
Digital Twin of 3d Motion Compen-
sated Gangway

Use of Unity Game Engine and TwinCAT PLC Control for Hardware-
in-the-Loop Simulation

HARALD SANGVIK

SUPERVISORS
Morten Hallquist Rudolfsen, MSc
Daniel Hagen, PhD

University of Agder, 2021
Faculty of Engineering and Science
Department of Engineering Sciences

Acknowledgements

First of all, I want to thank Red Rock Marine AS for allowing me to work on this exciting topic for
my master thesis project and for the excellent support by providing hardware, CAD files, and office
space while writing this thesis. I would also like to thank my supervisor Daniel Hagen for helping
me structuring the thesis and good tips on implementing active damping.

Publiseringsavtale

Fullmakt til elektronisk publisering av oppgaven Forfatter(ne) har opphavsrett til oppgaven. Det betyr blant
annet enerett til å gjøre verket tilgjengelig for allmennheten (Åndsverkloven. §2).
Oppgaver som er unntatt offentlighet eller taushetsbelagt/konfidensiell vil ikke bli publisert.

Vi gir herved Universitetet i Agder en vederlagsfri rett til å gjøre oppgaven tilgjengelig
for elektronisk publisering:

Ja

Er oppgaven båndlagt (konfidensiell)? Nei
Er oppgaven unntatt offentlighet? Nei

Harald Sangvik
Kristiansand 28.05.2021

i

Abstract

This thesis presents the development, implementation, and testing of a digital twin repre-
senting a 3D compensated gangway located on a service operation vessel for wind farms.
The real-time simulator runs on a separate thread in the Unity game engine and interfaces
with a PC-based control system, including the control algorithms. The simulations in Unity
achieve a step time of 5 µs, and the communication to the control system has a latency of
10ms.

The PLC program in TwinCAT, running real-time on a separate computer, controls the hy-
draulic actuated gangway simulator with acceptable accuracy in 3m waves. Active damping
employing pressure feedback to introduce artificial leakage was implemented to the hydraulic
control system, increasing the hydraulic system’s damping, hence improving the motion per-
formance.

ii

List of Figures

2.1 The different bodies of the gangway . 3
2.2 Right vs left handed coordinate system . 4
2.3 Ship coordinate system . 5
2.4 Transformation between two reference frames 6
2.5 Gangway shown in parked position . 6
2.6 Kinematic diagram of gangway . 7
2.7 Boom cylinder geometry . 9
2.8 Global and local vectors used for calculating position error 10
2.9 Collision between gangway and wind turbine 11
2.10 DCV model . 13

3.1 The multi body model as modeled in OpenModelica 20
3.2 The slew system as modeled in OpenModelica 21
3.3 The luffing system as modeled in OpenModelica 21
3.4 The telescope system as modeled in OpenModelica 21
3.5 Threads in Unity . 22
3.6 Setpoint generation for position controller 24
3.7 Position controller . 24
3.8 Force controller as outer control loop . 25

4.1 Histogram of latency tests . 26
4.2 Data flow for latency test . 27
4.3 Further improvements . 27
4.4 Comparison between naive and novel differentiation technique 28
4.5 Luffing model verification . 28
4.6 Slew model verification . 29
4.7 Telescope model verification . 29
4.8 Pressure feedback with different valve bandwidths 30
4.9 Operational cycle with normal waves . 31
4.10 Operational cycle with severe waves . 32

iii

.

List of Tables

2.1 Dimensions of gangway . 6
2.2 DH table for the kinematic chain . 7
2.3 Boom cylinder geometric parameters . 9

3.1 Mass and inertia of bodies . 18
3.2 Local location of bodies . 18
3.3 Chosen hydraulic components . 19
3.4 Resulting speed and pressure . 19

v

Contents

Acknowledgements i

Abstract ii

List of Figures iii

List of Tables v

1 Introduction 1

2 Theory 3
2.1 Multibody System . 3

2.1.1 Kinematics . 3
2.1.2 Dynamics . 11

2.2 Hydraulic Actuation systems . 13
2.2.1 System Modeling . 13
2.2.2 Pressure Feedback . 16

2.3 Numerical Methods . 16
2.3.1 Integration . 16
2.3.2 Differentiation . 17
2.3.3 Atomic Operations . 17
2.3.4 Filtering . 17

3 Methods 18
3.1 System Identification . 18

3.1.1 Mass and Inertia . 18
3.1.2 Placement of bodies . 18
3.1.3 System sizing . 18

3.2 High Fidelity Modeling and Simulation . 20
3.2.1 Multibody system . 20
3.2.2 Hydraulic actuation system . 20

3.3 Real-time Simulation . 22
3.3.1 Multibody system . 22
3.3.2 Hydraulic Actuation System . 23
3.3.3 Communication . 23

3.4 Control System . 24
3.4.1 Setpoint generation . 24
3.4.2 Position controller . 24
3.4.3 Force controller . 25

vi

4 Results and Discussion 26
4.1 Communication Performance . 26

4.1.1 Latency . 26
4.1.2 Discrete Differetiation . 27

4.2 Verification of Real-time Simulation . 27
4.3 Active Damping . 30
4.4 Motion Control Performance . 30

4.4.1 Active Motion Compensation . 30
4.4.2 Force control . 32

5 Conclusions 33

A Task From MSc Catalogue 35

B Gangway Specifications 37

C Scripts from Unity 39
C.1 TwinCAT Handler . 39
C.2 Script for Moving Rigidbodies . 40
C.3 Main Script . 41
C.4 Simulation Thread . 44
C.5 Luffing Simulation . 46
C.6 Slew Simulation . 47
C.7 Telescope Simulation . 48
C.8 Orifice . 50
C.9 Volume . 50

D Matlab Script for System Sizing 51

Bibliography 53

Chapter 1

Introduction

Motivation and background

Motion-compensated gangways increase uptime and improve operator safety for operations
from a ship to a fixed installation.
Red Rock Marine AS is a company producing marine/offshore handling equipment. A digital
twin will be helpful for both internal development as well as training and product demon-
strations. The task defined for the master’s thesis is found in appendix A.

A digital twin is a virtual representation of a physical system. It can be used to develop and
optimize the control system, working cycles, and design, even before a physical system is
built. The digital twin can also be used for estimating useful life and planning of maintenance
of it’s physical counterpart. In addition, a digital twin of the whole vessel can be used
when planning the wind turbine maintenance operations by simulating upcoming weather
conditions like wind and waves based on forecasts. Furthermore, a digital twin can be used
to detect upcoming sea states that the gangway is designed to compensate for and then stop
the operation that would be unsafe for the personnel passing on the gangway.

DNVGL-RP-A204 [2] defines six levels of a digital twin; Level 0 - standalone, through level
5 - autonomous. As the levels increase, more data must be available from both "twins", to
plan and predict operation.
Level 0 is comparable to an offline simulation, where data is entered manually. At level 5,
the system should be able to replace the operator and make decisions autonomously.

State of the art

There have been some research into control and simulation of a motion compensated gang-
way. This thesis will build further on this work, and incorporate real-time interfacing to an
interactive simulator and control system.

A few papers mentions using TwinCAT with unity for simulation of an industrial system. A
bachelor’s thesis by Jesse Reinikka gives a good example on how to use Beckhoff’s TwinCAT
ADS interface in Unity. [12]

Modeling and simulation of a small gangway was done in a master’s thesis by Feilong Yu at
NTNU, covering system sizing, control theory and simulation using bond graph theory. [17]

Daniel Hagen covered the implementation of an active damping system on a single boom
crane [7]. This builds further on the work done by Hansen and Andersen (2010) [8].

1

Identification and modeling of hydraulic directional control valves used in a crane was done
in a dissertation by Morten Kollerup Bak. [4], modelling of flexible bodies were also covered.

Jesper Sørensen’s thesis [15] investigated a novel concept for suppressing oscillations in a
negatively loaded boom system.

Waurich et al. Implemented a real-time simulation using Modelica and functional-mock-up-
interface (FMU) in Unity, controlled with an Arduino. [16]

Problem statement

This report will cover the design and implementation of a hardware-in-the-loop system con-
taining a PC-based game engine application, combining both simulation and high quality
3D visualization in a standalone system.
State of the art control strategy for controlling an offshore gangway will also be investigated.

The main objectives to be realized are:

• Modeling and real-time simulation of multibody systems and hydraulic actuation sys-
tems

• Control design and implementation on real-time control system

• Development of a simulator environment visualized in real-time

• Communication between simulator and control system

Outline

The remainder of this thesis is divided into three main chapters. Chapter 2 describes the
theory behind the modeling and simulation. Chapter 3 presents the research methodologies.
Chapter 4 presents the results and discussion. Finally, Chapter 5 concludes the thesis by
presenting the concluding remark, the contributions, and identifying possible areas for further
work. Necessary background materials and details are included in the appendix A-D.

2

Chapter 2

Theory

2.1 Multibody System

Rigid body motion assumes there is no internal deformation in the components; that is, the
local vector between two points on a body is constant.
The gangway consists of five main components, shown in figure 2.1. The dynamic simulation
will only consider the king, luffing boom, and telescope as moving objects. The pedestal can
be moved up and down on the tower to set the correct height relative to the wind turbine
but is not used for motion compensation.

Telescope

Luffing
boom

King

Pedestal

Tower

Figure 2.1: The different bodies of the gangway

2.1.1 Kinematics

Right and left handed coordinate systems are not compatible with each other. Unity and
other game engines use left handed coordinate systems to simplify rendering to a 2D screen.

3

Handedness can be converted by inverting one axis, for translation between coordinates in
Unity and the kinematics, modeled using right handed coordinates, the Z-axis is flipped.

[x, y, z]r ⇒ [x, y,−z]l (2.1)

X

Y

Z

X

Y

Z

Right handed coordinates Left handed coordinates

Figure 2.2: Right vs left handed coordinate system

Cylindrical coordinates

Cylindrical coordinates is a useful intermediate coordinate system for controlling the gang-
way. In manual mode, the joints are controlled directly but the motion compensation is using
coordinates in a cartesian space. By controlling coordinates in a cylindrical coordinate sys-
tem, the manual behaviour can be emulated when controlling the gangway in cartesian space.

Conversion from cartesian (ρ, φ, z) to cylindrical coordinates (x, y, z),

ρ =
√
x2 + y2, (2.2)

φ = atan2(y, x), (2.3)

z = z, (2.4)

Conversion from cylindrical- to cartesian coordinates:

x = ρ cos(φ), (2.5)

y = ρ sin(φ), (2.6)

z = z (2.7)

Transformation matrices

Homogeneous coordinates introduces an extra "virtual" dimension, allowing for translation
of a vector using a linear transformation. The extra dimension can be used to scale the
vector, but is usually set to 1. The homogenous vector H can be defined as,

H =

x
y
z
w

 (2.8)

4

H can be translated in X-Y-Z by multiplying the vector with a 4x4 matrix,

T (x, y, z) =

1 0 0 Tx
0 1 0 Ty
0 0 1 Tz
0 0 0 1

 (2.9)

Rotating H around the X-axis is done using a 4x4 matrix,

Rx(θ) =

1 0 0 0
0 cos(θ) −sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

 (2.10)

Same for rotations around Y,

Ry(θ) =

cos(θ) 0 sin(θ) 0

0 0 1 0
−sin(θ) 0 cos(θ) 0

0 0 0 1

 (2.11)

And for rotation around Z,

Rz(θ) =

cos(θ) −sin(θ) 0 0
sin(θ) cos(θ) 0 0

1 0 0 0
0 0 0 1

 (2.12)

Ship coordinates

The axis convention of the ship is taken from "Handbook of Marine Craft Motion Dynamics
and Control" [6], defining surge-sway-heave and roll-pitch-yaw, as translations and rotations
around x-y-z in a right handed coordinate system (figure 2.3)

yaw
pitch

roll

heave
sway

surgeX

Y
Z

Figure 2.3: Ship coordinate system

5

Reference frames

Transformation between two reference frames is done using homogeneous transformations
(figure 2.4). The homogenous transformation can be found by multiplying a translation and
a rotation matrix together. This is done for finding the kinematics.

X0

Y0
Z0 X1

Y1
Z1

H 1
0

Figure 2.4: Transformation between two reference frames

Unity handles all rotations using quaternions, and gives easy access to the quaternions of
the bodies in a scene. The equivalent to a homogenous transformation will be a translation
followed by a quaternion rotation.
A vector v is rotated by a quaternion q through quaternion multiplication:

v′ = qvq−1 (2.13)

The initial position, with all displacements taken as zero is with the boom in a horizontal
position, and the telescope fully retracted, and the boom parallel with the x-axis. (Figure
2.5). The kinematic diagram is shown in figure 2.6, with the kinematic lengths defined in
table 2.1.

