
Tapping beam recognition and measurement with infrared camera

Optimisation of an industrial process using an thermal imaging camera and computer vision algorithms

JØRGEN NILSEN

SUPERVISOR
Sondre Sanden Tørdal

University of Agder, 2021

Faculty of Engineering and Science

Department of Engineering Sciences

Abstract

This thesis presents the research and development of an application for recognition and measuring of a

ferrosilicon tapping beam using an Infrared (IR) camera. Ferrosilicon production is a highly endothermic

process, requiring large amounts of energy to operate; thus, the need for increased efficiency is constant.

Using an IR camera for non-intrusive measurements of the tapping beam and developing computer vision

algorithms that can identify distinctive process parameters are investigated in this project. Today a video

stream from an IR camera overlooking the tapping area at Elkem Thamshavn is directly displayed in the

tapping control room with no form of warning labels or data logging. Thus, the motivation for this research

is derived from the need for more direct feedback on the tapping beam to the on-site human operators and

data logging for the metallurgists. Developing a system that can detect temperature, the shape of the tapping

beam and alert operators of unwanted situations is set as the main goals for this project.

An application that connects the IR camera to a series of algorithms written in Python and publishes the

resulting data to a web-based Human Machine Interface (HMI) is developed and tested on an NVIDIA Jetson

Nano single-board computer with an Optris IR camera. It incorporates OpenCV, NumPy, Numba, SQLite

database, and GStreamer as computing and data communication tools. With testing on a tapping beam

test stand, where the molten ferrosilicon is replaced with warm water; the application has proven to give

feedback on the beam shape, temperature and status of the tapping beam through the web-based HMI.

Preface

The work presented in this master’s thesis has been performed as the final project in a two-year master’s

degree in Mechatronics at the University of Agder, Department of Engineering Sciences. It covers multiple

elements within Mechatronics; programming of single-board computers, computer vision, camera

technology and application development. The project has demanded dedication, resilience and structure,

which have been challenging and highly rewarding.

Elkem has contributed to the project with the necessary equipment and expertise on the tapping process

and production of ferrosilicon. Throughout the conduction of this master’s project, multiple meetings have

been held with the representatives at Elkem and arising questions have been quickly dealt with, and the

correct information evoked. This has resulted in a project that complies with the challenges that are of

interest for Elkem to solve and the requirements from the university regarding content and field of research.

And finally, a special thank you to the supervisor on this project, Sondre Sanden Tørdal, for valuable

assistance and guidance.

Grimstad, Norway 2019-05-27

Jørgen Nilsen

Table of Contents

Page

1 Introduction 2

1.1 Brief history of Elkem and silicon production . 2

1.2 Motivation . 3

1.3 Project scope and objectives . 4

1.4 Limitations . 5

1.5 Source code repository . 5

1.6 State-of-the-art . 6

2 Theory 8

2.1 Production of ferrosilicon . 8

2.1.1 Producing ferrosilicon . 8

2.1.2 Furnace construction . 9

2.1.3 Electrical arrangement . 10

2.2 Tapping process . 13

2.2.1 Human operators . 13

2.2.2 Tapping timeline . 14

2.3 Infrared thermal camera . 15

2.3.1 Infrared radiation . 15

2.3.2 Infrared camera . 16

2.4 Software tools and packages . 18

2.4.1 Python . 18

2.4.2 Numerical Python . 18

2.4.3 Numba compiler . 19

2.4.4 OpenCV . 21

2.4.5 GStreamer . 21

2.4.6 Flask application . 22

2.4.7 GitLab . 22

2.5 Computer vision . 24

2.5.1 Locating features . 24

2.5.2 Detail enhancement with histogram equalisation . 26

2.5.3 Model fitting and data filtering . 28

RANSAC basics . 29

2.5.4 Edge detection . 30

2.6 Project management and development . 33

2.6.1 Gantt chart . 33

2.6.2 Task management . 33

I

3 Method 35

3.1 Implementation and use of thermal infrared camera . 35

3.1.1 Optris PI400i thermal camera . 35

3.1.2 Hardware integration . 36

3.1.3 Software integration . 36

IR Imager Direct-SDK on Windows OS . 37

IR Imager Direct-SDK on Ubuntu OS . 37

Receiving data from the IR camera . 38

3.2 Computer vision algorithms . 39

3.2.1 Tappingbeam detection . 39

3.2.2 Detail enhancement and binarization . 40

Equalising the histogram . 40

Creating a binary image . 41

3.2.3 Data-filtering and model-fitting . 42

3.2.4 Temperature calculation . 43

3.2.5 Tapping beam algorithms . 43

3.2.6 Application structure and data flow . 46

3.3 Database and Human Machine Interface . 47

3.3.1 SQLite database . 48

3.3.2 Flask web interface . 50

3.4 Tapping beam test stand . 51

4 Results 53

4.1 Computer vision algorithms . 53

4.1.1 Overall results . 53

4.1.2 Template matching . 53

4.1.3 Histogram equalisation and detail enhancement . 54

4.1.4 Binary image . 55

4.1.5 Inlier detection with RANSAC . 56

Just-In-Time compilation . 57

4.1.6 Beam shape classification . 57

4.2 Human Machine Interface and database . 58

4.2.1 Overall results . 58

4.2.2 SQLite database . 59

4.2.3 Temperature data . 59

5 Discussion and further work 60

5.1 Position of IR camera at Elkem Thamshavn . 60

5.2 Detection of tapping beam . 60

5.3 Application structure . 61

5.4 Jetson Nano performance . 62

6 Conclusion 63

A Administrative 68

A.1 Project description . 69

A.2 Gantt chart . 70

B System 72

B.1 System charts . 73

B.1.1 Tapping process timeline . 73

B.2 Datasheets . 74

B.2.1 Optris PI 400i . 74

II

B.2.2 IR Camera application flowchart . 76

B.2.3 Synthetically developed images . 77

B.3 Human Machine Interface . 79

B.3.1 Flask web-HMI homepage . 79

B.4 Database file . 80

B.4.1 Temperature table . 80

B.4.2 Image data table . 81

C Code 82

C.1 Computer vision algorithms . 82

C.1.1 mainRealTime.py . 82

C.1.2 IRCamera.py . 86

C.1.3 FeatureTracking.py . 92

C.1.4 BeamDetector.py . 95

C.1.5 RansacFit.py . 100

C.1.6 Database.py . 106

C.2 Human Machine Interface . 110

C.2.1 mainFlask.py . 110

C.2.2 home.py . 111

C.2.3 base.html . 115

C.2.4 home.html . 117

III

List of Figures

1.1 Drawing of a silicon furnace [5]. 3

1.2 Drawing of the tapping process [5]. 3

1.3 IR camera installed at Elkem Thamshavn oven nr. 2 [6]. 4

1.4 Thermal image from the tapping beam at Elkem Thamshavn oven nr. 2 [6]. 4

2.1 Process block of the Ferrosilicon process . 8

2.2 System overview of the ferrosilicon process [5]. 9

2.3 Furnace construction[10]. 10

2.4 Electrical arrangement of electrodes. 11

2.5 Section view of a Söderberg electrode . 12

2.6 Operators working in the tapping area at Elkem Salten [13]. 13

2.7 The electromagnetic spectrum [15]. 15

2.8 A typical microbolomter [17]. 16

2.9 Working principle of a bolometer [18]. 16

2.10 Readout circuit for a uncooled microbolometer array [18]. 17

2.11 Python logo [19]. 18

2.12 Process for compiling Python code with the JIT decorator [22]. 19

2.13 OpenCV logo[23]. 21

2.14 Gstreamer overview [24]. 21

2.15 Flask "Hello world!" example. 22

2.16 Git workflow [26]. 23

2.17 Coordinates used in template matching. T (x′, y′) is the coordinates locally to the template and I(x, y) is

the coordinates locally to the larger image. 25

2.18 Example picture for template matching. 25

2.19 Template image extracted from figure 2.18. 25

2.20 Applied template matching. 26

2.21 Effects of histogram equalisation [27]. 26

2.22 Normal histogram and the cumulative histogram [27]. 27

2.23 Histogram equalised image [28]. 27

2.24 Data set containing both inliers and outliers [29]. 28

2.25 Least-squares linear fitting on the dataset [29]. 28

2.26 RANSAC compared to least-squares [29]. Note that the least-squares linear fitted line is biased by the

blob of outliers. 29

2.27 Illustration of the RANSAC principle. Where the data is presented in the R2-domain. 29

2.28 Sampled horizontal 1D-vector of an image . 30

2.29 One dimensional convolution of a Gaussian filter and it’s partial derivative. 31

2.30 Convolution with a Gaussian partial derivative filter [31]. 32

2.31 TeamGantt example [32]. 33

2.32 Trello example . 34

IV

3.1 Optris PI 400i thermal camera with standard O29 lens [36]. 35

3.2 Optris PI 400i thermal camera, USB and PIF input terminals [36]. 36

3.3 Optris PI 400i thermal camera connected to a computer running either Linux Ubuntu or Windows 10. . . 36

3.4 General application structure for cross-platform compatibility. 37

3.5 Application layout. 39

3.6 Graysacle input image for the template matching. 40

3.7 Template for the input image. 40

3.8 Resulting example image from TemplateMatching(). 40

3.9 Histogram equalised image. 41

3.10 Binary image. 42

3.11 Horizontal sampling of the tappingbeam to detect shape. 44

3.12 Convolution with a derivative-Gaussian filter and absolute value on the result. 45

3.13 Edge detection algorithm example. 46

3.14 Application structure and data flow. 47

3.15 Application sequence and data flow. 47

3.16 Application layout. 50

3.17 HMI label for optimal tapping beam profile. 51

3.18 HMI label for split tapping beam. 51

3.19 HMI label for stopped tapping beam. 51

3.20 HMI label for free pouring tapping beam. 51

3.21 HMI label for inverted tapping beam. 51

3.22 Top view of the test stand. 51

3.23 Camera view of the test stand. 51

3.24 Grayscale thermal image from the test stand. 52

4.1 Input thermal image to the template matching. 54

4.2 Isolated tapping beam image returned from template matching. 54

4.3 Histogram equalised image. 54

4.4 Unequalised histogram of figure 4.2. 55

4.5 Histogram of the equalised image in figure 4.3. 55

4.6 Unequalised cumulative histogram of figure 4.2. 55

4.7 Cumulative histogram of the equalised image in figure 4.3. 55

4.8 Resulting binary image . 56

4.9 Effects of JIT-compilation with increasing computational load. 57

4.10 Observation of a split tapping beam at the plant in Thamshavn. 58

4.11 Synthetically created image of a divided tapping beam. 58

4.12 HMI video stream. 59

4.13 HMI status labels. 59

4.14 HMI temperature graph made with Chart.js . 59

5.1 Suggested application structure . 62

B.1 Tapping process manual operations timeline. 73

B.2 Optris PI 400i datasheet, page 1. 74

B.3 Optris PI 400i datasheet, page 2. 75

B.6 Database temperature data. 80

B.7 Database image data. 81

V

List of Tables

3.1 Optris PI 400i general specifications [36]. 35

3.2 NVIDIA Jetson Nano specifications [37]. 36

3.3 Optris SDK API comparison [38]. 37

4.1 Average load and performance while running mainRealTime.py on the Jetson Nano. 53

4.2 Detected inliers from binary image in figure 4.8. 56

4.3 Optimised parameters for the RANSAC linear model. 56

4.4 Average execution time of the RANSAC-function, with and without JIT-compiling. 57

4.5 Number of detected edges . 58

B.1 Synthetically developed image number 2. 77

B.2 Number of detected edges in image number 2. 77

B.3 Synthetically developed image number 3. 77

B.4 Number of detected edges in image number 3. 77

B.5 Synthetically developed image number 4. 77

B.6 Number of detected edges in image number 4. 77

B.7 Synthetically developed image number 5. 78

B.8 Number of detected edges in image number 5. 78

VI

List of Abbreviations

AC Alternating Current. 8, 10, 12

AI Artificial Intelligence. 3, 61

API Application Programming Interface. 36

BGR blue, green and red. 39

BOF Basic Oxygen Furnace. 6

DLL Dynamic-link Library. 37, 38

dpkg Debian package. 37

HMI Human Machine Interface. 4, 5, 21, 22, 43, 46, 48–

50, 58, 61, 63, 64

HTML Hypertext Markup Language. 50, 58

IR Infrared. 4–7, 15–17, 21, 35–39, 43, 46–48, 50, 51, 53,

54, 58, 60, 61, 63

JIT Just-In-Time. 19, 20, 53, 57, 62

NumPy Numerical Python. 18, 19, 36, 40, 43, 57, 62

OOP Object-oriented programming. 18

OpenCV Open Source Computer Vision Library. 21, 24, 36,

39, 53, 60–63

PER Plan, Execute and Reflect. 33

PIF Industrial Process Interface. 35, 36

PLC Programmable Logic Circuit. 35, 36

R&D Research and Development. 2, 6

RANSAC Random Sample Consensus. IV, 28–30, 42, 43,

56, 57, 60, 61, 63, 64

ROI Region of Interest. 7, 44, 54, 60, 63

SAF Submerged Arc Furnace. 3, 8, 9

SDK Software Development Kit. 36, 37

UN United Nations. 2

USB Universal Serial Bus. 35, 36, 53, 61

VPN Virtual Private Network. 60

VII

List of Nomenclature

Constants

π Pi 3.141592

Units

V Volts

Hz Hertz

s Second

m Meter

ε Emissivity

η Fill factor

C Celsius

K Kelvin

1

Chapter 1
Introduction

1.1 Brief history of Elkem and silicon production

Elkem was founded in 1904 by the industrial entrepreneur Sam Eyde, with the intention of developing

technology and industry based on the natural resources in Norway. Over 110 years, Elkem has played

a vital role in the development of the Norwegian process industry and technology. Covering aluminium

production, the invention of the Söderberg electrode and the position as a world-leading producer of silicon

and other special alloys [1]. Today, Elkem consists of three business divisions. Silicones, a fully integrated

silicones producer. Silicon Products, a provider of silicon, ferrosilicon, foundry alloys, micro-silica and related

speciality products. And finally, Carbon Solutions, a supplier of electrode paste and speciality products to

the ferroalloy, silicon and aluminium industries [2].

Sustainable development is central to Elkem’s production strategy and a defining factor in conducting

their business and production development. New technology is implemented for developing products of

higher quality and increasing production efficiency. Using less energy to create the best possible products.

Elkem has developed its sustainability goals in line with the principles of the United Nations (UN) Global

Compact, supporting the ambitions of the Paris climate agreement and the UN Sustainable Development

Goals [3].

Silicone-based materials and products are particularly common and essential in embedded electronics,

the healthcare industry, industrial processes and energy production. In 2013, 2.1 million tonnes of silicone

products were sold on a global basis, yielding a turnover of $11 billion and around $40 billion in downstream

added value [4]. The silicone production industry maintains a high focus on innovation and implementation

of new technology, investing approximately 4% of the global turnover into Research and Development (R&D)

[4].

2

1.2. MOTIVATION CHAPTER 1. INTRODUCTION

1.2 Motivation

In the process industry, the implementation and development of new technology have always been a

defining feature and a necessity for increasing production efficiency, quality and plant safety. Elkem has since

its origin placed a focus on technology, with the development of the Söderberg electrode as an example. With

the advancements in computer science, Artificial Intelligence (AI), and sensor technology; information and

process data availability allows for a higher level of understanding and real-time status on previously

immeasurable operations. Many parameters in the production of Elkem’s products are not directly

measurable due to high temperatures in and around the furnace. Traditional sensors that need to be in direct

contact with the measuring medium will not survive over extended periods. Non-intrusive measurements,

measure process parameters without disturbing the process and are the appropriate method for extracting

information from a ferrosilicon furnace.

Ferrosilicon is produced in a Submerged Arc Furnace (SAF), where raw material is added from the top,

and the three electrodes reduce the mass down to the resulting molten ferrosilicon. The resulting alloy is

retrieved through a spout on the side of the furnace, in a process called tapping. When tapping is initiated,

the hole above the spout into the furnace, is manually opened by drilling. The molten alloy is then poured

into a ladle; a vessel that transports the molten alloy. The process of tapping molten metal into the ladle is

a fairly non-complex task but provide valuable information about the furnace operation and the produced

ferrosilicon.

Figure 1.1: Drawing of a silicon furnace [5]. Figure 1.2: Drawing of the tapping process [5].

Sensors that can provide a means of non-intrusive measurement in this process is thermal imaging

cameras and pyrometers. They both offer temperature measurement, but the thermal camera can be used in

combinations with computer vision algorithms to extract information about tapping beam shape, slag

detection and temperature at specific regions. Providing the process operators and metallurgists with as

much information as possible about the process and the post tapping conditions, increases the final product

quality.

3

1.3. PROJECT SCOPE AND OBJECTIVES CHAPTER 1. INTRODUCTION

Figure 1.3: IR camera installed at Elkem Thamshavn

oven nr. 2 [6].

Figure 1.4: Thermal image from the tapping beam at

Elkem Thamshavn oven nr. 2 [6].

As of the time of this project, an Infrared (IR) camera is installed at Elkem’s plant in Thamshavn,

Orkanger, providing a display of the tapping beam, ladle and surrounding area. The video feed is

displayed on a separate monitor in the tapping control room, not directly connected to the operator’s control

and information system. Therefore, alerting the operators of unwanted and potentially dangerous conditions

and logging information about the tapping beam temperature is highly sought-after.

Dangerous and unwanted conditions in the tapping process are listed as:

• Clogging of the tapping hole: Tapping beam flow ceases due to clogging of the furnace tapping hole.

• Inverted tapping beam: Tapping flow does not separate from the furnace spout; instead, it flows down

and along with the spout, potentially hitting the ladle lining.

• Detect separation of tapping beam: The tapping beam is split into multiple smaller beams, increasing

the surface area and lowering the overall temperature.

1.3 Project scope and objectives

This project aims to solve the challenge of using an IR thermal imaging camera for sensing parameters

from an industrial process, specifically the tapping beam of molten ferrosilicon from the furnace into the

ladle. Existing software for image processing, application development, and database communication is

implemented as tools to help develop detection algorithms and display the parameters of interest. An IR

camera is implemented as the sensor for non-intrusive measurement om the tapping beam.

Elkem has stated their expectations for this project, summarised as follows:

• Measure metal temperature in tapping beam.

• Measure the tapping beam profile.

• Give feedback on the shape of the tapping beam; is it a solid continuous beam or sparse and disrupted.

• Give feedback if the tappingbeam is no longer present, i.e. the tap-hole is clogged.

To help facilitate the above mentioned goals, further tasks are implemented:

• Build an intuitive cross-platform web-based Human Machine Interface (HMI) for interfacing the

technology and presenting the operator with important values and video stream.

4

1.4. LIMITATIONS CHAPTER 1. INTRODUCTION

1.4 Limitations

Limitations for the work in this master’s project. The main limiting factor in this project is the timeline,

with a starting date of January 5th and a submission date set to the 28th of May, affecting the overall scope

and possible workload. Throughout the project, simplifications of the process had to be made to develop

a system that solves the objectives within the proposed timeline. For example, building a test stand of the

tapping process that uses hot water as the medium was necessary as implementation throughout the project’s

development phase was impossible. Planning for a project of this magnitude and complexity also proved to

be a challenge, as the author of this project had little experience with computer vision systems, process

industry, IR camera and Python programming.

1.5 Source code repository

The application source code developed in this project is available as a GitLab repository. The Python code

for the computer vision algorithms and the HMI is also included in the appendix C.1 and C.2.

https://gitlab.com/gurgle96/elkemvision/

5

https://gitlab.com/gurgle96/elkemvision/

1.6. STATE-OF-THE-ART CHAPTER 1. INTRODUCTION

1.6 State-of-the-art

Using an IR camera to sense parameters from an industrial environment is not a novel implementation.

The British army was the first to develop a stand-alone camera system for detecting objects based on their

heat (infrared radiation) [7]. This camera system was developed in 1929, and its sole purpose was to

detect enemy aircraft. Since then, the IR camera development was mainly conducted through military R&D,

resulting in systems for portable night vision and naval firefighting equipment. Today the IR technology is

used in various industries, including; law enforcement, search and rescue, process industry and building

inspection [7]. Regarding this thesis, implementations and research on IR thermal camera for detecting

equipment-wear levels and process parameters are evaluated and put into context with this thesis scope and

objectives.

Following the de-classification of IR camera technology in 1992 and the concurrent development of new

detector technology, IR sensors and cameras became much more affordable and efficient. The IR detector’s

previous design and construction required the detector to be actively cooled, adding complexity and cost. At

the end of the 1990s, these detectors were designed around Barium Strontium technology, which does not

require cooling. Thus, significantly lowering the production complexity, cost and physical size [7]. Moving

into the 21st century, where a higher focus has been placed on industrial efficiency, predictive maintenance

and safety, the usage of IR cameras accelerated.

An industrial application of IR camera technology for predictive maintenance and fault detection is

demonstrated in article [8]. In this article, a 3-phase electric motor, commonly used in industrial

applications, is monitored with an IR camera to develop fault detection algorithms and techniques. The

authors of this article evaluated several different signals for estimating the electric motor behaviour, such as

mechanical vibration, stator current, acoustic signals, and thermal images. Closing in on the thermal image

due to the availability of information and noise-free behaviour. To diagnose the electric motor, a series of

neural network algorithms were developed and trained. The results of the research in this article was a

system for detecting faults and give diagnostic feedback on a 3-phase electrical motor, categorising the

motors into three separate categories; (1) healthy, (2) two broken rotor bars and (3) faulty squirrel-cage

ring. This article also emphasises the use of neural networks for algorithm development, given that there is,

or it is possible to create, data sets of reasonable size for training.

In the process industry, especially the metal production industry, thermal power is a common energy

source and contains vital parameters about the raw materials, equipment and final product. In article [9],

detecting slag in the tapping stream of steel from a Basic Oxygen Furnace (BOF) is investigated. Slag is a

byproduct of the reduction process in the furnace; it floats on top of the molten metal and protects it from

further oxidisation. When poured from the furnace into the ladle, slag is present in the stream and increases

from 0 - 100 percent as the tapping process continues. Therefore, having an understanding of the amount

of slag in the ladle is essential for further processing and alloying. In this article, the authors developed a

system for monitoring the tapping beam and detecting slag based upon the difference in infrared radiation

between slag and the desired metal product. A metal temperature probe mounted inside the BOF is also

incorporated to calibrate the IR camera. Furthermore, the authors developed methods for calibrating the

threshold temperature and tracking the tapping beam; these methods are described in the points below.

6

1.6. STATE-OF-THE-ART CHAPTER 1. INTRODUCTION

• Temperature threshold calibration: To separate the slag from the tapping beam, the temperature matrix

from the IR camera and data from the internal temperature probe in the furnace is used. When tapping

is initiated, and the flow of metal is slag-free, the IR camera temperature of the tapping beam is

compared to the molten steel temperature from the probe inside the furnace, and the emissivity of

steel is calculated with equation 1.1. The calibrated emissivity value for steel is used to give a precise

representation of the tapping beam temperature, and while the beam is slag free the maximum IR

camera temperature is recorded. This value is the threshold temperature between slag and molten

metal in the tapping beam.

ε =

(
Tinfrared
Tprobe

)4

(1.1)

• Tracking of the tapping beam: The Region of Interest (ROI) where the tapping beam is located is

found by horizontally iterating through the temperature columns, from left to right and from right to

left. Finding the vertical edges of the tapping beam based upon the threshold temperature value. A

square bounding box can then be defined around the tapping beam, with top and bottom height values

manually defined.

With the research in the articles mentioned above, it is clear that using an IR camera for non-intrusive

measurement of process parameters and extracting data not visible to the human eye is not a novel

development. Thus, the existing research motivates this thesis, despite clear challenges and differences in

this specific implementation.

