
Model-free object grasping

Model-free object grasping with a learning-free approach.

TOM ERIK VANGE

SUPERVISORS
Jing Zhou, professor, UiA.
Ilya Tyapin, associate professor, UiA.

University of Agder, 2021
Faculty of Engineering and Science
Department of Engineering and Sciences

Abstract

The industry standards and capability are constantly advancing and pushing forward to increase
data collection, efficiency, profit, and quality as well as decrease downtime, injuries, and hazards
as much as possible. In recent years, robot systems have received more attention in the context
of a large number of industrial applications, such as automotive manufacturing, additive manufac-
turing, assembly, quality inspection, and co-packing. The collaboration between multiple robots
and human operators is considered to be the most prominent strategy in Industry 4.0 and future
Industry 5.0, sharing the same space and collaborating on tasks according to their complementary
capabilities. With the use of robots and their abilities could efficiency, profit, safety, and quality be
further increased, potentially revolutionizing the industry and production.

This project was supported in part by DEEPCOBOT Project. DEEPCOBOT, Collective Efficient
Deep Learning and Networked Control for Multiple Collaborative Robot Systems, are a research
project funded by IKTPLUSS under Grant 306640/O70 from the Research Council of Norway. The
project will investigate the design of a new generation of decentralized data-driven Deep Learning
based controllers for multiple coexisting collaborative robots, which interact both between them-
selves and with human operators in order to collectively learn from each other’s experiences and
perform cooperatively different complex tasks in large-scale industrial environments. This is mo-
tivated by the increasing demand of automation in industry, especially the demand of a safer and
more efficient collaboration between multiple robots and human operators to integrate the best of
human abilities and robotic automation.

This project has looked into the problem of grasping an unknown and previously unseen object with
a learning-free approach. By implementing a model-free picking algorithm onto a robot arm with a
gripper and robot vision could it be able to pick up a vast variety of objects.

A virtual environment has been created with a robot arm and depth-camera during this project.
The result from this project is a setup that is able to scan objects placed on a workbench and
create a point cloud representation of these objects. The point cloud is since used to calculate the
curvature of the objects, creating a foundation for further use in a learning-free setup for grasping
previously unseen objects.

i

Contents

Abstract i

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Motivation . 2
1.2 Goals for Project . 2
1.3 Project Limitations . 2
1.4 State-of-the-Art . 3
1.5 Preview of Chapters . 5

2 Theory 6
2.1 Vision . 6
2.2 Search Trees . 7
2.3 Robot Kinematics . 8
2.4 Zero Moment Shift . 9
2.5 Local Contact Moment . 9
2.6 Grasp Handling . 10
2.7 Safety . 11

3 Method 12
3.1 Hardware . 12

3.1.1 Robot . 12
3.1.2 Camera . 12

3.2 Software . 13
3.2.1 Robot Operating System . 13
3.2.2 Gazebo . 15
3.2.3 Point Cloud Library . 16

3.3 Surface Observation . 16
3.4 Point Cloud Construction . 17
3.5 Zero Moment Shift . 18

4 Program Execution Structure 19

5 Test Setup 22

6 Results 23
6.1 Point Cloud . 23

6.1.1 Cloud Merging . 23
6.1.2 Point Distribution and Density . 24

6.2 Zero Moment . 27
6.3 Zero Moment Shift . 31

ii

7 Discussion and Future Work 34

8 Conclusion 42

Bibliography 43

A Virtual Environment Builder 45

B Virtual Environment Launch 47

C Scan Trajectory 49

D Voxel Grid Filter 52

E Point Cloud Transformation 53

F Point Cloud Assembler 55

G Assembly Cloud Voxel Grid Filter 56

H Zero Moment Shift Algorithm 57

I ROS Traffic Nodes 61

J ROS Traffic Topics 63

List of Figures

2.1 Search three . 7
2.2 Octree example. 7
2.3 Eye-in-hand kinematics . 8
2.4 ZMS illustration . 9
2.5 Surface Fit example . 10

3.1 Robot Operating System [19] . 13
3.2 Gazebo environment . 15
3.3 Scan pattern . 16
3.4 Gazebo (bottom) and Rviz (top) simulation . 17
3.5 Constructed point cloud . 18

4.1 Flowchart scripts . 21

5.1 Single object scanning Placement . 22

6.1 Gazebo object scan . 23
6.2 Point cloud extraction . 24
6.3 Objects point cloud view 1 . 24
6.4 Objects point cloud view 2 . 24
6.5 Cubes point cloud . 24
6.6 Voxel grid sizes cubes . 25
6.7 Voxel grid sizes cups . 25
6.8 Voxel grid size clutter. 26
6.9 ZM object for scale. 27
6.10 Zero Moment set one . 28
6.11 Zero Moment set two . 29
6.12 Zero Moment set three . 30
6.13 Zero Moment cubes . 31
6.14 Door handle section area . 32
6.15 Door handle ZMS . 32

7.1 Gazebo simulation . 34
7.2 Depth Image . 35
7.3 PointCloud2 . 35
7.4 Camera test setup . 36
7.5 Rviz DepthImage . 36
7.6 Rviz PointCloud . 36
7.7 Grasp illustration example . 38
7.8 System load . 38
7.9 Stack light . 39

I.1 ROS traffic nodes . 62

J.1 ROS traffic topics . 64

v

.

List of Tables

3.1 Node list . 14
3.2 Topic list . 14
3.3 ROS packages used . 15

6.1 Point cloud data density . 25
6.2 Average execution performance . 26
6.3 ZMS results door handle . 31
6.4 Time execution ZMS script . 33

vii

.

Chapter 1

Introduction

There has been a vast focus on efficiency and automation within industries and manufacturing over
the last couple of decades. By improving the production, one could profit more while increasing
the quality of the products, decreasing downtime, and enhancing the safety of workers at the plant.
With the increasing efficiency in a plant, are often robots introduced within the production line for
repetitive work. These solutions often have a more static implementation, meaning that if there are
any changes in the work environment outside of the given scenario, either the robot environment
must be changed back to the original setup or the robot re-programmed to account for these changes.

Interaction with unknown objects in an open-world environment is a challenging problem. A robot
could, for instance, have to navigate to a given location for task execution, see and understand the
working environment and what object to grasp and interact with. The robot would need to be
equipped with a vision system, where it needs to be programmed to find out what it is seeing and
how it should act accordingly with it.

With upgrading and implementation to new standards within industries and manufacturing, like
Industry 4.0 and collaborating robots (also called cobots), a more dynamic, multi-purpose produc-
tion line can be achieved. With a more dynamic and adaptive setup, might a robot solve several
tasks and establish a safe work environment with the interaction between robots and humans.

This project will look into a learning-free approach, meaning no previous recorded data or training
would be needed to execute a task to observe and interact with a previously unseen object for a
robot. This project will set up a virtual test environment for a robot arm to observe and create
point clouds of previously unseen objects, creating a model-free setup as a foundation for further
projects.

1

1.1 Motivation

Most robots today are programmed to execute specific, fixed tasks in a defined area. These could
do repetitive pre-defined tasks. If something in the environment changes, the robot might not solve
the task anymore and would either need a correction in the working environment or reprogramming
of the robot to suit the changes. This is one of the drawbacks with a fully static setup, that if any
change comes up out of line with the designed setup, the task might not be fulfilled to a suitable level.

By taking a more dynamic approach, a robot could position itself or adjust to some of the changes,
thereby lowering downtime where a stop of the process and correction earlier would have taken
place. To make a robot more dynamic, must cameras, lasers, or other sensors that could give vital
information about the work environment be implemented so that the robot could act accordingly
to its’ work environment. However, only implementing the sensor is not enough since the data must
be treated, analyzed, and interpreted before appropriate actions can take place accordingly.

The motivation for this project comes from the increasing demand for automation in the indus-
try. Increasing efficiency, accuracy, reliability, and safety to constantly new levels is an exciting
and impressive achievement. During the last couple of decades, there has been a vast development
where the industries, companies, and academia must adapt to new changes and requirements more
and more rapidly. Looking forward, will the demand only increase further for creating a safer work
environment, more refined products, availability, and affordability of equipment. In the pursuit of
this will the use of robots increase to execute tasks with speed, high precision, and inexhaustible
undertaking execution capabilities in various tasks and environments.

1.2 Goals for Project

This project aims to develop a foundation for learning-free and model-free object grasping in a
virtual environment. The setup should simulate a working environment in ROS, a software frame-
work used to program and control robots, that could later be tested and implemented in a physical
setup. A robot created and controlled in the virtual environment should see objects as a partial
point cloud. The system should execute the object’s point cloud construction autonomously, not
relying on pre-defined models or physical parameters from the object or any learning-based input
for its construction or calculation. A learning-free algorithm purposed to evaluate the objects are
Local Contact Moment (LoCoMo) [3]. LoCoMo does not need any prior knowledge of an object
other than a view of it as a partial point cloud. The project should look into and lay a foundation
for applying a LoCoMo application into the environment. This setup could provide a foundation
for further testing and development for students or lecturers, creating a dynamic robot setup able
to execute grasps of previously unseen objects.

1.3 Project Limitations

The scope for this project is limited due to several factors. This project will look into the LoCoMo
algorithm but not develop an equivalent LoCoMo algorithm because of its size of scope. Instead,
the goal will be to implement and set up a test environment in ROS for virtual testing with the
possibility for further physical tests. The project will further apply and test a Zero Moment Shift
(ZMS) calculation used to describe a point cloud’s curvature in the virtual environment. This could
since a LoCoMo algorithm use to find a feasible grasp on the objects surface.

An additional factor affecting the project was the uncertainty of what equipment to use and avail-
ability due to the demand from other students and the ongoing pandemic. The limitation was
chosen to create a more durable, stable environment and application rather than an unstable test
setup which could be hard to use since one of the criteria in the project is to develop and set up an
environment that could be used and further developed.

2

1.4 State-of-the-Art

With the ever-increasing demand for efficiency, profit, and data as the industry of automation and
robotics pushes forward are new methods and research developed. This chapter briefly overviews
some of the related work and research towards grasping objects and their approach to solving this
problem. There are two main approaches towards grasping techniques, learning-free and learning-
based, also known as analytic and data-based approaches. These two approaches try to solve the
challenging problem of grasping and interacting with an object in two different ways.

Learning-based Approach

A learning-based approach is using one form of Artificial Intelligence (AI), for instance, Machine
Learning (ML) or Convolutional Neural Network (CNN), to solve a task. The learning-based ap-
proach and use have lately gained more interest from academia and industry for its potential. ML
consists of several different algorithms which rely on previously recorded data. It can through ex-
perience or training data improve to execute a specific task. With CNN are data fed through a
network consisting of several layers of nodes, input-layer, hidden-layer(s), and output-layer. The
links between each node are weighted, or tuned, correspondingly for the network to achieve the
performance wanted.
Applying a learning-based approach to a grasping robot could start by learning how to pick up an
object. As the robot collects more data about grasping objects, are the performance and accuracy
increased over time as its algorithm is tuned. The positive part of a learning-based approach is the
adaptability and the potentially increasing accuracy over time with tuning. As the robot gets more
training and an increasing data collection, its result could potentially increase to a certain success
level over time. This approach’s drawback is the potential amount of data and time needed during
data collection and training before reaching a certain level of success rate.

One approach by [11] uses CNN to enhance the choice of grasp on a given point cloud. They first
segment and simplifies the point cloud to a more basic shape, like a cylinder or sphere, before
proposing grasp strategies dependent on the simplified shapes used. These are since fed through
a CNN with up to 150k dataset. They claim the learning time for such a dataset size would take
up to 40 minutes. Their approach has a low need for data and learning compared to others with
similar approaches.

[14] are proposing the use of ML for finding grasp poses in a point cloud of objects presented in
a clutter. Their approach starts by identifying a set of conditions needed for generating a set of
grasp hypotheses, which focuses the grasp detection into more feasible regions in the point cloud.
Since followed by creating a training set labeled automatically using grasp geometry. Because of
this approach, could it label a vast amount of training data without the aid of a user, automating
the training process.

The methods and approaches used are also dependent on equipment and strategies. [10] has opted
for using a RGB camera with a static view over the grasping work area. Their self-supervised rein-
forcement framework is based on the vision-data training a deep neural network to perform closed-
loop real-world grasps. This framework could cope with over 580k real-world grasp attempts. With
their closed-loop approach, have they achieved a more dynamic grasp process able to evaluate the
grasping process during its execution. The robot would try to adjust or re-grasp until the object is
grasped. If the available grasping points are granted a low score, could it push or move an object
to find a more feasible grasping point.

3

Learning-free Approach

A learning-free approach is analyzing the data given from a set of sensors or equipment, calculating
how to interact with the object of interest. A learning-free, or analytic, setup could execute a task
without being learned or told how to grasp an object but mainly act on the given data registered
regarding the object’s structure and work environment. The advantage of a learning-free system is
that it can potentially be placed and integrated quickly into an environment, primarily relying on
input data to execute tasks. This approach calculations might be computationally heavy, depending
on the data collection analyzed and how many grasps or solutions are evaluated.

A former approach for grasping objects could consider both the object’s surface as well as the grip-
pers and their interaction to compute force-closure [12, 2, 26, 18]. This would rely on given data
and known factors in advance to increase the likelihood or to be able to execute a successful grasp
of the given object. These data could consist of the object’s friction coefficients, mass distribution,
and weight. Such an algorithm could from this calculate the force needed from the gripper and
its fingers to grasp and hold the object. A similar approach is also used with form-closure, which
forms the gripper’s fingers to hold the object [25, 1]. Both of these approaches would require that
the system knows some data of the object. In an application grasping previously unseen objects,
are there little or no knowledge about the object at hand and would need a model-free approach
for adaptive execution.

