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Abstract

This Master thesis report presents the full design and practical implementation of a remote two
degree of freedom PID control for a hydraulic actuator. The hydraulic cylinder is modelled as
a linear system with a gain uncertainty that takes into account the change of the parameter
used for the linearization and the variable time delay that a�ects the round time trip (RTT).
The RTT is studied and modelled with a γ-distribution. The 2DOF PID controller is designed
to verify the Robust Stability Condition, maximizing the integral action, thus the ki parameter.
Then, the optimization of load disturbance rejection with constraints on robustness to model
uncertainties. The remote controller is implemented with a laptop that communicates with a
TCP-IP protocol through an Ethernet or WIFI connection. The design is tested in the hydraulic
system at UiA. Both the simulation and experimental results show the expected behaviour of
the control system.
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Chapter 1

Introduction

Nowadays, di�erent actuators are in use in mechatronic applications. Although electric motors,
linear drives, or pneumatic actuators are well suitable for fast system response, hydraulic ac-
tuators are still the �rst choice if compact form factor combined with high power density and
reliability are demanded [28]. Furthermore, they have the ability to hold large forces constantly
without overheating, as most other actuators would [26]. Nevertheless, hydraulic actuators con-
tain several non-linearities, for instance, in the ori�ce equations, the mechanical friction, the
�ow leakage, the dead-zone and saturation of the control valve and others, which may require
some in-depth investigation to come up with a proper modelling solution. Despite that solutions,
either hydraulic actuators can not be modelled or the model becomes too complicated.
Moreover, there are uncertain model properties due to the huge variations of the parameters.
For example, the oil density, the tightness of the gaskets, the mechanical deformations of the
components, the usage, the load pressure and the discharge pressure can strongly vary due to
many factors including the environmental temperature. Therefore, all these characteristics make
the hydraulic systems not only more challenging to model but also to control. This is why we
want to focus on the hydraulic system, in particular on a hydraulic cylinder controlled through
a directional control valve.
Very often, operators manually control hydraulic systems to make several tasks. The result is a
highly repetitive and tedious process. Fortunately, at least semi-automatic control has already
entered these �elds of application. In such cases, it is still the standard technique to use PID
(proportional integral derivative) controllers for most of the closed-loop controls [26]. Despite the
development of a vast array of advanced control strategies in the last years, the PID controller
remains by far the most widely used within the industry [18]. Its popularity stems from its
applicability and robust performance in a wide variety of operating scenarios. Furthermore,
during the years several tuning methods were established that make the controller tuning fast
and simple.
During the last few years, we see that modern automatic control systems are increasingly run-
ning via remote and wireless communication, while the process actuators, devices and whole
machines are often decentralized. In some cases, the machine is not directly accessible for wired
instrumentation and cabled signal processing by the control hubs and operators. Then, a wireless
connection o�ers great bene�ts for remotely operating diverse industrial equipment due to the
associated �exibility in instrumentation. Hence, using a large-long bus system or by the use of
the internet (with TCP/IP or UDP as protocols), the data communication process is a�ected
by a big variable transmission delay, for example see [30]. We want to highlight that with this
approach the time delay is in the control loop, then, it strongly a�ects the controller design and
consequently the reachable performances.
Hence, in this thesis, we want to design and implement a remote control for a hydraulic system
with wireless communication. Moreover, seeing all the uncertainties in the system and the
variable time delay, we want to study the robustness of the closed-loop system. The historical
importance of a robust stability design approach is well-explained in [34].
In the literature several methods exist for a robust control design able to catch the optimal
solution based on the performance criteria, for example, in [16], and [42]. Quantitative Feedback
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CHAPTER 1. INTRODUCTION

Theory, Linear Quadratic Control and H∞-control are some other methods commonly used in
the literature to design for robust performance, see [10] and [44]. Unfortunately, the latter gives
a controller with a high order of complexity. Instead, we choose to use a PID controller because,
as we said, it is the most widely used in the industry [18] and it is quite reasonable to predict
that PID control will continue to be used in the future [3]. Furthermore, PID controllers are the
common solution in robotics, see [19], where the non-linearity makes the process design problem
in a certain way similar to the hydraulic systems, and the robustness of the design plays an
important role, see [13].
In the years, several techniques were invented for the robust PID controller design. Unfortunately,
many of these can be applied to a restricted range of processes. For instance, in [37] and [36] the
analysis is focused only on �rst-order processes with time delay. Even though it is possible to
design a robust PID controller for time-delay systems based on the parameter space approach,
see [15], we decide to use a design method provided by the works of Åström, see [43], [4], [24], [25]
and [2]. The advantage of the proposed method is that the control system robustness is explicitly
taken into account by means of the in�nite norm of the sensitivity function. The procedure �nds
the optimal PID controller for the de�ned robustness level maximizing the integral coe�cient ki.
Indeed, the maximization of the integral action means reducing the e�ect of a load disturbance
on the system output. Furthermore, Åström in [4] also demonstrates that we reach the minimum
integral error (IE) for the desired setpoint response if we take the highest ki possible.
We will see that the presence of a large time delay in the control loop is the main limitation
in the control design. Thus, we can not use an adaptive control strategy like in [18] because it
may a�ect the stability of the system. Furthermore, because of its randomness variation, the
implementation of a PI controller with the Smith Predictor would cause a loss of performance
compared to a well designed PID controller, see [12].
Therefore, we can summarize the aims of this work in the following points:

1. to implement a remote controller that communicates through a WIFI connection to the
system;

2. to evaluate and study the time delay in the control loop;

3. to �nd a linear model of the hydraulic system and analyze the parameter uncertainties;

4. to �nd a representation of the process with a perturbed model to study the robust stability;

5. to design optimally a two degree of freedom PID controller.

We see that it is not worthy to discover the best way to implement wireless communication. For
that reason, we choose the TCP-IP communication protocol that guarantees a point to point
connection and the correct data sequencing. If one is interested in improving the performance,
it could be interesting to look at the UDP protocol. Indeed, the advantage is the fast streaming
of the data, but the drawback is the loss of the sequencing. From a control point of view, the
latter is a problem that has to be solved. For example, a time label could be assigned to the
sample data so that it is possible with a routine to reorder them when received.
The thesis structure is mainly composed of six chapters, from the second to the eighth. We point
out that we will go into details on applying the aforementioned control design to the experimental
setup we use for the experiments only from chapter seven.
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Chapter 2

Control oriented system modelling

This chapter shows how to obtain a model of the hydraulic actuator and how to linearise it. For
the system analysis is very important to describe the hydraulic system with a set of equations.
First of all, we need a model that is as close as possible to the real system. The so-called
full order model achieves this purpose. Secondly, it is necessary to evaluate a linear model of
the system for the application of the classical technique of the control system theory. In this
chapter, the basic principles of the hydraulic actuators are marginally showed, because they are
not the focus of the discussion. The chapter is composed of three parts, one for each model. The
exposition follows the scheme to �rst present the theory in general, and then apply the result to
the physical hydraulic system of University of Agder. Hence, we present a real practical example
in the discussion.

2.1 Full order model

This section and the next one mainly follow the description of the hydraulic cylinder contained in
the work of Ruderman, see [32], which describes theoretically the hydraulic cylinder. The scheme
of a hydraulic cylinder controlled by a directional control valve (DCV) is shown in Figure 2.1.

Figure 2.1: Principal structure of hydraulic cylinder controlled by directional control valve [32].

The hydraulic cylinder, the valve, the tank, the supply pump and the pipes that close the
hydraulic circuit are easy to individuate in the Figure 2.1. The cylinder is made up of the piston
and the left and right chambers. Note that we will refer to the left chamber with the letter
A and to the right chamber with the letter B. The spool and the coil are important parts of
the directional control valve. The �rst can move back and forward so that if it moves back it
connects the B chamber with the supply pump and the A chamber with the tank, and if it
moves forward the other way around. The coil is used to control the spool position: if it is

3
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energized it attracts the spool forward, if not there is a spring (or another coil) that brings the
spool back. Therefore, the control input u that actuates the valve strictly depends on the way in
which the solenoid is low-level controlled. Basically, u can be the coil voltage applied through an
ampli�er to energize the electro-magnetic circuits of the solenoid. However, the more advanced
and common case, which we also assume in the following, is that there is a direct proportionality
between the control input u and the relative spool position. In this case, embedded electronics
control the proportionality in the link between applied voltage and spool position through an
internal coil current loop and external spool position loop. Note that a positive voltage u applied
to the coil causes a positive displacement of the spool, denoted with ν, because of the convention
adopted. Thus, in this case, chamber A is pressurized by the supply pump and chamber B is
de-pressurized because connected to the tank. Hence, if the piston is free to move, it moves also
in a positive direction x. For further details about the hydraulic components see [23]
Now we are going to analyze each part of the system from a control point of view so, from the
control signal u to the position of the piston.
The system under study is equipped with the components listed in table 2.1.

Description Model number

Cylinder D633 R16KD1M0NSM2
Moog servo valve CD25-40 25x200-SS-HC-SSN-NNN
Celesco linear-pot. CLP-250

Table 2.1: Installed components of experimental system [27]

The input voltage signal u determines the spool position through the directional control valve
with a dynamic that can be approximated by a second-order transfer function.

V (s) =
ν(s)

u(s)
=

ω2
0

s2 + 2ξω0s+ ω2
0

(2.1)

The valve dynamic is strongly correlated to the time constant of the mechanical movements
of the spool, since the electro-magnetic dynamic is much faster. Thus, considering that the
mechanical dynamics of the spool movement depends also on the forces that are applied to the
spool, consequently on the pressure of the chambers, it is clear that the dynamics should vary to
the change of the operative point. The latter a�rmation is supported by experimental evidence,
as it is pointed out in [27]. In the previous cited paper three di�erent transfer functions correlated
to three di�erent values of the valve opening are obtained, of 10%, 25%, and 90% respectively,
�tting the frequency response function. Figure 2.2 reports these results.
The parameters of the linearized transfer functions of �gure 2.2 are summarized in table 2.2.

Valve opening [%] ω0[
rad
s ] ξ

10 816.8 0.7

25 628.3 0.7

90 220 0.7

Table 2.2: Servo valve second-order model parameters [27]

To reduce the valve leakage and sensitivity to the small input signals, the directional control valve
is usually equipped with a closed center spool. Therefore, the spool-controlled �ow characteristics
are inherently subjected to dead-zone non-linearity. In fact, it is necessary to build a displacement
in the spool position in both directions across the zero position, so the center. Furthermore,
when the valve is completely open the actuator reaches the saturation point, that is another
non-linearity. We obtain the following function combining these two non-linearities :
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(a) Magnitude of the servo valve with di�erent opening references.
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(b) Phase of the servo valve with di�erent opening references.

Figure 2.2: Measured FRFs versus �t obtained with linear model in Equation: 2.1 [27].

z =


α sign(ν), if |ν| ≥ α+ β,

0, if |ν| < β,

ν − β sign(ν), otherwise,

(2.2)

Where α is the saturation level, and β is the dead-zone size in one direction. For simplicity, we
assume that the parameters are the same in both directions. z is an internal state that represents
the e�ective spool displacement that controls the opening of the valve. From equation 2.2 we
can see that, if the absolute value of the spool position is less than β, then z is equal to 0. This
is a theoretical approximation because the valve has some �uid leakage that causes a very slow
motion of the cylinder, even with the presence of the spool displacement. This is experimentally
found by Pasolli, see [27]. In Pasolli's work, the dead-zone is measured by applying a constant
input signal u and processing the data of position x. Indeed, as will be more evident at the end of
this chapter, when the piston reaches a constant speed, the speed value is almost proportional to
the e�ective input signal z. It is, therefore, possible to experimentally evaluate the relationship
between u and z. In �gure 2.3 is shown the linearization of the data acquired in [27] and used
in this thesis. The linear dead-zone and saturation characteristic of �gure 2.3 is reported in
equation 2.3.

z =



−1, for u ≤ −1.1

u+ 0.1, for − 1.1 < u ≤ −0.10416̄

0.04u, for − 0.10416̄ < u ≤ 0.10416̄

u+ 0.1, for 0.10416̄ < u ≤ 1.1

1, for u > 1.1

(2.3)

The e�ective opening position of spool z determines the volumetric �ow rate. This is also
associated with the pressure of both chambers in the following relations (2.4 and 2.5) that are
known as ori�ce equations:
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Figure 2.3: Valve dead-zone and saturation of the spool position.

QA =


zK

√
PS − PA, for z > 0,

zK
√
PA − PT , for z < 0,

0, otherwise,

(2.4)

QB =


−zK

√
PB − PT , for z > 0,

−zK
√
PS − PB, for z < 0,

0, otherwise,

(2.5)

In the Equations 2.4, and 2.5, PS is the supply pressure, PT is the pressure of the tank, PA, and
PB are the pressures in chamber A, and B respectively. In the ori�ce equations K is the valve
�ow coe�cient, that is de�ned in 2.6:

K = Cdω

√
2

ρ
(2.6)

The coe�cient K is proportional to the width of the ori�ce area ω through the parameter Cd

that is called discharge ori�ce coe�cient. Furthermore, K increases if the oil density ρ decreases.
From the continuity of the �uid pressure, we can �nd the following equations:

ṖA =
E

VA
(QA −AAẋ− CL(PA − PB)) (2.7)

ṖB =
E

VB
(QB +ABẋ− CL(PB − PA)) (2.8)

whereQA, andQB, are the �ow rate of chamber A and B, respectively. E is the bulk modulus, and
it represents the incompressibility of the �uid in the hydraulic circuit. For simplicity, we assume
the E constant, even though is generally pressure-dependent. AA and AB are the side A and side
B e�ective piston areas of the cylinder, respectively. The CL is the internal leakage coe�cient,
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which takes into account the pressure drop. Indeed, the �uid penetrates from the chamber with
the highest pressure to the other chamber, producing the pressure drop. That happens because
the piston is not perfectly isolating the cylinder chambers. Finally, in equations 2.7, 2.8, VA

and VB are the total e�ective volumes of the pipes that connect the chambers in the hydraulic
circuits and the chambers volumes of A and B respectively. Because of this de�nition, we obtain
the total e�ective volumes from the equations below:

VA = V 0
A +AAx (2.9)

VB = V 0
B −ABx (2.10)

In equations 2.9, and 2.10, with V 0
A, and V 0

B it is indicated the total volume in the hydraulic
circuits including pipes, when the rod drive is in the initial zero position: x = 0.
The mechanical dynamic gives the last equation that we include in the model. Thank the second
Newton's law and the de�nition of the pressure, for the all moving mass m of the hydraulic
cylinder, the following relation exists:

mẍ = PAAA − PBAB − f − FL (2.11)

In the above equation, the sum of forces at the right side cause the acceleration ẍ. In partic-
ular, the force, which depends on the di�erence between the pressure in both chambers, is the
controlled parameter. FL indicates all the external forces that oppose the de�ned positive rod
motion. f represents all the friction forces. The Stribeck friction model well describes f :

f(ẋ) = sign(ẋ)(Fc + (Fs − Fc)e
−(

|ẋ|
χ
)δ
) + σẋ (2.12)

Indeed, �rst of all, it considers the constant Coulomb friction Fc separately from the stiction
friction force Fs. Secondly, equation 2.12 considers the velocity-weakening e�ects in the low-
velocity range around zero and the viscous friction that is considered proportional to the speed
with the constant σ. In the Stribeck characteristic curve δ and χ are Stribeck shape factors that
have to satisfy the constraints: χ > 0, δ ̸= 0.
In table 2.3 the model parameters of the system are summarized, and in �gure 2.4 a scheme of
the full order model obtained is shown.

Parameter Value Unit

m 1.7026 Kg

AA 1.310−3 m3

AB 0.7610−3 m3

K 0.25210−6 m2

s
√
Pa

E 10−9 Pa

PT 0 Pa

PS 107 Pa

VA 0.0007 m3

VB 0.0007 m3

FL 0 N

CL 0 1
s

l 0.2 m

Table 2.3: System parameters from [27] and [28]
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Figure 2.4: Scheme of the full order model of the hydraulic cylinder with the DCV.
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2.2 Reduced order model

Now we want to reduce the complexity of the full order model, hence create a reduced order
model. The objective is to �nd a system from which it is easy to compute a linear model. As it
is shown in �gure 2.4 on page 8, the full order model has a structure that is based on a parallel
calculation of PA and PB from QA and QB because of the two pairs of equations: 2.4, 2.5, 2.7,
and 2.8. Therefore, reducing the two branches into one is the �rst aim. To do that, for the ori�ce
equations, 2.4 and 2.5, introducing the load-related pressure is su�cient:

PL = PA − PB (2.13)

For simplicity, from this point, we consider that the tank pressure is equal to zero PT = 0 because
it is signi�cant the relative di�erence with the supply pressure PS and not its absolute value.
We also assume a closed hydraulic circuit, so that |QA| = |QB|. In particular, it is easy to see
that if QL = QA = −QB, because of the just assumed hypothesis, then:

QL = zK

√
1

2
(PS − sign(z)PL) (2.14)

In the same way, also for the continuity equations 2.7 and 2.8 �nding a collapsed representation
for the load-related pressure is possible. This is made using the following de�nitions:

Ā =
AA +AB

2
(2.15)

Vt = V 0
A + V 0

B (2.16)

so we can express the aggregated continuity equation in terms of mean area and total volume:

ṖL =
4E

Vt
(QL − Āẋ− CLPL) (2.17)

In this case, we have also assumed negligible the di�erence in the piston areas of the two surfaces,
hence AA = AB. Otherwise, the latter equation produces an average error of half of the rod
cross-section area. Finally, from the same assumptions, we can express the mechanical dynamic
equation 2.11 using the new de�ned state variable PL with the following:

mẍ = PLĀ− f(ẋ)− FL (2.18)

In summary, considering these following hypothesis:

1. the hydraulic circuit is closed, so there are no losses and |QA| = |QB|;

2. the tank pressure is assumed to be zero PT = 0;

3. the di�erence on the piston areas of the two surfaces is negligible, hence AA = AB;

new state variables QL and PL are calculated to collapse the two parallel branches of the system
into one.
Furthermore, we can neglect the second-order closed-loop behaviour of the directional control
valve. Indeed, usually, the dynamic of the DCV spool is much faster than that of the hydraulic
and mechanical sub-systems. In other words, the time constants of the last two sub-systems are
much greater than the time constant of the DCV dynamic. Simulation results show the goodness
of this last assumption using the parameters of the particular system considered in this thesis.
The overall scheme of the reduced order model is shown in �gure 2.5 on page 10.
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2.3 System linearisation

The two models evaluated in the previous sections, the full order model and the reduced order
model, have non-linearities. This implies that we can not use both for the design of the control
system based on a PID controller. Therefore, it is necessary to linearise the system over an
operative point. We want to highlight that we use the reduced order model for the linearization,
see �gure 2.5 for clearness.
At the beginning of this section, we discuss how the non-linearities are linearised and, then we
explain how we choose the linear viscous coe�cients for the friction models.

2.3.1 Linearised model

In the reduced order model the main non-linear parts are given by the ori�ce equation 2.14 and the
Stribeck friction model 2.12. The �rst is a function of two inputs and one output QL = f(PL, z),
so it is possible to linearise QL at the operative point Q̂L ≃ (P̂L, ẑ) using the chain rule. For the
�rst-order approximation, we get:

Q̂L =
∂QL

∂z

∣∣∣∣
P̂L

z +
∂QL

∂PL

∣∣∣∣
ẑ

PL (2.19)

Hence, using the following de�nitions:

Ĉq :=
∂QL

∂z

∣∣∣∣
P̂L

= K

√
1

2
(PS − sign(z) P̂L) (2.20)

Ĉqp := −∂QL

∂PL

∣∣∣∣
ẑ

=
ẑK sign(ẑ)

4
√

1
2(PS − sign(ẑ)PL)

(2.21)

We obtain the equation 2.19 write in this form:

Q̂L = Ĉqz − ĈqpPL (2.22)

Cq is called �ow-gain coe�cient and Cqp is called �ow-pressure coe�cient.
Regarding the Stribeck friction model, being it not worthy to linearise the curve at an operative
point ˆ̇x, the linear model that we consider is the one below:

fLIN (ẋ) = σLIN ẋ (2.23)

It is important to highlight that in the equation 2.23 σLIN is not the same parameter as σ in
equation 2.12. We explained the choice of these two parameters in section 2.3.2. We neglected
the dead-zone and the saturation of the directional control valve because in section 4.4.3 we will
introduce a Feed-Forward action in the control that compensates the dead-zone nonlinearity.
Now that there are no more non-linearities, it is possible to �nd the overall transfer function
from the input control signal u to the output position x. Using the linear friction model 2.23,
evaluating the transfer function for the all sub-system from QL to the speed ẋ is possible, simply
combining equations 2.18 and 2.17. Indeed, considering FL = 0 and CL = 0, if there are no
internal leakage and external forces, we obtain:

G(s) :=
ẋ(s)

QL(s)
=

1

(ms+ σLIN )Vts+ Ā
=

Ā−1

s2

ω2
c
+ 2ζ s

ωc
+ 1

(2.24)

where we have used the following de�nitions:

ωc = 2Ā

√
E

Vtm
(2.25)

ζ =
σLIN
4Ā

√
Vt

Em
(2.26)
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(a) �rst block reduction

(b) second block reduction

Figure 2.6: Block diagram of the linear model of the process from z to ẋ.

In �gure 2.6a the linearised block diagram obtained combining the equations (2.24), (2.22)
and (2.17) is shown. From that diagram we can compute the transfer function from QL to
PL:

R(s) :=
PL(s)

QL(s)
=

4E(1−G(s)Ā)

sVt
= (sm+ σLIN )G(s)Ā−1 (2.27)

In this way the scheme in �gure 2.6a becomes the block diagram in �gure 2.6b. From this last
scheme evaluating the transfer function from z to the speed ẋ is very simple:

Ĝ(s) :=
ẋ(s)

z(s)
=

ĈqG(s)

1 + ĈqpR(s)
=

ĈqG(s)

1 + Ĉqp(sm+ σLIN )G(s)Ā−1

=
ĈqĀ

s2mVt
4E + s(Ĉqpm+ σLINVt

4E ) + σLIN Ĉqp + Ā2

(2.28)

Hence, directly from the equation (2.28) we obtain the overall process transfer function, from
the e�ective control signal z to the measured position x:

P (s) :=
x(s)

z(s)
=

1

s
Ĝ(s) =

ĈqĀ

σLIN Ĉqp+Ā2

s

[
s2 mVt

4E(σLIN Ĉqp+Ā2)
+ s

Ĉqpm+
σLINVt

4E

σLIN Ĉqp+Ā2
+ 1

] (2.29)
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2.3.2 Viscous friction

During the linearisation of the process, to �nd the overall transfer function P (s) from control
signal to position, it is highlighted that the linear viscous coe�cient σ in the Stribeck friction
model (see (2.12)) di�ers from the linear viscous coe�cient σLIN in the linear friction model,
see (2.23). This is because the objective of the Stribeck curve is to be as realistic as possible.
Instead, the previous aim is not the same as for the linear model because of its simplicity. Thus
this parameter has to be chosen with proper arguments.
Previous made work on the same system, reported on [27], and data of the position vs force were
collected and here shown in �gure 2.7. The author obtained these data by giving a constant
control signal to the valve and measuring both position x and pressure in both chambers PA

and PB. Then, the position is �tted with a line with constant slope using the minimum square
error method, and from the pressure evaluating the e�ective force produced by the cylinder is
possible. The friction force is the same as cylinder force under the zero acceleration condition.
The friction model that we use for �tting data is not exactly the one in equation (2.12) because
computational problems in the simulation are caused by a function that is neither continuous nor
di�erentiable, see [33]. Therefore, we replace the sign(ẋ) operator with the continuous tanh(Kẋ):

f(ẋ) = tanh(2000ẋ)(Fc + (Fs − Fc)e
−(

|ẋ|
χ
)δ
) + σẋ (2.30)

K value determines the shape of the curve: the higher the K value, the better the approximation
of tanh to the sign. We chose K = 2000 after having seen that it is high enough. The result
is not satisfying using the Matlab �tting application. Instead, we use the optimization toolbox
of Matlab, see [8]. In this way, the �tting problem is reduced by minimizing the integral square
error of the data and the model as is shown in the extracted Matlab code reported below.
Adding constraint that avoids solutions with Fs < Fc for physical interpret-ability is necessary.
Furthermore, it is important to chose the proper initial condition and the correct interval range
for the model-free variables: σ, χ, δ, Fc, and Fs.