In this project, the focus is not on closed-loop control of the ferrosilicon furnace, with feedback from the

tapping beam. This is primarily due to the high degree of complexity in the ferrosilicon process. Despite this,

the project is leaned towards extracting information about the tapping process that is of value to both on-site

operators and the metallurgists for a safe and economic tapping operation and correct post-processing of the

tapped metal. An IR camera developed by Optris GmbH is mounted at one of Elkem’s ferrosilicon plants

and monitors the tapping process. Today this video feed is only viewed by the on-site operators and not

implemented in any algorithm.

7

Chapter 2
Theory

2.1 Production of ferrosilicon

In this section, an overview of the metallurgical processes and equipment used in ferrosilicon production

is described. The process of turning raw materials into ferrosilicon, basic construction of a Submerged Arc

Furnace (SAF) and the arrangement of the Söderberg electrodes, are explained to better understand the

complexity of the process.

2.1.1 Producing ferrosilicon

Ferrosilicon and other ferrous alloys are produced by carbothermic reduction of the added raw materials

in a SAF. Mineral ores and carbon are added as charge material into the furnace, converted to the desired

alloy through carbothermic reduction. The reduction process of charge material is highly endothermic, thus

requiring a large amount of thermal energy. The thermal energy is converted from electrical energy by

three self-baking Söderberg electrodes through Alternating Current (AC) arcing. Where heat is generated in

the AC arcs that span between the electrode tip and the molten alloy bath. The electrodes are electrically

arranged in a star connection, with the transformers supplying the stepped-down voltage arranged in a delta

connection. Each electrode is connected to one phase.

Submerged Arc

Ferrosilicon Furnace

Quartz

Iron

Coal

Coke

Woodchips

Raw materials:

Electrical

energy [MWh]

Lost thermal

energy

Microsilica

(Si02) dust

Ferro silicon

(FeSi)
Thermal power:

Input:
Output:

Figure 2.1: Process block of the Ferrosilicon process

8

2.1. PRODUCTION OF FERROSILICON CHAPTER 2. THEORY

Figure 2.2 describes the process of creating ferrosilicon from raw material to the tapping process. Starting

with piles of raw material; quartz, iron, coal, coke and wood chips, loaded onto conveyor belts, refined

and then stored in silos, ready to be discharged into the furnace. Inside the furnace, the three Söderberg

electrodes creates electric arcs that generate the necessary thermal energy for the raw materials to reduce

and combine into ferrosilicon.

Figure 2.2: System overview of the ferrosilicon process [5].

2.1.2 Furnace construction

At the Elkem plant in Thamshavn, oven nr. 2 is designed and constructed as a typical SAF. The furnace

is constructed as a cylindrical body, with an outer steel casing providing the structural rigidity and carbon

blocks insulating the furnace to withstand the internal process temperatures. Tapping spouts that transfer

molten silicon out from the furnace are positioned on the outside circumference of the furnace, towards the

bottom. Around the furnace, there are tracks that move the ladle around with the furnace as it rotates. The

furnace rotates around its centre axis to reduce the formation of cavities in the charge material, using the

electrodes as stirring sticks. It takes several hours for the furnace to complete one full rotation, and the

tapping process is done within approximately 2 hours. The tapping beam is still within the same angular

quadrant from start to finish, continuously in line of sight for the tapping operators.

9

2.1. PRODUCTION OF FERROSILICON CHAPTER 2. THEORY

Transporting the molten metal away from the inside of the furnace is done by tapping into a ladle. A

ladle is the containment vessel for the tapped ferrosilicon, constructed from many of the same materials as

the inside of the furnace. The tasks of the ladle are to be positioned under the tapping spout, be filled up

with molten ferrosilicon and contain this molten metal as it is transported over to the casting moulds. After

casting, the molten metal cools down and hardens. When it reaches a specific temperature, it is removed

from the moulds and crushed into finer particles. The tapping process is further explained in section 2.2.2.

Figure 2.3: Furnace construction[10].

2.1.3 Electrical arrangement

Thermal energy is necessary for the carbothermic reduction process to take place; the most efficient way to

produce this is to convert it from electrical energy. The electrical energy is converted to heat through AC

arcing. Three Söderberg electrodes are positioned in a triangle, each connected to one phase of the system

in a delta-star arrangement. The three electric arc spans from the tip of each electrode into the molten pool

of ferrosilicon, directly heating the metal and surrounding charge. Some thermal energy is also generated in

the upper parts of the electrode due to the electrical resistance, and the surrounding charge material absorbs

this thermal energy. A simplified model of a typical electrical arrangement of the connected electrodes can

be seen in figure 2.4 along with a detailed electrode cross-section in figure 2.5.

10

2.1. PRODUCTION OF FERROSILICON CHAPTER 2. THEORY

Electrode

1

Electrode

2

Electrode

3

Transformer

phase 1

Transformer

phase 2

Transformer

phase 3

Arc

1

Arc

2

Arc

3

Figure 2.4: Electrical arrangement of electrodes.

11

2.1. PRODUCTION OF FERROSILICON CHAPTER 2. THEORY

The Söderberg electrode is composed of an outer steel casing, electrode paste, electrical slip-rings and

height adjusting cylinders. The steel casing contains the paste and provides structural rigidity to the

electrode. The electrode paste is a substance consisting of calcined anthracite, petroleum coke and pitch

as a binder. Initially the paste is loaded into the electrode as hard briquettes, it is then liquefied as the

temperature increases. Once the temperature reaches about 500[◦C], the paste is baked; transitioning from a

soft viscous substance into the hard electrode tip that generates the AC arc [11]. During nominal operation,

the phase voltage of the electrode is kept constant and the current flow in the electrode is regulated by the

height between the electrode tip and ferrosilicon bath, explaining the need for the height adjusting cylinders

[12].

Electrode paste

Baking zone

Baked electrode

Top of raw

material charge

500 °C

300 °C

70 °C

Height adjus ng

cylinders

Ferrosilicon

bath

Electrical slip-ring

connec on

Electrode casing

Figure 2.5: Section view of a Söderberg electrode

12

2.2. TAPPING PROCESS CHAPTER 2. THEORY

2.2 Tapping process

In this section, the theory and knowledge surrounding the process of tapping molten ferrosilicon from the

furnace to ladle are explained. The working environment and challenges that the operators face in and

around the tapping area and the discrete tasks that they complete, are presented.

2.2.1 Human operators

The process of creating ferrosilicon is a hybrid of automated systems and manually executed tasks. The

integration and synchronisation of these systems are vital to sustain optimal performance of the furnace and

to ensure the best possible product. The post-tap-hole operations that are done manually, can be summarised

as follows:

• Temperature measurements of the tapped ferrosilicon.

• Material sampling.

• Monitoring the level of ferrosilicon in the ladle.

• Opening and closing of tap-hole.

• Cleaning and maintaining the tapping spout.

• Adding material to alloy the raw ferrosilicon.

The environment in the tapping area is described as a hazardous environment, due to high temperature

radiation generated by the furnace and the risk of molten metal splashing during the tapping process. Figure

2.6 shows how close the operators are to the process. The equipment used to perform sampling and testing

of the tapping beam is designed in such a way that the operators can stay within reasonable distance, an

example are long reach lances and temperature probes used to condition and monitor the tapping beam

during operation. The workers also wear protective clothing that reflects most of the radiant heat and can

withstand minor splashing of slag/liquid metal.

Figure 2.6: Operators working in the tapping area at Elkem Salten [13].

13

2.2. TAPPING PROCESS CHAPTER 2. THEORY

2.2.2 Tapping timeline

The tapping process is initiated by manually drilling open a plug in the furnace, creating a direct flow-path

for the molten metal into the tapping spout. Operators must continuously monitor the tapping beam and

treat the spout and hole to prevent clogging and improper flow. Tapping of ferrosilicon into the ladle is done

with certain interval’s, as the internal level of ferrosilicon in the furnace must be brought back. One tapping

process elapses over approximately 120 minutes and throughout this time a series of tasks are executed, as

mentioned in section 2.2.1. Terminating the tapping process is done by inserting a plug made of clay, the

plug rapidly solidifies due to the high temperature and blocks any more ferrosilicon to exit the tap-hole.

Furthermore, the flow-chart in appendix B.1 describes the timeline for the tapping-process and the details

surrounding each task.

14

2.3. INFRARED THERMAL CAMERA CHAPTER 2. THEORY

2.3 Infrared thermal camera

In this section, the theory regarding the IR camera is presented. Explaining the basics of infrared radiation,

where it is placed in the electromagnetic spectrum and how the wavelengths are classified as temperature

regions. The detector element in an IR camera is also presented, explaining the design and working principle.

2.3.1 Infrared radiation

A body with a temperature above absolute zero (−273[°C]) emits radiation in electromagnetic waves,

scientifically called IR radiation. Figure 2.7 shows the spectrum of electromagnetic radiation and classifies

the known sources of radiation. In the electromagnetic spectrum, the IR region is located to the right of the

visible region, covering wavelengths from 0.7[µm] to 1[mm]. Therefore, increasing the temperature of the

emitting body yields a higher intensity of radiation, and IR waves with high energy are denoted by short

wavelengths (close to 0.7[µm]). However, IR is not visible to the human eye, requiring special sensors and

cameras to be detected[14].

Figure 2.7: The electromagnetic spectrum [15].

The IR range can be divided into 5 categories [14]:

1. Near infrared: Wavelengths of 0.7[µm] to 1.4[µm], emitted from bodies with temperature between

3600[°C] and 1800[°C].

2. Short-wave infrared: Wavelengths of 1.4[µm] to 3[µm], emitted from bodies with temperature between

1800[°C] and 700[°C].

3. Median infrared: Wavelengths of 3[µm] to 8[µm], emitted from bodies with temperature between

700[°C] and 90[°C].

4. Long-waved infrared: Wavelengths of 8[µm] to 15[µm], emitted from bodies with temperature between

90[°C] and −80[°C].

5. Far infrared: Wavelengths of 15[µm] to 1[mm], emitted from bodies with temperature between −80[°C]

and −270[°C].

15

2.3. INFRARED THERMAL CAMERA CHAPTER 2. THEORY

2.3.2 Infrared camera

To measure the IR radiation and temperature of a body and display this information as an image, a camera

with a sensor that can detect the IR radiation is necessary. IR camera functions similarly to digital cameras.

They have an optical lens, field-of-view angles, focal length, and a detector array that converts the focused

beam of radiation into electrical signals. An IR camera’s detector array consists of pixels, ranging in count

from 20 000 to 1 million. A microbolometer is located in each pixel, and this is the detector element

that changes its electrical properties when exposed to infrared radiation. Each microbolometer element is

approximately 17[µm] x 17[µm] to 35[µm] x 35[µm] in size [16].

Figure 2.8: A typical microbolomter [17].

Figure 2.8 shows the composition of a typical microbolometer. When hit with IR radiation, the

microbolometer element increases in temperature and thus, the electrical resistance of the element changes.

Figure 2.9 further explains the key elements and their working principle. When the IR element is subjected to

IR radiation, the absorbed radiation is converted to thermal energy as it impacts the absorbing element. The

thermal energy is then transferred into the heat-sink through the support link, and a change in temperature

over the support link is measured. From equation 2.1, the absorbed power from the radiation is calculated,

given that the thermal conductance between the absorber and the heat-sink is Gt.

Figure 2.9: Working principle of a bolometer [18].

16

2.3. INFRARED THERMAL CAMERA CHAPTER 2. THEORY

Equation 2.1 calculates the absorbed power in the bolometer circuit, based upon the change in

temperature between the absorber element and the heat-sink. Where equation 2.2 uses the emissivity and

fill-factor of the bolometer to calculate the actual amount of IR radiation on the absorber element, since

some of the radiation is reflected of the pixel due to the physical properties of the microbolometer. Where

the fill-factor (η) indicates the relationship between IR sensitive area to the total pixel area, and emissivity

(ε) is the ability of the pixel to emit IR radiation. Figure 2.10, describes the readout circuit for an IR camera

detector array.

Pabs = ∆TGt (2.1)

Pabs = η · ε · Pin (2.2)

Figure 2.10: Readout circuit for a uncooled microbolometer array [18].

17

2.4. SOFTWARE TOOLS AND PACKAGES CHAPTER 2. THEORY

2.4 Software tools and packages

In this section, the theory regarding the programming language, software and other packages used to develop

the source code and application are explained. Some examples of usage and implementation are also shown.

2.4.1 Python

Python is an efficient, easy to learn, high-level programming language constructed around the principles

of Object-oriented programming (OOP). Compatible with an abundance of modules and packages from the

open-source community. Python is suitable for rapid development of applications and combining other pieces

of working software in either C, C++ or Python. These features make it an attractive programming language

for developers and novices in programming, hence making it suitable as the code language in this project.

Also, Python omits the compilation step, making the edit-test-debug process remarkably efficient [19].

Figure 2.11: Python logo [19].

2.4.2 Numerical Python

Numerical Python (NumPy) is a library package developed specifically for scientific computing in Python. It

provides data types for multi-dimensional array objects and a wast assortment of routines for array

operations. For example; linear algebra, discrete Fourier transforms, sorting and selecting, to mention a

few. At the core of the NumPy library is the ndarray object; this object encapsulates n-dimensional arrays of

homogeneous data types and performs many operations in compiled code for increased performance [20].

1 # Python NumPy example

2

3 import numpy as np

4

5 a = np.array ([1, 2, 3],[4, 5, 6],[7, 8, 9])

6

7 b = np.array ([1, 1, 1],[1, 1, 1],[1, 1, 1])

8

9 c = a*b

10

11 d = a+b

12

13 e = np.append(a,b)

18

2.4. SOFTWARE TOOLS AND PACKAGES CHAPTER 2. THEORY

2.4.3 Numba compiler

In cases where Python and NumPy code does not achieve the appropriate computational frequency or uses

too much processing power, optimizing the code by compiling it to C/C++ will give the code better

performance. For Python and NumPy, Numba is an open-source Just-In-Time (JIT)-compiler, which

translates Python code into faster machine code using the LLVM compiler infrastructure [21]. Figure 2.12

shows the general structure that Numba follows to JIT compile Python code, only a simple @jit decorator is

required to compile a function. The code below shows two different implementations of Numba and JIT, one

for a single function and one for an entire class, using the @jitclass decorator from numba.experimental.

When compiling a function or class, it needs to be initiated with a set of data similar to the data it will be

given when used after compilation.

Figure 2.12: Process for compiling Python code with the JIT decorator [22].

1 from numba import jit

2 from numba.experimental import jitclass

3 import numba as nb

4

5 # JIT compiled function

6

7 @jit

8 def randomfunction(x):

9 # your loop or numerically intensive computations

10 return x

11

12 # JIT compiled class

13

14 # Specify the shared parameters within the class and their datatype

15 spec = [(’self_parameter ’), nb.self_parameter_datatype]

16

17 @jitclass(spec)

18 class randomclass(object):

19 # functions to be JIT -compiled

19

2.4. SOFTWARE TOOLS AND PACKAGES CHAPTER 2. THEORY

A simple example shows the effect of JIT compilation on other wise computational heavy code.

1 from numba import jit

2 import numpy as np

3 import time

4

5 # Define dataset

6 x = np.arange (100).reshape (10, 10)

7

8 # This function will be compiled with JIT.

9 @jit(nopython=True) # Set "nopython" mode for best performance ,

equivalent to @njit

10 def go_fastJIT(a): # Function is compiled to machine code when called

the first time

11 trace = 0.0

12 for i in range(a.shape [0]): # Numba likes loops

13 trace += np.tanh(a[i, i]) # Numba likes NumPy functions

14 return a + trace # Numba likes NumPy broadcasting

15

16 # This function will not be compiled , it is only used for reference.

17 def go_fast(a):

18 for i in range(a.shape [0]):

19 trace += np.tanh(a[i, i])

20 return a + trace

21

22

23 # This step compiles the function to machine code

24 go_fastJIT(x)

25

26

27 # Measure the execution time of the JIT compiled function

28 start_time = time.time()

29 a = go_fastJIT(x)

30 JIT_time = time.time() - start_time

31

32

33 # Measure the execution time of the regular function

34 start_time = time.time()

35 b = go_fast(x)

36 time = time.time() - start_time

37

38 # Print the execution times to terminal

39 print(’JIT time = ’,JIT_time)

40 print(’Regular time = ’, time)

After running this Python script, the execution times for the JIT-compiled function and regular function is

printed to terminal. For this example the times where; JIT time = 1.1682510375976562e-05 and Regular

time = 0.0002472400665283203. This yields that the JIT compiled function is approximately 21 times

faster.

20

2.4. SOFTWARE TOOLS AND PACKAGES CHAPTER 2. THEORY

2.4.4 OpenCV

Open Source Computer Vision Library (OpenCV) is a computer vision library that provides a broad range of

image analysis and manipulation tools [23]. In this project, the Python implementation of OpenCV is used.

An image is interpreted as a matrix, and each pixel in a grayscale image is represented by a value between

0 and 255. Grayscale images improve calculation speed and simplify the process since a it only uses one

value per pixel instead of three in RGB. In addition, this allows for mathematical manipulation of the image,

for example, in a video stream, where each video frame is handled as a separate image and processed in

real-time.

Figure 2.13: OpenCV logo[23].

2.4.5 GStreamer

GStreamer is a library for constructing video-feed and multimedia pipelines that can link together complex

processes and create efficient workflows for media and other data types. In a specific case where two

applications each run in their own separate thread, where one application is a source, and the other is a

sink, GStreamer can develop a local streaming server that handles the communication between the two. For

this project, GStreamer is used to manage the video-streaming between a computational application that

runs the IR camera and computer vision tasks, and a second application that hosts the HMI [24].

Figure 2.14: Gstreamer overview [24].

21

2.4. SOFTWARE TOOLS AND PACKAGES CHAPTER 2. THEORY

2.4.6 Flask application

Flask is a small and compact framework for developing web-hosted applications, varying in size and

complexity. It is possible to create interfaces for hardware and display real-time information, host a blog or

wiki. Flask is written in Python and makes it easy to give quite advanced Python applications a good looking

interface. It is also possible to combine the framework with a database (SQLite), and front-end tool kit’s

such as Bootstrap [25]. For this project, it provides the framework for the HMI and creates the local server.

1 from flask import Flask

2 app = Flask(__name__)

3

4 @app.route(’/index’)

5 def hello_world ():

6 return ’Hello , World!’

Figure 2.15: Flask "Hello world!" example.

2.4.7 GitLab

GitLab is a web-based hosting service generally used for version control of code. Version control allows for

saving and logging changes made to a project. With version control, it is possible to track all the specific

changes made, when they were made, and who made them. This makes GitLab widely used for various

projects, as it provides the ability to track potential errors that might occur and find out when they were

made. For projects involving multiple people, GitLab offers everyone in a group to synchronize their code,

making sure all participants are updated with the latest version. Moreover, if a repository is made public, it

enables users to view code that has been created and take inspiration [26].

22

2.4. SOFTWARE TOOLS AND PACKAGES CHAPTER 2. THEORY

Figure 2.16: Git workflow [26].

23

2.5. COMPUTER VISION CHAPTER 2. THEORY

2.5 Computer vision

In this section, the theory on computer vision and the algorithms developed in this project are explained.

The mathematical principles behind the various functions and algorithms are explained, along with examples

and figures to place the theory into context with research questions.

2.5.1 Locating features

To locate special features in an image, template matching is a popular option. It is quite simple to

implement and requires minimal computational power when compared to regression with a neural network.

For this thesis, it is chosen as the method for finding the position of the tapping beam. The theory behind

this function is described in detail in the paragraphs below.

Template matching is the computational process where a template, typically a small image of a detail in

a larger image, is used to find the position in the larger image that is most similar to the template. This func-

tion to locate specific regions is best implemented when the shape or form of the desired feature is kept more

er less the same in the image stream supplied to the function. Within OpenCV there exists a function called:

cv.matchTemplate(), that applies the common functions within template matching. Two-dimensional con-

volution is used to slide the template image across the larger image and compute the correlation between

the template and the image patch. Within cv.matchTemplate(), it is also possible to choose between several

different types of template matching operations. For this thesis, the function cv.TM_CCOEFF_NORMED is used,

the mathematical expression for this function is described by equation 2.3.

Equation 2.3, normalised correlation-coefficient technique:

R(x, y) =

∑
x′,y′(T

′(x′, y′) · I ′(x+ x′, y + y′))√∑
x′,y′ T

′(x′, y′)2 ·
∑
x′,y′ I

′(x+ x′, y + y′)2
(2.3)

Equation 2.4, iterate through every pixel in the template and subtract the mean template value from it:

T ′(x′, y′) = T (x′, y′)− 1/(w · h) ·
∑
x′′,y′′

T (x′′, y′′) (2.4)

Equation 2.5, iterate through every pixel in the image patch and subtract the mean image patch value

from it:

I ′(x+ x′, y + y′) = I(x+ x′, y + y′)− 1/(w · h) ·
∑
x′′,y′′

I(x+ x′′, y + y′′) (2.5)

Where:

T (x′, y′): Grayscale value of template pixels.

I(x+ x′, y + y′): Grayscale value of pixels in the image patch.

x, y: Local coordinates of pixels in the larger image.

x′, y′: Local coordinates of pixels in the template.

x′′, y′′: Are coordinates for iterating across the template x′′ ∈ [0, w − 1] and y′′ ∈ [0, h− 1].

w, h: The width and height of the template.

24

2.5. COMPUTER VISION CHAPTER 2. THEORY

I(x,y)

x

y

x’’

W

H

y’’

T(x’,y’)

w

h

(x’’,y’’)

Figure 2.17: Coordinates used in template matching. T (x′, y′) is the coordinates locally to the template and I(x, y) is

the coordinates locally to the larger image.

Equation 2.4 and 2.5, calculates the correlation between the template and the image as the filter is

convoluted across the image. Only multiplying T ′(x′.y′) with I ′(x′, y′) would yield a value between −∞,

0 and ∞. Where −∞ equals no correlation, 0 equals pixel values of zero, and ∞ equals a perfect match

between the template and image. Since the function implemented is called cv.TM_CCOEFF_NORMED, the

output value is normalised. Therefore, if R(x, y) equals 1 we have a perfect match between image and

template, 0 equals pixel values of zero and −1 equals no match. To select the image coordinates defined

where the image and template match, a simple threshold is applied, and pixels with a higher value than the

threshold are selected as the coordinates for the matching area.

Figure 2.18: Example picture for template matching.

Figure 2.19: Template image extracted from figure

2.18.

An example of template matching is shown with figure 2.18 as the large picture and figure 2.19 as the

extracted template. Using cv.matchTemplate() and cv.TM_CCOEFF_NORMED, the template correspondence

to the image is calculated and shown in figure 2.20. The picture to the left is a grayscale image that describes

the correlation between the image and template after using the cv.TM_CCOEFF_NORMED-method. Picture

to the right is the detected face marked with a white boundary box. The bright spot visible in the upper part

of the middle region in the left picture of figure 2.20, is where the correspondence is the highest and thus

where the face is.

25

2.5. COMPUTER VISION CHAPTER 2. THEORY

Figure 2.20: Applied template matching.

2.5.2 Detail enhancement with histogram equalisation

Enhancing the level of detail within an image can be done by increasing the contrast between bright and

dark parts in the image, especially if the image is made up of a high concentration of similar pixels. The

concentration of pixel values in an image is most commonly described with a histogram, a graph that shows

the number of pixels of a specific value. Figure 2.21 shows the effects of equalisation on a histogram with

such a narrow unimodal distribution, where the resulting histogram is transformed into a wide and flat

distribution.

Figure 2.21: Effects of histogram equalisation [27].

H(j) = nj , 0 ≤ j < 255 (2.6)

Where:

nj: Number of pixels with graylevel j.

Calculate the cumulative distribution and find the max and minimum values of the histogram. Note that

the minimum value for the histogram is not to be 0:

cdfx(i) =

255∑
i=0

H(j = i) (2.7)

cdfmax = max cdfx (2.8)

cdfmin = min cdfx (2.9)

26

2.5. COMPUTER VISION CHAPTER 2. THEORY

Figure 2.22: Normal histogram and the cumulative histogram [27].

