent, higher than the upside risk. 

Hence, we also observe that the relative difference between the Sharpe and Sortino 

ratios for the equally-weighted strategy, is slightly less the more negative the skewness 

is.  As was commented on in Section 3.3, this means that the Sharpe ratio would have a 

propensity to overrate the performance of the negatively skewed portfolio. It is also 

worth mentioning that the volatility targeting strategy consistently exhibits the lowest 

skewness. Though, here it is important to point out that lowest skewness does not 

necessarily imply that this strategy has the lowest downside risk. Similar skewnesses of 

two strategies do not imply that their downside risk levels are equivalent as well, and 
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vice versa (Sortino et al., 2001).  

  Moving on to the topic of kurtosis and we see that the strategies are not even 

close to fulfil the assumption of normal distribution, that is, having an excess kurtosis14 

equal to zero. Instead, these figures varies between values of 2.81 and up to 5.71. 

Accordingly, with positive excess kurtoses, the distributions of each portfolio's returns 

are leptokurtic. Hence, they are expected to have fatter tails than a normal distribution 

has, providing for a greater probability that they contain extreme values, which in this 

case primarily are extremely negative values.  

  As was intimated above, none of the distributions are believed to be normally 

distributed. This is also supported by the Jarque-Bera test where we can reject the null 

hypothesis of normality at very low significance levels. When it becomes so palpable 

that we are dealing with non-normal distributions, we should take the Sharpe ratio with 

a pinch of salt, and probably emphasize the Sortino ratio to a greater degree.  

                                                        
14 By default, R uses excess kurtosis, which is the kurtosis minus 3, and I will therefore use this measure 
throughout this section. For the data to be normally distributed, the excess kurtosis has to be equal to 
nought.   
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~ 1973-1990 ~ 

Panel A: 10 industry portfolios 
 Pas Vol Tur 
Mean returns (%) 12.06 12.70 15.02 
Standard dev. (%) 17.25 25.10 29.19 
Sharpe ratio 0.25 0.20 0.25 
p-values JK-test, Pas: - 0.44 1.00 
p-values JK-test, Vol: 0.44 - 0.20 
Sortino ratio 0.34 0.27 0.35 
Skewness -1.06 -0.49 -0.58 
Kurtosis 7.62 4.49 5.18 
p-value JB-test 0.00 0.00 0.00 

 
Panel B: 30 industry portfolios 

 Pas Vol Tur 
Mean returns (%) 12.68 13.27 12.50 
Standard dev. (%) 19.35 27.89 18.73 
Sharpe ratio 0.25 0.20 0.25 
p-values JK-test, Pas: - 0.42 0.98 
p-values JK-test, Vol: 0.42 - 0.25 
Sortino ratio 0.34 0.27 0.35 
Skewness -1.11 -0.52 -0.84 
Kurtosis 8.21 4.61 7.05 
p-value JB-test 0.00 0.00 0.00 

 
Panel C: 25 portfolios formed on size and momentum 

 Pas Vol Tur 
Mean returns (%) 12.82 14.23 13.61 
Standard dev. (%) 19.98 33.94 22.56 
Sharpe ratio 0.25 0.19 0.26 
p-values JK-test, Pas: - 0.35 0.89 
p-values JK-test, Vol: 0.35 - 0.16 
Sortino ratio 0.34 0.26 0.36 
Skewness -1.01 -0.68 -0.82 
Kurtosis 6.96 5.34 6.23 
p-value JB-test 0.00 0.00 0.00 

 
Panel D: 25 portfolios formed on size and book-to-market 

 Pas Vol Tur 
Mean returns (%) 13.40 15.97 14.23 
Standard dev. (%) 19.31 33.43 21.47 
Sharpe ratio 0.29 0.24 0.30 
p-values JK-test, Pas: - 0.50 0.81 
p-values JK-test, Vol: 0.50 - 0.22 
Sortino ratio 0.39 0.34 0.42 
Skewness -1.12 -0.66 -0.83 
Kurtosis 7.59 5.34 6.08 
p-value JB-test 0.00 0.00 0.00 
Table 4.7: Performance measures and statistical figures  1973-1990 
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~ 1991-2014 ~ 

Panel A: 10 industry portfolios 
 Pas Vol Tur 
Mean returns (%) 12.26 14.77 21.53 
Standard dev. (%) 15.08 18.78 27.46 
Sharpe ratio 0.62 0.64 0.68 
p-values JK-test, Pas: - 0.92 0.52 
p-values JK-test, Vol: 0.92 - 0.64 
Sortino ratio 0.88 0.90 0.97 
Skewness -1.32 -1.18 -1.42 
Kurtosis 8.33 6.66 9.48 
p-value JB-test 0.00 0.00 0.00 

 
Panel B: 30 industry portfolios 

 Pas Vol Tur 
Mean returns (%) 12.60 14.17 13.51 
Standard dev. (%) 16.79 20.51 16.97 
Sharpe ratio 0.58 0.55 0.63 
p-values JK-test, Pas: - 0.80 0.54 
p-values JK-test, Vol: 0.80 - 0.48 
Sortino ratio 0.81 0.76 0.88 
Skewness -1.30 -1.18 -1.48 
Kurtosis 8.89 7.01 9.58 
p-value JB-test 0.00 0.00 0.00 

 
Panel C: 25 portfolios formed on size and momentum 

 Pas Vol Tur 
Mean returns (%) 14.48 15.92 15.56 
Standard dev. (%) 19.15 24.60 19.90 
Sharpe ratio 0.61 0.53 0.64 
p-values JK-test, Pas: - 0.54 0.68 
p-values JK-test, Vol: 0.54 - 0.32 
Sortino ratio 0.88 0.74 0.92 
Skewness -0.83 -1.08 -1.12 
Kurtosis 7.40 8.74 7.05 
p-value JB-test 0.00 0.00 0.00 

 
Panel D: 25 portfolios formed on size and book-to-market 

 Pas Vol Tur 
Mean returns (%) 13.51 16.18 15.09 
Standard dev. (%) 17.58 23.97 18.35 
Sharpe ratio 0.61 0.56 0.67 
p-values JK-test, Pas: - 0.67 0.36 
p-values JK-test, Vol: 0.67 - 0.29 
Sortino ratio 0.85 0.77 0.96 
Skewness -1.19 -1.19 -1.11 
Kurtosis 7.64 8.53 6.83 
p-value JB-test 0.00 0.00 0.00 
Table 4.8: Performance measures and statistical figures  1991-2014 
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On the whole, the results from the sub-periods 1973-1990 and 1991-2014 seem to 

support the results of the total period. That is, the turbulence targeting portfolio 

consistently accomplishes the highest level of the performance measures. Although 

there are a couple of incidents where the Sharpe ratio is similar to that of the passive 

counterpart. When we rely on the Sortino ratio, it apparently performs best in all 

periods and for all data sets. But again, we cannot make any hasty conclusions solely 

based on these numbers, since none of the p-values obtained from the Jobson-Korkie-

Memmel-test seem to give statistical support that the Sharpe ratios in fact are 

significantly different from one another.   