Listing 2.1: Extracted Matlab code to �t the Stribeck friction model to the experimental data
%% LOAD FRICTION DATA MEASURED:
% 'FR'=force[N]; 'xd'=speed[m/s]
prob = optimproblem('ObjectiveSense','min');
SIGMA = optimvar('SIGMA','LowerBound',800,'UpperBound',1100);
CHI = optimvar('CHI','LowerBound',0.0001,'UpperBound',1);
DELTA = optimvar('DELTA','LowerBound',0.001,'UpperBound',2);
FC = ...

optimvar('FC','LowerBound',min(abs(FR))*0,'UpperBound',min(abs(FR))+50);
FS = ...

optimvar('FS','LowerBound',max(abs(FR))*0,'UpperBound',max(abs(FR))+100);

IAE_cost = optimexpr(length(xd));
syms Fc Fs Chi Delta Sigma real positive
for i=1:length(xd)

IAE_fnc = matlabFunction(abs(FR(i) - tanh(2000*xd(i))*...
(Fc+(Fs-Fc)*exp(-(abs(xd(i)/Chi))^Delta))-Sigma*xd(i))); % ...

@(Chi,Delta,Fc,Fs,Sigma)
IAE_cost(i) = fcn2optimexpr(IAE_fnc, CHI,DELTA,FC,FS,SIGMA);

end
prob.Constraints.Grater = FS>=FC;
prob.Objective = IAE_cost'*IAE_cost;
clear x0
x0.SIGMA = 980;
x0.CHI = 0.014;
x0.DELTA = 0.9;
x0.FC = min(abs(FR));
x0.FS = max(abs(FR));
[x, cost] = solve(prob, x0)
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The code produces this output:

Fitting solution =



χ = 0.0039

δ = 0.5687

Fc = 54.5604

Fs = 278.0013

σ = 849.0919

(2.31)

The �tted result is reported in �gure 2.7 and is summarized in the following equation:

f(ẋ) = tanh(2000ẋ)(54.5604 + (278.0013− 54.5604)e−(
|ẋ|

0.0039
)0.5687) + 849.0919ẋ (2.32)
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Figure 2.7: Measurement data and �tted Stribeck friction model

We treat now the choice of the linear viscous coe�cient for the linear model: σLIN . From
�gure 2.5 we can see that it is not easy to compensate constant friction torque with a feed-
forward action. Indeed, due to the non-linearities of the model and due to the internal feedback
loops of pressure and speed, the linearisation can be easily made only with the simple model
chosen in equation (2.23). Hence, σLIN has to represent the friction torque in the all speed
range, both for positive and negative values. So, it is important to know approximately what
is the operative speed range. To do this we made several experimental tests. The idea is to
give the maximum allowed control signal to the valve to get the highest steady-state speed.
Therefore, the control signal is a square wave that amplitude is the one that reaches the actuator
saturation, and the time width has to be less enough to avoid arriving at the end of the piston
stroke. Practically we compute the inverse of Laplace transform of the process transfer function
P (s) multiplied by the step transfer function of amplitude A and time length t̂. The result is
superimposed equally to the maximum drive position that we can obtain lMAX :

x(t̂) = L −1
s

[
P (s)

A

s

]
(t̂)

!
= lMAX (2.33)

If we neglect from the calculation result of the inverse Laplace transform in equation (2.33)
the oscillatory terms, and introducing into P (s) (see equation (2.29)) the system parameters of
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table 2.3 we obtain the following relation:

x(t̂) ≃ A(−0.00014 + 0.37264t̂)
!
= lMAX =⇒ t̂ ≤ lMAX

A0.37264
(2.34)

In the right side of equation 2.34 we see that the relation between step time and amplitude is
managed by the unit speed of ν = 0.37264[ms ]. For safety we introduce a multiplicative factor of
1.4, so ν ′ = 1.4ν = 0.53[ms ]. It is now possible design the set of experiments, that are shown in
table 2.5.

Experiment [Exp.1] [Exp.2] [Exp.3] [Exp.4] [Exp.5] [Exp.6] [Exp.7] [Exp.8]

A [up to 1] 0.2 0.5 −0.5 0.7 −0.7 1 −1 1

lMAX[m] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

t̂[s] 0.9434 0.3774 −0.5 0.7 −0.7 1 −1 1

Table 2.4: Set of experiments for speed range evaluation

From the experiments, we acquire the position measurements. These are a�ected by a high noise
level. Thus it is necessary to evaluate the speed using a �ltered derivative, for example, with a
second-order �lter:

Fν =
s

(τfs+ 1)2
(2.35)

The cut o� frequency of the �lter has to be grater than the sampling frequency of the control,
that is fs = 2[Khz], so we expect to use a time constant τf ≥ 0.0005[s]. From experimental
evaluation of the data with a set of derivative �lters we see in �gure 2.8 that a proper value for
τf is 10 time grater than 1

fs
, so τf = 0.005[s]. The results of the steady state speed calculations

are shown in table 2.5, and for [Exp.8] in �gure 2.9.

Experiment [Exp.1] [Exp.2] [Exp.3] [Exp.4] [Exp.5] [Exp.6] [Exp.7] [Exp.8]

Max S. S. ẋ[ms ] 0.07 0.27 −0.23 0.26 −0.33 0.27 −0.43 0.26

Table 2.5: Steady state speed of the driven mass in di�erent experiments

From the results on table 2.5 we can notice that generally with the same amplitude of the control
signal in the back direction (so with a negative value of A), we reach higher speed values. That
is due to the asymmetry of the system, in particular of the piston areas in chambers A and B.
Furthermore, we can assume for the speed range |ẋ| ≤ 0.25[ms ] because it is big enough for most
of the experiments, and also during the control if we avoid the actuator saturation, it is di�cult
to reach the maximum physical speed value.
Now that we have the operative speed range, we choose σLIM with four di�erent approaches:

1. σLIM allows the linear model of equation (2.23) to reach the same value of the friction data
at the extreme of the speed interval: ẋ = 0.1342[ms ].

2. σLIM minimizes the integral error between the linear model of equation (2.23) and the �tted
Stribeck friction model of equation 2.32 in the speed interval covered by the experimental
data, so without extrapolation: ẋMAX = 0.1342[ms ].

3. σLIM allows the linear model of equation (2.23) to reach the same value of the �tted
Stribeck friction model of equation 2.32 at the extreme of the speed interval: ẋ = 0.25[ms ].

4. σLIM minimizes the integral error between the linear model of equation (2.23) and the �tted
Stribeck friction model of equation 2.32 in the operative speed interval: ẋMAX = 0.25[ms ].
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(a) The rod end position measured by an experimental test and the position �ltered
by two LPF with a cut o� frequency of 1
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Figure 2.9: Position measurement and speed evaluation of [Exp.8] with τf = 0.005[s]

[case1] [case2] [case4]

σLIN [Ns
m ] 1252.3 1808.3 1327.8

Table 2.6: Evaluation of σLIN using three di�erent method

For the �rst two cases, the results of the linear friction model that comes out are shown in
�gure 2.10 over the experimental data and the �tted Stribeck friction model. For the combination
of the �rst case and the last one, see �gure 2.10. The �rst and the third approaches use the fact
that inside the speed range, the friction force, that is a stabilizer, is always less than the expected
one. Hence, the model for designing the control is the worst case. Unfortunately, we do not have
the experimental data for the operative speed range, and it is dangerous to extrapolate any data
because friction is a strongly non-linear phenomenon. For the latter reason, we exclude the third
strategy. At the same time, these two approaches could be too conservative. Therefore, the idea
behind the second and the fourth points is to compensate for the error of the estimated friction
force in the speed range. In this case, we can not say anything about the conservativeness of this
criterion because we do not know apriori how much time the driven mass will spend at which
speed. Looking at table 2.6 and at �gure 2.10 we can see that the �rst and the fourth cases
have a very close value of σLIN . Therefore, a reasonable choice is to take one of these values for
the linear model of friction because is the trade-o� between the main two approaches described
before. Finally, we use the smallest one between the two to be more conservative.

σLIN = 1252.3

[
Ns

m

]
(2.36)

The evaluation of σLIN with the second and the fourth approach is obtained using again the
optimisation toolbox of Matlab. Here is shown the source code for clarity.

Listing 2.2: Extracted Matlab code to calculate σLIN

%% FIT VISCOUS FRICTION COEFFICIENT FOR LINEAR MODEL:

% case 1: friction(@ max_speed)=friction linear model
sigma_linearModel_1 = FR(end)/xd(end);

% case 2: integral_mean(friction - linear_friction_model)(@speed_range)=0
prob = optimproblem('ObjectiveSense','min');
SIGMA = optimvar('SIGMA','LowerBound',100,'UpperBound',200000);
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Figure 2.10: Comparison between experimental data, �tted Stribeck model and linear friction
model. The latter is computed in three di�erent ways.

syms Sigma real positive
IAE_cost_fnc = matlabFunction(int( sign(x1)*(Sigma*x1-f_model), x1, ...

[-xd_lim xd_lim]));
IAE_cost = fcn2optimexpr( IAE_cost_fnc, SIGMA);
prob.Objective = (IAE_cost)^2;
clear x0
x0.SIGMA = 1000;
[x, cost] = solve(prob, x0);
sigma_linearModel_2 = x.SIGMA;
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Chapter 3

Uncertainty Analysis

In the previous chapter, we evaluate the process transfer function P (s) with the equation (2.29)
thanks to the linearisation of the reduced order model. In particular, we made the linearisation of
the ori�ce equation (2.14) around an operative point that gives speci�c values of the parameters
Ĉq, and Ĉqp. Hence, the process transfer-function P (s) is correct only in a close interval around
this operative point. If the system works in a di�erent state point, then, to be precise, we have
to compute the value of Ĉq, and Ĉqp again to have the correct transfer function. Because this
thesis work aims to design a controller with only one robust PID parameter con�guration, it is
necessary to �x the value of Ĉq, and Ĉqp. Thus, the advantage is working with only one transfer
function, but the price is that we have to consider the uncertainty of these parameters. As
we can see, the analysis of the process uncertainty and the choice of the nominal model plays
an important role in the controller design. The choice of Ĉq, and Ĉqp is not obvious, several
considerations have to be made. Therefore in this chapter, we explore �rst of all the variation
of these parameters of P (s). Then, in the second section, we introduce the control time delay
presence τ in the model of the system. In this case, the analysis of the statistical distribution of
τ has primary importance for the simulation model. Finally, in the third section, we combine all
these three variational parameters to de�ne the nominal model and the entity of his uncertainty.

3.1 Parameter uncertainty of transfer function

As brie�y anticipated, in the process transfer function P (s) the uncertain parameters are Cq,
and Cqp. Notice that we refer to a speci�c value that these parameters assume in a particular
operational point when they are signed with the hat: Ĉq, Ĉqp. Otherwise, without the hat we
consider the parameters as uncertainties. Hence, basically from equations (2.20), and (2.21), we
can express the uncertainties functions respectively with the following equations:

Cq(PL) = K

√
1

2
(PS − sign(z)PL) (3.1)

Cqp(PL, z) =
zK sign(z)

4
√

1
2(PS − sign(z)PL)

(3.2)

We highlight that Cq(PL) is a function of only PL even though in the equation (3.1) appears
the term sign(z), because we consider that the PL is positive when z is positive, and vice versa.
Therefore sign(z)PL is the same as |PL|. This assumption is valid if the sum of the counteracting
forces is less than the force produced by the hydraulic cylinder. In this condition, it is a direct
consequence of equations (2.14), and (2.17), because from the last one ẋ has always the same
sign of PL. It is clear that this assumption works perfectly for a simple step response, but could
be violated if the system has to follow a sawtooth trajectory when the speed change direction.
Another critical case for this hypothesis could be when the system is oscillating, always because
of the fast-changing in speed direction. We directly face this problem simulating the full order
model, and reduced order model, open-loop response to a sin wave of a certain amplitude and
frequency, and closed-loop response with a high amount of oscillations. The solution consists to
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manage the solver type and reduce the maximum step size. Furthermore it can be added some
constraint to the sign of PA, and PB, for the full order model, or PL for the reduced order model.
From equation (3.2) we can notice that the value of Cqp is not fully de�ned in the all the
variational range of the dependent variables −1 ≤ z ≤ 1, −PS ≤ PL ≤ PS . Indeed, for
PL = ±PS , if z ̸= 0, we get an improper value for Cqp:

Cqp(PS , z ̸= 0) = lim
PL→±PS

zK sign(z)

4
√

1
2(PS − sign(z)PL)

= lim
h→0+

zK sign(z)

4
√
h

= +∞ (3.3)

That is a problem because the arithmetical mean of the variation interval of Cqp is also improper.
Furthermore, in the experimental system without external counteracting forces is impossible to
reach the maximum value of PS due to the pressure losses on the pipes and the directional control
valve. Hence, we can limit the maximum value of the load pressure to PL,MAX < PS , and a good
choice is to take PL,MAX = 95% · PS .
After this clari�cation, we can analyse the parameter distributions in the new ranges. In �gure 3.1
is shown the variation of Cq due to PL, while in �gure 3.2 is shown the variation of Cqp due to
both variables z, and PL.
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Figure 3.1: Variation of the transfer function parameter Cq(PL). The maximum of PL is
95%of PS
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Figure 3.2: Variation of the transfer function parameter Cqp(PL, z). The maximum of PL is
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From the pictures 3.1 it is clear that statistically, Cq assume the lowest values with less frequency
than the highest ones. We expect the same for Cqp, because looking at the �gure 3.2 we can
notice that the lowest values are statistically more numerous than the highest ones. Thus, an
algebraical mean of the variational range does not take into account this fact, so it is useful to
evaluate the integral mean for both the parameter functions:

C̄q :=
1

2PL,MAX

∫ PL,MAX

−PL,MAX

Cq(PL) dPL (3.4)

C̄qp :=
1

zMAX − zmin

∫ zMAX

zmin

[
1

2PL,MAX

∫ PL,MAX

−PL,MAX

Cqp(PL) dPL

]
dz (3.5)

Therefore, evaluating the equations (3.4), and (3.5) in the discussed parameter ranges we obtain

C̄q =
1

2 · 0.95PS

∫ 0.95PS

−0.95PS

Cq(PL) dPL = 3.9101 · 10−4

[
m2

s

]
(3.6)

C̄qp =
1

2

∫ 1

−1

[
1

2 · 0.95PS

∫ 0.95PS

−0.95PS

Cqp(PL) dPL

]
dz = 1.7391 · 10−11

[
m4s

Kg

]
(3.7)

To conclude the analysis of Cq, and Cqp, we add the table 3.1 that show the maximum and
minimum values reached.

Parameter Max Min Mean
∫
-mean

Cq

[
m2

s

]
5.6322 · 10−4 1.2600 · 10−4 3.4461 · 10−4 3.9101 · 10−4

Cqp

[
m4s
Kg

]
1.2600 · 10−10 2.0380 · 10−13 6.3102 · 10−11 1.7391 · 10−11

Table 3.1: Principal statistical parameters of the transfer function uncertainties Cq and Cqp
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3.2 e−sτ experimental identi�cation and analysis

In this section, we introduce in the control loop the time delay due to the controller distance
from the system. The objective is to measure the round trip time delay τ , study the entity of
this uncertainty, and obtain a model that we can use in the simulations. As we have already
explained, this thesis project aims to control the hydraulic cylinder system and the directional
control valve with a controller wirelessly connected to the system interface. In particular, we
obtain wireless communication using a wi� bridge that uses a TC-IP communication protocol.
This protocol type guarantees that the data packets the client (or server) send go from the latter
and arrive at the server (or client) without losses and in the correct order. Because of these
guarantees, the client (or server) has to ask with another data packet if the server (or client) is
listening when the �rst has to send a data packet to the second. Then, the client sends the data
and after, it has to check if the data is arrived before repeating the process for a new data packet.
This process makes the communication slower than other communication protocols, for example,
UDP-IP communication. Also, in this case, the communication time delay is variable due to the
external disturbances that a�ect the communication channel. We highlight we choose the TCP-
IP communication protocol because this thesis aims to design a robust control system under the
condition of variable time delay, and not to achieve the best performance in the communication.
Hence, with TCP-IP protocol, we avoid all the practical problems caused by a non-point to point
communication. For example, using the UDP-IP communication protocol, if the server has to
send some data to the client when the communication channel is established, it sends the data
continuously so the client could receive the information in the wrong order, or could happen that
some packets are lost. These are undesired problems from a control point of view. Therefore, it
requires the implementation of corrective strategies.
After this clari�cation about the choice of the communication protocol, it is also clear that
the wi� communication introduce a not negligible time delay in the control loop. To better
understand what the time delay is made of, we look at the �gure 3.3. The �gure shows four
grey blocks, the main parts of the control system. From right to left we have the system with
the encoder, the interface of the system, the wi� communication, and the controller. In this case,
the �gure shows the typically closed-loop con�guration and highlights the principal contribution
to the round trip time delay. We can see that the position measure out from the linear encoder
x(t), through the system interface and the wi� bridge, goes to the controller and, it arrives with
a time delay of τ1 because of the communication channel. Then the controller from this signal
and the reference computes the control signal u(t). In this case, the delay due to the calculation
is at least the solver step size τ2. For arriving at the process, the control signal is also delayed
by the communication time delay τ3. To sum up, the round trip time delay τ is given by the
following:

e−sτ = e−sτ1 · e−sτ2 · e−sτ3 = e−s(τ1+τ2+τ3) (3.8)

2DOF
PID

e−sτ1

e−sτ3e−sτ2

remote controller tcp-ip
comm.

system interface

P (s) = x(s)
u(s)

system and
encoder

+
τ

RTT
tt+ τ1

t+ τ1 + τ2 + τ3
xREF(t) u(t) u(t+ τ2 + τ3)

x(t+ τ2 + τ3)

x(t+ τ2 + τ3 + τ1)

−

Figure 3.3: Block diagram of the round trip time delay in the control system

Now the question is: how to measure the time delay of the round trip? If we compare the
measured position x(t) and the control signal u(t), it is almost impossible to �nd out the delay
based on the correlation of the two signals. Indeed, the position is a�ected by the noise of the
encoder. Therefore, we are forced to create another signal that follows the same round trip of
the control loop. In this way, the comparison between the phase shift is very simple. Figure 3.3
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Figure 3.4: Block diagrams of the system con�gurations to test the TCP-IP communication and
to measure the round trip time delay.

shows the additional signal used to measure the time delay of the round trip. We see that is
generated in the system interface t and arrives back to the interface shifted t3 after the control
loop travel. We designed two tests types for the preliminary measure of τ . In the �rst one, see
�gure 3.4 (a), it is sent to the hydraulic cylinder a 0 control signal (practically the power unit is
switched o�), and the acquired position measure (only noise) makes the hall control loop travel.
We made this position travel choice to have approximately the same load in the communication
channel. Furthermore, we choose to test �rst the system with the power unit switched o� for
safety. For the second test type, see �gure 3.4 (b), we make an open-loop control, sending from
the remote controller a pretty low control signal. The aim is to make the piston move for a long
time to be able to collect enough data for making a statistical analysis.
To clarify the experiment label see table 3.2. With the test type signal in the loop without control
we intend the �rst type of test discussed above, the con�guration shown in �gure 3.4 (a). Instead,
with the test type:signal in half-loop without control we mean the second experiment typology
discussed above and shown in �gure 3.4 (b). Always from table 3.2, we see that for each test
type, we design several experiments varying the physical distance in the wireless communication
or simply repeating the same test more than one time. Furthermore, in the case of the signal in
half-loop without control test, also the amplitude of the control signal is changed.
We want to focus on the analysis and interpretation of the results of the designed tests. Ta-
ble 3.3 shows the main statistical parameters obtained or computed. First of all, we see that
the minimum time delay possible is τmin = 0.01[s] that is the communication sample rate:
τCOMM = 0.01[s]. This happens because, when the sampling rate in the communication is
greater than the sampling rate in the control system, so if τCOMM > τS , then the transmission
of the signal requires a sampling process made by a holder. In this way, for the �rst trip, the
holder adds a delay in the signal of half the sampling rate, and the same happens for the way
back. Hence:

e−sτmin = e−sτ1,min · e−sτ2,min · e−sτ3,min = e−s 1
2
τCOMM · e−s 1

2
τCOMM · e−s·0 = e−sτCOMM (3.9)

In the relation above, we see that τ3,min = 0. That means that the delay for the computational
process in the controller is much little than 1

2τCOMM. Thus, the computational time resides inside
the step time of the older, resulting in no impact on the communication delay. Furthermore,
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Table 3.2: List of the experiments made to evaluate the round trip time delay τ

NAME TEST TYPE WIFI DISTANCE CONTROL SIGNAL

Test1 signal in the loop without control 0.2[m] 0

Test2 signal in the loop without control 0.2[m] 0

Test3 signal in the loop without control 10[m] 0

Test4 signal in the loop without control 10[m] 0

Test5 signal in half loop without control 0.2[m] 0.1

Test6 signal in half loop without control 0.2[m] -0.1

Test7 signal in half loop without control 0.2[m] -0.1

Test8 signal in half loop without control 10[m] 0.1

Test9 signal in half loop without control 10[m] -0.1

Test10 signal in half loop without control 10[m] 0.12

from the table (3.3), we see that the variance is around one order of magnitude higher in the
case of signal in the loop without control than in the one of the type: signal in half-loop without
control. The di�erence between these two cases is the load of the communication channel: higher
in the �rst case than in the second. Therefore, this fact re�ects that a busier channel increases
the probability that starvation or queue could happen. In the signal in the loop without control
case we also see that the mean of the communication time delay increase with the distance of
the wireless communication. We know that the time for the propagation of the electromagnetic
waves is negligible. Hence, one reason that can explain why there is an increment of the delay
correlated to the distance is the following: the data packets have to be sent again if in the
communication we lose more information.