To create an equalised image, it is necessary to transform the original image so that the cumulative

distribution histogram of the new image would be linearised across the value range. See equation 2.10,

where the cumulative distribution of the histogram is i, that is in the range of [0, 255], multiplied with the

constant K.

cdfy(i) = iK (2.10)

Finally, to create the new cumulative distribution histogram, equation 2.11 is applied.

cdfy = round

(
cdfx − cdfmin
cdfmax − cdfmin

· 255

)
(2.11)

The resulting transformation from the histogram equalisation can be seen in figure 2.23. The histogram

distribution is now spread over the grayscale range, and the cumulative distribution follows closely to a

linear profile. By comparing the image in figure 2.22 to the image in 2.23, the results from histogram

equalisation is clearly visible by the enhanced level of detail.

Figure 2.23: Histogram equalised image [28].

27

2.5. COMPUTER VISION CHAPTER 2. THEORY

2.5.3 Model fitting and data filtering

Separating noisy data from robust signals is a common problem when working with all types of signals, and

many approaches exist to separate noise from usable data. In this project, the signals are in the form of

binary image arrays, basically a x-y plot of points. These points are either inliers or outliers, depending on

their formation and what mathematical model that is to be fitted to the data. If the mathematical model is

a linear system, y(x) = ax + b, a simple approach would be to use the least-squares algorithm. However,

Least-squares uses all data points to establish the mathematical model, thus the noisy invalid data is biasing

the result, see figure 2.25. A better and more robust approach is to use a iterative method called Random

Sample Consensus (RANSAC).

Figure 2.24: Data set containing both inliers and

outliers [29].

Figure 2.25: Least-squares linear fitting on the

dataset [29].

RANSAC is an iterative method for fitting a mathematical model to a set of data and identify potential

outliers. This method is classified as non-deterministic since the validity of the result is based upon a certain

probability, thus increasing this probability by increasing the number of iterations of the algorithm. For

every iteration, data points are randomly chosen and fitted into the mathematical model, a threshold is then

applied, and every point in the dataset that is within this threshold from the experimental line is marked as

a inlier. The distance from the point to the experimental line is calculated according to equation 2.12. The

relationship between inliers and outliers determine if the iteration gave a valid result, RANSAC can work

with up to 50 percent inliers.

distance =
|ax0 + by0 + c|√

a2 + b2
(2.12)

28

2.5. COMPUTER VISION CHAPTER 2. THEORY

Figure 2.26: RANSAC compared to least-squares [29]. Note that the least-squares linear fitted line is biased by the blob

of outliers.

RANSAC basics

Figure 2.27: Illustration of the RANSAC principle. Where the data is presented in the R2-domain.

Figure 2.27 illustrates the process of fitting a mathematical model to a set of data embedded with outlier

noise. Note that the data described here is designated for a linear y = ax + b model. The iteration process

and selection of inliers is the same for every mathematical model; they are only separated by the complexity

of establishing model parameters from the subset of random points.

29

2.5. COMPUTER VISION CHAPTER 2. THEORY

Algorithm 1 describes how a RANSAC algorithm is implemented with pseudo-code.

Algorithm 1: RANSAC psuedocode

numIteration = 0;

bestNoInliers = 0;

bestModelParams = None;

while numIteration < maxIteration do

Select random points in dataset;

Calculate model parameters from random points;

Find the inliers based upon the model parameters and the inlier threshold;

Count the detected inliers;

if number of detected inliers > bestNoInliers then

Update bestModelParams;

Update bestNoInliers;

else

Continue sampling random points from dataset;

end

end

2.5.4 Edge detection

An edge is defined as a sudden change in image brightness, i.e. going from black to white in a binary image

or the opposite. These changes in brightness are classified as discontinuities. The ability to detect edges in

an image is an important feature in many computer vision algorithms, and in this project used to count the

number of edges in a horizontal vector of the detected tapping beam. Usually, edge detection is computed

across an entire image, finding edges in both the vertical and horizontal axis of the image. However, it is also

possible and highly common to only detect edges in one direction. Thus only finding vertical or horizontal

edges.

By extracting a horizontal 1D - vector from a binary image, it is possible to see if there are such

discontinuities in the data when moving from left to right. Figure 2.28 shows an example of this data

vector in both image format and signal format. In this example, the edges are clearly defined, and the

discontinuities are strong. Convolution is applied to generate a signal that describes the position of the

edges.

Figure 2.28: Sampled horizontal 1D-vector of an image

30

2.5. COMPUTER VISION CHAPTER 2. THEORY

Convolution is the principle of combining two signals to form a third. This third signal is a representation

of how the two influences each other. In edge detection, convolution is used on data similar to figure 2.28

in combination with a specified filter. The design of this filter controls the output from the convolution and

must be chosen in regards to what type of data that is wanted [30]. An example of a filter for

one-dimensional data is the Gaussian filter, which has a Gaussian normal distribution shape and can be

used to detect discontinuities in data. The convolution is applied by sliding the filter across the data vector,

computing the convoluted value for every step. Figure 2.29 is an example of using a Gaussian-filter, the edge

can be located by looking for the peak in δ
δx (h ∗ f).

Figure 2.29: One dimensional convolution of a Gaussian filter and it’s partial derivative.

A simplification of the convolution process in figure 2.29 is to take the partial derivative of the filter

before the convolution takes place, see equation 2.13. This the equivalent to taking the partial derivative

after convolution with a Gaussian filter.

δ

δx
(h ∗ f) = (

δ

δx
h) ∗ f (2.13)

31

2.5. COMPUTER VISION CHAPTER 2. THEORY

Figure 2.30: Convolution with a Gaussian partial derivative filter [31].

32

2.6. PROJECT MANAGEMENT AND DEVELOPMENT CHAPTER 2. THEORY

2.6 Project management and development

Planning for, and keeping track of a project of this size and complexity, implies that project management

tools must be incorporated and used. Such tools are used to keep track of milestones, expose internal

dependencies and manage weekly tasks. This section describes the different methods and approaches used

in managing and developing the timeline and tasks for this project. Common for both timeline and task

planning is the focus on using a strategy of Plan, Execute and Reflect (PER) and agile methods.

2.6.1 Gantt chart

Development of the project timeline is done using a Gantt chart. Gantt displays the different tasks and

milestones in the project visually as horizontal bars, with start and finish dates indicating the length of these

bars and with clearly marked dependencies for each task. One of the main benefits of a Gantt chart is the

holistic overview it applies, making it easy to monitor the status of a project and quickly develop a overview

of the tasks at hand. For this project, TeamGantt is used to keep track of milestones and task timelines.

TeamGantt is an online project management tool that is based upon the Gantt structure, offering a clean and

straightforward user interface and all the tools needed to structure milestones, tasks and sub-tasks [32].

Figure 2.31: TeamGantt example [32].

2.6.2 Task management

As TeamGantt applies a holistic overview of the project and puts it into perspective with a timeline, it does

not keep a detailed description of the tasks that must be executed to reach the specific milestones. Therefore,

a task scheduler is necessary. Trello is another web-based project management tool, though different from

TeamGantt in that it does not incorporate a timeline; instead using a Kanban-style board for keeping track

of tasks [33]. For this project, Trello is used as the framework for detailed task scheduling and revised daily

with both new and updates on ongoing tasks [34]. An agile approach is held towards the structuring and

development of different Trello-boards, where it is adapted to fit new developments on the scope of the

project [35]. PER strategy also helps new tasks and future planning learn from old tasks, increasing the

effectiveness of the project management.

33

2.6. PROJECT MANAGEMENT AND DEVELOPMENT CHAPTER 2. THEORY

Figure 2.32: Trello example

34

Chapter 3
Method

This chapter presents the method’s used throughout this project to develop the final system design, hardware

integration and software. An effort has been made to explain the application structure, computer vision

processes and data communication as clearly as possible with either code examples or describing figures.

3.1 Implementation and use of thermal infrared camera

3.1.1 Optris PI400i thermal camera

For the development and testing in this project, an Optris Pi 400i thermal camera was borrowed from

Elkem. The Optris PI 400i is a compact high-performance thermographic camera developed by Optris GmbH,

with both Universal Serial Bus (USB) 2.0 and Industrial Process Interface (PIF) connectivity. Making it a

popular choice for integration into Programmable Logic Circuit (PLC) systems and other types of industrial

monitoring. Also worth noting that the temperature range specified in table 3.1 for this camera makes it

ideal for local testing since the temperature of the test specimen can be below any dangerous levels for

humans to interact with.

For the duration of this project, this camera will be implemented into the software loop, supplying the

computer vision algorithms with raw data from an experimental test setup. Also worth noting that this

camera has the same interface, both software and hardware, as the IR camera installed at Elkem’s plant in

Thamshavn, Orkanger, overlooking the tapping process at oven nr. 2. See section 1.2 and figure 1.3 for more

details on the camera installation.

Figure 3.1: Optris PI 400i thermal camera

with standard O29 lens [36].

Optris PI 400i specifications

Temperature range -20◦C to 900◦C

Spectral range 8 to 14 [µm]

Resolution 382x288 @ 27/80 [Hz]

Connectivity USB 2.0 & PIF

Software PIX Connect & IRImager SDK

Detector Uncooled focal panel array (UFPA)

Optics 29◦ x 22◦, F = 0.9

Focal length 13 [mm]

Thermal sensitivity 40 [mK]

Table 3.1: Optris PI 400i general specifications [36].

35

3.1. IMPLEMENTATION AND USE OF THERMAL INFRARED CAMERA CHAPTER 3. METHOD

3.1.2 Hardware integration

Connectivity between the IR camera and the processing computer is simply done with the USB connection

supplied with the camera. The provided PIF cable is not used in this project, as the system architecture does

not include any form of PLC systems. Figure 3.2 shows the input terminals on the camera body and figure

3.3 shows how the camera is connected to a computer, running either Ubuntu or Windows 10.

Figure 3.2: Optris PI 400i thermal camera, USB and

PIF input terminals [36].

Figure 3.3: Optris PI 400i thermal camera connected

to a computer running either Linux Ubuntu or

Windows 10.

The applications developed in this project is implemented on a NVIDIA Jetson Nano single-board

computer running Ubuntu 18.04. It is chosen due to its affordability, good GPU and CPU performance and

the potential to train neural networks. The specification on the Jetson Nano is listed in table 3.2.

Jetson Nano specs:

GPU 128-core Maxwell

CPU Quad-core ARM A57 @ 1.43 GHz

Memory 4 GB 64-bit LPDDR4 25.6 GB/s

Storage 64 GB microSD

Connectivity Gigabit Ethernet, M.2 Key E

USB 4x USB 3.0, USB 2.0 Micro-B

Table 3.2: NVIDIA Jetson Nano specifications [37].

3.1.3 Software integration

Supplied with the IR camera are two different software packages, dependent on the type of implementation.

There is the Optris PIX Connect software, a real-time IR analysis program with several built-in functions

to monitor and log temperature data. The software is fully capable of monitoring an industrial process,

but prototyping detection algorithms and implementation on single-board computers such as the NVIDIA

Jetson Nano is not possible. PIX Connect is only compatible with Windows 7, 8 and 10. As cross-platform

compatibility between Windows and Linux-based operating systems is desired, it is not used as the interface

for the camera data.

Integrating the IR camera data-feed in real-time with algorithms from open-source libraries such as

OpenCV and NumPy, requires the use of the Software Development Kit (SDK) developed by Evocortex for the

Optris PI-series cameras [38]. The SDK supplied is called IRImagerDirectSDK and can output thermal image

and temperature data for both C/C++ and Python programming languages. Implementation of the SDK is

possible with two different Application Programming Interface (API)’s, Expert API and Easy API, dependent

on the desired level of control over the camera functions, see table 3.3 for comparison. Since the Easy API

has support for the Python language, it is used in developing the computer vision application.

36

3.1. IMPLEMENTATION AND USE OF THERMAL INFRARED CAMERA CHAPTER 3. METHOD

Comparing Easy API and Expert API Easy API Expert API

Programming style Simple function calls Object oriented

Programming language C/C++, Matlab, Python & Labview C++

Thermal image Yes Yes

Palette image Yes Yes

Change palette color Yes Yes

Change Palette Scale Yes Yes

Change Palette Temperature Range Yes Yes

Set Focus Motor Position Yes Yes

High Precision Mode (PI450) Yes Yes

Extended Temperatur Range Yes Yes

RAW Data Recording for PIX-Connect No Yes

Access to visible frame (PI230) No Yes

Multiple Cameras Yes Yes

PIF I/O Support No Yes

Detect Connection Loss No Yes

Flagcontrol during Runtime Yes Yes

Create Optris Tiff Files No Yes

Temperature referencing

with external probe (BR 20AR)
No Yes

Table 3.3: Optris SDK API comparison [38].

IR Imager Direct-SDK on Windows OS

For the SDK to be implemented into the program, it is saved as a Dynamic-link Library (DLL) file inside of

the application folder structure. Figure 3.4 shows the general structure of the application. The SDK DLL file

is then called into the application file elkemvision/src/IRCamera.py by the function

ctypes.CDLL("PATH_TO_DLL") from the ctypes foreign function library in Python [39]. This method is

specific to Windows operating system, section 3.1.3 describes the process for systems running Ubuntu.

IR Imager Direct-SDK on Ubuntu OS

/
elkemvision

bin
Win32

libirimager.dll
x64

libirimager.dll
config

<"serial-number">.xml
Formats.def

src
IRCamera.py

mainRealTime.py

Figure 3.4: General application structure

for cross-platform compatibility.

The SDK is also compatible with the Linux-based operating software

Ubuntu and supports the amd64, I386, arm64, armhf, armel and

atom architectures. For this project, the IR camera is integrated

with a NVIDIA Jetson Nano single-board computer with arm64 and

Ubuntu 18.04 operating system. Installation of the SDK is done

using the Debian package (dpkg) manager and is dependent on

cmake. A basic installation guide is available at the Evocortex

IRImagerDirectSDK documentation website [40]. Implementing the

SDK in Python for a Linux-based operating system is mostly similar

to the method described in section 3.1.3, but does not require the

path to the DLL-files. The path is found using ctypes and the

function ctypes.util.find_library("name"), where "name"

must be the library name without any prefix, suffix or version

nr.. Then the library is loaded with ct.cdll.LoadLibrary("path

"), where "path" is the path to the library.

37

3.1. IMPLEMENTATION AND USE OF THERMAL INFRARED CAMERA CHAPTER 3. METHOD

Receiving data from the IR camera

Initialising the connected IR camera and reading thermal data is done in the file IRCamera.py, which

contains the class IRCamera(). This class contains all elements that are connected to the

IR Imager Direct-SDK. During initialisation, the class will detect if the host’s operating system is either

Windows or Linux and then load the appropriate .DLL-file. Shared variables across the class are initiated

with self-parameters. All functions within this class are described in the paragraphs below. The complete

code for this class is available in the appendix C.1.2.

IRCamera() Class constructor; takes in the global path where the program is executed. And prints the

camera serial number, thermal image size and temperature array size to the terminal.

IRCamera.status() Status function; when called it prints the status of the camera and library to the

terminal.

IRCamera.getThermal() Get thermal data; when called it returns the thermal image and temperature

array as np.array datatype.

IRCamera.calibrate() Calibrate the thermal image. Takes in a distorted thermal image, using the

camera matrix and distortion coefficients it applies cv.initUndistortRectifyMap() and returns a undis-

torted image. Given that the correct camera matrix and distortion coefficients are used.

38

3.2. COMPUTER VISION ALGORITHMS CHAPTER 3. METHOD

3.2 Computer vision algorithms

/
elkemvision

bin
config
src

BeamDetector.py
Database.py
FeatureTracking.py
IRCamera.py
RansacFit.py

template
template.png

webapp
mainRealTime.py
mainFlask.py
runProgram.bash

Figure 3.5: Application layout.

This section will cover the development, structure and

implementation of the computer vision algorithms developed in this

project. Code generated in this project is written using Microsoft

Visual Studio Code, a well-supported and straightforward source

code editor that makes developing code more efficient. The

general structure of the application code is described in figure 3.5.

Regarding re-usability, the code is developed to be as versatile as

possible, meaning that all the necessary parameters are initialised

during instantiating of the classes.

3.2.1 Tappingbeam detection

Finding the position of the tapping beam in the IR camera

image is done using the theory described in section 2.5.1. The

source code for detecting the tapping beam is located in the

file elkemvision/src/FeatureTracking.py, where the program is

structured as a class, with initialised self-variables and functions. Each function is built as a wrapper for

their respective OpenCV functions. This is done, so integration with other algorithms is as simple as possi-

ble. The usage of these functions is described in the paragraphs below and the code is available in appendix

C.1.3.

FeatureTracking("path_to_template") Class constructor; takes in the path to the template and

initialises it as a self-variable.

TemplateMatching(thermal_image) Template matching function; takes in a blue, green and red (BGR)

image from IRCamera.getThermal() and calculates the correlation between the image and template. This

function uses the OpenCV-function cv.matchTemplate(image,template,method) where; image is the input

grayscale image, template is the image template and method is the chosen correlation method. The matching

function returns an array containing the correlation parameters, this array contains values in the range of −1

to 1, section 2.5.1 describes these values. The best matched position of the template is found with a threshold

value of 0.8, using np.where(condition[, x, y]) to find indexes for values higher than the threshold. If

the match is successful, the function returns a tuple containing the template-position, width and height of

the template and a black image with the tappingbeam region. An example input image, template and output

image are shown in figure 3.6, 3.7 and 3.8.

BoundingBox(image, location, angle) Draw bounding-box function; takes in an image, location tuple

and angle tuple. The purpose of this function is to overlay a bounding box on a preferred image of the

tapping beam, only meant as a tool for visual representation. The location data field contains the top left

corner coordinate as well as the height and width of the template, and the angle data includes the absolute

angle of the trapping beam measured from the image x-axis.

39

3.2. COMPUTER VISION ALGORITHMS CHAPTER 3. METHOD

Figure 3.6: Graysacle input image for the template

matching.

Figure 3.7: Template for the input image.

Figure 3.8: Resulting example image from TemplateMatching().

3.2.2 Detail enhancement and binarization

Template matching and segmentation, as described in section 3.2.1 eliminates most of the disturbances in the

image. However, some are still present, and as visible in figure 3.8 where most of the picture is now black,

i.e. a grayscale value equal to zero. The tapping beam is visible in the middle of the image, surrounded

by smoke and other bright disturbing objects. To increase the contrast in the image and better define a

separation between the desired features in the foreground and the background, a histogram equalisation as

described in section 2.5.2 is performed. The code for these functions are available in appendix C.1.4.

Equalising the histogram

HistogramEqual(image) The function for histogram equalisation, it is located in the class

BeamDetector(), in the file BeamDetector.py. Input for this function is a template-matched and segmented

image, as represented by figure 3.8. First, the histogram for the image is created using NumPy function

np.histogram(image, bins, range) where; image is the input, bins is the number of different values the

histogram should represent and range defines the upper and lower range for the bins. Then, a cumulative

histogram is created with the NumPy method numpy.ndarray.cumsum(). Following equation 2.11, the

minimum value of the histogram can not be 0, this is solved by applying a masked array. The NumPy masked

array module is used to filter out and delete certain values within an array. In this instance the function

np.ma.masked_equal(x, value) is used, where x is the input array to be filtered and value is the value to

filter out.

40

3.2. COMPUTER VISION ALGORITHMS CHAPTER 3. METHOD

After filtering of the cumulative array, the minimum and maximum value is calculated and the histogram

is iterated through equation 2.11. The returned equalised histogram array has some indices where the

value is equal to NaN, function np.ma.filled(x,value) solves this by filling in the empty array positions

with the value 0. Using the histogram as a look-up table, the input image is transformed accordingly with

image_equalised = cdf_m[image]. An example output image is available in figure 3.9.

Figure 3.9: Histogram equalised image.

Creating a binary image

After equalising the image histogram, the desired features in the image is now more prominent and thus

easier to separate from the background. This algorithm is based upon the idea that the tapping beam always

exists in the brightest parts of the image and within some margin below the maximum intensity value. A

gain is applied to adjust the margin for which pixel intensities should be considered a part of the tapping

beam. This is only adjusted if the binary representation is not valid, where the binary image displays an

improper tapping beam. The algorithm is located in the class BeamDetector().

ithresh = np.round

(
imax −

imean
imax

∗ threshgain
)

(3.1)

BinaryImage(image) The function for creating a binary image. Input for this function is the histogram

equalised image, represented in figure 3.9. The max and mean values, imax and imean are calculated using

the np.amax and np.mean functions. They are then applied into equation 3.1 and the threshold for

binarization of the image is calculated. Indices for the foreground objects in the binary image are found

using np.where(condition[, x, y]), this function returns the indices of the array where the condition

is satisfied. With indices = np.where(image >= i_thresh), the tapping beam is separated out from

the background objects. indices is a tuple containing the indexes in x- and y-direction, a black image

(image_binary) is then indexed and the respective positions have their value set to 255. Figure 3.10

displays the binary image that is returned from function BinaryImage(image).

41

3.2. COMPUTER VISION ALGORITHMS CHAPTER 3. METHOD

Figure 3.10: Binary image.

3.2.3 Data-filtering and model-fitting

The algorithms in section 3.2.1 and 3.2.2 removes much of the disturbances and unwanted features in the

image. However, the image displayed in figure 3.10 still contains unwanted features that are not a part of

the actual liquid metal tapping beam. And by looking at the raw thermal image in figure 3.6, it is fairly

easy for a human to visually separate the tapping beam from the high-temperature smoke that the previous

algorithms also detected. Given that the beam of liquid metal is mostly following a 2D linear model, pouring

downwards into the ladle after leaving the tapping spout. The task of isolating the tapping beam is then

adapted into finding the parameters for a 2D linear model (y = ax + b), that gives the desired number of

inliers. To solve this, a RANSAC algorithm as described in section 2.5.3, is implemented into the Python

application. If successful, this algorithm will find the best parameters of the model it is assigned, based upon

the dataset it is given. The algorithm is structured in the class RansacFit(threshold) and located in file

elkemvision/src/RansacFit.py. During the initialisation of the class, the inlier threshold is also defined.

The source code for this class is available in appendix C.1.5.

FindInliers() The main function of the class. Designed as a wrapper for the fit_ransac function. Takes

in a binary image of the tapping beam with outliers and returns the best inliers, model parameters of the

fitted line and an image with the inliers showing. First, the input image is analysed, and the indexes that have

a value of 255 are chosen as data points with np.where(image == 255). These data points are then given

to the function fit_ransac, that finds the best-fitted inliers and model. The resulting model parameters

and inliers are then used to calculate the absolute angle of the tapping beam using the image coordinate

system. Using model parameters in variable bestModel and the lowest and highest index value for the inliers

(np.min(bestInliers[:,0]) and np.max(bestInliers[:,0])) , the data points for the two-dimensional

line is calculated. The angle is calculated by taking the coordinates for the two end-points of the line data

points, calculating the delta distance in x and y and using the function np.arctan2(deltaY,deltaX).

fit_ransac() The function that contains the core RANSAC algorithm. Takes in a data set of inliers and

outliers, the maximum number of iterations, number of samples for the model parameters, a threshold to

classify data points as inliers and a minimum number of inliers to find. First, the RANSAC parameters are

initialised and then iterated through the number of iterations.

42

3.2. COMPUTER VISION ALGORITHMS CHAPTER 3. METHOD

evaluate_model() Function for evaluating the chosen model parameters. Input for this function is the

dataset of inliers and outliers, model parameters from randomly selected points and the inlier distance

threshold. The distance from the experimental line to every point in the data set is calculated according to

equation 2.12. The inlier indexes are found by filtering out the distances that are larger than the desired

threshold.

fit_lsq() The function that fits a two-dimensional line model to the randomly selected data points. Takes

in coordinates of the randomly sampled data points and returns the model parameters. Calculating the

model parameters for a two-dimensional line using least-squares method, np.linalg.lstsq().