By analyzing the surface characteristics and curvature given as a point cloud, cloud the gripper’s
fingers be projected onto the surface of the object to calculate and find a suitable grasp. An algo-
rithm doing this, called Local Contact Moment (LoCoMo) [3], would only need a predefined model
of its’ gripper and the surface of the object given as a point cloud. Their setup can grasp various
shapes without previously recorded data of the object mass or attributes. With a wrist-mounted
depth camera, they could scan the object, creating a point cloud to analyze and find a feasible
grasping location.

Compared to LoCoMo, are the approach by [16, 4] instead using a single view point cloud to gather
data from the objects. This creates a more straightforward approach since they do not rely on a
complete 3D representation, thereby not needing to scan the complete work area to analyze and
develop a grasp proposal. Their grasps are generated by creating a cutting plane perpendicular to
the object’s main axis and center. By this approach are most homogeneous objects center-of-mass
close to the center of the grasping area, thereby increasing the control of the object during lifting
and interaction. Though with a single viewpoint, they experience some vulnerability regarding ex-
posure to noise and view angle, affecting the result.

An approach proposed by [17] uses a framework for finding grasps in a 2.5D point cloud by combining
the use of laser range and stereo data. The grasping points are calculated based on the convex hull
points obtained from a parallel plane to the top surface in the height of the object’s visible center.
This approach gave a more stable and sustainable success rate, but [17] experienced a problem of
picking up, for instance, a bowl larger than the gripper since their approach considers the hole
object, instead of picking it up by its rim.

Proposed Method

The task of grasping previously unseen objects is a challenging problem. Several approaches and
research are made towards solving and improving this, though no method stands out clearly as a
preferred approach since each method has its advantages and disadvantages.
This project will look into an analytic approach that could be complementary to LoCoMo. The
contribution aims to address the limitation for this algorithm and purpose improvements, which
could increase the results. The aim is to develop a virtual environment for testing and developing
point cloud extraction and preparation for an algorithm such as LoCoMo. This environment could
provide a foundation for further development to build upon in applying the proposed approach.

4

1.5 Preview of Chapters

The thesis is composed of eight chapters. The chapters and their contents for the rest of the thesis
are as follows:

Chapter 2: Theory

This chapter presents the theory used for calculating and setting up the environment’s functions.

Chapter 3: Method

The method covers the equipment used, its setup, and what the virtual environment consists of.

Chapter 4: Program Execution Structure

This chapter goes through the scripts created and explains their execution. This illustrates the flow
of the project and how the virtual environment works.

Chapter 5: Test Setup

This chapter covers how the tests has been performed.

Chapter 6: Results

The result of the test conducted in this project is presented.

Chapter 7: Discussion and Future Work

Discussion elaborates both the result and the project in general and the future work for this project.

Chapter 8: Conclusion

Chapter eight includes the conclusion for the project.

5

Chapter 2

Theory

This chapter contains theory to give insight into the field touched upon in this project. This will
cover the vision for the robot, algorithm’s calculations, functionalities, and kinematic for the robot.
This gives a deeper insight into applications of relevance toward this project and for consideration
for further work.

2.1 Vision

The use of sensors can give a robot vital input regarding its environment, affecting execution, oper-
ations, assessment, or navigation. By implementing vision into a machine or robot, can information
regarding a task be extracted for solving a task and enabling the interaction for the local environ-
ment [9]. With a form of vision, can a robot use the input of the given image to evaluate and
execute a given movement or task, interacting with the environment more dynamically.

Point Cloud

A point cloud consists of several data-points in a 3D coordinate system Pn = [xn, yn, zn]. These
points could be created either with the aid of a software program, converting a model into a
distributed cloud, or using equipment like LiDAR (Light Detecting and Ranging) or depth-camera,
which create a cloud of points dependent on the detected surfaces in an environment. Additional
information regarding each point can also be stored depending on the sensors used, like color value
or surface temperature. With one or several point clouds taken, a model of either an object or area
can be mapped and used to recreate a 3D representation.

Filtering

Since a raw, untreated point cloud does not contain defined information of, for instance, what points
belong to an object or which are defined as the floor, must the data from the cloud be treated de-
pending on its features to extract information or regions of interest. To reduce computational loads,
reduce noise and extract the information of interest, could filters be used. By applying filters to
separate and extract points from a cloud, could different processes analyze the relevant data for
their specific operation.

For a defined range of interest or a static work environment, could the cloud be filtered by coordinates
or depth. This would return only the points within the given threshold. This filtering could also
apply to the point’s additional attributes, like temperature or color. Even extracting a limited region
could still result in a vast amount of points and data to analyze and could consist of an uneven
distribution of points dependent on the detection of surfaces. The uneven distribution could affect
further analyzes and calculation of the cloud. One method to create a more evenly distributed point
cloud is by using a Voxel Grid filter. This filter applies a grid of boxes in the point cloud. Within
each box or voxel, one point is represented as an approximated center of that group of points. This
will create a more evenly distributed point cloud.

6

2.2 Search Trees

A search tree is a tree data structure. With the tree structure, can the data collection be divided
into several layers of nodes and sub-nodes. These nodes can represent a data point or field, and
their sub-nodes are the values either higher or lower than the given node. An example of this is
shown in Figure 2.1.

Figure 2.1: Search three

By dividing the data into subsections, can the search time for a given node or information be de-
creased. Instead of searching through the whole data set for some given information, can the search
go through the branches towards the data of interest.

One form of such a search tree is an octree. An octree divides the search field into cubes, or octants,
similar to a search tree divides the data within nodes and sub-nodes. Where there are no data,
are the square not divided. Where there are data are the cubes divided into eight sub-nodes. This
continues similarly to the search tree. This method can also decrease the data storage necessary
to represent the structure or picture at hand since the nodes with no sub-nodes could represent a
large area and decrease data needed to describe it compared to dividing the whole area with a small
fixed size for its representation. An example of how an octree divides are shown in Figure 2.2. Here
a cube with nodes and sub-nodes are illustrated on the left side, and a search tree representing the
cube on the right.

Figure 2.2: Octree example.

7

2.3 Robot Kinematics

To navigate, coordinate, or move a robot is a coordinate system needed as a reference frame to act
from. Often are a system defined by several coordinate systems with equipment and task execution
reliant on these.
A robot arm has most often one static coordinate system, defined at its’ base. An example of how
a robot arm could consist and be defined by several coordinate systems can be seen in Figure 2.3.
Here is the coordinate for the robot’s base (B), joints, camera (C), and gripper (G) shown. The
view from the camera is defined relative to the camera’s coordinate system, C. To act out from the
given information, could the data from the camera be transformed into a global coordinate system,
like B. In this case, could the data be used to describe a location of an object. This data could be
used for the robot and gripper to interact with that given object.

Figure 2.3: Eye-in-hand kinematics

To transform between two coordinate systems are two matrices used, one for translation and one
for rotation. The translational matrix (T) is a vector used to describe the distance between the
origins of each coordinate system in a 3x1 matrix. The rotational matrix (R) is used for rotating
a coordinate system to alight its axis accordingly and consists of a 3x3 matrix. These two matrices
can be combined into a rotational-translational matrix, RT, as shown in Equation 2.1.

RT =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 (2.1)

With a RT-matrix, could a point seen from the camera frame, C, be described relative to the base
frame, B. This is shown in Equation 2.2. Here the point registered in the camera frame, pc, is
translated into the base frame B as pb.

pb = RT · pc =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

xc
yc
zc
1

 (2.2)

8

2.4 Zero Moment Shift

Zero Moment Shift (ZMS) is used to calculate the surface characteristics, in this case, the curvature
of the surface of an object. The point cloud of an object, χ, is analyzed by each point, X, and a
defined sphere with radius, ρ, around the given point X. This sphere is represented as Bρ(X) and
the set of points it contains as ξ. This gives the expression ξ = χ ∩Bρ(X) [3].

The Zero Moment M0
ρ (ξ) is obtained by calculating the average coordinates of the set ξ, where N

is the total number of points in the set and Xi are one sampled point from ξ. This is shown in
Equation 2.3.

M0
ρ (ξ) =

1

N

N∑
n=1

Xi (2.3)

The ZMS is then defined as the distance vector nρ between the Zero Moment M0
ρ (ξ) and the given

point X.

nρ =M0
ρ (ξ)−X (2.4)

Figure 2.4: ZMS illustration

These vectors define the surface curvature of the point cloud. If the given nρ in an area contains
high values, i.e. long vectors, the surface would be interpreted as more curved. This is because
the average coordinate in a given M0

ρ (ξ) are further away from the current point X than in a more
flatter surface that would result in a shorter vector nρ, assuming the distribution of points on the
surface is even. An example of this can be seen in Figure 2.4. The two squares illustrate a set ξ,
with the search point X as the black point, andM0

ρ (ξ) as the red point. The vector nρ is illustrated
as the arrow between M0

ρ (ξ) and X.
These data are affected by the radius, ρ, of the sphere. Dependent on how big the radius ρ is from
the center point X, will include more or fewer points in the calculation.

2.5 Local Contact Moment

Local Contact Moment (LoCoMo) uses ZMS to analyze the surface structure and score dependent
on the likelihood of grasping success. A guiding factor for this are L1 = |nρ|, which gives a char-
acteristics view of the given surface [3]. By using L1, can the curves and surface characteristics of
the object be distinguished. Further, could this be used to compare the surface of the object to
the surface of a gripper or its’ contact patches. These surface probability of fitting each other are
further ranked through a probability function, Equation 2.5, first introduced and purposed in [3].

Cρ = 1− max(x, φ(x,
−→
0 ,

∑
))− φ(ε,−→0 ,

∑
)

max(x, φ(x,
−→
0 ,

∑
))

(2.5)

9

Where φ represents the multivariate Gaussian density function, shown in Equation 2.6, which con-
tains X,µ ∈ Rn, n as the space dimension and

∑
as the covariance matrix. The multivariate

Gaussian density calculates the statistical distribution in n-dimension.

φ(x, µ,
∑

) =
1√

(2π)n|
∑
|
exp (−1

2
(X − µ)T

−1∑
(X − µ)) (2.6)

ε = n1ρ − n2ρ (2.7)

ε represents the deviation or surface difference between the gripper, n2ρ, and the object, n1ρ, given in
the same reference frame. This deviation are calculated using Equation 2.7. If both surfaces have
similar shapes, would their vector be similar, resulting in a small error value after the subtraction.
If the surfaces differ more from each other, will the result be a higher value ε. An illustration of
this is shown in Figure 2.5. By ranking and checking the differences between the gripper and object
surface, can a feasible grasp location be found and increase the likelihood of a successful pick.

Figure 2.5: Surface Fit example

2.6 Grasp Handling

With the characteristics of the point clouds from both the gripper and the object can the process
of finding a suitable grasp begin.
In Equation 2.8 the probability of contact between the surface of the object and each finger of
the gripper is presented. Here NS represents the given points in the point cloud near a finger of
the gripper, and n is the number of points near a finger in the object point cloud. Ci,Xiρ is the
probability of local contact moment between a point, Xi, from the object projected perpendicularly
onto the surface of the gripper. Ci gives the contact probability for each finger, found by using
Equation 2.5 [3].

Ci =
1

NS

n∑
i=1

Ci,Xi
ρ (2.8)

To select a grasp with high plausibility of success are the grasps ranked with the use of Equation
2.9. Here k is a normalizing term, nf as the number of fingers on the gripper, ωi as a weighting
factor that satisfy

∑n
i=1 ωi = 1, giving the ranking value R.

R = k

nf∏
i=1

Cωi
i (2.9)

With the grasps ranked from high to low plausibility for success, could the top grasps be analyzed
further for final evaluation before execution of the most suitable grasp.

10

2.7 Safety

With the implementation of equipment that brings along potential dangers and hazards must bar-
riers, cautions, or other safety measures be implemented and held along with it. This is to secure
humans, equipment, and other assets or values that might be exposed to these dangers. When im-
plementing and running a project in a physical environment, there is a potential risk where humans
and the robot could work in the same environment simultaneously and handle objects or equipment.
These cases should follow the safety standards that apply accordingly.

ISO 10218

The ISO 10218 is a standard regarding safety implementation for industrial robots and consists of
two areas in focus: Robots and Robot systems and integration [7]. This standard was created when
the risks with robots and their working environment were recognized and are meant as guidance
and precautions for construction of both the work area for the robot and what measures are needed
to be held to obtain a satisfactory level of safety.

ISO 10218:1 (Robots)
The first part goes into detail about industrial use, controller and manipulators used to control a
robot, and what functions must be implemented. Before implementing the robot in an environment,
there should be taken a risk analysis consisting of points like the robots planned operation and their
scenarios (maintenance, adjustments, cleaning and similar), unexpected shutdowns or startups, the
availability of the robot for people, the outcome of the failure of this robot fully or partially and
other hazards regarding the robot type, its tasks and what material it is handling. Dangers should
be limited or lowered to acceptable levels for the robot to be implemented.
During the robot operation, the standard also sets an upper limit of what force the robot could
work or execute to limit the impact force if a situation should occur where a human might get into
the robot’s path. The robot should also have some measures or emergency stop function to stop it
either from its execution standpoint or activated by a human when an operator sees a potential risk.

ISO 10218:2 (Robot systems and integration)
This part goes further into tools used, workpieces, periphery, and safeguarding in the environment of
the robot. It specifies the significant dangers and hazards in different setups and safety requirements
within the corresponding scenarios. These requirements to lower risk or hazard could be either
reconstruct or change of work area or the implementation of, for instance, barriers, surveillance
during operation, signs, and other visual safety measures. It also goes into environmental factors
that can affect the robot.

ISO TS 15066

This standard builds upon the ISO 10218 standard and goes further into details for risk analysis
and use of cobots where robots and humans will interact [8]. Its focus is to reduce risk during
operation, power and efficiency output from the cobot that can cause harm and lowering potential
hazard levels to an acceptable level, and implementing routines to aid the workers. This can secure
the safety of the working environment around the cobot and aid with combining the speed, force,
and precision from the cobot with the skills, flexibility, and problem solving from a human.

