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Abstract: Nowadays, electrical machines and drive systems are playing an essential role in different
applications. Eventually, various failures occur in long-term continuous operation. Due to the
increased influence of such devices on industry, industrial branches, as well as ordinary human
life, condition monitoring and timely fault diagnostics have gained a reasonable importance. In
this review article, there are studied different diagnostic techniques that can be used for algorithms’
training and realization of predictive maintenance. Benefits and drawbacks of intelligent diagnostic
techniques are highlighted. The most widespread faults of electrical machines are discussed as well
as techniques for parameters’ monitoring are introduced.

Keywords: artificial intelligence; condition monitoring; failure detection; fault diagnosis; fuzzy logic;
machine learning; neural networks; reliability

1. Introduction

Condition monitoring and fault diagnostics of electrical machines are gaining height-
ened popularity. It is because the vital role that electrical machines play in industry and
domestic life is increasing day by day. Electrical machines always remain prone to faults
because of the mechanically moving parts associated with them, the harsh industrial en-
vironment, and no doubt the increasing probability of failure with life. Conventional
maintenance techniques can be broadly classified into two categories: reactive maintenance
and preventive maintenance. Preventive maintenance is mainly related to the scheduled
overhauling of a system and whether or not it requires maintenance, while reactive mainte-
nance comes into play when the failure has already occurred. Unfortunately, both methods
are not suitable in industry, as they have a substantial economic impact. In the case of
reactive maintenance, the machine is already broken, disrupting the process.

In contrast, overhauling all machines, whether healthy or faulty, is not a good solution
in preventive maintenance. In comparison, predictive maintenance is a better choice, one
in which the machine’s health can be continuously monitored, and only faulty machines
can be selected for maintenance. Moreover, since the fault can be detected at an early
stage, the machine can be repaired before any catastrophic situation. However, predictive
techniques are rather complicated depending upon the type of the machine, the drive
control mechanism, and the load behavior. This is why a great many research fields are
involved in the predictive maintenance of electrical machines. Those fields may include
signal processing, statistical data analysis, artificial intelligence, mathematical modelling,
and the design and optimization of sensors and processing boards. This paper presents a
glimpse of the state of the art of condition monitoring of electrical machines so that the
reader can know the trends and challenges in this field. A wide range of diagnostic fields,
with many citations, is summarized, along with corresponding attributes.
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2. Intelligent Diagnostic Techniques

Due to increasing computational power and cloud computation, different mathe-
matical models of motors’ faults can be trained in artificial intelligence algorithms. Ma-
chine learning is an optimal tool in machine health monitoring for dealing with extensive
amounts of data [1]. Machine learning is compared frequently to data mining as both
attempt to discover new data patterns in numerous datasets. The principal difference is
that machine learning deals mostly with adaptive behavior and operative utilization, while
data mining processes large amounts of data [2]. By the usage of training data, machine
learning algorithms can create a forecasting and decision-making model. There are many
algorithms for machine learning. As shown in Figure 1, these algorithms can be generally
divided into three groups: supervised, unsupervised, and reinforcement learning [3–5].

Figure 1. Machine learning algorithms.

In the case of supervised machine learning (“learning with a teacher”), the training
dataset and test dataset are set so that the algorithm can map inputs to the desired outputs
by the labelled examples. These algorithms are suitable for classification and regression
tasks [6,7]. Unlike supervised learning, unsupervised machine learning (“learning without
a teacher”) is dedicated to understanding and discovering patterns from an unknown
dataset. Unsupervised algorithms are primarily used for the generalization and association
of datasets [8,9]. In this case, the primary function is to group objects into clusters and
reduce the amount of data. Reinforcement learning is used to decrease errors and increase
accuracy by analyzing the data after each iteration. These algorithms are spread in robot
navigation, resource management, and real-time decisions [10–12]. In diagnostics of
electrical machines, the following algorithms are used: decision trees [13], support vector
machines [14], principal component analysis [15], and genetic algorithm [16].