 We should also bring up that the volatility targeting approach is, at least to a 

larger degree, compatible with the two other strategies when we consider the latest of 

the sub-periods. This is mostly due to its strong performance in the 2000s, and is also in 

line with the implications of some of the studies I mentioned in Chapter 1; the volatility 

targeting strategy performs best in the 2000s, otherwise its performance compared to 

some passive strategies, are rather ambiguous. For instance, a quick re-simulation based 

on the 30 industry set, shows that volatility targeting achieves a Sortino ratio of 0.141 in 

the volatile period from 2001 to 2009, while the corresponding number of the static 

strategy is only 0.098 (turbulence targeting still best at 0.178). 

5  Discussion 

The plain figures and its implications were mentioned and discussed in Chapter 4, so in 

this chapter I will go through some possible weaknesses of the methods I have applied in 

this thesis, and also try to establish why the volatility targeting strategy performs 

somewhat worse than one would expect, and why the turbulence targeting strategy 

again and again performs better than the volatility targeting approach. Some of these 

discussions will also take a more practical point-of-view, in order to make the overall 

reflections more nuanced. I will also compare my results with a couple of previous 

studies.15  

  Even though one of the main objectives of an active portfolio strategy should be 

to safeguard the investor against extreme losses, we still see a tendency that one-time 

                                                        
15 Bear in mind that there are only a few former studies which apply a nearly equivalent variant of the 
volatility targeting portfolio as the one I use. Hence, there are quite a lot of the previous studies mentioned 
in Chapter 1 that are not directly comparable to this study. Regarding turbulence targeting, there is only 
one former study that is relevant, at least to some degree, namely Kritzman et al. (2010). 
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freak events which occur very unexpectedly, cause a lot of trouble for the strategies I 

have assessed in this thesis. The most simple explanation to this, is that since we use the 

naïve prediction method, we will not be able to capture the current extreme levels of 

turbulence and volatility. We will have to make do with the turbulence and volatility 

levels from the previous period, which will not be as extreme. Then the inevitable 

happens; the strategy will suggest to place a relatively large amount of the investor's 

disposable wealth in stocks. The investor might even be suggested to buy stocks on 

margin, take up a loan or short sell stocks in order to invest over 100 per cent in stocks. 

Then, when the market falls, the investor would have to deal with a loss larger than the 

size of the actual decline in stock value. To illustrate, consider Black Monday in October 

1987, together with the month before and the month after this incident. This example is 

based on the 30 industry returns data set. The volatility and turbulence target values 

obviously have a huge power of influence on the stock exposures of both strategies, but 

we will consider both risk (standard deviations) and returns in this modest example. 

~ 1987 ~ 
 September October November 
Returns (%) -1.95 -31.95 7.87 
Standard deviation (%) 4.64 22.19 9.08 
Turbulence 27.43 73.34 41.17 
Volatility targeting: 
Stock exposure 1.48 1.08 0.23 
Returns (%) -3.09 -34.46 2.05 
Standard dev. (%) 6.85 23.90 2.05 
Turbulence targeting: 
Stock exposure 0.90 0.91 0.34 
Returns (%) -1.71 -29.07 2.91 
Standard dev. (%) 4.17 20.22 3.10 
Table 5.1: Reallocation during Black Monday 

As we see from the figures we have gathered, both strategies struggle during such 

tremendous events as this one, as was also suggested above. And what makes the 

dynamic strategies perform even worse, is that in the following month, the returns are 

clearly positive. Due to the fact that we use the random walk model to forecast, the stock 

allocations for November are based on the turbulence and volatility levels from October, 

which were dreadfully high. Then recall that the target values we are using are 5 per 

cent for the volatility and a turbulence of 25. Accordingly, exposure to stocks turned out 

to be very low for both strategies in November, causing them to lose out on the market 

upturn. Again it is important to note that the randomly chosen target  values      obviously 
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have a huge power of influence on the strategies' stock exposures (and thereby its levels 

of returns and standard deviations), but when we consider the Sortino ratio (which is 

not affected by the stock allocation levels) we see that it is negative, by a long way, for 

both strategies.  

  At this point, the most feasible "solution" would be to blame the prediction 

method for the portfolio misallocations. But it's not that simple; even though the 

prediction method which is used in this thesis, is a very straightforward and "naïve" 

approach, studies have shown that this method in fact performs quite well when it 

comes to volatility forecasting (see for instance "lecture notes 14", Zakamulin, 2014). 

Also, it is by no means necessarily the case that the more advanced prediction methods 

would produce better forecasts, especially when it comes to one-time events, such as the 

Black Monday, which are almost impossible to predict nevertheless. There are also 

acknowledged theories, such as the efficient market and random walk hypotheses, 

which take this concept even further, saying that stock values follow a completely 

random path and hence, they're impossible to predict.  

  Bring to mind that the volatility targeting portfolio is a strategy which allows for 

borrowing, without any restrictions at all. Hence, it becomes fairly risky, and at some 

points, extremely risky. Maximum exposure to stocks when we consider the whole out-

of-sample period, is around 400 per cent for all data sets, which is immense. For 

instance, the maximum stock weight for the 30 industry set is 388 per cent, and this is 

even in a month with negative stock returns. Even if we were to change the volatility 

target value, it will be the case that the strategy's largest stock exposure occurs in a 

period with negative returns. Obviously, if this strategy exhibits several cases such as 

this one, it's easy to understand why it performs worse than the two others. Though, for 

practical purposes, we have to keep in mind that if an investor wants to avoid such high 

exposures to the risky asset, we could impose a borrowing restriction at some level. The 

volatility target value can also be adjusted so that it suits a given investor's particular 

demands. Although its drawbacks, the different types of volatility targeting strategies 

have in fact received quite a lot of commendation by researchers, in the last 5-10 years.

