
Bolts detection and a combination
of conventional and reinforcement
learning based control of UR5 indus-
trial robot

FREDRIK FRIGSTAD

SUPERVISOR
Ilya Tyapin
CO-Supervisor: Kristian Muri Knausgård
University of Agder, 2021
Faculty of Engineering and Science
Department of Engineering and Sciences

Glossaries

End-effector : The last body on a robot orientated toward the target surface

θ : Joint position angular [radians]

θ̇ : Joint velocity [rad/s]

θ̈: Joint acceleration [rad/s²]

Simscape: Simulation programe that make it possible to create models of physical systems, and
simulate the result.

Euler-angels: Describes the rotation around the x, y, z axis.

Error : A four element matrix describing position of end-effector in the relation to the target position

Index: Scalar from 1 to 100, that is used in waypoint selecting

Targetpose: The target position represented as a 4x4 homogeneous matrix transfer matrix

Target position: The the cartesian coordinates for the target. In this thesis the bolt head.

i

Acknowledgements

Writing this master thesis has been both challenging and enjoyable at the same time.
A sincere thanks to my supervisors, Ilya Tyapin and CO-Supervisor: Kristian Muri Knausgård for
guiding me in the right directions. Without you, there would have been no paper.
I also wish to thank my friends and family for advices and encouragements in the sometimes stressful
periods of the writing process.
Hope you enjoy the paper

ii

Abstract

The main objective of this paper is to investigate the possibilities for using reinforcement learning
to control a UR-5 robot. The paper also looks at how well reinforcement learning works to control
a UR-5 robot.
These questions are answered by constructing of matlab and simulink programes. Based on different
mathworks example programs and scripts.
In this study, reinforcement learning only works in the situation it is trained to perform. The author
believe that it could work better if it were given other configurations/parameters. This will still
be an interesting subject for further studies. According to the research done in this paper, the
conventional control have the best control accuracy.

iii

Contents

Glossaries i

Acknowledgements ii

Abstract iii

List of Figures viii

1 Introduction 1

2 Theory 2
2.1 Degrees of freedom . 2
2.2 Kinematics . 3
2.3 Dynamics . 4
2.4 URDF, Universal Robot Description Format . 4
2.5 Homogeneous Transformation Matrices . 5
2.6 Reinforcement Learning Concept . 6
2.7 Policy . 6

3 Simscape/Simulink Model 8
3.1 Waypoint Selection . 8
3.2 Calculation Of Error Matrix . 10
3.3 Convential Control Of Robot Workflow . 11
3.4 Implementing Reinforcement-learning . 12

3.4.1 Switch Torques To Enable RL-Agent Control 13
3.4.2 Implementing RL-Agent Control . 13

3.5 Decreas of freedom/model of UR5 Robot . 18
3.6 Including Live Camera Stream And Feed-Back To RL- Agent 20
3.7 Bolt Detection And Location of Bolt Head . 20

3.7.1 Matlab Script Workflowe: . 20
3.7.2 Calculate The Center Of Each Bolt . 23

3.8 Training Agent . 24
3.8.1 Waypoint Selection For Training Agent . 25
3.8.2 Agent Tuning part 1 . 26
3.8.3 Agent Tuning Part 2 . 28
3.8.4 Agent Tuning Part3 . 30
3.8.5 Agent Tuning Part 4 . 31
3.8.6 Agent Tuning Part 5 . 32
3.8.7 Agent Tuning Part 6 . 34
3.8.8 Agent Tuning Part 7 . 35

3.9 Combination off Conventional Control And Reinforcement Control 37

iv

4 Results 39
4.1 Runing Script For Location Off Bolt Head, Conventional Control 39
4.2 Results From Conventional Control . 41
4.3 Results From Combination off Conventional Control And Reinforcement Control . . 42

5 Discussions 44
5.1 Combination of Conventional Control And Reinforcement Control 44

6 Conclusions 45

A Location Of Bolt, Waypoints Generation And Robot Visualizations 46

B Generating DDPG Agent and Train Agent Matlab Script 50

C Simscape model off UR-5 Robot 53

D Simulink Model For Training Agent 55

E Simulink Model Conventional Control 57

F Simulink Model Combination of Conventional Control And Reinforcement Con-
trol 59

Bibliography 66

List of Figures

2.1 UR5 Robot . 2
2.2 2R planar open chain . 3
2.3 Inverse kinematics Block . 4
2.4 Transform from reference frame to object frame . 5
2.5 RL-Learning concept . 6
2.6 Actor critic network . 7

3.1 Conventional Control Of Joint Torque and Simscape Measurement 8
3.2 Waypoint selection And Generating Error Vector . 9
3.3 Conventional Control Flowchart . 11
3.4 Control flowchart for finding joint configurations for further use 12
3.5 Changes Torque . 13
3.6 RL control . 14
3.7 Enable Reinforcement Block . 15
3.8 Reward Block . 15
3.9 Reward Calculation . 16
3.10 Plotted exponentially reward function . 17
3.11 More potential exponentially reward function . 17
3.12 Axes of rotation, joint 1-a, joint 2-b, joint 3-c . 18
3.13 Axes of rotation, joint 4-a,joint 5-b,joint 6-c . 19
3.14 Camera placement illustration (red circle) . 20
3.15 Original image, a and digitized image b . 21
3.16 Converted image withe/black figure:a, Reduced noise figure:b 22
3.17 Image fill holes figure: a, Image with boundary detection implemented figure b . . . 22
3.18 Distance to bolt . 23
3.19 Joint config after conventinal control . 24
3.20 Table showing last waypoints . 24
3.21 Waypoint Selection For Training Agent . 25
3.22 fig:Training 1 results . 26
3.23 Limits Training 1 . 27
3.24 Reward Values, Training 1 . 27
3.25 First 100 episodes . 28
3.26 Reward values Training 2 . 29
3.27 Limits Values for Training 2 . 29
3.28 Result Training 3 . 30
3.29 Configuration at waypoint 75 . 31
3.30 Robot position at waypoint 75 . 31
3.31 Episodes 1641 Minimum Error Value . 32
3.32 Episodes Reward For Training 5 . 33
3.33 Episodes Reward For Training 6 . 34
3.34 Reward Block with Extra Reward limit . 35
3.35 Values At The Different Limits . 36
3.36 Learning From Episodes Training7 . 36
3.37 Waypoint selector for the combination of Reinforcment Control And Conventional . . 37
3.38 Control flowchart for both conventional control and Reinforcement control 38

vii

4.1 Robot in starting position . 39
4.2 Robot at target location . 40
4.3 Result from simulation with conventional control . 41
4.4 Error Value Distance to Target Position . 42
4.5 Mechanic explorer View Of UR-5 robot, end effector at target position after a com-

bination of conventional and reinforcement control 43

viii

.

Chapter 1

Introduction

The university of Agder are in the process of designing a robot that dismantle battery pack on
electrical vehicles. This design include a industrial robot that detects bolt heads and moves the
robot end-effector to the position of the bolt head. The motivation factor is that it is very fulfilling
the be part of a design process that can make electrical vehicles even more environment friendly.

This thesis constructs a simulation model off a UR5-robot that locates screw on a battery pack.
The control of the robot will include conventional control and reinforcement learning control. The
main goal of the study is to answer how to implement Reinforcement learning control on a industrial
robot and how good accuracy it is possible to achieve with the combination off conventional control
and Reinforcement learning.

To include reinforcement learning in a robotic-control task is a state of art area off research. Con-
ventional control loop with PI control loop will also be a part of the control of the robot.The
conventional PI control implementation will be used without modifications, so it will not be dis-
cussed in this paper.

A matlab script that locate the bolt head is to be constructed. And a model off the UR-5 robot will
be implemented using the simscape environment in simulink. The researcher will take advantage
off mathworks library for example program and files.

