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The sustainable management of fisheries has largely relied on stock assessment models that assume stocks are homogeneous throughout their
domain. However, ignoring complex underlying spatial patterns can lead to increased risk of failures in management. Utilizing geostatistical
approaches in conjunction with a traditional fishery biomass dynamics model, we develop a spatially-explicit modelling framework that treats
the underlying population dynamics as spatial processes. Simulation experiments demonstrate that this approach reliably estimates variance
parameters and accurately captures true patterns of population change. We further demonstrate the utility of our modelling framework in a real
setting using data from the Canadian Maritimes Inshore Scallop Fishery. The model captures time-varying spatial patterns in both population
characteristics and fishing pressure without explicit knowledge of the underlying mechanisms and retains the ability to scale up to the whole
spatial domain with less associated uncertainty than for temporal models. These results lead to improved scientific advice for management,
future-proofing of the assessment to shifts in stock productivity and fishing effort, and provide information that can be used to develop more
effective management approaches.

Keywords: biomass dynamics model, delay-difference model, Placopecten magellanicus, spatial structure, spatio-temporal model, stock
assessment.

Introduction
Stock assessment models (SAMs) that often guide the sustain-
able management of fisheries have traditionally relied on either re-
gression frameworks (Venables and Dichmont, 2004) or fisheries-
specific approaches (Hilborn, 1992) to predict changes in fish pop-
ulations. These methods tend to be strictly temporal in nature and
assume that the structure of both the underlying population and
the exploitation is homogeneous across space. However, it has long
been known that many fisheries exhibit strong spatial patterns in bi-

ological characteristics and fishing pressure (Baranov, 1918; Bever-
ton and Holt, 1957; Caddy, 1975; Hutchings, 1996; Smith and Rago,
2004; Smith et al., 2017) that can bias the estimates of population
size (Reuchlin-Hugenholtz et al., 2015; Berger et al., 2017; Cadrin,
2020) used to provide advice to fisheries managers (Caddy and Ma-
hon, 1995; Shertzer et al., 2010; Nasmith et al., 2016).

The exclusion of spatial structure in the calculations of pop-
ulation size estimates can result in management failures, which
can have serious socioeconomic consequences and long lasting im-
pacts on the conservation of a species. A clear illustration of these
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ramifications is evident in the collapse of Atlantic cod (Gadus
morhua) in Atlantic Canada (Hutchings and Myers, 1994; Myers
et al., 1996). The survey indices used at the time did not reflect the
ongoing collapse (Hutchings, 1996), whereas recent approaches us-
ing spatial methods would have been able to capture the changes
in the spatial distribution that heralded the collapse (Reuchlin-
Hugenholtz et al., 2016; Carson et al., 2017). More recently, evi-
dence of serial depletion in other fisheries, such as sea cucumbers
(Eriksson and Byrne, 2015; Rawson and Hoagland, 2019), indicates
that such issues are not relegated to the past. Fortunately, in recent
years, various advances have led to the development of statistical
methods that can better account for the impact of spatial processes
on stock dynamics [e.g. integrated nested Laplace approximation
(Illian et al., 2012) and TMB (Kristensen et al., 2016)].

The implementation of more advanced spatial statistic tech-
niques into fisheries research has tended to focus on either gen-
eralizations of common regression techniques or geostatistical ap-
proaches (Ciannelli et al., 2008). Spatial regression methods focus
on modelling the mean, often through generalized additive frame-
works (Ciannelli et al., 2008; Pedersen and Berg, 2017). Unfortu-
nately, these methods typically require high-quality information
on both environmental variables (temperature, nutrient availability,
etc.) and the fish population (scientific surveys, high-quality fish-
eries data) that are not available for many fisheries (Costello et al.,
2012). Alternatively, geostatistical approaches model spatial struc-
ture by incorporating spatial autocorrelation into the residual struc-
ture of the model (Ciannelli et al., 2008). This has the advantage of
capturing the latent spatial variability in the data (Cadigan et al.,
2017; Stock et al., 2020) without explicitly modelling the underly-
ing mechanisms. These techniques have been used successfully to
improve indices of abundance used for stock assessments (Thor-
son et al., 2015b; Thorson and Barnett, 2017; Thorson et al., 2019).
Focusing on the residual structure allows the mean to be specified
using traditional SAMs.