 For instance, Zakamulin (2014) tested a long-only volatility responsive strategy 

(which is believed to perform roughly in the same way as the approach we use) for 

approximately the same periods as has been applied in this thesis, also using one risk-

free and one risky asset (based on two major stock indices), and showed that this 
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dynamic portfolio outperformed the static 50/50 portfolio from 1970 to 2012, mainly 

due to its performance in the 2000s. Receiving Sharpe ratios of 0.43 and 0.46, using 

stock indices S&P 500 and DJIA, respectively, this is slightly higher than the mean 

Sharpe ratio from the four data sets I examined (0.38). Though, its Sharpe ratio never 

turned out to be statistically significantly distinguishable from its passive counterpart. 

Hence, there are reasons to believe that these results seem to be quite in line with my 

own.   

  It's definitely not a straightforward task to find out why this strategy 

underperforms during the periods and data sets we have examined, and why the 

turbulence strategy generally achieves better results. But in general, volatility targeting 

are not well suited for periods characterized by low volatilities and low returns. As a 

practical illustration, we could take a closer look at such a period which occurred in the 

beginning of 1993. 

~ 1993 ~ 
 January February March April 
Returns (%) -0.02 -0.30 3.17 -1.76 
Standard dev. (%) 1.31 3.59 2.91 2.83 
Turbulence 27.02 34.08 30.81 38.00 
Volatility targeting: 
Stock exposure 2.46 3.81 1.39 1.72 
Returns (%) -0.38 -1.75 4.32 -3.21 
Standard dev. (%) 3.23 13.67 4.05 4.87 
Turbulence targeting: 
Stock exposure 1.04 0.93 0.73 0.81 
Returns (%) -0.03 -0.26 2.39 -1.38 
Standard dev. (%) 1.36 3.32 2.13 2.29 
Table 5.2: Reallocation during period with low volatility and low returns 

Again, these figures are based on the 30 industry portfolios, using target values of 0.05 

for volatility and 25 for turbulence. Note that the tendency is very similar in the other 

data sets as well. This shows how the volatility targeting strategy assigns high weights in 

stocks, even though the stock returns mostly are slightly negative. This happens simply 

due to the fact that       . And yet again this strategy takes a position in stocks of 

nearly 400 per cent in a period with negative returns. From a practitioner's viewpoint, 

such misjudgements can be quite fatal. The turbulence strategy takes a more moderate 

exposure in stocks and thereby reduces the loss. Comparing the risk and return of both 

strategies, there's no doubt that the volatility targeting strategy performs a lot worse. 

Not implying that this minor sub period is representative for the total period 
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performance, but it can possibly give a signal on why the turbulence targeting strategy 

consistently outperforms its volatility-aiming counterpart (in a couple of cases, its 

Sharpe ratio is even statistically significantly higher, at a 10 per cent level). What might 

provide us with additional information on this matter, are the following plots (based on 

the 30 industry set) which illustrate how the volatility targeting (black curve) and 

turbulence targeting (grey curve) strategies reallocate every month, for the same two 

sub periods as we applied in Chapter 4. Target values are still 25 for the turbulence and 

5 per cent for the volatility. Again, changing these would obviously change the stock 

allocation levels, but the general tendency of ups and downs in the stock exposure, 

would still be the same.  

 

Figure 5.1: Stock exposure of dynamic strategies  1973-1990 

It really shows that the levels of stock exposure for volatility targeting strategy fluctuate 

a whole lot more than what is the case for its turbulence aiming counterpart. This is so 

first of all due to the underlying behaviour of the respective market measure which 

these dynamic portfolios reallocate according to. The turbulence targeting strategy does 

indeed follow a very steady path, but it still manages to reallocate to very low levels 

when needed. 

─ Equally-weighted returns (30 ind.)  ─ Stock exposure, volatility targeting  ─ Stock exposure, turbulence targeting 
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Figure 5.2: Stock exposure of dynamic strategies  1991-2014 

The same tendency applies for sub period 1991-2014. Again, notice that these plots only 

provide us with slight indications on how these two dynamic strategies allocate from 

month to month. In order to provide more firmly evidence of this observation, one could 

measure the stock exposure variability simply by taking the standard deviation of the 

stock exposure levels from 1973 to 2014. This is done for all data sets, and for a wide 

range of different volatility target (  ) and turbulence target (  ) values. 

~ 1973-2014 ~ 

Panel A: Volatility targeting  stock exposure variability 

Target values 
10 industry 30 industry 

25 on size and 
momentum 

25 on size and 
book-to-market 

        0.11 0.12 0.15 0.15 
        0.34 0.37 0.44 0.45 
        0.57 0.61 0.73 0.75 
        1.14 1.22 1.47 1.49 
        2.28 2.44 2.93 2.99 

     

Panel B: Turbulence targeting  stock exposure variability 
        0.13 0.06 0.06 0.06 
      0.38 0.18 0.18 0.17 
      0.64 0.31 0.31 0.28 
      1.27 0.61 0.61 0.56 
      1.78 0.85 0.86 0.78 

Table 5.3: Stock exposure variability for dynamic strategies 

There's no doubt that the volatility targeting portfolio generally varies a lot more than 

its turbulence aiming counterpart. And especially when using the naïve prediction 

method, it is reasonable to assume that a strategy which exhibit large variations in stock 

exposure, is more likely to exhibit large losses as well. Due to its quite poor 

performances in general, we have reasons to believe that the volatility targeting strategy 

─ Equally-weighted returns (30 ind.)  ─ Stock exposure, volatility targeting  ─ Stock exposure, turbulence targeting 
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does not manage to capture the upturns as well as it should either.  

  So, in general, the turbulence strategy never varies as much (as the volatility 

targeting) when it comes to reallocation, with the lowest (highest) weight in stocks 

always higher (lower) than the corresponding number of its dynamic equivalent. This is 

so due to the general behaviour of the turbulence as an underlying market measure. 