Table 3.3: Experimental results to evaluate the round trip time delay

TEST NAME MAX [s] MIN [s] MEAN [s] MODE [s] VAR [s]

Test1 0.3 0.01 0.024 0.01 0.0015

Test2 0.32 0.01 0.022 0.01 0.0011

Test3 0.34 0.01 0.044 0.03 0.002

Test4 0.57 0.01 0.041 0.03 0.0016

Test5 0.23 0.01 0.039 0.03 0.000235

Test6 0.1 0.01 0.039 0.03 0.000203

Test7 0.14 0.02 0.04 0.03 0.000187

Test8 0.31 0.01 0.036 0.03 0.000479

Test9 0.2 0.01 0.029 0.03 0.000442

Test10 0.25 0.01 0.04 0.03 0.000706

We want now to analyse the statistical distribution of τ . Indeed, it is necessary to �nd a model
that can describe from a general point of view the data collected. In the �gures 3.6a, 3.6b, 3.6c,
and 3.6d, are shown the distribution histograms of the data collected respectively from Tset1,
Test6, Test3, and Test10.
We can see that the distributions change signi�cantly from experiment to experiment. Hence,
the choice of the appropriate distribution model to use for �tting the data is not immediate and
easy. For instance, if we look at �gure 3.5 we see that several probability models �t quite well the
data collected in the experiment Test8. In particular, we have �tted the data with the Weibull
distribution, Log-normal distribution, Exponential distribution, and γ distribution. Therefore,
we have to take a step back for understanding the reasons behind the time delay that we have
measured.
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The choice of the probability model that best �ts and represents the distribution of the round
trip time (RTT) over internet communication is an open problem in the literature. As it is
expose in [31], the Round Trip Time (RTT) depends on several factors. Some of them are
not related to network performance but are determined by physical constraints. First, in wi�
communication digital information travels in the air as an electromagnetic wave with the speed
of light. Second, there is a minimum processing delay introduced by each router along the way,
of the order of 50 − 250µs per-hop on average, summing up to a few milliseconds for a typical
path, [31]. Third, on top of this, the presence of cross tra�c along the route can cause data
packets to be queued in the routers. When the tra�c reaches congestion level, the queueing
time becomes a very signi�cant part of the RTT and packet loss also sets in. Therefore, in other
words, network delay is mainly composed of propagation, serialization, switching/routing and
queuing delay [17]. Serialization delay is the time it takes to serialize the digital data onto the
physical links of the interconnecting equipment. That is how long it takes to put the bits on
the wire. Propagation delay is the time it takes the signal to travel the physical distance from
end to end. The propagation delay is determined by the travel time of an electromagnetic wave
through the physical channel of the communication path and is independent of actual tra�c on
the link. Switching/routing delay is the time the router takes to switch the packet. This time is
needed to analyse the packet header, check the routing table, and route the packet to the output
port. This delay depends on the architecture of the route engine and the size of the routing
table. Queuing delay, which is a large source of latency, is the amount of time that a packet
remains bu�ered in a network element while it waits for transmission. Network tra�c loads
result in variable queuing delays. For an unloaded network, this delay is negligible. For a heavily
congested network, it is usually the main delay component [17]. The observed result is a huge
statistical �uctuation of the RTT [31]. Several authors attempted to �nd a statistical model for
describing the RTT variability. The most common utilised models are: γ-distribution, Weibull
distribution, Log-normal distribution, Exponential distribution. For instance, in [17], they found
that the model that best �t the end-to-end delay, which comes directly from the measure of
the RTT, is in most cases described by a γ-distribution. Nevertheless, these measures for some
speci�c paths are better �tted with a Weibull distribution, and a Log-normal distribution. In [9]
the main �nding of the research is that the RTT can be well approximated by a truncated normal
distribution. In this case, the study is made speci�cally for TCP/IP Networks, but the result
di�ers from the literature trend, in fact, in [39] we can read that the Exponential distribution
describes the data on network delay better, than truncated normal distribution. Also in [41]
the Exponential distribution seems to be the one that describes the RTT and equivalently the
end-to-end delay. Nevertheless, also from the previously cited book: "Evolution and Structure
of the Internet" [31], it is clear that exist a long tail in the statistical distribution of the RTT.
Possible reasons for the large tail include a First-Come-First-Served (FCFS) scheduling and a
systematic batching of tra�c [22]. Because of that, practically γ-distribution could �t well a
curve with this shape. We found many works that supports γ-distribution model for �tting the
RTT over internet communication, see [20], [1], [22], [6], [21], and [30]. For instance, in [20] the
authors say that although the Gamma �t worked well for the low-frequency delay component,
this observation cannot be easily generalized. distributions. In [1] was found that the best �ts
for almost 90% of the empirical distributions are two standard distributions:γ-distribution and
Logistic distribution. Also in [6] it is found that classi�cation of numerous histograms of the
end-to-end delay of a �xed path demonstrates that about 84% are typical histograms possessing
a γ-like shape with a sub-exponential (or heavy) tail. In [30] it is discussed the design approach
of a mechatronic system over a communication network, and they adopted for the end-to-end
delay model a γ-distribution. The same is done in [21], where the authors pointed out that
γ-distributed delays with a gap can also be encountered in the problem of controlling objects
over communication networks. After these considerations, we guess that also in our case γ-
distribution could be the appropriate model for �tting the data acquired. If we look again at
�gure 3.5 we see that γ-distribution actually �ts well the histogram. In the �gures 3.6a, 3.6c is
reported the gamma-�t of the data obtained respectively in experiments Test1, and Test6. While,
in �gures 3.6b, and 3.6d, is reported the gamma-�t for the experiments Test3, and Test10.
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To sum up the results of the �tting in �gure 3.7 are shown all the γ-distribution obtained before
together. We see that in the case of the �rst test type signal in the loop without control, so
in the case of Test1, and Test6, we have a greater mean value than with the other test type
signal in half-loop without control with the same distance condition. Instead, generally, we can
see that at the same distance we have almost the same shape. For instance, Test6, and Test10
have a similar shape but the �rst one has a greater mean value. Research work from Amarnath
Mukherjee, see [22] can clarify these observations. Indeed, for all the network paths he has
studied, he says that the distribution of delay is approximately a shifted Gamma with a large
tail even for networks with low congestion levels. Furthermore, he says that the shape and scale
parameters of the empirical γ-distribution vary with load and network segment. So as expected,
because from signal in half-loop without control to signal in the loop without control test type
we think that the communication load increase, due to the di�erence in the signal that the
remote controller sends to the system interface, the mean value of the γ-distribution increase.
Regarding the di�erence in the shape that appears changing the distance, we suppose that with
a greater distance, the probability that other wi� signals disturb the communication increase
signi�cantly. Hence, the Central limit theorem suggests that the distribution shape should be
more like a shifted Gaussian. The remains data collected with the experiments: Test2, Test4,
Test5, Test7, and Test9 are reported in the appendix B. In these last �gures, the models used to
�t the distributions highlight that the γ-distribution best �ts all the cases and, therefore, that
supports the considerations made before.
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computed in the ten tests

Table 3.4: γ-distributions �t parameters

TEST NAME a b

Test1 1.23797 0.019232

Test2 1.43424 0.015358

Test3 1.65788 0.026531

Test4 1.87734 0.022056

Test5 6.87971 0.005693

Test6 6.54022 0.005891

Test7 9.10988 0.004438

Test8 3.27649 0.010844

Test9 2.34026 0.012349

Test10 2.91554 0.013567
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3.3 Gain uncertainty and nominal model

In section 2.3 we have seen that, after the linearization of the reduced order model, the process
can be expressed with the transfer function of equation (2.29). Furthermore, in the previous sec-
tion 3.2 the time delay τ of the Round Trip Time is introduced in the analysis of the uncertainty.
Hence, the overall process seen by the controller is given by the following equation:

Pτ (s) :=
x(s)

u(s)
= e−sτP (s) =

e−sτ ĈqĀ

σLIN Ĉqp+Ā2

s

[
s2 mVt

4E(σLIN Ĉqp+Ā2)
+ s

Ĉqpm+
σLINVt

4E

σLIN Ĉqp+Ā2
+ 1

] (3.10)

Possible choices for the nominal model could be the followings:

1. Ĉq, Ĉqp are the arithmetical mean values, so they are the middle of the respectively interval
variation. τnom = 0 The time delay is not considered.

2. Ĉq, Ĉqp are the arithmetical mean values, so they are the middle of the respectively interval
variation. τnom = τMAX−τmin

2 , hence, also the time delay is the arithmetical mean.

3. Ĉq, Ĉqp are the arithmetical mean values, so they are the middle of the respectively interval
variation. τnom = τ̄γ , thus, the time delay is the statistical mean obtained from the γ-
distribution of the acquired data.

4. Ĉq, Ĉqp are the integral mean values, so Cq,nom = C̄q, Cqp,nom = C̄qp. τnom = τ̄γ , thus,
also the time delay is the statistical mean obtained from the γ-distribution of the acquired
data.

The reasons of those possible choices are reported below respectively in the same order:

1. The arithmetical mean of Cq, and Cqp allow minimizing the variational range of these
parameters. With τnom = 0 we are simplifying signi�cantly the process transfer function,
so the design process of the controller will be easier, see next chapter.

2. The reason of point 1, plus the fact that also for τnom = τMAX−τmin
2 we are minimizing the

variational range of the time delay uncertainty.

3. The reason of point 1, but considering τnom = τ̄γ the nominal model has statistically the
least error for the time delay, that, as we will see in section 5.3, is the most problematic
parameter.

4. If all the parameters has the statistical mean value, so if Cq,nom = C̄q, Cqp,nom = C̄qp, and
τnom = τ̄γ , then the nominal model will represent more faithfully the real system.

Choosing the �rst option, we will indirectly consider a system that is very close to the base case
scenario in terms of stability. This is due to the zero time delay in fact, as it is known and as we
will see in section 5.3, it is a crucial factor. Designing the controller with the nominal values of
the parameters that are the arithmetical mean we will minimize the uncertainty size, so, seeing
section 5.3 it will be easier to respect the robust stability conditions. On the other hand, the
system is more often operating in a di�erent condition than the nominal one. Furthermore,
using a higher time delay as the nominal value the controller design will be more conservative.
The result is a control system with less performance. All these observations lead us to choose
the fourth option. Indeed, using the statistical mean values in the nominal model guarantee to
achieve both the best representation of the real system and good performance statistically more
often. Hence we have:

Cq,nom = C̄q = 3.9110 · 10−4
[m2

s

]
(3.11)

Cqp,nom = C̄qp = 1.7391 · 10−11
[m4s

Kg

]
(3.12)
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τnom = τ̄γ = 0.03[s] (3.13)

So the equation (3.10) becomes:

Pnom(s) =
e−sτnom Cq,nomĀ

σLINCqp,nom+Ā2

s

[
s2 mVt

4E(σLINCqp,nom+Ā2)
+ s

Cqp,nomm+
σLINVt

4E

σLINCqp,nom+Ā2 + 1

] = e−0.03s 8.255 · 105

s
[
s2 + 948s+ 2.219 · 106

]
(3.14)

Now that the nominal model is de�ned, we want analyse the variations of the system parameters
in term of gain k, angular natural frequency ωn, and damping factor ξ. Thus, from equation (3.10)
we see the following relations:

k(Ĉq, Ĉqp) =
ĈqĀ

σLIN Ĉqp + Ā2
(3.15)

ωn(Ĉqp) =

√
4E(σLIN Ĉqp + Ā2)

mVt
(3.16)

ξ(Ĉqp) =
Ĉqpm+ σLINVt

4E

σLIN Ĉqp + Ā2
· ωn

2
=

(
Ĉqpm+

σLINVt

4E

)√
E

mVt(σLIN Ĉqp + Ā2)
(3.17)

Table 3.5: Values of k(Cq, Cqp) gain of the process transfer function related to di�erent values of
Cqp and Cq.

(Ĉqp, Ĉq) k(Ĉqp, Ĉq)

C̄qp, C̄q 0.372

Cqp,MAX,Cq,MAX 0.476

Cqp,MAX,Cq,min 0.1065

Cqp,min,Cq,MAX 0.5467

Cqp,min,Cq,min 0.1223

From equation (3.15) we see that k is a function of Cqp, and Cq. Hence, the extreme values of
the variational range of k could happens for any pairs of the possible combination of Cqp,MAX,
Cq,MAX, Cqp,min, Cq,min. Therefore, we can evaluate the values of all combinations to be sure to
catch the maximum variation possible from the nominal value, that is the integral mean value.
The results are shown in table 3.5. Thus, now it is possible to evaluate the maximum relative
error that occurs if we consider the nominal value: Ĉqp = C̄qp = Cqp,nom. The following equation
gives the calculation:

MAX
[
relative error

[
k(Cqp, Cq)

]]
=

k(Cqp,MAX, Cq,min)

k(C̄qp, C̄q)
= 0.7137 = 71.37% (3.18)

Furthermore, from the equations (3.16), (3.17), we see that ωn, and ξ are functions of Cqp. Thus,
we can easily compute the range of variation, simply substituting the minimum and maximum
value of Cqp reported in table 3.1. The results are shown in table 3.6. In the same table is
also pointed out the maximum relative error computed in the same way as equation (3.18) for
Cqp,MAX.
Comparing the result of equation (3.18), and last right column of table 3.6, we see that k has the
highest variation from the nominal value. Indeed, k relative error is almost three times bigger
than ξ relative error and almost twelve times bigger than ωn relative error. This observation is
really important because we are allowed to consider only the gain uncertainty k−knom as the �rst
approximation. Hence, in this way, we can drastically simplify the uncertainty model and the
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Table 3.6: Variation of ξ and ωn process transfer function parameters related to Cqp di�erent
values.

Ĉqp = C̄qp Cqp,MAX Cqp,MIN MAX(relative error)

ξ(Ĉqp) 0.3182 0.3981 0.3048 0.2511

ωn(Ĉqp) 1.49 · 103
[
rad
s

]
1.58 · 103

[
rad
s

]
1.47 · 103

[
rad
s

]
0.061

robust analysis, as we will see in chapter 5. We can use Matlab Robust Control Toolbox software,
see [5], to model the equation (3.10) with all the system uncertainty. The aim is to obtain a
bode plot of the uncertain system with a random variation of the uncertainties. Because it is not
possible to represent the pure delay uncertainty e−sτ in such a model, we have to approximate
this with the so-called Padè approximation, see [14]. We choose a tenth Padè order to guarantee
that the approximation is good, at least for a complete phase shift of 2π = 360 for all possible
τ . Therefore, in �gure 3.8 is shown the Bode plot of the uncertainty system obtained as just
explained, and in red, the nominal model pointed out in equation (3.14).
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Figure 3.8: Bode plot of the uncertainty model and in red the nominal model of the process
transfer function.

From �gure 3.8 it is clear that the natural angular frequency ωn variation, and the damping
coe�cient ξ variation, are not impacting signi�cantly the uncertainty model. Furthermore, ξ
applies changes around ωn, that is much higher than the critical frequency of this system, see
chapter 4. This observation con�rms the discussion based on the results of tables 3.5, 3.6, and
equation (3.18).
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Chapter 4

Optimization procedure for PID control

design

The previous chapters �nally pointed out the nominal model of the process transfer function
see equation (3.14). Therefore, this is the model that we use for the controller design. We
have already anticipated in the introduction 1 that designing the controller for only the nominal
system has to be robust enough to guarantee at least the stability for all the possible variations
of the parameters. Hence, the closed-loop control system has to be Robust stable, see chapter 5
for further information. At the same time, we want to achieve the best performance possible.
In other words, we want to design a controller that has a high level of robustness and maximize
performance. Furthermore, we want to keep the control structure simple, so we choose to use a
PID controller with two degrees of freedom (2DOF).
To solve this problem, �rst of all, we de�ne a way to measure the robustness of the controller.
Secondly, we implement an optimization algorithm that catches the solution that gives the best
performance. The study follows the work of Åström and authors in [44], [43], [4], [24], [25],
and [2].
Thus, in this chapter, we will see as �rst the mathematical formulation of the optimization
problem considering the stability constraint. Secondly, the algorithms proposed in the literature
are presented showing the reasons for the �nal algorithm used in this work. Thirdly, we will
analyze the results using the classical method of root locus diagram. Finally, we will discuss and
design the full-control structure.

4.1 Optimisation problem

C(s) = kp + s · kd + ki
1
s

Pnom(s)+−
xref(s) u(s) x(s)

Figure 4.1: Simpli�ed block diagram of the control system structure

To be clear, we want to remark some well-known de�nitions in control theory before mathemat-
ically formulating the optimization problem. We use the basic structure of the control system
shown in �gure 4.1, which represents the typical feedback structure. We use the transfer function
C(s) for referring to the ideal PID controller:

C(s) = kp +
ki
s
+ skd (4.1)

Furthermore, we use the notation L(s) for the Open Loop Transfer Function, S(s) sor the Sensi-
tivity Function, and T (s) for the Complementary Sensitivity Function. These transfer functions
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are de�ned as follows:
L(s) = C(s) · Pnom(s) (4.2)

S(s) =
1

1 + L(s)
=

1

1 + CPnom(s)
(4.3)

T (s) =
CPnom(s)

1 + CPnom(s)
= 1− S(s) (4.4)

Another important de�nition is the In�nite Norm of the Sensitivity Function Ms, that is the
maximum absolute value of S(iω) over all possible ω:

Ms := max
ω

|S(iω)| = max
ω

∣∣∣∣ 1

1 + PnomC(iω)

∣∣∣∣ (4.5)

Ms is strongly important because 1/Ms is the distance of the open loop function L(s) has
form (−1, i0) in the Nyquist plot. Indeed, the Nyquist Stability Criterion pointed out that, under
appropriate hypothesis (see [44]), the unstable poles pT of the close control loop transfer function
T (s) are equal to the unstable poles PL of the open loop transfer function minus the numbers N
of the anticlockwise lap around the point (−1, i0) in the complex plane.

pT = pL −N (4.6)

Hence, to achieve the stability condition pT = 0, N has to be strictly 0, because in our case
pL = 0. For that reason, the distance measure of L(s) from (−1, i0) is also a robustness mea-
surement of the control system to process variations. In control theory, there is the Gain margin,
and the Phase margin that are usually used as speci�cations in the control design problem to
guarantee a certain amount of robustness, like in the Bode Design Method, see [44], and [44]. We
want to highlight these last two parameters are partially a way to measure the distance of L(s)
because they refer to the distance in the real axis and the angular distance when |L(iω)| = 1
respectively. Thus, for such a particular small variation of the process parameters, could happen
L(iω) encircles (−1, i0), even though the Gain Margin and, or the Phase Margin are high. For
this reason, we use Ms as the measure of the system robustness, see [16].
Therefore, the formulation of the Robust Constraint is the following:

f(kp, ki, kd, ω) ≥ r2 (4.7)

Where f(kp, ki, kd, ω) is the computed distance of L(iω) from (−1, i0), that is a function of
the PID coe�cients kp, ki, kd, and of course the angular frequency ω. Hence, we can rewrite
f(kp, ki, kd, ω) as

f(kp, ki, kd, ω) =
∣∣L(iω) + 1

∣∣2 = ∣∣∣[kp + i(kdω − ki/ω)
]
Pnom(iω) + 1

∣∣∣2 (4.8)

In the equation (4.7) r is the minimum distance that we want to guarantee in the design, so it is
the radius of the circle around (−1, i0) where L(iω) can not enter. Basically, we chose r = 1/Ms,
so the minimum distance is the maximum value of the Sensitivity Function allowed.
Out from literature, see [43], [4], [25], [2], and explicitly said in [24], we see that typical choices
of Ms are in the range of 1 ≤ Ms ≤ 2. For instance, in [38] they typically select Ms = 2 as
robustness margin. Ms = 1 is for the maximum robust condition, and Ms = 2 is for more
aggressive system (less robustness). Therefore, because we want to achieve the stability for a
great variation of the parameters, in particular for τ that is not yet upper-bounded, we are
looking at the small value of Ms. Furthermore, the condition Ms = 1 is too restrictive for our
control system, so a good choice is

Ms = 1.1 =⇒ r =
1

Ms
= 0.909 (4.9)

To analyze in detail the Robust Constraint condition, we have to make some more notation
de�nitions. In particular, for the process transfer function expressing both with exponential and
algebraic forms:

Pnom = ρ(ω)eφ(ω) = α(ω) + iβ(ω) (4.10)
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Where in the de�nition (4.10) the last substitution is possible because obvious meaning of the
terms: α(ω) = ρ(ω) cos

(
φ(ω)

)
, and β(ω) = ρ(ω) sin

(
φ(ω)

)
.

Using the equation (4.10), and (4.8) we can make some calculations on equation (4.7)

f(kp, ki, kd, ω) =
∣∣L(iω) + 1

∣∣2 = ∣∣∣[kp + i(kdω − ki/ω)
][
α(ω) + iβ(ω)

]
+ 1

∣∣∣2
=

∣∣∣αkp + β(kdω − ki/ω) + i
[
βk + α(kdω − ki/ω)

]
+ 1

∣∣∣2
= (ρkp)

2 + 2αkp +
[
ρ(kdω − ki/ω)

]2 − 2β(kdω − kiω)

= ρ2
(
kp +

α

ρ2

)2

+
ρ2

ω2

(
ki +

ωβ

ρ2
− kdω

2

)2

≥ r2

(4.11)

Hence, �nally the Robust Constraint becomes:(
ρ(ω)

r

)2(
kp +

α(ω)

ρ(ω)2

)2

+

(
ρ(ω)

ωr

)2(
ki +

ωβ(ω)

ρ(ω)2
− ω2kd

)2

≥ 1 (4.12)

From expression (4.12) we can see that the Robust Constraint has a nice interpretation. For
�xed ω and kd it represents the exterior of an ellipse in the kp − ki plane with the following
parameters:

kp,C

ki,C

kp

ki

C

A
B

Figure 4.2: Robust Constraint becomes the ex-
ternal area of an ellipse for a �xed ω, and kd

kp,C = − α(ω)

ρ(ω)2

ki,C = −ωβ(ω)

ρ(ω)2
+ ω2kd

A =
ωr

ρ(ω)

B =
r

ρ(ω)

(4.13)

Where in equation (4.13) the coordinates of the center are C = (kp,C , ki,C). A is the vertical
semiaxis, so it is the vertical distance from the center C to the lower vertex VD, or the upper
vertex VU . B is the horizontal semiaxes and, in the same way, is the distance from the center C
to the right vertex VR, or the left one VL. Figure 4.2 clari�es all the notations we have adopted.
Varying ω and maintaining a �xed value of kd, we can see from the equations (4.13) that all
the parameters change. The result is the shifting of the centre of the ellipse C and the rescaling
of its dimensions, see 4.4. It is worth highlighting the ellipse displacement due to ω variation,
always with a �xed kd, creates an envelope. Thus, the envelope ful�ls these equations:

f(kp, ki, kd, ω) = r2

∂f

∂ω
(kp, ki, kd, ω) = 0

(4.14)

The envelope of all ellipses obtained for a �xed kd could be Smooth, or with Corner. In the �rst
case, see �gure 4.3a, we see that the robust region, that goes from the kp axes to the envelope,
does not have corners. In the second case, see �gure 4.3b, the robust region has a corner. Finally
if we change the value of kd the shape of the envelope changes. In �gure 4.4 it is shown the
di�erent shape of the Robust Region caused by the changing of the envelope for a �xed value of
kd that grows from kd = 0 to kd = 0.1473. It is clear that the Robust Region does not exist for
around kd ≥ 0.1473.
Now, what is the Robust Region that comes out from the Robust Constrain (4.12) is clear. Also,
we have explained how its shape changes due to parameters variation. Then, we can de�ne the
optimal problem. In particular, the primary design goal is to achieve good rejection of load

35



CHAPTER 4. OPTIMIZATION PROCEDURE FOR PID CONTROL DESIGN

0 5 10 15kp

0

5

10

15
k
i

ROBUST REGION for kd = 0

(a) Smooth Envelope.

0 5 10 15kp

0

5

10

15

20

25

30

35

k
i

ROBUST REGION for kd = 0.1473

(b) Envelope with Corner.