The work in this thesis will be limited to bolt location in 2 dimensions, not in 3 dimensions which
is required if it should be used on a electrical vehicle battery pack. The main portion of the thesis
will be to implement a combination of conventional control and reinforcement control to control
industrial robot.

1

Chapter 2

Theory

2.1 Degrees of freedom

A rigid body have in total 6 degrees of freedom, if no constraints are present. Degrees off freedom
can be calculated as the sum off freedoms bodies minus the number off the independent constraints
acting on the body. [2]

N= Number of bodies, including ground
J = Number of joints
m= 6 for spatial bodies , 3 for planar bodies
fi = Number of freedoms provided by joint i

dof = m(N − 1− J) +
J∑

i=1

fi (2.1)

Calculating degrees of freedom for UR5 robot.:

Figure 2.1: UR5 Robot

2

N = 7

J = 6

m = 6

fi = 1

dof = 6 · (7− 1− 6) +

6∑
i=1

1 = 6 (2.2)

2.2 Kinematics

Forward kinematics

Forward kinematics describes the position and orientation of the end-effector in relation to the base
frame. The end-effector cartesian cordinates (x,y), and the orientation θ can be derived using basic
trigonometry. Below is a example for 2R planar open chain.

x = L1cosθ1 + L2cos(θ1 + θ2) (2.3)

y = L1sinθ1 + L2sin(θ1 + θ2) (2.4)

φ = θ1 + θ2 (2.5)

L1

L2

Θ1

Θ2

Figure 2.2: 2R planar open chain

A more systematic method for deriving the forward kinematics is to use homogeneous transforma-
tions matrices. [3]

3

Inverse kinematics

Inverse kinematics of a robot refers to the joint position(configuration) that result in a given end-
effector position and orientation. Inverse kinematic is used in robotic control in simulink. The
inverse kinematic block figure:2.3 converts the end-effector location and orientation from a 4x4
homogeneous transform matrix to the the configurations θ for each joint that correspond to the
position and orientation in the homogeneous transform matrix.

Figure 2.3: Inverse kinematics Block

2.3 Dynamics

Dynamics is the study off what cause the motion off a robot, thus the joint forces and torques. The
forward dynamics is used in simulation. ,and describes the angular joint acceleration θ̈ derived on
the angular position θ, angular velocity θ̇, and the torque τ
The inverse dynamics describes the torque τ derived from the angular joint acceleration θ̈, angular
position θ, angular velocity θ̇. Inverse dynamics is used in robotic control

2.4 URDF, Universal Robot Description Format

URDF files contains information about the a robot that is needed for simulations. That include
the kinematics and inertia of each body, and link to visualization files like .stl files. Each joint
connections is described with one parent link and one child link. Researchers can manually edit the
URDF file. If it is desirable to for example add a limit to joint angular position. The URDF can
be imported to malab workspace. And then used to generate a simscape model. It can also be used
with simulink 3d animation. This reference link to a URDF file for the UR-5 robot.[11]

4

2.5 Homogeneous Transformation Matrices

Transformation matrix calculate the translation and rotation between a reference frame (x,y,z) and a
object frame(x,y,z) Thus the placement off the origin off the object frame in relation to the reference
frame. Figure: 2.4

z

y

x

x
z

y
Reference frame

Object frame

Figure 2.4: Transform from reference frame to object frame

Transformation matrix is represented by 4x4 matrix. That represent the transformation between
the reference frame and object frame. [4]

T =


r11 r12 r13 x
r21 r22 r23 y
r31 r32 r33 z
0 0 0 1

 (2.6)

T =


r11 r12 r13 x
r21 r22 r23 y
r31 r32 r33 z
0 0 0 1

 (2.7)

T =


r11 r12 r13 x
r21 r22 r23 y
r31 r32 r33 z
0 0 0 1

 (2.8)

The upper left 3x3 off matrix: 2.7 represents the rotation. The 3x1 off matrix: 2.8 to the right
represent the translation(x,y,z).

5

2.6 Reinforcement Learning Concept

Reinforcement learning can be used to replace conventional control loops. A typical RL control
consists off a RL-agent that learns based on the input from the environment. The environment is
defined as the system/model that agent controls. The agent uses the observations to improve the
policy function. The policy function decides value off the outputs(actions). To improve the policy
the agent take advantage of the the reward feedback. The reward could be negative or positive. If
the actions result in good observations (for example correct wather level in a tank), the reward is
positive. Constructing a good reward function is important to make the policy to learn. A state is
the result off the actions.

 Policy uptdate

RL- Agent Environment

Observatios

Actions

RewardReinforcment
learning

algorithm

Policy
State that
is a result

of the
actions

Figure 2.5: RL-Learning concept

Reinforcement learning is a sub type off machine learning. Reinforcement learning works with a
dynamic environment that’s gives real-time feedback to the agent. Supervised learning and unsu-
pervised learning algorithm not based on real-time feedback. [8]

2.7 Policy

The policy er the par of the agent that decides the action. The policy updates for every episode.
One episode is variation off iteration that result in that the episode ends, and the agent either
receives a negative or positive reward.

6

Actor Critic Algorithms

The actor critic algorithm divides the policy function in to 2 neural network, actor and critic. The
output from the actor network is the actions. The critic evaluate the actions taken by the actor
that result in state. The critic updates the actor for each episode.

Environment

Q- value
Critic

Actions
Actor

Updates actor network

Figure 2.6: Actor critic network

7

Chapter 3

Simscape/Simulink Model

This mathworks example is used as a base for the robotic simulation. [9] The conventional control
sub block that in the referred example, is called "torque control subsystem" see figure 3.1 is un-
changed. The measurement of the dynamics is improved. The author have implemented a simscape
multi-body model of the robot, sub-block "simscape". Appendix C that is is a modified version of
[11] This is done enable implementing of the UR-5 robot and to take advantage of the mechanic
explorer (visualisations of robot movement) Further the waypoint generator is changed when im-
plementing reinforcement learning and a torque switch block is constructed. In general the parts
that is discussed is changed/improved and the parts not mentioned is unchanged.

The mathworks example [9] also include a matlab script that generates waypoint and loads up
URDF file for the robot. This script is modified and a detection and location of bolt head part is
added. The bolt detection part are based on [5] The locataion of bolthead part, result in a cartesian
cordinates for the bolt head. This cordinates are merged with the excisting waypoint generation.
Thus the cordinates are put in as the last waypoint (targetposition) The script that contain the
bolt detection and bolt location: A

Figure 3.1: Conventional Control Of Joint Torque and Simscape Measurement

3.1 Waypoint Selection

To make the robot move towards the final position, the matlab script A generate 100 waypoints. If
the robot is controlled by only the conventional control block. The robot does not move in a strait

8

line towards the target, and does not reach the target at all.

The waypoints is a 100 points strait line in the space between the robot end-effector initial position,
and the target position. The robot end-effector follow this path on the way to reach the target
position. Each waypoint consist off a the cartesian coordinates (x,y,z) and the euler-angels :

Rx : Rotation around the x-axis

Ry : Rotation around the y-axis

Rz : Rotation around the z-axis

Waypoint =
[
X Y Z Rx Ry Rz

]
(3.1)

%Update	Target	and	Convert	to	Homogenous	Transform
{	targetPose	=	eul2tform(wayPoints(index,4:6));
targetPose(1:3,end)	=	wayPoints(index,1:3)';	}

%Stop	Simulation
{finished	=	true;}

%Select	next	Waypoint
{index	=	index	+	1;}

22

[index	==	length(wayPoints)]
1

[all(error	<	tol)]
1

%Check	EE	deviation	from	Target	Pose
{error	=	vecnorm(targetPose(1:3,	:)	-	currentEEPose(1:3,	:),	2,	1);	}

Figure 3.2: Waypoint selection And Generating Error Vector

Figure 3.2 shows the stateflowe block that select the next waypoint if the error is less than a given
value (e.g.: 0.01) Inside the stateflow block it is generated an new matrix targetpose Thats converts
the waypoint matrix into a homogenous transform matrix, element by element.