2.1. Decision Trees

Decision trees represent supervised machine learning that is widely used for data
prediction and analysis [17]. In this case, the algorithm is focused on creating a model that
can forecast the desired output based on multiple inputs. The general algorithm of decision
trees is shown in Figure 2.
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Figure 2. The general algorithm of decision trees.

Decision trees are the simplest among decision-making algorithms and require a very
small amount of data to achieve a result. To obtain more accurate results, decision trees are
frequently used in parallel with other algorithms. However, decision trees are considered
unstable algorithms; insignificant changes in input data can lead to serious changes in
decision trees’ structure, leading to inaccurate results. Additionally, regression algorithms
usually fail.

2.2. Support Vector Machines

Another widely used supervised machine learning algorithm is support vector ma-
chines, which are suitable for regression tasks, feature extraction, and classification [18,19].
In the case of classification tasks, where support vector machines are preferable, algorithms
can deal with linear and non-linear cases [20]. For linear classification, each dataset repre-
sents a vector in n-dimensional space and belongs to two classes. Therefore, the algorithm
focuses on separating these data points so that there would be a maximum gap between
them. In the case of non-linear classification, the kernel machine acts the same way as for
linear algorithms but replaces the datasets [21]. The method of support vector machines is
described in Figure 3.

Figure 3. Finding an optimal hyperplane.

Generally, support vector machines are an optimal tool if there is no initial information
about datasets. Similar to decision trees, less computation power is needed to provide
accurate results. However, it can take a lot of time to process the information in datasets
that are especially large. Moreover, managing a kernel machine for non-linear processes
can be a complicated task.
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2.3. Principal Component Analysis

Unsupervised algorithms can learn spontaneously and perform a given task by finding
connections between system responses [22]. However, if datasets are extremely large, it
can be challenging to extract important information. For this reason, algorithms find
similarities between objects and divide objects into groups (clusters) [23]. The principal
component analysis is a good solution for reducing data dimensionality, while losing
a minimal amount of information at the same time. A general algorithm of principal
component analysis is shown in Figure 4. The algorithm can be described as follows [24].

Figure 4. Principal component analysis: (a) initial data points, (b) creation of optimal vector PCA, (c) projection of initial
data points on the vector PCA, (d) definition of new datasets [24].

Firstly, experimental data points with the specific coordinates are set on a plane. Then, the
vector of maximum data change is set on the plane. Next, experimental points are projected on
the vector. Finally, these projections create new datasets on the vector, and any deviations from
the vector are considered to be noise. The main benefit of principal component analysis is that
the algorithm considers each data point as an independent component and does not correlate
between them. Thus, this method can significantly reduce training as well as processing time.
Nonetheless, considering each datapoint as an independent component can lead to a loss of
information and reduced accuracy of the results.

2.4. Genetic Algorithm

Reinforcement algorithms of machine learning differ clearly from basic approaches.
In this case, the system learning process is performing by interaction with the environ-
ment [25]. These algorithms are mostly focused on solving optimization problems. One of
them is a genetic algorithm, the principle of which is shown in Figure 5.

The algorithm can be described as follows. Each data point is represented in genes.
A vector of genes creates the genotype of the population. Initially, the so-called fitness
function is created, which describes how well the genotype performs the task. Then, the
most accurate coincidences are selected, which will be used to create the next generation.
The given process continues until the task is fulfilled and the resultant population is formed.
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Figure 5. Genetic algorithm: (a) definition of initial population, (b) fitness function application, (c) selection of coincidences,
(d) definition of resultant population.

A genetic algorithm is considered as an optimal solution if there is no clarified knowl-
edge about the data domain. In this case, the result is generated through genetic operators.
The main drawback is that this genetic population can suffer from degeneracy (different
chromosomes represent the same solution). In this case, an accurate result is not possible.