11

Chapter 3

Method

The programs and equipment used during this project are listed in this chapter.

3.1 Hardware

The equipment used in the project was provided by the university and the Mechatronics Innova-
tion Lab (MIL). The equipment consisted of a computer, a depth camera, and access to a robot arm.

The computer provided and used in this project was fitted with an Intel I5 660 3.33 GHz dual-core
CPU, AMD 5770 1GB 850 MHz GPU, 8 GB RAM, and an SSD. The operating system installed
was Ubuntu 18.04.05, since this operating system had support with ROS melodic morenia, which
could use several open-source packages available relevant to the equipment used or available.

3.1.1 Robot

The robot used in this project is produced by Universal Robots, which create collaborative robot
arms to integrate and solve tasks in industries, packing, educational use, and more. Their product
line consists of 4 robot arms with 6 DoF (Degrees of Freedom) in different sizes. The one used in
the virtual environment in this project, UR5, is the second smallest arm in the series. With a range
of 85 cm and capable of lifting payloads up to 5 kg, it is suited for a variety of tasks. The tools for
the robot are mounted on its end, also known as its end effector, and can be changed depending on
the task at hand [24]. This robot model was chosen because the university has access to this model,
making it suitable when the project is continued or used as a foundation for related work.

3.1.2 Camera

The camera used in this project was an Intel RealSense D435i. It is an RGB-D camera able to
create a point cloud in the range 0.2 m up to 10 m, dependent on light condition. It also has
an IMU (Inertial Measurement Unit) to measure up to 6 DoF. The RealSense D4-series supports
implementing and running with ROS, making it easy to integrate and use in such an environment.
The mounting of the camera affects the results and approach for solving the task. A fixed-view scan
position with a depth camera could result in shadows and blind spots in the point cloud, dependent
on the object and its position. This could lower the success rate of grasping an object since features
in the blind spots are not accounted for. To improve this, could a set of basic geometric shapes be
used to describe the object in view [9]. Nevertheless, as mentioned, could additional features be
in the blind spots, and with a model-free learning-free approach, would a static point of view not
be as sought after because of this. By attaching the camera onto the robot’s end effector, giving
a dynamic viewpoint or eye-in-hand setup, an object can be scanned from several angles, thereby
adding more information on its shape and decrease potential blind spots. This approach would
be beneficial since additional data are gathered on the object shape and increase the likelihood of
finding a feasible grasping point, and were therefore chosen.

12

3.2 Software

To control the equipment used and sensor data are several different software used and applied to
control the robot safely, solve the task at hand, and aid in the project execution. The mainly used
programming language for this project was python. This was because of the student’s previous
experience in python compared to the alternatives.

During the project was Visual Studio Code (VSC) used for coding and file structure overview. VSC
has an intuitive graphical interface regarding file tree used to navigate in the development folders
and the additional plugins installed to aid in coding, structures, troubleshooting, and functions. As
a safety measure for not losing the developed files and code was GitLab used to take backups of
the project folders, saving them online, and keeping track of the software development. The file
structure included in the backup was the package repository in the ROS-environment, where most
developed codes were stored. GitLab also gives an overview of use and changes, making it a tool
for keeping track of development and progress when used in a team. Several developers could work
on the same project in their branches to secure progress, keeping an overview of the structure and
acting as a safety measure. One could also roll back to previously developed versions if needed.
As an additional safety measure were several images created of the computer running the virtual
environment.

3.2.1 Robot Operating System

Figure 3.1: Robot Operating System [19]

The Robot Operating System (ROS) is an open-
source developing environment to develop, simulate
and program equipment or robots to control and
adapt them to a given task [19]. Because of several
developers’ contributions are many different pack-
ages and programs available and can be downloaded
and integrated to enhance a robot’s function, such
as use sensors or other data to execute a given task.
This gives ROS a modular approach. The packages
applicable could be downloaded and implemented instead of downloading an extensive program
where one would only need a minority of its functions. One example could be integrating an IR-
sensor to assist a mobile robot from hitting obstacles or walls while driving or through camera
recognition to recognize objects. The mainly implemented and supported program languages in
ROS are C++, Python, and Lisp, which makes this accessible for a wide range of developers [20].

ROS are regularly creating new versions or distributions, implementing and adapting functionality
towards the current distributions [20]. The version used during this project was ROS melodic
morenia, which was the second newest version at the project start. This distribution was chosen
because of the available packages for the Universal Robots and camera RealSense. The support
time was to 2023 before EOL (End-Of-Life), and had more available information on forums in the
community compared with the newest version at the time, Noetic Ninjemys. ROS builds upon some
functions and uses that are covered in the following subsections.

Node

Processes in ROS are called nodes [20]. These nodes could be calculating and computing individual
tasks that could since be used to control a robot. In this project, one node can be storing the data
from the camera for use in another node, which could estimate the surface features. By splitting the
process into several programs, or nodes, can more be done in parallel, thereby increasing efficiency.
It also helps with the troubleshooting where a problem can be listed down to one or some specific
nodes instead of in one big program. The nodes used in this project are shown in Table 3.1. An
additional map of the communication between the nodes during execution can be seen in Appendix
I.

13

Table 3.1: Node list
Node name Function

/assemble_voxelgrid_applied_pointcloud Second voxel grid filter package.
/gazebo Gazebo application.

/gazebo_gui Graphical User Interface for Gazebo.
/my_assembler Assembler used for point cloud merging.
/pcl_manager First voxel grid filter package.

/robot_state_publisher Publisher for transformations for the robot.
/scan_trajectory_pub Scanning procedure script.

/voxel_assembled_cloud Second voxel grid filter for filtering assembled cloud.
/voxel_grid First voxel grid filter extracting points above workbench.

Topic

A topic is the message containers used to transport data between nodes [20]. These nodes can
subscribe or publish data to different topics, which could be used in a process or task. The topics
are not bound by any node, and can therefore be used by several nodes, thereby increasing the
streaming of communication. Topics used during this project are shown in Table 3.2. Additional
overview of the topics traffic during execution are shown in Appendix J.

Table 3.2: Topic list
Topic name Use

/arm_controller/command Setting commands for joints and position for UR-robot
/assembled_pc_scan Assembled point cloud from second voxel filter.
/camera/depth/points Points published from camera.

/camera_PC_transposed Transposed point cloud from camera- to base-coordinate system.
/tf Transfer function for mobile coordinates.

/tf_static Transfer function with static relation coordinates.
/voxel_grid/output Filtered cloud from camera.

Master

The master, or roscore, keeps track of all active nodes, topics, services, and addresses.
For a node that publishes to a topic, it will give its address to the roscore. By doing this, will the
roscore keep track of the active topics.
When communication for a node is needed, the node will first contact the master, which provides
the address of the node publishing on the topic of interest. Since the subscribing node now has
an address to the node publishing on the given topic, it will use this address and connect for the
message subscription so that the communication stream will go directly between the nodes.

Packages

Packages in ROS contain programs, functions, nodes, libraries, or other sorts of data that can
be implemented to solve or add value to a ROS environment [20]. With the created packages
for distribution in the community, does it improve and make it easier for other users to include
and expand their environment to solve their problems at hand. This modular approach combined
with the open-source environment makes the ROS environment a popular and good alternative
regarding making, building up, and using equipment and robots for projects and tasks, as long as
the equipment is supported or capable.
The packages used during this project are listed in Table 3.3.

14

Table 3.3: ROS packages used
Package for Package name ref

UR5 universal_robot [23]
Intel RealSense camera realsense-ros [21]
Camera Gazebo Plugin realsense_gazebo_plugin [5]
Created environment ur5_env_description

Filter

In this project are voxel grid filters used to treat the data from the cloud. This will create a more
evenly distributed point cloud and lower the number of points in the processed cloud. Reducing the
number of points to process could increase the speed of the program’s overall performance further
on in the process since less data will be handled. Although this will decrease the points to analyze
and calculate, it will also remove some of the surface features, leading to loss of information. The
data removed will depend on the grid size applied to the point cloud. One advantage for creating
a more evenly distributed point cloud would be where the point cloud is further analyzed by its’
surface distribution and characteristics. Having an uneven distribution might affect some areas’
surface evaluation and weighting more than others because of a denser region of points.

A voxel grid filter was chosen because of its efficiency compared to other filters, as well as PCL and
ROS already include support and availability for it. [20, 27]. Using the supported voxel grid filter
in ROS, one could also define the cut-off area in the cloud. In a fixed working area, this could be
used for extracting only the region of interest. The voxel grid filter could reduce noise and even out
the distribution of points, leaving a more refined point cloud.

3.2.2 Gazebo

Figure 3.2: Gazebo environment

In Gazebo, a virtual work environment can be created
for testing equipment and robots without a physical
setup. Gazebo was chosen because of its compatibility
with ROS and the ability to simulate sensor inputs and
behaviors.
The advantage of using a virtual environment for devel-
opment and testing is no risk of damaging any equip-
ment or expose people to any danger. Bugs and faults
could be caught early and corrected before implement-
ing it onto a physical setup, lowering the risk. Another
benefit is that several developers could use and develop
in a local virtual environment in parallel, potentially
lowering the development time. It is a good practice
to use a virtual environment both for developing and
testing. However, a virtual environment alone can not
guarantee the behavior and performance of a physical
system. Inputs from sensors and equipment, for instance, could have varying degrees of distur-
bance, deviations, or errors, as well as how accurate the simulation tool is to represent the work
environment could affect the outcome. A good practice is to take advantage of both approaches by
starting and developing the system in a virtual environment before implementing it onto a physical
environment and fine-tuning the system and its parameter to satisfy the given requirements.

The gazebo environment was set up with a UR5 mounted on a workbench. The camera was mounted
to the robot’s end effector to collect data from objects placed in front of the robot. The object must
be within a range for the camera to gather and merge the object’s surface data. The environment
is shown in Figure 3.2.

15

3.2.3 Point Cloud Library

The Point Cloud Library (PCL) is a collection of algorithms for processing point clouds [22]. The
PCL contains functions for filtering and manipulating point clouds, recognizing or estimating cloud
features, recognizing shapes of objects, and more. PCL is open-source software that is free to use
and comes included in ROS. PCL is based and created in C++, although other versions exist of the
libraries wrapped or converted to suit other program environments, such as python.
In this project was a library called pclpy used. This python library converts and wraps the original
PCL-library from C++ to a python library with similar wrapping and functionality, by applying
another library, pybind11. Though other python libraries deliver similar functionality and conver-
sions, might their approach need other tools or programs that can increase the complexity and code
needed for maintaining the library. pybind11, which pclpy uses, is a headers-only lightweight library
used for conversion between python and C++ [15]. The implementation with a python environment
was chosen because of the student has some earlier experience with python compared with C++.

3.3 Surface Observation

The robot moves in a predefined scanning pattern so the camera can collect the object’s surface
attributes and data from each given pose. Collecting data from several view angles gives more
features and visible surfaces for analyzing, thereby decreasing the blind spots for the object. In this
setup are the scanning poses predefined at six locations for gathering data. These six poses were
chosen because of the combination of coverage and time of execution. A picture capture position
every approximately 600 around an object resulted in good coverage and surface detection. An
increasing number of poses for detecting surfaces would increase the time for execution and were
therefore not increased further when good coverage was reached. The scan poses were chosen to
give an overview of the workbench better to detect surfaces in case of a clutter of objects were to
be analyzed. A view of the poses is shown in Figure 3.3.

Figure 3.3: Scan pattern

The robot movement is set up for static analysis for scanning the workbench, meaning both the tra-
jectory and poses are predefined for the task of scanning. This approach was taken since the object
are assumed to be within a defined work area for scanning and further interaction. It is also assumed
that the size of the objects would correspond to a feasible gripper to a UR5 and the robot’s capa-
bilities, which are up to 5 kg. The range of a gripper’s maximal stroke are assumed to be between
85 to 155 mm, dependent on model used [24]. The poses were set to a generally high position as a
precaution for decreasing risk of colliding with objects as the robot moves over the workbench, keep-
ing the objects past the cut-off distance for the camera, as well as getting an overview of the objects.

16

3.4 Point Cloud Construction

Figure 3.4: Gazebo (bottom)
and Rviz (top) simulation

The clouds from the scanning trajectory are merged and fil-
tered to construct a point cloud of the object. The point
cloud is registered relative to the camera’s coordinate sys-
tem, camera_depth_optical_frame. Changing the camera
position would change the view in the point cloud. The
points would change, and trying to assemble a point cloud
with a reference in the camera frame would only over-
lap the points registered since they are observed in its dy-
namic frame and not translated to a global, static frame.
By finding the rotational-translational matrix between the
camera_depth_optical_frame and base_link, could the points
registered by the camera be presented relative to the base
frame. When the camera moves to a new position and reg-
isters new points, these points would not overlap but cre-
ate a 3D representation of the object. The rotational-
translational matrix is found with the use of the func-
tion lookupTransform in the pclpy-library. This could
since be used to translate the points into the base_link
frame.

When the points are given relative to a static coordinate system,
is it more evident where the object is placed in the work environ-
ment, which could be used to define where the robot should go
when interacting with it. After the point cloud is transposed to
base are a voxel grid filter applied to remove the points that are
below or equal to the top of the workbench. The points left are
for the object. To assemble the different clouds into one are a pre-
installed library laser_assembler from ROS used. It subscribes
to the topic from the voxel grid filter and collects the data it broadcasts. Since all the clouds are
defined in the same coordinate system, base_link, will the assembler create a 3D representation of
what is placed on the workbench, as shown in Figure 3.4. This point cloud is since published to a
new topic, where a new voxel grid filter is subscribed and collects the cloud for a final adjustment
before the cloud could be stored. By applying a voxel grid on the assembled cloud, could the over-
lapping points and scanned area be treated to make the point distribution more consistent. The
second voxel filter is also removing the points belonging to the base of the robot, which is seen in
some scanning poses during the cloud capturing.

