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Abstract 
 
This thesis focuses on the accuracy and ability of out-of-sample volatility forecasting 

over different time horizons. Using data at daily frequency we forecast the future 

volatility over multiple time horizons (1, 3, 6, 9 and 12 months) and evaluate the 

goodness of forecasting by comparing the Naïve, ARCH, GARCH, EGARCH and 

GJR-GARCH models using the MSE and the Predictive Power (P). We include 

different probability distributions for the error terms in an attempt to improve the 

models accuracy. The research is conducted using three indices: FTSE 100, S&P 500 

and the Hang Seng. We find that the goodness of forecasting accuracy decreases 

dramatically after the 3 month horizon and the selection of a more representative error 

distribution improves the accuracy of the short term forecasts. The results also show 

that the higher order GARCH models, beyond (1,1), do not improve the forecasting 

accuracy. 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3 

Contents 

CONTENTS ............................................................................................................................. 3 

1. INTRODUCTION ............................................................................................................ 4 

2. LITERATURE REVIEW ................................................................................................ 7 

3. DATA ANALYSIS ......................................................................................................... 11 
3.1 INDICES .......................................................................................................................... 11 
3.2 DESCRIPTIVE STATISTICS .............................................................................................. 13 
3.3 DISTRIBUTION ............................................................................................................... 15 
3.4 LJUNG-BOX Q-TEST ...................................................................................................... 19 
3.5 VOLATILITY ................................................................................................................... 20 

4. METHODOLOGY ......................................................................................................... 23 
4.1 NAIVE FORECASTING MODEL ....................................................................................... 23 
4.2 ROLLING WINDOW ......................................................................................................... 23 
4.3 ARCH ............................................................................................................................ 24 
4.4 GARCH ......................................................................................................................... 25 
4.5 EGARCH ...................................................................................................................... 26 
4.6 GJR-GARCH ................................................................................................................ 27 
4.7 DISTRIBUTION STATISTICS ............................................................................................ 27 

Normal distribution (Gaussian) ...................................................................................... 27 
Student t-distribution ...................................................................................................... 28 
Generalized error distribution ......................................................................................... 28 

4.8 FORECAST EVALUATION ............................................................................................... 29 
4.9 PREDICTIVE POWER ....................................................................................................... 30 

5.  RESULTS ...................................................................................................................... 31 
5.1 FTSE100 ....................................................................................................................... 32 
5.2 S&P 500 ........................................................................................................................ 39 
5.3 HSI ................................................................................................................................ 45 

6. DISCUSSION ................................................................................................................. 52 

7. CONCLUSION ............................................................................................................... 54 

ACKNOWLEDGEMENTS .................................................................................................. 56 

REFERENCES ...................................................................................................................... 57 

 
  



 4 

1. Introduction 

Volatility forecasting is of known importance for risk management, portfolio 

optimization and option pricing through its contribution to the measurement of 

potential future losses. Volatility is the uncertainty of asset prices over a given 

investment time horizon. When forecasted well the investor or financial institution is 

able to assess the investment risk accurately and achieve a level of risk they are 

willing to accept. The information provided by volatility is indispensible and was 

recognised in 2003 with the Nobel Memorial Prize in Economic Sciences being 

shared by Robert F. Engle and Clive Granger. In his prize lecture at the University of 

Stockholm, Engle went on to say: 

“There are some risks we choose to take because the benefits from taking them 

exceed the possible costs. Optimal behaviour takes risks that are worthwhile. This is 

the central paradigm of finance; we must take risks to achieve rewards but not all 

risks are equally rewarded. Both the risks and the rewards are in the future, so it is the 

expectation of loss that is balanced against the expectation of reward. Thus we 

optimize our behaviour, and in particular our portfolio, to maximize rewards and 

minimize risks”(Engle (2003)) 

Volatility is estimated from historical data on asset returns while implied volatility 

uses observed option prices which, from a theoretical perspective, are a good estimate 

of future realized volatility as they include all relevant and available information. 

Investors and financial institutions use volatility as a key input in risk management 

models when forecasting. Much research has been devoted to modelling and 

forecasting the volatility of financial returns where the modelling of volatility for 

asset pricing purposes relies on the accurate assessment of future returns and risk. 

Model risk, as discussed in Figlewski (1998), suggests that there exits a risk that any 

given model may be misspecified. It is of necessity, when modelling, to specify the 

stochastic process of the underlying asset. Most existing papers use the log-normal 

process assumed by the original option-pricing model of Black and Scholes (1973), 

whereas the empirically correct distribution of the actual financial markets under 

analysis are likely to be non-normal. This thesis directly compares three different 

error distributions in order to overcome the difficulty in the judgment of the accuracy 
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of such models. Empirical finance literature has shown that volatility series develop 

over time in non-linear fashion due to the mean reverting properties of the models. 

We investigate the performance of volatility forecasting within the class of 

Autoregressive Conditional Hetroskedastic (ARCH) models due to their capability of 

capturing the non-linear features of financial time series and the possibility of 

extending these models to consider additional features.  

The Autoregressive Conditional Hetroskedasticity (ARCH) model introduced by 

Engle (1982) was one of the first models that provided a way to model conditional 

hetroskedasticity in volatility. Bollerslev (1986) extended the ARCH model to the 

Generalized Autoregressive Conditional Hetroskedasticity (GARCH), which has the 

same basic properties as the ARCH model but requires far less parameters to 

satisfactorily model the volatility process. Both the ARCH and GARCH models are 

able to model the persistence and clustering of volatility but are unable to distinguish 

between the different influences that positive and negative shocks have on the 

volatility. To be able to model this behaviour and overcome the weaknesses of the 

ARCH and GARCH models, Nelson (1991) proposed an extension to the GARCH 

model called the Exponential GARCH (EGARCH), which is capable of taking into 

account the asymmetric effects of positive and negative asset returns. An additional 

extension of the GARCH model is the GJR-GARCH which was proposed by Glosten, 

Jagannathan and Runkle (1993). 

The purpose of this thesis is to analyze the methods of forecasting volatility over long 

term horizons, the longest being 12 months, and compare the results with shorter 

forecasting time horizons. This thesis adds to the existing literature in several ways. 

First of all, we examine the importance of assumptions regarding the distributions of 

the error term. Previous studies have shown that the normal error distribution, which 

is widely applied in the majority of research, does not necessarily fit the models, nor 

give the most accurate forecasts (Speight, McMillan and Gwilym (2000)). Thus, in 

this thesis, three different error distributions are applied (Normal, Student t and 

Generalized Error Distribution). Secondly, we use various (from 1 month up to 12 

months) forecasting horizons. There exist only a few papers that cover longer than 3 

months forecasting periods because in practice, variability in volatility is often used in 

portfolio management and these are rebalanced at least once a month. The longer 
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horizons are thus of interest to those who, for example, try to find the correct price for 

financial instruments such as long-term options (called LEAPS - Long-term Equity 

Anticipation Securities), or warrants which mostly have an expiration of up to 1 year 

but in some countries up to 3 years. Much of the existing research only covers one 

time horizon and therefore the comparison of results directly between different 

indices and time horizons is difficult to establish.  

Forecasting the future level of volatility over any horizon is far from straightforward 

and evaluating the forecasting performance presents an additional challenge.  The 

majority of the 93 papers reviewed by Poon and Granger (2003) use the Mean 

Squared Error (MSE), or the Root Mean Squared Error (RMSE), which uses the 

actual and forecasted volatilities to compare the differences. Our third difference is 

that we also assess the Predictive Power (P) in order to find out how much of the 

future variability in volatility our models are able to predict. We do this by calculating 

the proportion of explained variability as proposed by Blair, Poon and Taylor (2010). 

The comparison of forecasting models for indices from three different continents is 

also rare since the majority of exists papers focus on multiple markets of individual 

countries. We have chosen to study the following three indices, FTSE 100, S&P 500 

and Hang Seng.  

We find that the level of forecasting accuracy decreases as the time horizon increases. 

The forecasting horizon which produces the most accurate statistics is that of 1 month 

for the FTSE 100 and S&P 500, and 3 months for the Hang Seng index. The GARCH 

models with a larger number of properties were found to be better predictors than the 

more restrictive models and higher order models beyond (1,1) do not significantly 

improve the accuracy. With the use of three different error distributions we generally 

see an improvement in accuracy when using the two non-normal distributions 

compared to that of the Gaussian distribution when considering shorter forecasting 

horizons.  

The rest of the thesis is organized as follows. In Section 2, we review relevant 

literature and familiarize the reader with the existing research papers regarding 

volatility forecasting over long term horizons, as well as those that cover similar 

models and error distributions. In Section 3 we examine the characteristics of the data 

and analyze the descriptive statistics of the returns. Furthermore, we investigate the 
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distributions and continue with graphs and statistics of the realized monthly volatility. 

In Section 4 we describe the methodology for each model including how the forecasts 

are performed and the three error distributions used. We also explain how the models 

are going to be compared. In Section 5 we present and interpret the results of each 

index. The models are presented individually based on the shortest to longest forecast 

horizon. We then, in Section 6, discuss the important findings and contrast our results 

with those of literature reviewed. Section 7 provides a concise summary of our 

approach and main findings. 

2. Literature review 
 
The majority of the papers regarding volatility forecasting study the predictability 

over horizons shorter than 3 months (usually 1 month). Moreover, the model selection 

varies where not one individual model is preferred over others. Even when empirical 

work uses the same models and markets, the observations and evaluation methods 

differ, thus, the conclusions rarely agree. In this thesis we focus on the length of 

horizon predictability using the ARCH/GARCH family models whilst considering the 

model's sensitivity to distribution assumptions and time horizons. Below we review 

some relevant papers regarding these matters. 

 

Poon and Granger (2003) make a review of papers regarding volatility forecasting. 

They compare 93 papers under various models, distributions and forecasting horizons. 

The review is clear evidence that researchers mostly prefer to forecast volatility for 

short time horizons yet there are a few relevant papers which focus on longer horizons 

and these are revealed below. 

Scott and Tucker (1989) study the predictive accuracy of standard deviations and the 

constant elasticity of variance (CEV) implied in American currency call options 

traded on the Philadelphia Stock Exchange (PHLX). Five currencies are used, namely 

the British pound, Canadian dollar, German deutschmark, Japanese yen, and the 

Swiss franc. The authors accumulate daily closing prices and forecast subsequent 

currency return volatility for 3, 6 and 9 months. The obtained forecasting results are 

evaluated using the MSE. The authors conclude that the MSEs are statistically 
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indistinguishable and suggest that the simple Black-Scholes predictions are as good as 

those achieved from the CEV model. 

 

Kroner, Kneafsey and Claessens (1995), using daily data, derive long-term horizon 

(225 calendar days ahead) forecasts of various commodity price volatilities. The 

authors use seven models to forecast volatility (ISD (Implied Standard Deviation), 

ISDAT (ISD from the at-the-money option), ISDAVG (weighted average of ISDs), 

HV (historical volatility), GARCH, COMB (which combines the ISD and GARCH 

forecasts) and GR (Granger and Ramanathan regression weighted combined 

forecast)). The results are compared by means of the MSE and ME. The two 

combined methods, namely GR and COMB, are found to give the most accurate 

predictions and outperform other forecasts. 

 

Figlewski (1997) collects results from his earlier research papers regarding volatility 

forecasting for option pricing applications and investigates long-term horizon 

volatility forecasting using daily and monthly historical data. The most relevant for 

our thesis is where he investigates the long-term (1, 3, 6, 12, 24 months) forecasting 

accuracy of Historical Volatility (HV) and GARCH models by means of the RMSE. 