Figure 4.3: Robust Constraint with kd = 0 and kd = 0.1473. With red dots are marked the lower
vertex of the ellipses: VD

disturbances where no detailed assumptions are made about the load disturbances except that
they are low frequency. By maximizing the integral gain ki, the e�ect of the load disturbance
on the output x is minimized, see [24]. Indeed, in Åström paper [4] it is shown that maximizing
the integral gain ki is equivalent to minimizing the integral error (IE) for a step-change in the
load disturbance. Hence, we remark the optimal problem de�nition:

De�nition 4.1.1 (Optimal Design Problem). Maximize the integral gain ki of the PID controller
respecting the Robust Constraint de�ned in (4.12) ∀ω|0 ≤ ω ≤ ∞
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Figure 4.4: Robust Region for the process Pnom(iω) at di�erent value of kd parameter of the PID
controller
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4.2 Selection of solutions approach

In this section, we explore how to solve the Optimal Design Problem, at the beginning from a
generic point of view, and then intercalating into the speci�c problem for the process Pnom(s).
This way to expose the solution is useful for understanding the problem of our particular process
and the choice made to arrive at the solution.
Looking again at the �gure 4.3a, or 4.3b, we see that the solution of the problem is the point at
the top of the Robust Region for a �xed kd. In the case of Sooth Envelope, this point corresponds
to the maximum of the function that represents the lower vertex of the ellipse VD in the plane
kp−ki. We can compute the locus of the lower vertical vertex simply using the relations in (4.13):

kp,VD
(ω) = kp,C = − α(ω)

ρ(ω)2
= − 1

ρ(ω)
cos

(
φ(ω)

)
ki,VD

(ω) = kp,C −A = −ωβ(ω)

ρ(ω)2
+ ω2kd −

ωr

ρ(ω)
= − ω

ρ(ω)

[
r + sin

(
φ(ω)

)]
+ ω2kd

(4.15)

To obtain the point in which occurs the maximum ki we can di�erentiate ki,VD
(ω) on the angular

frequency ω:

dki,VD (ω)

dω = d
dω

[
ω
(
r + sin(φ)

)
ρ

]
+ 2ωkd

=
(
r + sin(φ)

)[ωρ̇
ρ2

− 1

ρ

]
− ωφ̇ cos(φ)

ρ
+ 2ωkd = 0

(4.16)

Where it is used this notation: ρ̇ = dρ
dω , and φ̇ = dφ

dω . Hence, the equation (4.16) becomes:

hVD
(ω, kd) =

dki,VD
(ω)

dω

ρ

ω
=

(
r + sin(φ)

)[ ρ̇
ρ
− 1

ω

]
− φ̇ cos(φ) + 2ρkd = 0 (4.17)

Therefore, to �nd the optimal solution in the case of Sooth Envelope we have to �nd the solution
of equation (4.17) ∀ω, kd|0 ≤ ω ≤ ∞, 0 ≤ kd ≤ ∞. Once the parameters ωo, kd,o are found, the
other controller parameters are easily obtained from equation (4.15).
The solution of equation (4.17) is a two dimensional problem, hence, to not face the complexity,
in [43] at page 212 it is suggested an algorithm that solves the problem easily:

Algorithm 4.2.1 (Controller Design for Smooth Envelope).

1. the value of kd is �xed to 0;

2. the solution ωo of equation (4.17) is found with bisection method;

3. compute the PID parameters using equations (4.15) with such kd, and ωo;

4. verify that the Robustness Constraint (4.12) is satis�ed around ωo;

(a) if it is, increase the value of kd and repeat from point 2;

(b) if it is not, take the last value of kd, ki, kp that satisfy the Robust Constraint;

5. to verify that it has been found the global solution of the optimal problem computing the
Nyquist plot of the loop transfer function L(iω). We have to check that L(iω) it is out of
the circle centered in (−1, i0) with radius r.

We highlight that the solution of the bisection method could di�ers for di�erent search range
of ωo: ωlow ≤ ωo ≤ ωhigh. Thus, it is important to choose it properly. In this regard, in [43]
is proposed a strategy that we will see further on. The main problem of this approach is that
it can not be used with a process transfer function that generates an Envelope with Corner for
kd = 0. Moreover, the iterations of algorithm 4.2.1 stop as soon as in the envelope appears a
ridge, because, as we can see in �gure 4.3b, when the envelope has a ridge, the maximum of the
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lower vertex of the ellipse occurs in the forbidden region and not in the point of the solution.
Hence, there is no guarantee that the maximum value of ki is reached for all kd, but only in the
searched range. For this reason, we have to discuss how to �nd the solution in the case of the
Envelope with corner.
Always looking at �gures 4.3a, and 4.3b, we see that while in the case of the Smooth Envelope
the solution is in the edge of one ellipse at the angular frequency ωo, in the case of the Envelope
with Corner the solution of the optimal problem is determined by two ellipses that have this
point in common. Thus, these ellipses are obtained from equation (4.12) at two di�erent angular
frequencies ωo,1, ωo,2. Therefore, in this case, the problem can be reformulated as follows:

f(kp, ki, kd, ω1) = r2

∂f

∂ω
(kp, ki, kd, ω1) = 0

f(kp, ki, kd, ω2) = r2

∂f

∂ω
(kp, ki, kd, ω2) = 0

(4.18)

The equations above are obtained applying the envelope equations (4.14) at two di�erent angular
frequencies ωo,1, ωo,2. These have to be true at the same time. Hence, the solution of the Optimel
Problem in the case of the corner can be found solving these set of equations (4.18). Åström,
respectively in [43], and [4] shows two ways to solve the problem:

1. Solve equation (4.18) using the Newton-Raphson method. The initial value for the Newton-
Raphson iteration can be obtained by approximating the envelope by the loci of the right
vertex VR and the locus of the lowest vertex of the ellipse VD.

2. Solve equation (4.18) using the Newton-Raphson method. The initial conditions are
obtained by computing an approximate envelope for all values in a range that contain
ωo,1, ωo,2. Manually looking at the corner it is possible to �nd approximate values for
ω0,1, ω0,2. Then, it is possible to �nd the initial values for kp, ki out from ω0,1, ω0,2 com-
puting the intersection of the two ellipses generated from equation (4.12).

Both of these approaches are a�ected by several problems. First of all, they are applicable for
a �xed value of kd, in fact, in [4] it is shown the design for PI control. Secondly, we have faced
respectively the following issues:

1. The use of the vertex loci �nd good initial values for the Newton-Raphson algorithm only
for particular transfer functions. For instance, the shape of the envelope changes radically
if we add a time delay to a second-order transfer function. Furthermore, even with good
initial conditions, the algorithm converges in most cases to a non-optimal solution, basically
found ωo,1 = ωo,2. A possible way to escape from this problem is to perturb the initial
condition around the one found as before, compute iteratively the solutions using Newton-
Raphson until the algorithm converges in the optimal one, so basically when ωo,1 ̸= ωo,2.

2. Computing the approximate envelope is time-consuming. Moreover, the manual check of
the frequency is not an easy process, because of the hundreds of plots one over the other.
We see that a good strategy is to compute the envelope with a large approximation, �nd
the two frequency ranges where the critical frequency occurs, compute the locus again only
in this shrink range of frequencies with a better approximation.

After all these considerations we see that the complexity of the Optimal Problem can be solved
neither using the Algorithm 4.2.1 nor using the Newton-Raphson approach. We can use a more
sophisticated algorithm, for example, the Matlab Optimisation Toolbox [8]. Now the issue is
reduced to well pose the optimal problem and to give it good initial conditions.
Now, that we are ready to explore the method adopted in this work, we have to introduce a
notation:

ωL=θ := ω|∠L(iω) = θ (4.19)
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Algorithm 4.2.2 (Controller Design even if the envelope has corner). See Matlab Code in Ap-
pendix A:

1. the value of kd is �xed to 0, and the initial searching range for ωo is set to ωstart = ωL=−90◦,
ωstop = ωL=−180◦;

2. the approximated solution ωo,0 of equation (4.17) is found with bisection method in the
interval ωstart ≤ ω ≤ ωstop;

3. a more precise solution ωo of (4.17) is found using Levenberg-Marquardt algorithm with
initial condition ωo,0;

4. compute the PID parameters using equations (4.15) with such kd, and ωo;

5. compute the Robustness Constraint (4.12) around ωo, and verify that is satis�ed;

(a) if it is set kd,min = kd, and compute the new search range to ωstart = ωo
2 , ωstop =

ωL=−180◦+ωL=−270◦
2 ;

(b) if it is not set kd,MAX = kd

6. set the new kd =
kd,MAX−kd,min

2 , and repeat from point 2 until the maximum kd that satisfy
the Robust Constraint is reached with the desired error;

7. solve the optimum problem using Matlab Optimisation Toolbox:

(a) set the initial conditions: kp,0, ki,0, kd,0 are the values obtained in the previous itera-
tion, and also ω0,1 = ω0,2 = ωo;

(b) de�ne the constraints for the solution showed in equations (4.18), and de�ne the semi-
in�nitely constrains that comes out setting the validity of the Robust Constraint (4.12)
∀ω|ω0 ≤ ω ≤ ω∞, with ω∞ = ω|ω → +∞, and ω0 = ω|ω → 0+;

(c) solve the Optimal Problem using fseminf, see [8]. The solution is the set of these
parameters kp,o, ki,o, kd,o, ωo,1, and ωo,2;

8. verify that it has been found the global solution of the optimal problem computing the Nyquist
plot of the loop transfer function L(iω). We have to check that L(iω) it is out of the circle
centred in (−1, i0) with radius r. Furthermore, L(iω) has to touch the circle in one point
if ωo,1 = ωo,2, otherwise has to touch in two points.

In the Algorithm 4.2.2, from point 1 to point 6 the logic is almost the same as in Algorithm 4.2.1.
The di�erence is in the variation of kd from an iteration to the next one. In fact, while in the �rst
process increment kd with �xed step size, in the second case, the maximum kd is found with a
Bisection-method. We have bene�ts in terms of e�ciency and precision. The necessary to reach
the maximum kd possible is due to observation. Looking at �gures 4.4 we see that the maximum
of ki is reached for kd = 0.1472. At the same time we see that the envelope is smooth from
kd = 0 to kd ≃ 0.14. Hence, getting as close as possible to the solution of the problem when the
envelope is still smooth, is a good initial condition for the Optimal Solver. In [25] it is proposed
to use the solution get with kd = 0 as the initial condition, but in this way, the solver is not
able to �nd the global solution. We highlight that another approach that can be used to solve
the problem and �nd the global solution is to use the Global Optimization Toolbox of Matlab,
see [35], and [11] for further information.
The initial searching interval at step 1: ωstart = ωL=−90◦ , ωstop = ωL=−180◦ is due that the
process Pnom has to be stabilized with the PID controller. For the considered nominal process
Pnom of equation (3.14) we can verify that the following conditions are satis�ed:

d∠Pnom(iω)
dω ≤ 0

d|Pnom(iω)|dB
dω ≤ 20

[
dB

decade

] (4.20)
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In [43], and [4] the conditions (4.20) are called Monotonicity Conditions. For process that satisfy
the conditions it is possible to shrink the searching initial interval to ω ≤ ωstop = ωL=−180◦ −
arcsin(r), see [4] for proof.
We want to mention that in both [43], and [25] is explained that maximising ki could cause the
closed-loop system has two pairs of complex poles with relative damping very low, which means
that the time responses can be expected to be oscillatory. For that reason in [25] it is proposed
to add the constraints below to the Optimal Problem:

˙ℜ(L(iω)) ¨ℑ(L(iω))− ¨ℜ(L(iω)) ˙ℑ(L(iω))[
˙ℜ(L(iω))

2
+ ˙ℑ(L(iω))

2
]3/2 < 0 ∀ω

∂∠L(iω)
∂ω

< 0 ∀ω

(4.21)

With an obvious meaning of notation. The �rst constraint in (4.21) speci�es that the Nyquist
curve has negative curvature, and the second constraint prevents the controller from having
excessive phase lead. For a process with integral action, as Pnom is, the second constraint is
too restrictive, so we can neglect it. For Pnom we can verify that also the �rst condition is too
restrictive, in fact, it respects only for the controller with neither derivative nor integral action.
For instance, with kd = 0, ki = 12.1, kp = 7.9 we obtain as maximum value 0.8857 that is not
less than zero.
With the Algorithm 4.2.2 we are able to solve the Optimal Problem for the process transfer
function under consideration Pnom. The solution is the following:

kp,o = 12.7534

ki,o = 31.1783

kd,o = 0.1472

(4.22)

We can verify in the Nyquist plot 4.5 that the solution respect the Robust Constraint, in particular
that maximise the PID parameters until reach the bounder with tree points P1, P2, P3, so at
three frequencies.
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using (4.22)
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4.3 Sensitivity of PID control coe�cients
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Figure 4.6: Root Locus of the nominal system without time delay: P (iω)
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Figure 4.7: Root Locus of the loop TF using a PD control and the nominal system without time
delay changing kd.

In this section, we want to analyse the solution of the Optimal Problem, in particular, the
goodness of the PID coe�cients (4.22) found. To do that we have to take a step back to see
what is the e�ect of each coe�cient on the stability and performance of the system. We will use
the Root Locus because is a good tool for this purpose.
Figure 4.6 it is shown the Root Locus of the nominal process under investigation. For simplicity
and clearness we are not considering the time delay, hence P (iω) 2.29 instead of Pnom(iω) 3.14.
We see that the system has a pair of complex poles at p1,2 = −474.0[s−1]± 1412.2i[s−1], a pole
in the origin 0 + 0i, and no zeros. Furthermore, the system in the closed-loop is stable itself,
and it remains stable until the gain of a P controller reaches around kp ≃ 2.6 · 103 when the
branches of the complex poles cross the imaginary axes. In Figure 4.7 it is shown the Root Locus
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of P (iω) ·PD(iω) = P (iω) · (kp+ iωkd) for di�erent values of kd, respectively from 0.001 to 0.01
with a step of 0.001, kp is �xed to 1. With a PD controller, we are adding a zero at the frequency
of ωz = kp/kd. The closer this zero goes to the axes origin, the farther the vertical asymptote
goes from the imaginary axes. Therefore, the kd coe�cient introduces a positive e�ect because,
when the branches of the Root Locus lay on the left half complex plane the system remains
stable for all process gain. Always from Figure 4.7 we see that the condition that allows having
this positive e�ect on the stability of the system is the following:

|ωz| =
kp
kd

≤ 1

0.001

[
rad
s

]
= 1000

[
rad
s

]
(4.23)

For the set of parameters found in 4.22 we can verify that the condition (4.23) is veri�ed:

kp,o
kd,o

=
12.7534

0.1472
≃ 86.6399

[
rad
s

]
≤ 1000

[
rad
s

]
(4.24)

Hence, the combination of the coe�cients kp,o, and kd,o seems to be appropriate.
The optimal PID controller found shifts the poles and zeros of the closed-loop transfer function
in the new position:

p1,2 = (−0.4718± 1.4539i) · 103

p3,4 = (−0.0023± 0.0024i) · 103

z1 = −84.1325

z2 = −2.5179

(4.25)

From both equation (4.25) end �gure 4.8 we can see that the new position of the poles in the
closed-loop transfer function con�rms the expectation described before discussing the �gure 4.7.
This placement of the roots of the closed-loop transfer function allows to improve the band-width
of the control system, see �gure 4.9. From the same picture, we can see that the �rst pair of
poles shown in equation (4.25) are well-damped, and the other pair is not critical because has a
gain under the unit.
Moreover, from the Bode plot of the open-loop transfer function, see �gure 4.10, we see that the
gain margin is Gm = 20.8[dB], and the phase margin is φm = 58.4◦. The phase margin usually
is chosen in the design procedure around 60◦, or 70◦. We can assert that the obtained phase
margin keep a good design value, especially because we have to take into account that in the
nominal transfer function there is a time delay of 0.03[s].
Finally, both �gures 4.9, and 4.10 show that such procedure drives the design solution to respect
the standard requirements for a robust control design, see [29]:

1. T (s) with wide bandwidth;

2. large loop gain L(s) at low frequencies;

3. small loop gain L(s) at high frequencies.

The frequency that divides the low-frequency range from the high one obviously is the critical
frequency.
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Figure 4.8: Poles and Zeros plot in complex plane for the closed loop transfer function T (iω)
obtained with the nominal process Pnom controlled by the optimum PID controller C(iω)
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4.4 Final control structure design

The PID form of equation (4.1) is not physically achievable because of the pure derivative term.
Furthermore, we want to implement a 2DOF controller to be able to achieve better performance
in terms of set point response. Figure 4.11 points out the complete control structure. We can see
starting from the position reference xref the set point �lter Fsp, that produces a �ltered version
of the reference xfref. Then, there is the 2DOF PID control structure. The goal of the structure
is to get a time response of

u(t) = kp
[
bxfref(t)− xmea(t)

]
+ ki

∫ t

0

[
xfref(τ)− xmea(τ)

]
dτ + kd

[
− dxmea(t)

dt

]
(4.26)

+−
Fsp(s) G� = bkp +

ki
s PROCESS

Fn(s)Gc = kp + s · kd + ki
s

u(s) ucomxref x(s)
D(u)

Figure 4.11: Full control structure block diagram

In equation (4.26) both the position signals xfref(t), xmea(t) are �ltered. In the �rst case be the
set point �lter Fsp as discuss previously, in the second case by Fn for �ltering the measurement
noise. From equation (4.26) we can compute the 2DOF PID transfer function. In particular, we
can separate the Feed-Forward action G�(s), from the Feed-Back one Gc(s):

G�(s) = bkp +
ki
s

(4.27)

Gc(s) = kp +
ki
s
+ kds (4.28)

From equation (4.28) we can see that the noise �lter Fn has another function: combined with
Gc(s) makes the latter physically achievable. The control signal u(t) that comes out from the
PID controller has to be scaled by the function D(t), ucom = D[u(t)]. Basically, D(t) has to
compensate the non-linearity of the dead-zone that we have not considered in the nominal process
Pnom(s).
This chapter points out the design procedure of all the remaining parts of the control system.
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4.4.1 Noise �lter

+− +
+

+
+Fsp(s) G�(s) Pnom(s)

Fn(s)Gc(s)

u(s)

l(s) n(s)

xref(s) x(s)

Figure 4.12: Control structure block diagram with measurement noise n(s) and load disturbance
l(s)

The noise �lter has to reduce the disturbance that comes out from the linear encoder, and as we
said, make the derivative term physically achievable. For this reason seems to be good to have a
small cut o� frequency: ωf = 2π

τf
↓. The drawback is the ampli�cation of the load disturbance,

indeed:

x(s)

l(s)
=

Pnom(s)

1 +GcFnPnom(s)

x(s)

n(s)
= − GcFnPnom(s)

1 +GcFnPnom(s)

u(s)

n(s)
= − GcFn(s)

1 +GcFnPnom(s)

(4.29)

using the �rst of (4.29), we see that the sensitivity of the output x(s) to the load disturbance
l(s) increases in we reduce the cut o� frequency of the �lter. The solution is a trade o� between
reduction of load disturbances x(s)

l(s) ↓ and �ltering of measurement noise: x(s)
n(s) ↓, and

u(s)
n(s) ↓.

We explore the performances of a �rst and second order low pass �lter:

Fn(s) =
1

(1 + sτf )ord
(4.30)

The cut o� frequency has to be less than the critical frequency ωo discovered with the Optimiza-
tion Algorithm and equal to the frequency where |S(s)| has its maximum: ωo = ω| |S(iω)| = MS .
Typical choices are the following:

τf =

{
1

Nωo
, for �rst-order �lter: ord = 1

1
2Nωo

, for second-order �lter: ord = 2
(4.31)

With N from 2 to 10. Implementing the �lter of (4.30) with the time constant showed in (4.31)
we obtained the responses sowed in Figure 4.13b, and 4.13c. In these two �gures are used
respectively �lters of �rst and second order. In both the images, at the top we see the �ltered
position of an experiment, at the bottom, is computed the speed using a derivative �lter with a
pole at the same frequency as the respective Fn. The last is made to see the result of the derivative
action in the PID controller. We can notice that the speed responses are still very noisy for all
the sets of �rst-order �lters. Looking at the value of the time constant τf in table 4.1 we see
that all the values are much greater than the sample time of the system interface ts = 0.0005[s].
Finally, at the end of all the considerations, and based on simulation results that we will see
later, we choose τf = 0.0431[s], so basically N = 5.
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Table 4.1: τf for the noise �lter Fn used in Figures 4.13b and 4.13c.

N 2 3 4 5 6 7 8 9 10

ord=2 0.1291 0.0861 0.0645 0.0516 0.0431 0.0369 0.0322 0.0287 0.0258

ord=1 0.2583 0.1722 0.1291 0.1033 0.0861 0.0738 0.0645 0.0574 0.0516
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Figure 4.13: Speed computation with a �ltered derivative. A set of �lters with di�erent time
constant are used. The values are computed using the equation 4.31.
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4.4.2 Set point response

For the design of the reference �lter Fsp and the set point weight b, there are many possibilities.
One is to consider the transfer function from set point to output and to make sure that the
maximum magnitude of this transfer function is not larger than 1. That gives a set point
response without overshoot for the nominal process considered. To do that, �rst of all, we have
to compute the overall transfer function:

W (s) =
x(s)

xref(s)
=

G�Pnom(s)

1 +GcFnPnom(s)
(4.32)

In equation 4.32 the only parameter that is not yet speci�ed is b. Hence, we have to proceed
iteratively: we have to compute the value the in�nity norm of W (s), MW = maxω[|W (iω)|], for
a �xed value of b. Then, if MW is greater than 1 we have to reduce b otherwise we can increase.
Therefore the set point �lter Fsp is necessary only in the case MW > 1 also for b = 0. In that
case Fsp is designed to make the in�nity norm of FspW (s) equal to 1.
For the process Pnom(s), the Optimal PID designed, and the second-order noise �lter Fn obtained
with τf = 0.0431[s], we see that even with b = 0, we have MW = 1.0379 > 1. Hence, we have to
design the set point �lter Fsp. The �lter is found with some algebra:

Fsp(s) =
1

1 + s 2π
ωsp

√
M2

W − 1
=

1

1 + sτsp
(4.33)

Where ωsp is the angular frequency in witch MW occurs.
The following Matlab code computes the set point parameters b, and Fsp(s) in both the cases
described before:

Listing 4.1: Matlab code to compute the set point parameters
% define transfer function:
s = tf('s');
Gc_tf = PID.kp +PID.ki/s +PID.kd*s;
Fy_tf = noiseF.Fy_tf(PIDsp.NoiseFilterChosen);
b = 0;
Gff_tf = b*PID.kp +PID.ki/s;
W_tf = Pnom_tf*Gff_tf/(1+Pnom_tf*Gc_tf*Fy_tf);

% find infinity norm and frequency where it occours:
w_vector = linspace(-3,3,100000);
[mag_W, phase_W] = bode(W_tf, w_vector);
mag_W = squeeze(mag_W);
InfNorm_W = max(mag_W)
w_InfNorm_W = w_vector(find(mag_W==InfNorm_W,1))

if InfNorm_W > 1
PIDsp.b = 0;
PIDsp.Fsp_T = sqrt((InfNorm_W)^2-1)/abs(w_InfNorm_W/2/pi);
PIDsp.Fsp_tf = 1/(1+s*PIDsp.Fsp_T);

else
while InfNorm_W <= 1

b = b + 0.1;
Gff_tf = b*PID.kp +PID.ki/s;
W_tf = Pnom_tf*Gff_tf/(1+Pnom_tf*Gc_tf*Fy_tf);
[mag_W, phase_W] = bode(W_tf, w_vector);
mag_W = squeeze(mag_W);
InfNorm_W = max(mag_W);
w_InfNorm_W = w_vector(find(mag_W==InfNorm_W,1));

end
PIDsp.Fsp_tf = 1;
PIDsp.b = b - 0.1;

end
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Then, we can compute the overall transfer function from the reference position to the system
rod end position. We obtain the followings:

Wtot(s) =
x(s)

xref(s)
= Fsp ·W (s) = Fsp ·

G�Pnom(s)

1 +GcFnPnom(s)
(4.34)

In �gure 4.14 are shown the step response numerically computed of the system expressed by
equation 4.34. We highlight that is the response of the nominal process Pnom controlled with the
full-control scheme. We compute the unitary step response with di�erent set point designs. The
set point controller is designed respectively in the three following ways:

1. designed with b = 1, and Fsp(s) = 1;

2. designed with b = 0, and Fsp(s) = 1;

3. designed with b = 0, and Fsp(s) found with equation (4.33).