A more unified and evenly distributed point cloud created would be more suited for calculation and
assessment. A cloud that is uneven or consisting of clutters with a varying density of points could
affect the calculations carried out of its surface, potentially influence the treatment, and result in
interaction with the object.

This process ends with a point cloud representing the registered surfaces for the object placed on
the workbench. These are since stored in a file structure, both for archiving and analyzing purposes.
An example of such a cloud is shown in Figure 3.5.

17

Figure 3.5: Constructed point cloud

3.5 Zero Moment Shift

The point cloud of the object is read from a pcd-file for calculations. A python script, zms_algorithm.py,
is used to conduct the calculations. The python script uses a pclpy-library for handling and calcu-
lations. The calculations done to the specified cloud are stored in new files for further assessment.
The ZMS-calculations are stored in text files, .txt, in [x, y, z] coordinates. This could be used by a
LoCoMo algorithm for surface curvature, which would get L1 by the absolute value of ZMS’s nρ. A
second pcd-file is also created to illustrate the ZM of the surface better than an array with numbers.
Here one could observe the curvature attributes calculated of the given point cloud. An additional
pcd-file is stored to better visualize the effects of defining a set ξ has on the ZM, M0

ρ (ξ).

18

Chapter 4

Program Execution Structure

This chapter goes over the structure, execution, and scripts of the given project explained from
start to finish. A flowchart showing the corresponding process is shown in Figure 4.1, as well as an
overview of node and topic communication for the running environment are shown in Appendix I
and J accordingly.

The virtual environment is defined in a urdf-file, shown in Appendix A. To start the virtual envi-
ronment, one must execute a launch-file, UR5env.launch shown in Appendix B. This file launches
the environment in Gazebo, imports the used model for the UR5 and camera, and launches the
filters used for handling the point cloud. When the environment is fully launched in Gazebo can
an object be placed on the workbench. Gazebo has a built-in library with a wide variety of objects
which can be imported and placed in the environment by coordinates.

With an object placed on the workbench, can the scan procedure be started. This can be started
with a rosrun command. The script controlling the scan procedure is Scan_trajectory.py, shown
in Appendix C. To see the published data of the topics of interest, can a program called Rviz be
launched additionally. Rviz is a program with support for ROS applications used as a visualization
tool. [20]. In Rviz one can import the robot model used in Gazebo, coordinate systems, topics,
sensor data, camera view, point clouds, and more for visualizing the data. Rviz has also been used
to troubleshoot during the project since data can be visualized easily by importing and subscribing
to their topics and analyzing the given data.

Scan_trajectory.py is a python script which are launched with the command
rosrun ur5_env_description scan_trajectory.py. This script defines the poses for the robot were
to take a depth image from and schedule the execution of taking the depth image, the transfor-
mation, and assembly of the point cloud. The position is defined at the start of the script as the
angle of each joint in radians. Following are a for-loop started where each stage is executed in
order. The robot will first move to a home position where the end effector will be placed above
the scanning area. A timer is since started before the robot moves to the first scanning pose. The
use of a home position gives some predictability for the system, as the users could know where
the robot could start and end its trajectory. When the robot reaches the position for the first
depth-picture are a if-loop initiated for controlling the call of functions. The first function initiated
in this loop are from another script, camera_PC_transform.py shown in Appendix E. Here it
subscribes to the topic /camera/depth/points, to collect the cloud streamed from the camera. Since
are a transpose from the camera’s coordinate system to the robot’s base coordinate system checked
and executed. From this is a transformation matrix calculated. With these matrices is the point
cloud from the camera’s coordinate system, /camera_depth_optical_frame, transposed into the
robot’s base coordinate system, /base_link. The transposed point cloud are since published to a
new topic, /camera_PC_transposed.

19

A voxel grid filter, shown in Appendix D, are subscribed to the transposed point cloud topic. It
receives the point cloud and filters it. Since the filter are defined in relation to the base_link coordi-
nate system, will the height in the point cloud be corresponding in the z-direction. The filter defines
the range of interest in one of the axes, which are from the workbench’s surface and upwards. The
filter also distributes the points more evenly before publishing them on a new topic, /voxel/output.

After the transform script has been initiated in scan_trajectory.py is a wait function used to hold
the robot in position until a cloud is published from the transformation. This is done to prevent
affecting the transformation between the coordinate systems. The processing of the clouds is de-
pendent on the data registered in field-of-view (FoV).

When a message is received that the transformation is done, will the script pc_assembler.py, shown
in Appendix F, be initiated. This script starts an assembler-function in ROS and passes the sub-
scribed point cloud into a builder. Here are the clouds collected and built in a common coordinate
system, which here is /base_link. The assembled point cloud are since published to the topic
/assembled_pc_scan. A second voxel grid filter, shown in Appendix G, is subscribed to this topic
and filters the cloud based on the base_link x-direction to remove the points corresponding to the
UR5’s base, which are detected in some scanning poses. Also by using this second voxel grid filter
are the overlapping points merged since some surfaces can be registered from several view-angles
and are placed on top of each other by the assembler. The filtered point cloud are since published
on the topic /voxel_assembled_cloud.

The scan_trajectory script is since starting the iterating for-loop again with the following position
scheduled. As the system executes the given commands, is a point cloud built with data collected
from several view angles, giving a more detailed view of the object placed on the workbench and
decreasing the blind spots. When all the depth-pictures are taken from each position will the robot
return to the home position. The script will then print a message with execution time for the
scanning before it stops.

For storing the point cloud of the object to a pcd-file are a command executed manually. The com-
mand, "rosrun pcl_ros pointcloud_to_pcd input := /voxel_assembled_cloud", are supported by
the ros-library pcl_ros. Running this command will store the PointCloud2-message received from
a given topic, in this case, /voxel_assembled_cloud. The file would be stored in the file structure
where the command window is currently active. This could be initiated by navigating to the folder
for storing the pcd-files, right-click on it, and choose Open in Terminal. As the messages are
published to the topic, will they be stored in the folder for further use and assessment.

After the point cloud is stored as a pcd-file can a separate python script be executed. The script
zms_algorithm.py, shown in Appendix H, will calculate the ZMS for the cloud and create a new
pcd-file to showcase the calculations. The script can be executed with the command python3
zms_algorithm.py from a command terminal. The reason for storing the point cloud through a
command terminal and separating this calculation into an own script external from the ROS envi-
ronment was for using a python library, pclpy [15], which relies on a python 3.6 to 3.8 version, while
the python version supported with ROS melodic ordinarily is 2.7.
Before starting the script, one must edit the file path to the input file of interest for execution and
the name for the new file to create with the results stored.

The script will since go through the point cloud, point by point. It starts by searching for the points
within a distance ρ from the given search point, X, before calculating their average position of this
set of points, ξ. This average will be the Zero Moment (ZM) corresponding to point X. The distance
between is the Zero Moment Shift vector, nρ, which is calculated and stored in a list. An additional
point cloud is created for demonstration purposes that stores all the points from one radius search,
illustrating for one set ξ. The point is defined by defining the index number in the point cloud,
which the user sets. The points within the defined sphere are colored and stored accordingly. The

20

ZMS for the cloud is stored in zms_array.txt, where they could be collected for assessment and
use.
At the end of the script are a new for-loop initiated to store the two point clouds. The original point
cloud and the ZM are applied in different colors to differentiate them. This is done to illustrate
the function and its affect. The last point cloud containing the object and ZM calculation is since
stored in a pcd-file.

Figure 4.1: Flowchart scripts

21

Chapter 5

Test Setup

This chapter contains the method of how the testing has been conducted for this project. This
way, one can replicate the setup and result in a later or similar scenario for comparison or further
development. The test environment is set up in Gazebo with the use of objects included in the
Gazebo library. The objects used in the testing were chosen because of their variety of surface, size,
curvature, and shapes. By testing with several different objects, one could see how the different
aspects of the setup would perform accordingly, both regarding collecting and creating a point cloud
of the model and calculating the ZMS for the cloud accordingly.

Single Object Capture

Figure 5.1: Single object scanning
Placement

During capturing of single object point clouds are the ob-
jects placed in the center of the scanning area. This is
done first by importing the object of interest into the en-
vironment. The pose of the object was since defined to
[0.4, 0.0, 1.0], which are defined in meters relative to the
global coordinate, world. This will place the object in
front of the robot accordingly, as shown in Figure 5.1.
With the object in place was the script scan_trajectory.py
executed to start the scanning procedure.

Object Clutter Capture

With testing of several objects placed on the workbench
inline or in a clutter, have them been placed within [0.3
- 0.8,-0.4 - 0.4, 1]. Different numbers and shapes of ob-
jects have been tested to see both performances regarding
accuracy and execution since more surfaces would need
more data to analyze.

Zero Moment Shift Calculation

The testing for the ZMS calculation has been conducted
by defining the pcd-file to which point cloud it should
evaluate. During the testing have several values for ρ been conducted to both see and evaluate its
effect on the calculation of the surface structure.

22

Chapter 6

Results

In this chapter the results from the project are presented. There are different parts and perspective
regarding the point cloud generated, system performance and algorithm calculation presented. The
results are from the execution in a virtual environment using ROS and Gazebo.

6.1 Point Cloud

The cloud created in the virtual environment is stored in a pcd-file for further use and analysis.
Several cloud collections were conducted to test the amount on data gathered, quality and process
compilation. The clouds created were evaluated by parameters and features which could affect the
execution and further data treatment in the process.

6.1.1 Cloud Merging

Figure 6.1: Gazebo object scan

When the robot moves through the predefined trajectory,
point clouds are captured from each view angle, filtered,
and merged to one cloud representing the object. A part
of this process is shown in Figure 6.1 - 6.4. Here one can
see how the cobot and camera in the Gazebo simulation
are scanning some objects and how this data looks like.
In Figure 6.2, the data posted from the different topics
are shown. The point cloud published from the camera
is shown on the left. Here are all the surfaces within the
field of view registered. The data filtered and treated are
shown on the right side. Here is the top of the workbench
filtered out and the different angles captured, which are
represented in one cloud. Here one can see how the soda
can on the left casts a shadow over the bowl, while on
the right are the points representing the bowl presented since they were seen and registered from
another view angle.
All the surfaces registered from the workbench plane and upwards are posted to one topic, as shown
in Figure 6.3 and 6.4. Here are two angles from the objects shown. The result of this is a point
cloud representing the four objects consisting of 104 768 points, where the voxel grid filter was set
to 1 mm grid size.
The alignments and merging of the clouds are crucial to create a point cloud that represents the
object correspondingly. If the point cloud deviates from the object, could further analysis and
interaction result in a fault execution. The merging of point clouds from different angles has
resulted in a point cloud structure with the same shape as the object. One example of this could
be seen for Sodacan bottom and Sodacan in Figure 6.12. Here one could see that the cloud
constructed has a cylindrical shape. The surfaces in height are continuous with no sudden deviation
or misinterpretation from the can shape. The result is a point cloud assembled representing the
object seen, which corresponds to its shape and size.

23

Figure 6.2: Point cloud extraction

Figure 6.3: Objects point cloud view 1 Figure 6.4: Objects point cloud view 2

6.1.2 Point Distribution and Density

Figure 6.5: Cubes point cloud

The number of points included in the object representation
depends on the grid size defined in the voxel grid filters and
the surfaces registered by the camera.
Figure 6.5 illustrates how an uneven capture of an object could
look like. Here two cubes have been placed in a location where
parts of their surface have been closer than the camera’s cut-off
distance. This could be seen in Figure 6.2 marked by the red
arrow. As a result, one corner of the cubes is defined by fewer
points since these points registered here are from other view
angles with less view of that particular surface. According to
the data sheet for the camera, Intel Realsense D435i, should
the close range limit for detection be 20 cm, compared to the
simulation, which has a cut-off border at 50 cm [6]. The sur-
faces within the scanning range that are not obscured in several
angles from the camera view get a good even distribution of
points.

24

The density of points in the point cloud was in this project changed in the voxel grid filters. The
raw point cloud published from the camera could consist of up to 921 600 data points in the virtual
environment. Running and collecting untreated clouds from the scanning procedure could result
in a merged cloud of up to 5 529 600 points. The analyzing and treatment of point clouds are
computational heavy. A point cloud consisting of a vast amount of data points will increase the
execution time on this given setup.
The raw point cloud was treated to extract the points of interest from the workbench plane and
upwards.
The voxel grid filter for the cloud assembler has been set to different sizes and tested to check the
resolution and effect on the cloud created.
The test results are presented in Table 6.1.

Table 6.1: Point cloud data density
Figure showing objects Voxel grid size Number of points in cloud

0.5 mm 163 108
Figure 6.7 1 mm 99 390

5 mm 5 704
0.5 mm 105 869

Figure 6.6 1 mm 56 765
5 mm 2 508
0.5 mm 687 331

Figure 6.8 1 mm 432 219
5 mm 19 547

Figure 6.6: Voxel grid sizes cubes Figure 6.7: Voxel grid sizes cups

25

Table 6.2: Average execution performance
Single Object/Clutter Voxel Grid Size Number of Points Time execution

Clutter 1 mm 594 800 2 min 3 sec
Single Object 47 390 2 min 17 sec

Clutter 2 mm 153 400 1 min 58 sec
Single Object 14 000 2 min 17 sec

Clutter 4 mm 36 680 2 min
Single Object 3 700 2 min 16 sec

Clutter 5 mm 21 300 1 min 59 sec
Single Object 2 420 2 min 17 sec

Clutter 7 mm 13 370 1 min 55 sec
Single Object 1 200 2 min 17 sec

Figure 6.8: Voxel grid size clutter.