Obviously, this can affect the portfolio's results in a negative way if it "refuses" to go 

lower than a given percentage in stocks, no matter what the circumstances are. Also, 

regarding the estimation of the turbulence, there could probably be some fluctuations 

on the basis of what method one uses to estimate the forecasted variance-covariance 

matrix. Yet, at this point I could mention that Engel and Gizycki (1999) assessed 

different time-series models that could be used to predict the variance-covariance 

matrix and concluded that the simpler models achieve equally good results as the more 

sophisticated models. Although I cannot generalize these results (due to the fact that 

there are a lot of similar studies, and some may come up with other conclusions), they 

can give a some indication. What is also sure, is that the turbulence value will also 

exhibit some variations depending on the length of the lookback period. For that matter, 

I did a few re-estimations of the turbulence based on different lengths of the in-sample 

period, and the differences in the realized figures were minor. Hence, I will not discuss 

this topic further. Regarding previous research on the topic of turbulence targeting 

portfolios, there are very few to choose from, and none of them are directly comparable 

to the approach applied in this thesis. Yet, Kritzman et al. (2010) built a turbulence-

resistant portfolio and found out that it achieved higher return-to-risk than the other 

strategies he considered. Quite consistently, the same is the case for the turbulence 

targeting strategy in this paper as well (although we did not manage to find statistical 

evidence that it was performing significantly better than the volatility targeting and 

naïve diversification portfolios). 

6  Summary and conclusion 

Let's initiate this chapter with a summary of the main points of this thesis. First, we did a 

rather general analysis on the systemic risk levels from 1973 to 2014, which was mainly 

based on the absorption ratio, as defined by Kritzman et al. (2011). Assuming that the 30 

industry portfolios are the most representative data set of the four we have (in order to 

represent the total market), we did find that upward shifts of this measure undeniably 
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coincided with incidents where the market returns dropped massively. Though, 

considering the whole period for this particular data set, we failed to find any direct 

relationship between daily returns and absorption ratio. Hence, we did not use this 

measure as a targeting measure for a dynamic portfolio, unlike what was the case for the 

volatility and turbulence. Finally, a short data analysis also revealed that the two data 

sets where the returns were (partly) sorted by firm size should not be used in order to 

estimate the absorption ratio, since they would results in artificially high figures (which 

is not a surprise, due to the nature of the data sets versus how the absorption ratio is 

defined).  

  Then, we briefly described the estimation procedures related to the computation 

of monthly returns, volatility and turbulence. We also compared the turbulence measure 

with the volatility (though in a rather superficial manner), and find some tendencies 

which suggested that the turbulence might be somewhat more persistent than the 

volatility. In this section we also estimated and compared the monthly return, volatility 

and turbulence across the different data sets and find that the volatility and return levels 

were quite consistent, while the turbulence level increased as the dimensionality of the 

data set increased.  

  In the following section we carried out two different predictive regressions for 

the excess returns; one using the lagged value of volatility as predictor, and one by 

applying the lagged turbulence as a predictive variable. This was conducted on all four 

data sets, for periods 1973-2014, 1973-1990 and 1991-2014, and the results were 

highly consistent; all regressors were significant at a 5 per cent level. Even though the R-

squared was quite low for some of the regressions, we did find a clear negative 

relationship between turbulence and volatility values from the previous period, and 

returns from the current period. Hence, we found some evidence on the relationship 

between these variables which would make the turbulence and volatility measures even 

more appealing as targeting figures for dynamic portfolio purposes.  

  This brings us to what is considered to be the main motivation of this thesis; the 

assessment of the dynamic volatility and turbulence targeting strategies, and the static 

1/N strategy. Mean returns, standard deviations, Sharpe ratios, Jobson-Korkie-Memmel 

p-values, Sortino ratios, kurtoses and skewnesses were computed for all three 

strategies, for the same three periods as mentioned in the previous paragraph, and for 

the same four data sets. If we were to assess the portfolios' performances purely based 
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on the level of the Sharpe and Sortino ratios, the turbulence targeting strategy seems to 

perform slightly better than the two other portfolios.. The results are indeed consistent, 

since the turbulence targeting portfolio achieves the highest levels of the performance 

measures when we take the whole period 1973-2014 into consideration, as well as 

when we examine the two different sub periods. Yet, we cannot draw any sharp 

conclusions based on this alone, especially since the Jobson-Korkie-Memmel test in fact 

propose that the Sharpe ratio of the turbulence targeting portfolio never is significantly 

different from the Sharpe ratio of the passive 1/N portfolio strategy. In Chapter 5 we 

also made an effort in order to deduce why the volatility targeting portfolio clearly 

underperforms according to the results in Section 4.4. Applying a more practically-

oriented discussion, we found that the volatility targeting strategy exhibited much larger 

variability in stock exposure over time than the turbulence strategy, and insinuated that 

this, accompanied with the naïve prediction method, might be the reason why this 

strategy achieves rather unsatisfactory results in this particular research setting.  

 As a final remark, it should be noted that the findings in this thesis does not 

confirm anything else than the fact that especially the concept of turbulence targeting 

strategies has to be examined further, and more thoroughly, in order to gain robustness 

of the results. When we inspect this field, there are indeed several factors one can 

consider in addition to the ones already examined in this thesis, all of which can have 

significant impacts on the final results; one could study other data sets, additional time 

periods, vary the length of the in-sample period, one could also apply other forecasting 

methods, and one could test for forecasting errors, just to mention a few ideas for 

further investigation.  
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Appendices 

A  Supplementary data 

A-1 Omitted figures 

 

Figure A-1: Factor loadings (three principal axes)  1973-2014 

A-2 Omitted tables 

~ 1973-2014 ~ 

Panel A: 10 industry portfolios 
 Vol Tur 
Mean stock allocation 1.51 1.89 
Min. stock allocation 0.22 0.51 
Max. stock allocation 3.74 3.97 

 
Panel B: 30 industry portfolios 

Mean stock allocation 1.50 1.05 
Min. stock allocation 0.23 0.34 
Max. stock allocation 3.88 1.89 

 
Panel C: 25 portfolios formed on size and momentum 

Mean stock allocation 1.62 1.18 
Min. stock allocation 0.22 0.40 
Max. stock allocation 4.20 1.98 

 
Panel D: 25 portfolios formed on size and book-to-market 

Mean stock allocation 1.67 1.16 
Min. stock allocation 0.24 0.38 
Max. stock allocation 4.45 2.04 
Table A-1:  Dynamic asset allocation features16 
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~ 1973-2014 ~ 