2.5. Artificial Neural Networks

Another machine learning method, which is often considered a separate field, is
the artificial neural network approach. This technique is widely applicable to condition
monitoring of machine parameters [26]. Network algorithms can cover classification [27],
prediction [28], and feature extraction [29]. In addition, artificial neural networks can be
a part of supervised, unsupervised, or reinforcement learning [30]. In simple models, as
shown in Figure 6, an artificial neural network consists of three layers: input, hidden, and
output layer.

Figure 6. The architecture of artificial neural networks.
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To solve a problem, neurons transfer signals between the input and output layer
through connections. These algorithms are not to be programmed; they are supposed to be
learned. Searching for the connection coefficients between neurons is meant to occur by
learning. The easy and fast learning process is one of the main benefits of neural networks.
Algorithms are also able to restore incomplete or even destroyed data when training has
been successful.

Neural networks also have several limitations. For accurate results, a balance must
be found between overfitted and underfitted data; an overly approximated model will
not give precise results, while an extremely detailed algorithm will be too flexible but too
complicated for further implementation. Additionally, the “black box” phenomenon is
quite widespread in the case of neural networks, where approximating a hidden layer can
lead to mistakes in artificial structure [31,32].

2.6. Fuzzy Logic

Fuzzy logic is another algorithm successfully applied in various control applications
of energy systems, which resembles human perception processes and cognition [33]. Fuzzy
logic, as well as machine learning, are sub-fields of artificial intelligence. The main differ-
ence between fuzzy logic and traditional logic is that in traditional logic, an outcome can
be represented only by true or false values (1 or 0), while an outcome in fuzzy logic can
be represented in any value between 1 and 0 (true, false, partially true, etc.). As shown in
Figure 7, the classical model of fuzzy logic consists of the following stages: fuzzification,
rule base, and defuzzification [34]. Fuzzification converts input data into fuzzy sets. The
rule-based stage is a block of the decision-making system. Finally, defuzzification converts
fuzzy sets back into real values.

Figure 7. Control principle of fuzzy logic.

In fuzzy fault diagnosis, there are many approaches available, such as the Mamdani
approach [35], fuzzy neural network [36], Takagi–Sugeno approach [37], etc. Therefore,
it is essential to select the best-suited algorithm to be applied to the system. Each of
them has certain benefits and drawbacks. Generally, fuzzy logic is considered a simple
solution in decision-making tasks. Fuzzy logic can also perform approximate reasoning by
a combination of membership functions through a set of rules [38]. However, to develop a
fuzzy system, a large amount of data is needed. Moreover, the development of fuzzy rules
can complicate data analysis.

2.7. Summary

In Table 1, the benefits and drawbacks of all of the aforementioned diagnostic tech-
niques are summarized.

Under industry conditions, data collection can be a complicated task. Due to the
regular controls in production, only a limited number of faulty rotating machines are
possible, which means a limited number of tests to be performed for training purposes.
Additionally, data collected in cases of composite faults in the same machine are not
straightforward in another scenario. Therefore, for effective AI training, mathematical
models with different faulty conditions must make diagnostic algorithms more reliable.
Therefore, it is important to understand the nature of machine failures, causes, and impacts.
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Table 1. Benefits and drawbacks of intelligent diagnostic techniques.