Traditional SAMs, such as biomass dynamics models, often
require only an index of population abundance and landings
(Hilborn, 1992). They have been extensively used in state-space
frameworks (Kinas, 1996; Smith and Hubley, 2014; Best and Punt,
2020) and can be modified to incorporate spatial structure. A sig-
nificant amount of effort has gone into modelling the spatial auto-
correlation in fisheries data to obtain better indices (Thorson et al.,
2015b), but comparatively little effort has gone into incorporating
the spatial structure in the latent processes of interest such as re-
cruitment (Thorson et al., 2015a). While spatial autocorrelation
can be caused by a myriad of factors (Legendre, 1993), unquan-
tified demographic and life-history variability within a stock are
likely responsible for a substantial portion of the observed spatial
patterns.

Incorporating spatial statistics may benefit many stocks (Berger
et al., 2017), particularly sedentary benthic species that have demo-
graphic and life-history characteristics that lend themselves more
intuitively to spatial modelling. Sea scallops (Placopecten magellan-
icus) are a shellfish species that inhabit the Western North Atlantic
from Cape Hatteras to Labrador (Smith and Rago, 2004). These an-
imals exhibit a strong spatial structure in growth rates and repro-
ductive potential, minimal dispersal as adults, and recurring aggre-
gation in scallop beds (Smith and Rago, 2004). Furthermore, the
exploitation of these animals tends to focus on areas of high pro-
ductivity, with fishing effort in these areas being higher than would
be expected even if one allocated effort proportionally to the dis-
tribution of biomass (Caddy, 1975; Brown et al., 2012; Smith et al.,
2017). Explicitly modelling this spatial variability should help im-

prove model predictions and in turn the science advice provided to
fisheries managers.

Here we use recently developed statistical advances to incorpo-
rate spatial structure into a traditional biomass dynamics model. We
modify the strictly temporal state-space model (SSM) described in
McDonald et al. (2021), referred to as the Tow-Level Model (TLM),
to explicitly account for spatial structure; we hereafter refer to this as
the Spatially Explicit Biomass Dynamics Assessment Model (SEB-
DAM). We perform a series of simulations to explore the estimabil-
ity and identifiability of SEBDAM. We then fit both models (SEB-
DAM and TLM) to Scallop Production Area 3 (SPA 3) of the Cana-
dian Maritimes Inshore sea scallop fishery as a comparative study.

Methods
Sea scallop data
SPA 3 is a scallop management area in the Bay of Fundy, Canada
(Figure 1) managed by Fisheries and Oceans Canada (DFO). This
area is managed using total allowable catches in biomass of meat
weight (scallop adductor meat). Fisheries assessment advice is de-
rived using a modified version of a delay difference biomass dy-
namics model (Deriso, 1980; Schnute, 1985; Smith and Lundy, 2002;
Smith and Hubley, 2014; Nasmith et al., 2016). The area is surveyed
annually using a stratified random sampling design; however, due to
the strong spatial structure in the productivity of this stock and spa-
tially aggregated exploitation, the survey design was restratified in
2011 based on the distribution of fishing effort (Smith et al., 2012).

At sea, all live and dead scallops (clappers: dead scallops whose
shells are still hinged) are counted and sorted into 5 mm bins. Clap-
pers are used to obtain an estimate of natural mortality. A subset of
live scallops (3 per 5 mm bins that are 50 mm and larger) is dissected
in order to record individual shell height and meat weight [weight
of the adductor muscle (Glass, 2017)]. A length–weight relation-
ship is modelled based on a cube law (Froese, 2006) with depth as a
covariate in order to convert all numbers at height to meat weight.
Commercial size scallops are defined as having shell heights greater
than or equal to 80 mm, and recruits are those between 65 mm and
79 mm, which are expected to grow to be commercial size the fol-
lowing year. We refer to the biomass of recruits as recruitment and
to the biomass of commercial size scallops as commercial biomass.
The start and end position of each tow are recorded at sea using the
commercial vessel navigational system Olex AS (Olex marine sur-
vey and navigation, www.olex.no); survey catches are standardized
to 800 m length x 5.334 m width.

Model description
SSMs are hierarchical models defined by two stochastic processes:
Xs,t , t = 1,..., T and s = 1,..., S, representing the unobserved dynamic
state process describing the real population dynamics between dis-
crete time-steps t and knot locations s, and the observation process
Ys,t , which links the observations to the true underlying dynamical
processes of interest (Aeberhard et al., 2018). The model parame-
ters are combined in a p-vector θ ∈ � ⊆ R

p, and fixed covariates
are indicated by zs,t .