He finds the GARCH (1,1) model to be the best at forecasting volatility for the S&P 

500 index over all time horizons, but in all other markets (3M US T-Bill, 20Y T-

Bond, Deutschemark Exchange Rate (DM per $)) its performance is very poor. 

Green and Figlewski (1999), forecast volatility of the S&P 500 stock index, 3-month 

LIBOR (short-term interest rate), 10-year T-Bond yield (long-term interest rate) and 

DM exchange rate, by means of HV and Exponential Smoothing (ES). While using 

daily data, the forecast horizon varies from 1 to 12 month. Comparing RMSE, the 

authors find that ES is a better tool than HV for the short term S&P 500 (1–3 months) 

and the LIBOR, while bond yield, exchange rate and long-term S&P 500 (12 months)  

volatility are forecasted more accurately by means of the HV. They do importantly 

note that when the forecasted horizon is expanded the estimation period should also 

be expanded, in order to give reasonable long-term forecasts. In the second part of 

their studies they lengthen the forecast horizon to 2 and 5 years, and use monthly 

instead of daily data. In this case the HV outperforms ES for all four underlying 

assets. 



 9 

 

Ederington and Guan (2002) wrote a paper in which they investigate whether the 

implied volatility is an informationally efficient and effective predictor of future 

volatility. The interesting aspect for us is in regards to the accuracy of the applied 

models (Implied Volatility, GARCH (1,1) and HV). In this study they use daily data 

for options on S&P 500 futures and forecast volatility of overlapping option maturity 

for 7-90, 91-180, 181-365 and 7-365 days ahead. The authors show that GARCH 

(1,1) outperforms the HV but at the same time it performs worse than the Implied 

Volatility. Additionally their findings confirm, as per the properties of the model, that 

the volatility forecasted by GARCH tends to converge to a constant at longer 

horizons. 

Li (2002), uses Implied Volatility and the Autoregressive Fractionally Integrated 

Moving Average (ARFIMA) model to forecast volatility of forward options on 3 

different currencies, for 1, 2, 3 and 6 months. The five-minute and daily returns on the 

German deutschemark, the Japanese yen, and the British pound vs. the US dollar are 

used. The Mean Absolute Error (MAE) reveals that the Implied Volatility provides 

more an accurate prediction at shorter time horizons while ARFIMA is more suitable 

for longer forecasts. 

 

Since we compare four ARCH/GARCH models there is an additional aspect in Poon 

and Granger (2003), which we are interested in, namely, the analysis of 17 studies, 

which compare alternative versions of ARCH and GARCH models and their ability to 

forecast. The authors remark that, most of the time, papers use different data 

frequencies and do not explicitly suggest a clear rank of the models, thus it is difficult 

to point to an ultimate “winner”. They are however able to come to a main conclusion 

that GARCH models tend to outperform the more restrictive ARCH model.  

Cao and Tsay (1992) use stock market data at daily and monthly frequencies to test 

which of the following models: Threshold Autoregressive (TAR), Autoregressive–

Moving-Average model ARMA (1,1), ARCH (1,1) and EGARCH (1,0), give the 

most accurate volatility forecasts. They compare the forecasting ability over multiple 

horizons (from 1 to 30 months) by means of the MSE and MAE. The most relevant 
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finding is that the EGARCH (1,0) model gives the best volatility forecasts over long-

time horizons, which they suggest is due to the leverage effect1. 

The use of different distribution assumptions in existing empirical works is rather 

poor, yet we review two papers which investigate this issue. Liu and Morley (2009), 

research whether forecasts based on the GARCH family models can outperform 

simple historical averaging models. In their paper, they use nine different models and 

apply daily and weekly sample frequencies. The authors test the forecasts sensitivity 

by applying three different error distributions (Normal, Student-t and Generalized 

Error Distribution). They reveal that the volatility forecasting is indeed sensitive to 

the assumption made about the use of different error distribution statistics. Moreover, 

they show that whilst not all of the models give better outcomes than the simple 

historical averaging, the use of non-normal distributions in the application of GARCH 

models, fits the in-sample data better and gives a better one-period ahead volatility 

forecast than the more commonly used normal distribution.  

In the master thesis by Wei (2012), the author predicts the conditional variance of the 

rate of return in five different markets, including three used in this thesis, in terms of 

daily data. Three different forecasting models are applied, namely: GARCH (1,1), E-

GARCH (1,1) and GJR-GARCH (1,1) (2,1) (1,2) (2,2). By means of these models, 

the author studies forecasting performance under two different error distributions 

(Normal and Student t-distribution) and reports their accuracy with the use of the 

RMSE over a forecasting horizon of 1 year. The results exhibit that the normal 

distribution improves the models and the higher order GJR-GARCH outperforms 

other models in all cases except for the Hang Seng Index, where the GARCH (1,1) 

with a normal error distribution has the smallest RMSE. 

  

                                                 
1 The leverage effect is generally a negative correlation between the return of an asset and its changes 
of volatility. 
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3. Data Analysis 

3.1 Indices  
 
The Financial Times Stock Exchange (FTSE) 100 index is a market capitalization-

weighted index of United Kingdom-listed blue chip 2  companies and is the most 

widely used UK stock market indicator. The index was launched on the 3rd of January 

1984 with a base date of the 30th December 1983 and a base value of 1000. The FTSE 

100 measures the performance of the 100 largest companies, which are traded on the 

London Stock Exchange, and represents 81% of the entire market capitalization. The 

index is part of the FTSE UK Series and was designed for use in the creation of index 

tracking funds, derivatives and also as a performance benchmark. The top 5 

constituents are HSBC Holdings, Royal Dutch Shell, BP Oil & Gas, GlaxoSmithKline 

Pharmaceuticals & Biotechnology and British American Tobacco . 

Figure 1: FTSE 100 index 1988-2014. 

 
The Standard and Poor (S&P) 500 (also referred to as GSPC) is a capitalization-

weighted index composed of the 500 leading companies listed on the New York Stock 
                                                 
2 Blue Chip: large companies which are characterized by high capitalization and liquidity. These 
companies are known for their high-quality, reliability and ability to perform profitably even in the face 
of adverse economic conditions, thus can be bought in order to provide steady portfolio growth. 
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Exchange and NASDAQ. The index was established on the 4th of March 1957 and 

was the first American based market capitalization-weighted stock index. Nowadays, 

the S&P 500 captures about 80% coverage of available market capitalization and is 

the basis of numerous listed and over-the-counter investment instruments. The S&P 

500 was intended to measure performance of the domestic economy through changes 

in the aggregate market value of 500 stocks which represent a diverse selection of 

major industries. The top 5 constituents are Apple Inc., Exxon Mobil Corp., Microsoft 

Corp., Johnson & Johnson and Berkshire Hathaway B. The three largest sectors of the 

index are information technology (IT), financials and health care of which together 

they represent about 50% of all of the sectors contained in the index . 

Figure 2: S&P 500 index 1988-2014. 
 
The Hang Seng Index (HSI) is a free-float capitalization-weighted index and is the 

most widely quoted gauge for the Stock Exchange of Hong Kong composing of the 

50 largest and most liquid stocks. The index was established with a base level of 100 

as of the 31st of July 1964, however it was not launched until the 24th of November 

1969. The HSI consists of companies from various types of industries, but the 

financial sector occupies almost half of the industry weights in the index (47,31%). In 

order to better reflect the price movements of the main sectors of the market, the 
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index constituents stocks that are grouped into four sub-indices, namely: Finance, 

Utilities, Properties & Commerce and Industry. The top 5 companies listed on the HSI 

are HSBC Holdings, Tencent3, China Mobile, China Construction Bank and AIA, of 

which three of these belong to the financial sector. 

Figure 3: HSI index 1988-2014. 
 

3.2 Descriptive statistics 
 
Our historical data has been collected from the Yahoo Finance website and covers the 

daily period from January 4th 1988 until December 31st 2014 (over 6800 

observations). We forecast volatility for different out of sample time horizons using 

ARCH/GARCH models, but for now our descriptive statistics help us to begin to 

describe the historical data using the realized daily returns and monthly volatility.  

 

We have firstly computed the daily returns by means of the adjusted close prices of 

the three indices and we then go on to describe the data using statistics and graphs. 

We continue by calculating and analyzing the realized monthly volatility. 

 
                                                 
3 Tencent: a Chinese investment holding company, which provides a wide range of internet services, 
mass media, entertainment and mobile phone value-added services. 
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Statistic FTSE 100  S&P 500 HSI 

Observations 7035 6805 6717 
Mean 0.0002496 0.0003701 0.0004674 
Min -0.0884834 -0.0903498 -0.2174532 
Max 0.0983867 0.1158004 0.1882374 

Variance 0.0001174 0.0001272 0.0002667 
Standard Dev. 0.0108363 0.0112787 0.0163310 

Skewness 0.0099 -0.1131 -0.1240 
Kurtosis 9.601 11.97 17.58 

 
Table 1: Summary statistics of returns (FTSE, S&P500, HSI). 

 

Since we are using three different indices, from three different countries, the number 

of daily observations varies due to a diverse number of trading days. We see that 

during the period under observation there is a larger amount of trading days in the UK 

and fewest in the HSI data. We estimated the returns using the following equation:  

 

 𝐫𝐭 =   
𝐩𝐭 − 𝐩𝐭ି𝟏
𝐩𝐭ି𝟏

 (1) 

 

Assuming that (𝑦1, 𝑦2,… , 𝑦𝑇) is a random sample of 𝑌 and 𝑇 denotes the number of 

observations, we can then calculate the mean as: 

 

 
𝝁ෝ𝒚 =

𝟏
𝑻
෍𝒚𝒕

𝑻

𝒕ୀ𝟏

 

 (2) 

The mean daily return for the HSI (0.047%) is twice as large as that of the FTSE 100 

(0.025%). We observe the biggest range for the Hang Seng index, which extends from 

-0.2175 to 0.1882 and the smallest for FTSE 100 index (from -0.0885 to 0.0984). The 

standard   deviations   for   the   “western”   indices are quite similar, 0.0108 and 0.0113, 

respectively. In the case of the HSI, the standard deviation is clearly larger (0.0163). 

We are specifically interested in the skewness and kurtosis since it is a measure of the 

shape of data distribution. Skewness measures the symmetry of a distribution and 

when the coefficient of skewness equals 0 (no skewness), we can say that the 

distribution is symmetric. If skewness < 0, the median is often greater than the mean 
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and the distribution is negatively skewed (distribution skewed left). The opposite 

holds when the skewness > 0 (distribution skewed to the right). Kurtosis, on the other 

hand measures the peakedness of a distribution, meaning how extreme the 

observations in a given data set are. The kurtosis coefficient of a normal distribution 

is equal to 3 (Black (2009)). We distinguish between three types, namely leptokurtic 

(high and thin), platykurtic (flat and spread) and mesokurtic (the most "normal" 

shape). By means of the same assumptions, which were used while calculating the 

mean return, we compute the skewness as:  

 
𝑺෡(𝒚) =

𝟏
(𝑻 − 𝟏)𝝈ෝ𝒚𝟑

෍(𝒚𝒕 − 𝝁ෝ𝒚)𝟑
𝑻

𝒕ୀ𝟏

 

 
 (3) 

and the kurtosis as:  

 
𝑲෡(𝒚) =

𝟏
(𝑻 − 𝟏)𝝈ෝ𝒚𝟒

෍൫𝒚𝒕 − 𝝁ෝ𝒚൯
𝟒

𝑻

𝒕ୀ𝟏

 

 (4) 

 

 

From the marginally negative skewness of the S&P 500 and HSI and close to zero for 

FTSE 100, along with large kurtosis (>3) for all, we can deduce that the data is all 

similarly distributed, which is to be expected since we are only examining indices. 