We see that we obtain the desired e�ect, but applying the step point �lter we are reducing dras-
tically the control system band-width. Thus, we can take at least the last two design solutions,
the ones with b = 0, to check �rst the performance in the simulated system and the real system
after. Indeed, we know that we have made a lot of simpli�cations linearising the model, most of
all for the friction model.
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Figure 4.14: Numerically computed step response of the nominal process Pnom controlled by the
2DOF PID that gives the system of equation 4.34. The controller are designed respectively 1)
with b = 1 and Fsp(s) = 1; 2) with b = 0 and Fsp(s) = 1; 3) with b = 0 and Fsp(s) found with
equation (4.33)
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4.4.3 Feed forward dead zone compensation

In the end, the last thing still remaining to do for completing the controller design is the Feed-
Forward action. Basically, we can implement a piecewise linear function that compensates for
the non-linearity introduced by the dead-zone. The aim is that z(t) = u(t), so D(u) has to be
the inverse of the dead zone function (2.3). Thus, we get:

ucom = D(u) =


u− 0.1, for u ≤ −0.0042

25u, for − 0.0042 < u ≤ 0.0042

u+ 0.1, for u > 0.0042

(4.35)

In �gure 4.15 we can see the function of the dead-zone plus the saturation and the inverse function
D(u). An important thing, also detectable from equation (4.35), is that at the origin, the slope
is very high but still not ∞. This prevents, in case of oscillation on the response, the appearance
of a high-frequency limit cycle that can damage the directional control valve.
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Figure 4.15: The ori�ce dead-zone and saturation function (shown in blue) and the dead-zone
inverse D(u) (shown in red).
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Chapter 5

Robust condition

In this chapter, we want to analyse the robustness of the control system designed. To do that,
we have to evaluate a model that represents the uncertainty discussed in chapter 3. Then, we
need to �nd the stability range of the system because we have to guarantee a safe operation in
certain conditions.

5.1 Representing uncertainty

In chapter 2 we have seen the Full Order Model of the system, and the Reduced Order Model.
We have said that we are going to use these models for simulations. Then, to �nd a linear
model for the control design we have had to linearised the Ori�ce Equations on an operative
point, so to get the coe�cients Ĉq, and Ĉqp. Furthermore, the communication through a WIFI
bridge introduce in the control loop a variable time delay τ . In this way the transfer function
computed Pτ (3.10) is a good approximation of the Reduced Order Model only in the particular
operative point, gives from the choice of Ĉq, Ĉqp, and τ̂ . Hence, after several considerations, we
have choose the nominal value of these parameters Cq,nom, Cqp,nom, and τnom so we compute the
nominal process transfer function: Pnom(s), see 3.14.
Finally, we have discussed that we can consider for simplicity only the gain uncertainty that the
before mentioned parameters produce, still maintaining a good approximation. So this section
aims to �nd a way to model the gain uncertainty of the process transfer function.
First of all, we can consider our system a�ected by a so-called Multiplicative Perturbation. In
fact

Pτ (iω) =
[
1 + ∆U (iω)WU (iω)

]
Pnom(iω) (5.1)

+
+Pnom(s)

WU (s) ∆U (s)

u(s) x(s)

Pτ (s)

Figure 5.1: Block diagram of the perturbed process modelled with multiplicative uncertainty

so the gain of the transfer function Pnom(iω) could vary from the nominal value, in a range that
is de�ned by ∆U (iω)WU (iω). WU (iω) is a �xed, stable transfer function that, as we will see
later, has the duty of weighing the uncertainties. ∆U (iω) is a variable stable transfer function
satisfying ∥∆U (iω)∥∞ < 1 with the purpose of perturbing the weighting function WU (iω) so that
the transfer function is unknown. The model of the Multiplicative Perturbation is represented
with a block diagram in �gure 5.1. Moreover, because ∆U (iω) is de�ned as ∥∆U (iω)∥∞ < 1,
then we have the following relation:∣∣∣∣ Pτ (iω)

Pnom(iω)
− 1

∣∣∣∣ ≤ |WU (iω)|, ∀ω, ∀(Ĉq, Ĉqp, τ) (5.2)
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Figure 5.2: Nyquist plot of the nominal process and of three points of the perturbed model

The last equation is very important because it shows clearly that |WU (iω)| provides the uncer-
tainty pro�le. Furthermore, it shows a practical way to obtain the weighting function. With this
uncertainty model, there are two important considerations to take in mind.

1. The transfer functions WU (iω) and ∆U (iω) are frequency depending, so they are mod-
elling the gain uncertainty with di�erent weights from low to high frequency. Typically
uncertainty increase with the frequency [16].

2. We are modelling the uncertainty with a disk-like shape in a complex plane. Hence, we are
assuming that the Nyquist plot of the uncertain process Pτ (iω) at a �xed frequency ω̂ is
inside a disk of radius WU (iω) and centered in Pnom(iω̂), see �gure 5.3.

The last point introduces a hypothesis necessary for simplifying the evaluation of the Robust
Stability Condition, but the drawback is a more conservative approach. In fact, generally, the
combination of the uncertain parameters gives an uncertain region that has an unde�ned shape.
Therefore, the disc surrounds the uncertainty area, with a center and radius that depend on
the choice of the nominal model. Hence, when the perturbed system gives an unstable closed-
loop transfer function, we can not guarantee that the real process is stable, but neither we can
say that the real process is stable. For instance, in �gure 5.3a is shown the open-loop transfer
function obtained with the optimal PID designed in the previous chapter. It is also plotted over
the uncertain region gives by the disc with radius WU (iω) · L(iω) and center in Pnom(iω), for a
range of ω. In particular WU (iω) is obtained considering τMAX = 0.10[s]. We see that both the
nominal open-loop transfer function and the sum of all the uncertain regions are encircling the
critical point (−1, i0). Then, thanks to the Nyquist criterion, we can conclude that the control
system is stable also for the perturbed model Pτ (iω). In �gure 5.3b is plotted the same, but this
time WU (iω) is obtained considering τMAX = 0.15[s]. We see that at some frequency the disc
of the uncertain region surrounds the critical point. Then, we can not say anything about the
stability of the system.

5.2 Robust stability condition

To understand well what Robust Stability means, we have to see together the de�nitions of the
Nominal Stability :

De�nition 5.2.1 (Nominal Stability). Is guarantee if the controller C(iω) internally stabilize
the nominal model of the process Pnom(iω).
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Figure 5.3: Nyquist plot of the close loop transfer function L(iω) with the uncertain disc region
at some frequencies.

De�nition 5.2.2 (Robust Stability). Is guarantee if the controller C(iω) internally stabilize
every possible perturbed plant of the process Pτ (iω).

From the above de�nitions, we can see that the Robust Stability condition is much more restrictive
than the Nominal one. In fact, in the set of all possible perturbed plant Pτ (iω), in our case de�ned
through the multiplicative uncertainty, there is a con�guration of the parameters that give the
most di�cult plant to stabilize, so we call worst-case plant. For instance, in the set of Pτ (iω)
there is the plant with the maximum time delay, that impose for achieving Nominal Stability a
lower bend-width in the control system, compared to the one with the nominal time delay.
In [38] is derived the criterion for Robust Stability, so-called Robust Stability Condition, with three
method. These proofs are valid for SISO systems. While in [42] there is a full demonstration
of the Robust Stability Condition for MIMO systems using the small gain theorem. Instead, we
want to see the validity of the condition from an intuitive point of view.
In �gures 5.3a, and 5.3b we have seen that, for a multiplicative uncertainty, a simple criterion
for the Robust Stability is that the discs are not encircling the critical point. The distance from
the Nyquist plot of the nominal loop transfer function L(iω) and the critical point (−1, i0) is
| − 1−L(iω)| = |1+L(iω)|. The radius of the disc is basically C(iω) ·WUPnom(iω) = WUL(iω),
hence

Robust Stability Condition ⇐⇒ |WUL(iω)| < |1 + L(iω)|, ∀ω

⇐⇒
∣∣∣∣WUL(iω)

1 + L(iω)

∣∣∣∣ < 1, ∀ω ⇐⇒ |WUT (iω)| < 1, ∀ω

⇐⇒ ∥WUT (iω)∥∞ < 1

(5.3)

Therefore, the last implication is the criterion we were looking for: the in�nite norm of the
complementary sensitivity function multiplied by the weighting function of the uncertainties has
to be less than one. Thus, in the condition, the choice of WU (iω) has an important part.

5.3 Weighting function

The choice of the weighting function for the multiplicative perturbation of the nominal process
has to take into account three main ideas:

1. has to respect equation (5.2);

2. has to be less conservative as possible;
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3. has to verify the Robust Stability Condition (5.3).

To achieve all these objectives, we want to proceed in this way: we are going to design an
algorithm that �nds the best WU possible for a de�ned τMAX. Then, we will check the Robust
Stability Condition and, if it is not veri�ed, we decrease the value of τMAX until the condition
is satis�ed. We remind that τMAX is the upper bound for the RTT (round travel time) in the
control system. Hence, �nd the value of τMAX that satisfy the Robust Stability Condition means
�nd where the safe operation of the control system is guaranteed.
To �nd WU we start computing the left side of the inequality (5.2). We have to calculate
the maximum possible value of the term for all possible combinations of the parameters and
for each frequency. Hence, we �xed the value of τ to τMAX, and we evaluate the modulus∣∣∣∣ Pτ (iω)
Pnom(iω) − 1

∣∣∣∣ for all the combinations of Cq, Cqp respectively in the set Cq,min, Cq,mean, Cq,MAX,

and Cqp,min, Cqp,mean, Cqp,MAX. The result for τMAX = 0.11[s] is shown in �gure 5.4a. In the
�gure it is highlighted that there is not only one particular combination of Cq, Cqp that gives the
maximum magnitude, but in this case happens for two: at low frequency (around up to 1

[
rad
s

]
) for

Cq,min, Cqp,MAX, and at high frequency for Cq,MAX, Cqp,min. Hence, the left part of inequality (5.2)
has to be computed frequency by frequency. We call this magnitude calculation WU,min(iω), that
is shown in �gure 5.4b with a blue line. Now we have to �nd WU (iω) ≥ WU,min(iω). In [38] it is
shown with an example how get the weighting function a third-order TF for a �rst-order system
with time delay. Furthermore, in [16] for a double integrator system with time delay it is used a
�rst-order weighting function with a zero in the origin. Usually WU (s) is of low order to simplify
the controller design [38] so, because a �rst order TF �ts WU,min(iω) not good enough, we use a
second-order transfer function:

WU (s) = kW

s2

ω2
z
+ 2ξz

s
ωz

+ 1

s2

ω2
p
+ 2ξp

s
ωp

+ 1
(5.4)

(a) Bode plot of the left term of (5.2) for di�erent
combinations of (Ĉq, Ĉqp) and with τ = τMAX

(b) WU (s) �t attempt of WU,min(s) varying ξp from
ξp = 0.6 to ξp = 0.7

Figure 5.4: Evaluation of the weighting function lower bound: WU,min(s) and �t attempt with a
second order transfer function varying xip.

The idea is to �ndWU (s), so �nd kW , ωz, ξz, ωp, and ξp with an optimal algorithm that minimize
the error |WU (iω)| − |WU,min(iω)|. As usual, the problem is give to the algorithm the proper
initial condition. With simple rules of the bode diagram we can �xed:

ωp = ωresonance = ωmax[WU,min]

√
1− 2ξ2p

kW = |WU,min(i0)|
(5.5)
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where ωmax[WU,min] is the frequency in which the �rst relative maximum value of |WU,min| occurs.
We can �xed the values of the damping factors, looking at �gure 5.4b we see that as �rst attempt
a good value for ξp is ξp = (1/

√
2 + 0.5)/2 ≃ 0.604, and ξz = 1. Then the position of the zero is

computed so that the gain at ω = ∞ is equal to the one of |WU,min|:

ωz = ω̂| |WU (i∞)| = |WU,min(i∞)| = max
ω

|WU,min(iω)| = |WU,min(iωmax[WU,min])| (5.6)

After some algebra, we see that the constraint (5.6) is equal to �x the ratio ωp/ωz to the constant
1.9882. With a better look of �gure 5.4b we see that we can reduce the resonance peak increasing
the value of ξp until is not making |WU (iω)| < |WU,min(iω)|. Hence, we obtained ξp = 0.6111.
Now that a good set of initial conditions is found we can proceed with the optimization algorithm.
The cost function to minimize is the integral square error (ISE):

cost function = ISE =

∫ ∞

0

[
|WU (iω)| − |WU,min(iω)|

]2
dω (5.7)

constraint: |WU (iω)| ≥ |WU,min(iω)|, ∀ω (5.8)
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Figure 5.5: Optimized �tting of the second order weighting function over WU,min.

Table 5.1: Weighting function parameters computed for two time delay upper-bounds
0.11[s], 0.15[s], using the optimization algorithm and the same weighted

τMAX[s] 0.11 0.15

WU WU,opt WU,optW WU,opt WU,optW

ξz 0.8497 0.8987 0.845 0.9221

ξp 0.802 0.9045 0.796 1

kW 0.6902 0.6803 0.6919 0.6816

ωz 7.3061 7.3061 4.8749 4.8749

ωp 14.6012 15.0527 9.7187 10.3189

Solving such problem for τMAX = 0.11[s] we get the transfer functionWU,opt showed in �gure 5.5a.
We see that the solution found �t really well the objective WU,min(iω).
We can now compute the Robust Stability Condition. Figure 5.6a shows the main transfer function
involved in the calculation of the robust constraint using the sampled version of |WU,min(iω)| so
the best possible WU (iω). We see that the critical frequency for satisfying the Robust Stability
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Condition are the low frequency up to 10
[
rad
s

]
. Hence, if we modify the optimization algorithm

adding a bigger weight for this critical frequency range, we should have a better calculation of
the Robust Stability Condition: closer to the one made with |WU,min(iω)|. Below we show the
Matlab code that performs this calculation:

Listing 5.1: Matlab code that solves the optimization problem to evaluate WU,opt or WU,optW

%% OPTIMIZATION PROBLEM TO GET W2IIorder:
prob = optimproblem('ObjectiveSense','min');
KK = optimvar('KK','LowerBound',W2min(1),'UpperBound',W2min(1)*10^(10/20));
WP = optimvar('WP','LowerBound',w_0dB_k,'UpperBound',w_max_k);
CSIP = optimvar('CSIP','LowerBound',0.1,'UpperBound',1);
WO = optimvar('WO','LowerBound',0,'UpperBound',w_0dB_k);
CSIO = optimvar('CSIO','LowerBound',0.1,'UpperBound',1);

syms w wp w0 csi0 csip GAIN real positive
W2OPT = GAIN*(((1i*w)/w0)^2 + 2*csi0*(1i*w)/w0 + 1)/...

(((1i*w)/wp)^2 + 2*csip*(1i*w)/wp + 1);
W2OPT_abs = (sqrt(real(W2OPT)^2+imag(W2OPT)^2));

dec = 20;
w_vec_IAE = w_vec(1:dec:end);
W2min_IAE = W2min(1:dec:end);
IAE = subs(W2OPT_abs,w,w_vec_IAE)' - W2min_IAE;
% weighting vector for the critical frequency
Weight_IAE = ones(1,length(IAE));
for i=1:length(IAE)

if w_vec_IAE(i)>0 && w_vec_IAE(i)<10 % w_critic interval
Weight_IAE(i) = 10; % weight

else
Weight_IAE(i) = 1;

end
end
IAE_con = optimconstr(length(IAE));
IAE_cost = optimexpr(length(IAE));
for i=1:length(IAE)

IAE_fn = matlabFunction(IAE(i)); % @(GAIN,csi0,csip,w0,wp)
IAE_con(i) = fcn2optimexpr(IAE_fn, KK, CSIO, CSIP, WO, WP) >= 0;
IAE_cost_fn = matlabFunction(IAE(i)*Weight_IAE(i)); % ...

@(GAIN,csi0,csip,w0,wp)
IAE_cost(i) = fcn2optimexpr(IAE_cost_fn, KK, CSIO, CSIP, WO, WP);

end
prob.Constraints.Grater = IAE_con;
prob.Objective = IAE_cost'*IAE_cost;
clear x0
x0.KK = gain_0;
x0.WP = wP_0;
x0.CSIP = CSIP_0;
x0.WO = wO_0;
x0.CSIO = CSIO_0;
[x, cost] = solve(prob, x0)

In �gure 5.5b is shown the weighting function WU,optW obtained weight the frequency range
0 ≤ ω ≤ 10

[
rad
s

]
ten times the other. We see that the �t at high frequency is worse than

before but, the calculation of ∥WUT (iω)∥∞ is closer to the minimum value, see table 5.2. In
table 5.1 are summarised all the weighting function parameters obtained with these two versions
of the optimal algorithm, for two upper-bound of τ . Also the evaluation of the Robust Stability
Condition is made for the two maximum value of τ and shown in table 5.2.
From table 5.2 we see that the Robust Stability Condition is satisfy for τMAX = 0.11[s] but not for
τMAX = 0.15[s] as we expected looking at �gure 5.3b. Hence, we can �xed the upper-bound for
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Figure 5.6: Robust stability condition veri�cation for τMAX = 0.11[s].

Table 5.2: Robust Stability Condition veri�cation for two τMAX using di�erent WU

τMAX[s] WU,min WU,opt WU,optW

0.11 0.9850 0.9871 0.9854

0.15 1.1144 1.1451 1.1236

the variable time delay to τMAX = 0.11[s]. Thus, in table 5.3 we see that the frequency for having
a time delay less or equal to the upper bound is around 2σ for the �rst four tests and around 3σ
for the last six tests. The frequency values are computed evaluating the cumulative distribution
function out of the density distribution function as it is shown in �gure 5.7. Therefore, in the
same condition of these ten tests, we can expect that the controller achieves the Robust Stability
Condition.
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Table 5.3: Values of the cumulative distribution function of the time delay at the upper-bound
τMAX = 0.11[s] for the respective tests de�ned in table 3.2

TEST NAME CD at 0.11[s]

Test1 0.9514

Test2 0.9684

Test3 0.9368

Test4 0.9552

Test5 0.9974

Test6 1

Test7 0.9988

Test8 0.9941

Test9 0.9926

Test10 0.9801
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Figure 5.7: Time delay distribution for Test10, see table 3.2. In blue the cumulative function,
in black the density and with a red circle the value of the cumulative distribution at the upper-
bound τMAX = 0.11[s]
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Chapter 6

Simulation results

In this chapter, we show the numerical results obtained with such a designed controller. We
use for the simulation the Matlab Simulink software. The model of the system is composed of
the two hydraulic cylinder models developed in chapter 2: Full-order model, and Reduced-order
model. The overall simulation model is still not complete because we have not yet represented
the variable Round Trip Time and the measurement noise. We want to clarify these important
points to analyse the results correctly. Hence, we discuss separately one by one.

6.1 Simulation models

In the numerical simulations, we use at the same time, for each test, four models. The �rst two
are obtained using the Full-order model, and the Reduced-order model to represent the hydraulic
cylinder. We highlight that in the case of the Full-order model we choose to use the transfer
function with less band-width to represent the directional control valve dynamic. With this
choice, we are operating in the worst-case condition, in fact, less band-width means less phase
margin in the control system hence, the system is closer to the instability. The block diagram of
the overall control system for these two models is shown in �gure 6.1a. We see that we introduce
in the control loop the noise signal n(s) and the time delay e−sτ . It is shown the time delays τ is
the input of the delay transfer function just to remark that τ is a time variable. The two models
obtained in this way are called respectively with the same name of the cylinder representation:
Full-Order Model, and Reduced-Order Model
With the name: Linear Model we mean the same control scheme as the previous but, with the
transfer function of equation (2.29). Thus, in this case, we have a linear model linearised around
an operative point. We de�ne this transfer function as uncertain thanks to the Robust Control
Toolbox, see [5]. In this way, the point is randomly chosen by the program. The overall control
structure is shown in �gure 6.1b. We point out that there is no more noise signal but still the
variable time delay because the latter is not included in the function of P (s) (2.29).
Lastly, we call Nominal Model the implementation of the scheme shown in �gure 6.1c. In this
last case, the control system is composed solely by the 2DOF controller without dead-zone
compensation, and the nominal transfer function Pnom(s) (3.14). We see we avoid the insertion
of the variable time delay because we have already considered inside the process transfer function.
The reason behind the choice to use these four models for the simulations is simple: with the
Full-Order Model we want to have the best representation of the real system possible. With the
Reduced-Order model we can evaluate the goodness of the symmetry approximation. With the
Linear Model we can see the in�uence of the linearisation point used for the Ori�ce Equation.
With the Nominal Model we want a con�rmation of the performance that we expect from the
controller design.
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(a) Block diagram with the Full-Order Model or the Reduced-Order Model.
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(b) Block diagram using a Linear Model with random values of the parameters Cq, Cqp, τ still in the
already de�ned ranges.
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(c) Block diagram using the Nominal Model.

Figure 6.1: Block diagram of the models used in the simulations.
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6.1.1 Measurement noise

For the Full-Order Model, and the Reduced-Order Model we have to generate a noise signal to
use during the simulations n(t). We can achieve this purpose with two strategies. One is to use
directly the measurement noise data collected during the experiments. The experiment has to be
longer than the simulation time because it has to avoid the repetition of the signal. In this case,
once we have chosen n(t), we keep the same value for all the simulations. Another approach is
to estimate the statistical properties of the noise and generate n(t) during the simulation run.
In this manner, we always have di�erent noise data.
We choose the �rst approach because it is easier and guarantees the repeatability of the results.
Furthermore, avoid approximations and assumptions on the statistical distribution. We take
the set of data collected with the experiment previous called Test3, see table 3.2. In this test,
the true piston position is �xed because the piston is at the end of the stroke. Hence, we get
directly the noise signal n(s) out from the position measurement after taking out the mean
value. We have more than 210[s] enough to perform all the necessary simulations. Figure 6.2a
it is shown the �rst seconds of such computed noise signal. The frequency distribution of n(t) is
evaluated and shown in �gure 6.2b. As expected, the distribution presents the typical Gaussian-
shape. Indeed, the measurement noise is the result of many aleatory processes. First of all,
electromagnetic interference a�ects the electric signal. Therefore, applying the Central Limit
Theorem we get a Gaussian process. Finally, we see that the noise amplitude is inside the range
of −2.5 · 10−3 ≤ n(t) ≤ 2.5 · 10−3[m], so produce a relative error for a step size of 10[cm] of
2.5·10−3

0.1 = 2.5%.
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(b) Position measurement noise frequency distribu-
tion. Data from experiment Test3.

Figure 6.2: Position measurement noise in experiment Test3, see table 3.2.

6.1.2 Time delay model

Regarding the representation of the time delay, we have the same possibilities as the noise
signal. Indeed, we can generate the signal τ both with a set of measured data and using the
γ-distribution found in chapter 3.2. In this case, we chose the second option because we want
to get a general result and not a particular one. Indeed, the value of the time delay strongly
changes the performance achieved and using a �xed set means to observe only one particular
response without any aleatory.
Thus, for this reason, we generate the τ signal with a γ-distribution obtained with the parameters
of table 6.1. The parameters come out from the �t of the time delay data computed in the
experiment Test10. We choose Test10 because it represents the goal operative condition of the
control system.
We implement the transfer function e−sτ with the Variable Transport Delay block. The block
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Table 6.1: Parameters of the γ-distribution that �t the time delay of Test10.