θ is considered a vector of fixed effects and X1:S,1:T a vector of
random effects predicted from estimates of θ. Due to this, the un-
derlying processes (commercial biomass, recruitment, and natural
mortality) are considered to be predicted in years with data, with
future predictions in years without data referred to as projections.
These projections are obtained by moving the process equations
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Figure 1. Newfoundland to Cape Cod with inset map of SPA  off South West Nova Scotia, Canada.

forward 1 year and therefore represent the predicted mean and un-
certainty. This is meant as an illustration of potential uncertainties
when predicting in years without data. These variables can be com-
bined into the following joint likelihood L( · ) and marginal log-
likelihood L(·):

L(θ, Y1:T , X1:T ) =
S∏

s=1

p(Ys,1|Xs,1, θ)
T∏

t=2

p(Ys,t |Xs,t , θ)

× p(Xs,t |Xs,t−1, θ), (1)

L(θ, Y1:S,1:T ) = log
∫

L(θ, Y1:S,1:T , X1:S,1:T )dX1:S,1:T . (2)

Approximations for these high-dimensional integrals are ob-
tained using the Laplace method as implemented in the TMB pack-
age in R (Kristensen et al., 2016). TMB’s use of automatic differen-
tiation has been shown to be computationally more efficient than
most other packages without loss of accuracy (Kristensen et al.,
2016; Auger-Méthé et al., 2017).

Spatial approach
The predictive framework described in Thorson et al. (2015b) is
adopted here. Instead of modelling a given random field over every
possible location, its value is approximated as being piece-wise con-
stant. The user must specify the number of locations, called “knots”,
at which the model will track the value of the random field. This
choice drives both the resolution of the model predictions and the
computational load, since more knots leads to higher resolution but
the fitting process will be slower. The decision concerning the num-
ber of knots used should be based on the spatial coverage of the data
to control the accuracy of the piece-wise approximation. The loca-

tions of these knots are obtained by applying a k-means clustering
algorithm on the location of all the survey tows. The number and
location of knots is held constant for model fitting and all observa-
tions (both survey tows and landings) are attributed to the closest
knot. In summary, the locations of the tows are used to obtain the
knots, which are then used to create the mesh and are the only ver-
tices inside that mesh that have data, as each tow is attributed to its
closest knot. This allows the knots to have multiple replicate obser-
vations of the underlying processes in any given year.

Preliminary tests were undertaken with different numbers of
knots to determine the optimal resolution. We chose to use 25
knots to strike a balance between computational demand and per-
formance. The north-west section of SPA 3 is known to contain very
few scallops due to the benthic substrate being primarily glacioma-
rine mud (Shaw et al., 2012, 2014) and it is therefore not regularly
included in the DFO survey domain; as such it was removed from
the modelled area. The resulting grid is shown in Figure 2 alongside
the triangulation used for model predictions.

Spatially explicit biomass dynamics assessment model
A previous model, the TLM, tested the impact of directly incor-
porating tow level data into a SAM without first aggregating them
into indices (McDonald et al., 2021). This TLM is highly similar to
SEBDAM, except that the spatial components are absent. Spatial in-
formation is incorporated into SEBDAM through the use of Gaus-
sian Markov Random Fields (GMRFs), using the Stochastic Partial
Differential Equation (SPDE) approach with a Matérn covariance
structure (Lindgren and Rue, 2011). Only two parameters are re-
quired for this approach: κ , which is related to range ρ (ρ =√

8/κ)
and controls the distance at which two points become uncorrelated,
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Figure 2. a: Grid used to analyze SPA  with knots shown as black points and black lines indicating the management boundary for the area
(greyscale used for visualization purposes). Nearshore knots are the nine easternmost knots, with the other knots considered offshore knots. b:
Delaunay triangulation used for the model with black points indicating location of each knot.

and τ , which controls the spatial variance [for details see Lindgren
and Rue (2011) and Lindgren (2012)].

The locations of the observations are projected onto the Univer-
sal Transverse Mercator (UTM) system so that the spatial param-
eters are more interpretable since UTM coordinates are in meters
(rescaled into kilometers for numerical stability).