Panel A: 10 industry portfolios 
 Pas Vol Tur 
Monthly min. return (%) -27.46 -29.72 -45.65 
Monthly max. return (%) 13.71 19.32 22.53 

 
Panel B: 30 industry portfolios 

Monthly min. return (%) -31.95 -34.46 -29.07 
Monthly max. return (%) 16.80 22.83 15.29 

 
Panel C: 25 portfolios formed on size and momentum 

Monthly min. return (%) -30.51 -46.49 -33.51 
Monthly max. return (%) 20.65 33.08 17.45 

 
Panel D: 25 portfolios formed on size and book-to-market 

Monthly min. return (%) -30.61 -45.84 -31.13 
Monthly max. return (%) 16.60 30.23 16.43 
Table A-2: Monthly minimum and maximum returns of each strategy16 

B  Mathematical appendix 

B-1 Finding eigenvectors and eigenvalues17 

Consider the same case as in equation (3.39), but this time the square matrix is denoted 

by A:  

 Av v  (B.1)  

 

On the basis of the properties of the identity matrix, denoted I, we can rewrite (B.1) in 

the subsequent manner: 

 

0

( ) 0

Iv Av

Iv Av

I A v









 

 

 

 

(B.2)  

 

Assuming that λI  A is a singular matrix, v is the eigenvector of A. Then, by solving the 

equation |λI  A| = 0, we can find the eigenvalues as well. 

                                                        
16 Target values         and        
17 Section C-1 is based on Musau's lecture notes from the course SE-409: Quantitative Methods in 
Economics and Finance (2013). 
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B-2 Normalizing an eigenvector 

Based on Jeffrey (2001), normalization of an eigenvector is done in the following way; 

first, consider a 2-dimensional example where the vector         equals a point K  in 

the      -plane. Then, the length of vector k, denoted as    , is computed by applying 

Pythagoras' theorem (which also can be generalized to higher dimensions): 

 2 2k x y   (B.3)  

 

Finally, we divide the original vector by its length so that we obtain a normalized vector 

with a length of 1: 

   
      
 


 
  

2 2

2 2

2 2

xx

x yy

yx y

x y

 (B.4)  

 

 

Or, given in simpler terms: 

 ˆk
k

k
  (B.5)  

 

where    denotes the normalized vector.  
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C  R-programs 

C-1 Estimating monthly turbulence, standard deviation and returns 

1 # Clear environment 

2 rm(list=ls(all=TRUE)) 

3 # Loading essential packages 

4 library("quadprog")18 

5  

6 # Read data set consisting of daily returns 

7 Ret <- read.table("10ind_1960-2014.txt"19, header=TRUE) 

8 Ret <- Ret[,2:ncol(Ret)]/100 

9  

10 # Defining number of years and days for the total period in question 

11 NYears <- 55 # Jan 2, 1960 up to Dec 31, 2014 

12 NDays <- dim(Ret)[1] 

13 # Computing the average number of days in a month for the period 1960-

2014 

14 nDays.Month <- round(NDays/NYears/12)  

15 nMonths <- NYears*12  

16 nDays.Year <- nDays.Month*12 

17 # Define lookback period 

18 nYears <- 10 # number of years 

19 nMonths.lb <- nYears*12 # number of months 

20 lb.period <- nYears*nDays.Year # number of days 

21  

22 # Compute number of months in the OOS period 

23 nDays.OOS <- NDays-lb.period 

24 nMonths.OOS <- round(nDays.OOS/nDays.Month) 

25  

26 # Define number of rows, columns and observations 

27 nRow <- nrow(Ret) 

28 nCol <- ncol(Ret) 

29 n <- nRow-lb.period 

30  

31 # Reserve space for monthly data 

32 ret <- rep(0,nMonths.OOS) # returns 

33 std <- rep(0,nMonths.OOS) # volatility 

34 tur <- rep(0,nMonths.OOS) # turbulence 

35  

36 for(i in 1:nMonths.OOS) { 

37    # Define the start and end points of the periods 

38    start.lb <- (i-1)*nDays.Month + 1     # start of lookback  period 

39    end.lb <- start.lb + nMonths.lb*nDays.Month - 1 # end of lookback 

 period + 1 month 

                                                        
18 Ref. Turlach and Weingessel (2013). 
19 Has to be changed according to what data set we want to examine. 
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40    start.month <- end.lb + 1              # start of current  month  

41    end.month <- start.month + nDays.Month -1     # end of current month 

42     

43    # The following figures are needed to compute the turbulence 

44    r.lb <- Ret[start.lb:end.lb,] # all columns 

45    covmat <- cov(r.lb)           # sample variance-covariance matrix 

46    covmat.inv <- solve(covmat)   # inverse of the covariance matrix 

47    er <- colMeans(r.lb)          # sample mean 

48    

49    # Select the returns for a given month 

50    r.month <- as.matrix(Ret[start.month:end.month,]) 

51    rp.daily <- rep(0,nDays.Month) 

52    for (j in 1:nDays.Month) { #  

53     # compute the monthly turbulence 

54     r <- r.month[j,] - er #  

55     d <-  r %*% covmat.inv %*% r 

56     tur[i] <- tur[i] + d 

57     # compute daily returns as a mean 

58     rp.daily[j] <- mean(r.month[j,]) 

59   } 

60   tur[i] <- sqrt(tur[i]) # monthly turbulence 

61    

62   # Compute the standard deviation in per cent 

63   std[i] <- sd(rp.daily)*sqrt(nDays.Month)*100 

64    

65   # Compute monthly returns 

66   r <- cumprod(1+rp.daily) 

67   ret[i] <- r[nDays.Month] - 1 

68 } 

69  

70 index <- cumprod(c(1, 1+ret)) 

71 ind.ts <- ts(index, start=c(1970,2), frequency=12) 

72 ind.ts <- window(ind.ts, start=c(1973,1), end=c(2014,12)) 

73 year.start <- 1973 

74 year.end <- 2015 

75 plot(log(ind.ts), plot.type = "single", xlab=NULL, ylab=NULL, 

col="green", lty=1, lwd=2, axes=FALSE) # plot monthly log-returns 

76 axis(side=1, at=c(year.start:year.end)) 

77  

78 # Construct time series objects 

79 ret.ts <- ts(ret, start=c(1970,2), frequency=12) 