3.2.4 Temperature calculation

Along with a thermal image, the IR camera function also outputs a temperature matrix. Combining the

temperature matrix with the filtered image of the tapping beam from the RANSAC algorithm, it is possible

to find the maximum, average and minimum temperature of the liquid metal tapping beam and display this

as a parameter in the HMI. Function TempCalculation() in the BeamDetector() class, incorporates NumPy

function np.where() to find the pixel coordinates of the tappingbeam and transfers these points over to

the temperature array. Then, np.max(), np.mean() and np.min() calculates the max, mean and minimum

temperature in the beam. The code for this function is listed in appendix C.1.4.

3.2.5 Tapping beam algorithms

To give the process operators the desired feedback on the status of the tapping beam, an algorithm that

can retrieve the desired data must be developed. Typically the beam is pouring directly downwards as a

consistent stream of liquid metal, but with the introduction of slag and potentially degrading flow properties

of the tapping spout, the tapping beam will at times divide itself into two to three smaller, more sparse and

disrupted beams. The effect from this is an increased surface area of the liquid metal exposed to cool air

and a lower temperature of the tapped metal in the ladle. If a split tapping beam occurs, it is possible to

intervene and normalise the flow by treating the tap-hole or cleaning out the tapping spout.

The continuity and uniformity of a tapping beam can be represented by the average number of edges

in a series of horizontal vectors over the height of the tapping beam. If the average of detected edges in

the tapping beam is 2 per horizontal vector analysed, then the beam is classified as highly uniform and

continuous. Figure 3.11 displays how to the tapping beam is divided into horizontal vectors of

1 by (width − 1)-dimension. The value 0 indicates the black colour, and value 1 indicates white, note that

this value is 255 in a real image. An edge is denoted by the image values going from low to high or from

high to low. Detecting the edges in each horizontal vector is done according to the theory described in 2.5.4.

43

3.2. COMPUTER VISION ALGORITHMS CHAPTER 3. METHOD

Figure 3.11: Horizontal sampling of the tappingbeam to detect shape.

The algorithm for counting the edges in the tappingbeam is located under elkemvision/src/BeamDetector

.py, structured in function BeamShape() in the class BeamDetector() and available in appendix C.1.4

BeamShape() Function for classifying the shape of the beam. Takes in a binary image of the tapping beam

and a tuple containing coordinates for where the template matched, and the width and height of the

template. With this information, the function can crop the binary image down to the size of the template

and only focus on the tapping beam ROI. It is also possible to adjust the vertical start and stop position of the

horizontal sampling by adjusting the values of height_top and height_bottom, note that height_bottom

must be a negative value. After adjusting the vertical span for the sampling, a vector containing the

specific increments are created with np.arange(heigth_top, (heigth + heigth_bottom), 10), this

vector is used to index the sampling of horizontal vectors for every 10 pixels. Iterating through the index

vector, a row of pixel values is sampled from the image and convoluted with a derivative-Gaussian filter. The

immediate results from the convolution is a data vector as shown by the Convoluted vector in figure 3.12.

For a rising edge, the convolution generates a normal-distribution-like curve with a positive maximum point,

and for a falling edge, it generates a curve with a negative maximum point. To solve this, and only have to

look for peak-values in the detected edge-curves, the absolute value of the signal is computed.

44

3.2. COMPUTER VISION ALGORITHMS CHAPTER 3. METHOD

Figure 3.12: Convolution with a derivative-Gaussian filter and absolute value on the result.

Peak values in the data vector, Absolute value, are found by differentiating the dataset with respect to

x, computing the sign of the differentiated data and then differentiating the sign data. It can be viewed in

figure 3.13, that the edge is located at a transient point equal to −2. In a real situation, these transient values

will possibly go towards negative infinity. The edges are therefore found by looking for where the graph;

Derivative of sign-data, is of value smaller than 0. Note that this process of differentiating the sign-data will

shift all the indexes one pixel to the left; therefore, the peak positions are added with a value of 1.

1 # Isolate row of image data

2 row = image_isolated[i,:]

3

4 # Convolve the extracted image data with a Gaussian derivative filter

5 row_convolve = np.convolve ([1,0,-1], row)

6

7 # Find peaks in dataset

8 row_convolve_peak = (np.diff(np.sign(np.diff(np.abs(row_convolve)))) <

0).nonzero ()[0] + 1

9

10 # Count number of edges in row

11 edges = len(row_convolve_peak)

45

3.2. COMPUTER VISION ALGORITHMS CHAPTER 3. METHOD

Figure 3.13: Edge detection algorithm example.

After the iteration process mentioned above, the average number of detected edges in each row is

computed and used as a parameter for the shape of the beam. If the average lies in between 1 and 3, the

shape is classified as optimal; if the average value is larger than 3 it is classified as sparse and discontinuous

and finally if it is less than 1 a warning label is presented. An average value of detected edges less than 1

indicates that something is wrong with the input image or the algorithm itself.

3.2.6 Application structure and data flow

Figure 3.5 provides an overview on the application structure, in regards to where the files are located and

the hierarchy that exists and figure 3.15 explains how the application is incorporated with the tapping

operators. Every function is dependent on certain data and variables generated by the previously executed

function. The Python script mainRealTime.py serves as the main file for launching the IR camera application,

importing the necessary packages, creating instances of the classes and executing the functions inside of a

while-loop. And the Python script mainFlask.py, launches the web-based HMI. A flowchart that presents

the dependency and execution order for each function in mainRealTime.py is available in appendix B.4.

46

3.3. DATABASE AND HUMAN MACHINE INTERFACE CHAPTER 3. METHOD

��Flask app

��Home.py

��Database.py

mainFlask.py

��IRCamera.py

��FeatureTracking.py

��BeamShape.py

��RansacFit.py

��Database.py

mainRealTime.py SQLite

Database

Figure 3.14: Application structure and data flow.

Figure 3.15: Application sequence and data flow.

3.3 Database and Human Machine Interface

As mentioned in this projects scope and objectives in section 1.3, an interface between the human operators

and the IR camera application is to be developed. This application aims to provide the operators with

detailed real-time information about the ongoing tapping process and data-logging for metallurgists. The

source of information is provided by the applications developed in section 3.2, where specific data are stored

in a database at a given frequency and a video stream is transported with a pipeline-based multimedia

framework.

47

3.3. DATABASE AND HUMAN MACHINE INTERFACE CHAPTER 3. METHOD

3.3.1 SQLite database

SQLite is chosen as the framework for data storage since it easily incorporates a Python application and

allows for the customisation of tables and data types. File Database.py contains the functionality of the

database and is implemented into both the mainRealTime.py and mainFlask.py, launch file for the IR

camera application and web-based HMI. The functionality is structured in the class Database() with

functions for connecting the database file, writing and reading of data. Functionality is described in the

paragraphs below and the code is available in appendix C.1.6.

Database("path_to_database") The initialisation of the class. Takes in the global path for the .db-file,

and stores it as a .self-variable. After execution, a connection to the database is established, and if the

file does not exist, a new one is created with the specified tables. After executing, the function prints to

the terminal; "===== Created connection to database! =====" if successful, and the opposite if the

connection fails.

create_connection() Establishes a connection to the the database. Takes input from the class

.self-variables. conn = sqlite3.connect() is then used to establish connection to the database, given

input parameters; self.dbPath, check_same_thread=False, detect_types=sqlite3.PARSE_DECLTYPES

. Where self.dbPath is the path to the database file, check_same_thread=False enables multi-thread

operation and detect_types=sqlite3.PARSE_DECLTYPES makes the SQlite module parse the declared type

for each column of data it returns [41].

create_table() Creates the desired tables. Takes input from .self-variables and the variable for the

declared table structure. First the function establishes a cursors to the active database connection with

c = self.conn.cursor(), and then executes the create_table command. This function is only used

during the initialisation of the class. The structuring and creation of data tables are shown below.

1 # Create temperature data table

2 sql_temperature_table = """ CREATE TABLE IF NOT EXISTS temperature (

3 id integer PRIMARY KEY ,

4 tempMax float NOT NULL ,

5 tempMean float NOT NULL ,

6 tempMin float NOT NULL ,

7 timestamp text NOT NULL); """

8

9 # create a database connection

10 self.conn = self.create_connection ()

11

12 # create tables

13 if self.conn is not None:

14 # create temperature table

15 self.create_table(sql_temperature_table)

update_temperature() and update_imagedata() Functions for updating the database with new data.

Takes in input from .self-variables and the data it is to update the database with. A cursor to the database

is established and the specific data is written to the database with cur.execute(sql, data) and self.conn

.commit(). Where data denotes the variables that is to be stored in the database and sql specifies the

data table. This function is integrated into mainRealTime.py and is executed for every 5th iteration in the

while-loop.

48

3.3. DATABASE AND HUMAN MACHINE INTERFACE CHAPTER 3. METHOD

1 # Define data to be updated

2 sql = ’’’ INSERT INTO temperature(tempMax , tempMean , tempMin , timestamp)

3 VALUES (?,?,?,?) ’’’

4 # Create connection cursor

5 cur = self.conn.cursor ()

6

7 # Updata data

8 cur.execute(sql , data)

9

10 # Commit the data into the database

11 self.conn.commit ()

select_data() The function that reads from the database and returns the values as a list of tuples. Takes

input from the class .self-variables and returns a specified number of rows from the tables, only publishing

the newest data. A cursor to the active database is established and the specified number of rows are extracted

from the table, the command cur.fetchall() returns the row as a list of tuples [41]. This function is

integrated into home.py, the Python-view for the home page of the web-based HMI.

49

3.3. DATABASE AND HUMAN MACHINE INTERFACE CHAPTER 3. METHOD

3.3.2 Flask web interface

/
elkemvision

bin
config
src
template
webapp

database
data.db

static
templates

base.html
home.html

views
__init__.py
home.py

__init__.py
mainRealTime.py
mainFlask.py
runProgram.bash

Figure 3.16: Application layout.

A HMI between the tapping operators and the IR camera

application is developed using the Flask framework, providing the

operators with a live feed of the detected tapping beam, status

indicators and a temperature trend graph. Where the SQLite

database and GStreamer pipeline are used to connect the HMI

application to the IR camera application, sharing temperature data,

image data and video feed asynchronously between the two.

Figure 3.16 displays the application structure, divided into

sub-folders containing either CSS, JavaScript, Python or HTML files.

Position, size and configuration of the different elements in the

HMI are defined in the HTML templates, with the help of Bootstrap

CSS and JavaScript templates. Bootstrap makes it possible to

structure the website into columns and rows that dynamically adapts

and changes its size, making it compatible with all types of browsers

and units (PC, tablet, smartphone).

mainFlask.py The main python script for the HMI, imports the

application instance from webapp/__init__.py. Thus, launching

this python program initialises the HMI and starts the Flask web-server, on the condition that the file

mainRealTime.py have been launched and is running. This is because the GStreamer pipeline must

exist for the HMI to successfully launch. The code is available in appendix C.2.1.

webapp/__init__.py Initialises the Flask application instance. Imports webapp/views/__init__.py, which

in return imports views/home.py.

home.py The main python function for the HMI application. This file serves as the connection layer between

the database, GStreamer and the HTML templates, where data is extracted from the database and video feed

is read from the GStreamer pipeline using a series of functions. Every function returns data to the

HTML-templates via separate URL’s that are routed into the application with

@application.route("URL"). The routing function either returns a rendered HTML-template or a response

to any variables in the template, for instance; displaying a video stream, updating temperature chart data

and status labels. Which status label that is presented on the HMI is decided by if-else statements in

home.py. For the beam angle; two angle intervals are used to categorise the tapping beam, and which

interval the tapping beam angle lies within decides the label. The same principle applies for the beam angle;

where the label is decided by an if-else statement using the beam existence and beam status parameter.

The various labels used to signal the state of the tapping beam are listed below in figures 3.17 to 3.21.

The source code for this Python script is available in appendix C.2.2 and the HTML-templates are listed in

appendix C.2.3 and C.2.4.

50

3.4. TAPPING BEAM TEST STAND CHAPTER 3. METHOD

Figure 3.17: HMI label for optimal

tapping beam profile.
Figure 3.18: HMI label for split

tapping beam.
Figure 3.19: HMI label for stopped

tapping beam.

Figure 3.20: HMI label for free pouring tapping

beam. Figure 3.21: HMI label for inverted tapping beam.

3.4 Tapping beam test stand

Initial development of the algorithms presented in the previous sections was done using images from the IR

camera installed at Elkem’s plant in Thamshavn. These images provided a good base for development and

local testing of the HistogramEqual(), BinaryImage() and FindInliers() functions. But for development

and real-time testing of the IR application a simple test-stand that could to some extent replicate the actual

tapping beam was necessary.

A simple test-stand was built using a 12[V] pump and warm water. The benefits of this setup were the

simplicity and low-risk usage; there were no temperatures that could be of potential harm, and testing only

required warm water from the sink. Figures 3.22, 3.23 and 3.24, show the configuration of the test stand as

well as the resulting thermal image.

Figure 3.22: Top view of the test stand. Figure 3.23: Camera view of the test stand.

51

3.4. TAPPING BEAM TEST STAND CHAPTER 3. METHOD

Figure 3.24: Grayscale thermal image from the test stand.

52

Chapter 4
Results

4.1 Computer vision algorithms

In this section, the results from the different computer vision functions and algorithms are presented. All

of the data presented here have been generated from testing with the experimental tapping beam test-stand

shown in section 3.4 and synthetically developed images for the tapping beam shape classification.

4.1.1 Overall results

The IR camera application yielded in a functional program that takes in the thermal image and temperature

matrix from the Optris IR camera, processes it through the computer vision algorithms and returns a set of

data about the tapping beam that is sufficient to solve the scope and objectives set for this project, referring

to section 1.3.

Final testing of the algorithms has been done on the NVIDIA Jetson Nano single-board computer, running

the Linux based operating system, Ubuntu 18.04, connected to the Optris IR camera via USB. While running

the application, it was clear that the processing power of the Jetson Nano would be a limiting factor. As a

result, the time between launching the file mainRealTime.py and the algorithms had compiled were recorded

to 56[s]. But it must be taken into consideration that the JIT compiling of RansacFit() takes on average

50[s]. The table in figure 4.1 shows the average CPU and memory load as well as the processing time for

each frame.

Jetson Nano performance

CPU load [1 core] 80 [%]

Memory usage 7.5 [%]

mainRealTime.py computing time 0.6 [s]

Table 4.1: Average load and performance while running mainRealTime.py on the Jetson Nano.

4.1.2 Template matching

The template matching algorithm TemplateMatching() localises the specified template feature, returning

the top-left corner position in the image as well as the width and height of the segmented image region.

Using the OpenCV method cv.TM_CCOEFF_NORMED to calculate the correlation between the input image and

template has proven to be a valid method for detection and localisation of specified features. Real-time

implementation of the algorithm with the IR camera and experimental tapping beam have provided the

results shown in figure 4.1 and 4.2.

53

4.1. COMPUTER VISION ALGORITHMS CHAPTER 4. RESULTS

Figure 4.1: Input thermal image to the template

matching.

Figure 4.2: Isolated tapping beam image returned

from template matching.

4.1.3 Histogram equalisation and detail enhancement

Increasing the level of detail within the tapping beam using histogram equalisation proved to be a successful

method. In the early stages of development, detail enhancement on a grayscale thermal image directly from

the IR camera resulted in only a minor change in detail level and did not provide the necessary separation

between the tapping beam and background disturbances. A solution to this was to isolate the tapping beam

ROI on beforehand, using the function TemplateMatching(). Histogram equalisation on the isolated image

in figure 4.2 resulted in the image shown in figure 4.3.

Figure 4.3: Histogram equalised image.

To substantiate the resulting image in figure 4.3, the histogram before and after equalisation can be

examined. In figure 4.4, the histogram is denoted by a large collection of pixels close to 255, as well as close

to grayscale value 0. This correlates to the unequalised image in figure 4.2, as most of the image pixels

are black (i.e grayscale value close to 0) and the pixels within the detected template are mostly bright (i.e

grayscale value close to 255). There are also some intermittent pixels with value between 50 and 200 in the

unequalised histogram. Then, by looking at the equalised histogram in figure 4.5, it can be seen that the

pixel values are now localised around 0 and in the range of 175 to 230. Effectively increasing the level of

detail in the tapping beam.

54

4.1. COMPUTER VISION ALGORITHMS CHAPTER 4. RESULTS

Figure 4.4: Unequalised histogram of figure 4.2.
Figure 4.5: Histogram of the equalised image in

figure 4.3.

By studying the cumulative distribution of the histogram after the equalisation, it can be verified that the

cumulative histogram of the equalised image in figure 4.7 follows closely to a linear profile.

Figure 4.6: Unequalised cumulative histogram of

figure 4.2.

Figure 4.7: Cumulative histogram of the equalised

image in figure 4.3.

4.1.4 Binary image

After equalisation, the binary image is created with function BinaryImage(). For this binarization, the

threshold-gain variable is set to 255 as it gave the best representation of the tapping beam. Comparing the

binary image to the thermal image in figure 4.1, shows that the binary representation of the tapping beam

is valid.

55

4.1. COMPUTER VISION ALGORITHMS CHAPTER 4. RESULTS

Figure 4.8: Resulting binary image

4.1.5 Inlier detection with RANSAC

The RANSAC algorithm manages to isolate the inliers of the tapping beam, with the image in figure 4.8 as

the input dataset. For the results listed here, the parameters for the RANSAC algorithm is set to:

Number of iterations = 1000

Number of samples for model parameters = 4

Minimum number of inliers = 50

Inlier distance threshold = 3

Resulting in a filtered image containing the inliers of the tapping beam in figure 4.2 and the model

parameters for the fitted line in table 4.3. Note that the values are based upon the image coordinate system,

where the origin is located in the top left corner, and the y axis is pointing downwards.

Table 4.2: Detected inliers from binary image in

figure 4.8.

Model parameters, Y(x) = Ax + B

Inclination, A 2.437

Y-axis crossing, B -309.843

Table 4.3: Optimised parameters for the RANSAC

linear model.

56

4.1. COMPUTER VISION ALGORITHMS CHAPTER 4. RESULTS

Just-In-Time compilation

Average execution time:

With JIT 0.389 [s]

Without JIT 1.25 [s]

Table 4.4: Average execution time of the

RANSAC-function, with and without JIT-compiling.

The use of Numba to JIT compile the RANSAC function

have resulted in a significant decrease in computing time,

removing on average 0.861[s] from the execution time

when compared to regular Python and NumPy.

Making the JIT compiled version approximately 3 times

faster when used in real-time with the tapping beam test

stand. To further prove the value of Numba and JIT

compiling of Python code, a test was conducted. The

RANSAC algorithm was timed with its regular NumPy functions and with the JIT compiled functions while

increasing the number of iterations in the RANSAC function from 500 to 15000. The results from this test is

shown in figure 4.9.

Figure 4.9: Effects of JIT-compilation with increasing computational load.

4.1.6 Beam shape classification

The edge detection algorithm used to classify the tapping beam as either continuous or split is tested using

a synthetically developed image; based upon images of a split tapping beam from the plant in Thamshavn.

This is mostly due to limitations of the tapping beam test-stand in combination with the available images

from the physical tapping beam. The challenges with the split tapping beam are further explained in the

discussion. Figure 4.10 shows the characteristics of a split tapping beam, and figure 4.11 shows the synthetic

image. In total, 5 images were created to test the edge detection performance, one of them is shown in the

figure below, and the rest are attached in the appendix B.2.3.

57

4.2. HUMAN MACHINE INTERFACE AND DATABASE CHAPTER 4. RESULTS

Figure 4.10: Observation of a split tapping beam at

the plant in Thamshavn.
Figure 4.11: Synthetically created image of a divided

tapping beam.

Table 4.5 lists the number of detected edges in

figure 4.11, where the horizontal image vectors

are sampled for every 20 pixels vertically. Note

that the y-coordinate column is based upon the

template coordinate system. The average num-

ber of detected edges in this specific image is 3,

categorising it as a split tappingbeam.

Detected edges:

Y-coordinate Number of edges

0 0

20 3

40 2

60 2

80 4

100 4

120 4

140 4

160 4

Table 4.5: Number of detected edges

4.2 Human Machine Interface and database

This section presents the results from the web-based HMI and data communication to the computer vision

application mainRealTime.py.

4.2.1 Overall results

Development of the HMI application mainFlask.py, has resulted in a minimalist interface for the computer

vision application, providing the users with the information that the computer vision algorithms produce.

The information is displayed in real-time through video-streaming routes and parsing of JSON data from the

home.py view-script to the HTML template. Structuring the front-end layout with Bootstrap made it easy to

define columns and position of these elements, allowing the HMI to responsively fit the layout to the specific

browser window size. An image of the HMI home screen is attached in appendix B.5. Figure 4.12 and 4.13

shows the video stream from the IR camera and the tapping beam status labels.

58

4.2. HUMAN MACHINE INTERFACE AND DATABASE CHAPTER 4. RESULTS

Figure 4.12: HMI video stream.
Figure 4.13: HMI status labels.

4.2.2 SQLite database

The SQLite database provided a simple framework for sharing data between applications running in separate

threads and a stable platform for logging data over an extended time. A sample of the logged temperature

and image data is available in appendix B.4.2 and B.4.2. Both the mainRealTime.py and mainFlask.py

runs in their own separate thread while data is transferred in real-time, using the multi-thread capabilities

of SQLite.

4.2.3 Temperature data

Displaying the temperature data with a line chart from the JavaScript package Chart.js, resulted in a

responsive graph with automatic updating of temperature values and the option the select and deselect

specific data.

Figure 4.14: HMI temperature graph made with Chart.js

59

Chapter 5
Discussion and further work

The purpose of this chapter is to discuss the presented results, observations made throughout the project and

the application framework as a whole. Possible solutions and improvements are also presented as further

work under each section.

5.1 Position of IR camera at Elkem Thamshavn

In the early stages of development, video and image data from the physical tapping beam at Elkem’s plant

in Thamshavn, Orkanger, were used to develop the first iterations of the feature tracking, histogram

equalisation and binary image algorithms. Data was accessed via a remote login using a Virtual Private

Network (VPN) connection, this made it possible to directly interact with the IR camera software and capture

image data of the tapping process. But despite the ease of accessibility, the quality and level of detail in the

images did not suffice to be used for any further development with RANSAC and beam shape classification.

The most significant challenge with the IR images from Thamshavn was the poor resolution of the tapping

beam in the image, as a result of the long distance between the tapping area and the IR camera. The low

resolution made it difficult to extract detailed information about the tapping beam, nonetheless develop

functional algorithms. This was also the primary motivation for building the tapping beam test stand, as it

provided a simple platform for the development, testing and verification of the algorithms.

Further work: Fit the IR camera with a telephoto lens that can make the tapping beam ROI cover more of

the image area, i.e. increasing the number of pixels in the width and height of the tapping beam. Or simply

dismantle the camera from its wall-mount and position it close to the tapping beam before recording sets of

image data. For instance, it could now be possible to develop algorithms for slag detection and estimation

of the tapping beam’s mass flow rate.

5.2 Detection of tapping beam

During testing of the template matching algorithm developed in this project to localise and isolate the tapping

beam, it became clear that the OpenCV function cv.matchTemplate() had some limitations in regards to

the robustness of the template matching. These limitations were visible once testing with the tapping beam

test stand started.

60

5.3. APPLICATION STRUCTURE CHAPTER 5. DISCUSSION AND FURTHER WORK

In the development phase, images from the IR camera at the plant in Thamshavn were used to validate

if the OpenCV-function would be adequate to find the position of the tapping beam. A series of video frames

from the IR camera at Thamshavn was then tested in the OpenCV template matching function, returning the

position of the tapping beam for every frame. Thus, indicating that it would be a valid method for finding

the location of the tapping beam. However, testing with the tapping beam test-stand proved otherwise, as

the OpenCV template matching function was susceptible to small changes in the shape of the test beam that

occurred when varying the pump voltage to simulate the different beam shapes. Resulting in losing the

position of the tapping beam. Seeing as this is a potential issue for the overall functionality of the IR camera

application, it would be of interest to revise the method for localisation.