TargetPose = eul2tform(wayPoints(index, 4 : 6) (3.2)

Transform the euler angulars into 4x4 transform matrix

TargetPose(1 : 3, end) = wayPoints(index, 1 : 3)′ (3.3)

9

Puts the x,y,z coordinates into the last column off the transform matrix. This results in a transform
matrix

Targetpose =


r11 r12 r13 x
r21 r22 r23 y
r31 r32 r33 z
0 0 0 1

 (3.4)

3.2 Calculation Of Error Matrix

The error value is calculated as four normalized column vectors. The target position is subracted
by the the actual position off the end-effector. The script in Figure 3.2 is:

error = vecnorm(TargetPose(1 : 3, :)− CurrentEEPose(1 : 3, :), 2, 1)) (3.5)

That correspond to:

error = TargetPose(3x3)− CurrentEEPose(3x3) (3.6)

error =

R11 R12 R13 X
R21 R22 R23 Y
R31 R32 R33 Z

 (3.7)

Then the magnitude of each columns becomes:

‖E1‖ =
√
R2

11 +R2
21 +R2

31 (3.8)

‖E2‖ =
√
R2

12 +R2
22 +R2

32 (3.9)

‖E3‖ =
√
R2

13 +R2
23 +R2

33 (3.10)

‖Ex,y,z‖ =
√
X2 + Y 2 + Z2 (3.11)

Creating the four element error vector

error =
[
E1 E2 E3 Ex,y,z

]
(3.12)

10

3.3 Convential Control Of Robot Workflow

First the matlab script for location of bolt head and generating of waypoints is loaded, appendix A.
A is based on the matlabs scripts in [9] This loads URDF file for the UR5 robot in to the matlab
workspace. The URDF file is used for the "inverse kinematic block" end the "get transform block".
The get transform block converts the measured configuration of the robot into a 4x4 homogenous
transform matrix, that is further used in the generation of waypoints. The "location of bolt head"
part, locate the target position and saves the cartesian cordinates into the matlab workspace. And
is used as the target position for the waypoints.(the last waypoint)

The workflow is described in 3.3 All the yellow block calculations done in the matlab script A the
green blocks are part of the simulink programe E. The three red blocks are part of the stateflowe
sublock figure: 3.2

If
all(error)

<0.01

Calculating Bolt
Head Center

Select Next
waypoint
(Index+1)

Inverse
Kinematic of
Targetpose

Waypoint (index)

TRUE

FALSE

 Conventinal
Torque control

If index =
100

End Simulation,
End- effector is At

Target Position

TRUE
FALSE

Generating
Waypoints

Figure 3.3: Conventional Control Flowchart

11

3.4 Implementing Reinforcement-learning

The author have chosen to use simulink/simscape to simulate the movement of the robot towards
the bolt head. The simulation programs uses both conventional control theory and reinforcement
learning to control the robot movements. First the robots actuators are controlled by å PI con-
troller. When the end effector are close to the screw, The RL Agent takes over the control of robots
actuators.

This is done by changing the end waypoint in the waypoint selector 3.2 in the Conventional control,
and then use the the measured joint configuration in the simulink model for training agent D
The workflow for finding the joint configuration that is used during the RL-training is shown in
figure 3.4

Comparing the
current waypoint
with the current

end effector pose
if [all(error < tol)]

Calculating Bolt
Head Center

Select Next
waypoint
(Index+1)

TRUE

FALSE

 Conventinal
Torque control

Are the
current

waypoint are
the desired
waypoint to

start
reinforcment

control

End Simulation,
and save the joint
configuration for

further use

TRUE
FALSE

Generating
Waypoints

Figure 3.4: Control flowchart for finding joint configurations for further use

12

3.4.1 Switch Torques To Enable RL-Agent Control

Figure 3.5 Shows the state flow function that enable changing the torque control from conventional
control to reinforcement control. When desired waypoint is reach by the conventional control.
Switch torque changes to logic "1" this lead to that the output switch the torque output to the
"applied torque". "Applied torque that is the result of the reinforcement control.

{Torqueout	=	Applied_Torque;}

[SwitchTorque	==	1]
1

{Torqueout	=	NormalTorque;}

2

[SwitchTorque	==	0]
1

%	switch	Torque

{Torqueout	=	NormalTorque;}2

%{SwitchData	=	SwitchTorque;}

Figure 3.5: Changes Torque

3.4.2 Implementing RL-Agent Control

To control the Robot close to the target-screw the author have chosen to use a RL-agent. [6] this
simulink example is used as a base for this implementation. And mathworks have based their work
at [10]

Design off RL-agent in Matlab and Creating Enviroment Interface

The script including Rl-agent and enviroment interface is included in appendix B. And this is mod-
ified version of the matlab script in [6] . The first part of the script defines the observation interface
from the simulink programe "robotsim". The "obsinfo" matrix consist off 12 elements, and the low
limit is set to negative infinitive and the upper limit is set to positiv infinitve. The values that is
interfaced from the simulink programe are the joint configuration θ and the joint velocity θ̇ from
the UR5 robot. It could also include the joint acceleration θ̈ but this was not included to limit the
amount of data to the RL-agent.

13

 Policy uptdate

RL- Agent Environment
Simulink Program

Observatios

Actions

RewardReinforcment
learning

algorithm

Policy
Simscape model

off robot

Sublock:Enable
Reinfrocment

Torques

Joint
conf,and
velocity

Figure 3.6: RL control

open_system('robotsimTrain')
obsInfo = rlNumericSpec([12 1],...

'LowerLimit',[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf ...
-inf]',...

'UpperLimit',[inf inf inf inf inf inf inf inf inf inf inf inf]');
obsInfo.Name = 'observations';
obsInfo.Description = 'conf, vel';

The action specifications is set to the joint torque τ .

actInfo = rlNumericSpec([6 1]);
actInfo.Name = 'Torque';
numActions = actInfo.Dimension(1);

The enviroment interface object is located inside the simulink sub block "Enable Reinfrocment"

env = rlSimulinkEnv('robotsimTrain','robotsimTrain/EnabledReinforcment/RL ...
Agent',obsInfo,actInfo);

14

Sub Block Enable Reinforcement

Figure 3.7 shows the simulink block including the RL-agent, "Calculate reward block", and the
"Reward block". The "Reward block" end each episode if the error value exceeds the lower or
upper limit. Thus when the robots end effector either is close to the target screw, or to far away.
Figure 3.8 Exceeding the low limit result in positive reward (distance to bolt head less than 0.5mm).
Exceeding the upper limit results in negative reward. Exceeding the lower limit result in positive
reward.

RL-Agent

1
BussSensor

2
error

1
Applied_Torque1

error Negative	Reward
Negative	reward	stop(termination)	(if	error	bigger	than	300mm)

Positivereward	stop	(if	error	less	than	0.5	mm)
Postitvie	Reward1

error

Negative	Reward

Postitvie	Reward1

Reward

error

reward

Negative	Reward

Positive	Reward

error

Negative	Reward

Positive	Reward

reward

Calculate	Reward

observation

reward

isdone

action

Figure 3.7: Enable Reinforcement Block

1
error

1
Negative	Reward

>=	0.3

Negative	reward	stop(termination)	(if	error	bigger	than	300mm)

<=	0.0005

Positivereward	stop	(if	error	less	than	0.5	mm)

2
Postitvie	Reward1

Figure 3.8: Reward Block

15

Reward function

The author have chosen a reward function that increases exponentially as the error (end effector
distance from target) decreases.[1] The reward function can be manipulated to increase the reward
value for each episode.