Figure 2.5: Gangway shown in parked position

Table 2.1: Dimensions of gangway

l1 l2 l3 l4
2187mm 40mm 19960mm 290mm

6

X0
Y0

Z0

X3

Y3
Z3

 θboom

 θslew

 dboom L1

 L2 L3
 L4

 Rboom

 Rxy

Figure 2.6: Kinematic diagram of gangway

The forward kinematics of the gangway is found based on the Denavit-Hartenberg (DH)
method.[5] A combination of translations and rotations around the Z- and X-axis is used to
find the kinematics.

Table 2.2: DH table for the kinematic chain

n Rot Z Trans Z Trans X Rot X
1 θslew L1 L2 π/2

2 θboom 0 0 −π/2
3 0 L4 L3 + dboom 0

The resulting transformations is:

T 0
1 = Rz(θslew)Tz(L1)Tx(L2)Rx(π/2) (2.14)

T 1
2 = Rz(θboom)Rx(−π/2) (2.15)

T 2
3 = Tz(L4)Tx(L3 + dboom) (2.16)

The total transformation from origin to boom tip is found by multiplying all the transfor-
mation matrices:

T 0
3 = T 0

1 T
1
2 T

2
3 (2.17)

This is a 4x4 matrix, with element 1,1 to 3,3 being the rotation matrix of the TCP in frame
0, and element 1,4 to 3,4 being the cartesian coordinates in frame 0.

7

The forward kinematics found from equation 2.17 is:

xy
z

 =

L2cos(θboom) + cos(θboom)cos(θslew)(L3 + dboom)− L4cos(θslew)sin(θboom)
L2sin(θslew) + cos(θboom)sin(θslew)(L3 + dboom)− L4sin(θboom)sin(θslew)

L1 + sin(θboom)(L3 + dboom) + L4cos(θboom)

 (2.18)

The inverse kinematics is solved analytically, using geometric considerations.
The slew angle is:

θslew = atan2(y, x) (2.19)

The working radius in the XY plane is:

Rxy =
√
x2 + y2 (2.20)

The distance from boom bearing to boom tip is:

Rboom =
√

(Rxy − L2)2 + (Z − L1)2 (2.21)

Then the boom displacement can be found:

(L3 + dboom)2 + L2
4 = R2

boom (2.22)

⇒ dboom =
√
R2
boom − L2

4 − L3 (2.23)

Finally, the boom angle can be computed:

θboom = atan2(Z − L1, Rxy − L2)− atan
(

L4

dboom + L3

)
(2.24)

Defining a linear transformation between tip and joint velocity:

Ẋ = Jq̇ (2.25)

Where:

q̇ =

q̇1q̇2
q̇3

 =

 θ̇slewθ̇boom
ḋboom

 , Ẋ =

Ẋ1

Ẋ2

Ẋ3

 =

ẋẏ
ż

 (2.26)

Then the jacobian will be:

J =

∂X1

∂q1

∂X1

∂q2

∂X1

∂q3

∂X2

∂q1

∂X2

∂q2

∂X2

∂q3

∂X3

∂q1

∂X3

∂q2

∂X3

∂q3

 (2.27)

=

−(L2 − L4s2 + (L3 + q3)c2)s1 −(L4c2 + (L3 + q3)s2)c1 c2c1

(L2 − L4s2 + (L3 + q3)c2)c1 −(L4c2 + (L3 + q3)s2)s1 c2s1

0 −L4s2 + (L3 + q3)c2 s2

Where: cn = cos(qn), sn = sin(qn)

The joint velocities can be found using the inverse jacobian, provided it is nonsingular:

q̇ = J−1Ẋ (2.28)

8

lcyl
a

bα

l1

l2

l3
l4

β

Figure 2.7: Boom cylinder geometry

Since the kinematics is solved using the boom angle as a variable, a conversion between
boom angle and cylinder length is needed.

The cosine rule can be used to find the conversion between boom angle and cylinder length:

lcyl =
√
a2 + b2 − 2ab cos(α) (2.29)

Where: α = θboom + π
2
− atan(l1

l2
)− atan(l3

l4
), a =

√
l21 + l22, b =

√
l23 + l24

Differentiating equation 2.29 gives the cylinder speed:

vcyl =
d

dt
(lcyl) =

ab sin(α)√
a2 + b2 − 2ab cos(α)

θ̇boom (2.30)

Table 2.3: Boom cylinder geometric parameters

l1 l2 l3 l4
1060mm 1844mm 215mm 3645mm

Which gives: a = 2126.95 mm, b = 3651.34 mm.
The cosine rule can also be used to find the angle of the boom cylinder relative to the boom:

β = cos−1
(
b2 + l2cyl − a2

2b lcyl

)
(2.31)

Then the cylinder force can be related to the moment applied to the boom:

Fcyl =
Tboom
b sin(β)

(2.32)

Active Motion Compensation

Active motion compensation (AMC) has the goal of keeping the tip of the gangway at the
same global position when the ship moves.

9

rgangway,w

rtip,w

rtip,g

rsp,g rsp,w

rerror

Xw

Yw
Zw

Yg
Xg

Zg

TCP

Figure 2.8: Global and local vectors used for calculating position error

The global coordinates of the gangway tip can be found from:

rtip,w = rgangway,w + Rw−1
g rtip,g (2.33)

Where: Rw
g is the rotation matrix between world and gangway coordinates. Subscript w, g

and t denotes world, gangway and tip coordinates respectively.

Upon AHC entry, the current global position is stored, and the global position error is
calculated:

rerror,w = rsp,w − rtip,w (2.34)

The global error can be converted into a position setpoint in local coordinates:

rsp,g = rtip,g + Rw
g rerror,w (2.35)

Finally, the joint position setpoints is found using inverse kinematics.
A spherical collider with the wind turbine is used.
The vector from boom tip to collider is:

rcol,w = rtip,w − rturb,w (2.36)

The distance from collision between the gangway and turbine is:

dcol = |rcol,w| − rcol (2.37)

Where: rcol,w is the center of the spherical collider and rcol is the radius of the collider
The collision force is defined as:

Fcol = dcolks (2.38)

10

rtip,w
rturb,w

rcol,w

Figure 2.9: Collision between gangway and wind turbine

With ks being the spring stiffness of the collider, set to 1e5 [N/m]
The collision force is applied locally to the boom tip along the vector from tip to collider:

rfcol,t = Rw−1
tip r̂col,wFcol (2.39)

Sliding friction between gangway tip and wind turbine can be calculated using hyperbolic
tangent friction scaled by the contact force:

Ff = −|Fcol|tanh
(
vtip,w
v0

)
(2.40)

Then this friction force can be transformed into the gangway frame:

rff,t = Rw−1
tip Ff (2.41)

2.1.2 Dynamics

Using Lagrangian mechanics, the effective mass on the luffing cylinder can be calculated:

Meq =
2Ek
ẋ2

(2.42)

With Ek being the kinetic energy of the boom and telescope combined, and ẋ being the
cylinder velocity
The rotational kinetic energy of the boom is:

Ek =
1

2
Jω2 (2.43)

Inserting equation 2.30 and 2.43 into equation 2.42 gives the following expression for equiv-
alent mass for the boom cylinder:

Meq = J
a2 + b2 − 2ab cos(α)

(ab sin(α))2
(2.44)

11

The parallel axis theorem can be used to find the rotational inertia of a rigidbody with mass
m rotated around an axis with distance d from the center of mass:

J ′ = J +md2 (2.45)

The equivalent inertia referenced to the input side of a gearbox is:

Jeq,gb =
J

i2
, (2.46)

with i being the gear ratio of the gearbox.
The equivalent inertia of a mass connected to a winch is:

Jeq,winch = mr2, (2.47)

with m being the connected mass, and r being the winch radius.
The inertias is calculated using the above equations based on the position of the gangway.
The implementation is found in appendix C.4.
Gravity force is added at the center of mass of each body. The gravity direction is rotated
to match the local coordinate system of the body it is applied to.

12

2.2 Hydraulic Actuation systems

2.2.1 System Modeling

The orifice equation can be used to calculate the flow through a turbulent cross-section:

Q = αCdAd

√
2∆p

ρ
(2.48)

With α being the relative opening bounded to: [0, 1].
For easier calculations, this can be rewritten to the form:

Q = αKv

√
∆p (2.49)

Where: Kv = CdAd
√

2
ρ

The flow constant Kv can be found from a given nominal flow and pressure drop of a
component:

Kv =
Qnom√
∆pnom

(2.50)

Whenever there is a node without a fixed pressure, a volume must be introduced, and
the pressure becomes a state variable. The pressure in this volume is calculated using the
hydraulic capacitance model.
The pressure build up of in a closed volume is given by:

ṗ =
β

V
(Qin −Qout − V̇) (2.51)

Where: β is the bulk modulus of the fluid, V̇ is the volume change, eg. in a hydraulic
cylinder volume.
The bulk modulus of the hydraulic oil is assumed constant at 875 [MPa]

A B

P T P T

PA PB AT BT

A B

Symbol Orifices

Figure 2.10: DCV model

The directional valves is modeled as a series of variable orifices (fig 2.10), with valve dynamics
modeled as a second order transfer function:

G(s) = =
ω2
bw

s2 + 2ξωbws+ ω2
bw

(2.52)

Where: ωbw is the bandwidth of the valve, and ξ is the damping ratio of the valve. The
bandwidth is set to 5 hz with a damping ratio of 0.8.

13

The valve is modeled with overlap of PA and PB connections, and underlap of AT and BT
connections. Both under- and overlap is set to 1%. The under and overlap is achieved by
biasing the opening of the orifices. The opening of the orifices is,

αPA = u− 0.01, (2.53)

αPB = −u− 0.01, (2.54)

αAT = −u− 0.01, (2.55)

αBT = u− 0.01, (2.56)

Since the value is bounded to [0,1] in the orifice model, negative values is ignored.

The load sense (LS) pressure is generated in the valve, with the LS pressure being:

pls =

pa α > 0

pt α = 0

pb α < 0

(2.57)

The check valves is modeled as a variable orifice. With the opening following this equation:

αcv =
∆p− p∗

ks
(2.58)

Where: p∗ is the opening pressure of the valve and ks is the spring constant of the valve
spring, set to 1 bar.
Modelling of the counter balance valves is based on work done by Morten Bak [4], with a
limit added to pLS intended to provide a minimum holdback force for overrunning loads:

αcbv =
p2ψ +min(pLS, pLS,max)− pcr,cbv

ks
(2.59)

Where: ψ is the area ratio of the valve, and ks is the spring constant of the valve spring, set
to 295 bar.

The pressure compensation valve is based on [4]. Pressure compensation valves is added to
keep the pressure drop across the directional valves constant, making the flow through the
valve dependent on only the valve opening.
The valve opening is calculated as:

αpc =
pLS − p2 + p∗ + ks

ks
(2.60)

Where: ks is the spring constant of the valve, set to 1 bar.
Relief valves are modeled as a variable orifice with the opening calculated as:

αrv =
p1 − p∗

ks
(2.61)

Where: ks is the spring constant of the valve, set to 5 bar.
The flow through a hydraulic motor is calculated from the motor speed,

Q = ωDηv, (2.62)

14

with ηv being the volumetric efficiency of the motor.
The torque produced by a hydraulic motor is,

T = ∆pDηmh − Tf , (2.63)

with ηmh being the hydraulic-mechanical efficiency of the motor.

The friction in a hydraulic motor can be found from the load pressure at "creep" speed, and
maximum speed.
The static friction constant is found from the pressure drop at creep speed,

µs = ∆pcreepVg, (2.64)

and the viscous friction constant is found from the pressure drop at maximum speed,

µd =
∆pcreep −∆pmax

ωmax
Vg. (2.65)

The friction torque is applied to the motor using a hyperbolic tangent,

Tf = µstanh
(ω

0.001

)
+ µdω (2.66)

The hydraulic cylinders is modeled as two variable volumes, with the volume dependent on
cylinder position. The position of the cylinder is found via integration of the acceleration:

acyl =
Fhyd − Ff

meq

(2.67)

With meq being the equivalent mass connected to the cylinder
The flow into volume A is:

Qa = Qport,a − vcylAa (2.68)

Flow into volume B:
Qport,b + vcylAb (2.69)

The volume at the piston side is:
Va = Aaxcyl (2.70)

And for the rod side:
Vb = Ab(lstroke − xcyl) (2.71)

The force produced by a hydraulic cylinder is

Fhyd = paAa − pbAb − Ff (2.72)

The friction in the hydraulic cylinders is modeled with two components. Pressure dependent
friction, and static friction.
The pressure dependent friction is:

Ff,p = |Fhyd|kpf (2.73)

Where: kpf is the pressure dependent friction constant
The static friction is dependent on cylinder size:

Ff,s = ksfAa (2.74)

Where: Aa is the area of the cylinder bore side, and ksf is the pressure dependent friction
constant.