Diagnostic Technique Advantages Disadvantages

Decision Trees
Small computational power is required

Simple structure
No need for data pre-processing

High possibility of overtraining
Not suitable for regression tasks

Increased training time

Support Vector
Machines

Operation in high dimensionality
Work with non-linear processes

Small computational power is required
No need for data specification

No ability to filter unnecessary
information

Complicated managing of kernel machine
Overlapping risk

Principal Component Analysis
No overlapping

Reduced training time
Good visualization

Possible loss of information
Reduced accuracy

Genetic Algorithm Adaptive algorithm
Rapid processing Overlapping risk

Artificial Neural
Networks

Perform any ML algorithm
Fast learning

Not sensitive to data noise

Must be balance between under- and
overfitted data

“Black box” phenomenon
Overtraining risk

Fuzzy Logic

Simple structure
Flexible algorithm

No need for specific hardware
Easy reprogramming

A lot of data is needed
Inaccurate data lead to poor results

3. Faults of Rotating Electrical Machine

As electrical machines operate under different industrial conditions, various failures
eventually occur after long-term continuous operation. The failures’ distribution depends
mainly on the machine parameters; in low-voltage motors, bearing-related faults are the
majority, while high-voltage motors receive mostly stator winding-related failures [39]. In
general, the biggest portion of overall failures in electrical machines results in mechanical
faults, such as bearing faults, eccentricities, broken rotor bars, broken end rings [40]. In
addition, electrical stresses and demagnetization problems can contribute to the shortening
of motor lifespan. All of the faults will be discussed in detail in the following sub-chapters.

3.1. Bearing Faults

One of the key parts of a rotating electrical machine is its bearings. The design and
production of the bearing are to be conducted according to stringent quality requirements.
Nonetheless, during motor running, different internal and external loads affect the bearings.
This, in turn, reduces the duration of the actual life of the bearing. Different defects
and mechanical damage are frequently met due to the wrong placement, manufacturing
mistakes, or misalignment of bearing details [41]. For this reason, it is important to control
possible manufacturing damage before bearing mounting and motor running launch.

To avoid disastrous consequences, different parameters of bearing must be monitored.
Bearing failures can be described through mathematical equations that refer to the natural
frequencies of a faulty bearing. Based on bearing geometry, which is shown in Figure 8,
faulty frequencies can be defined for the outer raceway (1), inner raceway (2), rolling
elements (3), and cage (4).
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Figure 8. Bearing geometry [42].

Faulty frequencies for these cases can be defined as follows:

for =
Nb
2

n
(

1− Db
Dc

cosβ
)

(1)

fir =
Nb
2

n
(

1+
Db
Dc

cosβ
)

(2)

fs =
Dc

2Db
n

(
1−

(
Db
Dc

cosβ
)2
)

(3)

fc =
n
2

(
1− Db

Dc
cosβ

)
(4)

where Nb—number of rolling elements, Db—diameter of rolling element (mm),
Dc—bearing pitch diameter (mm), β—contact angle (degrees), n—mechanical rotor speed
(Hz) [42].

Bearings are affected by different environmental factors, such as moisture, increased
ambient temperature, dust, etc. Lubricant coating at the contact points between surfaces
can be torn if humid air enters the bearing. Additionally, without a proper seal, different
substances can pollute the lubricant and spoil its properties. Environmental processes
resulting in material resolution cause bearing corrosion. An example of a corroded bearing
is shown in Figure 9. However, increasing a bearing’s cleanliness does not always improve
its fatigue properties [43]. Cyclic and continuous loads have a remarkable effect on the
running performance of the bearing, including material fatigue, wear, and stiffness [44].
These stresses cause micro-cracks in the structure of the bearing. Without timely mainte-
nance, cracking eventually expands, and the bearing becomes incompatible for further
operation. Bearing durability can be referred to as the number of revolutions made before
the first fatigue signs appear on bearing surfaces [45]. This phenomenon can be avoided or
remarkably recessed by timely analysis of the bearing lubricant.

The proper lubrication of a bearing is one of the critical points determining its motor’s
durability and reliability in general. When the lubricant is selected correctly, it forms the
needed coating between elements and softens the impact of the rolling bodies against the
bearing rings and cage. Additionally, lubricant is used to reduce the risk of corrosion and
wear [46]. To increase the bearing lifetime, a fully flooded bearing and the corresponding
base oil viscosity should be considered [47].