Using the SSM hierarchical framework, we model the underlying
process dynamics with the following equations:

Bs,t = [exp(−ms,t )gt−1(Bs,t−1 − Cs,t−1 )

+ exp(−ms,t )gR
t−1Rs,t−1]exp

(
�B

s,t

)
, (3)

Rs,t = Rs,t−1exp
(
�R

s,t

)
, (4)

ms,t = ms,t−1exp
(
�m

s,t

)
. (5)

Equation (3) is the simplified delay-difference equation where
Bs, t are the commercial biomass densities, Cs, t are landings, Rs, t are
the recruitment biomass densities, ms, t are the instantaneous natu-
ral mortalities, and gt and gR

t are the commercial size and recruit
growth rates, respectively, which are estimated separately (Smith
and Hubley, 2014; Nasmith et al., 2016). �B

t is the GMRF for com-
mercial biomass in year t, which, using the SPDE approach, is re-
duced to a mean zero multivariate normal where its covariance ma-
trix is �(s, s′) = Matérn(||HB(s − s′)||), indicating that the covari-
ance between two knots s and s′ where s �= s′ follows a Matérn co-
variance structure. This structure allows for geometric anisotropy
through HB, which is defined to maintain volume and has two pa-
rameters [for more details see Thorson et al. (2015b)]. The value at
each knot s for year t = 1 is simply Bs, 1 = B0∗exp(�s, 1) where B0 is
an estimated mean parameter.

Equations (4) and (5) are lognormal random walks where the
error terms �R

t (recruitment) and �m
t (natural mortality) are GM-

Table 1. Parameters used and their optimization starting values.

Parameter Simulation value Optimization starting value

κB . exp(-)
τ B . exp()
κR . 
τ R . 
κm . 

τm . 
σ ε . exp(-)
συ . exp(-)
S . exp(-)
R . 

B . 
m . exp(-)
qR . exp(-)
pI . .
pR

I . .

HB1
input − . 

HB2
input − . 

Hm1
input − . 

Hm2
input . 

RFs that are parameterized by the same methods as Equation (3).
Recruitment is assumed to have the same anisotropy matrix as the
commercial biomass, while natural mortality has a separate ma-
trix. The value at each knot s for year t = 1 are R0 ∗ exp(�R

s,1 ) and
m0 ∗ exp(�m

s,1) where R0 and m0 are estimated mean parameters.
The commercial biomass and recruitment for the whole area, here-
after referred to as the total biomass and recruitment, can be derived
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Figure 3. Density plot of the differences between estimated qI(s) and simulation value for settings A (blue) and B (red). Black vertical line
indicates zero difference.

by multiplying Bs, t and Rs, t by the area covered by their respective
knots, then summing up over all knots s.

The observations are linked to the underlying processes through
the following equations:

Ii,s,t = qI(s)Bs,t

pI
εi,s,t , εi,s,t

Ind∼ u	N
(
σ 2

ε

)
, (6)

IR
i,s,t = qRRs,t

pR
I

υi,s,t , υi,s,t
Ind∼ u	N

(
σ 2

υ

)
, (7)

Li,s,t
Ind∼ Bin

(
ni,s,t , ms,t S

)
. (8)

Equation (6) links the observed survey commercial biomass Ii, s, t

in tow i at knot s and year t to the underlying biomass density Bs, t

scaled by the commercial size catchabilities qI(s) at each knot and ad-
justed by the probability of positive tows pI. In comparison to usual
approaches where there would be a unique catchability parameter
for the whole area, it was decided to let the commercial size catch-
ability vary through space. This is due to this area being known to
have variable bottom types (Greenlaw et al., 2010), which is known
to impact gear efficency (Miller et al., 2019). Following the delta
approach, pI is estimated separately (with uncertainty propagated
forward) through a binomial distribution based on the number of
zeroes and non-zero survey tows.

Equation (7) is conceptually identical with the recruitment
equivalent to Equation (6), with observed survey recruit biomass
IR

i,s,t , underlying recruitment density Rs, t, a single non-spatial re-
cruit catchability qR, and probability of positive recruit catches pR

I ,
which is also estimated through a binomial distribution based on
the number of survey tows with positive recruit catches.

Equation (8) links the number of clappers Li, s, t to the natural
mortality ms, t scaled by clapper catchability S through a binomial
distribution based on the number of commercial size paired shells
(both clappers and live scallops) ni, s, t caught in tow i at knot s in
year t.

In summary, SEBDAM contains the observed states
Ys,t = (Ii,s,t , IR

i,s,t , Li,s,t )T , the unobserved states Xs,t =
(Bs,t , Rs,t , ms,t )T , the fixed covariates zs,t = (ni,s,t ,Cs,t , gt , gR

t )T ,
and the parameters θ = (pI, pR

I , qI(s), qR, S, σ 2
ε , σ 2

υ , B0, R0,

m0, τB, τR, τm, κB, κR, κm, HB
input , Hm

input )T .