By applying a voxel grid are some uneven distribution re-
moved, which depends on the given filter size. Where
the filter size is small are only the uneven distribu-
tion within that scale evened out. In Figure 6.6 - 6.8
one could see the effects of increasing the voxel grid
size. In this showcase do they vary from 0.5 to 5
mm.

The time used for running through the positions and cre-
ating a point cloud depends on the number of points in-
cluded. The average time needed for creating a point
cloud consisting of a certain amount of points is shown
in Table 6.2. The test was conducted on the objects
shown, or with similar structural properties, as in the
figures in this chapter with a similar environment setup.
The clutter would consist of 15 objects placed randomly
on the workbench, while the single object would con-
sist of an average of the object shown in Figure 6.10-
6.12.

As a result, point cloud creation with perspective to the distri-
bution of points are the clouds mostly evenly distributed. The
cloud creation is affected to some degree if the object is closer
than the camera’s cut-off limit. This could result in parts of
the surface consisting of fewer points.
The same result could be seen in a clutter, where some objects
are obscuring the camera view, casting shadows on other sur-
faces. In these cases could some blind spots occur. Regarding
density in the cloud, it is dependent on the voxel grid size set.
The points are evenly distributed over the surfaces registered
by the camera.

26

6.2 Zero Moment

Figure 6.9: ZM object for scale.

The objects used for illustration the ZM and ZMS
are shown in Figure 6.9. These objects have dif-
ferent size and curvature features, showing how these
factors will lead to different results from the calcula-
tion.

The results from the ZM calculation are shown in
Figure 6.10 - 6.12. Here six objects are shown
with different radius, ρ, used for defining the set of
points ξ. This is done to illustrate its effect on a
point cloud graphically. The light blue points rep-
resent the object’s registered surface, and the black
points are the calculated Zero Moment. A small
value ρ would result in the sphere Bρ(X) being
small, meaning fewer points are included in each set
ξ. A smaller set of points to calculate ZM would
generally result in a smaller distance between the
given setpoint X for the set ξ and the ZM M0

ρ (ξ).
The opposite would occur with a larger value for
ρ.

For the objects placed left in Figures 6.10 - 6.12, with ρ = 2mm, are the ZM more evenly distributed
across the whole surface, compared with a greater ρ, where the curvature gets more defined. Looking
at the bowl with ρ = 8mm in Figure 6.10 one can see all the black ZM points in the bowl as a result
of this. As illustrated here, the average point in a sphere Bρ(X) will tend to be in a concave surface.

Looking at the brim of the bowl, one can see a defined light blue edge. Here are the ZM points
within the brim because of the high curvature at this part of the structure. The same tendencies and
features can be seen on the other objects in varying degrees in relation to their structure curvature.
At the areas with flat faces are there fewer average changes, resulting in a more evenly distributed
pattern where the ZM point will lay within the plane of the surface. Closer to an edge or curvature
will the difference result in the ZM point outside of the surface.

From the gear shown in Figure 6.12, one can see the effect of high local curvature at its teeth with
an increasing ρ. At each tooth will the ZM points be placed more towards each tooth’s center, while
the ZM points in between each tooth will be placed just outside of the gear’s main body. This shows
how the size and local curvature affect the calculation of ZM since the average coordinate within
the sphere Bρ(X) will be further away from the point X with a set of points ξ with high variance
because of curvature. For a set ξ on a tooth, would the curvature be higher than between each tooth.

27

Figure 6.10: Zero Moment set one

(empty)

28

Figure 6.11: Zero Moment set two

(empty)

29

Figure 6.12: Zero Moment set three

(empty)

30

Figure 6.13: Zero Moment cubes

If the point cloud has an uneven distribution of points, could this affect the ZM and ZMS calculation,
as shown in Figure 6.13. This section is from the point cloud created in Figure 6.1, where one of
the corners wasn’t successfully captured. The result was a line of ZM-points where the plane goes
from a dense to a less dense representation of the surface, compared to the rest of the flat phase,
which is more randomly distributed.

6.3 Zero Moment Shift

The ZMS vectors, which describe the point cloud curvatures, are calculated and stored during the
creation of the ZM point cloud. The ZMS vectors are ordered accordingly to their representing
point X in the point cloud.

The ZMS was conducted in further detail on the door handle for illustration. For the ZMS calcu-
lation on the door handle, shown in Figure 6.14 - 6.15 and Table 6.3, one can see how the vectors
are affected by the curvature calculation for the object and how ρ is affecting this result.In these
figures the current point X is shown as the red point, while the calculated ZM, M0

ρ (ξ), are a
black point for the set ξ. The red arrow between them represents the ZMS vector. One can see
the length and sign for the value in the X,Y, Z plane correspond to the coordinate system in Fig-
ure 6.15. The current point X was chosen to illustrate the effect on highly curved surfaces and edges.

The effect of varying the size of ρ can be seen in Table 6.3 under "Vector length". A larger ρ will
include more points in the set ξ. This could potentially increase the distance between M0

ρ (ξ) and
point X, which are defining the ZMS vector, nρ.

Table 6.3: ZMS results door handle
X length Y length Z length Vector length

ρ = 2mm −3.576 · 10−6 −4.480 · 10−4 −5.292 · 10−4 6.93 · 10−4 mm
ρ = 4mm −6.076 · 10−4 −8.260 · 10−4 −7.018 · 10−4 1.243 · 10−3 mm
ρ = 8mm −8.625 · 10−5 −1.606 · 10−3 −1.684 · 10−3 2.329 · 10−3 mm

31

Figure 6.14: Door handle section area

Figure 6.15: Door handle ZMS

32

The time execution for the ZMS-calculation are shown in Table 6.4. These tests have been conducted
on two point clouds filtered with a voxel grid of 4 mm. The bowl was chosen since its cloud consisted
of 3 698 points, which deviates by only two points from the average of 3 700 points, shown in Table
6.2. The time for execution shows the average execution time per task. The time was recorded both
when the ZMS function would store and handle the point cloud, and when the function only would
store a list representing the ZMS.

Table 6.4: Time execution ZMS script
Clutter/Bowl ρ size Time execution w/Point Cloud Time execution w.o/Point Cloud

Clutter 1 mm 15.1 sec 11.3 sec
Bowl 1.6 sec 1.1 sec
Clutter 2 mm 15.5 sec 11.4 sec
Bowl 1.8 sec 1.2 sec
Clutter 4 mm 16.5 sec 12.8 sec
Bowl 1.9 sec 1.4 sec
Clutter 8 mm 23.2 sec 18.8 sec
Bowl 2.6 sec 1.9 sec
Clutter 16 mm 48.3 sec 44.8 sec
Bowl 6.1 sec 5.3 sec
Clutter 20 mm 1 min 8 sec 1 min 3 sec
Bowl 8.6 sec 7.8 sec
Clutter 32 mm 2 min 28 sec 2 min 17 sec
Bowl 17.9 sec 16.8 sec

33

Chapter 7

Discussion and Future Work

A virtual environment with a robot and a depth camera was built during this project and created
point clouds for further evaluation. The following sections in this chapter cover the discussion of the
different aspects, values, and further considerations for this project. The last section summarizes
shortly for the overall result of the project.

Camera Cut-off Limit

During the capture and creation of point clouds in the virtual environment, some surfaces within a
certain reach were not detected by the camera. The points published on the topic /camera/depth/points
are a sensor_msgs/PointCloud2 message. This message type is the most used for handling and
working with point cloud in ROS.

Figure 7.1: Gazebo simulation

The problem that occurs for creating point clouds was
when objects are too close to the camera. The cam-
era only detects surfaces that are from one given dis-
tance and onward. Compared to another topic created
by the camera, /camera/depth/image_raw, which pub-
lishes a message type sensor_msgs/image, could de-
tect more than what is published on /camera/depth/-
points.

One example of this is shown in Figure 7.2 - 7.3, with
the simulated environment shown in Figure 7.1. Here was
the camera registering the surfaces and publishing data
to each topic correspondingly. For the data published to
/camera/depth/image_raw, shown in Figure 7.2, it would
register surfaces closer to the camera compared to the
point cloud published in /camera/depth/points. The re-
sult in this scenario was that the top of the drill is not
registered in the point cloud, compared to the depth im-
age, which can detect and publish these surfaces.

34

Figure 7.2: Depth Image Figure 7.3: PointCloud2

Both of these topics are posted on different message types. Since the libraries and functions used
and available for treating point clouds in ROS are aimed towards sensor_msgs/PointCloud2, the
data published in /camera/depth/points are more suited.

It is possible to convert the data from sensor_msgs/image to sensor_msgs/PointCloud2 using pack-
ages such as depth_image_proc or additional software as OpenCV or OpenNI. In that case, one
could obtain points closer to the camera in the simulation, thereby gather more data representing
the surfaces registered where close placed objects would be occurring. This would increase the
data handling and introduce a new lid into the chain of processes, where data would be gathered,
converted, and published before being analyzed and used further.

Another solution could be changing the camera’s position to be further away from the object during
scanning and making sure the objects are within a defined area. Nevertheless, with a wide range of
objects in different shapes and sizes, wouldn’t this approach be ideal. Also, increasing the robot’s
range would need consideration regarding the overlapping work area with coworkers and obstacles
in its environment to retain the level of safety. Treating, for instance, small objects the same way
as big ones considering scanning distance could lead to fewer points and features registered. In this
case, would it be more suited to have several scanning trajectories dependent on the size of the
objects placed on the workbench. Before a scanning procedure started, could the robot move to
an "evaluation pose" to evaluate the registered points and execute the scan trajectory accordingly.
This way, one could make a "small, medium, large" object-scan execution. It could also evaluate
the height of the object from the highest registered points. If the object is a certain height, which
could lead to a collision when the robot would normally move over the object, it could change the
planned trajectory to instead move around the object than over.

Regarding the cut-off border, does it seem that the boundary for registered points is set in the
package for the camera in the simulated environment, since the topic /camera/depth/image_raw
can register surfaces closer than /camera/depth/points. This was also confirmed by testing in a
physical setup as shown in Figure 7.4 - 7.6.

A coffee cup was used to confirm the reading distance of detected surfaces from the camera. The
data published in both Image and PointCloud2 message are shown in Figure 7.5 - 7.6. Here one
can see how the handle is cut off in both topics, showing that both have the same range. In this
test were the border 15 cm from the camera, instead of 20 cm as stated in the datasheet [6].

This shows that there is some deviation between the virtual simulation and physical application.
Such differences are essential to take into account when designing and fine-tuning a system. During
the physical test was the package from the camera, realsense-ros, used. To improve the cut-off
deviation in the virtual environment, should one go through the Gazebo-plugin package for the
camera and code or find the defined cut-off distance for the simulation and decrease it towards 20

35

Figure 7.4: Camera test setup

Figure 7.5: Rviz DepthImage Figure 7.6: Rviz PointCloud

cm as stated in the datasheet from the producer. The image topic has a cut-off limit of 20 cm
compared to the PointCloud2 topic, which has 50 cm in the virtual environment. This leaves a 30
cm blind spot, meaning the simulated robot would need to move about 30 cm further away from
the object to register the same surfaces than the depth image in the virtual environment or the
physical setup would need. By changing this would improve the cloud capture and help prevent
achieving results like shown in Figure 6.13.

Filter

The result from Table 6.1 shows the effect of adjusting the grid size and the number of points
remaining in the cloud. One could refine the raw point cloud given and its distributed points for
further processing and analyses by applying such a filter. Only the second voxel grid filter was
adjusted during the tests, and the first filter was set to 0.5 mm. This was to keep the test more
consistent, the level of data available, prevent affecting or decrease the quality and data for the
process downstream from the first filter. For the single object, one could notice that the execution
time is consistent around 2 min 17 sec, where only a minor deviation of ± 0.6 seconds was detected
during testing.

For the clutter of objects was there more variation in time execution. Every scan executing for
clutter was quicker than with a single object given from the calculated time, despite the fact that
more data were processed. This could result from the compilation and high process load since the
time recording of the execution was included in the scan_trajectory script. Even though the clutter

36

at, for instance, 7 mm grid size produced a similar amount of points as the average single object
with 2 mm as an end result, would the clutter need to process and filter more data. Another aspect
that could be affecting this result is the number of objects in the Gazebo simulation. When more
objects were included was the processing load higher on the computer.

Compared to [3], their approach of executing grasp was using around 31k points on a clutter con-
sisting of 13 objects. This would, for this project, correspond to a voxel grid size of approximately 4
mm, achieving an average of 36 680 points on a clutter of 15 objects. By setting a similar foundation
of data amount to assess and act from, would the further implementation of a LoCoMo algorithm
be more comparable to see how performance and success rates correlate to each other.

The adjustability of the filter grid size leaves flexibility regarding data included in the final point
cloud. This leaves room to set the size suited for including the data level needed for different
algorithms and task executions.

Zero Moment Shift

To better illustrate the ZMS calculation was the point cloud of the object and the calculated ZM
stored in a pcd-file. Here one can see the effects of ρ for the point cloud and how the curvature
is interpreted. A greater value for ρ would result in the edges and highly curved areas looking
more defined in the illustrations. This aspect also relies on an evenly distributed point cloud, as
shown in Figure 6.13, which could lead to a misinterpreted surface when calculating a surface fit
onto a gripper. This shows one effect compared to a well-defined evenly distributed point cloud to
interpret. Further testing with a finished system is recommended to see the effect from different
quality of point clouds in assessment and action since this could affect the process in a later stage,
as well as the level of processing needed for the execution. The finished algorithm should grasp the
area with the highest likelihood of a good grasp, which could be in other regions of the point cloud.
Its effect should be considered and tested with a system able to grasp and lift objects to see its
impact on the execution.