Additionally, the bearing lubricant directly affects the strength of shaft currents and
influence on the bearing, which in the long term can lead to serious damage and destroy the
bearing [48]. Due to the development of energy systems and power electronics, electrical
machines, and particularly the bearing, can be injured by electrical corrosion, causing
danger to the whole motor system [49]. The effect of shaft currents on a bearing depends
mostly on several parameters, such as rotational speed, lubricant properties, current value,
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operation time, and bearing material. Bearing current-related damage can be revealed
by increased noise and vibration, but in the late stages when the surface of the bearing
is already damaged [50]. The damage is visible on the bearing surfaces at places where
the load is the largest. Practically, the following bearing current-related damage can be
classified as fluting, frosting, pitting, and dull-finish. Fluting occurs in a combination with
low voltage and constant rotational speed, which does not appear for a longer period of
time [51]. In Figure 9, an example of bearing fluting is shown in magnification.

Figure 9. Bearing fluting.

At the same time, frosting can appear in cases of varying rotational speeds. Pitting
usually appears in applications with a high-voltage source, causing a multiplicity of small
craters on the bearing surface [52]. In the case of dull-finish, this phenomenon resembles
pitting but with much smaller craters that can be studied in detail only by a microscope
with a particularly high magnification [53].

Bearings, as a critical part of rotating machinery, are prone to damage and failure. For
this reason, it is extremely important to monitor the condition of the bearing operation.
Temperature measurement, noise, and vibration analysis, as well as periodical control of
the lubricant quality can significantly reduce the risk of bearing damage.

3.2. Rotor Faults

Eccentricity can be described as an inconsistent air gap between the rotor and stator
of the motor, which is mainly caused by improper installation, lack of or missing bolts,
misalignment of the shaft, and rotor imbalance [54]. Centrifugal forces contribute as well
to rotor wear, as shown in Figure 10.

Figure 10. Damages caused by centrifugal force: (a) rotor wear and (b) stator wear.

An air gap is considered to be faulty if it exceeds 10% of the nominal value [55].
As shown in Figure 11, there are the following types of rotor eccentricity: static [56],
dynamic [57], and elliptic [58]. Authors in [59] have discussed these cases.
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Figure 11. Types of rotor eccentricity: (a) healthy; (b) static; (c) and (d) dynamic; and (e) elliptic
eccentricities [59].

Static eccentricity (SE) is the most widespread type of eccentricity in the motor, where
the rotation axis of the rotor is parallel to the stator axis and fixed in time. In the case of
dynamic eccentricity (DE), the air-gap length changes in time. Elliptic eccentricity (EE)
occurs when stator and rotor center points match; however, a non-uniform air gap still
exists because the elliptical shape of the rotor and angles change over time. The width of the
air-gap in cases of different eccentricities can be found with the following equations [59]:

gSE= Rs − Rr +

√
R2

r − (d · sinβ)2 (5)

δDE =
|OW·Or|

g
(6)

gEE(t) = Rs −

√[
(R r +d)·cos(

ωt
p
− β)

]2
+

[
(R r − d)·cos(

ωt
p
− β)

]2
(7)

where g—air-gap, RS—radius of the stator, Rr—rotor radius, d—deviation, β—initial
eccentricity angle, Ow—rotational center, Os—stator symmetry center, p—number of poles.

Practically, mixed eccentricity can also be found when rotor and stator center points
and rotational axis are shifted from each other.

The most frequent permanent magnet fault is demagnetization, which means partial
or complete magnetization loss [60]. Partial demagnetization that produces additional
harmonics in the stator currents can be found at the following frequencies [61]:

fpdem= ff

(
1 ± k

p

)
(8)

where fpdem is a faulty frequency, ff is a fundamental frequency, k is an integer, and p is the
number of poles.

Demagnetization of permanent magnets can be frequently caused by machine over-
load and thermal expansion [62]. Machines operate in high-temperature ranges, and the
absence of a proper cooling system significantly increases a demagnetization risk. Another
factor that can impact magnet properties is electrical stress, including short circuits [63]. It
is also reasonable to control magnet manufacturing defects and signs of corrosion. Another
widespread form of rotor damage is related to rotor bars and broken end rings [64]. One
of the most common reasons for such a failure is natural degradation, which causes rotor
wear [65]. Additionally, thermal expansion can lead to cracked rotor bars [66]. As rotor bars
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are made of copper, while laminations are made of steel, bars will expand more quickly in
cases of increased operating temperature.