15

The friction is applied to the cylinder using a hyperbolic tangent:

Ff = −(Ff,p + Ff,s)tanh
(v

0.001

)
(2.75)

The eigenfrequency of the boom system is...

ωmh =

√
kx
meq

, (2.76)

with kx defined as,

kx =
βA2

a

Vtot,a
+
βA2

b

Vtot,b
(2.77)

With Aa and Ab being the effective piston area of the A and B side of the cylinder. Vtot,a
and Vtot,b is the total volume at the A and B side, being the chamber volume plus the line
volume.

2.2.2 Pressure Feedback

The load pressure is defined as:

pl =
F

Aa
=
pAAa − pbAb

Aa
= pa −

pb
µc

(2.78)

Where: µc is the area ratio of the cylinder defined as Aa

Ab

The load pressure is passed through a high pass filter and subtracted from the valve com-
mand:

Gpf =
ypf
pl

= Kpf
τpf

τpfs+ 1
(2.79)

The time constant of the high pass filter is set to the half natural frequency of the luffing
system, then the gain is tuned until oscillation during slow movements disappear. [11]

τpf =
1

ωmh
(2.80)

With fmh being the mechanical-hydraulic natural frequency of the luffing system.

The gain is set manually, to where the oscillation stops.

2.3 Numerical Methods

2.3.1 Integration

The differential equations are solved for the highest derivative, then Euler forward integration
is used to find the states:

xk+1 = xk + ẋk · dt (2.81)

Improving on this, the Taylor expansion can be taken into account for the higher derivatives:

xk+1 = xk + ẋk · dt+
1

2
ẍk · dt2 (2.82)

Solving the differential equations this way simplifies the modeling of the system, to where
discontinuities and unlinearities can be added to the system while still being solved in a
similar way.

16

2.3.2 Differentiation

Numerical differentiation can be done by different methods.

• Discretizing the system via Z-transform

• Treating the system as continuous

• A novel method for uncertain sample times, outlined in this subsection.

Pseudocode for the novel differentiation technique:

IF input <> last input THEN
derivative := (input - previous input)/"Time since last update";

ELSE
derivative := previous derivative;

END_IF

Two assumptions make this differentiation approach usable for physical systems:

• Using the equals operator on floating point numbers is usually problematic due to
floating point errors, but here the value does not change until the a new value has been
received.

• Two readings are unlikely to be exactly the same due to noise and inaccuracies, so this
approach works well for finding the time between sensor readings.

A timeout can also be added to set the derivative to zero if the value remains unchanged for
too long, eg. if the communication stops.

2.3.3 Atomic Operations

An atomic operation is an operation completed in a single processor cycle. It can not be
interrupted by other operations. [13]

When using multiple threads, care needs to be taken when reading and writing variables. A
common approach is using mutexes on the variables when doing operations on them.
However, when only reading or writing variables, a simpler approach can be used: In .NET,
reading and writing floats are atomic [9]. By keeping the variables as floats and only per-
forming reads and writes we can ensure that no "half written" variables will be read, greatly
simplifying usage of multithreading.

2.3.4 Filtering

A first order low pass filter can be implemented discretely as a first order infinite impulse
response filter. The k’th output being yk, and k’th input being xk,

ylp,k = βxk + (1− β)yk−1 (2.83)

Where β can be calculated from the step dt time and time constant τ ,

β =
dt

τ + dt
(2.84)

A first order high pass filter can be realized as input minus a first order low pass filter.

yhp,k = xk − ylp,k (2.85)

17

Chapter 3

Methods

3.1 System Identification

3.1.1 Mass and Inertia

The ineria matrices of the rigid bodies (King, boom, telescope) have been simplified to the
principal inertias, Ixx, Iyy and Izz. The ineria at m�, as well as the mass and center of mass
from origin of the body is noted in table 3.1.

Table 3.1: Mass and inertia of bodies

King Boom Telescope
m 11999 [kg] m 4114 [kg] m 2911 [kg]
m�,x 0.16 [m] m�,x 9.953 [m] m�,x 10.852 [m]
m�,y 0.319 [m] m�,y 0.048 [m] m�,y 0 [m]
m�,z 1.354 [m] m�,z 0.089 [m] m�,z 0.12 [m]
Ixx 14728 [kgm2] Ixx 2365 [kgm2] Ixx 1142 [kgm2]
Iyy 21407 [kgm2] Iyy 156321 [kgm2] Iyy 105726 [kgm2]
Izz 20405 [kgm2] Izz 157457 [kgm2] Izz 106386 [kgm2]

3.1.2 Placement of bodies

The origin of the bodies is set at the center of revolute joints for the king and boom. For
the telescope the origin is set to the end closest to the king.
The center of the slew bearing is set as the gangway origin, with the placement of the other
bodies being:

Table 3.2: Local location of bodies

King Boom Telescope
x 0 [m] x 0.04 [m] x 0.2 [m]
y 0 [m] y 0 [m] y 0 [m]
z 0 [m] z 2.187 [m] z 0.29 [m]

3.1.3 System sizing

The Red Rock gangway is considerably larger than the system found in [17], and there has
not been much work put into detailed design yet. Therefore a preliminary system sizing is
carried out to have a system to work with. The dimensions of the components is taken from
a CAD design, with gear ratios changed to result in acceptable pressures. The valves are
then chosen to get an acceptable speed.

18

The specifications for the gangway is found in appendix B. The driving factors for the design
is:

• Velocity: 2m/s in all axes

• Tip load: 350kg payload + 2000 kg optional winch

• Heel angle: 5 degrees maximum

• Ramp time of 2s from minimum to maximum speed

The system sizing have been done "in reverse", selecting components and verifying that the
pressure and speed is acceptable. This makes it easier to input actual components that have
discrete values. The chosen parameters is found in table 3.3, and the matlab script used for
calculating the values is noted in appendix D
The external loads applied to the boom tip, at maximum radius is:

Fload =

FxFy
Fz

 =

10 [kN]
5 [kN]
25 [kN]

 daf (3.1)

With daf being a dynamic amplification factor, set to 1.3

Table 3.3: Chosen hydraulic components

Slew Luffing Telescope
Gear ratio 624 [-] Bore diameter 175 [mm] Gear ratio 13.6 [-]
Displacement 200 [ccm/rev] Rod diameter 125 [mm] Drum diameter 0.155 [m]
ηv 0.9 [-] Valve flow 650 [l/min] Displacement 100 [ccm/rev]
ηmh 0.9 [-] ηv 0.9 [-]
Valve flow 150 [l/min] ηmh 0.9 [-]

Valve flow 200 [l/min]

Table 3.4: Resulting speed and pressure

Slew Luffing Telescope
∆P 244 [bar] ∆P 235 [bar] ∆P 235 [bar]
Angular speed 0.113 [rad/s] Angular speed 0.106 [rad/s] Linear speed 2.15 [m/s]
Linear speed 2.27 [m/s] Linear speed 2.12 [m/s]

The pressures is a bit on the high side (Table 3.4), leaving little margin for pressure drop
across valves, but it is a worst case scenario with all loads applied simultaneously with a
dynamic factor on top. It works well for testing the simulation setup.

19

3.2 High Fidelity Modeling and Simulation

To verify the real-time model, a high fidelity model was created in a multibody simulation
software.
OpenModelica is an open source environment for simulation, modeling and optimization
based on the Modelica language. It uses an equation driven acausal approach to solving a
set of equations.

The multibody simulation is made with the native OpenModelica library, and the hydraulic
part is made with components from OpenHydraulics [10], with some adaptions for missing
parts.

3.2.1 Multibody system

The multibody simulation consists of rigidbodies and joints. Slew and boom bearings is us-
ing revolute joints, and the telescope is connected to the boom using a prismatic joint. The
luffing cylinder is modeled using a UPS joint, which is an assembly of Universal-Prismatic-
Spherical joints, essentially the same as a distance constraint.

The joints are connected to the hydraulic subsystems via interface ports.

origin_frame

r={1100e-3, 0, 343e-3} m

a b

k
i
n
g

r
=
{
0
,

0
,

0
}

m1

1
9
9
9

k
g

b
a

r={3645e-3, 0, -215e-3} m

a b

ba

n={1, 0, 0} 1

telescopeBearing

a
b

n
=
{
0
,

0
,

1
.
8
2
}

1

s
l
e
w
B
e
a
r
i
n
g

boomExt

r={19760e-3, 0, 0} m

2911 kg ba

a b

luffingCylinder

ia ib

a b

n={0, 1, 0} 1

boomBearing

r
=
{
4
0
e
-
3
,

0
,

2
1
8
7
e
-
3
}

m

a
b

y

xz

TCP
boom

r={200e-3, 0, 290e-3} m

4114 kg ba

p
e
d
e
s
t
a
l

r
=
{
0
,

0
,

0
}

m8

6
4
.
5

k
g

b
a

Figure 3.1: The multi body model as modeled in OpenModelica

3.2.2 Hydraulic actuation system

All small volumes in the hydraulic system is set to 1L. This volume is chosen to be large
enough for the simulation to be stable with the achievable step time, but low enough to
negligibly affect the system dynamics.
The slew system incorporates counterbalance valves on both A and B lines for controlling
the slew system during overrunning loads when decelerating. Pressure relief valves is added
to protect the system from high dynamic pressures.

20

T

u

P

B
A

B
A

B

A
BA

LS

A
BT

P

A B

LS

A B

LS

B A

B A
L
S

Volume A

Volume B

Volume LS Volume DCV A

Volume DCV B

Figure 3.2: The slew system as modeled in OpenModelica

There are five closed volumes used as nodes where the pressure is calculated via flow balance.
The luffing system contains two volumes, with further two volumes "hidden" in the cylinder
model.

A BA B

LS

B A

T

u

P BA

LS

A
BT

P
L
S

Volume LS Volume DCV A

Figure 3.3: The luffing system as modeled in OpenModelica

The telescope system consists of a hydraulic motor connected to a winch drum via a gearbox.
In OpenModelica, the winch is simulated using an ideal wheel model, with the shaft fixed,
and the outer rim connected to the telescope prismatic joint.

T

u

P A B

LS

A
BT

P
L
S

Volume DCV B

B
A

B

AB
A

A B

LS

A B

LS

B A

B A

Volume DCV AVolume LS Volume A

Volume B

Figure 3.4: The telescope system as modeled in OpenModelica

21

3.3 Real-time Simulation

The real-time simulation runs in it’s own thread in the game engine Unity 3D.

Unity allows scripts written in C# to get easy access to position vectors and rotations of
bodies in a scene, and also allows scripts to manipulate the positions.
The simulation itself runs asynchronously from Unity in its own thread. This allows the sim-
ulation step time to be orders of magnitude shorter than Unity allows. The communication
code takes a while to run, and is also given it’s own thread to prevent it from blocking other
code from running. The communication and simulation thread is shown in figure 3.5.

Comm thread Sim thread

Write

Read

Read

Write

FixedUpdate()

R/WR/W

while:
t < realTime

while: true

Figure 3.5: Threads in Unity

There are some things that makes Unity less than ideal for real time.

Unity has it’s own physics calculation that calculates positions and interactions between
objects in the scene. The physics update is tied to the framerate, with the updates running
several times before each frame is rendered in the game. There are no guaranteed framerate,
so sudden graphics demands may decrease the update rate of the physics, causing instability.

Most of these drawbacks are avoided by using a custom simulation running in it’s own thread.

3.3.1 Multibody system

3D models in .obj format can be imported into Unity and used to build a scene with several
other objects.

The origin and orientation of 3D models imported into unity is not always correct. A quick
way of fixing this is using an empty "gameobject" as the main part, and including the im-
ported part as a child of the main part.

Movement of objects is easily done through the Unity API. The gamobject must have a
rigidbody component added, and the transform of the rigidbody can be used and modified
in another script.