Further work: By gathering an image dataset from the tapping beam, it is possible to create training data

for a neural network that can localise the position of the tapping beam. This method is called regression, and

it can find the image coordinates of features defined in the training dataset. As an example, the NVIDIA Deep

Learning Institute offers an introductory level course on AI on the Jetson Nano, where one of the sections

in the course is to train a neural network for regression [42]. In this course, the basics of deep learning and

neural networks are explained, and the pre-trained ResNet-18 network is trained with data gathered through

a connected USB web camera. The computational load necessary to train and use the network is handled by

the NVIDIA 128-core Maxwell GPU of the Jetson Nano. A motivating factor for this solution is that the use

of neural networks and deep learning in the process industry is already in development through projects like

SINTEF’s COGNITWIN [43].

5.3 Application structure

The suggested application structure presented in this thesis is perhaps not the most optimal in regards to

computational load and in keeping a high frame rate video stream from the IR camera to the HMI. As it

is presented in section 3.2.6, the IR camera is initiated in mainRealTime.py together with all of the other

computer vision functions. There the thermal image frames are only written to the GStreamer pipeline once

every iteration of the while-loop in mainRealTime.py, resulting in a low frame-rate stream of the original

thermal image in the HMI. Which is not optimal for the operators working in the tapping area.

Further work: Since the execution time of RANSAC and the tapping beam detection algorithm’s does not

suffice for a video feed of 30 [FPS], a solution is to restructure the application, so the IR camera is initiated

by the HMI-application and streams images to mainRealTime.py via GStreamer. This would yield slower

feedback on parameters such as tapping beam existence and temperature but an increased frame rate of

the original thermal image in the HMI. This suggestion would also require two GStreamer pipelines to be

established.

61

5.4. JETSON NANO PERFORMANCE CHAPTER 5. DISCUSSION AND FURTHER WORK

��Flask app

��Home.py

��Database.py

��IRCamera.py

mainFlask.py

��FeatureTracking.py

��BeamShape.py

��RansacFit.py

��Database.py

mainRealTime.py SQLite

Database

Figure 5.1: Suggested application structure

5.4 Jetson Nano performance

Throughout testing and developing the computer vision algorithms in this project, the Jetson Nano

single-board computer has been used as the main platform. The reason for choosing the Nano was the

possibility of using the GPU to perform training and processing of neural network algorithms that could

perform classification and regression on images. As the application presented in section 3 is structured,

only the CPU of the Nano is used for computing, making it equivalent to a Raspberry Pi 4. Even though

Numba and JIT-compiling increases the performance quite significantly, it lacks support for the complete

OpenCV library and some NumPy functions. With this in mind, it is a possibility that utilising the GPU for

parallel computing of the OpenCV and NumPy functions would significantly boost the applications real-time

performance. An example on the benefits of using OpenCV with GPU acceleration is shown in article [44].

Furhter work: For accelerating the performance NumPy functions, the open-source CuPy library offers

GPU optimising using NVIDIA CUDA cores. Where as OpenCV already has a CUDA toolkit available. For it

to be installed, the flag WITH_CUDA=ON must have been set in the initial build of OpenCV using CMake. Then

combining these functions with the suggested application structure discussed in the previous section 5.3.

62

Chapter 6
Conclusion

The research and methods developed in this project aimed to solve the challenge of analysing a complex

industrial process with a high level of uncertainties and disturbances, while providing the operators with

real-time feedback on the specific conditions of the process. A application that uses an industrial IR camera

to extract information about the ferrosilicon tapping beam was developed. Requirements for the application

is that the tapping beam must be the most considerable feature in the image, i.e. represented by as many

pixels as possible, and a template image of the specific tapping beam must be captured. The computer vision

algorithms can then be launched, and data on the tapping beam gets saved to the database. After validation

of the image and temperature data, the tapping beam HMI can be launched. With the HMI running, live feed

of the tapping beam thermal image and detected inliers, status labels, and temperature graph is available as

a locally hosted website.

Throughout this project, several different subjects have been investigated, evaluated and tested. These

include; feature localisation, image detail enhancement, binary image thresholding, inlier detection with

RANSAC and edge detection to determine beam shape.

• Feature localisation: Finding the position of the tapping beam and isolating the specific ROI was

solved using a function within OpenCV. And as presented in the discussion at section 5.2, this method

proved to be a suitable solution when testing with low resolution image data sets from the physical

tapping beam at the plant in Thamshavn, but proved otherwise when testing with the tapping beam

test stand. Arguably, it could have been the test stand that gave the template matching such poor

performance. Still, when taking into account the uncertainties and process disturbances such as smoke

and human operators blocking the camera line-of-sight, it can be concluded that more research and

testing is necessary to develop a robust algorithm specific to tapping beam detection.

• Detail enhancement: Increasing the level of detail in the image of the isolated tapping beam was

necessary to create a robust definition between the background and foreground objects. Histogram

equalisation, where the cumulative distribution of the equalised image follows a linear model, has

proved to be a good algorithm for increasing detail and contrast. This algorithm is necessary when

dealing with images from the physical ferrosilicon tapping beam at the plant in Thamshavn, as the

beam is surrounded by high-temperature smoke. It can be concluded that detail enhancement helps

to better represent the tapping beam, but needs to be validated with images where the actual tapping

beam is the most significant feature.

63

CHAPTER 6. CONCLUSION

• Binary image thresholding: Transforming the equalised image into a binary representation consisting

only of pixel values 0 and 255 was necessary for the inlier detection with RANSAC and the edge

detection algorithm for the beam shape classification. This was done by calculating an intensity value

for thresholding with the max and mean image intensities and an adjustable gain parameter. The gain

parameter made it possible to manipulate the thresholding value to give a better binary representation

of the tapping beam. The algorithm worked as intended and has yielded credible results.

• Inlier detection: The inlier detection algorithm was developed on the assumption that the tapping

beam mostly follows a vertical line, which gave the reason for using a RANSAC algorithm. This was

also confirmed with the image data set from the tapping beam at the plant in Thamshavn. The resulting

algorithm iterates through the input dataset and finds the tapping inliers with the specified distance

threshold and a minimum number of inliers. With the detected inliers, the tapping beam angle is

calculated and saved to the database. Using RANSAC to filter out the tapping beam profile and finding

the inliers for a 2D line proved to be a successful implementation. But it needs to be tested on a

physical ferrosilicon tapping beam.

• Beam shape classification: Classification of the tapping beam by sampling horizontal image vectors

of the isolated tapping beam and counting the number of edges in each vector gave good results. But

further testing is necessary, as the images for testing this algorithm are produced synthetically.

To summarise, the research conducted in this project, along with the methods and software developed,

has answered the project scope and questions of research presented in section 1.3. A method for measuring

the temperature, algorithms for detecting and extracting information about the tapping beam and an HMI

for visualisation of the data has been developed. Despite the challenges met and the simplifications that were

done to achieve results within the given time frame. A system that enhances the level of information about

the tapping beam in real-time for the process operators and logs data for the metallurgists were developed.

The application can also serve as a platform for gathering image and temperature data for developing more

advanced algorithms, with the COGNITWIN project as an example.

64

Bibliography

[1] K. Sogner, Creative Power, En. Elkem, Oslo 2014: Messel Forlag AS, ISBN: 9788276311242.

[2] Elkem ASA. (2021). “About Elkem,” [Online]. Available: https://www.elkem.com/about-elkem/

(visited on 03/15/2021).

[3] ——, (2021). “Sustainability,” [Online]. Available: https://www.elkem.com/sustainability/

(visited on 03/13/2021).

[4] Global Silicones Council. (2016). “Socio-economic evaluation of the global silicones industry,” [On-

line]. Available: https://sehsc.americanchemistry.com/Socio-Economic-Evaluation-of-the-

Global-Silicones-Industry-Final-Report.pdf (visited on 01/20/2021).

[5] T. Hannesson. (2016). “The si process,” [Online]. Available: https://www.elkem.com/globalassets/

iceland/si-process.pdf (visited on 05/20/2021).

[6] Elkem ASA, General information about the plant in thamshavn, 2021.

[7] A. Szajewska, “Development of the thermal imaging camera (tic) technology,” Procedia Engineering,

vol. 172, pp. 1067–1072, 2017, Modern Building Materials, Structures and Techniques, ISSN: 1877-

7058. DOI: https://doi.org/10.1016/j.proeng.2017.02.164. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S1877705817306707.

[8] A. Glowacz and Z. Glowacz, “Diagnosis of the three-phase induction motor using thermal imaging,”

Infrared Physics and Technology, vol. 81, pp. 7–16, 2017, ISSN: 1350-4495. DOI: https://doi.org/

10.1016/j.infrared.2016.12.003. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S1350449516306259.

[9] Z. Zhang, L. Bin, and Y. Jiang, “Slag detection system based on infrared temperature measurement,”

Optik, vol. 125, no. 3, pp. 1412–1416, 2014, ISSN: 0030-4026. DOI: https://doi.org/10.1016/j.

ijleo.2013.08.016. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0030402613011790.

[10] Environmental-Expert. (2021). “Elkem carbon - model elsep - elkem søderberg electrode paste,” [On-

line]. Available: https://www.environmental- expert.com/products/elkem- carbon- model-

elsep-elkem-soderberg-electrode-paste-516916 (visited on 05/18/2021).

[11] M. Miranda-Martínez, J. R. Campello-García, and D. Castaño-Laviana, “Development of soderberg car-

bon electrodes bonded with a carbon nanofibre reinforced coal-tar pitch,” Refractories world forum,

vol. 11, no. 1, pp. 63–67, 2018. [Online]. Available: https://www.refractories-worldforum.com/

paper?article_id=100689.

65

https://www.elkem.com/about-elkem/
https://www.elkem.com/sustainability/
https://sehsc.americanchemistry.com/Socio-Economic-Evaluation-of-the-Global-Silicones-Industry-Final-Report.pdf
https://sehsc.americanchemistry.com/Socio-Economic-Evaluation-of-the-Global-Silicones-Industry-Final-Report.pdf
https://www.elkem.com/globalassets/iceland/si-process.pdf
https://www.elkem.com/globalassets/iceland/si-process.pdf
https://doi.org/https://doi.org/10.1016/j.proeng.2017.02.164
https://www.sciencedirect.com/science/article/pii/S1877705817306707
https://www.sciencedirect.com/science/article/pii/S1877705817306707
https://doi.org/https://doi.org/10.1016/j.infrared.2016.12.003
https://doi.org/https://doi.org/10.1016/j.infrared.2016.12.003
https://www.sciencedirect.com/science/article/pii/S1350449516306259
https://www.sciencedirect.com/science/article/pii/S1350449516306259
https://doi.org/https://doi.org/10.1016/j.ijleo.2013.08.016
https://doi.org/https://doi.org/10.1016/j.ijleo.2013.08.016
https://www.sciencedirect.com/science/article/pii/S0030402613011790
https://www.sciencedirect.com/science/article/pii/S0030402613011790
https://www.environmental-expert.com/products/elkem-carbon-model-elsep-elkem-soderberg-electrode-paste-516916
https://www.environmental-expert.com/products/elkem-carbon-model-elsep-elkem-soderberg-electrode-paste-516916
https://www.refractories-worldforum.com/paper?article_id=100689
https://www.refractories-worldforum.com/paper?article_id=100689

BIBLIOGRAPHY BIBLIOGRAPHY

[12] A. S. Hauksdóttir, A. Gestsson, and A. Vésteinsson, “Current control of a three-phase submerged arc

ferrosilicon furnace,” Control Engineering Practice, vol. 10, no. 4, pp. 457–463, 2002, Mechatronics,

ISSN: 0967-0661. DOI: https://doi.org/10.1016/S0967-0661(01)00104-6. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0967066101001046.

[13] Teknisk Ukeblad, Per-Ivar Nikolaisen, Slik kuttet elkem utslipp tilsvarende 150.000 dieselbiler på rekordtid,

[Online; accessed April 28, 2021], 2014. [Online]. Available: https://img.gfx.no/1702/1702551/

_MG_0431_6212.jpg.

[14] Store Norske leksikon. (2021). “Infrarød stråling,” [Online]. Available: https://snl.no/infrar%5C%

C3%5C%B8d_str%5C%C3%5C%A5ling (visited on 04/29/2021).

[15] Wikipedia Commons, Em spectrum, [Online; accessed April 30, 2021], 2021. [Online]. Available:

https://commons.wikimedia.org/wiki/File:EM_spectrum.svg.

[16] Optris GmbH. (2021). “What web cams and ir cameras have in common,” [Online]. Available: https:

//www.optris.global/how- thermal- imaging- cameras- and- thermography- work (visited on

01/22/2021).

[17] Optotherm, Inc., Microbolometers, [Online; accessed April 30, 2021], 2018. [Online]. Available:

https://www.optotherm.com/microbolometers.htm.

[18] M. Kimata, “Uncooled infrared focal plane arrays,” IEEJ Transactions on Electrical and Electronic Engineering,

vol. 13, no. 1, pp. 4–12, 2018. DOI: https://doi.org/10.1002/tee.22563. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/tee.22563.

[19] Python Software Foundation, What is python? executive summary. [Online]. Available: https : / /

www.python.org/doc/essays/blurb/ (visited on 05/08/2021).

[20] The SciPy community, What is numpy? [Online]. Available: https://numpy.org/doc/stable/user/

whatisnumpy.html (visited on 05/08/2021).

[21] LLVM Project, The llvm compiler infrastructure. [Online]. Available: https://llvm.org/ (visited on

05/08/2021).

[22] Towards data science: Puneet Grover, What is numpy? [Online]. Available: https://miro.medium.

com/max/700/0*bJ6XIUE05phjWZgz (visited on 05/08/2021).

[23] OpenCV team. (2021). “About - OpenCV,” [Online]. Available: https://opencv.org/about/ (visited

on 05/25/2021).

[24] GStreamer Team, What is gstreamer? [Online]. Available: https://gstreamer.freedesktop.org/

documentation/application- development/introduction/gstreamer.html?gi- language=c

(visited on 05/08/2021).

[25] Pallets Projects, Flask: Foreword. [Online]. Available: https://flask.palletsprojects.com/en/1.

1.x/foreword/ (visited on 05/08/2021).

[26] Simplilearn - Online Certification Training Course Provider. (2021). “What is gitlab and how to use it,”

[Online]. Available: https://www.simplilearn.com/tutorials/git-tutorial/what-is-gitlab

(visited on 05/10/2021).

[27] OpenCV-Python Tutorials. (2020). “Opencv-python tutorials: Histogram equalisation,” [Online]. Avail-

able: [https://opencv- python- tutroals.readthedocs.io/en/latest/py_tutorials/py_

imgproc/py_template_matching/py_template_matching.html] (visited on 05/03/2021).

[28] ——, (2020). “Opencv-python tutorials: Template matching,” [Online]. Available: [https://opencv-

python- tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_template_

matching/py_template_matching.html] (visited on 05/03/2021).

66

https://doi.org/https://doi.org/10.1016/S0967-0661(01)00104-6
https://www.sciencedirect.com/science/article/pii/S0967066101001046
https://img.gfx.no/1702/1702551/_MG_0431_6212.jpg
https://img.gfx.no/1702/1702551/_MG_0431_6212.jpg
https://snl.no/infrar%5C%C3%5C%B8d_str%5C%C3%5C%A5ling
https://snl.no/infrar%5C%C3%5C%B8d_str%5C%C3%5C%A5ling
https://commons.wikimedia.org/wiki/File:EM_spectrum.svg
https://www.optris.global/how-thermal-imaging-cameras-and-thermography-work
https://www.optris.global/how-thermal-imaging-cameras-and-thermography-work
https://www.optotherm.com/microbolometers.htm
https://doi.org/https://doi.org/10.1002/tee.22563
https://onlinelibrary.wiley.com/doi/abs/10.1002/tee.22563
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://numpy.org/doc/stable/user/whatisnumpy.html
https://numpy.org/doc/stable/user/whatisnumpy.html
https://llvm.org/
https://miro.medium.com/max/700/0*bJ6XIUE05phjWZgz
https://miro.medium.com/max/700/0*bJ6XIUE05phjWZgz
https://opencv.org/about/
https://gstreamer.freedesktop.org/documentation/application-development/introduction/gstreamer.html?gi-language=c
https://gstreamer.freedesktop.org/documentation/application-development/introduction/gstreamer.html?gi-language=c
https://flask.palletsprojects.com/en/1.1.x/foreword/
https://flask.palletsprojects.com/en/1.1.x/foreword/
https://www.simplilearn.com/tutorials/git-tutorial/what-is-gitlab
[https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html]
[https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html]
[https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html]
[https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html]
[https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html]

BIBLIOGRAPHY BIBLIOGRAPHY

[29] A. Manzur. (2019). “Got outliers? ransac them!” [Online]. Available: https://medium.com/@angel.

manzur/got-outliers-ransac-them-f12b6b5f606e (visited on 05/04/2021).

[30] MathWorld–A Wolfram Web Resource: Weisstein, Eric W. (2021). “Convolution,” [Online]. Available:

https://mathworld.wolfram.com/Convolution.html (visited on 05/14/2021).

[31] M. Ottestad, “Lectures in instrumentation: Edge Detection Concepts in 1-D,” Lecture notes from

MAS506 Instrumentation at the University of Agder, 2021.

[32] TeamGantt. (2021). “TeamGantt,” [Online]. Available: https://www.teamgantt.com/ (visited on

05/18/2021).

[33] Atlassian. (2021). “What is kanban?” [Online]. Available: https://www.atlassian.com/agile/

kanban (visited on 05/18/2021).

[34] ——, (2021). “Trello,” [Online]. Available: https://trello.com/ (visited on 05/18/2021).

[35] ——, (2021). “What is Agile?” [Online]. Available: https://www.atlassian.com/agile (visited on

05/18/2021).

[36] Optris GmbH, Infrared camera optris pi 400i. [Online]. Available: https://www.optris.global/

thermal-imager-optris-pi-400i-pi-450i (visited on 05/06/2021).

[37] NVIDIA Corporation. (2021). “Jetson Nano Developer Kit,” [Online]. Available: https://developer.

nvidia.com/embedded/jetson-nano-developer-kit (visited on 05/23/2021).

[38] Evocortex, Irimagerdirectsdk. [Online]. Available: https://evocortex.org/products/irimagerdirect-

sdk/ (visited on 05/06/2021).

[39] Python Software Foundation, Ctypes — a foreign function library for python. [Online]. Available: https:

//docs.python.org/3/library/ctypes.html (visited on 05/06/2021).

[40] Evocortex, Irimagerdirectsdk, linux installation. [Online]. Available: http://documentation.evocortex.

com/libirimager2/html/Installation.html (visited on 05/06/2021).

[41] Python Software Foundation. (2021). “Db-api 2.0 interface for sqlite databases,” [Online]. Available:

https://docs.python.org/3/library/sqlite3.html (visited on 05/16/2021).

[42] NVIDIA Corporation: Deep Learning Institute. (). “Getting started with ai on jetson nano,” [Online].

Available: https://courses.nvidia.com/courses/course-v1:DLI+S-RX-02+V2/about (visited on

05/21/2021).

[43] SINTEF. (2021). “Cognitwin - cognitive plants through proactive self-learning hybrid digital twins,”

[Online]. Available: https://www.sintef.no/projectweb/cognitwin/ (visited on 05/21/2021).

[44] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Realtime computer vision with opencv: Mobile

computer-vision technology will soon become as ubiquitous as touch interfaces.,” Queue, vol. 10,

no. 4, pp. 40–56, Apr. 2012, ISSN: 1542-7730. DOI: 10.1145/2181796.2206309. [Online]. Available:

https://doi.org/10.1145/2181796.2206309.

67

https://medium.com/@angel.manzur/got-outliers-ransac-them-f12b6b5f606e
https://medium.com/@angel.manzur/got-outliers-ransac-them-f12b6b5f606e
https://mathworld.wolfram.com/Convolution.html
https://www.teamgantt.com/
https://www.atlassian.com/agile/kanban
https://www.atlassian.com/agile/kanban
https://trello.com/
https://www.atlassian.com/agile
https://www.optris.global/thermal-imager-optris-pi-400i-pi-450i
https://www.optris.global/thermal-imager-optris-pi-400i-pi-450i
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://evocortex.org/products/irimagerdirect-sdk/
https://evocortex.org/products/irimagerdirect-sdk/
https://docs.python.org/3/library/ctypes.html
https://docs.python.org/3/library/ctypes.html
http://documentation.evocortex.com/libirimager2/html/Installation.html
http://documentation.evocortex.com/libirimager2/html/Installation.html
https://docs.python.org/3/library/sqlite3.html
https://courses.nvidia.com/courses/course-v1:DLI+S-RX-02+V2/about
https://www.sintef.no/projectweb/cognitwin/
https://doi.org/10.1145/2181796.2206309
https://doi.org/10.1145/2181796.2206309

Appendix A

68

A.1. PROJECT DESCRIPTION APPENDIX A. ADMINISTRATIVE

Administrative

A.1 Project description

Short Introduction
Elkem is one of the world’s leading companies in the environmentally responsible manufacture of
metals and materials. Elkem is a fully-integrated producer with operations throughout the silicon value
chain from quartz to silicon and downstream silicone specialities as well as speciality ferrosilicon alloys
and carbon materials.
This project concerns the production-process and safety at Elkem’s production plant. Elkem has a high

focus on health, environment, and safety in their production as well as ensuring excellent product

quality. The use of modern technology and smart sensing for detecting levels of wear on equipment,

process parameters and potential hazardous situations is a key motivator for this project.

Keywords
• Computer science

o Python algorithms
o Web-based HMI
o IR-camera interface

• Image processing
o OpenCV
o RANSAC
o Feature detection

Project Description
 The scope of this project is to develop solutions for monitoring process variables, analyzing equipment

levels based on thermal radiation, using camera-vision technology and image processing tools such as

OpenCV in an industrial environment. A system that can detect abnormalities in production, potential

hazardous situations and alert the process operators of these situations. The tapping process of molten

ferrosilicon is mostly a manual process, where human operators perform various tasks to ensure safe

and efficient tapping of ferro silicon from furnace to ladle. Key points for this project are to enhance the

visual representation of the tapping beam and give these operators direct feedback on how the tapping

beam is behaving, more specifically:

• Measure temperature of the tapping beam.

• Measure the tapping beam profile.

• Give feedback on the shape of the tapping beam, is it a solid continuous beam or sparse and

disrupted.

• Give feedback if the tappingbeam is no longer present, i.e. the tap-hole is clogged.

Contact information:
Full name E-mail address Phone number

Ali Hussain ali.hussain@elkem.no

Jørgen Nilsen Jorgen16@uia.no 92299206

Tapping beam recognition

and measurement using infrared camera
Master’s thesis 2021

Figure A.1: Project description.

69

A.2. GANTT CHART APPENDIX A. ADMINISTRATIVE

A.2 Gantt chart

30
4

11
18

25
1

8
15

22
1

8
15

22
29

5
12

19
26

3
10

17
24

31
12

/2
0

1/
21

2/
21

3/
21

4/
21

5/
21

M
as

te
r

Th
es

is

st
ar

t
en

d

 M
ile

st
on

es
12

/3
1/

20
05

/2
8/

21

 A
dm

in
is

tr
at

iv
e

01
/1

3/
21

05
/2

8/
21

Re

ci
ev

ed
 c

am
er

a
01

/2
0

01
/2

0

D
el

iv
er

ed
 p

re
 s

tu
dy

 d
oc

um
en

ta
tio

n
01

/1
3

01
/1

3

Th
es

is
-t

itl
e

su
bm

is
si

on
 in

 s
tu

de
nt

w
...

02
/0

1
02

/0
1

Fi

na
liz

ed
 r

ep
or

t
05

/2
1

05
/2

1

D
el

iv
er

ed
 re

po
rt

05
/2

8
05

/2
8

 T

ap
pi

ng
 -

 t
em

pe
ra

tu
re

 m
ea

su
re

m
..

.
12

/3
1/

20
04

/0
2/

21

Te
m

pe
ra

tu
re

 m
at

rix
 fr

om
 ta

pp
in

g
b.