TEST NAME a b

Test10 2.91554 0.013567

uses the Padè approximation and has a sample time of 0.01[s] because this is the communication
sample time. The result of such implementation is shown in �gure 6.3. With a dashed line, we
see the input signal. That signal is shifted to obtain the output signal with a dot-dashed line.
We highlight that the variable time delay can cause the losses of some data points. In reality,
this happens because if the delay of the previous data point plus the sample time is larger than
the delay of the next data point, then the previous is overwritten by the new one and it does not
produce an e�ect on the control. The shifted signals observed in the ten experiments performed
for evaluating the time delay, see 3.2, present the same shape as the one in �gure 6.3, see also
the experimental result for comparison.
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Figure 6.3: E�ect of the variable transport delay in the simulation for a demonstrative signal.

6.2 Numerical tests

For clearness, we list all the evaluated simulations to remark the conditions and the controller
used. We will refer to a particular numerical test with a label shown in table 6.2 under the
column Simulation Name. In the same table are listed the time delay condition used for the
test, for instance, with γ-dist we refer to the implementation discussed in the previous section.
Evaluating the response of the control system to a �xed time delay is worthy. We are going to
set τ = 0.0005[s] because it is the sample time of the system interface, Speedgoat in our case,
that is the minimum time delay possible, achievable only neglecting the TCP-IP communication
and implementing the controller directly in the interface. We are also going to set τ = 0.03[s],
τ = 0.11[s], and τ = 0.15[s] that are respectively the nominal time delay, the upper-bound, the
value where the Robust Stability Condition is not satisfy. Fixing the time delay value will not
make the system more likely, but allow us to make important observations regarding the system
stability. Furthermore, the simulation tests di�er for the controller implementation. We have
seen in section 4.4.2 that we can design the controller to reduce the overshoot through the set-
point parameter b, and a reference pre-�lter Fsp. Then, there are three interesting combinations
to evaluate: �rst, the control with both pre-�lter, so noted in the table with yes, and set-point
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parameter b = 0. Secondly, the control without pre-�lter, so noted in the table with no, and
set-point parameter b = 0. Lastly, we design the controller without the set-point tricks, so there
is no pre-�lter and b = 1. For all cases, we are going to test the response to a step in the position
reference. The reference wave is designed with a square shape for all the tests except the ones
with τ = 0.15[s]. The square wave has a �rst initial step from 0 to 0.05[m] to operate than in
the middle of the piston stroke. Then, for each 5[s], there is a step forward and back of 0.1[m] of
amplitude. For the last three simulations, so from 13th to 15th, the reference position signal is
only one long step of 10[s] because we expect an unstable response, or at least very oscillatory.

Table 6.2: Evaluated simulations and names

Simulation

Name
τ

set-point

parameter b

set-point

�lter Fsp
test type

simulation1 0.0005 0 yes square wave

simulation2 0.0005 0 no square wave

simulation3 0.0005 1 no square wave

simulation4 0.03 0 yes square wave

simulation5 0.03 0 no square wave

simulation6 0.03 1 no square wave

simulation7 γ-dist 0 yes square wave

simulation8 γ-dist 0 no square wave

simulation9 γ-dist 1 no square wave

simulation10 0.11 0 yes square wave

simulation11 0.11 0 no square wave

simulation12 0.11 1 no square wave

simulation13 0.15 0 yes step

simulation14 0.15 0 no step

simulation15 0.15 1 no step

As previously said in section 3.1, we highlight that in the simulation model, in both the Full-
Order Model, and the Reduced-Order Model there is an algebraical loop caused by the pressure
feedback, PA, and PB in the �rst case, and PL in the second. Such a loop can drive into non-
physical pressure values, for instance, greater than the supply pressure. In particular, the model
works perfectly for a simple step response but could be problematic if the system has to follow
a sawtooth trajectory. To solve this problem we limit the value of PA, and PB, to ±PS for the
full order model, and 0 ≤ PL ≤ PS for the reduced order model. Furthermore, we see that a �xed
step size solver guarantees more likely results, in particular, we use ODE3 with a sample time
of 0.0001[s].

6.2.1 Without time delay

Here we group all the simulations evaluated with the lowest time delay possible τ = 0.0005[s],
so the �rst three tests are listed in table 6.2. In �gure 6.4a is shown the step response for the
test called simulation2. We see that for all the evaluated models the time constant remain the
same because all the responses have the same rise time around half a second. On the other hand,
while the Nominal Model, and the Linear Model show the expected overshoot, the Reduced-Order
Model, and the Full-Order Model have almost no overshoot. This behaviour is not weird, indeed,
the result pointed out the great di�erence between the two friction models used, the linear one
in the �rst two cases and a more complex and non-linear one for the last two. In particular, if
we remember how was evaluated the linear friction parameter in the section 2.3.2, we know that
at high speed the linear model produces a bigger counteracting force than the so-called Stribeck
friction model. The result is a slightly faster response at the beginning of the step. Then, when
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the speed goes down, the Stribeck model makes almost twice the force value, producing the
stiction e�ect. In this case, this phenomenon gives a positive contribution because it reduces the
settling time. In the results, it is also evident the asymmetry of the Full-Order Model. Indeed,
we get di�erent step responses for the forward and back directions. In particular, for the step
back the pressurised chamber faced with a bigger piston area, then in the other case, because
of piston plunger presence: AA > AB. Thus, the control produces a greater force that causes a
little overshoot.
In �gure 6.4b are shown the control signals acquired out of the controller. We remark that
the amplitude of the signals con�rms the observations regarding the friction model and the
asymmetry of the Full-Order Model. Furthermore, we can see some oscillation of amplitude ≃ 0.1
for the non-linear models. These are caused by the combination of the noise signal injected n(t),
and the feed-forward compensation introduced by the controller. Indeed, we have seen that the
noise amplitude arrives at 2.5·10−3[m], then with only the proportional part of the PID controller
kp ≃ 12.7, we get a control signal of 2.5 ·10−3∗12.7 = 0.03175. The obtained value is one order of
amplitude greater than the threshold of the dead-zone compensation 0.0042, see equation 4.35.
Hence, even though the noise is �ltered, we easily go over the dead-zone compensation threshold
then, we get a value over 0.1.
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Figure 6.4: Results of the simulation called: simulation2

We report next to the simulation in the same time delay condition but with the controller with the
set-point �lter inserted as �rst, and then without any set-point trick. We are talking respectively
about simulation1, and simulation3. In particular, in �gure 6.5a, and 6.5b we can see the results
for the �rst, and in �gure 6.6a, and 6.6b we can see the results for the second. In the �rst case,
we obtain a slower step response, caused by the insertion of the set-point �lter that has dominant
dynamics. For the same reason, all the position signals have a very close trajectory. Regarding
the control signal, the observations are the same as in the previous case. In the simulation3 the
main idea is to neglect the set-point response design to evaluate the bene�ts. We see that the
step response has a big overshoot, around 50%. Looking at the control signals in �gure 6.6b we
see that go over ±1 that is the saturation level. Then, wind-up phenomena probably increase
the overshoot amount.
After this �rst set of simulations is evaluated in the best condition in terms of time delay, we
can make some considerations:

1. all the models show a very similar dynamic because they have the same rise time and a
very close settling time;

2. the friction non-linearity increases the performance in the case b = 0, and Fsp = 1, resulting
a response without overshoot and with almost no oscillation;
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Figure 6.5: Results of the simulation called: simulation1
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Figure 6.6: Results of the simulation called: simulation3

3. the controller designed without set-point tricks, so in simulation3, gives an unacceptable
response.

We have seen that the �rst controller design, so with the choice of b = 0, and Fsp = 1 gives the
best step response. At the same time, both the simulations simulation1 and simulation3 present
strong drawbacks: very slow control for the �rst or too aggressive for the second. Then, it will
be much more interesting in future tests to focus the analysis on the �rst controller design.

6.2.2 Nominal time delay

In this case, the simulations are evaluated with a �xed time delay set to the nominal value
τ = 0.03[s]. The results of a two sides step are shown in �gure 6.7a, and �gure 6.7b. We see
almost the same response from the models, and all the observations made before are still valid.
On the other hand, for the non-linear models appears an oscillation while the system is trying to
reach the reference position. With a close look, we can see that also the nominal model increased
slightly the undershoot.
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Figure 6.7: Results of the simulation called: simulation5

6.2.3 Gamma distributed model of time delay

Now we point out the result obtained with the γ-distributed model of the time delay discussed
before. In particular, as the �rst attempt, the distribution is computed without quantization so
basically, the time delay could have a sub-multiple value of the sampling time 0.01[s], and also
could be 0. In �gure 6.8a we see that the step responses of all the systems are still very close
to simulation5, and it is con�rmed by the shape of the control signal in �gure 6.9a. Indeed, we
remember that the γ-distribution was �tted over a data set with the mean value around 0.03,
that is the nominal value. In �gure 6.8b we see the frequency distributions of the time delay of
the simulation.
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Figure 6.8: Results of the simulation called: simulation8

It is interesting to see the behaviour of the load pressure PL for the Reduced-Order Model or
equivalently the computation of PA − PB for the Full-Order Model, see �gure 6.9b. There is a
quite large di�erence between the two signals due to the asymmetry. What is interesting to note
is that the oscillations at a steady-state are very tiny. Furthermore, the assumed values are far
below the maximum allowed: PS = 1 · 107[Pa]. The latter guarantees that the assumption made
during the uncertainty analysis PL,MAX = 0.95 · PS is valid.
Finally, for completeness, we evaluate the same simulation (simulation8 ) with a more likely time
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Figure 6.9: Internal signals in the models during the simulation called: simulation8

delay distribution. In fact, as we said, the time delay can have only multiple values of 0.01[s],
and as minimum τmin = 0.01[s]. Then, the continuous distribution can be corrected for having
quantized values and a minimum of 0.01[s] instead of 0. The result with such a procedure
is shown in �gure 6.10a. In �gure 6.10b is shown the obtained quantized γ-distribution. As
expected, the result is exactly the same as with the continuous distribution.
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Figure 6.10: Results of the simulation called: simulation8bis

6.2.4 Maximum time delay

Even though we have designed the simulations with the γ-distribution model of the time delay
for being most likely possible, it is interesting to verify the Robust Stability Condition evaluated
at chapter 5. To do that, we �rst simulate the models with the �xed maximum time delay
τMAX = 0.11[s], and then we repeat the test with a greater value. We choose τMAX = 0.15[s]
for the second attempt because it violates the Robust Stability Condition, as we have seen in
chapter 5. In �gure 6.11a, and 6.11b we see that the close loop system is still stable with the
maximum time delay, but the response is highly oscillatory. It is clear that the system can not
operate in such conditions.
In �gure 6.12a, and 6.12b is shown the results of simulation13. In particular, we highlight that
this simulation is obtained with both the set-point tricks: set-point �lter inserted and set-point
parameter set to 0. We observe the system instability, even though it is in the least aggressive
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Figure 6.11: Results of the simulation called: simulation11

con�guration. Then, the time delay τMAX = 0.15[s] can not guarantees the stability, as we have
concluded in chapter 5.
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Figure 6.12: Results of the simulation called: simulation13

After all the simulations evaluated, we can make some conclusions:

1. All the models give the expected results, which means that the reduction and linearization
process is consistent.

2. We achieve good performance at least till the γ-distributed model.

3. The choice of Multiplicative Perturbation for describing the gain uncertainty of the model
is a good approximation and drives to correct results.

All these conclusions encourage us to continue with the implementation of the designed controller
in the real system under study.

70



Chapter 7

Experimental set-up and control

implementation

(a) hydraulic system under tests. The cylinder, the
directional control valve and the linear encoder are
visible.

(b) system interface components: the RT Speedgoat
micro-controller, the power unit, and the �rst WIFI
router for the TCP-IP connection.

Figure 7.1: Experimental set-up: the hydraulic system and the interface. The remote controller
is not shown.

In this chapter, we point out how we practically set-up the controller of the system shown in
�gure 7.1a. In particular, we focus on the implementation of the remote control through a
TCP-IP communication with a WIFI connection or an Ethernet connection. Furthermore, we
explain how the time delay is evaluated to make the analysis at section 3.2 possible. In the end,
we describe the operative system states focusing on the initialization procedure necessary for
the synchronization of the communication channel, the homing procedure to get the absolute
position value, the control strategy to guarantee safety during the operation.

In table 7.1 are listed the devices used in the control system. In particular, we remark that the
system interface supports the Matlab Simulink environment. It is possible to program Speedgoat
with a host computer thanks to the application always provided by Matlab: Simulink-Real-Time-
Explorer. Therefore, in Speedgoat and in the host computer is installed Matlab R2018a, while
in the controller computer is installed Matlab R2021a. There are compatible problems because
the two devices (Speedgoat and the laptop) are running separately two programs, and they only
communicate signals with the TCP-IP protocol.
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Description Model number

Cylinder D633 R16KD1M0NSM2

Moog servo valve CD25-40 25x200-SS-HC-SSN-NNN

Celesco linear-pot. CLP-250

System interface Speedgoat, Baseline real-time target machine-S(4043)

WIFI routers Svive Cirrus Router

Controller laptop Asus VivoBook S530F

Table 7.1: Installed components of experimental system, [27]

7.1 Implementation of the TCP-IP communication

In �gure 7.2 we see the scheme of the all control system. From the hydraulic system, we see
the two connections for getting the control signal and for sending the position measured to a
power drive. The power drive was designed and built in a previous job. Basically, the aim is to
transform the control signal acquired from Speedgoat into a power signal. Speedgoat has two
Ethernet connections. The �rst is with the host device, so we will call host port, the second is
with the �rst WIFI router, therefore we will call router port. Then, the �rst router shared data
with the second router through a WIFI bridge. Finally, the second router is connected to the
laptop where the control program is running through an Ethernet connection. To be precise, the
laptop we have used has not the Ethernet port, so we use an Ethernet-USB adapter but, this
does not change in any way in the following discussion. To the best of our knowledge, there is
not a similar con�guration already established with the Speedgoat device in the literature. We
can �nd some useful information on how IP addresses work in the Acromag white-paper [7].

First of all, with the host device, we built a program that receives the sensor information and
sends the control signal to the power device. For these purposes, we use the speci�c blocks
of analogue input and output provided by the Speedgoat Real-Time Libraries. The same li-
braries also provide the blocks for the TCP-IP communication, called TCP Send and TCP
Receive, with the obvious meaning. These blocks are con�gured using a third block called
TCP Server Con�gure that needs the network information and the parameters of the slot PCI
(Periferica Component Interconnect) in with the used network card is installed. In particu-
lar, we need the IP address, the network Mask, Gate, port, and for the PCI slot, we need
the Bus number, the Slot number, and the Function number. To set a proper IP address,
we choose 30.30.30.1, so a compatible network mask and gate are respectively 255.255.255.0,
and 0.0.0.0. To get the PCI information of the used Ethernet port, we use the command:
speedgoat.showInstalledIoModules('Type', 'Ethernet'), and with some commu-
nication attempts we can �nd the correct numbers. Finally, we choose the port number 5027.

Similarly, in the controller computer, we implement the TCP-IP communication with some
Simulink blocks. We �nd some useful information about the block on [40]. In this case, the
blocks are provided by the Instrument Control Toolbox. In these blocks, we have only to set
the IP address with which we want to establish the connection, so 30.30.30.1, and the port
number 5027. Furthermore, we have to set the network address of the laptop properly so that
is in the same network as Speedgoat. The controller computer is running Windows10 home, so
this operation is easily done by changing the con�gurations in Ethernet properties → Protocol
Internet (TCP/IPv4) Properties. We have to choose a �xed IP address instead of automatically
getting it. A proper choice is IP: 30.30.30.2 and subnet mask: 255.0.0.0. The WIFI connection
between the routers is obtained by implementing a bridge. We have to manage the router's
con�gurations, but the details are left because they can be easily found in the literature.

To sum up, in �gure 7.2 we can see also the details regarding the Network address and information
of each device port.
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Figure 7.2: Connections diagram on the control system. The network address is highlighted in
each device.

7.2 Time delay evaluation

In section 3.2 we have de�ned the Round Trip Time (RTT), and we have analysed the distribution
of the data acquired in several tests. Now we want to explain how we to get this measure most
consistently.
Always in section 3.2, there is the scheme of �gure 3.3 in which we can see that the RTT a�ects
all the signals that make the round trip between the controller (laptop), and the system interface
(Speedgoat). Then the idea shown in that �gure 3.3 is to generate another signal on Speedgoat,
let it make the round trip and compare the signal sent with the signal received. Basically, we can
get the time delay from the phase shift but, there is a simpler way. Thence, in this section, we
see two approaches for evaluating the time delay. Both of them use the same signal, but while
we compute the �rst real-time on Speedgoat, we calculate the second with a data post-process.
The additional signal has to be useful for an easy phase shift comparison. Hence, we choose a
saw-tooth signal of amplitude 10, and period 10[s], with the lowest value at 1, see �gure 7.3.
The idea behind the choice of the saw-tooth signal is to simplify the data samples identi�cation.
Indeed, we only have to detect the signal at the same amplitude. In �gure 7.3 we see the saw-
tooth sent and received by Speedgoat. We see that the time delay is detected even by a simple
look.
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Figure 7.3: Counter signal used to evaluate the time delay sent and received by the server.
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7.2.1 Real Time evaluation

It is necessary to compute the time delay with a real-time process because the safe operation of
the system, as we have seen, strongly depends on the time delay in the communication. If the
time delay goes upper the bound for too long, the system becomes unstable. Thus, we have to
monitor constantly the amplitude of the delay to stop the system under certain conditions later
explained.
Looking at the top of �gure 7.4 we see a zoom of the same signals of �gure 7.3. We can recognise
the sample time of the communication because the received signal change value is each 0.01[s].
Moreover, we see that not all the sample points are received by Speedgoat, for instance, at
61.03[s] the value is the same as 61.02[s], and only at 61.04[s] it changes. We guess that this
happens because the time delay of the sample at 61.03[s] is bigger than the next one, so it is
overwritten by the next. This phenomenon makes the online calculation more complex because
not all the data points have a respective received value. Then, the simplest way to compute the
time delay is to use the property of the designed saw-tooth: there is a 1 to 1 ratio between the
time axis and the amplitude axis. Hence, we can compute the delay by simply subtracting the
signal received to the signal sent at each time sample. This approach is evident by looking at
�gure 7.4. Below is reported the function implemented in the program running on Speedgoat.

Listing 7.1: Real-Time evaluation function to compute the time delay
function dT = TimeDelay(count_sent, count_received, enable)
if (enable~=0) && (count_received~=0)% condition to have the communication

dT = count_sent-count_received; % because the counter slope is 1
if dT < 0

dT = dT + 10; % 10 is the amplitude of the counter
end

else
dT = 0;

end

Figure 7.4: Real-time evaluation of the time delay using the di�erence of the counter signal
amplitude.
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7.2.2 Evaluation form data post processing

As we said, some data points are overwritten by the following ones, so it is easier to use the
amplitude di�erence of the signal sent and received. Unfortunately, this is not exactly the same
thing. We can understand the di�erence looking at �gure 7.5. We see that all the points from
61.05[s] to 61.07 − 0.0005[s] have the same value (2.02). Then, we can compute the delay
by the amplitude subtraction. We see that we get an increasing function. The time delay
calculation is di�erent if we think about the time shift of the same data points. The �rst point,
the one at 61.02[s] has a time shift of 0.03[s], then the next one, so at 61.02 + 0.0005[s], has
a time delay greater of the previous one, instead of lower. Indeed, the delay of the point at
61.02 + 0.0005[s] is the time of the sample point that overwrites it, so 61.07[s]. Thus, we have
a delay of 61.07 − (61.02 + 0.0005) = 0.0495[s]. We know that the di�erence between the two
approaches is very little. Nevertheless, having the best possible set of measures is very important
because we want to �t the statistical distribution. Furthermore, this calculation could be done
by running an o�-line program, basically, post-processing the two counter signals. We highlight
that we use the time delay real-time evaluated only for checking the safety operation of the
system and the time delay computed with the post-process of the data for all the rest.

Figure 7.5: Evaluation of the time delay using the phase shift of the counter signal.
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7.3 Operative system states

STOP

HOMING:
• Open loop drive;

• Reset encoder: “0” posi�on

CLOSE LOOP CONTROL
• Send posi�on

• Receive control signal

• Wait for client
STATUS=0 ENABLE=0

• Wait 8 seconds
STATUS=1 ENABLE=1

• Send and receive counter
STATUS=1 ENABLE=1

If STATUS=1

If ENABLE=1

If STATUS=0

If STATUS=0

FAULT LOGIC (one condi�on TRUE):
• τ>0.3[s]
• τ>0.11[s] more than 0.5[s]
• STATUS=0

BLOCK
Reset

RUN COMMUNICATION INITIALIZATION

τ<0.11[s]

Figure 7.6: Block diagram of the control system states.

To be able to evaluate the controller design with experiments we have to implement some basic
machine states. The principal goals are:

1. make the homing procedure for initialising the position measured and for start from a
"safe" position;

2. to manage the connection between server and client and guarantee that the communication
has no problems;

3. manage the transition between open-loop control and close loop control;

4. to implement a fault logic that guarantees a safe operation.

We highlight that we are considering the control system divided into two subsystems: the system
interface with all the power units and hydraulic, and the laptop with the controller. From a
communicational point of view, before we talked respectively about server, and client. Thanks
to the Robust Stability Condition we can say that the controller has not any impact on the safe
operation of the machine, if the time delay is under the upper-bound τMAX = 0.11[s], and if the
system is driving in close loop. Then, all the above objectives have to be implemented by the
server, so in our case on Speedgoat.
Our design choice is shown in �gure 7.6. We see inside the grey blocks the implemented machine
states. Basically, starting from the initial condition indicated with the state stop, running the
program, the system interface starts doing at the same time the homing, and the communication
initialization. Then, under the condition τ < 0.11[s] we start the close loop control. From the
latter state, the machine goes into block under the conditions detected by the fault logic. From
the block state, we can return to the initial state of stop only with a reset of the machine. Now
we are going to explain in detail how we implement this procedure.
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7.3.1 Communication initialization

The state communication initialization has to establish the connection between server and client
and start the evaluation of the time delay in the loop. In particular, the time delay must
always have consistent values. Indeed, after the homing procedure �nishes, it gives the condition
for starting the close loop control. Unfortunately, we face a problem if we wait until we have
established the connection, and then, we communicate the counter signal used for the time delay
evaluation. We explain that problem with �gure 7.7a. If we look at �gure 7.7a we see that we
have the connection established at 25.95[s]. We know that because we use an internal signal
called status that gets a boolean value based on the connection status, the �gure is multiplied
by a constant to see better. In this case, as suggested before, at the same time, we also start
with the communication of the signal called signal sent, and we acquire the same after it makes
the round trip, so we call it signal received. We see that we start receiving the signal with a huge
delay of 30.59− 25.95 = 4.64[s], and then the acquisition catch up in around 1[s] to achieve the
time delay analyzed in section 3.2. This phenomenon is due to the communication initialization
of both client and server and it is not deterministic, so we do not know exactly what is the initial
delay. This phenomenon is not acceptable because could happen the initial delay is greater
than the counter amplitude, the result is the over�ow of the τ calculation. Thus, the wrong
computed τ could make the condition τ < 0.11[s] true and activate the close control loop. To
avoid such a problem, we can basically delay the communication from the connection. We see in
�gure 7.7b that a delay of 10[s] between the connection and the communication allow us to get
the desired result. We control the connection start using another internal signal called enable
that also assume binary values. The experience provided by several tests allows us to say that a
delay of 8[s] is enough for our purpose. Therefore, we can implement the initialization procedure
as shown in the �gure 7.2. First, we wait until the server and client are connected, so status
became 1. Then, we wait for 8[s], but we go back to the �rst state as soon as the connection
is lost. Then, after these 8[s] in which the status signal is always 1, enable becomes 1, and the
communication of the counter starts. Also, in this �nal state with enable=1, we go back to the
�rst state as soon as the connection is lost, so status=0. Only in this �nal state with enable and
status both equal to 1 we are computing the communication time delay.
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7.3.2 Homing and open loop control

When we start running the program in the machine interface, and the communication initial-
ization procedure is in progress, the homing procedure begins at the same time. In particular,
this machine state aims to drive the piston in a safe starting position for the closed-loop control.
Moreover, zeroing the position measurement when the piston reaches the new position. We set
up the following steps:

1. bring the piston to the beginning of the cylinder stroke;

2. drive forward for a while, just to detach the piston from the side;

3. reset the measure read by the encoder.