A script called PositionController (Appendix C.2) was made to simplify moving joints. It
contains public variables for Transforms, which will show up in the Unity editor, and can be
populated by transforms.

22

Unity is not fast enough for calculating the contact force smoothly, so this is handled in
the simulation thread. The position of the ship and wind turbine is sent from Unity to
the simulation thread, then forward kinematics is used to calculate the tip position of the
gangway. Appendix C.4 shows the implementation of the simulation script and the contact
force calculation.

A place for improvement is adding interpolation of ship position and rotation between Unity
updates. Doing this can reduce sudden changes in position when Unity updates the position.

3.3.2 Hydraulic Actuation System

The hydraulic actuation system is simulated using a time-domain based approach. The dif-
ferential equations in the system is solved for the highest derivative, and then numerical
integration is used to find the lower order derivatives.

The time-domain simulation follows five steps:

1. Set pressures of component ports equal to pressure in connected volume.

2. Set control action of controllable valves.

3. Calculate flow through components.

4. Calculate flow going into volumes.

5. Update pressure in volumes.

Appendix C.5 shows how these steps is done for the luffing system.

3.3.3 Communication

The communication between Unity and the control system in TwinCAT is done using the
Beckhoff ADS protocol. [3]
Beckhoff provides an ADS client for .NET: TcAdsClient, this can be easily interfaced in
Unity, which also runs on .NET. The implementation of the ADS client in unity is found in
appendix C.1.

To save overhead, the variables is put into an array before it is sent using the ADS client.

23

3.4 Control System

3.4.1 Setpoint generation

Controlling the gangway while in closed loop control is done using cylindrical coordinates.
The joystick signals is integrated to move the gangway while in AMC mode.

When entering AMC mode, the current global and local position is stored and used to
calculate the setpoint.

Joystick

Pos SP

MRU rot

Joint pos

Rotate

1/s
ρ ,ϕ , z

-

MRU pos

+ +

Positionoffset
ρ,ϕ,z→x,y,z

+ +

IK

ρ ,ϕ , z

x , y , z

FK

Global pos

Store pos

+

Poserror
Rotate

Poserror local

x,y,z→ρ,ϕ,zStore pos

+

+

x , y , z

Local pos

SP local

Figure 3.6: Setpoint generation for position controller

3.4.2 Position controller

The implemented controller is a PID controller with velocity feedforward (fig 3.7). Only the
Kp gain have been set, so it is a pure P controller:

Gc(s) = eKp + sU(s)Kff (3.2)

G(s)Kp

s Kff

+

-

Pos SP Joint pos
+ +

Gpf(s)

Controller

Span +
deadband

Load
pressure

+
+Controller

e output

Figure 3.7: Position controller

With Kff being the feed forward gain set to the inverse of the joint speed at maximum valve
opening:

Kff =
1

q̇max
(3.3)

When not in AMC mode, the whole controller and setpoint generation is bypassed, and the
joystick signal is passed directly as controller output. Pressure feedback and span/deadband
compensation still remains active in this mode.

24

3.4.3 Force controller

While force control is active, the force controller functions as a joystick input to the path
generation. The axis controlled is the radius, ρ.
The position controller is used as an inner control loop.

G(s)
Setpoint

generation

+

-

Force SP Collision
force

Position
controller

Joystick (ρ) Collision
dynamics

Joint position

Figure 3.8: Force controller as outer control loop

25

Chapter 4

Results and Discussion

4.1 Communication Performance

4.1.1 Latency

For best controller performance, the latency of the system is critical. A test measuring
round trip latency was written, where an output is toggled in the control system running in
TwinCAT every 100ms. This signal travels via the communication thread into the simulation
thread, and back to the control system; the same path as the control signals. (Figure 4.2)
The test was run for about 5 minutes, and the delay between setting and reading the change
was logged.

(a) No delay (b) Added delay

Figure 4.1: Histogram of latency tests

As can be seen in fig 4.1a, the distribution has two peaks, with one peak at twice the latency
of the other. This was improved by adding a 1ms delay between reading and writing to ADS
in the communication thread.

The most probable reason for the distribution and improvement by adding a delay is that the
communication thread moves from "Read" to "Write" before the simulation thread has time
to set the "testOut" bit equal to the "testIn" bit, doubling latency whenever that happens.

Further improvements were made by only reading the variable handle once on simulation
start in the TwinCAT handler (appendix C.1). The latency improved to where more than
95% of the round trips taking less than 10 ms. This really shows the importance of testing
the latency, and how small changes can have a big impact on performance.

26

testIn

testOut

TwinCAT Comm thread Sim thread

adsOutput

adsInput adsOutput

adsInput
ADS

Figure 4.2: Data flow for latency test

Figure 4.3: Further improvements

4.1.2 Discrete Differetiation

The novel differentiation technique came up as a result of the uncertain sample time that is
introduced due to the latency of the ADS protocol.
Position data from the luffing test was differentiated using continuous assumption, and the
novel technique finding the sample time on its own.
Contrary to taking the naive approach of differentiating signals every PLC cycle, by only
calculating the derivative when the values change, a usable signal is produced even without
filtering. Low pass filtering applied, the signal is still a lot less noisy (Figure 4.4). The filter
used is a 1st order low pass filter with a time constant of 0.01s
Further improvements upon this may be discretizing the system, or sending the time as a
variable with the data being sent.

4.2 Verification of Real-time Simulation

The Unity simulation has been verified against the modelica simulation. All tests were done
from the parked position. The steady state pressures is in close agreement, with some dif-

27

Figure 4.4: Comparison between naive and novel differentiation technique

ferences in transient behaviour.

Figure 4.5 shows the pressure at the start is approximately 70 bar, this is in agreement with
hand calculations of the pressure generated due to the weight of the main boom, which tells
us that the kinematic equations for the cylinders is correct.
Some of the differences can be explained by the fact that the bulk modulus in the modelica
model is a function of density and pressure, and in Unity, the bulk modulus is assumed fixed.
This fact is

Figure 4.5: Luffing model verification

Figure 4.6 shows the ∆P for the slew system. The steady state pressure is quite close,
which means the friction is similar in both simulations. This is expected because the friction
constants is calculated from the pressure drop.
The initial pressure spike has a similar shape, but the damping seems to be quite a lot higher
in the Unity model. The natural frequency of the slew system is similar in both cases.
Figure 4.7 is the same test, done on the telescope system. This test shows the largest
deviation between the real-time model and the modelica model.
The deviation after 15s is due to the Unity simulation hitting the end stop.

28

Figure 4.6: Slew model verification

Figure 4.7: Telescope model verification

29

4.3 Active Damping

The luffing system has some problems with oscillations while driving slowly down. Pressure
feedback was incorporated to combat this. The result of this is greatly reducing oscillations
in the luffing system (figure 4.8). The test is done from parked position.

The efficacy of pressure feedback is improved by using a valve with a higher bandwidth, the
oscillations is virtually eliminated with the 15 hz valve.
5 hz bandwidth is marginal, and the speed is slightly affected due to the oscillating behaviour
at the valve input. This is in agreement with what Hagen observed in [7], requiring that the
control valve be 3 times faster than the mechanical-hydraulic system, which is about 3 hz as
can be seen from the plot.

The deadband compensation can be seen in action when the valve command is close to zero.
The valve input oscillates between ±1%.

Figure 4.8: Pressure feedback with different valve bandwidths

4.4 Motion Control Performance

An operational scenario has been tested with two different wave conditions. The results of
these tests is given in this section.

4.4.1 Active Motion Compensation

Rotation of vectors has not been implemented in TwinCAT yet, so the testing was done with
the waves only affecting heave, surge and sway. A small offset was added to the frequency
of surge and sway to prevent them being in phase with heave. Two wave conditions were
tested. Control input to the gangway was done manually using a gamepad, and the video
from the test in normal wave conditions can be found on YouTube [14].

Two scenarios with differing wave conditions were tested, the wave conditions defined as
severe wave conditions is 3m heave, with a 10s period, surge and sway set to a quarter of

30

heave. xy
z

 =

0.75sin(0.12πt)
0.75sin(0.11πt)

3sin(0.1πt)

 (4.1)

The wave conditions defined as normal wave conditions is, 1m heave, with a period of 20s.
Surge and sway is still set to a quarter of heave.xy

z

 =

0.25sin(0.07πt)
0.25sin(0.06πt)
sin(0.05πt)

 (4.2)

The scenarios start at about 20 seconds, and the gangway is driven into close proximity to
the wind turbine. From 40 to 60 seconds, the gangway is held still in AMC mode before force
control is activated, and the gangway is driven to contact the turbine, which can be seen
from the contact force in figure 4.9 and 4.10. At 110 seconds, force control is deactivated,
and the contact force starts drifting away from the setpoint. The gangway is then driven
away from the turbine, and AMC mode is disabled at about 140 seconds. The last operation
is driving the gangway back to the initial position.

Figure 4.9: Operational cycle with normal waves

The error was calculated as the absolute distance between setpoint and current position
(equation 2.34)
The required positioning accuracy for "hover mode" is ±100mm according to DNVGL-ST-
0358. [1]

31

Figure 4.10: Operational cycle with severe waves

The required accuracy is achieved for both the normal and severe wave conditions when not
driving the gangway using the joystick. The spikes in position accuracy at the end of the
cycle is due to the controller output being ramped down when exiting AMC mode.

The utilization of the luffing system is close to the limit in the severe wave scenario, reaching
70% valve input at 135 seconds in figure 4.10. Both increasing the frequency of the waves
and increasing the amplitude makes the severe wave scenario much more demanding than
the normal waves.

4.4.2 Force control

In "bumper mode", the goal is to keep a constant force against the wind turbine. The force
setpoint is set to 4000 N, same as in the paper by F. Yu. [17].
The contact force is held between 2000N and 6000N, and the position accuracy is not affected
in any noticeable ammount in bumper mode.

32

Chapter 5

Conclusions

The simulation works well as a hardware-in-the-loop test setup. Testing and implementing a
simple control system able to achieve 3D compensation with acceptable accuracy was greatly
simplified. Furthermore, testing and tuning of a pressure feedback system were done on the
simulated model.

Using a game engine for simulating a hydraulic system in near real-time is a novel way of
doing hardware-in-the-loop simulations, enabling realistic simulators to be made. Simulating
the complete hydraulic system introduces a more realistic test for the control system and
allows for feedback of values such as pressures to be implemented for pressure feedback.
Furthermore, the hydraulic sensor values are essential for testing the control system.
The developed hardware-in-the-loop setup works well to extend to other products and add
more data collection to improve the validity as a digital twin.

Contribution

The developed script for moving and rotating parts made it very easy to implement other
applications into the Unity simulator environment. Consequently, Red Rock Marines’ new
3D compensated crane was added to the ship and controlled from the same PLC-based con-
trol system used on the actual crane in operation. However, no hydraulics was added to the
simulation for simplicity; the joint velocities are controlled directly.

The developed discrete differentiation technique is a method that will find the sample rate
on its own. This is especially useful whenever the sample rate of the control system is faster
than what a digital sensor outputs.

Further work

The simulator has a lot of improvement potential, such as building a standalone Unity ap-
plication with menus to change simulation parameters, communication ports. VR support
is also an option that is available in Unity.

The project can be extended to simulate other hardware, such as cranes and davits, due to
the flexibility of using Unity with C# scripting.

For further improvement on the "digital twin" part of the system, models for health and
wear can be integrated into the simulation using data from the physical twin.

33

The friction force due to contact between gangway and wind turbine has not been imple-
mented. When implementing this, the positioning accuracy while in "bumper mode" will
increase due to the friction helping to "hold still" the boom tip.

Since the focus of this project has been on developing a real-time simulator environment for
doing hardware-in-the-loop simulations, there is a lot of remaining research potential related
to the control strategy and motion control algorithms. State-of-the-art model-based control
techniques have the potential to improve the positioning accuracy significantly. Testing of
novel control methods can easily be carried out using the digital twin developed in this
project. Adding vector rotations to the controller is also a good point for improvement.

34

Appendix A

Task From MSc Catalogue

35

Short Introduction

The goal of the project is to develop a digital twin of a novel 3D motion compensated gangway. Red Rock

is the leading supplier of the next generation of digital lifting and handling systems for the offshore and

marine markets. The 3D motion compensated gangway depicted below is Red Rock Marine's newest

product and is state-of-the-art within the offshore wind industry's personnel transfer systems.