The obtained values for skewness and kurtosis indicate that the data of returns may 

display the leptokurtic property (high and thin) and we approach this issue by 

analyzing the distribution further in the next section. 

3.3 Distribution 
 
Since the distribution is of special interest in this thesis we investigate this issue 

through various means. Firstly, we study the histograms.  
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Figure 4: Histogram, FTSE 100. 

 
Figure 5: Histogram, S&P 500. 

 
Figure 6: Histogram, HSI. 
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We see in Figures 4, 5 and 6 that the leptokurtic property exists since compared to a 

normal distribution (Blue line), its central peak is higher and sharper, and its tails are 

longer and fatter. This observation is in line with the high values of kurtosis, which 

we obtained for each index in the previous subsection. This is consistent also with 

findings which states that “researchers   have   long   noticed   that   stock   returns   have  

heavy tailed probability   distributions”   and   this   is   “common   with   financial   markets  

data” (Ruppert (2011)). We use also the Jarque-Bera (JB) test of normality to 

investigate the distribution of the data. This test incorporates the squared value of the 

Skewness (𝑆) as well as the Kurtosis (𝐾) when it differs from its normal distribution 

value of 3, and is appropriate to use when there is a large number of data observations 

(𝑛): 

 𝑱𝑩 =
𝒏
𝟔
൬𝑺𝟐 +

𝟏
𝟒
(𝑲 − 𝟑)𝟐൰ 

 (5) 

 

The JB is tests the null hypothesis, which states that the data is normally distributed. 

The closer the Jarque-Bera statistic is to 0, the better the assumption regarding 

normality of distribution (Gujarati (2014)).  

 

Jarque-Bera Normality Test 
  FTSE100 S&P500 HSI 

Statistic 12771.3206 22834.2915 59522.4236 
p-value 2.2e-16 2.2e-16 2.2e-16 

 
Table 2: Jarque-Bera test statistics. If the p-values are smaller than the critical value (5%), we can 
reject the null hypothesis, which states that the examined indices are normally distributed. Else, fail to 
reject.  

Such small p-values (<0.05) related to the JB statistic suggests that we can reject the 

null hypothesis, meaning, the data is not normally distributed. We have also included 

the quantile plots (Figure 7). The points should fall approximately on a straight line if 

the data is normally distributed. We do not observe such a pattern in any of the plots 

presented  below.  This  kind  of  point’s  location,  obtained  for  all  three indices, suggests 

that the data is heavily tailed compared to that of the normal distribution. 
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Figure 7: Normal Q-Q Plots for FTSE 100, S&P 500 and HSI, respectively. In the case where the data 
follows the assumed (normal) distribution, the points should fall approximately on a straight line.  
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3.4 Ljung-Box Q-Test 
 
The autocorrelation function is applied to collect information about the properties of a 

time series (Koop (2006)). The best way to test for quantification of the 

autocorrelation is using the Ljung-Box Q-Test, which is able to check whether the 

data is random and independent. In the case where the observations are not 

independent, we can see a correlation between adjacent observations 

(autocorrelation). The Ljung-Box Q-test examines the null hypothesis, which states 

that the data is independently distributed up to lag ℓ𝓁 (no autocorrelation), versus the 

alternative hypothesis where the data is not random and independent (autocorrelation 

is present). The Ljung-Box test statistic is as follow: 

 

 
𝓠(𝒎) = 𝑻(𝑻 + 𝟐)෍

𝝆ෝ𝓵𝟐

𝑻 − 𝓵

𝒎

𝓵ୀ𝟏

 
(6) 

 

Where,  

𝜌ොℓ𝓁  - estimated autocorrelation of the series at lag ℓ𝓁, 

𝓂 - denotes degrees of freedom (the largest lag), 

𝑇 - observed data point.  

 

  Index 
  Statistic FTSE100 S&P500 HSI 

(Q) Statistic 0.713 22.54 0.1075 
Prob > Chi2 (1) 2.2e-16 2.2e-16 2.2e-16 
    

Table 3: Ljung-Box test. If the Q–value is larger than the critical value (5%), we can reject the null 
hypothesis that states that there is no autocorrelation in the returns. Else, fail to reject.  

 

We can reject the null hypothesis when 𝑄  is larger than χଵିఈି௛ଶ (the chi-square 

distribution value with ℎ degrees of freedom and significance level 𝛼). Therefore, all 

three indices exhibit autocorrelation (Box (1978)).  
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3.5 Volatility 
 

We forecast volatility for 1, 3, 6, 9 and 12 months thus, for the sake of simplicity, we 

adjust the computed daily returns by assuming that there are 21 trading days in a 

month.  

 

In order to calculate the realized (actual) volatility for month 𝑖, we select the returns 

for a given month  𝑟௧, where  𝑡 = {1, 2, … ,𝑁}, and 𝑁 represents the number of days in a 

month. To calculate the daily-realized volatility, we use the following formula, which 

squares the difference between the return and the mean return before dividing it by 

the number of observation minus one and then applying the square-root function: 

 

 
𝝈𝒊
𝒅𝒂𝒊𝒍𝒚 = ඨ∑ (𝒓𝒕 − 𝚬[𝒓𝒊])𝟐𝑻

𝒕ୀ𝟏
𝑵 − 𝟏

 

 (7) 

Where: 

𝐸[𝑟௜] - mean daily return for 𝑖௧௛  month, 

𝜎௜ - realized volatility for 𝑖௧௛  month. 

 

In practice it is more common to use a simpler formula to calculate the realized 

volatility: 

 
𝝈𝒊
𝒅𝒂𝒊𝒍𝒚 = ඨ∑ 𝒓𝒕𝟐𝑻

𝒕ୀ𝟏

𝑵
 

 (8) 

 

The main reason for this is that 𝐸[𝑟௜]  is virtually zero. Moreover, the difference 

between dividing by 𝑁 and 𝑁 − 1 is insignificant when working with a large number 

of observations. 

 

Both formulas presented above give us the daily volatility. In order to adjust it to our 

needs for forecasting horizons we re-compute equation (8) to the monthly volatility 

by means of the square root rule and based on our assumption of trading days outlined 
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above. Moreover, we computed the summary statistics of realized monthly volatility 

of all three indices.  

Index Min 
1st 

Quantile Median Mean 
3rd 

Quantile Max 
FTSE 100 5.63 10.20 12.70 15.20 17.90 75.90 
S&P 500 4.91 10.20 12.90 15.50 18.20 82.10 
Hang Seng 6.99 14.30 18.60 22.30 26.40 110.00 
       

Table 4: Realized monthly volatility statistics. 

 

We observe that the volatility statistics for the FTSE 100 and S&P 500 are very 

similar, whereas the HSI is similar only in the minimums. A larger difference can be 

seen in the mean. It takes a value of around 15% for the FTSE 100 and S&P 500, 

while the mean of the HSI is around 42% larger (22%). Another noticeable difference 

can be seen in the maximums where the HSI is extreme compared to that of the FTSE 

100 and S&P 500.  

 

Regressing the volatility on the lagged volatility for one period results in a 𝑅ଶ = 

0.4993, 0.5220 and 0.2530 for the three indices respectively. This indicates that the 

variation in volatility is not greatly explained by the previous period’s volatility for 

the HSI index whereas for the FTSE and S&P the variation is around 50%. For all of 

the indices we increase the lag by one period at a time untill the last periods 

coeffiecient are no longer statistically significant (p>0.05). It become not significant 

for the variable lagged twice for the FTSE, three times for the S&P 500 and four time 

for the HSI index.  

 

Figures 8, 9 and 10, present the realized monthly historical volatility for the three 

indices. There are no obvious common patterns that can be observed. Yet, there are 

some similarities in the volatility of the FTSE and the S&P indices, which are almost 

identical over the whole period (this is in line with the summary statistics from Table 

4. For these two indices, the most sudden changes are observed at the turn of 2000-

2002 (dot-com bubble crash) and during the most recent financial crises (2007/2008). 

The HSI peaks in 1987, 1997 and 2007/2008 and are all caused by financial crises. An 

interesting observation is that the most recent financial crisis seems to have resulted in 
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two after effects for the FTSE and S&P where as the volatility of the HSI has only 

dramatically increased once since.  

 

 
Figure 8: Realized monthly historical volatility of the FTSE 100 index. 

 
Figure 9: Realized monthly historical volatility of the S&P 500 index. 

 
Figure 10: Realized monthly historical volatility of the Hang Seng Index. 
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4. Methodology 
 
The methodology section presents the naïve model and the forecasting model that is 

used by the ARCH/GARCH family models along with the individually described 

error distributions before presenting the forecasting evaluation and predictive power 

statistics. The ARCH/GARCH models are used in the forecasting of volatility and we 

have introduced the model with the largest number of restrictions first. We have then 

expanded our model selection with the motivation of including models that remove 

some restrictions and limitations with the hope of achieving an insight into whether 

the more complicated models offer better forecasting predictions over our selected 

horizons. 

4.1 Naive Forecasting Model  

This straightforward and simple model forecasts based on the previous known 

observations. It treats the last period’s volatility as this period’s volatility (Giusti, 

Ritter and Vichi (2012)).  

 𝜎ො௧ାଵ = 𝜎௧ (9) 

The biggest weakness of this model is that the volatility is too persistent and does not 

perform well with long-run predictions (Zakamulin (2014)). We include the naive 

model as a benchmark for which to measure the more technical models against. 

4.2 Rolling window 
 
A rolling window forecast generates a series of forecasted observations for a given 

number of steps ahead. By using this method we define a fixed length of the in-

sample period and a specific step size, meaning that the first and last date increase by 

the assigned value of observations/steps at each time. We use a 5-year rolling window 

and for simplicity assume that there is 21 trading days in a month (regardless of the 

country), which gives us 1260 observations. There are over 6800 daily observations 

for each index, so for example the first rolling window of the FTSE 100 contains data 

from day 1 to 1260. Then, by means of the model we obtain the forecast for the next 

day (observation number 1261) and thus, the second sample covers the observations 

from day 2 until day 1261. Based on the second sample we forecast observation 

number 1262 and so on. The last sample, for instance for the FTSE 100 index, will 
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contain observations from 5775 to 7035.  We repeat this operation for all three indices 

whilst varying the step size based on the desired forecasting horizon.  

4.3 ARCH 
 
The Autoregressive Conditional Hetroskedasticity (ARCH) model was developed by 

Engle (1982). The main idea behind this model is that the mean corrected asset return 

is serially uncorrelated and dependent, meaning that ARCH is based on a linear 

regression where the variable, in time series form, varies around the mean 

(𝜇)  randomly. Moreover, the model can be defined by the quadratic function of its 

lagged values. We assume that the return on assets can be computed as: 

 𝑟௧ = 𝜇 + 𝜎௧𝜖௧ 

 

(10) 

Where 𝜖௧  is a sequence of 𝑁(0,1)  independent and identically distributed (i.i.d.) 

random variables. We can then describe the residual return (𝑟௧ − 𝜇)  at time 𝑡, as: 

 𝑍𝑡 =   𝜎௧𝜖௧ (11) 

 

Therefore, the ARCH model, which presents conditional variance as 𝜎௧ଶ , can be 

expressed as follows:  

 
𝜎௧ଶ = 𝛼଴ +෍𝛼௞𝑍௧ି௞ଶ

௣

௞ୀଵ

 

 (12) 

Where 𝛼଴ > 0 and 𝛼௞ ≥  0. 