3.3. Stator Faults

Insulation is one of the most prone-to-fault parts among the components of an electrical
machine [67]. In overall statistics, stator winding failures are 36% of all the faults [68].
Winding failures usually start from a turn-to-turn short circuit. Subsequently, without
timely maintenance, the failure can grow to a phase-to-phase or phase-to-ground short
circuit [69]. Since this inter-turn fault is hardly detectable in the early stages of development,
this topic is immensely challenging in the electrical machine industry [70]. Even if control
test results meet defined values, each insignificant damage of stator winding can lead to
the future breakdown of the machine [71]. Spread winding failures are shown in Figure 12.

Figure 12. Stator winding faults: (a) improper winding placement, (b) insulation damage.

Asymmetrical faults, such as winding faults, induce additional sideband harmonic
components at the fundamental frequency and can be defined by the following frequencies:

fh= fs(1 + 2sk); k = 1, 2, 3, . . . ; k ∈ N (9)

where fh—harmonic frequency, fs—supply frequency, s—slip [72].
Many factors can influence the degradation of the winding insulation. More frequently,

the degradation rate of winding insulation is affected by four main stresses, also known as
TEAM (thermal, electrical, ambient, and mechanical) stresses [73]. In addition, damage can
also be inflicted on motors due to the manufacturing process and production. During the
designing process, manufacturing damage is not usually considered, but it tends to occur
during the exploitation of a machine [74].

4. Overview of Diagnostic Methods Used in Condition Monitoring

To provide reliable and effective exploitation of an electrical machine, many parame-
ters, such as current, vibration, temperature, magnetic flux, are to be monitored. In addition,
different faults have certain signatures that give a signal about upcoming failure. For this
reason, condition-based monitoring is a solution that allows one to be informed and make
decisions regarding the maintenance of the machine.

4.1. Vibration Analysis

Vibrations can come from many different sources in an electrical machine, including
magnetic fields, fluid flow, imbalances, and, especially, rotating elements, such as bearings,
gearboxes, or rotors [75]. Vibration analysis can be defined as change monitoring from
defined vibration signatures and extracting deviations in the system. Deviations are to
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be found in acceleration amplitude, frequency value, and intensity. Nowadays, many
sensor types can be used. By measuring technology, sensors can be piezoelectric [76],
capacitive [77], inductive [78], piezoresistive [79], and strain gauge [80].

Vibration analysis can provide useful information about the health of electrical equip-
ment; thus, it is widely used for diagnostics. Regarding classical diagnostic approaches,
authors in [81] used vibration signals of healthy as well as faulty bearings to identify spe-
cific frequencies on the FFT spectrum, where frequency variation of harmonic amplitudes,
particularly in fundamental components, is presented as a fault indicator, which is shown
in Figure 13.

Figure 13. FFT spectra of healthy as well as faulty bearings [81].

Classical and intelligent approaches are frequently used in combination. In [82], authors
propose a novel method for predicting the remaining useful lifetime of bearings based on
continuous wavelet transform and convolutional neural networks, where image features
improve result accuracy. At the same time, in [83], the authors propose a novel hybrid method
of convolutional neural network and support vector machine to effectively identify an incipient
fault in rotating machinery. The proposed solution does not need manual feature extraction or
data processing. Authors in [84] also propose a condition-monitoring method of bearing fault
based on deep convolutional neural network and random forest ensemble learning to achieve
high accuracy in failure diagnosis under complex operating conditions. However, there are
several limitations: computational time and quality of raw data. Authors in [85] use a genetic
algorithm for diagnostics of gearboxes based on vibration signals to improve the process of
data exploration and exploitation.
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4.2. Electrical and Electromagnetic Monitoring

Monitoring magnetic flux has become a widespread and effective method for fault
detection in electrical machines, as many early failures create a magnetic asymmetry that
can be detected [86]. Electromagnetic measurement can be efficiently used to monitor the
electrical machine as an additional or alternative tool to stator current monitoring. By
definition, an electric machine produces electromagnetic flux, where any small unbalance
in the magnetic or electric circuit is reflected in some of the transmitted fluxes [87]. There
are many research studies on the monitoring of bearings damage [88], rotor faults [89],
short circuits [90], and magnet problems [91] through the stray magnetic flux. Authors
in [92] provide an example of flux distribution in the case of healthy and faulty rotor bars,
as shown in Figure 14.