Simulation study
This simulation study aims to assess the identifiability and estima-
bility of SEBDAM and consists of two different settings both using
the same simulation design. Setting 1A does not inform the estima-
tion of qI(s), while 1B informs the estimation of qI(s) using a beta dis-
tribution with shape parameters α = 10 and β = 12 [slightly mod-
ified from the prior distribution used in DFO assessments; see Yin
et al. (2019) for details]. A secondary study that examines the im-
pact of fitting a strictly temporal model to data with spatial structure
is described in Appendix A.

The simulation area is a 50 km by 50 km square. Data for 20 years
with 125 tows each year are simulated to mimic a similar size to the
SPA 3 dataset. The locations of these 2500 data points are randomly
assigned across the simulation area from which knots are then ob-
tained. gt and gR

t are assumed constant and set at 1.1 and 1.5, respec-
tively, to reflect the average growth rates seen in the SPA 3 data. The
total number of live and dead scallops caught (ni, s, t) is set to 120 in
every tow.

The parameter values chosen for the simulations along with
the starting values used during optimization are shown in Table 1
except for the 25 qI(s), whose optimization starting values are all
exp(−1). The parameters for HB

input are chosen to simulate strong
anisotropy where the decorrelation range north-south is much
larger than east-west, while those for Hm

input are made to decorre-
late rapidly in all directions. Range parameters κB, κR, and κm were
obtained by setting mean decorrelation ranges of the GMRFs at
40 km for the commercial biomass, 60 km for recruitment, and 20
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Figure 4. Density plots of parameter estimates from setting A (blue) and B (red). Black vertical line is simulation value.

km for mortality. Following the relationships between the marginal
variance and parameters estimated through the SPDE approach
(Lindgren, 2012), the spatial variability parameters τ B, τ R, and τm

are obtained by setting the marginal variance of the random fields
at 0.2 for �B

t and �R
t and 0.1 for �m

t .
While the landings are not explicitly modelled by SEBDAM, we

aim to mimic realistic settings where fisheries tend to exploit ar-
eas of higher biomass (Smith et al., 2017). The total exploitation
in each year is simulated from a lognormal distribution with a
mean set to 10% of the simulated total biomass and a variance of
0.2 on the log scale. This total exploitation is then divided pro-
portionally between knots with higher than average biomass fol-
lowing another lognormal distribution with a variance of 0.2 on
the log scale. This results in approximately half the knots being

fished extensively, while knots with lower biomass densities are not
fished at all. Scripts for running the simulations are available at
https://github.com/RaphMcDo/SPA3-Case-Study.

Application to the Bay of Fundy sea scallop fishery
This application explores how SEBDAM performs when fit to real
fishery data, using the SPA 3 scallop population. Its performance is
compared to TLM. Our primary goal is to compare model perfor-
mance to examine the effects of incorporating spatial structure. We
also examine the effects of estimating multiple spatial catchabilities
in SEBDAM (TLM assumes a single catchability parameter).

While survey data are available from 1996 to 2018, detailed log-
books are only available from 1998 to 2018. The stock dynamics are
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Figure 5. Median and interquartile range of the differences between predicted processes and their simulated value for settings A (blue) and
B (red).

Table 2. Parameter estimates and standard errors for SEBDAM and
TLM after being fitted to SPA  with qI and qI(s) informed with a beta
distribution.

SEBDAM TLM

Parameter Estimate SE Parameter Estimate SE

κB . . σ τ . .
τ B . . σφ . .
κR . . ση . .
τ R . . σ ε . .
κm . . συ . .

τm . . qI . .
σ ε . . qR . .
συ . . S . .
S . . pI . .
R . . pR

I . .

B . .
m . .
qR . .
pI . .
pR

I . .

HB1
input − . .

HB2
input − . .

Hm1
input . .