In a setup with a LoCoMo algorithm, would the ZMS not need to store or create such a pcd-file, if
not of interest for further assessment. The ZMS calculation could be set up as a function, similarly
to how the transformation and point cloud merging script has been set up in this project. This
could increase the efficiency, as shown in Table 6.4. Here was the script launched to compare the
execution time, illustrating the difference when handling a point cloud and array for the ZMS to
only handling nρ. The results show fairly similar execution time, both when creating and storing an
additional point cloud, and when only calculating the ZMS. The 4 mm voxel grid size was chosen for
this test since it produced a similar amount of points as [3]. With a foundation of data consisting
of a similar amount of points describing the detected surfaces would make the further testing and
development more comparable to see how the project would perform compared to the setup [3].

The suitable ρ size applied for calculation of nρ on a given cloud should be looked into in conjunc-
tion with the gripper used further in the system since this could potentially affect the surface fit
assessment between the object and the gripper, as well as the size range of the objects.

LoCoMo Implementation

The virtual environment created and setup is a good foundation for implementing the LoCoMo
algorithm. The dependencies for implementing LoCoMo would be getting and integrating a gripper
into the virtual environment and calculation. The grippers available during the project execution
had limited to no support and models included for ROS. With the limited time for the project was
the process of modeling and creating controls for a new gripper from scratch to implement into
the virtual environment not executed. For proceeding with the LoCoMo algorithm is the gripper
a crucial part since it is used in the calculation and interaction with the object to find a suitable

37

grasping location on the object from the point cloud.

Figure 7.7: Grasp illustration example

Since the LoCoMo is valuating the surface fit between the
object and the gripper based on |nρ| from ZMS as L1,
could the setup for the ZMS affect the grasp evaluation.
An illustration is shown in Figure 7.7, where the green
area is where the calculation Cρ would find in this sce-
nario a surface fit for the gripper and object with a high
score. This could be a potential challenge in an envi-
ronment with vast, varying objects to interact with, like
small, highly curved objects and large, low curved objects.
An example of this could be for the gear shown in Fig-
ure 6.12, where its surface around the teeth is considered
highly curved, in comparison with the disk in Figure 6.10,

which are several times larger. This should be further evaluated and tested to ensure its effect with
the use of the LoCoMo algorithm and the range of objects this could affect.

The LoCoMo are considering the grasp out from the point cloud of the object but not considering
other aspects, such as the weight distribution. This problem was experienced by [3]. By including
other assessment factors in addition to the geometry computation, could the algorithm be improved.
One proposal could accordingly be considered for this enhancement. To keep the system learning-
free could an approach by finding the object’s approximate center be used. Creating a cutting
plane perpendicular to the object’s central axis or an approach by computing the centroid of all
the points in the point cloud could be considered. This could calculate the approximate center of
a single object and be used to weigh the grasps closer to the center of the object higher than those
on the outer edge of the cloud. This would assume an even weight distribution of the object and
would be more suited for interaction and handling homogeneous objects. This would be dependent
on the objects that the setup would interact with and should be considered accordingly.

Equipment Load

During the execution of the scanning procedure and creation of the point clouds were there a high
load on the CPU for the computer running the environment, as shown in Figure 7.8. In this case,
there were 15 objects placed on the workbench in Gazebo. Here one can see the load on the CPU
is running at full capacity during execution. Similar loads were seen during the scanning of single
objects.

Figure 7.8: System load

During scanning of single objects compared to clutter of objects would the Real-Time Factor vary,
which is a factor dependent on Real-Time compared to Simulation Time. While scanning a single
object, could the factor go towards 0.6, compared to when scanning a clutter where it could go
down to 0.2, meaning the time in the simulation passes slower than the time in Real-Time. This

38

could be caused by the load and step time necessary to simulate the environment with the given
objects. This could also be affecting the time calculation for execution, shown in Table 6.2.

Equipment Setup

The execution of creating and assessing a point cloud of an object is set up in a partially automated
configuration: The scanning and creation of a point cloud, the saving of the cloud to a pcd-file,
and the calculation and illustration by the ZMS done on that cloud. Each by themselves proves
the different concepts, but should be executed fully autonomously for ease of use in a final setup.
The reason for splitting the execution up was for the python version needed and supported, since
ROS has support for python 2.7, while for the library used for handling and treating point clouds,
pclpy, needed python 3.6-8. Also, by splitting the process up, could adaption, evaluation, and fine
adjustment of the different sections be more easily made to correct and improve the setup in a
modular fashion before including and building up the whole system. To make the process fully
automated, could one use ROS services to launch external files and environments. This would be
necessary to create a user-friendly and efficient final system that could run continuously at a plant
or production line.

During the project, GitLab was used to backup and store code externally from the computer as a
safety measure. If something happened to the computer, would the code still be reachable. During
the setup and development phase in this project were other python libraries considered to integrate
into the ROS environment, such as python−pcl, but this resulted in an incompatible system during
integration. The result was to reinstall the entire environment to ensure that the system would be
operative without any incompatibilities. The solution for this project was to use miniconda and
python 3.7 with the library pclpy external from ROS to handle and use pcd-files. Therefore, it is
recommended if the project is continued to frequently create image backups of the computer during
the setup and development phase in addition with the use of GitLab as a safety measure and to
prevent compatibility issues with packages and the ROS environment. This could limit the time
spent for troubleshooting since the computer could be rolled back to an image before an unsuccessful
installation, for instance.

Safety

Figure 7.9:
Stack light

The robot movement giving the point clouds in the result follows one particular
predefined trajectory. There is no visible indication for other people or coworkers
of what state the robot is executing and moving accordingly. This could be
visualized by including a stack light like shown in Figure 7.9. A stack light could
be used to visualize the robot’s state to warn or tell nearby coworkers what to
expect of the robot. By including a red-yellow-green light, could it become more
intuitive for people to know what to expect. For instance, could the green light
mean the robot is at a standstill or has reached the home position, a flashing
yellow meaning it is moving or operating, and a flashing red meaning the robot
is at a halt needing assistance. In addition, should a button be added to stop the
robot as an additional safety measure if an event should occur that requires an
immediate stop of the process. This button could tell the robot to move back to
the home position or stop at its current position. These things could be included
and tested before implementing the setup in a physical application. Additional
safety measures, like marking the work area and signs, for instance, should be
considered accordingly to ensure a safe work environment and prevent potential
risks.

39

General

The result is good for the creation of point cloud, giving a detailed representation of the surfaces
detected from the object and with the flexibility to adjust the point density in the cloud. The
drawback seen during this test is where objects are beyond the cut-off border, which would cause
uneven distribution or blind spots on the object. The cut-off border in the simulated environment
is further from the camera than stated from the camera producer. This cause is most likely in the
realsense_gazebo_plugin since the test on a physical setup, using the package realsense-ros, shows
this cut-off limit is closer to the camera, resulting in the ability to register surfaces as close to the
camera as its producer states.

The Zero Moment Shift calculation shows how the structure of a point cloud could be interpreted
and the effects of having an even and unevenly distributed point cloud of the object. The edges
and regions of high curvature are clearly illustrated and distinguishable from the flat and slightly
curved surfaces, which gives a foundation for further applications and algorithms to act upon the
object’s overall structure and surface.

The virtual environment gives a good base for future development and implementation of a Local
Contact Moment algorithm. To integrate and develop this project further should a gripper be
required to implement into the environment and calculation for further executing grasps of the
objects in the environment.

40

Future Work

Regarding time is there some deviation in the execution of scanning and simulation of the Gazebo
environment. This could be due to the limited processing power and capabilities of the computer
running the environment. For further development of the project, should a computer with greater
performance be considered to improve execution and simulation overall.

To decrease the time for calculation and execution for both the scanning procedure and ZMS
calculation and additional python scripts, could parts of the python code be compiled to a machine-
executable code. One compiler that could be used for a python setup is Numba, which uses JIT
(Just − In − Time) to compile python code into machine code, resulting in faster execution time
[13]. This has the potential to increase the efficiency of the project further.

For making the robot able to execute grasps should a gripper be implemented. A gripper from
Robotiq, for instance, either 2F-85 or 2F-140, could be used. These are a two-fingered parallel-jaw
gripper and have packages with ROS support, making it simpler to implement and control than
creating a package from scratch.

Applying LoCoMo onto the point cloud could be done in an additional python script. Calling
the ZMS-function for calculating the curvature of the cloud. The LoCoMo algorithm could since
calculate the most feasible area on the point cloud with a low error in the surface fit between the
gripper and object. With this and grasp ranking evaluation, would the system be ready to execute
learning-free grasps in the virtual environment, ready for further testing in a physical setting.

To prevent collisions with objects or structures in the work environment should path-planning be in-
tegrated. One way this could be done is by integrating moveIT into the ROS environment. MoveIT
is software that could be run in addition to ROS, and could be used to check, plan and execute
a path for a robot. For this setup, could it be used to prevent a collision and plan and execute
trajectories for grasping objects.

Following would the next step be to test the setup on a physical robot. This could be done by
connecting the computer to a local network with a UR5 robot and configuring the environment to
control the UR5 by IP.

41

Chapter 8

Conclusion

This project aimed to create a virtual environment in ROS as a foundation for further development
of a model-free and learning-free setup. The end goal for future projects is to be able to grasp
previously unseen objects without any predefined values of the object or any pre-recorded teaching
data on how to execute a grasp.

A virtual environment based on ROS has been created during this project. This virtual environment
consists of a robot arm, UR5, equipped with a depth camera, Intel RealSense D435i. This setup is
able to construct and interpret a partial point cloud of objects placed on a workbench. The setup
is able to create these point clouds without any pre-defined values for the object.

To assess the point clouds and their curvature has scripts been made to calculate the Zero Moment
Shift (ZMS). With applying ZMS onto the cloud, attributes of its surface structure could be com-
puted to prepare for further calculation and evaluation of the objects point cloud for interaction.
The work done lays a foundation for developing further and integrating a learning-free algorithm,
Local Contact Moment (LoCoMo), to interact and grasp previously unseen objects.

The result for this project is a virtual model-free environment for observing previously unseen
objects as point clouds and evaluating their structural curvature. An algorithm for further en-
hancement and development has also been evaluated for implementation into the environment to
achieve a learning-free grasping application. This application environment could further be used
and implemented onto a physical setup for further development and testing.

The work done in this project provides a foundation for future development to reach a fully model-
free and learning-free grasping system able to pick up previously unseen objects.

42

Bibliography

[1] A. Bicchi. “On the form-closure property of robotic grasping.” In: IFAC Proceedings Volumes
27.14 (1994), pp. 219–224. doi: https://doi.org/10.1016/S1474-6670(17)47318-6.

[2] Jean Ponce. Steven Sullivan. Jean-Daniel Boissonnat and Jean-Pierre Merlet. “On Character-
izing and Computing Three- and Four-Finger Force-Closure Grasps of Polyhedral Objects.”
In: IEEE International Conference on Robotics and Automation (1993), pp. 821–827.

[3] Maxime Adjigble. Naresh Marturi. Valerio Ortenzi. Vijaykumar Rajasekaran. Peter Corke and
Rustam Stolkin. “Model-free and learning-free grasping by Local Contact Moment matching.”
In: (2018). doi: https://www.researchgate.net/publication/327118653_Model-free_
and_learning-free_grasping_by_Local_Contact_Moment_matching.

[4] Brayan S Zapata-Impata. Carlos M Mateo. Pablo Gil and Jorge Pomares. “Using Geom-
etry to Detect Grasping Points on 3D Unknown Point Cloud.” In: International Confer-
ence on Informatics in Control, Automation and Robotics (2017), pp. 1–8. doi: 10.5220/
0006470701540161.

[5] Intel RealSense Gazebo ROS plugin. url: https://github.com/pal-robotics/realsense_
gazebo_plugin. (accessed: 30.03.2021).

[6] Intel® RealSenseTMProductFamilyD400Series. url: https://www.intelrealsense.com/
wp-content/uploads/2020/06/Intel-RealSense-D400-Series-Datasheet-June-2020.
pdf. (accessed: 25.02.2021).

[7] ISO 10218 standards. url: https://www.iso.org/obp/ui/#iso:std:iso:10218:-1:ed-2:
v1:en. (accessed: 03.02.2021).

[8] ISO TS 15066 standards. url: https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:
ed-1:v1:en. (accessed: 03.02.2021).

[9] Danica Kragic and Markus Vincze. “Vision for Robotics.” In: (2015), p. 41. doi: https:
//www.researchgate.net/publication/220666540_Vision_for_Robotics.

[10] Dmitry Kalashnikov. Alex Irpan. Peter Pastor. Julian Ibarz. Alexander Herzog. Eric Jang. Deirdre
Quillen. Ethan Holly. Mrinal Kalakrishnan. Vincent Vanhoucke. Sergey Levine. “QT-Opt:
Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation.” In: 2nd Con-
ference on Robot Learning (2018), pp. 1–23. doi: arXiv:1806.10293v3[cs.LG].

[11] H W Liu and C Q Cao. “Grasp Pose Detection Based On Point Cloud Shape Simplification.”
In: IOP Conference Series: Materials Science and Engineering (2019), pp. 1–10. doi: 10.
1088/1757-899X/717/1/012007.

[12] Jia-Wei Li. Hong Liu. and He-Gao Cai. “On Computing Three-Finger Force-Closure Grasps of
2-D and 3-D Objects.” In: IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION
19.1 (2003), pp. 155–161.

[13] Numba. url: http://numba.pydata.org/. (accessed: 21.04.2021).

[14] Andreas ten Pas and Robert Platt. “Using Geometry to Detect Grasp Poses in 3D Point
Clouds.” In: Con: ISRR 2015 (2015), pp. 1–16. doi: https://www.researchgate.net/
publication/281377520_Using_Geometry_to_Detect_Grasp_Poses_in_3D_Point_Clouds.