80 Ret.ts <- window(ret.ts, start=c(1973,1), end=c(2014,12)) 

81 std.ts <- ts(std, start=c(1970,2), frequency=12) 

82 Std.ts <- window(std.ts, start=c(1973,1), end=c(2014,12)) 

83 tur.ts <- ts(tur, start=c(1970,2), frequency=12) 

84 Tur.ts <- window(tur.ts, start=c(1973,1), end=c(2014,12)) 

85  
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86 # Construct plot which compares volatility and turbulence level 

87 par(mar = c(5, 4, 4, 4) + 0.3)  # add extra space for volatility axis 

text 

88 plot(Tur.ts, type="l",xlab=NULL,ylab="Turbulence",lwd=2,las=1) # plot 

turbulence 

89 par(new = TRUE) 

90 Col <- rgb(red=0,green=1,blue=0,alpha=0.7) 

91 plot(Std.ts, type = "l", col=Col,axes = FALSE, bty = "n", 

92      xlab = NULL, ylab = NULL, lwd=2) # plot standard deviation 

93 axis(side=4, col.axis="green",at = 

pretty(range(std.ts)),col="green",las=1) 

94 mtext("Standard deviation", side=4, line=3, col="green") 

95  

96 # Finding monthly data of a "risk-free" asset 

97 data.ff3 <- read.table("ff3.txt", header=TRUE) 

98 r.tbill <- ts((data.ff3[,5]), start=c(1926,7),frequency=12) 

99 r.tbill <- window(r.tbill, start=c(1970,2),end=c(2014,12)) 

100  

101 # Creating new data file 

102 newdata <- data.frame(RET=c(ret.ts*100), TURB=c(tur.ts), 

103                       STD=c(std.ts), RF=c(r.tbill)) 

104 write.table(newdata, file = "tur,ret,std,rf-10ind.csv"20, 

105             sep = ",", col.names = colnames(newdata)) 

C-2 Estimating monthly absorption ratio, and PCA 

Some parts of this program are based on blog posts from Systematic Edge Blog (2013) 

and Systematic Investor Blog (2012), while the rest is written from scratch based on 

relevant theories for absorption ratio/PCA.  

1 rm(list=ls(all=TRUE)) 

2 library("quadprog") 

3 library("scatterplot3d")21 

4 library("TTR")22 

5  

6 # Read data set consisting of daily returns 

7 Ret <- read.table("30ind_1960-2014.txt", header=TRUE) 

8 Ret <- Ret[,2:ncol(Ret)]/100 

9  

10 # Defining number of years and days for the whole period in question 

11 NYears <- 55 # Jan 2, 1960 up to Dec 31, 2014 

12 NDays <- dim(Ret)[1] 

13 # Computing the average number of days in a month for the period 1960-

2014 

                                                        
20 It is convenient to change the name of this file according to what data set we have used. 
21 Ligges and Mächler (2003). 
22 Ulrich (2013). 
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14 nDays.Month <- round(NDays/NYears/12)  

15 nMonths <- NYears*12  

16 nDays.Year <- nDays.Month*12 

17 # Define lookback period 

18 nYears <- 10 # number of years 

19 nMonths.lb <- nYears*12 # number of months 

20 lb.period <- nYears*nDays.Year # number of days 

21  

22 # Compute number of months in the OOS period 

23 nDays.OOS <- NDays-lb.period 

24 nMonths.OOS <- round(nDays.OOS/nDays.Month) 

25  

26 # Define number of rows, columns and observations 

27 nRow <- nrow(Ret) 

28 nCol <- ncol(Ret) 

29 n <- nRow-lb.period 

30  

31 abs <- rep(0,n) 

32 for(i in 1:n) { 

33   start <- i 

34   end <- i+lb.period-1 

35   Return <- Ret[start:end,] 

36   cov <- cov(Return) 

37   eigenval <- eigen(cov)$values 

38   sumeigenval <- sum(eigenval)  

39   sumeigen20 <- sum(eigenval[1:(round(nCol/5))])# fixed number of 

 eigenvectors 

40   abs[i] <- sumeigen20/sumeigenval # absorption ratio with nCol/5 

eigenvector 

41 } 

42  

43 abs.m <- rep(0,nMonths.OOS) # reserve space for monthly abs.ratio 

44 for(i in 1:nMonths.OOS) { 

45   start <- (i-1)*nDays.Month + 1 

46   end <- i*nDays.Month 

47   abs.d <- abs[start:end] # daily abs.ratio during a month 

48   abs.m[i] <- (mean(abs.d)) # monthly abs.ratio 

49 } 

50 # Create ts object and plot 

51 Start <- 1973 

52 End <- 2014 

53 abs.ts <- ts(abs.m, start=c(1970,2), end=c(2014,12), frequency=12) 

54 Abs.ts <- window(abs.ts, start=c(Start,1), end=c(End,12)) 

55 plot(Abs.ts, ylab="Absorption ratio", col="red", 

56      plot.type="single", xlab=NULL,las=1, ylim=c(range(Abs.ts))) 

57  

58 # Comparing level of absorption ratio with price level of S&P 500 
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59 Data <- read.csv("sp500.csv", header=TRUE)23 

60 Data <- ts(Data[,2], start=c(1871,1), frequency = 12) 

61 sp500 <- window(Data, start=c(Start, 1), end=c(End,12)) 

62 par(mar = c(5, 4, 4, 4) + 0.3)  # add extra space for volatility axis 

text 

63 plot(sp500, type="l", xlab=NULL, ylab="S&P 500 index", las=1) # plot 

returns 

64 par(new = TRUE) 

65 plot(Abs.ts, type = "l", col="red", 

66      axes = FALSE, bty = "n",xlab = NULL, ylab=" ") # plot AR 

67 axis(side=4, col.axis="red",at = pretty(range(abs.m)),col="red", 

68      las=1) # add volatility axis 

69 mtext("Absorption ratio", side=4, line=3, col="red") 

70  

71 # Regress daily returns on daily abs.ratio to find possible relations 

72 ret <- rowMeans(Ret) 

73 ret <- ret[(lb.period+1):nRow] 

74 reg.abs <- summary(lm(ret ~ abs)) 

75 L1.abs <- lag(abs, k=1) 

76 reg.L1abs <- summary(lm(ret ~ L1.abs)) 

77  

78 # Short principal component analysis 

79 ret.ts <- ts(Ret, start=c(1970,1), end=c(2014,252), frequency=252) 