Keywords

Modeling and Simulation

Multibody Systems

Hydraulics

3D Kinematics and Dynamics

3D Motion Compensation and Control

Real-Time Control Systems

Project Description

The following objectives should be carried out:

1. Modeling of the 3D multibody system and hydraulic actuation systems based on provided designs.

2. Identification of state-of-the-art control techniques for 3D motion compensated gangways.

3. Development and design of control algorithms for controlling the hydraulic actuators.

4. Simulation of relevant motion compensation scenarios and testing of control design.

5. Verify that the model can run faster than real time.

6. Establish a virtual environment (e.g., Unity) to visually demonstrate a realistic operational

scenario using the 3D motion compensated gangway's digital twin.

Additional Information

A software platform of choice can be used to achieve the above-mentioned simulation results, such as

MATLAB/Simulink (Simscape) or OpenModelica. RedRock can provide Beckhoff TwinCAT system if the

students want to test / prove their system in a Hardware-in-the-Loop (HIL) environment.

Contact information:

Full name E-mail address Phone number

Daniel Hagen (R&D Engineer) daniel.hagen@redrock.no 92013462

Torfinn Løvåsen (CTO) torfinn.lovasen@redrock.no 95118244

“Digital Twin of 3D Motion

Compensated Gangway”
“Master”

4

Prosjekt nr.

Appendix B

Gangway Specifications

37

 Technical specification rev: 0

2
Red Rock Marine AS: Stemmane 7, 4636 Kristiansand, Norway

Phone: +47 48 50 40 30 Mail: post@redrock.no Web: www.redrock.no

1 MAIN DATA

1.1 Specification
Type: RGCT340-20-30

Emergency lift-off 350 kg @ 30m

Gangway type Type 2 (DNV-GL)

Movable gangway structure Yes

Compensated gangway Yes

Gangway mounted on tower with elevator Yes

Vertical gangway movement 5m range from 20m-25m ASL

Gangway operating angle (luffing) +/- 10º extreme amplitude of +/- 15º

Maximum outreach (Rmax) 30 m (horizontal)

Minimum outreach (Rmin) 20 m (horizontal)

Telescopic stroke 10m

Telescopic method By winch

Compensation Speed, telescopic Max. ~2.0 m/s

Gangway vertical movement luffing Hydraulic Cylinders

Gangway vertical movement trolley Winch

Winch mounted on telescopic part of gangway 1000kg (option for 2000kg)

Elevator capacity 2000 kg

Elevator movement distance TBA Depends on final vessel design

Elevator stop positions 3 fixed + 1 dynamic (follows the
gangway’s position)

Width walkway 1.5m - 1.2m

Height Handrails 1.3m

Slewing angle Max 200 degrees +/- 100 degrees from
parking position

Weight (dry without load – incl tower) ~ 85T

Operational modes Bumper & Hovering mode

Connection method to ship Welding (tower) with modular sections

Tower height 20m depends on vessel
integration/interface and yard supply

Appendix C

Scripts from Unity

C.1 TwinCAT Handler

using UnityEngine;
using TwinCAT.Ads;
using System;

public class TwinCAT_Handler : MonoBehaviour
{

private AdsClient _tcClient;
public string AMS_id = "1.1.1.1.1.1";
public int ADS_port = 851;
public String POU = "P_Unity";
public String readVariable = "adsOutput";
public String writeVariable = "adsInput";
private uint hRead;
private uint hWrite;

void Awake()
{

_tcClient = new AdsClient ();
_tcClient.Connect(AMS_id , ADS_port);
if (_tcClient.IsConnected)
{

Debug.Log("Twin CAT ADS port connected");
}
else
{

Debug.LogError("ADS Connection failed");
}

}
void Start()
{

hRead = _tcClient.CreateVariableHandle(POU + "." + readVariable);
hWrite = _tcClient.CreateVariableHandle(POU + "." + writeVariable);

}

public float [] ReadFloatArray(int length)
{

var value = new float[length];
int[] args = {length };
try
{

value = (float []) _tcClient.ReadAny(hRead , typeof(float []), args);
}
catch
{

Debug.LogError("TC Error - reading ARRAY failed");
}
return value;

}

public bool WriteValue(object value)
{

try
{

_tcClient.WriteAny(hWrite , value);
return true;

}
catch (AdsErrorException exc)
{

Debug.LogError("TC Write Error " + exc.Message);
}
return false;

}
}

39

C.2 Script for Moving Rigidbodies

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System;

public class PositionController : MonoBehaviour
{

public Transform [] transforms;
public ControlType [] controlMode;
public Axis[] axis;
public Direction [] direction;

// Initial position of parts
private Vector3 [] initialPosition;
private Vector3 [] initialAngle;

// Variable to set positions
public float [] position;

// Enum to select control modes
public enum ControlType
{

position ,
angle

}
public enum Axis
{

x,
y,
z

}
public enum Direction
{

positive = 1,
negative = -1

}

// Start is called before the first frame update
void Start()
{

// Create arrays of the correct length
position = new float[transforms.Length];
initialPosition = new Vector3[transforms.Length];
initialAngle = new Vector3[transforms.Length];

// Store initial positions
for (int i = 0; i < transforms.Length; i++)
{

position[i] = 0f;
initialPosition[i] = transforms[i]. localPosition;
initialAngle[i] = transforms[i]. localEulerAngles;

}
}

public void FixedUpdate ()
{

// Update visual position of transforms here
for (int i = 0; i < transforms.Length; i++)
{

if (controlMode[i] == ControlType.position)
{

if (axis[i] == Axis.x) {transforms[i]. localPosition = initialPosition[i] + (int)direction[i] * new ...
Vector3(position[i], 0.0f, 0.0f);}

if (axis[i] == Axis.y) {transforms[i]. localPosition = initialPosition[i] + (int)direction[i] * new ...
Vector3 (0.0f, position[i], 0.0f);}

if (axis[i] == Axis.z) {transforms[i]. localPosition = initialPosition[i] + (int)direction[i] * new ...
Vector3 (0.0f, 0.0f, position[i]);}

}
else if (controlMode[i] == ControlType.angle)
{

if (axis[i] == Axis.x) {transforms[i]. localEulerAngles = initialAngle[i] + (int)direction[i] * new ...
Vector3(position[i], 0.0f, 0.0f);}

if (axis[i] == Axis.y) {transforms[i]. localEulerAngles = initialAngle[i] + (int)direction[i] * new ...
Vector3 (0.0f, position[i], 0.0f);}

if (axis[i] == Axis.z) {transforms[i]. localEulerAngles = initialAngle[i] + (int)direction[i] * new ...
Vector3 (0.0f, 0.0f, position[i]);}

}
}

}
}

40

C.3 Main Script

using System.Threading;
using System;
using UnityEngine;

// Enum to choose which object to control
public enum controlObject
{

gangway ,
crane

}

public class Main : MonoBehaviour
{

// Public variables
[Header("Communication")]
public long communicationTime;

[Header("Simulation options")]
public bool useTwinCat = false;
public bool simulateDynamics = true;
public bool graphOn = false;
public bool localWaveData = true;
public bool craneLoad = true;
public controlObject controlObject;

[Header("Transforms")]
public Transform shipTransform;
public Transform boomTip;
public Transform hook;

[Header("Simulation objects")]
public TwinCAT_Handler _tcHandler;
public Simulation sim;
private int controlIndex;
public AhcMode ahc;
public GameObject ropeSolver;
public JointController [] jointControllers;

// Private variables
private Vector3 initialShipPosition;
private float[] adsInput;
private float[] adsOutput;
public float [] joystick;
public float [] effort;
private float[] waveData;
public float heave , surge , sway;
public float roll , pitch , yaw;
private Vector3 wireVector;
private Vector2 wireAngle;

// Variables to be used in threaded communication
private Thread _adsThread;
private bool threadStart = false;

// PLC read/write thread
private void adsReadWrite ()
{

// Do not start until unity has loaded and started
while (! threadStart){}

System.Diagnostics.Stopwatch _timer;
_timer = new System.Diagnostics.Stopwatch ();
_timer.Start ();

while (true)
{

// Log the communication time and restart timer
communicationTime = _timer.ElapsedMilliseconds;
_timer.Restart ();

// Read input from PLC
adsInput = new float [16];
adsInput = _tcHandler.ReadFloatArray(adsInput.Length);

// Translate input array
Array.Copy(adsInput , 0, waveData , 0, 3); // Surge , sway , heave
waveData [3] = adsInput [3]* Mathf.Rad2Deg; // Roll
waveData [4] = adsInput [4]* Mathf.Rad2Deg; // Pitch
waveData [5] = adsInput [5]* Mathf.Rad2Deg; // Yaw
Array.Copy(adsInput , 6, effort , 0, 6); // Effort is fixed
sim.testIn = adsInput [15]; // For testing latency

// Create new output array
float [] adsOutput = new float [16];

// Switch between different objects
switch (controlObject)
{

case controlObject.gangway:
// Send inputs to simulation
jointControllers[controlIndex]. effort [3] = effort [3]; // Elevator
sim.slewEffort = effort [0];
sim.luffingEffort = effort [1];
sim.telescopeEffort = effort [2];

// Slight to improve chance of receiving update
Thread.Sleep (1);

// Construct output array
adsOutput [0] = -joystick [0];

41

adsOutput [1] = joystick [1];
adsOutput [2] = joystick [2];
adsOutput [3] = joystick [3];
adsOutput [4] = sim.slewAngle;
adsOutput [5] = sim.boomAngle;
adsOutput [6] = sim.telescopeLength;
adsOutput [7] = sim.slew.motor.A.p*1e-5f;
adsOutput [8] = sim.slew.motor.B.p*1e-5f;
adsOutput [9] = sim.luffing.cylinder.A.p*1e-5f;
adsOutput [10] = sim.luffing.cylinder.B.p*1e-5f;
adsOutput [11] = sim.telescope.motor.A.p*1e-5f;
adsOutput [12] = sim.telescope.motor.B.p*1e-5f;
adsOutput [13] = -sim.contactForce.x;
adsOutput [15] = sim.testOut;
break;

case controlObject.crane:
// Set effort of joint controller
for (int i = 0; i < jointControllers[controlIndex]. effort.Length; i++)
{

jointControllers[controlIndex]. effort[i] = effort[i];
}
// Construct output array
adsOutput [0] = -jointControllers[controlIndex]. controller.position [0]; // Slew angle
adsOutput [1] = -jointControllers[controlIndex]. controller.position [1]; // Boom angle
adsOutput [2] = -jointControllers[controlIndex]. controller.position [2] - 190f; // KnBoom angle
adsOutput [3] = jointControllers[controlIndex]. controller.position [3]; // Wire position
adsOutput [4] = -jointControllers[controlIndex]. controller.position [4] + 90f; // Left 3D ...

Tool angle
adsOutput [5] = -jointControllers[controlIndex]. controller.position [5] + 90f; // Right ...