[15] pclpy: PCL for python. url: https://github.com/davidcaron/pclpy. (accessed: 18.03.2021).

43

https://doi.org/https://doi.org/10.1016/S1474-6670(17)47318-6
https://doi.org/https://www.researchgate.net/publication/327118653_Model-free_and_learning-free_grasping_by_Local_Contact_Moment_matching
https://doi.org/https://www.researchgate.net/publication/327118653_Model-free_and_learning-free_grasping_by_Local_Contact_Moment_matching
https://doi.org/10.5220/0006470701540161
https://doi.org/10.5220/0006470701540161
https://github.com/pal-robotics/realsense_gazebo_plugin
https://github.com/pal-robotics/realsense_gazebo_plugin
https://www.intelrealsense.com/wp-content/uploads/2020/06/Intel-RealSense-D400-Series-Datasheet-June-2020.pdf
https://www.intelrealsense.com/wp-content/uploads/2020/06/Intel-RealSense-D400-Series-Datasheet-June-2020.pdf
https://www.intelrealsense.com/wp-content/uploads/2020/06/Intel-RealSense-D400-Series-Datasheet-June-2020.pdf
https://www.iso.org/obp/ui/#iso:std:iso:10218:-1:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:10218:-1:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en
https://doi.org/https://www.researchgate.net/publication/220666540_Vision_for_Robotics
https://doi.org/https://www.researchgate.net/publication/220666540_Vision_for_Robotics
https://doi.org/arXiv:1806.10293v3 [cs.LG]
https://doi.org/10.1088/1757-899X/717/1/012007
https://doi.org/10.1088/1757-899X/717/1/012007
http://numba.pydata.org/
https://doi.org/https://www.researchgate.net/publication/281377520_Using_Geometry_to_Detect_Grasp_Poses_in_3D_Point_Clouds
https://doi.org/https://www.researchgate.net/publication/281377520_Using_Geometry_to_Detect_Grasp_Poses_in_3D_Point_Clouds
https://github.com/davidcaron/pclpy

[16] Brayan S Zapata-Impata. Pablo Gil. Jorge Pomares and Fernando Torres. “Fast geometry-
based computation of grasping points on three-dimensional point clouds.” In: International
Journal of Advanced Robotic Systems (2019), pp. 1–18. doi: https://journals.sagepub.
com/doi/10.1177/1729881419831846.

[17] Mario Richtsfeld and Markus Vincze. “Robotic Grasping of Unknown Objects.” In: Robot
Arms (2011), pp. 123–136. doi: 10.5772/16799.

[18] M´aximo A. Roa and Ra´ul Su´arez. “Computation of Independent Contact Regions for
Grasping 3-D Objects.” In: IEEE TRANSACTIONS ON ROBOTICS 25.4 (2009), pp. 839–
850.

[19] Robot Operating System. url: https://www.ros.org/about-ros/. (accessed: 20.01.2021).

[20] Robot Operating System wiki. url: http://wiki.ros.org/. (accessed: 20.01.2021).

[21] ROS Wrapper for Intel® RealSense™ Devices. url: https://github.com/IntelRealSense/
realsense-ros. (accessed: 25.02.2021).

[22] Radu Bogdan Rusu and Steve Cousins. “3D is here: Point Cloud Library (PCL).” In: IEEE
International Conference on Robotics and Automation (ICRA). Shanghai, China, May 2011.

[23] Universal Robot Git. url: https://github.com/ros-industrial/universal_robot. (ac-
cessed: 25.02.2021).

[24] Universal Robot UR5. url: https://www.universal-robots.com/products/ur5-robot/.
(accessed: 25.02.2021).

[25] Dan Ding. Yun-Hui Liu. Shuguo Wang. “The Synthesis of 3-D Form-Closure Grasps.” In: 2000
IEEE International Conference on Robotics & Automation (2015), pp. 3579–3584.

[26] Jonathan Weisz and Peter K. Allen. “Pose Error Robust Grasping from Contact Wrench
Space Metrics.” In: 2012 IEEE International Conference on Robotics and Automation (2012),
pp. 557–562.

[27] Xian-Feng Han. Jesse S. Jin. Ming-Jie Wang. Wei Jiang. Lei Gao. Liping Xiao. “A review of
algorithms for filtering the 3D point cloud.” In: Signal Processing: Image Communication 57
(2017), pp. 103–112. doi: https://doi.org/10.1016/J.IMAGE.2017.05.009.

44

https://doi.org/https://journals.sagepub.com/doi/10.1177/1729881419831846
https://doi.org/https://journals.sagepub.com/doi/10.1177/1729881419831846
https://doi.org/10.5772/16799
https://www.ros.org/about-ros/
http://wiki.ros.org/
https://github.com/IntelRealSense/realsense-ros
https://github.com/IntelRealSense/realsense-ros
https://github.com/ros-industrial/universal_robot
https://www.universal-robots.com/products/ur5-robot/
https://doi.org/https://doi.org/10.1016/J.IMAGE.2017.05.009

Appendix A

Virtual Environment Builder

<?xml version="1.0"?>
<robot xmlns:xacro="http://wiki.ros.org/xacro" name="ur5env">

<link name="world"/>
<link name="workbench">

<!-- Creating workbench -->
<inertial>
<origin xyz="0 0 0.5" rpy="0 0 0"/>
<mass value="20"/>
<inertia ixx="200" ixy="200" ixz="200" iyy="200" iyz="200" izz="200"/>

</inertial>
<visual>
<origin xyz="0.5 0 0.5" rpy="0 0 0"/>
<geometry>

<box size="2 1 1"/>
</geometry>
<material name="Gray">

<color rgba="0.5 0.5 0.5 0" />
</material>

</visual>
<collision>
<origin xyz="0.5 0 0.5" rpy="0 0 0"/>
<geometry>

<box size="2 1 1"/>
</geometry>

</collision>
</link>

<gazebo reference="workbench">
<mu1>0.2</mu1>
<mu2>0.2</mu2>
<material>Gazebo/Orange</material>

</gazebo>
<joint name="world_joint" type="fixed">

<parent link="world" />
<child link="workbench" />
<origin xyz="0 0 0" rpy="0.0 0.0 0.0"/>

</joint>

<xacro:arg name="transmission_hw_interface" ...
default="hardware_interface/PositionJointInterface"/>

<!-- Gazebo description -->
<xacro:include filename="$(find ...

ur_description)/urdf/common.gazebo.xacro" />

45

<!-- UR5 -->
<xacro:include filename="$(find ur_description)/urdf/ur5.urdf.xacro" />

<xacro:ur5_robot prefix="" joint_limited="true" ...
transmission_hw_interface="$(arg transmission_hw_interface)" />

<!-- Camera -->
<xacro:include filename="$(find ...

realsense2_description)/urdf/_d435.urdf.xacro"/>
<sensor_d435 parent="tool0">

<origin xyz="0 -0.07 0.01" rpy="0 -1.55 -1.55"/>
</sensor_d435>

<joint name="base_joint" type="fixed">
<parent link="workbench" />
<child link="base_link" />
<origin xyz="0 0 1" rpy="0.0 0.0 0.0"/>

</joint>
</robot>

46

Appendix B

Virtual Environment Launch

<?xml version="1.0"?>
<launch>

<arg name="limited" default="true" doc="If true, limits joint range ...
[-PI, PI] on all joints." />

<arg name="paused" default="true" doc="Starts gazebo in paused mode" />
<arg name="gui" default="true" doc="Starts gazebo gui" />
<arg name="transmission_hw_interface" ...

default="hardware_interface/PositionJointInterface" />

<!-- startup simulated world -->
<include file="$(find gazebo_ros)/launch/empty_world.launch">

<arg name="world_name" default="worlds/empty.world"/>
<arg name="paused" value="$(arg paused)"/>
<arg name="gui" value="$(arg gui)"/>

</include>

<param name="robot_description" command="$(find xacro)/xacro '$(find ...
ur5_env_description)/urdf/ur5env.urdf.xacro' ...
transmission_hw_interface:=$(arg transmission_hw_interface)" />

<!-- push robot_description to factory and spawn robot in initial pose ...
in gazebo -->

<node name="spawn_gazebo_model" pkg="gazebo_ros" type="spawn_model" ...
args="-urdf -param robot_description -model robot

-z 0.0
-J shoulder_pan_joint 0.0
-J shoulder_lift_joint -1.5
-J elbow_joint 1.6
-J wrist_1_joint -1.5
-J wrist_2_joint -1.5
-J wrist_3_joint 0.0
-unpause"
respawn="false" output="screen"/>

<include file="$(find ur_gazebo)/launch/controller_utils.launch"/>

<!-- start arm controller -->
<rosparam file="$(find ur_gazebo)/controller/arm_controller_ur5.yaml" ...

command="load"/>
<node name="arm_controller_spawner" pkg="controller_manager" ...

type="controller_manager" args="spawn arm_controller" ...
respawn="false" output="screen"/>

<!-- Starting laserscan assembler service for construction of object ...
point cloud-->

47

<node type="point_cloud2_assembler" pkg="laser_assembler" ...
name="my_assembler">

<remap from="cloud" to="/voxel_grid/output"/>
<param name="max_scans" type="int" value="400" />
<param name="fixed_frame" type="string" value="base_link" />

</node>

<!-- Start voxel grid filters -->
<include file="$(find ur5_env_description)/launch/voxelgrid.launch"/>
<include file="$(find ...

ur5_env_description)/launch/assembled_voxelgrid_filtering.launch"/>

</launch>

48

Appendix C

Scan Trajectory

#!/usr/bin/env python
license removed for brevity
import rospy
import std_msgs.msg
import time
from sensor_msgs.msg import PointCloud2
from trajectory_msgs.msg import JointTrajectory
from trajectory_msgs.msg import JointTrajectoryPoint

import camera_PC_transform as camera_pc_tf #Imports function from python ...
script

import pc_assembler as pc_assemble #Imports function from python script

#-----------------Variables -------------------

#----- Scanning pose positions (given in radians) -------
home_pos = [0, -1.5, 1.5, -1.5, -1.5, 0]# Home/start position

first_pos = [1.2, -1.5, 1.5, -1.0, -2.3, 0, 0]# 1. scanning position
second_pos = [0, -2.6, 1.8, -1.4, -1.5, 0, 0]# 2. scanning position
third_pos = [-1.5, -1.4, 1.3, -0.8, -0.9, 0, 0]# 3. scanning position
fourth_pos = [-0.6, -1.1, 0.4, -0.7, -1.2, 0, 0]# 4. scanning position
fifth_pos = [0, -1.0, 0.3, -0.7, -1.5, 0, 0]# 5. scanning position
sixth_pos = [0.5, -1.0, 0.3, -0.7, -1.9, 0, 0]# 6. scanning position

pos_nr = 8 #Counter for loop. Nr of poses to visit (visit home in start ...
and end)

sleepy_time = 4#seconds waited afther each position initiated.

#----------------- Workbench scanning script -----------------

def scan_trajectory():
pub = rospy.Publisher('/arm_controller/command', JointTrajectory, ...

queue_size=10)
rospy.init_node('scan_trajectory_pub', anonymous=True)

take_picture = False #If position are reach for taking picture or ...
returning to home.

print(rospy.Time.now()) #Initiate time to get update for first ...
position. Needs interaction/use to collect correct time

49

time.sleep(1)#give one second to be able to update clock/time until ...
next time initiated, if not arent the first position initiated

startTime = rospy.Time.now()#used for calculation of execution time

for i in range(pos_nr): #loop for movements
if i==7:

new_pos = home_pos
pos_message = "Move robot back to home position."
take_picture = False

elif i==6:
new_pos = sixth_pos
pos_message = "Move robot to sixth position."
take_picture = True

elif i==5:
new_pos = fifth_pos
pos_message = "Move robot to fifth position."
take_picture = True

elif i==4:
new_pos = fourth_pos
pos_message = "Move robot to fourth position."
take_picture = True

elif i==3:
new_pos = third_pos
pos_message = "Move robot to third position."
take_picture = True

elif i==2:
new_pos = second_pos
pos_message = "Move robot to second position."
take_picture = True

elif i==1:
new_pos = first_pos
pos_message = "Move robot to first position."
take_picture = True

elif i==0:
new_pos = home_pos
pos_message = "Move robot to home before scan patteren initiated."
take_picture = False

else:
new_pos = home_pos
pos_message = "No position available, move to home..."
take_picture = False

joints_str = JointTrajectory()
joints_str.header = std_msgs.msg.Header()
joints_str.header.stamp = rospy.Time.now()
joints_str.joint_names = ['shoulder_pan_joint', ...