 

The lag length (𝑡 − 𝑘) of the ARCH model to the in-sample data is chosen in this 

thesis by the AIC, SBIC, HQIC in section 5. Lower order ARCH models may not be 

the most accurate in forecasting volatility due to the number of restrictions. We still 

include the ARCH model as it provides the basis of the parameters for the GARCH 

models that we wish to study further due to their handling of the previously stated 

issues. The main weakness is that the squared shocks model the conditional variance, 

and this leads to the ARCH model not being able to distinguish between positive and 
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negative effects, otherwise known as asymmetric effects. Another drawback is that 

recent evidence suggests that there exists substantial persistence in the variance of 

such models (Lamoureux and Lastrapes (1990)). The ARCH model also carries mean 

reverting properties which suggests that the process reverts to its mean slowly 

therefore remaining highly persistent for long periods before returning to the 

equilibrium, but due to its restrictive intervals it causes the volatility to often be over 

predicted owing to a slow response to shocks. 

The ARCH model´s strengths lie in the fact that it can model volatility clustering 

through the lagged squared returns of 𝑍௧ି௞ଶ  which is described as  “large  changes  tend  

to be followed by large changes, of either sign, and small changes tend to be followed 

by  small  changes” (Mandelbrot (1997)).  

4.4 GARCH 
 
Bollerslev (1987) developed the Generalized Autoregressive Conditional 

Hetroskedasticity (GARCH) model, which is an extension of the ARCH model where 

the order of ARCH (𝑡) (𝛼௧𝑍௧ି௞ଶ ), as established previously, is built upon to include 

the GARCH term 𝛽௝𝜎௧ି௝ଶ . The model is as follows: 

 

 
𝝈𝒕𝟐 =   𝜶𝟎 +෍𝜶𝒌

𝒑

𝒌ୀ𝟏

𝒁𝒕ି𝒌𝟐 +  ෍𝜷𝒋

𝒒

𝒋ୀ𝟏

𝝈𝒕ି𝒋𝟐  

 (13) 

 

The  GARCH  model  is  said  to  be  “much  more  flexible  and  capable  of  matching  a  wide  

variety   of   patterns   of   financial   volatility”   (Koop (2006)). The GARCH again deals 

with volatility clustering and is characterized by a symmetric response of current 

volatility to positive and negative returns. It also has the addition of 𝜎௧ି௝ଶ , the lagged 

conditional variance, which helps to increase the accuracy of the ARCH model by 

avoiding excessive lags of the squared returns. Both  ARCH’s  and  GARCH’s  biggest  

weakness lies in the fact that the models assume that the shocks (both positive and 

negative) have the same effects on volatility which is generally accepted not to be 

true. 



 26 

 

Unlike the conditional variance, which is changing, the unconditional variance of 

𝑍௧  is constant if the assumption of mean reversion is maintained (𝛼 + 𝛽 < 1) and can 

be expressed as:  

 𝜎തଶ =
𝛼଴

1 − 𝛼ଵ − 𝛽ଵ
 (14) 

 

Otherwise, when 𝛼 + 𝛽 ≥ 1 , we say that the unconditional variance of 𝑍௧  is not 

defined, meaning we face a “non-stationarity” in variance. Moreover, in the case 

where  𝛼 + 𝛽 = 1, we have a “unit  root”  in  variance (Brooks (2014)).  

4.5 EGARCH 
 
In order to deal with the weaknesses of the GARCH model, which assumes that 

positive and negative shocks affect volatility equally, we use the Exponential 

GARCH (EGARCH), which was introduced and modeled by Nelson (1991). This is 

an asymmetric form of the GARCH model. The EGARCH is able to respond 

asymmetrically to positive and negative effects as well as the volatility persistence 

and mean reversion. The model is formally written as, an EGARCH (𝑝, 𝑞): 

 
𝑙𝑜𝑔(𝜎௧ଶ) =   𝛼଴ +෍[𝛼௞𝑍௧ି௞ + 𝛾௞൫|𝑍௧ି௞| − 𝐸(|𝑍௧ି௞|)൯]

௣

௞ିଵ

+෍𝛽௝

௤

௝ୀଵ

log(𝜎௧ି௝ଶ ) 

 (15) 

 

The section in the squared brackets illustrates the models ability to deal with the 

asymmetric effects of positive and negative returns. The function has a mean of zero 

and is uncorrelated. It can be re-written as: 

 

 (𝜶𝟏 + 𝜸𝟏)𝒁𝒕𝑰(𝒁𝒕 > 𝟎) + (𝜶𝟏 − 𝜸𝟏)𝒁𝒕𝑰(𝒁𝒕 < 𝟎) −  𝜸𝟏𝑬(|𝒁𝒕ି𝟏|) (16) 

 

Where (𝛼ଵ + 𝛾ଵ)  takes the positive shocks into consideration and   (𝛼ଵ − 𝛾ଵ)  deals 

with the negative shocks. This gives rise to the leverage effect which states that 

negative shocks have a larger impact than positive shocks since 𝛼ଵ < 0, 0 ≤ 𝛾ଵ ≥

0  𝑎𝑛𝑑  𝛽ଵ + 𝛾ଵ < 1.  The shocks impact the logarithm of the conditional variance 
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𝑙𝑜𝑔(𝜎௧ଶ) . Since log  (𝜎௧ଶ)  is the log of the variance, the conditional variance is 

guaranteed to be positive, therefore not artificially imposing non-negativity on the 

model parameters and the model allows for asymmetries (Brooks (2014)). A possible 

drawback of the EGARCH model is that it does not fit the normal distribution and 

under normality it tends to overestimate the impact of outliers. This is an interesting 

aspect and the findings between the normal, student-t and generalized error 

distributions will be of special interest for this model.  

4.6 GJR-GARCH  
 

We use the GJR-GARCH as another asymmetric model since we would still like to 

take into consideration the different impacts that positive and negative innovations 

have and since the EGARCH model is highly dependent on the data not being 

normally distributed we will closely compare these two models.  

 

The model was presented by Glosten, Jagannathan and Runkle (1993) and the 

difference between the EGARCH and the GJR-GARCH model is a slight change in 

the conditional variance function which is no longer a logarithm and the positive and 

negative shocks are seen through 𝛾௞  and 𝛼௞  respectively. 

 

 
𝝈𝒕𝟐 =   𝜶𝟎 +෍[𝜶𝒌𝒁𝒕ି𝒌𝟐 (𝟏 − 𝑰[𝒁𝒕ି𝒌 > 𝟎]) + 𝜸𝒌𝒁𝒕ି𝒌𝟐 𝑰[𝒁𝒕ି𝒌 > 𝟎])

𝒑

𝒌ି𝟏

+෍𝜷𝒋

𝒒

𝒋ୀ𝟏

𝐥𝐨𝐠(𝝈𝒕ି𝒋𝟐 ) 

 (17) 

4.7 Distribution statistics 
 

Normal distribution (Gaussian)  
The Normal or Gaussian distribution is an absolute continuous distribution where the 

mean is equal to zero and the variance is equal to one (𝑁  (0,1)). For the normal 

distribution we observe zero skewness and zero excess kurtosis. It is the most 
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commonly used distribution within financial analysis since it is symmetric and 

requires only the mean and variance.  

 

 
𝒇(𝒙, 𝝁, 𝝈) =

𝟏
𝝈√𝟐𝝅

𝒆ି
(𝒙ି𝝁)𝟐
𝟐𝝈𝟐  

 (18) 

Student t-distribution 
As we have seen in (Section 3.3) our in-sample data does not fit a standard normal 

distribution. We therefore consider the student t-distribution, first derived by Helmert 

(1876) but formally written by Gosset (1908) under the pseudonym  “Student”.  This  

distribution can work with smaller sample sizes, which are considered through 𝑣 =

𝑛 − 1 degrees of freedom.  

 

 
𝒇(𝒕) =   

𝚪 ቀ𝒗 + 𝟏
𝟐 ቁ

√𝒗𝝅𝚪ቀ𝒗𝟐ቁ
(𝟏 +

𝒕𝟐

𝒗
)ି

𝒗ା𝟏
𝟐  

 (19) 

 

The student t-distribution has, similarly to the normal distribution, zero skewness (it is 

symmetric) but excess kurtosis equal to ଺
௩ିସ

 for 𝑣 > 4 (leptokurtic property). 

Generalized error distribution 
The generalized error distribution (GED) was introduced by Subbotin (1923) (Agro 

(1995)). This distribution is used when the errors of the data are not necessarily 

normally distributed. Vasudeva and Kumari (2013), discuss the first class of GED 

(GED-I) from the parametric family of symmetric distributions, which we have used, 

since it can cope with the heavier tailed symmetric distributions of our data and can 

become a useful way to parameterize (Nadarajah (2005)).  

 

 

𝒅𝑭(𝒙|𝝁, 𝝈, 𝜿) =
𝒆ି

𝟏
𝟐ቚ
𝒙ି𝝁
𝝈 ቚ

𝟏
𝒌

𝟐𝒌ା𝟏𝝈𝚪(𝒌 + 𝟏)
𝒅𝒙 

 (20) 
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Where 𝑥 is the domain of the p.d.f and the distribution is defined by 𝜇, 𝜎, 𝑘, which 

relates to the mode, dispersion and skewness of the data respectively. The generalized 

error distribution has symmetric properties but allows for variation in the kurtosis 

which are considered to be close to the normal distribution (Giller (2005)). 
 

4.8 Forecast Evaluation 
 

There exist various methods that allow us to compare how well the models can 

predict the dependent variable. We use the mean squared error (MSE) to analyze the 

quality of the ARCH and GARCH family models so that our findings can be directly 

compare to existing research. 

The MSE is often used in comparing the difference between things that vary from an 

accepted standard. It is highly dependent on the scale of the dependent variable with 

the smaller the MSE of the model suggesting the better the models ability. We first 

predict the volatility, and then compute the realized volatility, at the end we compare 

our results by means of the following formula: 

 
𝑴𝑺𝑬 =     

𝟏
𝒏
෍(𝝈𝒊 − 𝝈ෝ𝒊)𝟐
𝒏

𝒊ୀ𝟏

 

 (21) 

 
𝑴𝑺𝑬 =     

𝟏
𝒏
෍𝒆𝒊𝟐
𝒏

𝒊ୀ𝟏

 

 (22) 

Where:  

𝜎௜ - actual value of the  𝑖௧௛ observation,  

𝜎ො௜ - forecasted value of the   𝑖௧௛ observation, 

𝑒௜ - forecasting error of the   𝑖௧௛  observation, 

𝑛 - number of observations.  

The main weakness of this method is that the prediction error variance varies across 

time. This problem is also common among other similar measurement techniques 

(Cipan (2004)). The forecast accuracy is considered to be increasing as the MSE 
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approaches zero (0 means that there is no difference between what was predicted and 

what actually happened). We compare the findings for each index over the three 

chosen distribution statistics.  

4.9 Predictive Power 
 
Together with a method that helps us to evaluate the goodness of forecast, we will 

also compute the predictive power of each model over the different forecasted time 

horizons. To do this, we use a method proposed by Blair, Poon and Taylor (2010). 