Figure 14. Flux distribution of healthy and faulty rotor bars in an induction motor [92].

Most of the rotating electrical machines are symmetrical, generating uniformly dis-
tributed magnetic flux. Any fault in the machine results in asymmetrical flux distribution,
resulting in more local magnetic stresses. An example of flux distribution in the case of
healthy and faulty rotor bars is shown in Figure 14. It is clear from the figure that the flux
density across the broken bar increases in magnitude, which increases the peak induced
current in subsequent rotor bars. These increased current and magnetic forces make them
vulnerable to a fault, leading to a kind of chain reaction. A machine’s performance parame-
ters such as torque, speed, voltage, and currents function to distribute flux. The analysis of
those performance parameters can detect any change in flux distribution due to any fault.
These facts make the diagnostic algorithms non-invasive and open a broad field of signal
processing techniques that can be used for condition monitoring of electrical machines.

In harmonic spectrum and data analysis-based techniques, the frequency components
of any global signal are evaluated according to cause of production. The discovered
frequency components can be further used for the health monitoring of electrical machines,
either by visual inspection or with the help of advanced statistical data analysis techniques.
A variety of research articles dealing with spectrum analysis for various machines can
be found in the literature. The stator winding insulation degradation fault analysis of
permanent magnet synchronous motor (PMSM) using the harmonic analysis of fault current
is presented in [93]. The authors of [94] used matching pursuit and wavelet transformation
for current features extraction and machine learning-based fault diagnostic algorithms for
induction motor analysis. The detection of bearing faults by statistical analysis of a motor’s
stray flux is presented in [95]. The inter-turn short circuit fault analysis in permanent
magnet multiphase machines using spectrum analysis of combined voltage space vector
is presented in [96]. The fault diagnosis of induction machines using harmonic order
tracking analysis of a stator’s current is presented in [97]. The use of wavelet transform for
stator current analysis during motor startup is presented in [98,99]. The utilization of non-
stationary stray flux harmonics for training feed-forward neural networks for monitoring
wound rotor induction motors is presented in [100]. The use of transient stray fluxes and
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the currents for the fault diagnosis of damper winding in synchronous motors is presented
in [101], while a similar work for fault detection of circular pumps is reported in [102].
Based on the type of the signal, the harmonic spectrum and data analysis-based techniques
can be broadly classified into two categories: transient analysis and steady-state analysis.
Although both types are very diverse fields, a good glimpse of induction machines fault
diagnosis can be seen in: transient [103–105], steady-state [106,107].

The harmonic spectrum analysis-based techniques are very old and well established
because most of those techniques are based on non-invasive signals. Various signal pro-
cessing techniques can be easily deployed, computationally less intense, and no kind of
sophisticated apparatus is required. The measured signals can be analyzed at any remote
location. However, with the increasing trend of drive utilization, special purpose machines
and different working environments make the conventional current and flux monitoring
techniques very challenging. The reliability of diagnostic algorithms will no doubt increase
if the algorithm mathematically knows the machine under inspection. Moreover, if the
mathematical models in the drive are compatible with the diagnostic algorithm, the drive
can continuously monitor the machine’s health.

Due to these factors, researchers are moving towards modelling- and parameters
estimation-based diagnostic techniques. For this purpose, the development of mathematical
models with reduced simulation time and that are compatible with faults simulation is the
first milestone to be achieved. Various modelling techniques are available in the literature,
e.g., modified winding function-based models [108–111], circular convolution theory-
based [112], the hybrid FEM-analytical [113,114]. These models can be used in parallel with
the real working machine to estimate design parameters. For example, authors in [114]
proposed utilizing an induction motor’s FEM model for parameters estimation using
hardware in the loop environment. In [115], the induction motor’s inversion model was
used to estimate different performance parameters for health monitoring.