1
error

1
reward

x
÷

+−

2
Negative	Reward

+++

3
Positive	Reward

Figure 3.9: Reward Calculation

Reward = 1− 1

error−0.5
(3.13)

Reward = 1− 1

error−0.5
∗ 9 (3.14)

16

Figure 3.10: Plotted exponentially reward function

Figure 3.11: More potential exponentially reward function

17

3.5 Decreas of freedom/model of UR5 Robot

The UR5 robot have 6 degrees of freedom. In figure 3.12 the revolution joint 1-3 are visualized. In
figure 3.13 revolute joint 4-6 are visualized. The axes of rotation is indicated with a yellow arrow.

(a)

(b)
(c)

Figure 3.12: Axes of rotation, joint 1-a, joint 2-b, joint 3-c

18

(a)

(b)

(c)

Figure 3.13: Axes of rotation, joint 4-a,joint 5-b,joint 6-c

19

3.6 Including Live Camera Stream And Feed-Back To RL- Agent

This idea is to place a camera in the simscape enviromnent and feed the error(distance to bolt
direct to the RL-agent. There is now tools for camera implementation in the simscape libary. To
do this reasarcher should use simulink 3d simulation.

3.7 Bolt Detection And Location of Bolt Head

This section is partly based on [5], [9] and [7] . The camera is placed 0.7 meter above the battery
pack and centered in relation to the robot y-axes. This is illustrated in figure 3.14 The matlab
script for location off bolt head is in appendix A

Figure 3.14: Camera placement illustration (red circle)

3.7.1 Matlab Script Workflowe:

• The script first convert the image to a binary image. The matlab function "im2bw" is imple-
mented. All pixels over a threshold (default0.5) get converted to logical "1" (white), the rest
off the pixels converts to 0 (black) see figure 3.15a and 3.15b

• Figure 3.16a converting from black and white. This is done to be able to detect the boundary
of the object.

• Figure 3.16b Remove information less than a chosen pixel value. The author had to adjust
this for this specific picture, so this part could be improved in further research.

• Fill holes (so that the objects is clarified) Figure 3.17a This is done to avoid the "bwbound-
aries" function to trace boundaries inside the circle (bolt boundaries)

20

• Trace the boundaries of the objects. Figure 3.17b

• Isolate round objects [7]. Could be implemented, but it was not necessary with this picture.

• Convert the pixels to distance [m]

(a)

(b)

Figure 3.15: Original image, a and digitized image b

21

(a) (b)

Figure 3.16: Converted image withe/black figure:a, Reduced noise figure:b

(a) (b)

Figure 3.17: Image fill holes figure: a, Image with boundary detection implemented figure b

22

From Pixels To Cartesian Coordinates

To convert from pixels to coordinates the script multiplies the digital image with a constant. This
constant does not move the origin off the bolt head. It just scales the size picture, See figure 4.2

3.7.2 Calculate The Center Of Each Bolt

The script generates a x-y coordinates for the boundary off each bolt. To find the center off each
bolt, the script use the boundary coordinates for each bolt in the x and y direction, thus distance
to bolt edge X and distance to bolt edge y. The center for each bolt is located simply with adding
the radius off the bolt width the distances to bolt edges. See illustration 3.18

Distance to bolt edge y

Distance to bolt edge x

Y

x

Bolt

Figure 3.18: Distance to bolt

Bolt1xWidth = max(cord(:,1))-min((cord(:,1))); % max value for x direction-
% bolt 1 width(diameter) = x maxValue - x minValue
% "cord" represents the cordinates for the bolt

Bolt1xLocation=min(cord(:,1))+Bolt1xWidth/2;
% bolt1 "x" cordinates = start off left bolt edge + bolt radius
% Same approch for the "y" cordinates

Bolt1yWidth = max(cord(:,2))-min((cord(:,2)));
Bolt1yLocation=min(cord(:,2))+ Bolt1yWidth/2;

% Put the x and y cordinates for each bolt in a 2 element matrix.
Bolt1Center(1,1)=Bolt1xLocation;
Bolt1Center(1,2)=Bolt1yLocation;

23

3.8 Training Agent

As described in Figure 3.4 . The RL-Agent controls the actuation off the robot joints when the
end-effector is close to the target screw. To be able to achieve this (to train the agent) the author
first runs the simulation with the conventional robot control, and stops the simulation when the
end-effector are close to the target screw. Then disable the conventional control block and replace
it with the RL control block. This configuration is only for the RL-training purpose only. Simulink
program for training agent is in appendix D
A initial target is put in the all the revolute joint off the in the simscape model. Figure 3.19
Shows the measured configuration for each joint. The conventional control block is replaced with
the Reinforcement control block . The conventional control runs to waypoint number 93 figure 3.20.
At this point the end-effector is 6.2 mm above the target. When the RL-agent take over the control
off the robot, the end-effector starts to moves downwards because off gravity. So this is to let the
RL-agent control some time and distance to adjust the end-effector to the target position.

Figure 3.19: Joint config after conventinal control

X Y Z Rx Ry Rz

Figure 3.20: Table showing last waypoints

24

3.8.1 Waypoint Selection For Training Agent

For training of the reinforcement control the waypoint selector is changed again. The end waypoint
is changed to number 100, the target position. See figure 3.21 The error function remains the same
as for the conventional control, but a new output "error1" is added. "Error1" extract only the last
element of the error matrix 3.15. The function that select next waypoint is removed.

{error	=	vecnorm(targetPose(1:3,	:)	-	currentEEPose(1:3,	:),	2,	1);	}%Update	Target	and	Convert	to	Homogenous	Transform

%Check	EE	deviation	from	Target	Pose,		targetepose1:3	=	is	x,y,z	from	current	waypooint
{	targetPose	=	eul2tform(wayPoints(100,4:6))	%	en	waypoint	is	chosen.	(targeposition)	
targetPose(1:3,end)	=	wayPoints(100,1:3)';	}

{error1=error(4)}%	The		last	element	are	extracted	for	i	use	in	in	the	reward	function	of	the	reinforcment	control

Figure 3.21: Waypoint Selection For Training Agent

25

3.8.2 Agent Tuning part 1

The error matrix 3.15 function used in this training. The error value is the sum off the off the four
elements in the error matrix. The last element in the error matrix describes the distance from the
end-effector to the target position. The first 3 elements describes the orientation. The reason for
including all four elements instead of just the last element, is to also include the orientation.

Figure 3.22 Shows the result from training the training episodes. There are some episode with
reward greater then 400, but the total trending is not not positive. The training is run for total
5000 episode.

The error value for this training session is the sum of the four elements in the error matrix 3.15.
The end-effector is at the position for waypoint that correspond to waypoint 92.
Figure 3.23 The upper limit is set to 0.2 m and the the lower is set to 0.001. Figure 3.24 Shows the
reward values.

error =
[
E1 E2 E3 Ex,y,z

]
(3.15)

Figure 3.22: fig:Training 1 results

26

1
error

3
Negative	Reward

>=	0.2

)

<=	0.001

	

1
Postitvie	Reward1

2
stop

Figure 3.23: Limits Training 1

RL-Agent

1
BussSensor

	2{12}

2
error

1
Applied_Torque1
[6x1]

error Negative	Reward
)

	
Postitvie	Reward1

stop

error Postitvie	Reward1

stopNegative	Reward

Reward

observation

reward

isdone

action
[6x1]

12

	2{12}

6

6

6
12

6
12

12

0 11.01
-6.84
24.46
-22.79
-72.51
-77.68

[6x1]

3
error1

x
÷

+−

+++

-448

<signal2>

<signal1>

Figure 3.24: Reward Values, Training 1

27

3.8.3 Agent Tuning Part 2

Experience from agent tuning part 1 yields that the error value often equals 4 during the episode.
This result in the termination off the training. Trying to avoid this problem the the author have
adjusted the total number and off steps for each episode to 300. And in this training session the
high limit value is increased to 0.1.figure 3.27 The reason is to try to make it easier for the agent
to reach the target position.
Figure 3.25 Show the first 100 episodes for training 2.