Hm2
input − . .

therefore modeled from 1997 to 2018 utilizing a total of 3035 survey
tows, with a 1-year ahead projection for 2019. This one-year projec-
tion utilizes the same model and calculates the projection based on
the estimated parameters and predicted random effects while prop-
agating errors forward. Both models are fitted using the TMB pack-

age in R and the nlminb optimizer. Optimization starting values are
in Table 1. Preliminary analyses indicate that the model is some-
what sensitive to the values of κB and τ B, which is why their opti-
mization starting values are different than the spatial parameters for
the other processes. Random effects starting values are set to 0 for
all random fields. Previous work has shown clear improvements in
biomass predictions when informing qI for TLM (McDonald et al.,
2021) and preliminary analyses indicates similar improvements for
SEBDAM. Therefore, both SEBDAM and TLM are fitted to SPA 3
data twice, once without informing qI and qI(s) and once informing
them using a beta distribution. While both models utilize different
statistical methodologies, which can be difficult to compare (Aubry
and Debouzie, 2000), both models try to predict the true realization
of the stochastic process for biomass. As there is only one dataset,
and therefore one realization of this process, the main interest is
to examine how both models treat the data to obtain an estimate
of this actual realization. Survey data and R script are available at
https://github.com/RaphMcDo/SPA3-Case-Study.

Results
Simulation results
For all simulation settings, the majority of simulations converged.
For setting 1A, 191 simulations converged, two resulted in false
convergence, six resulted in singular convergence, and one did not
converge. For setting 1B, 197 simulations converged, two resulted
in singular convergence and one did not converge. The catchabili-
ties (qI(s) in Figure 3, qR and S in Figure 4) are underestimated for
both settings but this bias is smaller when qI(s) are informed (setting
1B). Informing qI(s) reduces the consistent bias in commercial size
catchabilities with the mean percent difference going from −48%
to −18% (Figure 3). While the biomass and recruit processes are
positively biased, the reduced estimation bias of qI(s) further leads
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Figure 6. Estimated commercial size catchabilities by SEBDAM at each knot in SPA  when informed with beta distribution.

to a comparable reduction of this bias in predicted biomass and re-
cruitment (Figure 5). However, this does not impact the prediction
of natural mortality substantively (Figure 5).

The distribution of estimated spatial parameters (κ , τ , and Hinput)
are centered near the value used for simulations for both settings,
e.g. 70% of estimates for κB are within 25% of simulation value in
1A (Figure 4). The GMRF marginal variances (σ�

B , σ�
R , and σ�

m ) are
well captured, e.g. 83% of estimates are within 25% of simulation
value for σ�

B for 1A (Figure 4).

Application to scallop data
The simulations in 1A and 1B demonstrated that the outputs were
more reliable when the qI(s) were informed. Thus, we focus on the
output from the model fits where the commercial size catchabilities
are informed (see Supplementary Materials for output when unin-
formed). Both models converged successfully with parameter esti-
mates shown in Table 2 and Figure 6. SEBDAM identifies fine-scale

time-varying spatial patterns of commercial biomass (Figure 7). Pa-
rameter estimates and standard errors for SEBDAM fit to the SPA
3 data with a single commercial size catchability parameter qI are
available in the Supplementary Materials.

The nearshore areas tend to have increased biomass in later years
(e.g. 21.9% of total biomass between 2012 and 2018 in nine knots
compared to 17% between 1997 and 2004 in the same knots). The
knots with the highest predicted density are also the areas under
higher fishing pressure (the nine nearshore knots contain 91.1% of
the total effort between 2012 and 2018) and correspond to the ma-
jority of the area currently included in the stock assessment (Na-
smith et al., 2016).

Time-varying spatial patterns of recruitment and natural mortal-
ity are also identified by the model (Figures 8 and 9). The outer ar-
eas tend to have consistently higher natural mortality rates than the
rest of SPA 3 (average of 0.12 for the 16 outer knots ). Recruitment
is less spatially consistent, it tends to be higher in the nearshore
areas in later years (e.g. 40.9% of recruitment between 1997 and
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Figure 7. Predicted commercial biomass density Bs, t (kg/km) at each knot between  and , with -year projections for .

2006 in the nine nearshore knots and 64% between 2012 and
2018).

The marginal variances of the Matérn covariance structures [cal-
culated following relation in Lindgren (2012)] are 0.29 for �B, 0.35
for �R, and 1.05 for �m when qI(s) are uninformed. When they are
informed the marginal variances are 0.21 for �B, 0.45 for �R, and
1.01 for �m.

The natural mortality, while it decorrelates relatively rapidly in
all directions (mean decorrelation range of 14.8 km, Figure 10),
is still highest in the areas closest to the glaciomarine mud bot-
tom (Shaw et al., 2014). Both commercial biomass and recruitment
decorrelate rapidly on the east-west axis, but stay correlated at large

distances on the north-south axis (mean decorrelation ranges of
40.9 km and 39.1 km, respectively, Figure 10).