'shoulder_lift_joint', 'elbow_joint', 'wrist_1_joint', ...
'wrist_2_joint', 'wrist_3_joint']

point=JointTrajectoryPoint()
point.positions = new_pos
point.time_from_start = rospy.Duration(1,0)
joints_str.points.append(point)

pub.publish(joints_str) #gives command message to arm_controller
rospy.loginfo(pos_message)

time.sleep(sleepy_time)

if take_picture == True:
camera_pc_tf.Tf_camera_PC()
rospy.wait_for_message('/camera_PC_transposed', PointCloud2)

50

pc_assemble.assemble_voxel_pc()
#rospy.wait_for_message('/assembled_pc_scan', PointCloud2)
take_picture = False

rospy.loginfo("The robot are done with the scanning of the object. ...
Script will stop execution.")

executionTime = rospy.Time.now() - startTime
xTime_seconds = executionTime.to_sec()

print("The execution time for current point cloud collection used ", ...
xTime_seconds, " seconds.")

if __name__ == '__main__':
try:

scan_trajectory()
except rospy.ROSInterruptException:

pass

51

Appendix D

Voxel Grid Filter

<launch>
<node pkg="nodelet" type="nodelet" name="pcl_manager" args="manager" ...

output="screen" />

<!-- Run a VoxelGrid filter to clean NaNs and downsample the data -->
<node pkg="nodelet" type="nodelet" name="voxel_grid" args="load ...

pcl/VoxelGrid pcl_manager" output="screen">
<remap from="~input" to="/camera_PC_transposed" />
<rosparam>
filter_field_name: z <!-- Axis/direction of filtering-->
filter_limit_min: 0.002 <!-- Filter out top of workbench -->
filter_limit_max: 1.0
filter_limit_negative: False
leaf_size: 0.0005 <!-- Grid size in meters-->

</rosparam>
</node>

</launch>

52

Appendix E

Point Cloud Transformation

#!/usr/bin/env python
import tf
import rospy
import std_msgs
import numpy as np
from roslib import message
from tf import transformations
import sensor_msgs.point_cloud2 as p_c2
from sensor_msgs.msg import PointCloud2
from sensor_msgs import point_cloud2 as pc2

class Tf_camera_PC():

def __init__(self):

self.pc_pub = rospy.Publisher('/camera_PC_transposed', ...
PointCloud2, queue_size=1)

self.pc_sub = rospy.Subscriber('/camera/depth/points', ...
PointCloud2, self.pc_callback, queue_size=1)

def pc_callback(self,pc_data):
assert isinstance(pc_data, PointCloud2)
listener = tf.TransformListener()

pc = list([x for x in pc2.read_points(pc_data, skip_nans=True, ...
field_names=["x", "y", "z"])]) #Get points from gathered topic

listener.waitForTransform("/base_link", ...
"/camera_depth_optical_frame", rospy.Time(), rospy.Duration(4.0))

(trans, quat) = listener.lookupTransform("/base_link", ...
"/camera_depth_optical_frame", rospy.Time(0)) #Get ...
transformation from camera frame to base frame

Tra = transformations.translation_matrix(trans)
Rot = transformations.quaternion_matrix(quat)
RT = Rot + Tra - np.identity(4)

points_transposed = np.zeros((len(pc),3)) #Create empthy list to ...
store transposed points

for i, point in enumerate(pc):
point_setup = np.array((point[0],point[1],point[2], 1))
point_new = np.matmul(RT, point_setup)

53

points_transposed[i] = np.array([point_new[0], point_new[1], ...
point_new[2]])

header = std_msgs.msg.Header()
header.stamp = rospy.Time.now()
header.frame_id = "base_link"
PointCloud_transposed = p_c2.create_cloud_xyz32(header, ...

points_transposed)

rospy.loginfo("Point Cloud are transposed. Ready for publication ...
to topic.")

self.pc_pub.publish(PointCloud_transposed)
self.pc_sub.unregister() #Stops subscription for not continue ...

publishing several points

if __name__ == '__main__':

rospy.init_node('camera_PC_transform', anonymous=True)
tf_pc_cam = Tf_camera_PC()
rospy.spin()

54

Appendix F

Point Cloud Assembler

#!/usr/bin/env python
import roslib; roslib.load_manifest('laser_assembler')
import rospy; from laser_assembler.srv import *
from sensor_msgs.msg import PointCloud2

def assemble_voxel_pc(): #Assembles point clouds recived from voxal grid ...
filter
rospy.wait_for_service("assemble_scans2")
assemble_PC = rospy.ServiceProxy('assemble_scans2', AssembleScans2)
pub = rospy.Publisher('/assembled_pc_scan', PointCloud2, queue_size=2)

try:
resp = assemble_PC(rospy.Time(0,0), rospy.get_rostime())
pub.publish(resp.cloud)
rospy.loginfo('New cloud added to object point cloud')

except rospy.serviceException, e:
rospy.loginfo('Didnt manage to assemble cloud...')

return

55

Appendix G

Assembly Cloud Voxel Grid Filter

<launch>
<node pkg="nodelet" type="nodelet" name="voxel_assembled_cloud" ...

args="manager" output="screen" />

<!-- Run a VoxelGrid filter to clean NaNs and downsample the data -->
<node pkg="nodelet" type="nodelet" ...

name="assebled_voxelgrid_applied_pointcloud" args="load ...
pcl/VoxelGrid pcl_manager" output="screen">

<remap from="~input" to="/assembled_pc_scan"/>
<remap from="~output" to="/voxel_assembled_cloud" />
<rosparam>
filter_field_name: x <!-- Axis/direction of filtering-->
filter_limit_min: 0.09 <!-- Filter out points from robot base -->
filter_limit_max: 1.5 <!-- End of workbench -->
filter_limit_negative: False
leaf_size: 0.001 <!-- Grid size in meters-->

</rosparam>
</node>

</launch>

56

Appendix H

Zero Moment Shift Algorithm

import pclpy
import math
import array
from sensor_msgs.msg import PointCloud2
from pclpy import pcl
import numpy as np

------------- Variables -----------------------

rho = 0.004 #radius for search-sphere in meter

random_point_index = 7 #choose a random point in point cloud for ...
illustrating ZMS

#--------------- Files --------------------

pcd_file_in = 'zms_070521/CokeCan.pcd'
zms_array_list_file = "zms_array.txt" #create file before running
zms_demo_list_file = "zms_demo.txt" #create file before running

pcd_file_out = ...
"/home/tommen/Desktop/cloud_handling/zms_070521/ZMS_onCokeCan_withZMSarray_testtest.pcd" ...
#creates new file

pcd_demo_file_out = ...
"/home/tommen/Desktop/cloud_handling/zms_070521/ZMS_pointCloud_demo.pcd" ...
#creates new file

-------------- ZMS algorithm --------------------

point_cloud = pclpy.pcl.PointCloud.PointXYZ()
point_cloud_rgb = pclpy.pcl.PointCloud.PointXYZRGB()
calc_point_cloud = pclpy.pcl.PointCloud.PointXYZRGB()
zms_demo_point_cloud = pclpy.pcl.PointCloud.PointXYZRGB() #For ...

demonstration of ZMS in dataset

pcl.io.loadPCDFile(pcd_file_in, point_cloud)
zms_array_file = open(zms_array_list_file, "w")
zms_demo_file = open(zms_demo_list_file, "w") #File for demonstration of ZMS

point_cloud_rgb.resize(point_cloud.size())
calc_point_cloud.resize(point_cloud.size())

pointIndexRadiusSearch = pclpy.pcl.vectors.Int()

57

pointRadiusSquaredDistance = pclpy.pcl.vectors.Float()

resolution = 1.0 #Octree resolution
octree = pclpy.pcl.search.Octree.PointXYZ(resolution)
octree.setInputCloud(point_cloud)

ZMS_vectors = np.zeros([point_cloud.size(),3])
ZMS_demo_vectors = np.zeros([3,3])

for i in range (0,point_cloud.size()):#Loop for calculating ZM points and ZMS
octree.radiusSearch(point_cloud,i,rho, pointIndexRadiusSearch, ...

pointRadiusSquaredDistance)

point_cloud_rgb.points[i].x = point_cloud.points[i].x
point_cloud_rgb.points[i].y = point_cloud.points[i].y
point_cloud_rgb.points[i].z = point_cloud.points[i].z
point_cloud_rgb.points[i].rgb = 255 << 16 | 255 << 8 | 255

if i == random_point_index:
point_cloud_rgb.points[i].rgb = 255 << 16 | 0 << 8 | 0 #mark ...

search point red in object point cloud

zms_demo_point_cloud.resize(len(pointIndexRadiusSearch)+1)
print(len(pointIndexRadiusSearch), " number of points in sphere.")

ZMS_demo_vectors[0][0] = point_cloud.points[i].x#store "search ...
point" in first row

ZMS_demo_vectors[0][1] = point_cloud.points[i].y
ZMS_demo_vectors[0][2] = point_cloud.points[i].z

x_cor = 0.0
y_cor = 0.0
z_cor = 0.0

for j in range (0,len(pointIndexRadiusSearch)):
x_cor = x_cor + point_cloud.points[pointIndexRadiusSearch[j]].x
y_cor = y_cor + point_cloud.points[pointIndexRadiusSearch[j]].y
z_cor = z_cor + point_cloud.points[pointIndexRadiusSearch[j]].z

if i == random_point_index:#used to store and show specific search ...
sphere and illustrate ZMS calculation
zms_demo_point_cloud.points[j].x = ...

point_cloud.points[pointIndexRadiusSearch[j]].x
zms_demo_point_cloud.points[j].y = ...

point_cloud.points[pointIndexRadiusSearch[j]].y
zms_demo_point_cloud.points[j].z = ...

point_cloud.points[pointIndexRadiusSearch[j]].z
zms_demo_point_cloud.points[j].rgb = 255 << 16 | 255 << 8 | 255

if (point_cloud.points[pointIndexRadiusSearch[j]].x == ...
point_cloud.points[i].x) and ...
(point_cloud.points[pointIndexRadiusSearch[j]].y == ...
point_cloud.points[i].y) and ...
(point_cloud.points[pointIndexRadiusSearch[j]].z == ...
point_cloud.points[i].z):
zms_demo_point_cloud.points[j].rgb = 255 << 16 | 0 << 8 | ...

0#colour the search point red

#Calculating Zero Moment
try:

58

x_cor = x_cor/len(pointIndexRadiusSearch)
y_cor = y_cor/len(pointIndexRadiusSearch)
z_cor = z_cor/len(pointIndexRadiusSearch)

except ZeroDivisionError:
print("Division by Zero.")
x_cor = point_cloud.points[i].x
y_cor = point_cloud.points[i].y
z_cor = point_cloud.points[i].z

calc_point_cloud.points[i].x = x_cor
calc_point_cloud.points[i].y = y_cor
calc_point_cloud.points[i].z = z_cor
calc_point_cloud.points[i].rgb = 0 << 16 | 0 << 8 | 0

if i == random_point_index:
zms_demo_point_cloud.points[j+1].x = x_cor
zms_demo_point_cloud.points[j+1].y = y_cor
zms_demo_point_cloud.points[j+1].z = z_cor
zms_demo_point_cloud.points[j+1].rgb = 0 << 16 | 0 << 8 | 0

ZMS_demo_vectors[1][0] = x_cor#store ZM in second row
ZMS_demo_vectors[1][1] = y_cor
ZMS_demo_vectors[1][2] = z_cor

ZMS_demo_vectors[2][0] = calc_point_cloud.points[i].x - ...
point_cloud.points[i].x#store ZMS in third row

ZMS_demo_vectors[2][1] = calc_point_cloud.points[i].y - ...
point_cloud.points[i].y

ZMS_demo_vectors[2][2] = calc_point_cloud.points[i].z - ...
point_cloud.points[i].z

np.savetxt(zms_demo_file,ZMS_demo_vectors)

#Calculate Zero Moment Shift
ZMS_vectors[i][0] = calc_point_cloud.points[i].x - point_cloud.points[i].x
ZMS_vectors[i][1] = calc_point_cloud.points[i].y - point_cloud.points[i].y
ZMS_vectors[i][2] = calc_point_cloud.points[i].z - point_cloud.points[i].z

pointIndexRadiusSearch.clear()
pointRadiusSquaredDistance.clear()

np.savetxt(zms_array_file,ZMS_vectors)

#create a common point cloud to write the original and the ZM-calculation
#wrappers do not consist with manual/web showcase, therefor using a ...

for-loop instead of storing directly
zms_calc_point_cloud = pclpy.pcl.PointCloud.PointXYZRGB()
zms_calc_point_cloud.resize(calc_point_cloud.size()+point_cloud_rgb.size())

for i in range (calc_point_cloud.size()+point_cloud_rgb.size()):

if (i < calc_point_cloud.size()):
zms_calc_point_cloud.points[i].x = calc_point_cloud.points[i].x
zms_calc_point_cloud.points[i].y = calc_point_cloud.points[i].y
zms_calc_point_cloud.points[i].z = calc_point_cloud.points[i].z
zms_calc_point_cloud.points[i].rgb = calc_point_cloud.points[i].rgb

else:
zms_calc_point_cloud.points[i].x = ...

point_cloud_rgb.points[(i-calc_point_cloud.size())].x

59

zms_calc_point_cloud.points[i].y = ...
point_cloud_rgb.points[(i-calc_point_cloud.size())].y

zms_calc_point_cloud.points[i].z = ...
point_cloud_rgb.points[(i-calc_point_cloud.size())].z

zms_calc_point_cloud.points[i].rgb = ...
point_cloud_rgb.points[(i-calc_point_cloud.size())].rgb

zms_array_file.close()
zms_demo_file.close()
pcl.io.savePCDFileASCII(pcd_file_out, zms_calc_point_cloud)
pcl.io.savePCDFileASCII(pcd_demo_file_out, zms_demo_point_cloud)

60

Appendix I

ROS Traffic Nodes

61

F
igure

I.1:
R
O
S
traffi

c
nodes

62

Appendix J

ROS Traffic Topics

63

F
igure

J.1:
R
O
S
traffi

c
topics

64

	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals for Project
	Project Limitations
	State-of-the-Art
	Preview of Chapters

	Theory
	Vision
	Search Trees
	Robot Kinematics
	Zero Moment Shift
	Local Contact Moment
	Grasp Handling
	Safety

	Method
	Hardware
	Robot
	Camera

	Software
	Robot Operating System
	Gazebo
	Point Cloud Library

	Surface Observation
	Point Cloud Construction
	Zero Moment Shift

	Program Execution Structure
	Test Setup
	Results
	Point Cloud
	Cloud Merging
	Point Distribution and Density

	Zero Moment
	Zero Moment Shift

	Discussion and Future Work
	Conclusion
	Bibliography
	Virtual Environment Builder
	Virtual Environment Launch
	Scan Trajectory
	Voxel Grid Filter
	Point Cloud Transformation
	Point Cloud Assembler
	Assembly Cloud Voxel Grid Filter
	Zero Moment Shift Algorithm
	ROS Traffic Nodes
	ROS Traffic Topics