The predictive power is a comparison between the prediction errors and the variation 

in 𝜎௜,  which are both squared. The closer the predictive power ratio is to one hundred 

the better the accuracy of the forecasted volatility. Any deviation suggests that there 

exists greater variation of the errors of the forecasted volatility than those of the 

realized volatility. The predictive power (𝑃) can be both positive and negative (Poon 

(2005)):  

 

 𝑷 = ൬𝟏 − ∑ (𝝈𝒊ି𝝈ෝ𝒊)𝟐𝒏
𝒊స𝟏
∑ (𝝈𝒊ି𝝈ഥ)𝟐𝒏
𝒊స𝟏

൰   ×   𝟏𝟎𝟎  
 (23) 

 

Where: 

𝑛  - number of out-of-sample observations, 

𝜎௜  - realized volatility, 

𝜎ො௜  - forecasted volatility, 

𝜎ത  - mean value of volatility. 

 

The mean value of volatility in the out-of-sample period can be computed as:  

 

 
𝝈ഥ = 𝟏

𝒏෍𝝈𝒊
𝒏

𝒊=𝟏
 

 (24) 
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5.  Results 
 
We first provide an initial look at the of lag length selection through observation of 

the auto and partial-auto correlation functions based on the daily returns where we 

distinguish a rough estimation of the ARMA (p,q). We then acquire the (p,q) more 

accurately   using   the   Akaike's   information   criterion   (AIC),   Schwarz’s   Bayesian 

information criterion (BIC), and the Hannan and Quinn information criterion (HQIC). 

We then look at the significance of the parameters of GARCH, E-GARCH and GJR-

GARCH (1,1) models and look each of the parameters individually. For the higher 

order models ((1,2) (2,1) (2,2)) we compare AIC statistics. We present the MSE and 

predictive power values for 1, 3 6, 9 and 12 months forecasting periods. We also 

compare the models on the time horizon with the best forecast evaluation with the 

higher order models selected from the lowest AIC statistic, in order to gain an insight 

into the advantages or disadvantages of using higher order models. 
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5.1 FTSE100 
 

 

 

Figure 11: Auto and Partial-Auto correlation functions for the FTSE 100 index. 

 

The ACF and PACF exhibit significant autocorrelations in the residuals and both have 

their first significant autocorrelation visible already at lag 2. The ACF is significant at 

lags 2-6 and 8, after which it gradually fades away. The PACF is significant in lags 2-

6 and also has the tendency of fading away. This would suggest that an ARMA (p,q) 

is present and a higher order model could be necessary. These results are also 

confirmed in the test statistics of lag length selection models presented below.  
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Table 5: FTSE 100 Information Criteria for model selection of the Auto Regressive Moving Average 
(ARMA). 
 

The specifications for the conditional variance, given in Table 5, contain parameters 

for the auto regressive and moving average, denoted by 𝑝  and 𝑞. We have included 

six combinations of ARMA lengths. For the normally distributed model, 𝑝  and 𝑞 are 

the lowest at ARMA (1,2) and for the t-distribution ARMA (2,1). The GED also 

shows an improvement when, 𝑝  and 𝑞 ARMA order is (2,1). The AIC, BIC and HQIC 

for the normal distribution become positive at (3,2), (2,3) and (3,3) and increase for 

the other two distributions. In order for our ARCH/GARCH models to remain 

reasonable and comparable and to forecast the same models on each index we keep 

the ARMA length at (1,1). Since models with large amounts of lags rarely give more 

accurate results than the same models with fewer lags, it is rational to assume, that 

this small modification regarding ARMA (p,q) will not result in any disturbance in 

our analysis. Using the lag length of (1,1) also keeps our research in-line and 

comparable with the work which were summarized in the literature review section of 

this thesis (Section 2). 

Using ARMA (1,1) we compare the GARCH, EGARCH and GJR-GARCH models 

under the three error distributions and select the optimal order of models beginning at 

(1,1), whilst also extending them to higher order models if necessary.    

 
ARMA(1,0) ARMA(0,1) ARMA(1,1) 

  Normal Student-t GED Normal Student-t GED Normal Student-t GED 

AIC -6,4765 -6,562 -3,1759 -6.4827 -6.5620 -3.1761 -6,4803 -6,5672 -3,1685 

BIC -6,4663 -6,5416 -3,1555 -6.4663 -6.5416 -3.1557 -6,46 -6,5428 -3,144 

HQIC -6,4765 -6,5544 -3,1682 -6.4765 -6.5544 -3.1684 -6,4727 -6,558 -3,1593 

                

 
ARMA(2,1) ARMA(1,2) ARMA(2,2) 

  Normal Student-t GED Normal Student-t GED Normal Student-t GED 
AIC -3,7095 -6,7988 -3,7308 -7,1066 -6,3598 0,33505 -6,2762 -6,7869 -3,2224 

BIC -3,6851 -6,7702 -3,7022 -7,0821 -6,3313 0,3636 -6,2476 -6,7543 -3,1897 

HQIC -3,7003 -6,7881 -3,7200 -7,0974 -6,3491 0,34578 -6,2654 -6,7747 -3,2101 
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FTSE 

100 GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1) 

  Normal Student-t GED Normal Student-t GED Normal Student-t GED 

mu 0,00048 0,000251 0,000456 0,000068 -0,000053 0,000187 0,00013 -0,000073 0,000219 
s.e 0,000226 0,000152 0,00021 0,000084 0,000171 0,000194 0,000216 0,000197 0,000169 

p-value 0,033449 0,097789 0,029637 0,41487 0,757603 0,33579 0,54601 0,711519 0,19472 
omega 0,000002 0,000001 0,000002 -0,36703 -0,119368 -0,37034 0,000003 0,000001 0,000003 

s.e 0,000002 0,000004 0,000003 0,007283 0,003255 0,00569 0 0,000002 0 
p-value 0,354979 0,778516 0,529729 0 0 0 0 0,361531 0 

alpha1 0,096327 0,10161 0,096325 -0,14235 -0,120732 -0,15779 0 0 0 
s.e 0,030046 0,063243 0,043353 0,009031 0,003255 0,016323 0,004826 0,021445 0,006231 

p-value 0,001346 0,108127 0,026291 0 0 0 1 0,999995 0,99998 
beta1 0,879383 0,892257 0,883401 0,960921 0,987434 0,961371 0,876258 0,913898 0,871061 

s.e 0,036675 0,061892 0,051184 0,000763 0,000028 0,000123 0,014238 0,024565 0,017622 
p-value 0 0 0 0 0 0 0 0 0 

shape   12,93365 1,322303   21,069995 1,397429   18,675424 1,409927 
s.e   1,199575 0,054445  8,820335 0,070228   8,858992 0,082652 

p-value   0 0   0,016904 0   0,035024 0 

ar1 -0,94889 0,868502 -0,96733 -0,94844 0,530585 -0,96139 -0,95245 0,612553 -0,96724 
s.e 0,010101 0,138921 0,006196 0,003954 0,044616 0,002677 0,008485 0,224405 0,005997 

p-value 0 0 0 0 0 0 0 0,00634 0 

gamma1       0,145409 0,075922 0,149203 0,186358 0,142047 0,201142 
s.e      0,043415 0,012064 0,015416 0,027435 0,030648 0,032638 

p-value       0,00081 0 0 0 0,000004 0 

ma1 0,9684 -0,91144 0,984307 0,967237 -0,5849 0,978779 0,971924 -0,680342 0,984318 
s.e 0,003588 0,118393 0,000643 0,00465 0,042505 0,000715 0,002585 0,208171 0,000639 

p-value 0 0 0 0 0 0 0 0,001082 0 

          
          

FTSE 
100 GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1) 

  Normal Student-t GED Normal Student-t GED Normal Student-t GED 

AIC -6,6383 -6,4165 -6,6736 -6,6848 -6,4539 -6,7115 -6,6896 -6,4347 -6,7139 
BIC -6,6138 -6,3879 -6,6450 -6,6562 -6,4212 -6,6788 -6,6611 -6,4020 -6,6813 

HQIC -6,6291 -6,4057 -6,6629 -6,6741 -6,4416 6,6992 -6,6789 -6,4224 -6,7016 
Table 6: GARCH (1,1) family models statistics and information criteria for the FTSE100 index. The 
values which are not statistically different from zero are highlighted in blue. 

 

Our results show that based on the assumption of 5% significance the parameters of 

the GARCH models are all significantly different from zero apart from omega for all 
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distributions and mu and omega for the student t-distribution. The EGARCH is not 

significant in its mean for all three distributions. The GJR parameters are not 

significance in the mean and alpha. These findings suggest that higher order model 

would maybe be more appropriate. We have therefore looked at the AIC of the higher 

order models and our findings suggest that the GARCH (2,2), EGARCH (2,1) and 

GJR-GARCH (1,1) should be used, however to keep our results comparable to 

previous research and due to the minor differences in the AIC statistic we have 

chosen to forecast all of our models as (1,1). We do however present the results for 

the higher models over a 1 month forecasting horizon in order to prove that the higher 

order models selected based on the lower AIC statistic do not significantly enhance 

the results. 

 

FTSE 
100 GARCH EGARCH GJR-GARCH 

  Normal Student-t GED Normal Student-t GED Normal Student-t GED 
AIC(1,1) -6,6383 -6,6603 -6,6736 -6,6848 -6,7059 -6,7115 -6,6896 -6,7061 -6,7139 
AIC(2,1) -6,6383 -6,6613 -6,6738 -6,6876 -6,7081 -6,7126 -6,6866 -6,703 -6,7107 
AIC(1,2) -6,6367 -6,6587 -6,6720 -6,6832 -6,7042 -6,7098 -6,6881 -6,7045 -6,7123 
AIC(2,2) -6,6387 -6,6623 -6,6741 -6,6860 -6,7066 -6,7111 -6,6850 -6,7014 -6,7091 

Table 7: Akaike´s Information Criteria of higher order GARCH family models for the FTSE 100 index. 

 

In Table 8 and Figure 12 below we present our findings and observe that the MSE 

gives the best results for a 1 month forecast. The 1 month forecast is better than the 

longer forecasted horizons and all of the ARCH/GARCH models give more accurate 

results when using the student t-distribution whereas the naïve model performs best 

with the normal and generalized distribution. For the 1 month forecast the benchmark 

naïve model is outperformed by all other models. 
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Table 8: MSE forecasting results for the FTSE 100 index over multiple time horizons. 

 

 
Figure 12: Clustered Column Chart of FTSE 100 MSE results. 
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    MSE 
nDays Distribution Naive ARCH GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1) 

21 Normal 0,000355 0,012210 0,0003214 0,0002826 0,0002741 
  Student t 0,001148 0,000289 0,0001309 0,0001091 0,0001144 
  GED 0,000355 0,002392 0,0003198 0,0002844 0,0002734 

63 Normal 0,001148 0,028010 0,0009224 0,0008503 0,0007975 
  Student t 0,000473 0,000851 0,0004323 0,0003219 0,0003373 
  GED 0,001148 0,007381 0,0009239 0,0008789 0,0008092 

126 Normal 0,002759 0,03401 0,002148 0,001808 0,001677 
  Student t 0,001260 0,00195 0,000935 0,000801 0,000690 
  GED 0,002759 0,01497 0,002097 0,001887 0,001694 

189 Normal 0,003526 0,13810 0,002975 0,002754 0,002453 
  Student t 0,003526 0,02750 0,002836 0,002862 0,002501 
  GED 0,003526 0,02257 0,002837 0,002871 0,002511 

252 Normal 0,006815 0,08425 0,008209 0,005658 0,005823 
  Student t 0,006815 0,02884 0,007566 0,005617 0,005725 
  GED 0,006815 0,03060 0,007848 0,005746 0,005820 
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The most accurate forecasting horizon for the predictive power is 1 month where all 

student t-distribution models outperform that of the normal and generalized 

distribution. The naïve model outdoes ARCH (1,1) and is only slightly worse than 

GARCH (1,1). The most accurate results are given by the EGARCH (1,1) model. 