..
12

/3
1

12
/3

1

M
ea

n,
 m

ax
 a

nd
 m

in
 te

m
pe

ra
tu

re
03

/2
6

03
/2

6

Te
m

pe
ra

tu
re

 d
at

a
st

or
ed

 in
 d

at
ab

a.
..

04
/0

2
04

/0
2

 T

ap
pi

ng
 -

 b
ea

m
 s

ha
pe

02
/0

5/
21

04
/0

9/
21

Fo

un
d

po
si

tio
n

of
 ta

pp
in

g
be

am
 a

nd
...

02
/0

5
02

/0
5

Cu

rv
ef

itt
in

g
of

 th
e

ta
pp

in
gb

ea
m

04
/0

2
04

/0
2

Pe

rc
en

ta
ge

 o
f o

pt
im

al
 s

ha
pe

04
/0

9
04

/0
9

 F

la
sk

 a
pp

01
/2

9/
21

04
/3

0/
21

Co

nn
ec

te
d

IR
 c

am
er

a
vi

de
o

fe
ed

 to
 ..

.
01

/2
9

01
/2

9

D
at

ab
as

e
04

/1
6

04
/1

6

Te
m

pe
ra

tu
re

 g
ra

ph
04

/1
6

04
/1

6

O
pt

im
al

 s
ha

pe
 g

ra
ph

04
/1

6
04

/1
6

Fu

lly
 in

te
gr

at
ed

 w
eb

 H
M

I w
ith

 F
la

sk
04

/3
0

04
/3

0

 T
ap

pi
ng

 -
 t

em
pe

ra
tu

re
 m

ea
su

re
m

e.
..

02
/1

2/
21

04
/0

9/
21

M
ea

n,
 m

ax
 a

nd
 m

in
 te

m
pe

ra
tu

re
02

/1
2

04
/0

9

Sa

vi
ng

 d
at

a
to

 S
Q

L
da

ta
ba

se
02

/1
2

04
/0

9

 T
ap

pi
ng

 -
 b

ea
m

02
/2

2/
21

04
/3

0/
21

Bu
ild

 te
st

 s
ta

nd
 -

ha
rd

w
ar

e
02

/2
2

04
/0

9

Se

gm
en

te
d

ta
pp

in
g

be
am

 re
gi

on
02

/2
2

04
/0

9

Cu

rv
ef

itt
in

g
of

 th
e

ta
pp

in
gb

ea
m

02
/2

2
04

/3
0

Pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ha

pe
02

/2
2

04
/3

0

Sp

lit
 b

ea
m

 -
cl

as
si

fic
at

io
n

of
 im

ag
e

02
/2

2
04

/3
0

 F
la

sk
 a

pp
03

/0
1/

21
04

/3
0/

21

H

om
e

sc
re

en
03

/0
1

04
/3

0

Jø
rg

en
 N

ils
en

Jø
rg

en
 N

ils
en

Jø
rg

en
 N

ils
en

Jø
rg

en
 N

ils
en

Jø
rg

en
 N

ils
en

Jø
rg

en
 N

ils
en

Jø
rg

en
 N

ils
en

Jø
rg

en
 N

ils
en

Jø
rg

en
 N

ils
en

Figure A.2: Gantt chart, page 1.

70

A.2. GANTT CHART APPENDIX A. ADMINISTRATIVE

30
4

11
18

25
1

8
15

22
1

8
15

22
29

5
12

19
26

3
10

17
24

31
12

/2
0

1/
21

2/
21

3/
21

4/
21

5/
21

D
at

ab
as

e
(S

Q
Li

te
)

03
/0

1
04

/3
0

Te
m

pe
ra

tu
re

 G
ra

ph
 -

m
ax

, m
ea

n
an

d.
..

03
/0

1
04

/3
0

Al
ar

m
s

- t
ap

pi
ng

 b
ea

m
 p

os
iti

on
03

/0
1

04
/3

0

Al

ar
m

s
- t

ap
pi

ng
 b

ea
m

 c
lo

gg
ed

03
/0

1
04

/3
0

 R
ep

or
t

02
/2

2/
21

05
/2

1/
21

 A

bs
tr

ac
t

-
-

 I

nt
ro

du
ct

io
n

02
/2

2/
21

03
/3

1/
21

M

ot
iv

at
io

n
an

d
ba

ck
gr

ou
nd

02
/2

2
03

/3
1

Re

se
ar

ch
 q

ue
st

io
n

02
/2

2
03

/3
1

Li

m
ita

tio
ns

02
/2

2
03

/3
1

St

at
e-

of
-t

he
-a

rt
-

-

O
ut

lin
e

of
 th

e
th

es
is

02
/2

2
03

/3
1

 T

he
or

y
02

/2
2/

21
04

/3
0/

21

Pr
oc

es
s

ov
er

vi
ew

02
/2

2
04

/3
0

IR

 c
am

er
a

02
/2

2
04

/3
0

O

pe
nC

V
02

/2
2

04
/3

0

Je
ts

on
 N

an
o

02
/2

2
04

/3
0

D

at
a

m
an

ag
am

en
t

02
/2

2
04

/3
0

Pr

oj
ec

t m
an

ag
em

en
t

02
/2

2
04

/3
0

 M

et
ho

d
04

/0
1/

21
04

/3
0/

21

IR
 c

am
er

a
- c

al
ib

ra
tio

n
an

d
SD

K
04

/0
1

04
/3

0

Im
ag

e
pr

oc
es

si
ng

04
/0

1
04

/3
0

Te

st
 s

ta
nd

04

/0
1

04
/3

0

Fl
as

k
ap

pl
ic

at
io

n
04

/0
1

04
/3

0

 R
es

ul
ts

05
/0

3/
21

05
/1

4/
21

Re

su
lts

05

/0
3

05
/1

4

 D
is

cu
ss

io
n

05
/0

3/
21

05
/2

1/
21

Ca

m
er

a
re

so
lu

tio
n

05
/0

3
05

/2
1

CN

N
 fo

r c
la

ss
ifi

ca
tio

n
of

 ta
pp

in
gb

e.
..

05
/0

3
05

/2
1

O

pt
ic

al
 fl

ow
 fo

r t
ap

pi
ng

 b
ea

m
 v

el
oc

i..
.

05
/0

3
05

/2
1

 C

on
cl

us
io

n
05

/0
3/

21
05

/2
1/

21

Co
nc

lu
si

on
05

/0
3

05
/2

1

Fu
rt

he
r w

or
k

05
/0

3
05

/2
1

Jø
rg

en
 N

ils
en

Jø
rg

en
 N

ils
en

Jø
rg

en
 N

ils
en

Jø
rg

en
 N

ils
en

Jø
rg

en
 N

ils
en

Jø
rg

en
 N

ils
en

Jø
rg

en
 N

ils
en

Jø
rg

en
 N

ils
en

P
ow

er
ed

 b
y

T
C

P
D

F
 (

w
w

w
.tc

pd
f.o

rg
)

Figure A.3: Gantt chart, page 2.

71

Appendix B

72

B.1. SYSTEM CHARTS APPENDIX B. SYSTEM

System
B.1 System charts

B.1.1 Tapping process timeline

Figure B.1: Tapping process manual operations timeline.

73

B.2. DATASHEETS APPENDIX B. SYSTEM

B.2 Datasheets

B.2.1 Optris PI 400i

Compact high resolution
infrared camera

Features:
• Smallest camera in its class (46 x 56 x 68 – 77 mm)
• Interchangeable lenses and industrial accessories
• Framerate 80Hz
• License-free analysis software and full SDK included

Optris GmbH · Ferdinand-Buisson-Str. 14 · 13127 Berlin · Germany
Phone: +49 30 500 197-0 · Fax: +49 30 500 197-10 · Email: info@optris.global · www.optris.global

Technical specifications

Optical resolution 382 x 288 pixels

Detector FPA, uncooled (17 µm x 17 µm)

Spectral range 8 – 14 µm

Temperature ranges –20 ... 100 °C, 0 ... 250 °C, (20) 150 ... 900 °C1),
optional temperature range: 200 ... 1500 °C

Frame rate 80 Hz / switchable to 27 Hz

Optics (FOV) 18° x 14° / f = 20 mm or
29° x 22° / f = 12.7 mm or
53° x 38° / f = 7.7 mm or
80° x 54° / f = 5.7 mm

Thermal sensitivity (NETD) 75 mK with 29° x 22° FOV / F = 0.9
75 mK with 53° x 38° FOV / F = 0.9
75 mK with 80° x 54° FOV / F = 0.9
 0.1 K with 18° x 14° FOV / F = 1.1

System Accuracy ±2 °C or ±2 %, whichever is greater

PC interfaces USB 2.0 / optional USB to GigE (PoE) interface

Standard process interface (PIF) 0 – 10 V input, digital input (max. 24 V),
0 – 10 V output

Industrial process interface (PIF)
(optional)

2x 0 – 10 V input, digital input (max. 24 V), 3x 0/4 – 20 mA outputs,
3x relays (0 – 30 V/ 400 mA), fail-safe relay

Cable length (USB) 1 m (standard), 5 m, 10 m, 20 m
5 m and 10 m also as high temperature USB cable (180 or 250 °C)

Ambient temperature 0 ... 50 °C

Storage temperature – 40 ... 70 °C

Relative humidity 20 – 80 %, non condensing

Enclosure (size / protection) 46 x 56 x 68 – 77 mm (depending on lens + focus position) / IP 67 (NEMA 4)

Weight 237 - 251 g (depending on lens)

Shock / Vibration2) IEC 60068-2-27 (25G and 50G) /
IEC 60068-2-6 (sinus shaped), IEC 60068-2-64 (broadband noise)

Tripod mount ¼ – 20 UNC

Power supply via USB

Scope of supply
(standard)

• USB camera, incl. 1 lens
• USB cable (1 m)
• Table tripod
• PIF cable, incl. terminal block (1 m)
• Software package optris PIX Connect
• Test certificate
• Aluminum case

1) Accuracy for the (20°C) 150 °C ... 900 °C range effective starting at 150 °C
2) For further information see operator‘s manual.

For further information as well as
the product configurator, please visit

www.optris.global/thermal-imager-optris-pi-400i-pi-450i

optris PI 400i
TECHNICAL DATA

Figure B.2: Optris PI 400i datasheet, page 1.

74

B.2. DATASHEETS APPENDIX B. SYSTEM

Sp
ec

ifi
ca

tio
ns

 a
re

 s
ub

je
ct

 to
 c

ha
ng

e
w

ith
ou

t f
ur

th
er

 n
ot

ic
e

 ·
 P

I 4
00

i-D
S-

EN
20

19
-1

2-
A

Dimensions

Process integration

Dimensions in mm

optris PI NetBox

• Miniature PC as add-on to the PI series
 for stand-alone system
• Integrated hardware and software
 watchdog
• Connections: 2x USB 2.0, 1x USB 3.0,
 1x Mini-USB 2.0, Micro-HDMI, Ethernet
 (Gigabit Ethernet), micro SDHC /
 SDXC card

For further information please visit
www.optris.global/pi-netbox

optris USB-Server Gigabit 2.0

• Network connection via Gigabit Ethernet
• Full TCP/IP support incl. routing and DNS
• Two independent USB ports
• Power via PoE or external voltage supply
 at 24 – 48 V DC
• Galvanic isolation 500 VRMS
• Remotely configurable via web based
 management

For further information please visit
www.optris.global/usb-server-gigabit

optris Industrial Process Interface

• Use of camera for process monitoring in
 industrial environments
• Continous fail safe monitoring of imager,
 software and cable connections
• 3 analog / alarm outputs,
 2 analog inputs,
 1 digital input,
 3 alarm relays,
 1 fail-safe relay

For further information please visit
www.optris.global/neu-industrial-process-interface

optris PI 400i

PC
Network

PIX Connect

Remote access / setup

USB Keyboard / Mouse

Control monitor

GigE

HDMI

8 – 48 V DC

Analog OUT / IN
Digital IN

PI Process
Interface

Network / Internet

PC
PIX Connect

PoE

24 V DC oder
Power over Ethernet

5 – 24 V DC

Figure B.3: Optris PI 400i datasheet, page 2.

75

B.2. DATASHEETS APPENDIX B. SYSTEM

B.2.2 IR Camera application flowchart

Launch
“mainRealTime.py”

Import files and
packages

Create instance of
classes

Build pipeline for
GStreamer

JIT compile
“RansacFit.py”

IR camera
status=True

?

“IRCamera.py”:
thermal image and
temperature array

“TemplateMatching()”:
Beam location, isolated

image and existence value

“TemplateMatching()”:
Beam location, isolated

image and existence value

Beam
existence =

True?

“HistogramEqual()”:
Equalised image

“BinaryImage()”:
Binary image

“TempCalculation()”:
Max, average and

minimum temperature

“Database.update_temperature”,
“Database.update_imagedata”

“BeamShape()”:
Detected edges and

shape parameter

“FindInliers()”:
Inliers, line parameter

and inlier image

“BeamShape()”:
Detected edges and

shape parameter

“FindInliers()”:
Inliers, line parameter

and inlier image

No

Yes

No

Yes

Figure B.4: Camera application process flowchart

76

B.2. DATASHEETS APPENDIX B. SYSTEM

B.2.3 Synthetically developed images

Table B.1: Synthetically developed image number 2.

Detected edges:

Y-coordinate Number of edges

0 0

20 3

40 2

60 2

80 4

100 4

120 4

140 7

160 4

Table B.2: Number of detected edges in image

number 2.

Table B.3: Synthetically developed image number 3.

Detected edges:

Y-coordinate Number of edges

0 0

20 3

40 2

60 2

80 2

100 2

120 2

140 3

160 2

Table B.4: Number of detected edges in image

number 3.

Table B.5: Synthetically developed image number 4.

Detected edges:

Y-coordinate Number of edges

0 0

20 3

40 2

60 4

80 4

100 6

120 4

140 2

160 2

Table B.6: Number of detected edges in image

number 4.

77

B.2. DATASHEETS APPENDIX B. SYSTEM

Table B.7: Synthetically developed image number 5.

Detected edges:

Y-coordinate Number of edges

0 0

20 3

40 2

60 2

80 4

100 4

120 4

140 2

160 4

Table B.8: Number of detected edges in image

number 5.

78

B.3. HUMAN MACHINE INTERFACE APPENDIX B. SYSTEM

B.3 Human Machine Interface

B.3.1 Flask web-HMI homepage

Figure B.5: HMI homepage

79

B.4. DATABASE FILE APPENDIX B. SYSTEM

B.4 Database file

B.4.1 Temperature table

id tempMax tempMean tempMin timestamp

1 29.2 28.1597765363128 26.3 2021-05-13 11:06:33

2 29.2 28.3669619422572 26.7 2021-05-13 11:06:36

3 29.2 28.2631596306069 26.5 2021-05-13 11:06:40

4 29.2 28.3225806451613 26.7 2021-05-13 11:06:43

5 29.2 28.2537211569711 26.5 2021-05-13 11:06:46

6 29.2 28.3802344513188 26.8 2021-05-13 11:06:49

7 29.1 28.3627263747119 27.0 2021-05-13 11:06:52

8 29.1 28.0893904448105 26.3 2021-05-13 11:06:55

9 29.0 27.9879572677242 26.3 2021-05-13 11:06:58

10 29.0 28.0710611979167 26.2 2021-05-13 11:07:01

11 28.9 28.0672745034191 26.4 2021-05-13 11:07:04

12 28.9 27.9145087833442 26.1 2021-05-13 11:07:07

13 28.9 27.7831585845347 25.9 2021-05-13 11:07:10

14 29.0 28.2003293807642 26.7 2021-05-13 11:07:13

15 29.0 28.0917709019091 26.5 2021-05-13 11:07:16

16 28.9 27.9019785922802 26.1 2021-05-13 11:07:19

17 28.9 27.8538734667527 26.1 2021-05-13 11:07:22

18 28.9 27.8508303484207 26.0 2021-05-13 11:07:25

19 29.0 27.8365782664942 26.2 2021-05-13 11:07:28

20 28.9 27.8111111111111 25.9 2021-05-13 11:07:31

21 28.9 27.7957746478873 26.1 2021-05-13 11:07:34

22 28.9 27.9865416255347 26.3 2021-05-13 11:07:37

23 28.9 28.00393240169 26.4 2021-05-13 11:07:40

24 28.8 27.7106796116505 26.1 2021-05-13 11:07:43

25 28.9 27.8856863384415 26.2 2021-05-13 11:07:47

26 28.8 27.9283431180691 26.2 2021-05-13 11:07:50

27 28.8 27.9695197647827 26.4 2021-05-13 11:07:53

28 28.8 27.9125367286974 26.2 2021-05-13 11:07:56

29 28.8 27.8934378060725 26.2 2021-05-13 11:07:59

30 28.8 27.6779242174629 26.0 2021-05-13 11:08:02

31 28.9 28.0454098360656 26.5 2021-05-13 11:08:06

32 28.7 27.7583496412264 26.0 2021-05-13 11:08:09

33 28.8 27.9427035830619 26.4 2021-05-13 11:08:12

34 28.8 27.952274225445 26.4 2021-05-13 11:08:15

35 28.9 27.9328348504551 26.2 2021-05-13 11:08:18

36 28.8 27.8921971922951 26.4 2021-05-13 11:08:21

37 28.8 27.9887269193392 26.6 2021-05-13 11:08:25

38 28.7 27.7643840104849 26.2 2021-05-13 11:08:28

39 28.7 27.5547728768927 25.9 2021-05-13 11:08:31

40 28.7 27.8295601552393 26.1 2021-05-13 11:08:35

41 28.6 27.7725991478204 26.0 2021-05-13 11:08:38

42 28.6 27.6518458020255 25.9 2021-05-13 11:08:41

1

Figure B.6: Database temperature data.

80

B.4. DATABASE FILE APPENDIX B. SYSTEM

B.4.2 Image data table

id inliers lineXY lineAngle beamExcistence beamShape beamStatus timeStamp

1 76.0067993793224 1.0 1.0 2021-05-13 11:06:33

2 71.9671344730085 1.0 1.0 2021-05-13 11:06:36

3 71.8167468131493 1.0 1.0 2021-05-13 11:06:40

4 71.0226258870393 1.0 1.0 2021-05-13 11:06:43

5 75.2744579200138 1.0 1.0 2021-05-13 11:06:46

6 70.3452964709037 1.0 1.0 2021-05-13 11:06:49

7 68.7160600011367 1.0 1.0 2021-05-13 11:06:52

8 68.9512513769319 1.0 1.0 2021-05-13 11:06:55

9 68.7815871026929 1.0 1.0 2021-05-13 11:06:58

10 71.5055951837049 1.0 1.0 2021-05-13 11:07:01

11 70.1846329140177 1.0 1.0 2021-05-13 11:07:04

12 71.5133601927014 1.0 1.0 2021-05-13 11:07:07

13 74.739982686605 1.0 1.0 2021-05-13 11:07:10

14 71.5444106617952 1.0 1.0 2021-05-13 11:07:13

15 65.4598519892283 1.0 1.0 2021-05-13 11:07:16

16 71.7246490359247 1.0 1.0 2021-05-13 11:07:19

17 71.6910680842454 1.0 1.0 2021-05-13 11:07:22

18 73.344532172439 1.0 1.0 2021-05-13 11:07:25

19 76.1737314452193 1.0 1.0 2021-05-13 11:07:28

20 73.6284450028599 1.0 1.0 2021-05-13 11:07:31

21 76.716413751595 1.0 1.0 2021-05-13 11:07:34

22 70.3509330907169 1.0 1.0 2021-05-13 11:07:37

23 70.0427251924203 1.0 1.0 2021-05-13 11:07:40

24 71.6054572208119 1.0 1.0 2021-05-13 11:07:43

25 69.794884117159 1.0 1.0 2021-05-13 11:07:47

26 72.4746637142078 1.0 1.0 2021-05-13 11:07:50

27 69.5349342450218 1.0 1.0 2021-05-13 11:07:53

28 69.5080966069459 1.0 1.0 2021-05-13 11:07:56

29 71.6934431930889 1.0 1.0 2021-05-13 11:07:59

30 72.2649874894791 1.0 1.0 2021-05-13 11:08:02

31 71.8895310356115 1.0 1.0 2021-05-13 11:08:06

32 74.3621197671694 1.0 1.0 2021-05-13 11:08:09

33 70.5369703732876 1.0 1.0 2021-05-13 11:08:12

34 71.5504609610671 1.0 1.0 2021-05-13 11:08:15

35 71.7215966331984 1.0 1.0 2021-05-13 11:08:18

36 71.5156923165169 1.0 1.0 2021-05-13 11:08:21

37 71.1415638538675 1.0 1.0 2021-05-13 11:08:25

38 71.5911302738264 1.0 1.0 2021-05-13 11:08:28

39 71.5799023378427 1.0 1.0 2021-05-13 11:08:31

40 71.9998494817049 1.0 1.0 2021-05-13 11:08:35

41 70.5096953533994 1.0 1.0 2021-05-13 11:08:38

1

Figure B.7: Database image data.

81

Appendix C
Code

C.1 Computer vision algorithms

C.1.1 mainRealTime.py

1 from src import IRCamera , BeamDetector , FeatureTracking , Database ,

RansacFit

2 from datetime import datetime

3 from time import sleep , time

4 import numpy as np

5 import cv2

6 import os

7

8 path = os.path.dirname(os.path.abspath(__file__))

9

10 # Template root folder

11 template_root = ’template/frame2904.png’

12

13 # Initialize variables

14 thresh_gain = 500 # binary image threshold gain , tune this value

between 0 and 255 for better binary representation of tapping beam

15 heigth_top = 0 # top heigth of the beam shape edge detection algorithm

16 heigth_bottom = 0 # bottom heigth of the beam shape edge detection

algorithm

17 thresh_inlier = 3 # inlier distance threshold for the RANSAC algorithm

18 iterations = 1000 # number of iterations in the RANSAC algorithm

19 samples = 4 # number of samples per iteration to fit the RANSAC model

20 inliers = 50 # minimum number of inliers for the RANSAC model

21

22

23 # Create instance of classes

24 beamDetector = BeamDetector.BeamDetector(thresh_gain , heigth_top ,

heigth_bottom)

25

26 featureTracking = FeatureTracking.FeatureTracking(template_root)

82

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

27

28 ransacFit = RansacFit.RansacFit(thresh_inlier , iterations , samples ,

inliers)

29

30 irCamera = IRCamera.IRCamera(path)

31

32 path_db = os.path.join(path ,’webapp/database/data.db’)

33 database = Database.Database(path_db)

34

35

36 # Frame dimensions

37 framerate = 10

38 frame_width = 384

39 frame_heigth = 288

40

41 # Create videowriter as a SHM source , two images side -by -side

42 out = cv2.VideoWriter("appsrc ! video/x-raw , format=BGR ! queue !

videoconvert ! video/x-raw , format=BGRx ! nvvidconv ! omxh264enc !

video/x-h264 , stream -format=byte -stream ! h264parse ! rtph264pay pt

=96 config -interval =1 ! udpsink host =0.0.0.0 port =5000", 0,

framerate , (frame_width *2, frame_heigth))

43

44 # Initiate loop parameters

45 i = 0

46 k = 0

47 beam_existence_old = 1

48 beam_existence_old_old = 1

49

50 if __name__ == ’__main__ ’:

51

52 # Compile RansacFit.py with JIT

53 ransacFit.InitJIT ((frame_heigth , frame_width))

54

55 # Check camera status

56 status = irCamera.status ()

57

58 while status is True:

59

60 # Add sleep time to the program - used to lower the CPU usage

61 sleep (0.2 - time() % 0.2)

62

63 # Get thermal image and array from IR camera

64 image_thermal , array_temp = irCamera.getThermal ()

65

66

67 # Find the tapping beam region and check for existence of the

tappingbeam

83

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

68 loc , image_tapping , beam_existence = featureTracking.