The �rst step is necessary to reach a known position because basically when we turn on the
machine we do not know where the piston is left. We can do that by applying a small negative
control signal as it is visible in �gure 7.8. The amplitude has to be greater than the dead-zone
level, so ±0.1, but also it has to be very little to avoid a strong hit that could damage the system.
For this purpose, we choose −0.15 for a time length of 15[s].
The idea behind the second step resides in the fact that when we close the control loop the
oscillations we have seen in the simulations due to the measurement noise will make the piston
hit the cylinder continuously. Hence, we simply give a small control signal of 0.15 for a short
amount of time 0.5[s]. In this way, we know that the control produces a tiny displacement of
less than 0.03[m].
Finally, with the third step, we reset the position value to zero, so we can simply drive the
system with the close-loop control without any e�ort on the initial condition of the reference
signal. Looking at �gure 7.8 we remark that the signal we send to the client is constantly zero,
only when we are in the close loop state, as we will see, we can send the now zeroed position
measure.
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7.3.3 Close loop procedure

Always looking at picture 7.6 we see that we can reached the close loop control state only after
both the homing, and communication initialization are well �nished. Moreover, the time delay
has to be less than the upper-bound τ < τMAX = 0.11[s]. Hence, when all these conditions are
satis�ed, we send to the client the position measure, as it is visible in �gure 7.9. Before that,
the position sent to the client is set to zero to avoid the PID controller integrates the error.
Figure 7.9 shows both the server and the client signals during this state transition. We see that
the homing procedure ended after we have established the communication. All the conditions for
getting into the close loop control state are satis�ed when the homing procedure terminates. For
precaution, always in the picture, we see that we wait some seconds before e�ectively starting
the close control.
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Figure 7.9: Server and client signals during the transition from the open loop to the close loop
control.

We remark that the two subsystems have a di�erent time axis, basically because we have to
run the server �rst, and then we can run the client that search the connection on the speci�ed
IP address and port. Due to the variable time delay in the communication, it is impossible to
perfectly synchronise the axis. We make a good approximation if we assume the variable time
delay for one way is half of the Round Trip Time. In the next chapter, we are going to present the
results of the designed controller. In that case, we need to have in the same time axis reference
and control signal generated by the client, and the measured position and time delay from the
server. Then, we will use for practice the client time axis so we shift the server signals using the
already mentioned approximation.

81



CHAPTER 7. EXPERIMENTAL SET-UP AND CONTROL IMPLEMENTATION

7.3.4 Safe operation logic

We remember that this machine states project aims to be able to evaluate the experimental
results of the designed controller. Hence, evaluating a safe operation logic that guarantees to op-
erate under safe conditions is important, but having not too precautionary conditions is likewise
necessary. Indeed, too precautionary conditions make the evaluation procedure impossible.
With the Robust Stability Condition we guarantee that the close loop control system remain
stable if the time delay keeps under τMAX = 0.11[s]. Analysing the time delay distribution we
have seen that it keeps under the upper bound from 93.68% to 100% of the cases, see table 5.3.
Thus, even if it would be better to activate the fault condition as soon as the real-time computed
time delay goes upper the bound, it is necessary to �nd a less restrictive condition. Indeed, if we
do not do that, statistically the system will stop one time each 0.0071[s], clearly not long enough
to make any test.
The choice we make is to activate the fault procedure if one of the following conditions become
true:

1. the time delay goes upper 0.3[s];

2. the time delay keep over the bound τ > τMAX = 0.11[s] for at least 0.5[s];

3. there is no more connection between client and server: status=0.

With the �rst condition, we avoid extremely high delay in the communication that may cause
fast divergence in the response. With the second, we avoid that the system keeps in an unstable
condition for too long, and of course, if the connection is lost, there is no point to maintain
the closed-loop con�guration. We choose the values of the �rst two conditions by means of the
analysis of the experiments already done.
When the fault condition is activated, the system stops the closed-loop control and instead drive
the hydraulic with zero control, so the piston simply stops immediately. Hence, we arrived in
the sate called block in �gure 7.6. From this state, the only way to become operative again is to
reset both the server and the controller.
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Experimental results and discussion

We project twelve experiments to evaluate the controller design on the real hydraulic system of
UiA laboratory. These tests are listed in table 8.1. In the table we can see from the �rst column
to the last: the label of the experiment, the set-up con�guration, the set-point parameter b, and
the set-point �lter Fsp. The set-up con�guration clari�es where is the controller. For instance,
in the �rst three tests with ETH cable, we mean that the controller program is running on the
laptop, and the TCP-IP communication from the controller to the system interface is through an
Ethernet cable. Then, by WIFI dWIFI = 0.2[m] we mean that the TCP-IP communication takes
place via the WIFI connection at a speci�ed distance dWIFI. We choose dWIFI to reproduce the
condition of the preliminary tests made for evaluating the time delay in the communication, see
chapter 3.2. In particular we will talk about Close WIFI distance for dWIFI = 0.2[m], Middle
WIFI distance for dWIFI = 2[m], and Great WIFI distance for dWIFI = 10[m]. Finally, by
deterministic RT-C we mean that the controller is running Real-Time directly on the system
interface, then without TCP-IP communication. For the set-point parameter b, and for the set-
point �lter Fsp we use the same notation of table 6.2, in chapter 6. We use a square wave as a
position reference of 0.1[m] of amplitude and 0.05[m] shifting because we want to make exactly
the same tests we have made in the simulations. Hence, the comparison between experimental
results and simulation results is the easiest.

Table 8.1: Set of experimental tests, names and properties

Experiment Name Con�guration b Fsp

test1 ETH cable 0 no

test2 ETH cable 0 yes

test3 ETH cable 1 no

test4 WIFI dWIFI = 0.2[m] 0 no

test5 WIFI dWIFI = 0.2[m] 0 yes

test6 WIFI dWIFI = 2[m] 0 no

test7 WIFI dWIFI = 2[m] 0 yes

test8 WIFI dWIFI = 10[m] 0 no

test9 WIFI dWIFI = 10[m] 0 yes

test10 deterministic RT-C 1 no

test11 deterministic RT-C 0 no

test12 deterministic RT-C 0 yes
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8.1 Deterministic real time control

Now we present the results obtained with the control implemented on Speedgoat. The step
responses for the experiment test12, and the simulation called simulation1 are shown together
in �gure 8.1a, and 8.1b. In this case, we use all the set-point tricks. We see that the measured
position has almost the same trajectory as all the simulation models. In particular, this similarity
becomes more pronounced with the Full-Order Model. Furthermore, we can say the same by
looking at the control signals. Again in the control signals graph, we see the measure has less
amplitude than the simulation signals. That means there is a di�erence between some models
parameters and the real system, that does not a�ect the dynamic behaviour. We guess the main
di�erence is in the friction model. Therefore, the real friction force is strongly dependent on the
temperature, lubricant condition, dust, and many other non modelled factors. Moreover, the
experiments for friction identi�cation have been made more than one year before.
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Figure 8.1: Results of the experimental test called test12 compared with the results from simu-
lation1

In �gure 8.2a, and 8.2b are reported together the step responses for the experiment test11,
and simulation2. In this case, the set-point �lter is not used, so we are in the best controller
con�guration. We see that the step response is still very close to the simulation, in particular
in the step back with the Full-Order Model. The only di�erence we can note is when the piston
in the step forward is approaching the reference. We see a huge increment of the counteracting
force that reduces drastically the speed, so the controller tries to compensate by increasing the
control signal value. We suggest that this di�erence is caused by both the variation of the friction
behaviour discussed before and the friction non-linearity of the drove mass position on the piston
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guide.

[s]

[m
]

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Position

Reference
Nominal
Linear M.
Reduced
Full-Order
Measure

25 26 27 28 29 30 31 32 33 34

(a) position acquired in Speedgoat and reference
generated in the remote controller for the experi-
mental test. Comparison with the result of the sim-
ulation with di�erent models.

[s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Control signal

Nominal Model
Linear Model
Reduced-Order
Full-Order
Measure

25 26 27 28 29 30 31 32 33 34

(b) control signal acquired in Speedgoat and control
signal in the simulation models.

Figure 8.2: Results of the experimental test called test11 compared with the results from simu-
lation2
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8.2 Remote control

We evaluate all the following experiments with the control implemented in the laptop. Thence,
there is TCP-IP communication in the system loop. The idea is to start with the best possible
case, so the direct Ethernet connection between controller and system interface. Then, with the
WIFI implementation, we expect the increment of the time delay, so a worse operative condition.

8.2.1 Direct ETH cable connection

The connection from the laptop to Speedgoat is made with an Ethernet cable around 4 meters
long. The results for test2 are shown in �gure 8.3. We highlight that simulation1 is evaluated
with the minimum time delay. In the upper plot of the �gure, we see the measured position,
the signals from simulation1, and the computed time delay. In the second plot are shown the
respective control signals. We see that the time delay causes some oscillations in the response,
but the trajectory is still very close to the expectation.
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Figure 8.3: In the upper plot there are the position reference, the measured data from test2
and the time delay. The measured data from test2 are compared with the simulation responses
obtained in simulation1. In the second plot there are the respective control signals.

Figure 8.4 is a zoom out of the �rst graph in �gure 8.3. The large time span of more than 40
seconds makes visible the di�erence in the step response from period to period. For instance, at
around 51 seconds with a red circle is marked a deep oscillation in the measured position. At the
same time, we see that the time delay reaches 0.19[s] that is far over the maximum upper-bound
τMAX = 0.11[s]. We see that, even though the stability of the system is no more guaranteed, the
response is still convergent to the reference. Then, if the time delay exceeds the upper bound
for a small amount of time, the system is still stable. This observation supports the discussion
made in the previous chapter and the choices regarding the fault condition.
In Figure 8.5 are also shown the position measured in test1 and the response of simulation2 with
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Figure 8.4: Plot of the position reference, the measured data from test2, and the time delay with
a large time span.

the respective control signals. We divide the �gure to have a better view of the step forward and
step back. The result is good because, if the time delay keeps below the threshold of 0.11[s], we
have a very small rise time ≃ 0.3[s] and a good settling time ≃ 1.3[s], with low overshoot.
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Figure 8.5: In the upper plots there are the position reference, the measured data from test1
compared with the simulation responses obtained in simulation2, and the time delay. In the
lower plots, there are the respective control signals.
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8.2.2 Close WIFI distance

The good results reached with the direct Ethernet cable connection allow us to test the imple-
mentation of the WIFI bridge. In this section, we show the results obtained with a small distance
through the routers: dWIFI = 0.2[m]. In particular, we analyse the response of the system de-
signed with b = 0 and without a set-point �lter, so it is the test4. Figure 8.6 shows the position
results separately for the step forward and back. In this case, we compare the simulated results
evaluated using the γ-distributed time delay. We see that the response start to di�er from the
Full-Order Model, but still, the rise time and the settling time remain the same. Instead, the
amplitude of the oscillation is bigger in the experimental data.
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Figure 8.6: In the upper plot there are the position reference, the measured data from test4
compared with the simulation responses obtained in simulation8 and the time delay.
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8.2.3 Middle WIFI distance

In this section, follow the results obtained with a distance through the routers of dWIFI = 2[m].
In particular, we analyse the response of the system designed with b = 0, and without a set-point
�lter, called test6. In �gure 8.7 are shown the position results in the upper plot and the relative
control signals on the bottom one. We are still comparing the simulated results evaluated using
the γ-distributed time delay. We see that the response strongly di�ers from the Full-Order Model.
Furthermore, now the convergence to the reference signal is reached in a few cases. Indeed, the
oscillation continues if the time delay keeps high values.
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Figure 8.7: In the upper plot there are the position reference, the measured data from test6
compared with the simulation responses obtained in simulation8 and the time delay. In the
second plot, there are the respective control signals.
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8.2.4 Great WIFI distance

As last, we implement the WIFI bridge over a distance of dWIFI = 10[m]. In �gure 8.8 w eshow
the result for the test8 compared with the simualtion11. In this case, the simulation is evaluated
using the maximum allowed time delay: τ = 0.11[s].
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Figure 8.8: In the upper plot there are the position reference, the measured data from test8
compared with the simulation responses obtained in simulation11 and the time delay. In the
second plot, there are the respective control signals.
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8.2.5 Analysis

To sum up, in �gure 8.9 there are the experimental performances obtained changing the type
of connection or the WIFI distance. In particular, in the �gure, the controller is implemented
without the set-point �lter and with the set-point parameter b = 0. It is clear the performance of
the control system is satisfying with the Ethernet connection, but the oscillations become bigger
for a "middle" and "far" distance between the routers with the wireless connection.
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Figure 8.9: System step back response under di�erent control connections.

To judge the goodness of the design approach adopted in this work, we have to analyze the
results by looking at the statistical parameters of the time delay, which is the kernel of the
control problem. In table 8.2 are listed some fundamental statistic parameters computed from
the time delay in the respective experimental tests. We have also computed the amount of time
delay points under the upper bound of 0.11[s] and shown in the last table column. The values
are normalized by 1. We see that the number of values under the bound are far from the 3 · σ
interval. Furthermore, only in the �rst test, the mean value is close to the design value of 0.03[s].
From test6 to test9 the value becomes greater than twice.

Table 8.2: Main statistic parameters of the time delay during the experimental tests

[seconds] max min mean mode var τ ≤ τMAX

test1 0.2395 0.01 0.0349 0.021 8.33E-04 0.9683

test2 0.2195 0.01 0.0432 0.021 8.82E-04 0.9613

test3 0.1495 0.01 0.041 0.021 6.71E-04 0.9738

test4 0.2595 0.01 0.0474 0.021 9.55E-04 0.9554

test5 0.2195 0.01 0.0431 0.021 7.73E-04 0.968

test6 0.2195 0.02 0.0678 0.0475 9.57E-04 0.9021

test7 0.2395 0.01 0.067 0.0475 0.001 0.9085

test8 0.2295 0.02 0.0683 0.0475 9.81E-04 0.9065

test9 0.2795 0.01 0.0662 0.0475 0.0011 0.9029

nominal model 0.11 0.01 0.03 / / 1

Hence, we �t the time delay distributions obtained in the respective tests to see if it is still
comparable to the one adopted in the modelling process. Such result is shown in �gure 8.10. We
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see that the �tted model used in the simulations is close to the distributions �tted for test1, to
test5. Then, from test6 to test9 there is a clear shift to higher time delay value. In table 8.3 are
listed the two parameters of the γ-distribution that �ts the data for each experiment. Moreover,
at the bottom, there are the parameters of the γ-distribution we have chosen for the simulations.
Also, the shape and scale factor highlights the di�erence in the distributions.
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Figure 8.10: γ-distributions �ts of the time delay
τ

Table 8.3: Parameters of the �tted γ-
distributions

parameters a b

test1 2.622685 0.013319

test2 2.690141 0.016058

test3 3.139806 0.013056

test4 2.964207 0.015988

test5 3.157358 0.013662

test6 5.323636 0.01273

test7 5.246183 0.01277

test8 5.488174 0.012445

test9 4.777977 0.013856

simulation 1.6575 0.026533

The computing of the control signal energy of both the experimental tests and simulations is
also worthy. Indeed, we want to see if the control action of the simulation is around the same
as the experimental test under equivalent conditions. To do that, basically, for the simulations
we evaluate the energy separately for the response to the step-up and step-down. We highlight
that we use only the full-order model. We compute the energy in a �ve-second interval for all
the cases because we have �ve seconds between the step-up and step-down in the simulations.
We list the results in table 8.4. In the same table, we can see also the mean of the energy. As
we expect, we see that for good step response, so for the small-time delay in the control loop, we
have low energy values.

Table 8.4: Control signal energy in the simulation evaluated over the �ve seconds of the step
response, and the mean value.

SIMULATION STEP-UP STEP-DOWN MEAN

simulation1 0.0885 0.1165 0.1025

simulation2 0.1108 0.1615 0.1362

simulation3 0.5018 0.6133 0.5576

simulation4 0.0898 0.1183 0.1041

simulation5 0.1350 0.1899 0.1624

simulation6 0.7067 0.8012 0.7540

simulation7 0.0900 0.1186 0.1043

simulation8 0.1379 0.1931 0.1655

simulation9 0.6304 0.8667 0.7485

simulation10 0.3286 0.1504 0.2395

simulation11 17.748 0.6297 12.022

simulation12 46.957 58.934 52.946

We compute the control signal energy of the experimental tests in a �ve seconds interval because
it is the same we have used for the simulations. Hence, we can make a comparison. In this case,
we evaluate a mean between the energy of �ve step-ups and �ve step-downs to have a fair value.
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We list the results in table 8.5. We also compute a mean of all steps, up and down, as for the
simulations. We see that the step-down has generally a bigger energy value than the step-up for
the same test. That is due to the system asymmetry we have already explained.

Table 8.5: Experimental control signal energy evaluated over the �ve seconds of the step response.
The value sown is a mean value.

TEST MEAN STEP-UP MEAN STEP-DOWN TOT MEAN

test1 0.1367 0.1510 0.1439

test2 0.0758 0.0890 0.0824

test4 0.1892 0.1827 0.1859

test5 0.0825 0.0882 0.0853

test6 0.3548 0.4457 0.4003

test7 0.1223 0.1012 0.1118

test8 0.2899 0.3537 0.3218

test9 0.0924 0.1005 0.0965

We compare some control signal energy obtained in the simulations with the one obtained in
the experimental tests. We can see the energy di�erence in table 8.6. We compare simulations
and tests, which we have made with the same control structure. The energy di�erence is little
in the �rst case. Indeed, the absolute di�erence is 0.0077, and the relative di�erence is only
0.0077/0.1439 · 100 = 5.3%. That means the full-order model is close to the experimental set-up
when the time delay is low. In the other cases, the relative di�erence is bigger. That happens
because the mean of the time delay in the experimental tests becomes farther from the one
modelled in the simulations. Moreover, the dead-zone compensation introduced in the control
structure causes a nonlinear behaviour of the control signal. Hence, a tiny di�erence in the
system dynamic leads to a big di�erence in the control signal energy.

Table 8.6: Control signal energy comparison between some simulations and tests.

COMPARISON
DIFFERENCE

SIMULATION EXPERIMENT

simulation2 test1 0.0077

simulation1 test2 -0.0201

simulation8 test4 0.0204

simulation8 test6 0.2348

simulation11 test8 -11.7002

In the end, we see that the design model is close only to the preliminary tests made with the
direct cable connection through the system and the controller. The simulation model seems to
be valid also for the experiments evaluated with dWIFI = 0.2[m]. The tests with dWIFI = 2[m],
and dWIFI = 10[m] have a time delay distribution greater than the expected one. We guess
the reason is due to the di�erent programs used in the time delay evaluation tests, and the
experimental tests. The implementation of the controller may load the laptop resources and
reduce the performance of the TCP-IP communication.
Apart from that, the controller design gives good performance and guarantees stability under
the conditions de�ned in the design procedure. The fact we get the expected performance under
the same time delay condition means that the model used in the simulation is very likely.
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Conclusions

To sum up, we can say that we have reached all the objectives of the work. Indeed, we have
completed the following points:

1. we have implemented a TCP-IP communication with a WIFI connection between the con-
troller and the hydraulic system;

2. we have evaluated a perturbed model of the process which allows verifying the robust
stability condition;

3. we have robustly designed a 2DOF PID controller optimizing the integral action;

4. we have tested the control system performance with both simulations and experiments in
the hydraulic plant of UiA.

We have simulated the control process using four models. The two most important are the
so-called nominal model and the full-order model. The latter tries to emulate the experimental
system as much as possible. The nominal model is a linear transfer function that approximates
the dynamic of the hydraulic system. We have obtained the model by simpli�cation and lin-
earization of the full-order model. We have discussed why we have chosen a particular operative
point for the linearization. Brie�y, the nominal model contains the average of the variable pa-
rameters. We see in the simulations that the controller reaches good performance because the
nominal model gives a rise time in a step reference of around 0.3[s] and a settling time of 2[s]
with low oscillations and overshoot. Furthermore, with the simulation of the full-order model we
get even better results. Indeed, the settling time, the overshoot and the oscillations are reduced
compared to before because of the friction non-linearity. That is a good result if we think that
in the control loop a time delay gamma-distributed from a minimum of 0.01[s] to a maximum of
0.16[s] and a mean of 0.03[s] is modelled. Moreover, we veri�ed numerically the validity of the
robust stability condition evaluated on the parameter's uncertainties. In particular, we found
the upper bound of 0.11[s] of time delay.
Hence, we can conclude:

1. The robustly designed controller achieves nominally satisfactory performance.

2. The uncertainty analysis and the evaluation of the perturbed model produce a reliable
condition for robust stability.

We tested the controller in the hydraulic plant, with a direct Ethernet connection and with
several distances of the WIFI connection. Furthermore, we tested the system with the real-time
implementation of the controller, so without the TCP-IP communication, just to compare. With
the latter con�guration, we obtain a response that is very close to the full-order model simulated
without time delay. The only di�erence is in the friction behaviour at low speed. Thus, we get
the same rise time and settling time. Then, with the TCP-IP communication, we get still a
good response even though the mean time delay is yet over the expectation: 0.035[s]. With the
implementation of the WIFI connection, for a short distance between routers, the delay increases
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to an average of 0.041 / 0.047 [s] and for a long distance, the delay increases to a value of 0.068 [s].
Then, the system response becomes worse. What is interesting to see is that the system is still
stable even with only 90% of the sample points with a time delay lower than the upper-bound
0.11[s]. Therefore, we can conclude the followings:

1. The full-order model describes the hydraulic plant faithfully.

2. The linearization of the model and the uncertainty analysis give a dependable nominal
model for the control design.

3. The controller has the expected robustness to parameter variations.

We remark that we saw an increase in the time delay in the loop compared to the one obtained
with the identi�cation tests. Hence, one should consider improving the performance of the
wireless connection and communication if anyone is interested in the practical implementation
of the controller structure discussed in this report.
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Matlab Code

Listing A.1: Algorithm:4.2.2
%% PID design with Optimization Toolbox
% PROCESS WITH FREE INTEGRATOR AND TIME DELAY
% need functions: @hitcallback @bisectionMethod
clear all; close all; clc;

w_vec = logspace(-1,4,10000);
% check robustness constraint around w_crit
w_check = [linspace(0.8,1.2,10), linspace(1.3, 20, 40)];
% Newton Raphson perturbation
num_perturb_NewRap = 3; % num^4
dx0 = [0.1 0.1 0.1 0.1]'; % wheiting function (Kp Ki w1 w2)
% design specifications
Ms = 1.1;
r = 1/Ms;
c = 1;

%% Load data from: A_Model_Initialization

% 'P' = symbolic model without time delay
% 'P_nom' = symbolic model with nominal time delay
% 'usys' = uncertain transfer function without time delay
% 'Pnom_tf' = nominal transfer function with nominal time delay
% 'usysPade' = uncertain transfer function with Padè approximation of dt
load('Data Variables/A_PxFy_forDESIGN.mat');

%% define transfer functions
s = tf('s');
syms w real positive
syms w1 real positive
syms w2 real positive
syms K real
syms Ki real
syms Kd real

figure;
bode(Pnom_tf);
xlim([10^-5,10^4]);
ylim([-360 -45]);
grid on;
title('Process Nominal Transfer Function');

ro = sqrt(real(P_nom)^2+imag(P_nom)^2);
phi = angle(P_nom);
rod = diff(ro,w);
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phid = diff(phi);
alpha = ro*cos(phi);
beta = ro*sin(phi);

%% SMOOTH CONSTRAINT %%%%%%%%%%%%%%
PID = K + Ki/(1i*w) + Kd*(1i*w);
L = PID*P_nom;
real_L = real(L);
imag_L = imag(L);
real_L_dot = diff(real_L, w);
imag_L_dot = diff(imag_L, w);
real_L_dot_dot = diff(real_L_dot, w);
imag_L_dot_dot = diff(imag_L_dot, w);
smooth1 = (real_L_dot*imag_L_dot_dot-real_L_dot_dot*imag_L_dot)/...