Figure 3.25: First 100 episodes

In the first 100 episodes the training gives some good results. But after the first 100 episodes there
are almost none fluctuating in the total reward off each episode .

28

RL-Agent

1
BussSensor

	2{12}

2
error

1
Applied_Torque1
[6x1]

error Negative	Reward
)

	
Postitvie	Reward1

stop

error Postitvie	Reward1

stopNegative	Reward

Reward

observation

reward

isdone

action
[6x1]

12

6	2{12}

6

6

6
12

12

12

38.07
26.67
-42.52
-20.76
-1.032
-11.78

[6x1]

x
÷

+−

+++

-204

0

<signal2>

<signal1>

Figure 3.26: Reward values Training 2

1
error

3
Negative	Reward

>=	4

)

<=	0.1

	

1
Postitvie	Reward1

2
stop

4.049

Figure 3.27: Limits Values for Training 2

29

3.8.4 Agent Tuning Part3

The values for this training session is:

lower limit: 0.001
upper limit: 3
Positive reward: 300
Negative reward: -200
Gain: 6

The result off this training is better. Now there are some more fluctuating in the total reward for
each episode figure 3.28. The reason are the increased value off the gain.

Figure 3.28: Result Training 3

30

3.8.5 Agent Tuning Part 4

Further research result in that for the previous training sessions the RL-agent is not able to reach
the tolerance off 0.001 that result in the extra positive reward off 300. The RL-agent takes over
the control off joint torque at waypoint 92. This is only 0.0162 meters above the target, see figure:
3.20 away from the target position. This does not give the agent enough time to adjust. So for this
training session the conventional control is run to waypoint 75. At waypoint 75 the end-effector is
0.0505 meters (50mm) above the target position. This will maybe result in greater reward and that
the agent is able to control the end-effector good enough to get the extra positive reward.
Figure 3.29 shows the joint configuration at waypoint 75. This values are put in as state target in
the simscape model. Figure 3.30 shows the robot at the position that the RL-Agent start controlling
the joint torques.
This training parameters did not yields in better results.

Figure 3.29: Configuration at waypoint 75

Figure 3.30: Robot position at waypoint 75

31

3.8.6 Agent Tuning Part 5

Trying to increase Agent ability to learn, the author choice to disable the agent ability to actuate
joint 5 and 6 figure: 3.13. The author believe that this will give the agent less possibility to do
actuation that only result in negative result. A other choice that is made is to run the RL-training
for the waypoint 60 to further increase the time that the error value are decreasing and the reward
value is increasing.

The values for this training session is:
Error value: Only the last element off the error matrix
lower limit: 0.008
upper limit: 0.3
Positive reward: 600
Negative reward: -500
Gain: 3
Waypoint start 60

The episode reward for 5000 episode is showed in figure 3.32 The reward for the training episodes
before episode 1500 and after 2200 have flat trending (not increasing or decreasing) Around episode
1620 there are a sudden increase in the reward value. This is not a result of the agent reaching the
lower limit of 0.008 meters.

The saved agent 1641 is loaded, and the simulation program is loaded. From figure 3.31 The error
value only decrease to 0.024 (24mm) meters at 0.97 seconds. Observing the robot movement in the
mechanic explorer, the robot end-effector is moving downwards the first 0.3 second. And when the
joint torque compensate for the force from gravity, the end-effector moves towards the target. At
0.97 the end effector goes past the target position, and the distance to the target increases.3.31

Figure 3.31: Episodes 1641 Minimum Error Value

32

Figure 3.32: Episodes Reward For Training 5

33

3.8.7 Agent Tuning Part 6

In this session the lower limit is to the value close to the min value from training 5. Figure 3.31
This is a attempt to increase the reward value thus, increase the end result. Reaching the lower
limit at 0018 will result in a sudden increase in the episode reward. This is not present in figure 3.33

The values for this training session is:
Error value: Only the last element off the error matrix 3.15
lower limit: 0.018
upper limit: 0.3
Positive reward: 600
Negative reward: -700
Gain: 5
Waypoint start 60
Total number of episodes 5000
Actuation of all six joints

Figure 3.33: Episodes Reward For Training 6

34

3.8.8 Agent Tuning Part 7

In this part a extra limit value is added. The thought is to give the agent a reward when is it close
to a limit, without the episode being terminated. See figure 3.34 The lower reward at 0.03 is added,
this yields that the end-effector is 30mm from the target position when this limit is reach. If this
limit is reach a extra reward value 600 is added to the total episode reward.Figure 3.35 This is a
attempt to get a better end result of the learning session.

Figure 3.36 shows the learning episode manager for this session. There are some more variation
in this session, there are episodes with high reward value at the first 400 episodes. (similar to the
previously training session) But in this session there are also some episodes with high reward around
episode 8500.

The values for this training session is:
Error value: Only the last element off the error matrix 3.15
Extra lower limit: 0.03
Termination Lower limit: 0.01 upper limit: 0.3
Extra reward: 600
Termination reward: 7000
Negative reward: -700
Gain: 5
Waypoint start 60
Total number of episodes 1000
Actuation of all six joints

Extra	Reward	Limit

1
error

4
Negative	Reward

>=	0.3

)

<=	0.03

	
1

Postitvie	Reward1

2
stop

<=	0.01

	Termination	limit

3
Postitvie	Reward2

Figure 3.34: Reward Block with Extra Reward limit

35

RL-Agent

Gain

Negative	Reward	For	Termination

Extra	Reward

1
BussSensor

	2{12}

2
error

1
Applied_Torque1
[6x1]

Extra	Reward	Limit

error Negative	Reward
)

	 Postitvie	Reward1

stop

	Termination	limit

Postitvie	Reward2

error Postitvie	Reward1

stop

Po
st
itv
ie
	R
ew

ar
d2

Negative	Reward

Reward

observation

reward

isdone

action
[6x1]

12

6

	2{12} 6
12

6

6

12

12

x
÷

+−

+
+
+ +

Reward	For	Termination

<signal1>

<signal2>

Figure 3.35: Values At The Different Limits

Figure 3.36: Learning From Episodes Training7

36

3.9 Combination off Conventional Control And Reinforcement Con-
trol

When implementing a combination conventional control and reinforcement control, some changes
need to be done to the waypoint selector. Earlier version figure 3.2. The waypoint selector for the
combination of reinforcement and conventional control showed in figure 3.37 Firs the simulation
is runed until waypoint 60, where the agent is trained from. A new error matrix is constructed,
error2. This error matrix is calculated considering the last waypoint (number100) that is the target
position. This is same error matrix that is used during training of the RL-agent section.

{error1=error2(4);}

{error2	=	vecnorm(targetPose2(1:3,	:)	-	currentEEPose(1:3,	:),	2,	1);	}
	%	Error	value	for	reinforcment	control.

{	targetPose2	=	eul2tform(wayPoints(100,4:6))	%	Last	waypoint	for	reinforcment	learning	control
targetPose2(1:3,end)	=	wayPoints(100,1:3)';	}

%Update	Target	and	Convert	to	Homogenous	Transform
{	targetPose	=	eul2tform(wayPoints(index,4:6));	%
targetPose(1:3,end)	=	wayPoints(index,1:3)';	}	%

2

[index	==	60]%Conventional	control	are	runed	until	waypoint	60
1

%Select	next	Waypoint
{index	=	index	+	1;}

2

{error	=	vecnorm(targetPose(1:3,	:)	-	currentEEPose(1:3,	:),	2,	1);	}	
%	Eror	value	for	the	conventional	control.		