Although the Predictive power does decrease as the time horizon increases, this is 

seen to only be marginal in the case of the models with the student t-distribution , up 

to and including the 6 month (126 day) forecasting horizon. These results seem to be 

disproportionally high and have been retested multiple times to check there accuracy. 

 

    Predictive Power 
nDays Distribution Naive ARCH GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1) 

21 Normal 44,4 -1811 49,68 55,75 57,09 
  Student t 80,09 59,47 81,64 84,69 83,95 
  GED 44,4 -274,5 49,93 55,48 57,19 

63 Normal 28,55 -1643 42,61 47,09 50,38 
  Student t 77,12 58,81 79,07 84,41 83,67 
  GED 28,55 -359,2 42,52 45,31 49,65 

126 Normal 3,021 -1095 24,49 36,46 41,06 
  Student t 69,08 52,12 77,06 80,35 83,07 
  GED 3,021 -426,2 26,29 33,67 40,47 

189 Normal 6,044 -3580 20,73 26,62 34,64 
  Student t 6,044 -632,7 24,44 23,73 33,35 
  GED 6,044 -501,3 24,42 23,51 33,1 

252 Normal -33,1 -1545 -60,33 -10,50 -13,74 
  Student t -33,1 -463,3 -47,77 -9,701 -11,82 
  GED -33,1 -497,6 -53,27 -12,22 -13,66 

Table 9: Predictive Power forecasting results for the FTSE 100 index over multiple time horizons. 
 

When comparing the results against the higher order models selected based on the 

lowest AIC, we observe no improvement in the models MSE or predictive power 

where there was only a slight loss for GARCH (2,2). 
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    MSE 
nDays Distribution Naive ARCH GARCH(2,2) EGARCH(2,1) GJR-GARCH(1,1) 

21 Normal 0,0003552 0,009101 0,0003214 0,0002817* 0,0002741 
  Student t 0,0001418 0,0002888 0,0001315 0,0001091 0,0001144 
  GED 0,0003552 0,002392 0,0003174* 0,0002833* 0,0002734 

          
    Predictive Power 

nDays Distribution Naive ARCH GARCH(2,2) EGARCH(2,1) GJR-GARCH(1,1) 

21 Normal 44,4 -1325 49,75* 55,9* 57,1 
  Student t 80,09 59,47 81,55 84,69 83,95 
  GED 44,4 -274,5 50,31* 55,65* 57,19 

Table 10: MSE and Predictive Power forecasting results for higher order GARCH AND EGARCH 
models over a 21 day forecasting horizon. Values marked with an asterisk (*) show an improvement. 
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5.2 S&P 500 
 
 

 

 
Figure 13: Auto and Partial-Auto correlation functions for the S&P 500 index. 

 
The ACF cuts off after the second lag. This behavior indicates an MA (2) process. 

The PACF also cuts off after the second lag, indicating an AR (2) process but the 

correlogram shows the larger correlation in higher lags such as 5, 7, 10 and 12. All 

three information criteria statistics suggest that in the case of the normal and student t-

distributions that ARMA (1,1) produces the lowest statistics. For the generalized 

distributions the best is ARMA (2,1). The values obtained in ARMA (2,2) for the 

normal and student t-distributions vary significantly and become positive or are not 

obtainable in R. We therefore select to continue our analysis with the ARMA (1,1) 

model. 
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 ARMA(1,0) ARMA(0,1) ARMA(1,1) 
  Normal Student-t GED Normal Student-t GED Normal Student-t GED 

AIC -6.3978 -6.5661 -2.6646 -6.3977 -6.5660 -2.6612 -6.4039 -6.5715 -2.7159 
BIC -6.3815 -6.5457 -2.6442 -6.3814 -6.5456 -2.6408 -6.3835 -6.5470 -2.6914 

HQIC -6.3917 -6.5584 -2.6569 -6.3916 -6.5584 -2.6535 -6.3962 -6.5623 -2.7067 

                
  ARMA(2,1) ARMA(1,2) ARMA(2,2) 
  Normal Student-t GED Normal Student-t GED Normal Student-t GED 

AIC   -6.5710 -2.7135 -2.9071 -6.5639 -2.7260  385.84 -2.7234 
BIC   -6.5424 -2.6850 -2.8827 -6.5353 -2.6975  385.88 -2.6908 

HQIC   -6.5603 -2.7028 -2.8979 -6.5532 -2.7153   385.86 -2.7111 
Table 11: S&P500 Information Criteria for model selection of the Auto Regressive Moving Average 
(ARMA). 

 

In Table 12 our results show that EGARCH (1,1) is significantly different from zero 

for all distributions and GARCH is again not significant in omega. GJR-GARCH is 

not statistically significant in alpha for all distributions and AR (1) and MA (1) with 

the normal distribution. 
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S&P 
500 GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1) 

 
Normal Student-t GED Normal Student-t GED Normal Student-t GED 

mu 0,000681 0,000765 0,000981 0,000312 0,000727 0,000662 0,000471 0,000682 0,000662 

s.e 0,000031 0,000043 0,000122 0,000106 0,000176 0,000033 0,000201 0,000032 0,000033 

p-value 0 0 0 0,003201 3,50E-05 2,00E-06 0,018936 0 0,0000E+00 

omega 0,000003 0,000003 0,000003 -0,49701 -0,46257 -0,51395 0,000003 0,000004 0,000004 

s.e 0,000002 0,000002 0,000002 0,005284 0,007278 0,008199 0 0 0 

p-value 0,15606 0,089678 0,15793 0 0 0 0 0 0 

alpha1 0,14213 0,152062 0,143579 -0,22036 -0,24961 -0,23122 0 0 0 

s.e 0,020458 0,028887 0,026431 0,01651 0,024397 0,026379 0,010072 0,010431 0,009414 

p-value 0 0 0,031085 0 0 0 0,999999 0,99999 1,00E+00 

beta1 0,82469 0,821367 0,822839 0,947161 0,95257 0,947264 0,838845 0,800636 0,808844 

s.e 0,025721 0,028626 0,031085 0,000229 0,000476 0,001038 0,01455 0,019685 0,017864 

p-value 0 0 0 0 0 0 0 0 0 

shape   5,548586 1,272639   5,821013 1,331867   6,111765 1,361226 

s.e   0,935857 0,070512 
 

1,004069 0,069237 
 

1,032129 0,074012 

p-value   0 0   0 0   0 0,00E+00 

ar1 0,961876 0,961661 0,918547 -0,87803 0,526459 0,750844 -0,84899 0,969699 0,971911 

s.e 0,00425 0,005266 0,015172 0,031641 0,057167 0,06747 1,709544 0,003455 0,003817 

p-value 0 0 0 0 0 0 0,619456   0 

gamma1   
 

  0,152124 0,143476 0,157328 0,244052 0,292037 0,270568 

s.e   
 

  0,01125 0,015698 0,010672 0,036007 0,048059 0,043926 

p-value       0 0 0 0 0 0 

ma1 -0,99349 -0,99135 -0,95319 0,867427 -0,55909 -0,77742 0,838975 -0,99295 -0,992798 

s.e 0,000125 0,00012 0,007955 0,03299 0,054959 0,062389 1,764539 0,000103 0,000087 

p-value 0 0 0 0 0 0 0,634456 0 0 

          
          

S&P 
500 GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1) 

  Normal Student-t GED Normal Student-t GED Normal Student-t GED 

AIC -6,6656 -6,7025 -6,708 -6,7112 -6,7496 -6,7515 -6,7027 -6,7469 -6,7500 

BIC -6,6411 -6,6740 -6,6794 -6,6827 -6,7170 -6,7188 -6,6741 -6,7143 -6,7174 

HQIC -6,6564 -6,6918 -6,6972 -6,7005 -6,7374 -6,7392 -6,6919 -6,7347 -6,7378 

Table 12: GARCH (1,1) family models statistics and information criteria for the S&P 500 index. The 
values which are not statistically different from zero are highlighted in blue. 



 42 

The AIC for the higher order models suggest an improvement could be found through 

higher order models. The AIC suggests (2,1) for the GARCH and EGARCH models 

and due to no improvement in the AIC for the GJR GARCH, (1,1) is selected despite 

the non-significant alpha, AR (1) and MA (1) in the normal distribution. The results 

are again calculated using the (1,1) on all models and directly compared with the 

results of the best AIC models. 
 

S&P 500 GARCH EGARCH GJR-GARCH 
  Normal Student-t GED Normal Student-t GED Normal Student-t GED 

AIC(1,1) -6,6656 -6,7025 -6,708 -6,7112 -6,7496 -6,7515 -6,7027 -6,7469 -6,75 
AIC(2,1) -6,6756 -6,7096 -6,7153 -6,731 -6,7647 -6,7669 -6,7022 -6,7458 -6,7486 
AIC(1,2) -6,6647 -6,7013 -6,7068 -6,7114 -6,7495 -6,7511 -6,7026 -6,7462 -6,7493 
AIC(2,2) -6,6752 -6,5376 -6,7141 -6,7296 -6,5838 -6,7656 -6,7109 -6,5471 -6,7535 

Table 13: Akaike´s Information Criteria of higher order GARCH family models for the S&P 500 index. 

 

    MSE 
nDays Distribution Naive ARCH GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1) 

21 Normal 0,0004123 0,023860 0,0003609 0,0003643 0,0003248 
  Student t 0,0004123 0,006222 0,0003610 0,0003462 0,0003251 
  GED 0,0004123 0,002632 0,0003606 0,0775100 0,0003219 

63 Normal 0,001524 0,04183 0,001291 0,001503 0,001250 
  Student t 0,001524 0,05242 0,001295 0,001437 0,001219 
  GED 0,001524 0,008115 0,001295 0,001502 0,001233 

126 Normal 0,003708 0,03713 0,003348 0,003486 0,003251 
  Student t 0,003708 0,1531 0,003597 0,003453 0,003223 
  GED 0,003708 0,01637 0,003495 0,003586 0,003254 

189 Normal 0,005624 0,07937 0,003961 0,00497 0,004226 
  Student t 0,005624 0,4221 0,004125 0,005161 0,0045 
  GED 0,005624 0,02466 0,004121 0,005483 0,004352 

252 Normal 0,005843 0,09134 0,006248 0,006571 0,006153 
  Student t 0,005843 0,1242 0,008113 0,006902 0,006073 
  GED 0,005843 0,03276 0,007228 0,007228 0,006292 

Table 14: MSE forecasting results for the S&P 500 index over multiple time horizons. 

 

The MSE results suggest that the most accurate forecasting horizon is again 1 month 

using the student t-distribution. In terms of longer time horizons we see that the 1 

month horizon is more accurate than the longer horizons. 
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Figure 14: Clustered Column Chart of S&P 500 MSE results. 

 

For the predictive power the 21-day forecast is the most accurate. With the GARCH 

(1,1) we obtain very similar results for all three distributions. The student t-

distribution improves the EGARCH model compared to the other distributions and the  

GED offers a small improvement in the GJR-GARCH model. We also noticed that 

the Naïve model is improved over a 1 year (252 day) forecasting period compared to 

the predictive power of both 6 and 9 months (126 and 189 days). The P value for the  

9 month forecast using a normal distribution is higher than the shorter 6 month 

forecast when using the GARCH (1,1) and the GJR-GARCH(1,1). 