Aggregating over the whole area, TLM predicts higher total com-
mercial biomass than SEBDAM, with the difference narrowing over
time (Figure 11). The difference was on average 15.5% from 1997
to 2003 and declined to an average difference of 9.1% between 2013
and 2018 (the average difference was 9.6%). The convergence in the
biomass predictions between TLM and SEBDAM in more recent
years mirrors the results from the secondary simulation experiment
(see Appendix A). The 95% confidence interval of the SEBDAM
biomass predictions are 65.7% smaller than for TLM. The uncer-
tainty of the 1-year projection (2019) was more similar between
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Figure 8. Predicted recruit biomass density Rs, t (kg/km) at each knot between  and .

the two models as the 95% confidence interval from SEBDAM was
33.8% smaller than for TLM. The recruitment predictions of SEB-
DAM and TLM are very similar, but the 95% confidence interval
for TLM are on average 126.3% larger than for SEBDAM.

The mean natural mortality predicted by SEBDAM is on aver-
age lower by 0.09 than the one predicted by TLM. The effects of
particularly strong influential tows with a high proportion of clap-
pers is greatly reduced for SEBDAM, which is clearly seen in 2003
(Figure 11). While these tows inform localized mortality patterns
(e.g. the elevated mortality in the outside area; Figure 9), they are no
longer extrapolated to the entire population in SEBDAM (Figure 11,
see Figure 14 in Supplementary Materials for visualization of indi-

vidual tows in 2003). The reduced impact of strong influential tows
is also present for biomass and recruitment, but is most evident for
the natural mortality. This also results in substantially smaller 95%
confidence intervals for natural mortality in SEBDAM, which are
136.5% smaller on average than for TLM.

Discussion
SEBDAM reliably captures population changes across both space
and time while simultaneously accounting for spatio-temporal pat-
terns in productivity. Furthermore, it has the relatively uncommon
ability to incorporate spatio-temporal patterns in exploitation (Cao
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Figure 9. Predicted natural mortality ms, t at each knot between  and , with -year projections for .

et al., 2019). SEBDAM is also able to provide a single synoptic
biomass estimate for a region. All of the underlying processes are
estimated with minimal bias, especially when a moderately infor-
mative prior is assumed for the catchability parameter. It is also able
to project 1 year ahead with less associated uncertainty than its tem-
poral predecessor (TLM) in a simplistic forecast setting.

Unusually large tows, characteristic of fisheries data, can unduly
influence predicted population patterns and stock indices (Chen
et al., 2000; Hinrichsen, 2001). Although these tows contain real
information, non-spatial methods tend to give them undue weight.
In the SPA 3 time series, there are large spikes in biomass, recruit-
ment and natural mortality. However, a closer inspection reveals

that these spikes are due to a few tows that are constrained to rel-
atively isolated areas [see Supplementary Materials and Nasmith
et al. (2016)]. Stratification approaches help reduce the impact of
these tows on analyses (Smith, 1996; Kimura and Somerton, 2006),
but the influence of such large rare events still persist. Desirably, this
spatio-temporal approach accounts for both the local and overall
impact of these tows by borrowing information from neighboring
tows. That is, the impact of outlying tows is informed by their spa-
tial extent rather than their magnitude (or that of a small cluster of
outlying tows).

SEDBAM captures and predicts spatial population and produc-
tivity patterns without explicitly modelling the underlying causal
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Figure 10. Decorrelation ranges in all directions for biomass (solid line), recruitment (dotted line), and natural mortality (dashed line).

mechanisms. By capturing the spatial information contained in
the data, the latent impact of the environment on the population
is modelled without explicit knowledge of the environmental fac-
tors driving these patterns (Besag, 1974; Legendre, 1993). Given
that relationships between easily measured proxies for environmen-
tal drivers and population dynamics are known to change over
time (Myers, 1998), the development of models which can track
spatio-temporal changes in productivity patterns can help to pro-
vide deeper insights into the factors driving changes in productivity
(Guan et al., 2019). This incorporation of the environment without
modelling the underlying mechanisms can therefore be seen as em-
bracing an ecosystem approach to fisheries management (EAFM;
Colloca et al., 2013; Laugen et al., 2014; Gullestad et al., 2017; Bas-
tardie et al., 2021) and is part of the necessary work required to build
up next-generation SAMs (Cadrin, 2020; Punt et al., 2020).