TemplateMatching(image_thermal)

69

70 # Calculate the average of the beam existence parameter , used to

filter out transient values

71 beam_average_existence = np.mean([beam_existence ,

beam_existence_old , beam_existence_old_old])

72

73 if beam_average_existence == 1:

74

75 # Equalize the histogram of the image

76 image_eq = beamDetector.HistogramEqual(image_tapping)

77

78 # Create a binary image

79 image_binary = beamDetector.BinaryImage(image_eq)

80

81 # Calculate the beam -shape paraemters

82 beam_data , beam_status = beamDetector.BeamShape(loc ,

image_binary)

83

84

85 # Use RansacFit to find the inliers

86 inliers ,line_xy , image_inliers , theta_line = ransacFit.

FindInliers(image_binary)

87

88

89 # Detect mean , max and min temperature in the tappingbeam

90 temp_max , temp_mean , temp_min = beamDetector.TempCalculation

(array_temp , image_inliers)

91

92 # Convert to BGR format

93 image_inliers = cv2.cvtColor(np.array(image_inliers), cv2.

COLOR_GRAY2BGR)

94

95 # Horizontaly stack the images before sending them to the

GStreamer pipeline

96 image_GST = np.hstack ((image_thermal , image_inliers))

97

98 else:

99

100 # Thermal image side -by -side , if the template matching fails

101 image_GST = np.hstack ((image_thermal ,image_thermal))

102

103 # Initialize the remaining values

104 temp_max , temp_mean , temp_min = 0,0,0

105 inliers , line_xy , theta_line , beam_data , beam_status = 0, 0,

0, 0, 0

84

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

106

107 # Write to SHM

108 out.write(image_GST)

109

110 # Save data to database , for every 5th iteration

111 if i >= 5:

112 # Time

113 timestamp = datetime.now().replace(microsecond =0)

114

115 # Update temperature data

116 database.update_temperature ((temp_max , temp_mean , temp_min ,

timestamp))

117

118 # Update image date

119 database.update_imagedata ((inliers , line_xy , theta_line ,

beam_existence , beam_data , beam_status , timestamp))

120

121 i = 0

122

123 i = i + 1

124

125 # Update existence parameter

126 beam_existence_old = beam_existence

127 beam_existence_old_old = beam_existence_old

85

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

C.1.2 IRCamera.py

1 #! /usr/bin/env python3

2 from ctypes.util import find_library

3 import numpy as np

4 import ctypes as ct

5 import cv2

6 import os

7 import sys

8 import time

9

10 class IRCamera(object):

11 """

12 IRCamera object initializes the thermal camera and

13 returns the thermal image and the temperature array

14 """

15 def __init__(self ,source):

16 """

17 Initialize camera variables

18 """

19 # create log dir if non existent

20 if not os.path.exists(’./src/log’):

21 os.mkdir(’./src/log’)

22

23 if not os.path.exists(’./src/images ’):

24 os.mkdir(’./src/images ’)

25

26

27 # load library

28 if os.name == ’nt’:

29 #windows:

30 path_dll = os.path.join(source , "bin\\x64\\ libirimager.dll"

)

31 self.libir = ct.CDLL(path_dll)

32

33 #init vars for Windows

34 self.pathXml = ct.c_char_p(b’./ config /20022030. xml’)

35 self.pathFormat = ct.c_char_p(b’./ config/’)

36 self.pathLog = ct.c_char_p(b’./log/logfilename ’)

37 print(’===== Windows OS ===== ’)

38

39 else:

40 print(’DLL path:’,source)

41 #linux:

42 self.libir = ct.cdll.LoadLibrary(ct.util.find_library("

irdirectsdk"))

43

44 #init vars for Linux

86

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

45 path_xml = os.path.join(source , "config /20022030. xml")

46 self.pathXml = ct.c_char_p(path_xml.encode ())

47 self.pathFormat = ct.c_char_p ()

48 path_log = os.path.join(source , "log/logfilename")

49 self.pathLog = ct.c_char_p(path_log.encode ())

50 print(’===== Linux OS =====’)

51

52

53 # init vars for thermal camera

54 self.palette_width = ct.c_int()

55 self.palette_height = ct.c_int()

56 self.thermal_width = ct.c_int()

57 self.thermal_height = ct.c_int()

58 self.serial = ct.c_ulong ()

59

60 # instance of EvoIRFrameMetadata class

61 self.metadata = self.EvoIRFrameMetadata ()

62

63 # init lib

64 self.retLib = self.libir.evo_irimager_usb_init(self.pathXml ,

self.pathFormat , self.pathLog)

65 print(’===== Init IR imager library =====’)

66 if self.retLib != 0:

67 print("error at init")

68 exit(self.retLib)

69

70 # get the serial number

71 ret = self.libir.evo_irimager_get_serial(ct.byref(self.serial))

72 print(’serial: ’ + str(self.serial.value))

73

74 # get thermal image size

75 self.libir.evo_irimager_get_thermal_image_size(ct.byref(self.

thermal_width), ct.byref(self.thermal_height))

76 print(’thermal width: ’ + str(self.thermal_width.value))

77 print(’thermal height: ’ + str(self.thermal_height.value))

78

79 # init thermal data container

80 self.np_thermal = np.zeros ([self.thermal_width.value * self.

thermal_height.value], dtype=np.uint16)

81 self.npThermalPointer = self.np_thermal.ctypes.data_as(ct.

POINTER(ct.c_ushort))

82

83 # get palette image size , width is different to thermal image

width duo to stride alignment !!!

84 self.libir.evo_irimager_get_palette_image_size(ct.byref(self.

palette_width), ct.byref(self.palette_height))

85 print(’palette width: ’ + str(self.palette_width.value))

87

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

86 print(’palette height: ’ + str(self.palette_height.value))

87

88 # init image container

89 self.np_img = np.zeros ([self.palette_width.value * self.

palette_height.value * 3], dtype=np.uint8)

90 self.npImagePointer = self.np_img.ctypes.data_as(ct.POINTER(ct.

c_ubyte))

91

92

93 """

94 Initialize calibration variables

95 """

96 # Initilize camera parameters

97 self.f = 0.013 # focal length of the 029 lens on the Optris

PI400i

98 self.Sx = 384 # camera resolution in the x-axis (horisontal)

99 self.Sy = 288 # camera resolution in the y-axis (vertical)

100

101 # Camera intrinsic calibration matrix

102 self.mtx = np.array ([[-self.f/self.Sx, 0,

self.Sx/2],

103 [0, -self.f/self.Sy,

self.Sy/2],

104 [0, 0,

1]])

105 # Camera distortion calibration matrix

106 self.dist = 0

107

108 # Splits up calibration into making a map , and doing the

remapping in calibrate

109 # member function

110 # This is faster than doing cv2.undistort ()

111 self.map1 , self.map2 = cv2.initUndistortRectifyMap(

112 self.mtx ,

113 self.dist ,

114 np.eye(3),

115 self.mtx ,

116 (self.Sx , self.Sy),

117 cv2.CV_32FC1

118)

119

120 def status(self):

121 """

122 Returns a boolean value for the initialization status of the

camera

123 """

124

88

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

125 if self.retLib == 0:

126 status = True

127 print(’===== IR camera ready ====== ’)

128

129 else:

130 status = False

131 print(’Error at init. Camera status:’,status)

132

133 return status

134

135

136

137

138 def getThermal(self):

139 """

140 Function for returning the thermal image and temperature array

141 """

142

143 ret = self.libir.evo_irimager_get_thermal_palette_image_metadata

(self.thermal_width , self.thermal_height , self.

npThermalPointer , self.palette_width , self.palette_height ,

self.npImagePointer , ct.byref(self.metadata))

144

145 if ret != 0:

146 print(’error on evo_irimager_get_thermal_palette_image ’ +

str(ret))

147

148

149 # get the palette image

150 thermal_image = self.np_img.reshape(self.palette_height.value ,

self.palette_width.value , 3)[:,:,::-1]

151

152 # get the thermal array

153 thermal_vector = self.np_thermal /10. - 100.

154

155 thermal_array = thermal_vector.reshape(self.thermal_height.value

, self.thermal_width.value)

156

157

158 return thermal_image , thermal_array

159

160 def calibrate(self ,image):

161 """

162 Perform calibration of input OpenCV image

163 """

164 # Make copy of input image

165

89

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

166 # # Perform color calibration

167 # image_float = np.array(image , float) * self.gain_matrix

168

169 # # Clip to keep values between 0 and 255

170 # # Using [:] sets the value of object "image" without making a

new object

171 # # i.e. just replaces in-object which does not need a return

statement

172 # calibrated [:] = np.clip(image_float , 0, 255)

173

174 # Apply camera distortion calibration

175 calibrated = image.copy()

176 calibrated [:] = cv2.remap(calibrated , self.map1 , self.map2 , cv2.

INTER_LINEAR)

177 return calibrated

178

179

180 class EvoIRFrameMetadata(ct.Structure):

181 """

182 Structure that contains additional frame information from the

camera

183 """

184

185 # Define EvoIRFrameMetadata structure for additional frame info

186 _fields_ = [

187 ("counter", ct.c_uint),

188 ("counterHW", ct.c_uint),

189 ("timestamp", ct.c_longlong),

190 ("timestampMedia", ct.c_longlong),

191 ("flagState", ct.c_int),

192 ("tempChip", ct.c_float),

193 ("tempFlag", ct.c_float),

194 ("tempBox", ct.c_float),

195]

196

197

198

199

200 if __name__ == "__main__":

201

202 path = os.path.dirname(os.path.abspath(__file__))

203

204 # Crop area , tapping test

205 class Template ():

206 x = 145

207 y = 40

208 w = 80

90

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

209 h = 230

210

211 xyTemplate = Template ()

212

213 # instance of IRCamera class

214 irCamera = IRCamera(path)

215

216 # capture and display image till q is pressed

217 t, i = 0, 0

218 while chr(cv2.waitKey (1) & 255) != ’q’:

219

220

221 # get thermal image and temperature array

222 image_thermal , array_thermal = irCamera.getThermal ()

223

224 # Index thermal image array to create template image

225 image_template = cv2.cvtColor(image_thermal , cv2.COLOR_BGR2GRAY)

[xyTemplate.y:(xyTemplate.y + xyTemplate.h), xyTemplate.x:(

xyTemplate.x + xyTemplate.w)]

226

227

228 # Save images

229 cv2.imwrite(’../src/images/frame {}.png’.format(i),

image_template)

230 print(’Captured!’)

231 i +=1

91

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

C.1.3 FeatureTracking.py

1

2 import os

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import cv2

6 import time

7

8

9 class FeatureTracking(object):

10 """

11 Class for tracking the tapping beam , uses template matching finding

the tapping beam region.

12 """

13

14 def __init__(self ,templatePath):

15 """

16 Initialize variables

17 """

18 self.templatePath = templatePath

19

20

21 def TemplateMatching(self ,image):

22 """

23 Template matching for finding the specific image region where

the tapping beam is located.

24 Requires a template of the tapping beam , use Template.py to

create the desired template image.

25 """

26 # Read template

27 template_image = cv2.imread(self.templatePath)

28

29 # Convert template image to grayscale

30 template_image = cv2.cvtColor(template_image ,cv2.COLOR_BGR2GRAY)

31

32 # Convert CV image to grayscale

33 image_gray = cv2.cvtColor(image , cv2.COLOR_BGR2GRAY)

34

35 # Get template height and width

36 template_w , template_h = template_image.shape [:: -1]

37

38 # Get image height and width

39 image_w , image_h = image_gray.shape [::-1]

40

41 # Convert CV image to grayscale

42 image_gray = cv2.cvtColor(image , cv2.COLOR_BGR2GRAY)

43

92

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

44 # Perform match operations

45 res = cv2.matchTemplate(image_gray ,template_image ,cv2.

TM_CCOEFF_NORMED)

46 # Specify a threshold for the matching

47 threshold = 0.8

48

49 # Store the coordinates of matched area in a numpy array

50 loc = np.where(res >= threshold)[:: -1]

51

52 # Base of the segmented image

53 image_segmented = np.zeros(image_gray.shape ,np.uint8)

54

55 if bool(loc [0]. any()) is False:

56 loc = (0, 0, image_w , image_h)

57 beam_existence = 0

58

59 # Isolate the tapping ROI

60 image_segmented = image_segmented

61

62

63 else:

64 loc = (int(round(np.mean(loc [0]) ,0)),int(round(np.mean(loc

[1]) ,0)),template_w , template_h)

65 beam_existence = 1

66 # Isolate the tapping ROI

67 image_segmented[loc [1]:(loc[1] + loc [3]), loc [0]:(loc [0] +

loc [2])] = image_gray[loc [1]:(loc[1] + loc [3]), loc [0]:(

loc [0] + loc [2])]

68

69

70 return loc , image_segmented , beam_existence

71

72

73 def BoundingBox(self ,image ,loc ,theta):

74 """

75 Draw a bounding box over the tappingbeam grayscale image.

76 The coordinates for the bounding box is numbered ccw ,

77 starting with the top left corner.

78 """

79

80 # Define top left corner , width and heigth

81 pt0 , width , heigth = (loc[0],loc [1]), loc[2], loc[3]

82

83 # Calculate the absolute value of the tapping beam angle

84 absDelta = np.ceil(np.abs(heigth/np.tan(theta [0])))

85

86 # Correct the offset

93

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

87 if theta [1] < 90:

88 delta = absDelta

89 else:

90 delta = - absDelta

91

92 # Define corners

93 pt1 = [pt0[0], pt0 [1]]

94 pt2 = [pt0[0] + delta , pt0[1] + heigth]

95 pt3 = [pt0[0] + width + delta , pt0 [1] + heigth]

96 pt4 = [pt0[0] + width , pt0 [1]]

97

98 # Create list of corners

99 corners = [np.array([pt1 , pt2 , pt3 , pt4], dtype = int)]

100

101 # Draw the contour

102 image_contour = cv2.drawContours(np.array(image),corners

, -1 ,(255 ,255 ,255) ,2)

103

104 return image_contour

94

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

C.1.4 BeamDetector.py

1 import numpy as np

2

3

4

5 class BeamDetector(object):

6

7 def __init__(self ,thresh_gain = 100, heigth_top = 0, heigth_bottom =

0):

8 """

9 Initialize the variables.

10 """

11 # BinaryImage

12 self.thresh_gain = thresh_gain

13

14 # BeamShape

15 self.heigth_top = heigth_top # starting position for the edge

detection

16 self.heigth_bottom = heigth_bottom # djust stop position for the

edge detetion

17

18 def BinaryImage(self ,image):

19 """

20 Binary image thresholding based upon temperature/image

brightness.

21 This algorithm is based upon the idea that the tapping beam

always

22 exists in the brightest image pixels , within some margin.

23 """

24 # Base of the binary image

25 image_binary = np.zeros(image.shape ,np.uint8)

26 image_white = np.uint8 (255)

27

28 # Find the pixels with maximum brightness

29 i_mean = np.mean(image)

30 i_max = np.amax(image)

31 i_thresh = np.ceil(i_max - i_mean/i_max*self.thresh_gain)

32 indices = np.where(image >= i_thresh)

33

34 # print(’Threshold:’,i_thresh ,’Max:’,i_max ,’Mean:’,i_mean)

35

36 # Converts the coordinates

37 coordinates_x = np.transpose(indices [0])

38 coordinates_y = np.transpose(indices [1])

39

40 image_binary[coordinates_x ,coordinates_y] = image_white

41

95

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

42 return image_binary

43

44

45

46 def HistogramEqual(self ,image):

47 """

48 Function for normalizing the histogram

49 https :// www.imageeprocessing.com /2011/04/ matlab -code -histogram -

equalization.html

50 """

51

52 # Create histogram vector

53 histogram = np.zeros (256)

54 buffer , _ = np.histogram(image ,

55 bins=np.arange (256),

56 range=(0, 1))

57

58 histogram [0: buffer.size]= buffer

59

60 # Cumulative distrobution of the histogram

61 cdf = histogram.cumsum ()

62

63 # Create masked array , excluding indices where the value is zero

64 cdf_m = np.ma.masked_equal(cdf ,0)

65

66 # Scale the histogram to values between 0 and 255

67 cdf_m = (cdf_m - cdf_m.min())*255/(cdf_m.max()-cdf_m.min())

68

69 # Fill inn the blank indexes with the value = 0

70 cdf = np.ma.filled(cdf_m ,0).astype(’uint8’)

71

72 # Create the new equalised image

73 image_eq = cdf[image]

74

75 return image_eq

76

77 def BeamShape(self , loc , image):

78 """

79 Slices the tapping beam into horizontal vectors with even

spacing ,

80 detects the edges by convolving a filter with the image vector.

81 """

82 # Define top left corner , width and heigth

83 pt0 , width , heigth = (loc[0],loc [1]), loc[2], loc[3]

84

85

86 # Isolate the pixels of the tappingbeam , found with template.

96

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

87 image_isolated = np.zeros ((heigth ,width))

88 image_isolated = image[pt0 [1]:(pt0[1] + heigth), pt0 [0]:(pt0 [0]

+ width)]

89

90 # For local testing

91 # image_isolated [: ,10:20] = 0

92 # image_isolated [: ,30:40] = 0

93

94 # Increment vector for iterating through the image in the y-

direction

95 y_increment = np.arange(self.heigth_top , (heigth + self.

heigth_bottom), 10)

96

97 # Empty array for storing the y-position and the detected number

of edges

98 beam_data = np.zeros((len(y_increment) ,2))

99

100 # Initialize counter variable

101 k = 0

102

103 # Iterating through the image in the y-direction , row -by -row.

104 for i in y_increment:

105

106 # Convolve the extracted image data with a Gaussian

derivative filter

107 row = image_isolated[i,:]

108 row_convolve = np.convolve ([1,0,-1], row)

109

110 # Find peaks in dataset , inspired by: https :// tcoil.info/

find -peaks -and -valleys -in-dataset -with -python/

111 row_convolve_peak = (np.diff(np.sign(np.diff(np.abs(

row_convolve)))) < 0).nonzero ()[0] + 1

112

113 # Count number of edges in row

114 edges = len(row_convolve_peak)

115

116 # Save data

117 beam_data[k,:] = np.array([i,edges])

118

119 # Update counter

120 k += 1

121

122 # Remove noise , only accept data between 0 and 8

123 indices = np.where(beam_data [:,1]>8)

124 coordinates_x = np.transpose(indices [0])

125

126 # Set the invalid values to zero

97

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

127 beam_data[coordinates_x , 1] = 0

128

129 # Calculate the mean of the tappingbeam shape -values

130 beam_value_mean = np.mean(beam_data [: ,1])

131

132 if 3 >= beam_value_mean > 1:

133

134 beam_status = 1 # Optimal shape

135

136 elif beam_value_mean > 3:

137

138 beam_status = 0 # Sparse shape

139

140 else:

141

142 beam_status = 2 # Fault , check beam_data matrix or adjust

the y-increment vector in BeamDetector.BeamShape ()

143

144 return beam_data , beam_status

145

146

147

148 def TempCalculation(self , array_thermal , image_binary):

149 """

150 Calculates the mean , max and min temperature of the tapping beam

.

151 """

152

153 # Find the pixel coordinates for the tapping beam

154 indices = np.where(image_binary == 255)

155

156 # Converts the coordinates

157 coordinates_x = np.transpose(indices [0])

158 coordinates_y = np.transpose(indices [1])

159

160 coordinates_y = np.delete(coordinates_y , np.where(coordinates_y

>= 382))

161

162 # Empty array

163 temp_region = np.zeros(image_binary.shape , np.uint8)

164

165 # Isolate the tapping beam temperature

166 temp_region = array_thermal[coordinates_x , coordinates_y]

167

168 # Calcualte mean , max and min temperature

169 temp_mean = np.mean(temp_region)

170 temp_max = np.max(temp_region)

98

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

171 temp_min = np.min(temp_region)

172

173 return temp_max , temp_mean , temp_min

99

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

C.1.5 RansacFit.py

1 import numpy as np

2 import numba as nb

3 import cv2

4 from numba import jit

5 from numba.experimental import jitclass

6

7

8 spec = [(’thresh ’,nb.float32),

9 (’iterations ’,nb.uint32),

10 (’samples ’,nb.uint32),

11 (’inliers ’,nb.uint32)]

12 @jitclass(spec)

13 class RansacFit(object):

14

15 def __init__(self , thresh = 3, iterations = 1000, samples = 4,

inliers = 50):

16

17 """

18 Initialize the variables for RansacFit(thresh),

19 where thresh is the inlier threshold for the RANSAC algorithm.

20 """

21 self.thresh = np.float32(thresh)

22 self.iterations = np.uint32(iterations)

23 self.samples = np.uint32(samples)

24 self.inliers = np.uint32(inliers)

25

26 def InitJIT(self , data_size):

27

28 """

29 Initializes the JIT - compiler.

30 Run this function directly after the instansiation of the

RansacFit class.

31 Note that the data input to this function should be of the same

size and type

32 as the data that is to be used in the FindInliers function

33 """

34 # Create sample data

35 data = np.ones(data_size , dtype = np.uint32)

36

37 data [30:150 ,150:170] = np.uint32 (255)

38 data [100:150 ,100:150] = np.uint32 (255)

39

40 # Rund the Ransac function with sample data

41 initInliers , _, _, _ = self.FindInliers(data)

42

43 # If sucsessfull , print to terminal

100

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

44 if initInliers is not None:

45 print(’===== JIT compiled RansacFit.py =====’)

46

47

48 def FindInliers(self , data):

49

50 """

51 Finds the inliers in a dataset based upon a y=ax+b line model.

52 Takes in a binary image of the segmented tappingbeam , returns

the

53 position for.

54 """

55

56 # Find the matrix positions where data == 255

57 indices = np.where(data == 255)

58

59 # Converts the coordinates

60 data_x , data_y = np.transpose(indices [1]), np.transpose(indices

[0])

61

62 # Create data matrix - flipped axis for using image coordinate

system

63 data_xy = np.column_stack ((data_x ,data_y))

64

65 # Robustly find inlier data with self written RANSAC algorithm

66 bestModel , bestInliers= self.fit_ransac(data_xy , max_iters =

self.iterations , samples_to_fit = self.samples ,

inlier_threshold = self.thresh , min_inliers = self.inliers)

67

68 # Generate coordinates of estimated line model

69 line_x_min = np.uint32(np.min(bestInliers [:,0])) # lowest index

value

70 line_x_max = np.uint32(np.max(bestInliers [:,0])) # highest index

value

71

72 line_x = np.arange(start = line_x_min , stop = line_x_max , dtype

= np.float64) # arange integers from lowest to highest

73 length_x = len(line_x) # length of line

74 line_y = np.zeros(length_x , dtype = np.float64) # empty zeros

vector for y-value

75

76

77 bestModel_a = bestModel [0,0]

78 bestModel_b = bestModel [1,0]*np.ones(length_x , dtype = np.

float64)

79 line_y = bestModel_a*line_x + bestModel_b

80

101

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

81 # Calculate the absolute angle for the line model

82 # startPoint is supposed to be the point on the RANSAC ’ed

line

83 # that is closest to the tappinspout (top right corner).

84 # endPoint is supposed to be the point on the RANSAC ’ed line

85 # at the bottom of the image.

86

87 if line_y [0] == np.max(line_y):

88 startPoint = (line_x[-1], line_y [-1])

89 endPoint = (line_x [0], line_y [0])

90

91 elif line_y [0] == np.min(line_y):

92 startPoint = (line_x [0], line_y [0])

93 endPoint = (line_x[-1], line_y [-1])

94

95 # Find the delta -distance between startPoint and endPoint in x-

and y-direction

96 deltaX = (endPoint [0] - startPoint [0])

97 deltaY = (endPoint [1] - startPoint [1])

98

99 theta_deg = np.arctan2(deltaY ,deltaX)*180/np.pi

100

101

102 # Base of the binary image

103 image_binary = np.zeros(data.shape , dtype = np.uint8)

104 image_white = np.uint8 (255)

105

106 # Create binary image of the inliers

107 index_length = len(bestInliers [:,0])

108 index_x = np.zeros((index_length ,1), dtype = np.uint32)

109 index_y = np.zeros((index_length ,1), dtype = np.uint32)

110 index_x [:,0] = bestInliers [:,0]

111 index_y [:,0] = bestInliers [:,1]

112

113 # Iterate through the image matrix

114 for ii in range(index_length):

115 image_binary[index_y[ii ,0], index_x[ii ,0]] = image_white

116

117 image_binary = np.copy(image_binary)

118

119 return bestInliers , bestModel , image_binary , theta_deg

120

121

122

123 def fit_lsq(self , X, y):

124

125 """

102

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

126 Source: https :// medium.com/@iamhatesz/random -sample -consensus -

bd2bb7b1be75

127 Fits model for a given data using least squares.

128 X should be an mxn matrix , where m is number of samples , and n

is number of independent variables.