80 pc<-princomp(ret.ts) # define principal components 

81 pc.var.expl. = pc$sdev^2 / sum(pc$sdev^2) # var. explained by each 

component 

82 barplot(100*pc.var.expl., las=2, xlab='', ylab='% Variance Explained', 

83         cex.lab=0.8); par(cex.axis=0.8)  

84 nCol <- ncol(Ret) 

85 # Explained variance for x/N number of components 

86 round(rbind(sum(pc$sdev[1:round(nCol*0.1)]^2) / sum(pc$sdev^2), 

87 sum(pc$sdev[1:round(nCol*0.2)]^2) / sum(pc$sdev^2), 

88 sum(pc$sdev[1:round(nCol*0.3)]^2) / sum(pc$sdev^2), 

89 sum(pc$sdev[1:round(nCol*0.4)]^2) / sum(pc$sdev^2), 

90 sum(pc$sdev[1:round(nCol*0.5)]^2) / sum(pc$sdev^2), 

91 sum(pc$sdev[1:round(nCol*0.6)]^2) / sum(pc$sdev^2), 

92 sum(pc$sdev[1:round(nCol*0.7)]^2) / sum(pc$sdev^2), 

93 sum(pc$sdev[1:round(nCol*0.8)]^2) / sum(pc$sdev^2), 

94 sum(pc$sdev[1:round(nCol*0.9)]^2) / sum(pc$sdev^2)),digits=3) 

95  

96 loadings <- pc$loadings[]  

97 x<-loadings[,1] 

98 y<-loadings[,2] 

99 colours<- c("gold","blue","green","red","purple","deeppink","black", 

100            "green4","red4","orange") 

                                                        
23 Data file from Robert Shiller's online data library: http://www.econ.yale.edu/~shiller/data.htm   

http://www.econ.yale.edu/~shiller/data.htm
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101 name <- c("Nondurables","Durables","Manufacturing", 

102           "Oil, Gas and Coal","Business equipment", 

103           "TV & tel. transmission","Wholesale", 

104           "Healthcare","Utilities","Other")24  

105 plot(x, y, type='p',pch=20,col=colours,xlab='Comp.1',ylab='Comp.2', 

106      cex.axis=0.8, cex.lab=0.8, las=1) # 2-d plot 

107 legend('topright',cex=.6,legend=name[1:5],col=colours[1:5],fill=colou

 rs[1:5],bty='n') 

108 legend('top',cex=.6,legend=name[6:10],col=colours[6:10],fill=colours[

 6:10],bty='n') 

109 z<-loadings[,3] 

110 s3d <- scatterplot3d(x, y, z, xlab='Comp.1', ylab='Comp.2', 

111                      zlab='Comp.3',color=colours, pch = 10) 

112 s3d.coords <- s3d$xyz.convert(x, y, z) 

113 text(s3d.coords$x, s3d.coords$y, labels=name, col=colours, cex=.8, 

114      pos=c(3,2,3,3,2,4,1,2,1,2)) # 3-d plot 

C-3 Sharpe ratio, Sortino ratio and Jobson & Korkie test statistic 

This entire program is made by Zakamulin (2014), and was obtained through 

participation in the course Computational Finance. 

1 SR <- function(er) { 

2 # computes the Sharpe ratio 

3 return(mean(er)/sd(er)) 

4 } 

5  

6 SharpeTest <- function(ex1, ex2) { 

7 # test for equality of two Sharpe ratios 

8 # ex1 - excess returns to the first portfolio 

9 # ex2 - excess returns to the second portfolio 

10 # returns the p-value of the test 

11 # the null hypothesis is rejected when p-value is small 

12 if (length(ex1) != length(ex2)) 

13 stop("Different lengths of two returns!") 

14 SR1 <- mean(ex1)/sd(ex1) 

15 SR2 <- mean(ex2)/sd(ex2) 

16 ro <- cor(ex1,ex2) 

17 n <- length(ex1) 

18 z <- (SR2-SR1)/sqrt( (2*(1-ro)+0.5*(SR1^2+SR2^2-2*SR1*SR2*ro^2))/n ) 

19 pval <- 2*pnorm(-abs(z)) 

20 return(pval) 

21 } 

22  

                                                        
24 These names are only appropriate for the 10 industry data set, and used only for the sake of illustration. 
When analysing other data sets, these should be ignored. Same accounts for the legends in lines 107-108 
and colours in lines 99-100. 
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23 SoR <- function(er) { 

24 # computes the Sortino ratio 

25 lpm <- pmax(-er,0) 

26 lpm <- sqrt(mean(lpm^2)) # this is the lower standard deviation 

27 return(mean(er)/lpm) 

28 } 

C-4 Portfolio performances 

1 # Clear environment 

2 rm(list=ls(all=TRUE)) 

3  

4 # Loading essential packages and functions 

5 source("performance.r")25 

6 library("fBasics")26 

7  

8 # Read data set 

9 data <- read.csv("tur,ret,std,rf-10ind.csv"27, header=TRUE) 

10  

11 # Define time period 

12 Start <- 1973 

13 End <- 2014 

14  

15 data <- ts(data, start=c(1970,2), frequency = 12) 

16 data <- window(data, start=c(Start-1, 1), end=c(End,12)) 

17  

18 start <- 13 

19  

20 # Assign names to each column 

21 tur <- as.numeric(data[,"TURB"])  # turbulence 

22 ret <- (as.numeric(data[,"RET"]))/100    # stock returns 

23 std <-  (as.numeric(data[,"STD"]))/100   # standard deviations 

24 rf <- (as.numeric(data[,"RF"]))/100 # risk-free returns 

25  

26 # Total number of observations 

27 N <- length(tur) 

28  

29 # Compute returns of the different dynamic portfolio strategies 

30 n <- N-start+1 # number of monthly portfolio returns  

31  

32 # Reserve space for... 