 

 

 

 

 

 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
N

o
rm

a
l

S
tu

d
e

n
t 

t

G
E

D

N
o

rm
a

l

S
tu

d
e

n
t 

t

G
E

D

N
o

rm
a

l

S
tu

d
e

n
t 

t

G
E

D

N
o

rm
a

l

S
tu

d
e

n
t 

t

G
E

D

N
o

rm
a

l

S
tu

d
e

n
t 

t

G
E

D

21 63 126 189 252

M
SE

S&P 500

Naive ARCH GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1)



 44 

 
  Predictive Power 

nDays Distribution Naive ARCH GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1) 

21 Normal 47,67 -2929 54,2 53,77 58,77 
  Student t 47,67 -689,7 54,19 56,06 58,75 
  GED 47,67 -234 54,24 55,01 59,14 

63 Normal 25,71 -1939 37,08 26,74 39,07 
  Student t 25,71 -2455 36,89 29,94 40,6 
  GED 25,71 -295,6 36,87 26,78 39,89 

126 Normal 1,025 -891,1 10,63 6,95 13,23 
  Student t 1,025 -3986 3,973 7,835 13,96 
  GED 1,025 -336,9 6,713 4,282 13,13 

189 Normal -12,18 -1483 20,98 0,8708 15,71 
  Student t -12,18 -8318 17,72 -2,944 10,25 
  GED -12,18 -392 17,8 -9,36 13,19 

252 Normal 1,532 -1439 -5,3 -10,74 -3,699 
  Student t 1,532 -1993 -36,73 -16,31 -2,341 
  GED 1,532 -452,1 -21,82 -24,69 -6,027 

Table 15: Predictive Power forecasting results for the S&P 500 index over multiple time horizons. 
 

Using the AIC selected higher order GARCH models and the predictive power 

statistic we observe that with GARCH (2,1) the results are improved but not 

dramatically. The student t-distribution is the most accurate for the EGARCH (1,1) 

and is found to be slightly improved when using the higher order model EGARCH 

(2,1). GJR-GARCH is the most accurate of all models and gives the best results 

regardless of distribution with the generalized distribution performing marginally 

better whilst still remaining at the lower order GJR-GARCH (1,1) model. 

    MSE 
nDays Distribution Naive ARCH GARCH(2,1) EGARCH(2,1) GJR-GARCH(1,1) 

21 Normal 0,0004123 0,009268 3,57E-04* 3,58E-04* 0,0003248 
  Student t 0,0004123 6,22E-03 3,60E-04* 3,36E-04* 0,0003251 
  GED 0,0004123 2,63E-03 3,57E-04* 3,47E-04* 0,0003219 

      
   

  
    Predictive Power 

nDays Distribution Naive ARCH GARCH(2,1) EGARCH(2,1) GJR-GARCH(1,1) 

21 Normal 47,67 -1164 54,67* 54,58* 58,77 
  Student t 47,67 -689,7 54,35* 57,32* 58,75 
  GED 47,67 -234 54,72* 55,97* 59,14 

Table 16: MSE and Predictive Power forecasting results for higher order GARCH AND EGARCH 
models over a 21 day forecasting horizon. Values marked with an asterisk (*) show an improvement. 
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5.3 HSI  
 

 

 
Figure 16: Auto and Partial-Auto correlation functions for the Hang Seng index.  
 

The ACF is statistically significant between lags 3 and 5 and gradually fades away 

indicating an MA (q) process. The partial auto correlation function is also firstly 

significantly different at lag three and again fades away slowly. When examining the 

ARMA selection only the student t-distribution with p and q equal to (1,1) is 

statistically different from zero in all of its parameters, however the AIC suggests a 

(1,0) or (0,1) ARMA. The AIC for the normal distribution is lowest at ARMA (2,1) 

and ARMA (0,1) is suggested for the generalized distribution. Again we will continue 

our analysis with ARMA (1,1). 

 

 

 

 

 



 46 

HSI ARMA(1,0) ARMA(0,1) ARMA(1,1) 
  Normal Student-t GED Normal Student-t GED Normal Student-t GED 

AIC -0.6437 -6.1343 -0.9814 -0.95971 -6.1343 -0.98211 -2.749 -6.1182 -0.92683 
BIC -0.6274 -6.1139 -0.9609 -0.94340 -6.1139 -0.96172 -2.729 -6.0938 -0.90236 

HQIC -0.6376 -6.1266 -0.9737 -0.95358 -6.1266 -0.97445 -2.743 -6.1090 -0.91763 
                  
  ARMA(2,1) ARMA(1,2) ARMA(2,2) 
  Normal Student-t GED Normal Student-t GED Normal Student-t GED 

AIC -6.0585 -6.1169 -0.9245 -0,41512 -6,1218 -0.92441 1,6957 -6,1098 -0.92520 
BIC -6.0340 -6.0884 -0.8959 -0,39065 -6,0933 -0.89586 1,7243 -6,0771 -0.89258 

HQIC -6.0493 -6.1062 -0.9137 -0,40592 -6,1111 -0.91368 1,7065 -6,0975 -0.91294 
 Table 17: HSI Information Criteria for model selection of the Auto Regressive Moving Average 
(ARMA). 

 
GARCH (1,1) is not significantly different from zero in its omega for the normal and 

generalized distribution but is significant for all parameters for the student t-

distribution. The GJR-GARCH is non-significant in omega for the normal and 

generalized distribution and the mean for the student t-distribution. EGARCH is not 

significantly different from zero in four of its 6 parameters under the normal 

distribution. Whereas the student t and generalized error distribution have only one 

parameter which is non-significantly different from zero, AR2 and Omega, 

respectively.  
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HSI GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1) 
  Normal Student-t GED Normal Student-t GED Normal Student-t GED 

mu 0,013435 0,000147 0.000162 -0.00009 0.000148 0.000162 0,007967 0,000431 0.000169 
s.e 0,00008 0 0 0.000329 0.000027 0 0,000003 0,000301 0 

p-value 0 0 0 0.776326 0 0 0 0,152412 0 

omega 0 0,000128 0 0.000120 0.000128 0 0 0,00013 0 
s.e 0,000001 0,000009 0 0.000006 0.000009 0 0,00001 0,00001 0 

p-value 0,88592 0 0.75384 0 0 0.75385 0,89829 0 0.74845 
alpha1 0,998999 0,068696 0.050000 0.133760 0.074889 0.050000 1 0,071931 0.050000 

s.e 0,019545 0,005217 0.000019 0.038939 0.035902 0.000019 0,000361 0,027139 0.000019 
p-value 0 0 0 0.000592 0.036983 0 0 0,008039 0 

shape   5,580338 2.000000   5.567047 2.000000   5,335257 2.000000 
s.e  0,927316 0.000816  0.935582 0.000816   0,8272 0.000798 

p-value   0 0   0 0   0 0 

ar1 -0,03299 0,983322 0.006803 0.421737 0.996365 0.006860 -0,19247 -0,27528 -0.18955 
s.e 0,00388 0,000503 0.000002 0.723044 0.008090 0.000002 0,000064 0,005287 0.000069 

p-value 0 0 0 0.559705 0 0 0 0 0 

ar2       -0.02149 -0.01289 -0.00453 -0,03843 -0,99144 -0.95843 
s.e     0.019657 0.006691 0.000002 0,000012 0,00242 0.000347 

p-value       0.274312 0.053951 0 0 0 0 

ma1 1,668469 -0,98765 0.006691 -0.39497 -1.00000 0.006743 -1,92329 0,278844 0.203802 
s.e 0,000198 0,00002 0.000002 0.723353 0.000005 0.000002 0,000486 0,002515 0.000074 

p-value 0 0 0 0.585052 0 0 0 0 0 

ma2 0,671011 -0,01781 -0.00429     0,980848 0,997148 0.980824 
s.e 0,000078 0,000029 0.000001     0,000299 0,000051 0.000356 

p-value 0 0 0       0 0 0 

          
          HSI GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1) 

  Normal Student-t GED Normal Student-t GED Normal Student-t GED 

AIC -6,1797 -6,1943 -6,2017 -6,2057 -6,2161 -6,2223 -6,2014 -6,2115 -6,2187 
BIC -6,1552 -6,1657 -6,1732 -6,1771 -6,1835 -6,1897 -6,1729 -6,1789 -6,186 

HQIC -6,1705 -6,1835 -6,191 -6,1949 -6,2039 -6,21 -6,1907 -6,1992 -6,2064 
Table 18: GARCH (1,1) family models statistics and information criteria for the Hang Seng index. The 
values which are not statistically different from zero are highlighted in blue. 

 
The AIC for the higher order models suggest an improvement may be possible. The 

AIC suggests (2,1) for the GARCH and EGARCH models and due to no 

improvement in the AIC for the GJR GARCH, (1,1) is selected despite the non-

significant omega and mu (student t-distribution). The results are again calculated 
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using the (1,1) on all models and directly compared with the results of the best AIC 

models. 

 
HSI GARCH EGARCH GJR-GARCH 

  Normal Student-t GED Normal Student-t GED Normal Student-t GED 
AIC(1,1) -6,1797 -6,1943 -6,2017 -6,2057 -6,2161 -6,2223 -6,2014 -6,2115 -6,2187 
AIC(2,1) -6,1856 -5,3337 -6,2069 -6,2289 -5,3691 -6,2412 -6,1989 -5,3764 -6,2165 
AIC(1,2) -6,1781 -6,1927 -6,2001 -6,2043 -6,2148 -6,2209 -6,200 -6,2100 -6,2172 
AIC(2,2) -6,1841 -5,5639 -6,2053 -6,2278 -5,6079 -6,2400 -6,1975 -5,5797 -6,215 

Table 19:Akaike´s Information Criteria of higher order GARCH family models for the Hang Seng 
index. 
 
The MSE gradually increases as the forecasting horizon increases. The most accurate 

forecasting horizon is 1 month where the naïve model outperforms ARCH and is very 

similar to that of GARCH. ARCH improves with the use of the student t distribution 

whereas the GARCH models all perform best under the generalized error distribution. 

 
 

    MSE 
nDays Distribution Naive ARCH GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1) 

21 Normal 0,001199 0,0184 0,001198 0,0009143 0,00105 
  Student t 0,001199 0,003331 0,001181 0,0009138 0,001048 
  GED 0,001199 0,005217 0,001166 0,0009027 0,001047 

63 Normal 0,002988 0,04255 0,002345 0,002259 0,002303 
  Student t 0,002988 0,02052 0,002365 0,002353 0,002443 
  GED 0,002988 0,01618 0,002372 0,002332 0,002404 

126 Normal 0,005718 0,06676 0,005920 0,005127 0,005374 
  Student t 0,005718 0,05959 0,005821 0,005200 0,005638 
  GED 0,005718 0,03287 0,005860 0,005135 0,005595 

189 Normal 0,007221 0,17990 0,009283 0,007169 0,007646 
  Student t 0,007221 0,11120 0,009964 0,006719 0,008178 
  GED 0,007221 0,04973 0,009545 0,006358 0,008009 

252 Normal 0,01394 0,02080 0,01405 0,01230 0,01373 
  Student t 0,01394 0,41630 0,01353 0,01210 0,01381 
  GED 0,01394 0,06597 0,01349 0,01183 0,01372 

Table 20: MSE forecasting results for the Hang Seng index over multiple time horizons. 
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Figure 17: Clustered Column Chart of HSI MSE results. 