%Stop	Simulation
{finished	=	1;}

[all(error	<	tol)]
1

Figure 3.37: Waypoint selector for the combination of Reinforcment Control And Conventional

37

The workflow when implementing both conventional and reinforcement control is shown in 3.38

Comparing the
current waypoint
with the current

end effector pose
if [all(error < tol)]

Calculating Bolt
Head Center

Select Next
waypoint
(Index+1)

TRUE

FALSE

Conventional control

Have the end-
effector

reached the
position where

the
reinforcment

control should
take over the

control

The torque control
are switched from

conventional to
reinforcment control.

TRUEFALSE

Generating
Waypoints

Figure 3.38: Control flowchart for both conventional control and Reinforcement control

38

Chapter 4

Results

4.1 Runing Script For Location Off Bolt Head, Conventional Con-
trol

The robot can visualized in simulink and simscape. In figure 4.1 the robot is visualized using the
matlab script A. The visualisation part is the last section in the appendix A The robot is showed
with the bolt location visible (white dots). The position off the bolt head 1 is 0.566, 0.1909 and
0.(x,y,z) The robot is placed at origo position.

Figure 4.1: Robot in starting position

39

Figure 4.2: Robot at target location

40

4.2 Results From Conventional Control

From section 4.1 the location off the bolt head is at the cartesian coordinates 0.566, 0.1909 and 0.
Running the script and generating the 100 waypoints towards the bolt head. The tolerance inside
the waypoints selector figure: 3.2 is set to 0.001 that means that all the four elements in equation
4.1 is less than 0.001 when the waypoint selector selects the next waypoint. 0.001 correspond to a
vector from the end-effector to the bolt head less than 0.001 meters (1mm). If the tolerance is set
to less than 0.001 the simulation runs slower and the conventional control it is not able to control
the joint torques good enough to get under the given tolerance value. Figure 4.3 shows the end
results off the current end effector pose and the wanted targetpostion (the last waypoint). The last
columns in each table represents the the cartesian coordinates.

error =
[
E1 E2 E3 Ex,y,z

]
(4.1)

Figure 4.3: Result from simulation with conventional control

41

4.3 Results From Combination off Conventional Control And Re-
inforcement Control

Figure 3.36 Shows training results for training session 7. Number 8410 is chosen for further use. The
agent number 8410 is uploaded in B and the simulation is done. The result of the agent training is
not satisfying figure 4.5 shows the robot at target position after running simulation. In the appendix
F the simulink files matlab scripts, and a video are included. The robot moves in a unnatural way
towards the targetposition. This is because the orientation part of the error matrix, not is taken
into account. The author have tried other agent form the last training session, but this are not
satisfying either. But the agent do manage to get reduce the error to under 0.02 meters see figure
4.4. The result from agent tuning part 5 is better, but here the to last joints disabled. And this
can not easily be combined with the conventional control. This is because of mismatch in matrix
dimensions between the conventional control part and the reinforcement control.

Figure 4.4: Error Value Distance to Target Position

42

Figure 4.5: Mechanic explorer View Of UR-5 robot, end effector at target position after a combi-
nation of conventional and reinforcement control

43

Chapter 5

Discussions

5.1 Combination of Conventional Control And Reinforcement Con-
trol

In the end result the RL-Agent moves the robot joints in a unnatural way.This can be viewed in
the video in the appendix F. This can be improved if the last to joint are disabled. This is done in
The Agent Tuning Part 5. So in further work this can be improved. The accuracy for only only the
conventional control is 1 mm. For the combination of conventional control and reinforcement control
the accuracy is 13mm, and the end-effector have wrong orientation. For further work including the
orientation elements of the error in the reward calculation should be included.

error =
[
E1 E2 E3 Ex,y,z

]
(5.1)

Regarding the bolt head location, further improvement could be to add a location of bolt head in
a 3 dimensions. The solution in this paper is only in 2 dimensions.

44

Chapter 6

Conclusions

This paper show how to implement a combination of conventional and reinforcement learning based
control of UR5 industrial robot

The combination of conventional control and reinforcement control are implemented. The combi-
nation of the to control parts works. But there are some issues regarding the control accuracy and
orientation from the reinforcement control.

The result for the location of bolt head is satisfactory. The exact position for the bolt head is
located, and is merged with the waypoint generation. The cartesian coordinates are put in as the
last waypoint, thus the target for the end-effector.

In this study, reinforcement learning only works in the situation it is trained to perform. In other
words, it does not work that well to control a UR-5 robot. The accuracy is much better with only
conventional robotic control. The author believe that it could work better, if it were given other
configurations/parameters.

The UR-5 robot have 6 degrees of freedom, this result in complex control task. There are almost
infinity number of possible configuration sequences, for a given end-effector position. In further
work it can be important to try to limit the amount of data given to the reinforcement learning
algorithm. So this will still be an interesting subject for further studies. The author have tried to
limit the number of joints that are actuated by the RL-Agent, but this is difficult to combine with
the convectional control, but it yields is better result.

Further work

Many different parameter and configuration for the reinforcement learning part have not been
implemented due to lack of time. Some are tried out, but some where hard to implement taken into
account that it should work together with the conventional control. The author will point out some
configuration that could improve the results from reinforcement control.

• In general reduce the amount of date given to the agent.

• Disable the last to joints, or include the orientation part off the error matrix in the reinforce-
ment reward.

• Agent training with only the angular position θ, training in this paper include angular position
θ and angular velocity θ̇ .

45

Appendix A

Location Of Bolt, Waypoints Generation
And Robot Visualizations

Based upon [5],[7],[9]

% Modified by Fredrik Frigstad, based on the mathwork example listet above.

%% Loading URDF file,and adding datat to the simulink program
% Import the manipulator as a rigidBodyTree Object
robot = importrobot('ur5_robot.urdf');
%[robot,importInfo] = importrobot(simscape)

robot.DataFormat = 'column';
robot.Gravity = [0 0 -9.81]
% Define end-effector body name
eeName = 'ee_link';
%[H,dataFileName] = smimport(simscape123.slxc)
% Define the number of joints in the manipulator
numJoints = 6;
eeOrientation = [0, pi, 0];% The Euler angles for the desired end effector ...

orientation at each point must
% also be defined.
clear wayPoints
%%
% BOLT DETECTION

RGB = imread('final2.png');
imshow(RGB);
I = im2bw(RGB);
%imshow(I);
bw= imcomplement(I); % convert black and white
BW2 = bwareaopen(bw,300); %150000 470000%
% bw = imfill(BW2,'holes');
% imshow(bw)
[B,L] = bwboundaries(BW2,'noholes');
%imshow(label2rgb(L,@jet,[.5 .5 .5]))
hold on
for k = 1:length(B)

boundary = B{k};
plot(boundary(:,2),boundary(:,1),'w','LineWidth',2)

end
scale = 0.0015/2;% 0.00015 med bilde boltgreen 0.000075/2 0.00035
segment = B{1}*scale; % translate from pixels to distance (m)

%segment2 = B{2}*scale;

46

% bw_filled = imfill(bw,'holes');
% boundaries = bwboundaries(bw_filled);
imageOrigin = [0.2,0,0.0];

% Z-offset for moving between boundaries
segment(1,3) = .0;
segment2(1,3) = .0;

% Translate to origin of image
cord = imageOrigin + segment;
cord2 = imageOrigin + segment2;

% bolt origin x cord
%%
% BOLT LOCATION

% bolt 1 location in global kordinate system
Bolt1xWidth = max(cord(:,1))-min((cord(:,1))); % bolt 1 width = x ...

maxValue - x minValue
Bolt1xLocation=min(cord(:,1))+Bolt1xWidth/2; % bolt1 x cordinates = ...