3D Tool angle
adsOutput [6] = wireAngle.x;
adsOutput [7] = wireAngle.y;
break;

}

// Send output to PLC
_tcHandler.WriteValue(adsOutput);

}
}

// Awake is called before start and can enable disable gameobjects
void Awake()
{

// Enable/disable full simulation
sim.gameObject.GetComponent <Simulation >().enabled = simulateDynamics;

// Enable/disable load on crane
ropeSolver.SetActive(craneLoad);

}

// Start is called before the first frame update
void Start()
{

// Create new communication thread
if (useTwinCat)
{

_adsThread = new Thread(adsReadWrite);
_adsThread.Start();

}

// Get initial positon of Ship
initialShipPosition = shipTransform.position;

// Set up graphs
if (graphOn)
{

DebugGUI.SetGraphProperties("Boom pressure A", "Boom pressure A", -1, 1, 0, new Color(1, 1, 0), true);
DebugGUI.SetGraphProperties("Boom pressure B", "Boom pressure B", -1, 1, 0, new Color(0, 1, 0), true);

}

// Create arrays
effort = new float [6];
joystick = new float [4];
waveData = new float [6];

}

// Update is called once per frame
// GetButtonDown needs to be in Update to work reliably
void Update ()
{

// Allow communication thread to start
threadStart = true;

// Loop through moving different objects
if (Input.GetButtonDown("Fire3"))
{

controlIndex ++;
if (controlIndex > jointControllers.Length - 1) {controlIndex = 0;}
controlObject = (controlObject)controlIndex;

}
}

void FixedUpdate ()
{

// Read joystick input
joystick [0] = Input.GetAxis("Horizontal");
joystick [1] = Input.GetAxis("Vertical");
joystick [2] = Input.GetAxis("HorizontalRight");
joystick [3] = Input.GetAxis("VerticalRight");

// Set controlIndex according to selected object enum
controlIndex = (int)controlObject;

// Set inputs of all joint controllers not controlled to zero
for (int i = 0; i < jointControllers.Length; i++)

42

{
if (i != controlIndex)
{

for (int j = 0; j < jointControllers[i]. effort.Length; j++)
{

jointControllers[i]. effort[j] = 0f;
}

}
}

// If not using twincat , the simulation is controlled via gamepad
if (! useTwinCat)
{

// Send joystick values to joint controllers
for (int i = 0; i < 4; i++)
{

jointControllers[controlIndex]. effort[i] = joystick[i];
}

// If hydraulic simulation is active , gangway joint controller is controlled by sim
if (simulateDynamics)
{

// Send inputs to simulation
sim.elevatorEffort = jointControllers [0]. effort [3];
sim.slewEffort = jointControllers [0]. effort [0];
sim.luffingEffort = jointControllers [0]. effort [1];
sim.telescopeEffort = jointControllers [0]. effort [2];

}
}

// Overwrite joint positions if hydraulic sim is active
if (simulateDynamics)
{

// Overwrite position of joints according to simulation
jointControllers [0]. controller.position [0] = sim.slewAngle;
jointControllers [0]. controller.position [1] = sim.boomAngle;
jointControllers [0]. controller.position [2] = sim.telescopeLength;

}

// Simulate wave motion
if (localWaveData)
{

surge = Mathf.Sin (0.22f*Time.time)*1.2f;
sway = Mathf.Sin (0.23f*Time.time)*1.25f;
heave = Mathf.Sin (0.21f*Time.time)*1.5f;
roll = Mathf.Sin (0.24f*Time.time)*5.0f;
pitch = Mathf.Sin (0.25f*Time.time)*1.0f;
yaw = Mathf.Sin (0.26f*Time.time)*1.0f;

}
else
{

// External wave data is jittery :(
surge = waveData [0];
sway = waveData [1];
heave = waveData [2];
roll = waveData [3];
pitch = waveData [4];
yaw = waveData [5];

}

// Find angle of wire rope
// Vector from boom tip to hook
wireVector = boomTip.position - hook.position;
// Rotate vector with boomtip
wireVector = Quaternion.AngleAxis(boomTip.eulerAngles.y, Vector3.up) * wireVector;
// Calculate angle
wireAngle = new Vector2(Mathf.Atan2(wireVector.z, wireVector.y), Mathf.Atan2(wireVector.x, wireVector.y));

// Set ship position
// This converts the right hand rule system to unity coordinates
shipTransform.position = initialShipPosition + new Vector3(-surge , -heave , sway);
shipTransform.localEulerAngles = new Vector3(roll , -yaw , pitch);

// Local AHC mode on gangway
ahc.update ();

// ///
// ///////////////////////////////// Logging ///////////////////////////////
// ///

// Log heave
if (graphOn)
{

DebugGUI.Graph("Boom pressure A", sim.luffing.cylinder.A.p*1e-5f);
DebugGUI.LogPersistent("Boom pressure A", sim.luffing.cylinder.A.p*1e-5f);
DebugGUI.Graph("Boom pressure B", sim.luffing.cylinder.B.p*1e-5f);
DebugGUI.LogPersistent("Boom pressure B", sim.luffing.cylinder.B.p*1e-5f);

}

if (simulateDynamics)
{

Grapher.Log(sim.slew.volumeA.p*1e-5f, "Pressure slew A", Color.red);
Grapher.Log(sim.slew.volumeB.p*1e-5f, "Pressure slew B", Color.green);
Grapher.Log(sim.slew.volumeDCVa.p*1e-5f, "Pressure DCV A", Color.blue);
Grapher.Log(sim.slew.volumeDCVb.p*1e-5f, "Pressure DCV B", Color.yellow);
// Grapher.Log(sim.slew.position , "Slew position", Color.white);

Grapher.Log(sim.telescope.volumeA.p*1e-5f, "Pressure telescope A", Color.red);
Grapher.Log(sim.telescope.volumeB.p*1e-5f, "Pressure telescope B", Color.green);
// Grapher.Log(sim.telescope.volumeDCVa.p*1e-5f, "Pressure DCV A", Color.blue);
// Grapher.Log(sim.telescope.volumeDCVb.p*1e-5f, "Pressure DCV B", Color.yellow);
// Grapher.Log(sim.telescope.pcvVolume.p*1e-5f, "PCV pressure", Color.white);

Grapher.Log(sim.luffing.cylinder.A.p*1e-5f, "Pressure cylinder A", Color.red);

43

Grapher.Log(sim.luffing.cylinder.B.p*1e-5f, "Pressure cylinder B", Color.green);
// Grapher.Log(sim.luffing.cylinder.cylinderLength , "Cylinder length", Color.white);
// Grapher.Log(sim.boomTorque , "Boom torque", Color.white);

Grapher.Log(sim.slew.motor.Tfric , "Friction torque", Color.white);
Grapher.Log(sim.slew.motor.Jeq , "Equivalent inertia", Color.white);
Grapher.Log(sim.slew.motor.Tload , "Load torque", Color.white);

}
}

void OnDestroy ()
{

if (_adsThread != null)
{

_adsThread.Abort();
}

}
}

C.4 Simulation Thread

using UnityEngine;
using System.Threading;

[System.Serializable]
// Inherits MonoBehaviour to be able to adjust parameters in Unity
public class Simulation : MonoBehaviour
{

[Header("Transforms")]
public Transform mruTransform;
public Transform tipTransform;
public Transform turbineTransform;

[Header("Simulation setup")]
public float dt = 1e-7f;
public double simulationTime = 0.0D;
public float realTime = 0.0f;
public ulong iteration = 0;
private ulong previousIteration = 0;
private System.Diagnostics.Stopwatch _timer;

[Header("Hydraulic data")]
public float smallVolume = 0.001f;
public float bulkModulus = 875e6f;
public float hpuPressure = 250e5f;

[Header("Collision")]
public float springConstant = 1e8f;
public float contactDamping = 1e7f;
private Vector3 turbinePos;
private Vector3 gangwayPos;
public Vector3 tipVelocity;
public Vector3 oldPos;
private Quaternion gangwayRotation;
private Quaternion tipRotation;
public Vector3 contactForce;
public Vector3 rGangway;
public Vector3 rTipTurbine;
public Vector3 rTipTurbineLocal;
public float penetrationDepth;
public float turbineRadius = 4f;
public Vector3 tipPos;

[Header("Inertial data")]
// Inertia matrices are Ixx , Iyy , and Izz at the center of mass
public float kingMass = 11999;
public Vector3 kingCoM = new Vector3 (0.16f, 0.319f, 1.354f);
public Vector3 kingInertia = new Vector3 (14728f, 21407f, 20405f);
public float boomMass = 4114f;
public Vector3 boomCoM = new Vector3 (9.953f, 0.048f, 0.089f);
public Vector3 boomInertia = new Vector3 (2365f, 156321f, 157457f);
public float telescopeMass = 2911f;
public Vector3 telescopeCoM = new Vector3 (10.852f, 0f, 0.12f);
public Vector3 telescopeInertia = new Vector3 (1142f, 105726f, 106386f);

[Header("Speed")]
public float elevatorSpeed = 0.5f; // Meters per second
public float slewSpeed = 0.1f; // Radians per second
public float luffingSpeed = 0.1f; // Radians per second
public float telescopeSpeed = 2.0f; // Meters per second

[Header("Limits")]
public Limit elevatorLimit = new Limit (0.0f, 8.5f);

[Header("Inputs")]
public float elevatorEffort;
public float slewEffort , luffingEffort , telescopeEffort;

[Header("Outputs")]
public float elevatorHeight = 0.0f;
public float slewAngle = 0.0f, boomAngle = 0.0f, telescopeLength = 0.0f;

// Simulation objects
public Telescope telescope;
public Slew slew;
public Luffing luffing;

// Private variables

44

private CylinderKinematics cylinderkinematics;
private Kinematics kinematics;

// Gravity
public Vector3 g;
public Vector3 glocal;

// Update thread
private Thread _simThread;
private void simUpdate ()
{

// Stopwatch for realtime
_timer = new System.Diagnostics.Stopwatch ();
_timer.Start ();

while (true)
{

update ();
}

}

// Start is called before the first frame update
void Start()
{

// Calculate system sizing from the given speeds

// Initialize system objects
telescope = new Telescope ();
slew = new Slew();
luffing = new Luffing ();
cylinderkinematics = new CylinderKinematics ();
kinematics = new Kinematics ();

// Initialize values
oldPos = new Vector3 (0f, 0f, 0f);
slew.hpuPressure = hpuPressure;
luffing.hpuPressure = hpuPressure;
telescope.hpuPressure = hpuPressure;

// Start simulation thread
_simThread = new Thread(simUpdate);
_simThread.Start();

}

void FixedUpdate ()
{

// Update real time for display in unity
realTime = (float)_timer.Elapsed.TotalSeconds;

// g vector on gangway (z axis flipped)
g = Quaternion.Inverse(mruTransform.rotation) * new Vector3(0, -9.81f, 0);

// Save position of gangway in global coordinates
turbinePos = turbineTransform.position;
gangwayPos = mruTransform.position;
gangwayRotation = mruTransform.rotation;
tipRotation = tipTransform.rotation;

// Set radius of turbine to the attached collider
turbineRadius = turbineTransform.GetComponent <SphereCollider >().radius;

}

// Function to calculate contact force between tip and turbine
public Vector3 calculateContactForce(float dt)
{

// Find local tip position from FK
rGangway = kinematics.forwardKinematics(new float [] {slew.position , luffing.boomAngle , telescope.position });
tipPos = rGangway;

// Finds gangway tip position in global unity coordinates
rGangway = gangwayPos + gangwayRotation * new Vector3(rGangway.x, rGangway.y, -rGangway.z);

// Find vector between gangway tip and turbine
rTipTurbine = turbinePos - rGangway;
// rTipTurbine = new Vector3(rTipTurbine.x, 0f, rTipTurbine.z); // Remove vertical axis since turbine is vertical

// Convert to local boom coordinates
rTipTurbineLocal = Quaternion.Inverse(tipRotation) * rTipTurbine;
rTipTurbineLocal = new Vector3(rTipTurbineLocal.x, rTipTurbineLocal.y, -rTipTurbineLocal.z);

// Calculate tip velocity
tipVelocity = (rTipTurbineLocal - oldPos)/dt;

// Store old position
oldPos = rTipTurbineLocal;

// Calculate penetration depth
penetrationDepth = rTipTurbine.magnitude - turbineRadius;

// Contact force
Vector3 contactForce = new Vector3 (0f, 0f, 0f);
if (penetrationDepth < 0f)
{

contactForce = rTipTurbineLocal.normalized * penetrationDepth * springConstant + tipVelocity*contactDamping;
}

return contactForce;
}

public float testIn;
public float testOut;
public float boomTorque;

public void update ()
{

45

// Run simulation in sync with real time
while (simulationTime < _timer.Elapsed.TotalSeconds)
{

// Calculate local direction of g vector on the boom
glocal = new Vector3(g.x, g.y, -g.z); // Convert to correct gangway coordinates by flipping z
// Follow rotation of boom
glocal = Quaternion.Euler(0, 0, slew.position*Mathf.Rad2Deg) * glocal;
glocal = Quaternion.Euler(0, luffing.boomAngle*Mathf.Rad2Deg , 0) * glocal;

// Calculate contact force between gangway and turbine
contactForce = calculateContactForce(dt);

// Calculate equivalent inertias and loads from the current position
// Inertia of boom + telescope in Y axis
// Jeq = J + m*r^2
float boomInertiaY = boomInertia.y + boomMass*boomCoM.x*boomCoM.x

+ telescopeInertia.y + telescopeMass *(telescopeCoM.x + ...
telescope.position)*(telescopeCoM.x + telescope.position);

luffing.cylinder.equivalentMass = cylinderkinematics.equivalentMass(boomInertiaY , luffing.boomAngle);

// External load on boom cylinder
boomTorque = boomMass*boomCoM.x*glocal.z + telescopeMass *(telescopeCoM.x + telescope.position)*glocal.z + ...

(20f + telescope.position)*contactForce.z;
luffing.cylinder.Fload = cylinderkinematics.cylinderForce(boomTorque , luffing.boomAngle);

// Inertia of king + boom + telescope in Z axis
float kingInertiaZ = kingInertia.z + (boomInertia.z + telescopeInertia.z)*Mathf.Cos(luffing.boomAngle) + ...