Explicitly modelling key characteristics of a given stock as spa-
tial processes has been identified as an essential feature of next-
generation assessment models (Berger et al., 2017; Punt et al., 2020).
Our approach improves on many of the challenges that need to be
addressed to move in this direction, from the incorporation of spa-
tial structure to the inclusion of a simulation framework (Berger
et al., 2017; Punt et al., 2020). SEBDAM can explicitly model the
spatial structure inside of a stock by tracking the population den-
sity at a data-driven resolution, and is able to incorporate spatial
random effects using computationally efficient methods through
the use of TMB. Furthermore, SEBDAM has a built-in simulation
framework that allows for “self-tests” (Punt et al., 2020) under vari-
ous settings and can be combined with other methods to show pat-
terns of biases that come from ignoring spatial structure (see Ap-

pendix A). While SEBDAM does not explicitly model the impact of
specific environmental factors, its ability to capture spatio-temporal
patterns in productivity can help us formulate hypotheses to explain
the drivers of these patterns.

By combining the predicted population patterns with the es-
timated decorrelation ranges, we can make inferences about the
causal mechanisms driving observed environmental patterns. In the
case of SPA 3, there is a clear productivity gradient from east (higher
productivity) to west (lower productivity) where all three processes
follow the bathymetry and/or tidal flow in some way. This aligns
with the depth profiles, major currents and tidal flows of the Bay
of Fundy (Hannah et al., 2001; Aretxabaleta et al., 2008) that likely
impact the growth and survival of scallops that have settled into the
benthic environment (Shumway et al., 1987; Smith and Rago, 2004).
The habitat suitability for benthic species such as scallops is often
related to bathymetry (Brown et al., 2012), and it has been linked
to increased productivity, increased fishing pressure (Brown et al.,
2012; Smith et al., 2017), and to settlement success for juvenile scal-
lops (Hart and Chute, 2004). Work has already gone into identifying
and creating habitat suitability maps for sea scallops (Brown et al.,
2012) and while they have been used to develop precautionary ap-
proach reference points for the purpose of stock assessment (Smith
and Sameoto, 2016; Smith et al., 2017), these maps have not yet been
used as direct inputs into the SAMs themselves. Using habitat infor-
mation to incorporate suitability patterns promises to further im-
prove these types of spatially-explicit models.

Our approach provides science advice for the entire management
area as well as any subset of interest. It can be used to provide the
information necessary for traditional forms of science advice, such
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Figure 11. Predicted total biomass, total recruitment and mean natural mortality for SPA  from TLM (red) and SEBDAM (blue). Envelopes
represent interpolated point-wise % confidence intervals.
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as biomass reference points and removal reference points while also
facilitating the development of novel indices that can be used to de-
velop new types of science advice (Caddy and Mahon, 1995; Na-
smith et al., 2016; Shertzer et al., 2010; Smith et al., 2017) such as dy-
namic reference points (Berger, 2019) by capturing shifts in produc-
tivity or simply guide the development of spatial reference points
(Reuchlin-Hugenholtz et al., 2016). Entirely new management tools
could also be developed, for example “hierarchical” reference points
in which typical synoptic reference points for an entire stock could
be retained (Caddy and Mahon, 1995; Shertzer et al., 2010). These
could then be used alongside more targeted reference points, which
focus on management measures to protect particular spatial regions
within the stock [similar to managing on spawning stock biomass
within more productive regions such as examples in Pikitch et al.
(2012)] or focusing on regions in which exploitation tends to be
elevated (Nasmith et al., 2016). Incorporating spatial information
into traditional SAMs opens up the possibilities of developing new
types of science advice that can help facilitate sustainable fisheries
management goals.

The ability of our spatio-temporal approach to capture pop-
ulation changes with minimal bias represents an improvement
over more traditional temporal approaches and brings to light
the importance of including spatial structure. Embracing a spatio-
temporal approach implicitly embraces an EAFM by incorporating
the impact of unmodelled environmental processes while simulta-
neously informing reasonable hypotheses of what these processes
might be. Further, “going spatial” enables the assessment models
to be future proofed against shifts in productivity or fishing effort
without requiring extensive work modifying survey strata and sub-
sequent indices. This approach increases the amount of information
available to fisheries managers, reduces the uncertainty around the
traditional estimates of population size, and should subsequently
increase the confidence in the scientific advice provided to man-
agers and stakeholders, thereby reducing the inherent risk in fish-
eries management decision-making.
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Supplementary material is available at the ICESJMS online version
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