start off left bolt + bolt width

Bolt1yWidth = max(cord(:,2))-min((cord(:,2)));
Bolt1yLocation=min(cord(:,2))+ Bolt1yWidth/2;
Bolt1Center(1,1)=Bolt1xLocation;
Bolt1Center(1,2)=Bolt1yLocation;

% bolt2 location in global kordinate system

Bolt2xWidth = max(cord2(:,1))-min((cord2(:,1))); % bolt 2width = x ...
maxValue - x minValue

Bolt2xLocation=min(cord2(:,1))+Bolt2xWidth/2; % bolt2x cordinates = ...
start off left bolt + bolt width

Bolt2yWidth = max(cord2(:,2))-min((cord2(:,2)));
Bolt2yLocation=min(cord2(:,2))+ Bolt2yWidth/2;

Bolt2Center(1,1)=Bolt2xLocation;
Bolt2Center(1,2)=Bolt2yLocation;

%%
% WAYPOINT GENERATION

% Start just above image origin
%waypt0 = [imageOrigin + [0 0 .2],eeOrientation]
waypt0 = [0.2 0.2 0.2,eeOrientation]% where to start
%imageOrigin = [0.6 -0.3 0.05];
Bolt1Center(1,3) = .0;
Bolt2Center(1,3) = .0; % add column

waypt1 = [Bolt1Center,0,pi/2,0];% Target location
%waypt1 = [imageOrigin+Bolt2Center,eeOrientation];% Target location
% Interpolate each element for smooth motion to the origin of the image
for i = 1:6

interp = linspace(waypt0(i),waypt1(i),100);
%eulerAngles = repmat(eeOrientation,size(segment,1),1);
wayPoints(:,i) = interp';

end

q0 = zeros(numJoints,1);

% Define a sampling rate for the simulation.
%Ts = .001;

47

weights = [1 1 1 1 1 1];
% Transform the first waypoint to a Homogenous Transform Matrix for ...

initialization
%
initTargetPose = eul2tform(wayPoints(1,4:6));
%
initTargetPose(1:3,end) = wayPoints(1,1:3)';
%
% Solve for q0 such that the manipulator begins at the first waypoint
ik = inverseKinematics('RigidBodyTree',robot);
[q0,solInfo] = ik(eeName,initTargetPose,weights,q0);

%
% targetPose = eul2tform(wayPoints(1,4:6))
% wayPoints(1,4:6)
% targetPose(1:3,:)
% wayPoints(1,1:3)'
% error = vecnorm(targetPose(1:3,:) - currentEEPose(1:3,:), 2, 1)

% Remove unnecessary meshes for faster visualization

%sim('robotsim.slx');
%

%% VISUALIZATIONS OF ROBOT

% show(robot);
% xlim([-1.00 1.00])
% ylim([-1.00 1.00]);
% zlim([-1.02 0.98]);
% view([128.88 10.45]);
%clearMeshes(robot);

% Data for mapping image
% [m,n] = size(BW2);
%
% [X,Y] = meshgrid(0:m,0:n);
% X = imageOrigin(1) + X*scale;
% Y = imageOrigin(2) + Y*scale;
% Z = zeros(size(X));
% Z = Z + imageOrigin(3);
% % Close all open figures
% close all
% % Initialize a new figure window
% figure;
% set(gcf,'Visible','on');
%
% % Plot the initial robot position
% show(robot, jointData1(1,:)');
% hold on
% % Initialize end effector plot position
% p = plot3(0,0,0,'.');
% warp(X,Y,Z,BW2');
%
% % Change view angle and axis
% view(0,45)
% axis([-0.25 1 -0.25 0.6 0 0.75])
%
% % Iterate through the outputs at 10-sample intervals to visualize the ...

results
% for j = 1:10:length(jointData1)

48

% % Display manipulator model
% show(robot,jointData1(j,:)', 'Frames','off','PreservePlot', false);
% %show(robot,config,'Collisions','on','Visuals','off');
% % Get end effector position from homoegenous transform output
% pos = poseData1(1:3,4,j);
% %'Frames', 'off','Collisions','on' 'PreservePlot', false);
% % Update end effector position for plot
% p.XData = [p.XData pos(1)];
% p.YData = [p.YData pos(2)];
% p.ZData = [p.ZData pos(3)];
% % Update figure
% drawnow
% end

49

Appendix B

Generating DDPG Agent and Train
Agent Matlab Script

Based upon: [6]

Some small modification is done by Fredrik Frigstad, the rest is the ...
example listed above.

% error=[0:0.01:0.3]

% reward=(1-(1./0.01).^-0.5)*3 %reward function validation

% rewardtest=(1-(1/0.002)^-0.5)*8

%plot(error,reward)
%open_system('robotsim')
%open_system('robotsimTrain')
obsInfo = rlNumericSpec([12 1],...

'LowerLimit',[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf ...
-inf]',...

'UpperLimit',[inf inf inf inf inf inf inf inf inf inf inf inf]');
obsInfo.Name = 'observations';
obsInfo.Description = 'conf, vel'; % legge inn alle 12 verdiene
numObservations = obsInfo.Dimension(1);

actInfo = rlNumericSpec([6 1]);
actInfo.Name = 'Torque';
numActions = actInfo.Dimension(1);

%env = rlSimulinkEnv('robotsim','robotsim/EnabledReinforcment/RL ...
Agent',obsInfo,actInfo);

env = ...
rlSimulinkEnv('robotsimRein25_05','robotsimRein25_05/EnabledReinforcment/RL ...
Agent',obsInfo,actInfo);

%env.ResetFcn = @(in)localResetFcn(in);% The robot is put in place close to
%the target screw, so this is not needed.

Ts = 0.001;
Tf = 40;

rng(0)

% CREATE AGENT DDPG

50

statePath = [
featureInputLayer(numObservations,'Normalization','none','Name','State')
fullyConnectedLayer(50,'Name','CriticStateFC1')
reluLayer('Name','CriticRelu1')
fullyConnectedLayer(25,'Name','CriticStateFC2')];

actionPath = [
featureInputLayer(numActions,'Normalization','none','Name','Action')
fullyConnectedLayer(25,'Name','CriticActionFC1')];

commonPath = [
additionLayer(2,'Name','add')
reluLayer('Name','CriticCommonRelu')
fullyConnectedLayer(1,'Name','CriticOutput')];

criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');

criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

critic = ...
rlQValueRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'State'},'Action',{'Action'},criticOpts);

%construct actor

actorNetwork = [
featureInputLayer(numObservations,'Normalization','none','Name','State')
fullyConnectedLayer(3, 'Name','actorFC')
tanhLayer('Name','actorTanh')
fullyConnectedLayer(numActions,'Name','Action')
];

actorOptions = ...
rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);

actor = ...
rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'State'},'Action',{'Action'},actorOptions);

agentOpts = rlDDPGAgentOptions(...
'SampleTime',Ts,...
'TargetSmoothFactor',1e-3,...
'DiscountFactor',1.0, ...
'MiniBatchSize',64, ...
'ExperienceBufferLength',1e6);

agentOpts.NoiseOptions.StandardDeviation = 0.3;
agentOpts.NoiseOptions.StandardDeviationDecayRate = 1e-5;

agent = rlDDPGAgent(actor,critic,agentOpts);
maxsteps = ceil(2000);
maxepisodes = 6000;
%maxsteps = ceil(Tf/Ts);
%maxsteps = ceil(0.0001);
trainOpts = rlTrainingOptions(...

'MaxEpisodes',maxepisodes, ...
'MaxStepsPerEpisode',maxsteps, ...
'ScoreAveragingWindowLength',5, ... %5
'Verbose',false, ...
'Plots','training-progress',...