(boomInertia.x + telescopeInertia.x)*Mathf.Sin(luffing.boomAngle)
+ ...

boomMass*boomCoM.x*boomCoM.x*Mathf.Cos(luffing.boomAngle)*Mathf.Cos(luffing.boomAngle)
+ telescopeMass *(telescopeCoM.x + telescope.position)*(telescopeCoM.x + ...

telescope.position)*Mathf.Cos(luffing.boomAngle)*Mathf.Cos(luffing.boomAngle);
slew.inertia = kingInertiaZ;
slew.Tload = (boomMass*boomCoM.x*glocal.y + telescopeMass *(telescopeCoM.x + telescope.position)*glocal.y ...

+ (20f + telescope.position)*contactForce.y)*Mathf.Cos(luffing.boomAngle);

// External load on telescope
telescope.mass = telescopeMass;
telescope.Fload = telescopeMass*glocal.x - contactForce.x;

//Send values to simulation objects
telescope.effort = telescopeEffort;
telescope.boomAngle = boomAngle;
slew.effort = slewEffort;
luffing.effort = luffingEffort;

// Update simulation objects
telescope.update(dt);
slew.update(dt);
luffing.update(dt);

// Update position values
boomAngle = luffing.boomAngle*Mathf.Rad2Deg;
telescopeLength = telescope.position;
slewAngle = slew.position*Mathf.Rad2Deg;

// Apply limit to positions
elevatorLimit.constrain(ref elevatorHeight);

// Update simulation time
simulationTime += dt;
iteration ++;

testOut = testIn;

// Throw error if loop can't keep up
if ((iteration - previousIteration) > 1e5)
{

Debug.LogError("Simulation out of sync , increasing stepsize");
dt = 2.0f*dt;
iteration = previousIteration;
return;

}
}
previousIteration = iteration;

}

// Kill thread when exiting
void OnDestroy ()
{

if (_simThread != null)
{

_simThread.Abort();
}

}
}

C.5 Luffing Simulation

using UnityEngine;
using System;
public class Luffing
{

// Input/output
public float velocity = 0f;
public float boomAngle = 0f;
public float effort = 0f;

46

// Dimension data
public float bulkModulus = 875e6f;
public float hpuPressure;

// Simulation objects
public HydraulicCylinder cylinder;
public DCV dcv;
public Volume volumeDCVa;
public CBV cbvA;
public PressureCompensator pcv;
public Volume pcvVolume;
private CylinderKinematics kinematics;

// Constructor sets dimensions etc
public Luffing ()
{

// Calculate required flow
float Qnom = 650.0f;

// Create simulation objects
dcv = new DCV(Qnom , 5.0f);
volumeDCVa = new Volume(bulkModulus , 0.001f);
cylinder = new HydraulicCylinder (250.0e-3f, 175.0e-3f, 1700.0e-3f, 2285.0e-3f);
cbvA = new CBV(Qnom , 16.0f, 200.0f, 4.0f, 50.0f);
pcv = new PressureCompensator(Qnom , 5.0f, 5.0f);
pcvVolume = new Volume(bulkModulus , 0.001f);

// Cylinder kinematics
kinematics = new CylinderKinematics ();

}
public void update(float dt)
{

// Set system pressures
pcv.A.p = hpuPressure;
pcv.B.p = pcvVolume.p;
pcv.LS.p = dcv.LS.p;
dcv.A.p = volumeDCVa.p;
dcv.B.p = cylinder.B.p;
dcv.P.p = pcvVolume.p;
dcv.T.p = 1.0e5f;
cbvA.A.p = volumeDCVa.p;
cbvA.B.p = cylinder.A.p;
cbvA.setLS(cylinder.B.p);

// Send effort value to valves
dcv.alpha = effort;

// Flow balance in volumes
pcvVolume.Q = pcv.B.Q + dcv.P.Q;
volumeDCVa.Q = dcv.A.Q + cbvA.A.Q;
cylinder.A.Q = -(cbvA.B.Q);
cylinder.B.Q = -(dcv.B.Q);

// Boom angle
// Convert from cylinder length to boom angle
boomAngle = kinematics.boomAngle(cylinder.cylinderLength);

// Update simulation objects
// Flow is calculated from port pressures
// New pressure is calculated in the volumes
dcv.update(dt);
volumeDCVa.update(dt);
cylinder.update(dt);
cbvA.update(dt);
pcv.update(dt);
pcvVolume.update(dt);

}
}

C.6 Slew Simulation

using UnityEngine;

public class Slew
{

// Input/output
public float position = 0f;
public float velocity = 0f;
public float effort = 0.0f;
public float Tload = 0.0f;

// Dimension data
public float inertia;
public float bulkModulus = 875e6f;
public float gearRatio = 624.0f;
public float hpuPressure = 250e5f;

// Simulation objects
public DCV dcv;
public Volume volumeDCVa;
public Volume volumeDCVb;
public Volume volumeA;
public Volume volumeB;
public HydraulicMotor motor;
public CBV cbvA;
public CBV cbvB;
public PressureCompensator pcv;
public Volume pcvVolume;

47

public ReliefValve rvA;
public ReliefValve rvB;

// Constructor sets dimensions etc
public Slew()
{

// Calculate required flow
float Qnom = 150.0f;

// Create simulation objects
dcv = new DCV(Qnom , 5.0f);
volumeA = new Volume(bulkModulus , 0.001f);
volumeB = new Volume(bulkModulus , 0.001f);
volumeDCVa = new Volume(bulkModulus , 0.001f);
volumeDCVb = new Volume(bulkModulus , 0.001f);
motor = new HydraulicMotor (200f, 0.9f, 0.9f);
cbvA = new CBV(Qnom , 5.0f, 250.0f, 5.0f, 60f);
cbvB = new CBV(Qnom , 5.0f, 250.0f, 5.0f, 60f);
pcv = new PressureCompensator(Qnom , 5.0f, 5.0f);
pcvVolume = new Volume(bulkModulus , 0.001f);
rvA = new ReliefValve(Qnom , 5.0f, 250f);
rvB = new ReliefValve(Qnom , 5.0f, 250f);

// Set the friction of the motor
// deltaPcreep(bar), deltaPmax(bar), motorSpeed(rad/s)
motor.setFrictionForce (5.0f, 10.0f, 78f);

}

public void update(float dt)
{

// System pressures
pcv.A.p = hpuPressure;
pcv.B.p = pcvVolume.p;
pcv.LS.p = dcv.LS.p;
dcv.A.p = volumeDCVa.p;
dcv.B.p = volumeDCVb.p;
dcv.P.p = pcvVolume.p;
dcv.T.p = 1.0e5f;
motor.A.p = volumeA.p;
motor.B.p = volumeB.p;
cbvA.A.p = volumeDCVa.p;
cbvA.B.p = volumeA.p;
cbvB.A.p = volumeDCVb.p;
cbvB.B.p = volumeB.p;
cbvA.setLS(volumeDCVb.p);
cbvB.setLS(volumeDCVa.p);
rvA.A.p = volumeA.p;
rvA.B.p = volumeB.p;
rvB.A.p = volumeB.p;
rvB.B.p = volumeA.p;

// Send effort value to valves
dcv.alpha = -effort;

// Flow balance in volumes
pcvVolume.Q = pcv.B.Q + dcv.P.Q;
volumeDCVa.Q = dcv.A.Q + cbvA.A.Q;
volumeDCVb.Q = dcv.B.Q + cbvB.A.Q;
volumeA.Q = motor.A.Q + cbvA.B.Q + rvA.A.Q + rvB.B.Q;
volumeB.Q = motor.B.Q + cbvB.B.Q + rvB.A.Q + rvA.B.Q;

// Telescope position
position = -motor.theta/gearRatio;
velocity = -motor.thetaDot/gearRatio;

// Calculate load
motor.Tload = Tload/gearRatio;
motor.Jeq = inertia /(gearRatio*gearRatio);

// Update simulation objects (This is where the magic happens)
dcv.update(dt);
volumeA.update(dt);
volumeB.update(dt);
volumeDCVa.update(dt);
volumeDCVb.update(dt);
motor.update(dt);
cbvA.update(dt);
cbvB.update(dt);
pcv.update(dt);
pcvVolume.update(dt);
rvA.update(dt);
rvB.update(dt);

}
}

C.7 Telescope Simulation

using UnityEngine;
using System;

public class Telescope
{

// Input/output
public float position = 0f;
public float velocity = 0f;
public float boomAngle = 0f;
public float effort = 0.0f;
public float Fload = 0.0f;

48

// Dimension data
public float mass = 2910.0f;
public float bulkModulus = 875e6f;
public float gearRatio = 13.6f;
public float winchRadius = 0.155f;
public float endstopSpringStiffness = 1e6f;
public float endstopDamping = 1e5f;
public float maxLength = 10.0f;
public float hpuPressure = 250e5f;

// Simulation objects
public DCV dcv;
public Volume volumeDCVa;
public Volume volumeDCVb;
public Volume volumeA;
public Volume volumeB;
public HydraulicMotor motor;
public CBV cbvA;
public CBV cbvB;
public PressureCompensator pcv;
public Volume pcvVolume;
public ReliefValve rvA;
public ReliefValve rvB;

// Constructor sets dimensions etc
public Telescope ()
{

// Calculate required flow
float Qnom = 200.0f;

// Create simulation objects
dcv = new DCV(Qnom , 5.0f);
volumeA = new Volume(bulkModulus , 0.001f);
volumeB = new Volume(bulkModulus , 0.001f);
volumeDCVa = new Volume(bulkModulus , 0.001f);
volumeDCVb = new Volume(bulkModulus , 0.001f);
motor = new HydraulicMotor (100f, 0.9f, 0.9f);
cbvA = new CBV(Qnom , 5.0f, 250.0f, 5.0f, 60f);
cbvB = new CBV(Qnom , 5.0f, 250.0f, 5.0f, 60f);
pcv = new PressureCompensator(Qnom , 5.0f, 5.0f);
pcvVolume = new Volume(bulkModulus , 0.001f);
rvA = new ReliefValve(Qnom , 5.0f, 250f);
rvB = new ReliefValve(Qnom , 5.0f, 250f);

// Set the friction of the motor
// deltaPcreep(bar), deltaPmax(bar), motorSpeed(rad/s)
motor.setFrictionForce (5.0f, 10.0f, 209f);

}

public void update(float dt)
{

// System pressures
pcv.A.p = hpuPressure;
pcv.B.p = pcvVolume.p;
pcv.LS.p = dcv.LS.p;
dcv.A.p = volumeDCVa.p;
dcv.B.p = volumeDCVb.p;
dcv.P.p = pcvVolume.p;
dcv.T.p = 1.0e5f;
motor.A.p = volumeA.p;
motor.B.p = volumeB.p;
cbvA.A.p = volumeDCVa.p;
cbvA.B.p = volumeA.p;
cbvB.A.p = volumeDCVb.p;
cbvB.B.p = volumeB.p;
cbvA.setLS(volumeDCVb.p);
cbvB.setLS(volumeDCVa.p);
rvA.A.p = volumeA.p;
rvA.B.p = volumeB.p;
rvB.A.p = volumeB.p;
rvB.B.p = volumeA.p;

// Send effort value to valves
dcv.alpha = effort;

// Flow balance in volumes
pcvVolume.Q = pcv.B.Q + dcv.P.Q;
volumeDCVa.Q = dcv.A.Q + cbvA.A.Q;
volumeDCVb.Q = dcv.B.Q + cbvB.A.Q;
volumeA.Q = motor.A.Q + cbvA.B.Q + rvA.A.Q + rvB.B.Q;
volumeB.Q = motor.B.Q + cbvB.B.Q + rvB.A.Q + rvA.B.Q;

// Telescope position
position = motor.theta*winchRadius/gearRatio;
velocity = motor.thetaDot*winchRadius/gearRatio;

// End stops
float endStopForce = 0f;
if (position > maxLength)
{

endStopForce = endstopSpringStiffness *(position - maxLength) + endstopDamping*velocity;
}
else if (position < 0.0f)
{

endStopForce = endstopSpringStiffness*position + endstopDamping*velocity;
}
else
{

endStopForce = 0f;
}

// Calculate motor load
motor.Tload = (Fload + endStopForce)*winchRadius/gearRatio;
motor.Jeq = mass*winchRadius*winchRadius /(gearRatio*gearRatio);