129 y should be an mx1 vector of dependent variables.

130 """

131

132 b = np.ones((X.shape[0], 1), np.uint32)

133 A = np.hstack ((X, b)).astype(np.float64)

134

135 theta = np.linalg.lstsq(A, y.astype(np.float64), rcond =-1)[0]

136

137 return theta

138

139

140

141 def evaluate_model(self , X, y, theta , inlier_threshold):

142 """

143 Source: https :// medium.com/@iamhatesz/random -sample -consensus -

bd2bb7b1be75

144

145 Evaluates model and returns total number of inliers.

146 X should be an mxn matrix , where m is number of samples , and n

is number of independent variables.

147 y should be an mx1 vector of dependent variables.

148 theta should be an (n+1)x1 vector of model parameters.

149 inlier_threshold should be a scalar.

150 """

151

152

153 X = X.copy()

154 b = np.ones((X.shape[0], 1), np.uint32)

155 y = y.copy()

156 A = np.hstack ((y, X, b))

157 theta = np.append(-1., theta)

158

159 distances = np.abs(np.sum(A*theta , axis =1)) / np.sqrt(np.sum(np.

power(theta[:-1], 2)))

160 inliers = (distances <= inlier_threshold).astype(np.bool_)

161 num_inliers = np.count_nonzero(inliers)

162

163 return num_inliers , inliers

164

165

166

167 def fit_ransac(self , data , max_iters , samples_to_fit ,

103

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

inlier_threshold , min_inliers):

168 """

169 Source: https :// medium.com/@iamhatesz/random -sample -consensus -

bd2bb7b1be75

170 """

171 # Create X and y vector from the dataset

172 data_len = len(data [:,0])

173 X = np.zeros ((data_len ,1), dtype = np.uint32)

174 y = np.zeros ((data_len ,1), dtype = np.uint32)

175 X[:,0] = data [:,0]

176 y[:,0] = data [:,1]

177

178 # Declare variables for RANSAC algorithm

179 best_model = np.zeros ((2,1),dtype = np.float64)

180 best_inliers = np.zeros ((X.shape[0], 1), dtype = np.bool_)

181 best_model_performance = np.uint32 (0)

182 num_samples = X.shape [0]

183

184

185

186 # Iterate through the data set with random points

187 for i in range(max_iters):

188 sample = np.random.choice(num_samples , size=samples_to_fit ,

replace=False)

189 model_params = self.fit_lsq(X[sample], y[sample])

190 model_performance , model_inliers = self.evaluate_model(X, y,

model_params , inlier_threshold)

191

192 if model_performance < min_inliers:

193 continue

194

195 if model_performance > best_model_performance:

196 best_model = model_params

197 best_model_performance = model_performance

198 best_inliers [:,0] = model_inliers

199

200

201 # Find the index for each inlier , achieve proper array

dimensions

202 best_inliers_index = np.zeros((best_model_performance , 1), dtype

= np.uint32) # create zeros vector

203 best_inliers_index [:,0] = np.where(best_inliers)[0]. astype(np.

uint32) # transfer the inlier indexes into the new vector

204

205 inliers_x = np.zeros((best_model_performance ,1), dtype = np.

uint32) # create zeros vector

206 inliers_y = np.zeros((best_model_performance ,1), dtype = np.

104

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

uint32) # create zeros vector

207

208 inliers_x [:] = X[best_inliers_index.reshape(

best_model_performance)] # transer image position of the

inliers in x-direction

209 inliers_y [:] = y[best_inliers_index.reshape(

best_model_performance)] # transer image position of the

inliers in y-direction

210

211 inliers_xy = np.hstack ((inliers_x , inliers_y)) # combine the

inliers into a nx2 array

212

213

214 return best_model , inliers_xy

105

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

C.1.6 Database.py

1 from sqlite3 import Error

2 from datetime import datetime

3 import numpy as np

4 import sqlite3

5 import io

6 import os

7

8 class Database(object):

9

10

11 def __init__(self ,dbPath):

12 """

13 Initalize variables

14 """

15 self.dbPath = dbPath

16

17 # Register a new datatype

18 def adapt_array(arr):

19 """

20 http :// stackoverflow.com/a/31312102/190597 (SoulNibbler)

21 """

22 out = io.BytesIO ()

23 np.save(out , arr)

24 out.seek (0)

25 return sqlite3.Binary(out.read())

26

27 def convert_array(text):

28 out = io.BytesIO(text)

29 out.seek (0)

30 return np.load(out)

31

32 # Converts np.array to TEXT when inserting

33 sqlite3.register_adapter(np.ndarray , adapt_array)

34

35 # Converts TEXT to np.array when selecting

36 sqlite3.register_converter("array", convert_array)

37

38 # Temperature data table

39 temp_table = """ CREATE TABLE IF NOT EXISTS temperature (

40 id integer PRIMARY KEY ,

41 tempMax float NOT NULL ,

42 tempMean float NOT NULL ,

43 tempMin float NOT NULL ,

44 timestamp text NOT NULL); """

45

46

106

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

47

48 # Image data table

49 image_table = """ CREATE TABLE IF NOT EXISTS imagedata (

50 id integer PRIMARY KEY ,

51 inliers arr NOT NULL ,

52 lineXY arr NOT NULL ,

53 lineAngle float NOT NULL ,

54 beamExcistence float NOT NULL ,

55 beamShape arr NOT NULL ,

56 beamStatus float NOT NULL ,

57 timeStamp text NOT NULL); """

58

59

60

61 # create a database connection

62 self.conn = self.create_connection ()

63

64 # create tables

65 if self.conn is not None:

66 # create temperature table

67 self.create_table(temp_table)

68

69 # create image data table

70 self.create_table(image_table)

71

72 print("===== Created connection to database =====")

73

74 else:

75 print("Error! cannot create the database connection.")

76

77

78 def create_connection(self):

79 """ create a database connection to a SQLite database """

80 conn = None

81 try:

82 conn = sqlite3.connect(self.dbPath , check_same_thread =

False , detect_types=sqlite3.PARSE_DECLTYPES)

83 return conn

84

85 except Error as e:

86 print(e)

87

88 return conn

89

90 def create_table(self , create_table_sql):

91 """ create a table from the create_table_sql statement

92 :param conn: Connection object

107

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

93 :param create_table_sql: a CREATE TABLE statement

94 :return:

95 """

96 try:

97 c = self.conn.cursor ()

98

99 c.execute(create_table_sql)

100

101 except Error as e:

102 print(e)

103

104 def update_temperature(self , data):

105

106 sql = ’’’ INSERT INTO temperature(tempMax , tempMean , tempMin ,

timestamp)

107 VALUES (?,?,?,?) ’’’

108

109 cur = self.conn.cursor ()

110 cur.execute(sql , data)

111 self.conn.commit ()

112 return cur.lastrowid

113

114 def update_imagedata(self ,data):

115

116 sql = ’’’ INSERT INTO imagedata(inliers , lineXY , lineAngle ,

beamExcistence , beamShape , beamStatus , timestamp)

117 VALUES (?,?,?,?,?,?,?) ’’’

118

119 cur = self.conn.cursor ()

120

121 cur.execute(sql , data)

122

123 self.conn.commit ()

124 return cur.lastrowid

125

126 def select_data(self):

127

128 cur = self.conn.cursor ()

129 cur.execute("SELECT * FROM temperature ORDER BY id DESC LIMIT 1"

)

130

131 rows_temperature = cur.fetchall ()

132

133 cur.execute("SELECT * FROM imagedata ORDER BY id DESC LIMIT 5")

134

135 rows_imagedata = cur.fetchall ()

136

108

C.1. COMPUTER VISION ALGORITHMS APPENDIX C. CODE

137 return rows_temperature , rows_imagedata

138

139 if __name__ == ’__main__ ’:

140

141

142 database = Database(r’/home/elkem/GitLab/elkemvision/webapp/database

/data.db’)

143

144 _, beam_data = database.select_data ()

145 beam_existence = beam_data [0][4]

146 beam_angle = beam_data [0][3]

147 print(beam_angle)

109

C.2. HUMAN MACHINE INTERFACE APPENDIX C. CODE

C.2 Human Machine Interface

C.2.1 mainFlask.py

1 #!/usr/bin/env python

2

3 from webapp import app

4

5

6 if __name__ == ’__main__ ’:

7 app.run(host=’0.0.0.0 ’, debug=False)

110

C.2. HUMAN MACHINE INTERFACE APPENDIX C. CODE

C.2.2 home.py

1 #!/usr/bin/env python

2

3 from webapp import app , path

4 from src import Database

5 from flask import render_template , url_for , Response

6 import numpy as np

7 import cv2

8 import io

9 import random

10 import json

11 import time

12 from datetime import datetime

13 import os

14

15

16

17

18 # Connect to database

19 path_db = os.path.join(path ,’database ’,’data.db’)

20 database = Database.Database(path_db)

21

22 # Capture UDP stream

23 cap = cv2.VideoCapture("udpsrc port =5000 ! application/x-rtp ! queue !

rtph264depay ! h264parse ! nvv4l2decoder ! nvvidconv ! videoconvert

! appsink")

24

25 # Defines the

26 beam_angle_good = np.array ([0 ,72])

27 beam_angle_bad = np.array ([72 ,120])

28

29 # Yield images

30 def frame_thermal ():

31 while True:

32 ret , frame = cap.read()

33 frame_split = frame [: ,0:383]

34 if frame_split is not None:

35 ret , frame_split = cv2.imencode(’.jpg’, frame_split)

36 frame_split = frame_split.tobytes ()

37 yield (b’--frame\r\n’b’Content -Type: image/jpeg\r\n\r\n’ +

frame_split + b’\r\n’)

38

39 def frame_binary ():

40 while True:

41 ret , frame = cap.read()

42 frame_split = frame [: ,383:767]

43 if frame_split is not None:

111

C.2. HUMAN MACHINE INTERFACE APPENDIX C. CODE

44 ret , frame_split = cv2.imencode(’.jpg’, frame_split)

45 frame_split = frame_split.tobytes ()

46 yield (b’--frame\r\n’b’Content -Type: image/jpeg\r\n\r\n’ +

frame_split + b’\r\n’)

47

48 def frame_shape ():

49 while True:

50 _, beam_data = database.select_data ()

51 beam_existence = np.mean(np.array([beam_data [0][4] , beam_data

[1][4] , beam_data [2][4] , beam_data [3][4] , beam_data [4][4]]))

52 beam_status = np.mean(np.array([beam_data [0][6] , beam_data

[1][6] , beam_data [2][6] , beam_data [3][6] , beam_data [4][6]]))

53

54

55 if beam_existence == 1 and beam_status == 1:

56 frame = cv2.imread(’webapp/static/HMI_beam_shape_optimal.png

’ ,1)

57

58 elif beam_existence == 1 and beam_status == 0:

59 frame = cv2.imread(’webapp/static/HMI_beam_shape_split.png’

,1)

60

61 elif beam_existence == 0:

62 frame = cv2.imread(’webapp/static/HMI_beam_shape_stopped.png

’ ,1)

63

64 else:

65 frame = None

66

67 if frame is not None:

68 ret , frame = cv2.imencode(’.png’, frame)

69 frame = frame.tobytes ()

70 yield (b’--frame\r\n’b’Content -Type: image/jpeg\r\n\r\n’ +

frame + b’\r\n’)

71

72

73 def frame_angle ():

74

75 while True:

76 _, beam_data = database.select_data ()

77 beam_existence = np.mean(np.array([beam_data [0][4] , beam_data

[1][4] , beam_data [2][4] , beam_data [3][4] , beam_data [4][4]]))

78 beam_angle = np.mean(np.array([beam_data [0][3] , beam_data [1][3] ,

beam_data [2][3] , beam_data [3][3] , beam_data [4][3]]))

79

80 if beam_existence == 1 and beam_angle_good [0] < beam_angle <=

beam_angle_good [1]:

112

C.2. HUMAN MACHINE INTERFACE APPENDIX C. CODE

81 frame = cv2.imread(’webapp/static/

HMI_beam_angle_free_pouring.png’ ,1)

82

83 elif beam_existence == 1 and beam_angle_bad [0] < beam_angle <=

beam_angle_bad [1]:

84 frame = cv2.imread(’webapp/static/HMI_beam_angle_sticking.

png’ ,1)

85

86 elif beam_existence == 0:

87 frame = cv2.imread(’webapp/static/HMI_beam_shape_stopped.png

’ ,1)

88

89 else:

90 frame = None

91

92

93 if frame is not None:

94 ret , frame = cv2.imencode(’.png’, frame)

95 frame = frame.tobytes ()

96 yield (b’--frame\r\n’b’Content -Type: image/jpeg\r\n\r\n’ +

frame + b’\r\n’)

97

98

99 @app.route(’/’)

100 def index ():

101 """ Home template """

102 return render_template(’home.html’)

103

104

105 @app.route(’/camera_feed_thermal ’)

106 def camera_feed_thermal ():

107 """ Video streaming route."""

108 return Response(frame_thermal (), mimetype=’multipart/x-mixed -replace

; boundary=frame ’)

109

110

111 @app.route(’/camera_feed_binary ’)

112 def camera_feed_binary ():

113 """ Video streaming route."""

114 return Response(frame_binary (), mimetype=’multipart/x-mixed -replace;

boundary=frame’)

115

116

117 @app.route(’/beam_status_image ’)

118 def beam_status_image ():

119 """ Beam status image """

120 return Response(frame_shape (), mimetype=’multipart/x-mixed -replace;

113

C.2. HUMAN MACHINE INTERFACE APPENDIX C. CODE

boundary=frame’)

121

122

123 @app.route(’/beam_angle_image ’)

124 def beam_angle_image ():

125 """ Beam angle image """

126 return Response(frame_angle (), mimetype=’multipart/x-mixed -replace;

boundary=frame’)

127

128

129 @app.route(’/beam -temp’)

130 def beam_temp ():

131 """ Temperature -data route """

132 def generate_temperature_data ():

133 while True:

134 temp_data , _ = database.select_data ()

135 json_data = json.dumps(

136 {’time’: temp_data [0][4] , ’value ’: temp_data [0][1:4]})

137 yield f"data:{ json_data }\n\n"

138 time.sleep (1)

139

140 return Response(generate_temperature_data (), mimetype=’text/event -

stream ’)

114

C.2. HUMAN MACHINE INTERFACE APPENDIX C. CODE

C.2.3 base.html

1 <!doctype html >

2 <html lang=en >

3

4 <head >

5 <!-- Bootstrap CSS -->

6 <link rel="stylesheet" href="static/bootstrap/css/bootstrap.min.css"

>

7

8 <title >{% block title %}{% endblock %}</title >

9 </head >

10

11 <body >

12 <nav class="navbar navbar -expand -lg navbar -light bg -light">

13 <div class="container -fluid">

14 <img src="{{ url_for(’

static ’, filename=’elkem -logo.png ’)}}">

15 <button class="navbar -toggler" type="button" data -bs -

toggle="collapse" data -bs-target="#navbarNav" aria -

controls="navbarNav" aria -expanded="false" aria -label=

"Toggle navigation">

16

17 </button >

18 <div class="collapse navbar -collapse" id="navbarNav">

19 <ul class="navbar -nav">

20 <li class="nav -item">

21 <a class="nav -link active" aria -current="page" href=

"/">Home

22

23 <li class="nav -item">

24 <a class="nav -link disabled" href="#" tabindex="-1"

aria -disabled="true">Data

25

26

27 </div >

28 </div >

29 </nav >

30 {% block home %}

31

32 {% endblock %}

33

34

35 <!-- Option 1: Bootstrap Bundle with Popper -->

36 <script src="static/bootstrap/js/bootstrap.bundle.min.js"></

script >

37

38 <!-- Option 2: Separate Popper and Bootstrap JS -->

115

C.2. HUMAN MACHINE INTERFACE APPENDIX C. CODE

39

40 <!-- <script src="https ://cdn.jsdelivr.net/npm/@popperjs/core@2

.5.4/ dist/umd/popper.min.js" integrity="sha384 -

q2kxQ16AaE6UbzuKqyBE9/u/KzioAlnx2maXQHiDX9d4/zp8Ok3f+M7DPm+

Ib6IU" crossorigin="anonymous"></script >

41 <script src="https :// cdn.jsdelivr.net/npm/bootstrap@5 .0.0- beta1/

dist/js/bootstrap.min.js" integrity="sha384 -

pQQkAEnwaBkjpqZ8RU1fF1AKtTcHJwFl3pblpTlHXybJjHpMYo79HY3hIi4NKxyj

" crossorigin="anonymous"></script > -->

42

43

44 </body >

45

46 </html >

116

C.2. HUMAN MACHINE INTERFACE APPENDIX C. CODE

C.2.4 home.html

1 {% extends "base.html" %}

2

3 {% block title %} Home Page {% endblock %}

4

5 {% block home %}

6

7 <body >

8 <h1>Tapping Beam Monitor </h1>

9 </body >

10 <body >

11 <!-- Image stream -->

12 <div class="container">

13 <div class="row">

14 <div class="col -md -4">

15

16 </div >

17

18 <div class="col -md -4">

19

20 </div >

21

22 <div class="col -md -4">

23 <div class="row">

24 <div class="col -12"><img src="beam_status_image" alt="

Tappingbeam"></div >

25 <div class="col -12"><img src="beam_angle_image" alt="

Tappingbeam"></div >

26 </div >

27 </div >

28

29 </div >

30 </div >

31 </body >

32

33

34 <!-- Temperature plot -->

35 <body >

36 <div class="container">

37 <div class="row">

38 <div class="col -12">

39 <div class="card">

40 <div class="card -body">

41 <canvas id="canvas_temp" ></canvas >

42 </div >

43 </div >

44 </div >

117

C.2. HUMAN MACHINE INTERFACE APPENDIX C. CODE

45 </div >

46 </div >

47 <!--suppress JSUnresolvedLibraryURL -->

48 <script src="https :// cdnjs.cloudflare.com/ajax/libs/jquery /3.4.0/

jquery.min.js"></script >

49 <!--suppress JSUnresolvedLibraryURL -->

50 <!-- <script src="https :// cdnjs.cloudflare.com/ajax/libs/twitter -

bootstrap /4.3.1/ js/bootstrap.min.js" ></script > -->

51 <!--suppress JSUnresolvedLibraryURL -->

52 <script src="https :// cdnjs.cloudflare.com/ajax/libs/Chart.js /2.8.0/

Chart.min.js" ></script >

53

54 <!-- Chart JavaScript -->

55 <!-- <script src="static/js/chart.min.js" ></script > -->

56

57 <script >

58 $(document).ready(function () {

59 const config = {

60 type: ’line’,

61 data: {

62 labels: [],

63 datasets: [{

64 label: ["Max temp."],

65 backgroundColor: [’rgba (255, 99, 132, 0.2)’],

66 borderColor: [’rgba (255, 99, 132, 1)’],

67 data: [],

68 fill: false ,

69 }, {

70 label: ["Mean temp."],

71 backgroundColor: [’rgba(54, 162, 235, 0.2)’],

72 borderColor: [’rgba(54, 162, 235, 1)’],

73 data: [],

74 fill: false ,

75 }, {

76 label: ["Min temp."],

77 backgroundColor: [’rgba (255, 206, 86, 0.2)’],

78 borderColor: [’rgba (255, 206, 86, 1)’],

79 data: [],

80 fill: false ,

81 }],

82 },

83 options: {

84 responsive: true ,

85 title: {

86 display: true ,

87 text: ’Tappingbeam temperature ’

88 },

118

C.2. HUMAN MACHINE INTERFACE APPENDIX C. CODE

89 tooltips: {

90 mode: ’index’,

91 intersect: false ,

92 enabled: false

93 },

94 hover: {

95 mode: ’nearest ’,

96 intersect: true

97 },

98 scales: {

99 xAxes: [{

100 display: true ,

101 scaleLabel: {

102 display: true ,

103 labelString: ’Time’

104 }

105 }],

106 yAxes: [{

107 display: true ,

108 scaleLabel: {

109 display: true ,

110 labelString: ’Value ’

111 }

112 }]

113 }

114 }

115 };

116

117 const context = document.getElementById(’canvas_temp ’).

getContext(’2d’);

118

119 const lineChart = new Chart(context , config);

120

121 const source = new EventSource("/beam -temp");

122

123 source.onmessage = function (event) {

124 const data = JSON.parse(event.data);

125 if (config.data.labels.length === 20) {

126 config.data.labels.shift ();

127 config.data.datasets [0]. data.shift();

128 config.data.datasets [1]. data.shift();

129 config.data.datasets [2]. data.shift();

130

131

132 }

133 config.data.labels.push(data.time);

134 config.data.datasets [0]. data.push(data.value [0]);

119

C.2. HUMAN MACHINE INTERFACE APPENDIX C. CODE

135 config.data.datasets [1]. data.push(data.value [1]);

136 config.data.datasets [2]. data.push(data.value [2]);

137 lineChart.update ();

138 }

139 });

140 </script >

141 </body >

142

143 {% endblock %}

120

	Introduction
	Brief history of Elkem and silicon production
	Motivation
	Project scope and objectives
	Limitations
	Source code repository
	State-of-the-art

	Theory
	Production of ferrosilicon
	Producing ferrosilicon
	Furnace construction
	Electrical arrangement

	Tapping process
	Human operators
	Tapping timeline

	Infrared thermal camera
	Infrared radiation
	Infrared camera

	Software tools and packages
	Python
	Numerical Python
	Numba compiler
	OpenCV
	GStreamer
	Flask application
	GitLab

	Computer vision
	Locating features
	Detail enhancement with histogram equalisation
	Model fitting and data filtering
	RANSAC basics

	Edge detection

	Project management and development
	Gantt chart
	Task management

	Method
	Implementation and use of thermal infrared camera
	Optris PI400i thermal camera
	Hardware integration
	Software integration
	IR Imager Direct-SDK on Windows OS
	IR Imager Direct-SDK on Ubuntu OS
	Receiving data from the IR camera

	Computer vision algorithms
	Tappingbeam detection
	Detail enhancement and binarization
	Equalising the histogram
	Creating a binary image

	Data-filtering and model-fitting
	Temperature calculation
	Tapping beam algorithms
	Application structure and data flow

	Database and Human Machine Interface
	SQLite database
	Flask web interface

	Tapping beam test stand

	Results
	Computer vision algorithms
	Overall results
	Template matching
	Histogram equalisation and detail enhancement
	Binary image
	Inlier detection with RANSAC
	Just-In-Time compilation

	Beam shape classification

	Human Machine Interface and database
	Overall results
	SQLite database
	Temperature data

	Discussion and further work
	Position of IR camera at Elkem Thamshavn
	Detection of tapping beam
	Application structure
	Jetson Nano performance

	Conclusion
	Administrative
	Project description
	Gantt chart

	System
	System charts
	Tapping process timeline

	Datasheets
	Optris PI 400i
	IR Camera application flowchart
	Synthetically developed images

	Human Machine Interface
	Flask web-HMI homepage

	Database file
	Temperature table
	Image data table

	Code
	Computer vision algorithms
	mainRealTime.py
	IRCamera.py
	FeatureTracking.py
	BeamDetector.py
	RansacFit.py
	Database.py

	Human Machine Interface
	mainFlask.py
	home.py
	base.html
	home.html