33 r.vol <- rep(0,n) # volatility targeting portfolio returns 

34 ws.vol <- rep(0,n) # weight of stocks in the vol.targeting portfolio 

35 r.tur <- rep(0,n) # turbulence targeting portfolio returns 

                                                        
25 Which is equivalent to the R-program in section B-3. 
26 Wuertz, Setz and Chalabi (2014). 
27 Same data file as the one that was made at the end of the program in Section B-1. Note that the name of 
this file has to be in accordance with the initial name that was given at lines 104-105 in Section B-1. 
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36 ws.tur <- rep(0,n) # weight of stocks in the tur.targeting portfolio 

37 r.stc <- rep(0,n) # returns of the static, naïve portfolio 

38 ws.stc <- rep(0,n) # weight of stocks in the static portfolio 

39  

40 std.target <- 0.05 # arbitrary (does not affect the Sharpe and Sortinos) 

41 tur.target <- 25  # arbitrary (does not affect the Sharpe and Sortinos) 

42  

43 for (i in 1:n) { 

44    month.end <- start + i - 2 # Index of the previous month 

45    # Volatility targeting: 

46    # Use volatility from the previous month as forecast for the present 

 month 

47    ws.vol[i] <- std.target/std[month.end] 

48    r.vol[i] <-ws.vol[i]*ret[month.end+1] + (1-ws.vol[i])*rf[month.end+1] 

49    

50   # Turbulence targeting: 

51   # Use turbulence from the previous month as forecast for the present 

month 

52   ws.tur[i] <- tur.target/tur[month.end] 

53   r.tur[i] <- ws.tur[i]*ret[month.end+1] + (1-ws.tur[i])*rf[month.end+1] 

54    

55   # Naïve strategy: 

56   ws.stc[i] <- 1 

57   r.stc[i] <- ws.stc[i]*ret[month.end+1] + (1-ws.stc[i])*rf[month.end+1] 

58 } 

59  

60 # Define risk-free returns for the given sub period 

61 rf <- rf[start:N] 

62  

63 # Compute the performance measures 

64 SR.vol <- SR(r.vol-rf) # Sharpe ratio 

65 SoR.vol<- SoR(r.vol-rf) # Sortino ratio 

66  

67 SR.tur <- SR(r.tur-rf) 

68 SoR.tur <- SoR(r.tur-rf) 

69  

70 SR.stc <- SR(r.stc-rf) 

71 SoR.stc <- SoR (r.stc-rf) 

72  

73 # Estimate p-value of Jobson&Korkie+Memmel test 

74 pval.vol <- SharpeTest(r.vol-rf, r.stc-rf) # vol.targ. vs static 

75 pval.tur <- SharpeTest(r.tur-rf, r.stc-rf) # turb.targ. vs static 

76 pval.tur2 <- SharpeTest(r.tur-rf, r.vol-rf) # turb.targ vs vol.targ 

77  

78 # plot the weight of stocks of active portfolios and the returns level 

79 ret.ts <- ts(r.stc, start=c(Start,1), frequency=12) 

80 ws.ts <- ts(cbind(ws.vol,ws.tur), start=c(Start,1), frequency=12) 
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81 par(mar = c(5, 4, 4, 4) + 0.3)  # add extra space for returns axis text 

82 plot(ws.ts, type="l", xlab=NULL, ylab="Weight of stocks", lwd=2, 

83      las=1,plot.type="single", col=c("black","grey")) # plot weights 

84 par(new = TRUE) 

85 # use a slightly transparent colour on the returns curve to avoid too 

much overlap 

86 col1 <- rgb(red=0,green=1,blue=0,alpha=0.5) 

87 plot(ret.ts, type = "l", col=col1,axes = FALSE, bty = "n", 

88      xlab = NULL, ylab = NULL, lwd=2) # plot returns 

89 axis(side=4, col.axis="green",at = pretty(range(r.stc)),col="green", 

90      las=1) # add returns axis 

91 mtext("Monthly returns", side=4, line=3, col="green") 

92  

93 # Gathering key numbers related to the performances of the strategies 

94 round((colMeans(cbind(r.stc,r.vol,r.tur))*100)*12,digits=2) 

95 round((colStdevs(cbind(r.stc,r.vol,r.tur))*100)*12^0.5,digits=2) 

96  

97 round(cbind(SR.stc,SR.vol,SR.tur)*12^0.5,digits=2) 

98 round(cbind(pval.vol,pval.tur,pval.tur2),digits=2) 

99 round(cbind(SoR.stc,SoR.vol,SoR.tur)*12^0.5,digits=2) 

100  

101 round(colSkewness(cbind(r.stc,r.vol,r.tur)),digits=2)  

102 round(colKurtosis(cbind(r.stc,r.vol,r.tur),method="moment"),digits=2) 

103 jarqueberaTest(r.stc);jarqueberaTest(r.vol);jarqueberaTest(r.tur) 

104  

105 round((colMins(cbind(r.stc,r.vol,r.tur))*100),digits=2) 

106 round((colMaxs(cbind(r.stc,r.vol,r.tur))*100),digits=2) 

107  

108 # Gathering key numbers related to the (re)allocations of the 

 strategies 

109 round(colMeans(cbind(ws.vol,ws.tur)),digits=2) 

110 round(colMins(cbind(ws.vol,ws.tur)),digits=2) 

111 round(colMaxs(cbind(ws.vol,ws.tur)),digits=2) 

112 round(colStdevs(cbind(ws.vol,ws.tur)),digits=2) 

113  

114 # Predictive regressions 

115 Ret <- ret[start:(n+12)]*100 

116 Std <- std[start:(n+12)]*100 

117 Rf <- rf*100 

118 L1.std <- lag(Std, k=1) 

119 reg.vol <- summary(lm((Ret-Rf) ~ L1.std)) 

120 Tur <- tur[start:(n+12)] 

121 L1.tur <- lag(Tur, k=1) 

122 reg.tur <- summary(lm((Ret-Rf) ~ L1.tur)) 

123  

124 # Mean, max, min. for return, volatility and turbulence 

125 Data <- cbind(Ret,Std,Tur) 
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126 round(colMeans(Data),digits=2) 

127 round(colMins(Data),digits=2) 

128 round(colMaxs(Data),digits=2) 

129  

130 # The following simulations are used to study reallocation properties 

131 s <- 177 # start-month 

132 k <- s+2 # end-month 

133 R.vol <- r.vol*100; R.tur <- r.tur*100 

134 misc <- 

 round(rbind(Ret,Std,Tur,ws.vol,R.vol,ws.tur,R.tur)[,s:k],digits=2) 

135 (ws.vol*Std)[s:k];(ws.tur*Std)[s:k] 

136 round(rowMeans(misc),digits=2) 

137 round(rowStdevs(misc),digits=2) 
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