49

// Update simulation objects (This is where the magic happens)
dcv.update(dt);
volumeA.update(dt);
volumeB.update(dt);
volumeDCVa.update(dt);
volumeDCVb.update(dt);
motor.update(dt);
cbvA.update(dt);
cbvB.update(dt);
pcv.update(dt);
pcvVolume.update(dt);
rvA.update(dt);
rvB.update(dt);

}
}

C.8 Orifice

using UnityEngine;

public class Orifice
{

// Flow constant
private float Kv;

// Valve opening
public float alpha = 1.0f;

// Flow/pressure drop
public float Q, dp;

// Constructor to calculate Kv
// Converts l/min and bar to SI units
public Orifice(float Qnom = 100f, float deltaPnom = 100f)
{

this.Kv = (Qnom /60000f)/Mathf.Sqrt(deltaPnom *1e5f);
}

// Flow calculation
public void calculateFlow(float dp)
{

alpha = Mathf.Clamp01(alpha);
this.dp = dp;
this.Q = alpha*Kv*Mathf.Sign(dp)*Mathf.Sqrt(Mathf.Abs(dp));

}

// Pressure drop
public void calculateDeltaP(float Q)
{

this.Q = Q;
this.dp = Mathf.Pow(Q/Kv ,2);

}
}

C.9 Volume

public class Volume
{

// Variables
public float beta , volume;
public float p = 0f, Q = 0f;

public Volume(float beta = 875e6f , float volume = 0.001f)
{

this.beta = beta;
this.volume = volume;

}

// Function to calculate pressure from flow balance
// pDot = beta/volume *(Qin - Qout)
public void update(float dt)
{

float pDot = beta/volume*Q;
p += pDot*dt;

}
}

50

Appendix D

Matlab Script for System Sizing

clc; clear all; close all;
format long;

% System sizing
% Calculating pressures and flow from given size instead of calculating
% system sizing from loads. This way it is easier to verify the chosen
% components and change them later
iSlewRing = 8; % Gear ratio between pinion and slew ring [-]
iSlew = iSlewRing *78.0; % Total slew gear ratio [-]
iTelescope = 13.6; % Gear ratio of telescope winch [-]
rTelescopeDrum = 0.155; % Radius of telescope winchdrum [m]
dLuff = 0.175; % Diameter of luffing cylinders [m]
vgSlew = 200; % Displacement of slew motor [ccm]
vgTelescope = 100; % Displacement of telescope winch motor [ccm]
Qslew = 150; % Flow of slew valve [l/min]
Qluff = 650; % Flow of luffing valve [l/min]
Qtelescope = 200; % Flow of telescope valve [l/min]

% Constants
g = 9.81; % Gravity [m/s^2]
daf = 1.3; % Dynamic amplification factor
nmh = 0.9; % Hydraulic mechanical efficiency [-]
nv = 0.9; % Volumetric efficiency [-]

% External forces
Fx = 10000; % Axial force on boom tip [N]
Fy = 5000; % Side force on boom tip [N]
Fz = 25000; % Vertical force on boom tip [N]

% Mass and dimensions of components
jKing = 20405; % In Z axis [kgm ^2]
mBoom = 4114; % Mass of boom [kg]
jBoom = 156321; % In Y axis (Z is almost equal) [kgm^2]
rBoom = 9.993; % Along X axis [m]
mTelescope = 2911; % Mass of telescope [kg]
jTelescope = 105725; % In Y axis (Z is almost equal) [kgm^2]
rTelescope = 10.892; % Distance to CoM [m]
rMin = 20; % Minimum radius of gangway [m]
rMax = 30; % Maximum radius of gangway [m]

% Required speed and acceleration
vMax = 2; % Maximum speed in all axes [m/s]
tRamp = 2; % Ramp time [s]
aMax = vMax/tRamp; % Maximum acceleration in all axes [m/s^2]
heelAngle = 5; % Maximum heel angle [deg]
boomAngleMax = 20; % Maximum boom angle [deg]

% Required joint velocity and acceleration
pos = FK([0 0 0]); % Position to calculate joint velocity
dt = 0.0000001; % For numerically calculating joint speed
qd = (IK(pos + [vMax*dt vMax*dt vMax*dt]') - IK(pos))/dt;
qdd = qd * aMax/vMax; % Maximum joint acceleration

% Forces in system
Jslew = jKing + jBoom + mBoom*rBoom ^2 + jTelescope ...

+ mTelescope *(rTelescope + rMax - rMin)^2;
Tslew = qdd(2)*Jslew;
Tslew = Tslew + mBoom*rBoom*g*sind(heelAngle) ...

+ mTelescope *(rTelescope + rMax - rMin)*g*sind(heelAngle);
Tslew = Tslew + rMax*Fy;
Tslew = Tslew*daf/nmh;
TslewPinion = Tslew/iSlewRing; % Torque at slew pinion

Jboom = jBoom + mBoom*rBoom^2 ...
+ jTelescope + mTelescope *(rTelescope + rMax - rMin)^2;

Tboom = qdd(1)*Jboom;
Tboom = Tboom + mBoom*rBoom*g + mTelescope *(rTelescope + rMax - rMin)*g;
Tboom = Tboom + rMax*Fz;
Fluff = cylinderForce(Tboom , 0);
Fluff = Fluff*daf;

Ftelescope = qdd(3)*mTelescope + mTelescope*g*sind(boomAngleMax) + Fx;
Ttelescope = Ftelescope*rTelescopeDrum;
Ttelescope = Ttelescope*daf/nmh;

% Resulting pressure
Pslew = Tslew/iSlew/(vgSlew /2/pi /100^3) * 1e-5
Aluff = (0.25* pi*(dLuff)^2)*2;

51

Pluff = Fluff / Aluff * 1e-5
Ptelescope = Ttelescope/iTelescope /(vgTelescope /2/pi /100^3) * 1e-5

% Resulting speed
nSlew = (Qslew /60000) /(vgSlew /2/pi /(100) ^3) *60/2/ pi;
Vslew = (Qslew /60000) /(vgSlew /2/pi /(100) ^3)/iSlew*nv
Vluff = (boomAngle(cylinderLength (0) + Qluff/Aluff /60000* dt) ...

- boomAngle(cylinderLength (0)))/dt
nTelescope = (Qtelescope /60000) /(vgTelescope /2/pi /(100) ^3) *60/2/ pi;
Vtelescope = (Qtelescope /60000) /(vgTelescope /2/pi /(100) ^3) ...

/iTelescope*rTelescopeDrum*nv

% Speed in XYZ , at home position
Vx = Vtelescope
Vy = rMin*Vslew
Vz = rMin*Vluff

% Total flow
Qtot = Qluff + Qslew + Qtelescope

% Calculate needed valve span
slewSpan = vMax/Vy
luffSpan = vMax/Vz
telescopeSpan = vMax/Vx

52

Bibliography

[1] DNV GL AS. Offshore gangways. DNV-RP-A204. 2017.
[2] DNV GL AS. Qualification and assurance of digital twins. DNV-ST-308. 2020.
[3] Beckhoff Automation. TE1000 | TwinCAT 3 ADS. 2021. url: https://infosys.beckhoff.

com / english . php ? content = . . /content / 1033 / tc3 _ ads _ intro / index . html & id =
7262890787652929099 (visited on 05/28/2021).

[4] M. Bak. “Model based design of electro-hydraulic motion control systems for offshore pipe
handling equipment.” In: 2014.

[5] J. Denavit and R. S. Hartenberg. “A kinematic notation for lower-pair mechanisms based on
matrices.” In: Trans. ASME E, Journal of Applied Mechanics 22 (June 1955), pp. 215–221.

[6] Thor Fossen. Handbook of marine craft hydrodynamics and motion control. Chichester, West
Sussex, U.K. Hoboken N.J: Wiley, 2011. isbn: 978-1-119-99149-6.

[7] Daniel Hagen, Damiano Padovani, and Martin Choux. “Design and Implementation of Pres-
sure Feedback for Load-Carrying Applications with Position Control.” In: May 2019, pp. 520–
534. url: https://trepo.tuni.fi/handle/10024/117427.

[8] M.R. Hansen and T.O. Andersen. “Controlling a Negative Loaded Hydraulic Cylinder using
Pressure Feedback.” In: Modelling, Identification, and Control. ACTAPRESS, 2010. doi: 10.
2316/p.2010.675-116. url: https://doi.org/10.2316/p.2010.675-116.

[9] MICROSOFT. .NET architectural components. 2020. url: https://docs.microsoft.com/
en-us/dotnet/standard/components#applicable-standards (visited on 05/18/2021).

[10] Chris Paredis. OpenHydraulics. https://github.com/cparedis/OpenHydraulics. 2013.
(Visited on 05/28/2021).

[11] Henrik C. Pedersen and Torben O. Andersen. “Pressure Feedback in Fluid Power Systems—Active
Damping Explained and Exemplified.” In: IEEE Transactions on Control Systems Technology
26.1 (Jan. 2018), pp. 102–113. doi: 10.1109/tcst.2017.2650680. url: https://doi.org/
10.1109/tcst.2017.2650680.

[12] J. Reinikka. Production line simulation made with Unity and controlled by TwinCAT. Seinäjoki,
2019. url: https://www.theseus.fi/handle/10024/168595.

[13] Alvise Rigo, Alexander Spyridakis, and Daniel Raho. “Atomic Instruction Translation towards
a Multi-threaded QEMU.” In: Europe: European Council for Modelling and Simulation, 2016.
isbn: 978-0-9932440-2-5.

[14] Harald Sangvik. Digital Twin of 3d Motion Compensated Gangway. Youtube. 2021. url:
https://youtu.be/dUICb9b3xEo (visited on 05/28/2021).

[15] J. K. Sørensen. “Reduction of Oscillations in Hydraulically Actuated Knuckle Boom Cranes.”
PhD thesis. Grimstad, 2016.

[16] Volker Waurich and Jürgen Weber. “Interactive FMU-Based Visualization for an Early Design
Experience.” In: Proceedings of the 12th International Modelica Conference, Prague, Czech
Republic, May 15-17, 2017. Linköping University Electronic Press, July 2017. doi: 10.3384/
ecp17132879. url: https://doi.org/10.3384/ecp17132879.

[17] F. Yu. “Modeling, Simulation and Control of Motion Compensated Gangway in Offshore
Operations.” MA thesis. Aalesund, 2017.

53

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_ads_intro/index.html&id=7262890787652929099
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_ads_intro/index.html&id=7262890787652929099
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_ads_intro/index.html&id=7262890787652929099
https://trepo.tuni.fi/handle/10024/117427
https://doi.org/10.2316/p.2010.675-116
https://doi.org/10.2316/p.2010.675-116
https://doi.org/10.2316/p.2010.675-116
https://docs.microsoft.com/en-us/dotnet/standard/components#applicable-standards
https://docs.microsoft.com/en-us/dotnet/standard/components#applicable-standards
https://github.com/cparedis/OpenHydraulics
https://doi.org/10.1109/tcst.2017.2650680
https://doi.org/10.1109/tcst.2017.2650680
https://doi.org/10.1109/tcst.2017.2650680
https://www.theseus.fi/handle/10024/168595
https://youtu.be/dUICb9b3xEo
https://doi.org/10.3384/ecp17132879
https://doi.org/10.3384/ecp17132879
https://doi.org/10.3384/ecp17132879

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Theory
	Multibody System
	Kinematics
	Dynamics

	Hydraulic Actuation systems
	System Modeling
	Pressure Feedback

	Numerical Methods
	Integration
	Differentiation
	Atomic Operations
	Filtering

	Methods
	System Identification
	Mass and Inertia
	Placement of bodies
	System sizing

	High Fidelity Modeling and Simulation
	Multibody system
	Hydraulic actuation system

	Real-time Simulation
	Multibody system
	Hydraulic Actuation System
	Communication

	Control System
	Setpoint generation
	Position controller
	Force controller

	Results and Discussion
	Communication Performance
	Latency
	Discrete Differetiation

	Verification of Real-time Simulation
	Active Damping
	Motion Control Performance
	Active Motion Compensation
	Force control

	Conclusions
	Task From MSc Catalogue
	Gangway Specifications
	Scripts from Unity
	TwinCAT Handler
	Script for Moving Rigidbodies
	Main Script
	Simulation Thread
	Luffing Simulation
	Slew Simulation
	Telescope Simulation
	Orifice
	Volume

	Matlab Script for System Sizing
	Bibliography