(real_L_dot^2+imag_L_dot^2)^(3/2);
smooth2 = diff(angle(L),w);
smooth1_fnc = matlabFunction(smooth1); % @(K,Kd,Ki,w)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% STEP 1: DETERMIN THE SEARCH RANGE w_low w_high

kdPI = 0;
less_w = 0;
cross_0 = 0;
hpid = (r+c*sin(phi))*(rod/ro-1/w)-c*phid*cos(phi)+2*ro*kdPI;
hpidfnc=matlabFunction(hpid); % @(w)
[~, phaseP] = bode(Pnom_tf, w_vec);
i=1;
while phaseP(i) > -90

i = i+1;
end
w90 = w_vec(i);
i=1;
while phaseP(i) > -(180-asin(r/c)*180/pi)

i = i+1;
end
w180asin = w_vec(i);
if hpidfnc(w90)*hpidfnc(w180asin)<0

cross_0 = 1;
end
while cross_0 == 0

w_lin = linspace(w90-less_w,w180asin-less_w,100);
figure;
plot(w_lin,hpidfnc(w_lin));
grid on;
less_w = input('INSERT THE LEFT TRASLATION OF\n THE INTERVAL FOR 0 ...

CROSSING: (w>0):');
if hpidfnc(w90-less_w)*hpidfnc(w180asin-less_w)<0

cross_0 = 1;
end

end
w_lin = linspace(w90-less_w,w180asin-less_w,100);
figure;
plot(w_lin,hpidfnc(w_lin));
grid on;

%% STEP 2: solve for PI:
% design PI controller to find initial conditions
% [kp ki kd=0] and [w0 w180 w270]

kdPI = 0;
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hpid = (r+c*sin(phi))*(rod/ro-1/w)-c*phid*cos(phi)+2*ro*kdPI;
dh = diff(hpid,w);
hpid_fun = matlabFunction(hpid);
wpi0 = bisectionMethod(hpidfnc,w90-less_w,w180asin-less_w,1e-5);
options = optimoptions(@fsolve,'Algorithm','levenberg-marquardt');
wpi = fsolve(hpid_fun,wpi0,options);
phiPI = subs(phi,w,wpi);
roPI = subs(ro,w,wpi);
kpPI = double(-c/roPI*cos(phiPI));
kiPI = double(-wpi/roPI*(r+c*sin(phiPI))+wpi^2*kdPI);

% verify that the robustness constraint is satisfied arpund w*
f = abs(c+(kpPI+1i*(kdPI*w-kiPI/w))*P_nom)^2;
ROBUST_CONDITION = true;
for j=1:length(w_check)

if double(subs(f,w,wpi*w_check(j)))<r^2
ROBUST_CONDITION = false;
break;

end
end
ROBUST_CONDITION_PI = ROBUST_CONDITION;

if ROBUST_CONDITION_PI==0
corner = 1;
('ENVELOP WITH CORNER OR SEE ROBUST CONDITION')

else
corner = 0;
('SMOOTH ENVELOP (at Kd=0) OR SEE ROBUST CONDITION')

end

%% STEP 3A: SMOOTH ENVELOPE:

if corner==0
% repeat until the envelope is smooth to find initial condition for
% optimization problem (@fseminf())
kp_smooth = kpPI;
ki_smooth = kiPI;
kd_smooth = kdPI;
w_smooth = wpi;
PIDtf = kp_smooth + ki_smooth/s + kd_smooth*s;
Ltf = PIDtf*Pnom_tf;
[~, phaseL] = bode(Ltf, w_vec);
% phaseL = phaseL-360;
i=1;
while phaseL(i)<-180

i = i+1;
end
w180 = w_vec(i);
i=1;
while phaseL(i)>-270

i = i+1;
end
w270 = w_vec(i);
w_start = w_smooth/2;
w_stop = (w180+w270)/2;

kp_smooth_0 = kp_smooth;
ki_smooth_0 = ki_smooth;
kd_smooth_0 = kd_smooth;
w_smooth_0 = w_smooth;
delta_kd = 1;
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n_iterations = 0;
bisect_kd_MAX = 1;
bisect_kd_min = 0;
ROBUST_CONDITION_kdMAX = true;
f = abs(c+(kp_smooth+1i*(bisect_kd_MAX*w-ki_smooth/w))*P_nom)^2;
for j=1:length(w_check)

if double(subs(f,w,w_smooth*w_check(j)))<r^2
ROBUST_CONDITION_kdMAX = false;
break;

end
end

if ROBUST_CONDITION_kdMAX == false
% BISECTIONAL METHOD FOR SEARCHING MAX KD THAT SATISFY ROBUST
% CONSTRAINT

while (bisect_kd_MAX-bisect_kd_min) > 0.00001 && ...
n_iterations<50 % EXIT CONDITIONS

kd_smooth_0 = (bisect_kd_MAX + bisect_kd_min)/2;
n_iterations = n_iterations + 1;

hpid = ...
(r+c*sin(phi))*(rod/ro-1/w)-c*phid*cos(phi)+2*ro*kd_smooth_0;

hpid_fnc=matlabFunction(hpid); % @(w)
w_smooth_0=bisectionMethod(hpidfnc,w_start,w_stop,1e-5);
options = ...

optimoptions(@fsolve,'Algorithm','levenberg-marquardt');
w_smooth_0 = fsolve(hpid_fnc,w_smooth_0,options);
phiPID = subs(phi,w,w_smooth_0);
roPID = subs(ro,w,w_smooth_0);
kp_smooth_0 = double(-c/roPID*cos(phiPID));
ki_smooth_0 = double(-w_smooth_0/roPID*(r+c*sin(phiPID))+...
w_smooth_0^2*kd_smooth_0);

% verify that the robustness constraint is satisfied arpund w*
f = abs(c+(kp_smooth_0+1i*(kd_smooth_0*w-ki_smooth_0/...
w))*P_nom)^2;
ROBUST_CONDITION = true;
for j=1:length(w_check)

if double(subs(f,w,w_smooth_0*w_check(j)))<r^2
ROBUST_CONDITION = false;
break;

end
end
if ROBUST_CONDITION == false

bisect_kd_MAX = kd_smooth_0;
elseif ROBUST_CONDITION == true

bisect_kd_min = kd_smooth_0;
kp_smooth = kp_smooth_0;
ki_smooth = ki_smooth_0;
kd_smooth = kd_smooth_0;
w_smooth = w_smooth_0;

end

end
f = abs(c+(kp_smooth+1i*(kd_smooth*w-ki_smooth/w))*P_nom)^2;
ROBUST_CONDITION = true;
for j=1:length(w_check)

if double(subs(f,w,w_smooth*w_check(j)))<r^2
ROBUST_CONDITION = false;
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break;
end

end
kp_smooth
ki_smooth
kd_smooth
w_smooth
n_iterations
ROBUST_CONDITION

else
("for KD = MAX the robust constraints are satisfied")

end
end % SMOOTH ENVELOPE

%% STEP 4: initial values for solve the optimum problem:

kp0 = kpPI;
ki0 = kiPI;
kd0 = 0;
if corner==1

w0 = w1PI;
elseif corner==0

w0 = wpi;
end
PIDtf = kp0 + ki0/s + kd0*s;
Ltf = PIDtf*Pnom_tf;
[~, phaseL] = bode(Ltf, w_vec);
% phaseL = phaseL-360;
i=1;
while phaseL(i)<-180
i = i+1;
end
w180 = w_vec(i);
i=1;
while phaseL(i)>-270
i = i+1;
end
w270 = w_vec(i);
w_start = w0/2;
w_stop = (w180+w270)/2;

% initial condition for seminfcon
Pnom_syms = P_nom;
radius = r;
save('Data Variables/B_parameters_for_seminfcon.mat','Pnom_syms','radius');
clear Pnom_syms radius smooth_nyquist1 smooth_con

%% SOLVE OPTIMIZATION PROBLEM USING: fseminf
% x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options)
% x = [kp ki kd wc1 wc2]
clear x x0
objfun = @(x)-x(2);
x0 = [kp_smooth ki_smooth kd_smooth w_smooth w_smooth];
ntheta = 1;
A = [];
b = [];
Aeq = [];
beq = [];
lb = [12, 30, 0.14, w_start, w_start];
ub = [20, 40, 1, w_stop, w_stop];
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[x,fval,exitflag,output,lambda] = fseminf(objfun,x0,ntheta,@seminfcon,...
A,b,Aeq,beq,lb,ub);

x
exitflag
output

kp = x(1);
ki = x(2);
kd = x(3);

%% verification of the solution
PIDtf = kp + ki/s + kd*s;
figure(9);
hold on;
nyquist(PIDtf*Pnom_tf);
circle.x = cos(w)/Ms;
circle.y = sin(w)/Ms;
fplot(circle.x-1,circle.y,'r');
hold off;

Ltf = PIDtf*Pnom_tf;
Wtf = Ltf/(1+Ltf);
figure(10);
hold on;
step(Wtf);
grid on;
hold off;

function [c, ceq, K1, s] = seminfcon(x,s)
% No finite nonlinear inequality and equality constraints
syms w real positive
syms K real
syms Ki real
syms Kd real

load('Data Variables/B_parameters_for_seminfcon.mat');
P_nom = Pnom_syms;
r= radius;
% smooth1 = smooth_nyquist1;

ellipse = (real(1+(K+1i*(Kd*w-Ki/w))*P_nom))^2+...
(imag(1+(K+1i*(Kd*w-Ki/w))*P_nom))^2;

ellipse_diff = diff(ellipse,w);
ellipse = matlabFunction(ellipse); % @(K,Kd,Ki,w)
ellipse_diff = matlabFunction(ellipse_diff); % @(K,Kd,Ki,w)

ellipse_fnc1 = ellipse(x(1),x(3),x(2),x(4))-r^2;
ellipse_fnc2 = ellipse(x(1),x(3),x(2),x(5))-r^2;
ellipse_diff_fnc1 = ellipse_diff(x(1),x(3),x(2),x(4));
ellipse_diff_fnc2 = ellipse_diff(x(1),x(3),x(2),x(5));

ceq = [ellipse_fnc1, ellipse_fnc2, ellipse_diff_fnc1, ellipse_diff_fnc2];

% Sample set
if isnan(s)

s = [1 0];
end

t1 = 4.98:s(1):51.48*50;
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K1 = -ellipse(x(1), x(3), x(2), t1) +r^2;

end
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Figure B.1: Various models used to �t the distribution of the RTT. The data are from Test2,
see 3.2
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Figure B.2: Various models used to �t the distribution of the RTT. The data are from Test4,
see 3.2
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Figure B.3: Various models used to �t the distribution of the RTT. The data are from Test5,
see 3.2
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Figure B.4: Various models used to �t the distribution of the RTT. The data are from Test7,
see 3.2
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Figure B.5: Various models used to �t the distribution of the RTT. The data are from Test9,
see 3.2

107





Bibliography

[1] Najah Abu Ali et al. �Measured delay distribution in a Wireless Mesh Network test-bed.�
In: 2008 IEEE/ACS International Conference on Computer Systems and Applications.
2008, pp. 236�240. doi: 10.1109/AICCSA.2008.4493540.

[2] Karl Johan Åström and Tore Hägglund. �Revisiting the Ziegler�Nichols step response
method for PID control.� In: Journal of process control 14.6 (2004), pp. 635�650.

[3] Karl Johan Åström and Tore Hägglund. �The future of PID control.� In: Control engineer-
ing practice 9.11 (2001), pp. 1163�1175.

[4] Karl Johan Åström, Hélène Panagopoulos, and Tore Hägglund. �Design of PI controllers
based on non-convex optimization.� In: Automatica 34.5 (1998), pp. 585�601.

[5] Gary Balas et al. �Robust Control Toolbox;[user's guide].� In: The Math Works, Inc., Tech.
Rep (2021).

[6] CJ Bovy et al. �Analysis of end-to-end delay measurements in Internet.� In: Proc. of the
Passive and Active Measurement Workshop-PAM. Vol. 2002. 2002.

[7] Senior Design Engineer Bruce Cyburt. How to Connect to an Ethernet Device for Commu-
nication. white-paper. Acromag, Inc, 2018.

[8] Thomas Coleman, Mary Ann Branch, and Andrew Grace. �Optimization Toolbox;[user's
guide].� In: The Math Works, Inc., Tech. Rep (2021).

[9] Tamas Elteto and Sandor Molnar. �On the distribution of round-trip delays in TCP/IP
networks.� In: Proceedings 24th Conference on Local Computer Networks. LCN'99. IEEE.
1999, pp. 172�181.

[10] Abbas Emami-Naeini Gene F. Franklin J. David Powell. Feedback Control of Dynamic
Systems. Seventh Edition. Pearson Education Limited, 2015. isbn: 9781292068909.

[11] Global Optimization Toolbox;[user's guide]. 2021. url: https://www.mathworks.com/
help/pdf_doc/gads/gads.pdf.

[12] Chriss Grimholt and Sigurd Skogestad. �Should we forget the smith predictor?� In: (2019).

[13] Tae-Jun Ha, Jaeyoung Lee, and Jong Hyeon Park. �Robust control by inverse optimal PID
approach for �exible joint robot manipulator.� In: 2007 IEEE International Conference on
Robotics and Biomimetics (ROBIO). IEEE. 2007, pp. 336�341.

[14] Vladimir Hanta and Ale² Procházka. �Rational approximation of time delay.� In: Insti-
tute of Chemical Technology in Prague. Department of computing and control engineering.
Technická 5.166 (2009), p. 28.

[15] Norbert Hohenbichler and Jürgen Ackermann. �Synthesis of robust PID controllers for time
delay systems.� In: 2003 European Control Conference (ECC). IEEE. 2003, pp. 1169�1174.

[16] Allen Tannenbaum Jhon Doyle Vruce Francis. Feedback Control Theory. Macmillan Pub-
lishing Co., 1990.

[17] Mehmet Karaka³. �Determination of network delay distribution over the internet.� MA
thesis. Middle East Technical University, 2003.

109

https://doi.org/10.1109/AICCSA.2008.4493540
https://www.mathworks.com/help/pdf_doc/gads/gads.pdf
https://www.mathworks.com/help/pdf_doc/gads/gads.pdf


BIBLIOGRAPHY

[18] G.P. Liu and S. Daley. �Optimal-tuning nonlinear PID control of hydraulic systems.� In:
Control Engineering Practice 8.9 (2000), pp. 1045�1053. issn: 0967-0661. doi: https:
//doi.org/10.1016/S0967-0661(00)00042-3. url: https://www.sciencedirect.com/
science/article/pii/S0967066100000423.

[19] M. Vidyasagar Mark W. Spong Seth Hutchinson and. Robot Modeling and Control. First
Edition. JOHN WILEY and SONS, INC.

[20] Athina Markopoulou, Fouad Tobagi, and Mansour Karam. �Loss and Delay Measurements
of Internet Backbones.� In: Computer Communications 29.10 (2006). Monitoring and Mea-
surements of IP Networks, pp. 1590�1604. issn: 0140-3664. doi: https://doi.org/10.
1016/j.comcom.2005.07.011. url: https://www.sciencedirect.com/science/
article/pii/S0140366405002720.

[21] Constantin-Irinel Mor rescu, Silviu-Iulian Niculescu, and Keqin Gu. �Stability crossing
curves of shifted gamma-distributed delay systems.� In: SIAM Journal on Applied Dynam-
ical Systems 6.2 (2007), pp. 475�493.

[22] Amarnath Mukherjee. �On the dynamics and signi�cance of low frequency components of
Internet load.� In: (1992).

[23] Roger C. Fales Noah D. Manring. Hydraulic Control Systems. Second Edition. John Wiley
and Sons, Inc., 2020. isbn: 9781119416470.

[24] H Panagopoulos, KJ Astrom, and T Hagglund. �Design of PID controllers based on con-
strained optimization.� In: Proceedings of the 1999 American Control Conference (Cat. No.
99CH36251). Vol. 6. IEEE. 1999, pp. 3858�3862.

[25] Hélène Panagopoulos, KJ Astrom, and T Hagglund. �Design of PID controllers based
on constrained optimisation.� In: IEE Proceedings-Control Theory and Applications 149.1
(2002), pp. 32�40.

[26] Philipp Pasolli and Michael Ruderman. �Hybrid State Feedback Position-Force Control
of Hydraulic Cylinder.� In: 2019 IEEE International Conference on Mechatronics (ICM).
Vol. 1. 2019, pp. 54�59. doi: 10.1109/ICMECH.2019.8722829.

[27] Philipp Pasolli and Michael Ruderman. �Linearized Piecewise A�ne in Control and States
Hydraulic System: Modeling and Identi�cation.� In: Oct. 2018, pp. 4537�4544. doi: 10.
1109/IECON.2018.8591572.

[28] Pasolli Philipp and Ruderman Michael. �Hybrid Position/Force Control for Hydraulic Ac-
tuators.� In: 2020 28th Mediterranean Conference on Control and Automation (MED).
2020, pp. 73�78. doi: 10.1109/MED48518.2020.9183305.

[29] Robert H. Bishop Richard C. Dorf. Modern Control Systems. Thirteenth Edition. Pearson
Education Limited, 2017. isbn: 978292152974.

[30] Otto Roesch and Hubert Roth. �Remote control of mechatronic systems over communica-
tion networks.� In: IEEE International Conference Mechatronics and Automation, 2005.
Vol. 3. IEEE. 2005, pp. 1648�1653.

[31] Alessandro Vespignani Romualdo Pastor-Satorras. Evolution and Structure of the Inter-
net. A Statistical Physics Approach. CAMBRIDGE UNIVERSITY PRESS, 2004. isbn:
9780521826983.

[32] Michael Ruderman. �Full- and reduced-order model of hydraulic cylinder for motion con-
trol.� In: IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society.
2017, pp. 7275�7280. doi: 10.1109/IECON.2017.8217274.

[33] Michael Ruderman. Modeling and control of kinetic friction for robotics; [Guest lecture in
TTK4195]. 2021. url: https://home.uia.no/michaeru/20210413_TTK4195_guest_
lecture_.pdf.

[34] Michael G Safonov. �Origins of robust control: Early history and future speculations.� In:
Annual Reviews in Control 36.2 (2012), pp. 173�181.

110

https://doi.org/https://doi.org/10.1016/S0967-0661(00)00042-3
https://doi.org/https://doi.org/10.1016/S0967-0661(00)00042-3
https://www.sciencedirect.com/science/article/pii/S0967066100000423
https://www.sciencedirect.com/science/article/pii/S0967066100000423
https://doi.org/https://doi.org/10.1016/j.comcom.2005.07.011
https://doi.org/https://doi.org/10.1016/j.comcom.2005.07.011
https://www.sciencedirect.com/science/article/pii/S0140366405002720
https://www.sciencedirect.com/science/article/pii/S0140366405002720
https://doi.org/10.1109/ICMECH.2019.8722829
https://doi.org/10.1109/IECON.2018.8591572
https://doi.org/10.1109/IECON.2018.8591572
https://doi.org/10.1109/MED48518.2020.9183305
https://doi.org/10.1109/IECON.2017.8217274
https://home.uia.no/michaeru/20210413_TTK4195_guest_lecture_.pdf
https://home.uia.no/michaeru/20210413_TTK4195_guest_lecture_.pdf


BIBLIOGRAPHY

[35] Loren Shure. Solving Optimization Problems with MATLAB. 2018. url: https://www.
matlabexpo . com / content / dam / mathworks / mathworks - dot - com / images / events /

matlabexpo/us/2018/master-class-solving-optimization-problems-with-matlab.

pdf.

[36] Guillermo J Silva, Aniruddha Datta, and Shankar P Bhattacharyya. �New results on the
synthesis of PID controllers.� In: IEEE transactions on automatic control 47.2 (2002),
pp. 241�252.

[37] Guillermo J Silva, Aniruddha Datta, and SP Bhattacharyya. �Robust control design using
the PID controller.� In: Proceedings of the 41st IEEE Conference on Decision and Control,
2002. Vol. 2. IEEE. 2002, pp. 1313�1318.

[38] Sigurd Skogestad and Ian Postlethwaite. Multivariable Feedback Control. Analysis and de-
sign. Second Edition. JOHN WILEY and SONS, INC., 2001.

[39] Andrei M Sukhov and Natalia Kuznetsova. �What type of distribution for packet delay in
a global network should be used in the control theory?� In: arXiv preprint arXiv:0907.4468
(2009).

[40] Martin Sysel. �MATLAB/simulink TCP/IP communication.� In: July 2011, pp. 71�75.

[41] Yunbo Wang, Mehmet C. Vuran, and Steve Goddard. �Cross-Layer Analysis of the End-
to-End Delay Distribution in Wireless Sensor Networks.� In: IEEE/ACM Transactions on
Networking 20.1 (2012), pp. 305�318. doi: 10.1109/TNET.2011.2159845.

[42] Kemin Zhou, John C. Doyle, and Keith Glover. Robust and Optimal Control. USA: Prentice-
Hall, Inc., 1996. isbn: 0134565673.

[43] Karl Johan Åström and Tore Hägglund. Advanced PID Control. ISA-The Instrumentation,
Systems, and Automation Society, 2006. isbn: 1556179421.

[44] Karl Johan Åström and Richard M. Murray. Feedback systems. An Indroduction for Scien-
tists and Engineers. Second Edition. Priceton University Press, 2021. isbn: 9780691193984.

111

https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/us/2018/master-class-solving-optimization-problems-with-matlab.pdf
https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/us/2018/master-class-solving-optimization-problems-with-matlab.pdf
https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/us/2018/master-class-solving-optimization-problems-with-matlab.pdf
https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/us/2018/master-class-solving-optimization-problems-with-matlab.pdf
https://doi.org/10.1109/TNET.2011.2159845

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Control oriented system modelling
	Full order model
	Reduced order model
	System linearisation
	Linearised model
	Viscous friction


	Uncertainty Analysis
	Parameter uncertainty of transfer function
	e-s experimental identification and analysis
	Gain uncertainty and nominal model

	Optimization procedure for PID control design
	Optimisation problem
	Selection of solutions approach
	Sensitivity of PID control coefficients
	Final control structure design
	Noise filter
	Set point response
	Feed forward dead zone compensation


	Robust condition
	Representing uncertainty
	Robust stability condition
	Weighting function

	Simulation results
	Simulation models
	Measurement noise
	Time delay model

	Numerical tests
	Without time delay
	Nominal time delay
	Gamma distributed model of time delay
	Maximum time delay


	Experimental set-up and control implementation
	Implementation of the TCP-IP communication
	Time delay evaluation
	Real Time evaluation
	Evaluation form data post processing

	Operative system states
	Communication initialization
	Homing and open loop control
	Close loop procedure
	Safe operation logic


	Experimental results and discussion
	Deterministic real time control
	Remote control
	Direct ETH cable connection
	Close WIFI distance
	Middle WIFI distance
	Great WIFI distance
	Analysis


	Conclusions
	Appendix Matlab Code
	Appendix Figures
	Bibliography