4.3. Wear Monitoring

As mentioned, the bearing is one of the essential parts of a rotating machine that is
to be affected by various loads and forces, which reduce the motor’s intended lifespan.
Generally, most friction losses in rotating machines are referred to as bearings. Therefore,
wear monitoring of bearings can significantly affect a machine’s proper operation and
reliability in general. The most common causes for bearing wear are high friction load and
lack of proper lubrication. Bearing faults tend to occur in areas where lubricant coating is
the thinnest. Authors in [116] discuss a method for bearing state monitoring by simulating
lubricant state under different pressure conditions.

Regarding lubricant conditions, which directly impact the bearing’s durability, authors
in [117] use ultrasonic sensors that were instrumented on the inner and outer bearing
raceways to detect lubricant conditions. In [118], the authors propose an improved grey
k-means clustering model for monitoring bearing wear conditions. Finally, authors in [119]
propose a fault tree analysis for wear monitoring in wind turbine bearings.

4.4. Temperature Measurement

Thermal monitoring is an important component of proper functioning. Excessive
temperature increases shorten the lifespan of an electrical machine, destroy winding
insulation, cause short circuits, lead to aging of bearings, and degrade the rotor permanent
magnets [120]. The most common reasons for temperature increase are cooling-system
failures and excessive currents through windings [121].

Generally, temperature-based monitoring can be divided into two approaches: ther-
mal image analysis and local spot measurement. For local thermal measurement, there
resistance thermometer detectors and thermocouples are mostly used. At the same time,
local monitoring using thermocouples or resistance temperature detectors can be limited
by safety applications, especially due to the usage of electrically conductive material in the
sensor structure [122]. Therefore, they cannot be placed in the hottest spot.
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Thermal imaging is another potential option for thermal monitoring in rotating ma-
chinery. In [123], as shown in Figure 15, the authors present a method of feature extraction
using thermal images. For classification, the nearest neighbor classifier, k-means, and
back-propagation neural network were used.

Figure 15. Thermal image of healthy as well as a faulty motor with damaged ring of squirrel-cage [123].

Authors in [124] discuss a study to determine thermal conditions using thermal
imaging, which allowed effective and accurate measurement results. In [125], the authors
propose a fault diagnosis method based on thermal images, where several intelligent
algorithms were used for model training. Finally, authors in [126] discuss a novel image
classification method—cloud detection using a random forest classifier.

5. Discussion and Conclusions

Electrical machines fault diagnostics and predictive maintenance have gained increas-
ing popularity. This is because of the increasing influence of electrical machines and drives
in industry and everyday human life. Condition monitoring and predictive maintenance
are essential for a system’s reliability and have a direct influence on economic aspects.
Because of the different types of machines, the various control mechanisms, and the wide
range of different working environments, no one condition-monitoring algorithm can be
considered uniquely suitable.

These algorithms vary for different systems depending upon several parameters. This
is the reason why the field of fault diagnostics and condition monitoring depends upon
various technical matters. The associated research areas may include signal processing,
sensors design and optimization, statistical data analysis, artificial intelligence, numerical
methods, calculus, mathematical modelling, etc. The dependency of the fault diagnostic al-
gorithm on single or multiple topics makes this field very diverse and makes it challenging
to summarize easily and quickly.

In order to give the reader a glimpse of the state of the art of this field, a variety
of advanced fault diagnostic and condition monitoring techniques are summarized in
this paper. Different diagnostic techniques that can be used for algorithms’ training and
predictive maintenance are presented. The benefits and drawbacks of each intelligent
diagnostic technique are highlighted. The most widespread faults of electrical machines
are discussed, and techniques for parameters’ monitoring are introduced.
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