 
The results of the predictive power show that when using the naïve model a 

forecasting horizon of  3 months (63 days) offers a slightly larger predictive power 

than that of 1 month. The ARCH performs poorly over all time horizons and all 

distributions and actually improves when forecasting over 1 year and using the 

normal error distribution. The GARCH model performs very similarly to that of the 

naïve model under the normal distribution when using a 1 month forecasting horizon, 

but it improves slightly when using one of the non-normal distributions. The 

predictive power of GARCH (1,1) is twice as large as the best naïve model when 

considering the 3 month forecasting horizon where the EGARCH (1,1) and GJR-

GARCH (1,1) are also only slightly improved compared to the simpler GARCH (1,1) 

model. The 3 month forecast gives the best predictive power under the normal 

distribution for all three GARCH (1,1) models. As the forecasting horizon increases 

the predictive power decreases (becomes worse) and even becomes negative for 

EGARCH and GJR-GARCH over the 9 month (depending on distribution) and 1 year 

horizons. 
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    Predictive Power 

nDays Distribution Naive ARCH GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1) 
21 Normal 17,11 -1172 17,18 36,81 27,44 
  Student t 17,11 -130,2 18,41 36,84 27,57 
  GED 17,11 -260,6 19,43 37,61 27,66 

63 Normal 17,38 -1076 35,16 37,54 36,34 
  Student t 17,38 -467,3 34,61 34,95 32,45 
  GED 17,38 -347,3 34,43 35,52 33,53 

126 Normal 11,11 -937,8 7,966 20,3 16,45 
  Student t 11,11 -826,3 9,514 19,16 12,35 
  GED 11,11 -410,9 8,906 20,17 13,03 

189 Normal 10,85 -2121 -14,61 11,49 5,597 
  Student t 10,85 -127 -23,02 17,05 -0,9612 
  GED 10,85 -514 -17,85 21,5 1,117 

252 Normal -27,36 -90,01 -28,34 -12,38 -25,39 
  Student t -27,36 -3703 -23,6 -10,5 -26,14 
  GED -27,36 -502,6 -23,27 -8,014 -25,35 

Table 21: Predictive Power forecasting results for the Hang Seng index over multiple time horizons. 

 

When using the higher order models, as suggested by the lowest AIC statistic, over 1 

month the predictive power of GARCH (2,1) and EGARCH (2,1) are not improved 

under any of the distributions. However the higher order models do result in a slight 

improvement of the GARCH and EGARCH models under the Gaussian distribution 

(and student t for EGARCH). Since the 3 month forecasting period produced the best 

predictive power statistics for all statistics under GARCH (1,1) and GJR-GARCH 

(1,1) we decided to run the higher order models on the 3 month forecast as well. The 

MSE did not improve for the higher order EGARCH model and only improved for the 

higher order GARCH model using the normal distribution. The higher order models 

improved under all distributions for the GARCH and EGARCH models except for the 

normally distributed higher order GARCH model when using the predictive power 

statistic. 
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    MSE 

nDays Distribution Naive ARCH GARCH(2,1) EGARCH(2,1) GJR-GARCH(1,1) 

21 Normal 0,001199 0,01498 1,21E-03 9,16E-04 0,00105 
  Student t 0,001199 3,33E-03 1,18E-03 9,15E-04 0,001048 

  GED 0,001199 5,22E-03 1,17E-03 9,03E-04 0,001047 

          

    Predictive Power 
nDays Distribution Naive ARCH GARCH(2,1) EGARCH(2,1) GJR-GARCH(1,1) 

21 Normal 17,11 -935 16,44 36,72 27,44 
  Student t 17,11 -130,2 18,35 36,76 27,57 

  GED 17,11 -260,6 19,18 37,58 27,66 

       

    MSE 
nDays Distribution Naive ARCH GARCH(2,1) EGARCH(2,1) GJR-GARCH(1,1) 

63 Normal 0,002988   0.04294 0.002396 0.002244* 0.002303 
  Student t 0,002988   0.02052 0.002358* 0.002334* 0.002443 

  GED 0,002988   0.01618 0.002372 0.002310* 0.002404 

          

    Predictive Power 
nDays Distribution Naive ARCH GARCH(2,1) EGARCH(2,1) GJR-GARCH(1,1) 

63 Normal 17,38   -1087   33.75  37.96* 36.34 
  Student t 17,38   -467.3   34.82*  35.47*  32.45 

  GED 17,38   -347.3   34.49*  36.15*  33.53 
Table 22: MSE and Predictive Power forecasting results for higher order GARCH AND EGARCH 
models over a 21 and 63 day forecasting horizon. Values marked with an asterisk (*) show an 
improvement.  
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6. Discussion 
 

Our results show that the longest reasonable forecasting horizon of interest was that of 

3 months for the HSI. The 1 month forecasting period was of most relevance and gave 

the best predictive power and lowest MSE results for the FTSE 100 and S&P 500. 

Previous papers, as suggested in the literature review, have focused on short-term (< 3 

months) forecasting horizons. Our findings have also shown that relevance of 

forecasting over longer time horizons diminishes after 3 months. 

 

To complement Cao and Tsay (1992) we have compared our findings using the 

EGARCH (1,1) model and found that over longer time horizons (12 months) our 

EGARCH model outperforms all other models tested when considering both the MSE 

and predictive power for the FTSE and HSI indices over all three distributions. The 

same cannot be said for the S&P 500 where EGARCH (1,1) only outperforms ARCH 

and GARCH (1,1) whilst using a student t-distribution. EGARCH (1,1) is outperform 

by the naïve model, which actual performs the best for the 12 month forecasting 

horizon out of all the models analyzed with the S&P 500. 

 

Kroner, Kneafsey and Claessens (1995) found that the COMB which combines the 

ISD and GARCH forecasts, outperformed the other five forecasts when using the 

MSE as an evaluation technique. This supports our findings that GARCH, and the 

extensions of GARCH, outperform the other models studied in this thesis over all 

three indices. 

 

The findings of Figlewski (1997) are confirmed for the S&P 500 where the GARCH 

(1,1) outperforms both the naïve and ARCH models with forecasting horizons shorter 

than 12 months using both the MSE and predictive power measurements. Since we 

also include EGARCH (1,1) and GJR-GARCH (1,1) we find that the GARCH (1,1) is 

often outperformed by either of these. For the 12 month forecasting horizon GARCH 

does however outperform EGARCH (1,1) for the normal and generalized 

distributions. Although Figlewski looked at other markets (3M US T-Bill, 20Y T-

Bond, Deutschemark Exchange Rate (DM per $)) and we compared pure indices, we 

can conclude that the GARCH (1,1) outperforms the most basic models (Naïve and 

ARCH) on all forecasted horizons shorter than 12 months with the FTSE 100 index. 
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In terms of the HSI index, GARCH (1,1) only ever slightly outperforms the naïve 

model and with longer than 6 months forecasting the GARCH (1,1) model is 

outperformed. The only instance where GARCH (1,1) outperforms using a 12 month 

time horizon is when the student t-distribution is used. These results hold for both the 

MSE and the predictive power.  

 

Our results agree with those of Poon and Granger (2003), when they reviewed 17 

different papers and stated that the GARCH (1,1) outperforms the more restrictive 

ARCH model. This is clear for all three indices regardless of the distribution and is a 

consequence of the restrictions of ARCH. 

 

Liu and Morley (2009) suggest that the non-normal GARCH model fits better than the 

normally distributed GARCH models over 1 period forecasting.  From our results we 

see that there exists sensitivity to distribution functions for the 1 month forecasts 

where the normal error distribution is outperformed. Since our findings are extended 

over multiple forecasting periods we have looked to see if Lui and Morley´s findings 

also hold over  longer forecasting periods. We find that for the FTSE the student t 

continues to outperform the normal and GED, which tend to compete and converge 

towards zero as the forecasting horizon increases. The same cannot be said for the 

S&P 500 index where the GED is closer to the student t-distribution and both are 

outperformed by the normal distribution on forecasting time horizons longer than 1 

month. For longer time horizons with the HSI the distributions are ranked closely 

when using both the MSE and predictive power. The non-normal distributions 

outperform the normal distribution over the 1 ,6 and 12 month forecasting horizons. 

 

Wei (2012) finds that the normal distribution is the best error distribution over a 12 

month forecasting horizon regardless of the model. Our results do not confirm this 

and we find that the student t-distribution is the best performer for both the FTSE and 

S&P 500 over the same period. With these two indices the best performing models are 

found to be EGARCH (1,1) and GJR-GARCH (1,1) respectively. The HSI index 

performs best over the 252 day forecasting horizon using the generalized error 

distribution and our findings point to the EGARCH (1,1) as the best performer using 

both the MSE and predictive power.  



 54 

 
It would appear from our results that since the in-sample data is not normally 

distributed, the student t-distribution is able to cope better with models of a lower 

order.  We see this through selection of the models using AIC, that the greater the 

model parameters (i.e. GJR- GARCH) the lower the model selected and generally the 

better results are achieved with the time horizon of 3 months or shorter. 

 

We used ARMA (1,1) for all three indices. The calculations and results with the 

ARMA and Information criteria statistics are all based on a 1 month forecasting 

horizon. This could be studied individually for each time horizon and each index. The 

comparisons of our results with those in the literature review seem, for the majority of 

papers, to agree with only a few small digressions. Most existing papers only study 

one time horizon or if multiple time horizons are studied they usually lack different 

error distributions or a suitable number of models in order to make the necessary 

comparisons. We also noticed that higher order models had often not been used in 

previous research. Our research has proven that they do not offer a considerable 

amount of additional information and in fact most researchers document that higher 

order GARCH models are often found to be unstable and unreliable. 

7. Conclusion 
 

This thesis covers four main areas. First the basic structure of the ARMA modelling 

framework was investigated with correlation functions and information   criteria’s. 

Secondly, we looked at the properties of the GARCH model and its extensions with 

respect to error distributions. Thirdly, we looked at higher order models beyond (1,1), 

and finally the results of the MSE and P-value of the out-of-sample forecasting for all 

models, time horizons and distributions were analysed. 

We found that the error distribution does play a part in the accuracy of the model over 

a 1 month forecasting horizon where the non-normal distributions gave the best 

results. Over the longer term forecasting horizons the error distribution plays a lesser 

part in the accuracy, as can be seen for the 3 month forecasting for HSI where the 

normally distributed models give the best evaluation results. For longer forecasting 
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time horizons it is not necessarily the model with the best in-sample fit that provides 

the best out-of-sample forecast.  

The out-of-sample forecasting performance results of the FTSE 100 and S&P 500 

over 1, 3 and 6 month forecasting periods select the same preferred model (GJR-

GARCH). There is not a single volatility model that is preferred based on the 9 month 

forecasting horizon. With a 12 month forecasting horizon the FTSE 100 and HSI 

select the EGARCH model as the most accurate whereas the naïve model was 

selected for the S&P 500. The HSI is the only index for which the same model is 

selected (EGARCH) as the best performer, regardless of the forecasting horizon. The 

MSE and P value offered the same results and the inclusion of both was only 

necessary for direct comparisons with previous literature. 

When we tested the higher order models over the most accurately forecasted time 

horizons, we found the results of most models only improved marginally. The 

additional time and work involved with the analysis of higher order models for such 

little improvement was far from optimal. We also find that models with a larger 

number of parameters required a lower order but still resulted in relevant and 

competitive forecasting accuracy statistics. 
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