51

'StopTrainingCriteria','AverageReward',...
'StopTrainingValue',1000,...
'SaveAgentCriteria','EpisodeReward',...
'SaveAgentValue',350);

% load('Agent4632','saved_agent');
% agent = saved_agent;

% simOpts = rlSimulationOptions('MaxSteps',maxsteps,'StopOnError','on');
% experiences = sim(env,agent,simOpts);

%load('agent.mat','agent')
trainingStats = train(agent,env,trainOpts);

52

Appendix C

Simscape model off UR-5 Robot

53

W
orld

F
F1

base_link

ee_fixed_joint

Fee_link

elbow
_joint

F
F1

forearm
_link

shoulder_lift_joint

F
F1

shoulder_link
shoulder_pan_joint

F
F1

upper_arm
_link

F
F1

w
orld

w
orld_joint

w
rist_1_joint

F
F1

w
rist_1_link

w
rist_2_joint

F
F1

w
rist_2_link

w
rist_3_joint

F
F1

w
rist_3_link

f(x)	=	0

D
em
ux

1

R
igid	Transform

12

y-grid

R
igid	Transform

12

x-grid1

1

M
easured	C

onfiguration

2

M
easured	Velocities

posistion

veloocity

54

Appendix D

Simulink Model For Training Agent

RobotsimTrainReinforcmentWay60.slxc
https://github.com/Friggiboy/MasterRobot

55

https://github.com/Friggiboy/MasterRobot

Visualization	&	O
utputs

Inverse	Kinem
atics	Solver

M
anipulator	System

	D
ynam

ics	W
ith	integrated	sim

scape	m
easurm

ents

M
easured	Pose

Target	Pose	G
eneration

6.44m
m
	after	initia	run

6

6
M
easured	C

onfiguration

M
easured	Velocities

D
esired	C

onfiguration

Applied	Torque

Torque	C
ontroller	Subsystem

Z -1
robot

EE:	ee_link

Pose

W
eights

InitialG
uess

C
onfig

Inverse	Kinem
atics	Solver

[4x4]
1

M
easured	C

onfiguration

M
easured	Velocities

sim
scape

6
[6x1]

6
[100x6]

[4x4]

w
ayPoints

currentEEPose

targetPose

error1

W
aypoint	Selection/C

onversion	Logic

[4x4]

[100x6]

robot

Source:	ee_link
Target:	w

orld

C
onfig

Transform
[4x4]

6

N
orm

alTorque

Applied_Torque

Sw
itchTorque

Torqueout

sw
itchTorque

66

	2{12}

2D
	Plot1

U
Y

StargetPose

w
ayPoints

currentPose

U
(:)

BussSensor

error

error1

Applied_Torque1

EnabledR
einforcm

ent

	2{12}

[6x1]

56

Appendix E

Simulink Model Conventional Control

The files for runing the script can be found here: https://github.com/Friggiboy/MasterRobot
The file: "LocationOfBoltAndWaypointGen.m" Much be runed befor the file "robotsimConventi-
nalControl2405.slx "

57

https://github.com/Friggiboy/MasterRobot

Visualization	&	O
utputs

Inverse	Kinem
atics	Solver

M
anipulator	System

	D
ynam

ics	W
ith	integrated	sim

scape	m
easurm

ents

M
easured	Pose

Target	Pose	G
eneration

6.44m
m
	after	initia	run

C
onfig	after	initial	run

M
easured	C

onfiguration

M
easured	Velocities

D
esired	C

onfiguration

Applied	Torque

Torque	C
ontroller	Subsystem

Applied	Joint	Torques

M
easured	C

onfiguration

M
easured	Velocity

M
anipulator	D

ynam
ics	Subsystem

Z -1
robot

EE:	ee_link

Pose

W
eights

InitialG
uess

C
onfig

Inverse	Kinem
atics	Solver

[4x4]

[1x6]6

1

M
easured	C

onfiguration

M
easured	Velocities

sim
scape

w
ayPoints

currentEEPose

targetPose

finished

error

W
aypoint	Selection/C

onversion	Logic

robot

Source:	ee_link
Target:	w

orld

C
onfig

Transform
6

N
orm

alTorque

Applied_Torque

Sw
itchTorque

Torqueout

sw
itchTorque

2D
	Plot1

U
Y

StargetPose

w
ayPoints

currentPose

U
(:)

R
L-Agent

BussSensor

error

Applied_Torque1
R
ew
ard

C
alculate	R

ew
ard

R
L	Agent

<signal2>

<signal1>
BussSensor

error

Applied_Torque1

EnabledR
einforcm

ent

STO
P

58

Appendix F

Simulink Model Combination of
Conventional Control And
Reinforcement Control

Link to youtube video of simulation:

https://studio.youtube.com/video/tk0Aq-JXFf0/edit

https : //www.youtube.com/watch?v = 8DEd− 2lfzQ

Link to matlab script and simulink files
https://github.com/Friggiboy/MasterRobot (Agent.mat files are to big to upload, but a link to
fileconvoy is added)

59

https://studio.youtube.com/video/tk0Aq-JXFf0/edit
https://www.youtube.com/watch?v=8DEd-2_lfzQ
https://github.com/Friggiboy/MasterRobot

Target	Pose	Generation Inverse	Kinematics	Solver Measured	PoseManipulator	System	Dynamics	With	integrated	simscape	measurments

Measured	Configuration

Measured	Velocities

Desired	Configuration

Applied	Torque

Torque	Controller	Subsystem

Z-1

robot

EE:	ee_link

Pose

Weights

InitialGuess

Config

Inverse	Kinematics	Solver

[4x4]

[1x6]

6

1

Measured	Configuration

Measured	Velocities

simscape

robot

Source:	ee_link
Target:	world

Config Transform
6

NormalTorque

Applied_Torque

SwitchTorque

Torqueout

switchTorque

wayPoints

currentEEPose

targetPose

finished

error1

Waypoint	Selection/Conversion	Logic1

BussSensor

error

Applied_Torque1

EnabledReinforcment1

Gain

RL-Agent

Extra	Reward

Negative	Reward	For	Termination

1
BussSensor

2
error

1
Applied_Torque1

error Postitvie	Reward1

stop

Po
st
itv
ie
	R
ew
ar
d2

Negative	Reward

Reward

observation

reward

isdone

action

x
÷

+−

+
+
+ +

Reward	For	Termination

<signal1>

<signal2>

Extra	Reward	Limit

1
error

4
Negative	Reward

>=	0.3

)

<=	0.03

	
1

Postitvie	Reward1

2
stop

<=	0.013

	Termination	limit

3
Postitvie	Reward2

Computed	Torque	Controller

MassMatrix(ddqd	-	Kd*dqe	-		Kp*qe)

Velocity	Product	Torque	+	Gravity	Torque

dqe

	qe

K	(z-1)
Ts	z

K	(z-1)
Ts	z

1
Measured	Configuration

3
Desired	Configuration

robot

Config MassMatrix

Joint	Space	Mass	Matrix

6

robot

Config

JointVel

JointTorq

Velocity	Product	Torque

6

6

robot

Gravity:	[0	0	-9.81]

Config JointTorq

Gravity	Torque

6

−
+

Matrix
Multiply

+
−

+
−

+
+

Kp

Kd

+
+

+
+

2
Measured	Velocities

1
Applied	Torque

1	
num(z)

{error1=error2(4);}

{error2	=	vecnorm(targetPose2(1:3,	:)	-	currentEEPose(1:3,	:),	2,	1);	}
	%	Error	value	for	reinforcment	control.

{	targetPose2	=	eul2tform(wayPoints(100,4:6))	%	Last	waypoint	for	reinforcment	learning	control
targetPose2(1:3,end)	=	wayPoints(100,1:3)';	}

%Update	Target	and	Convert	to	Homogenous	Transform
{	targetPose	=	eul2tform(wayPoints(index,4:6));	%
targetPose(1:3,end)	=	wayPoints(index,1:3)';	}	%

%Stop	Simulation
{finished	=	1;}

2

[index	==	60]%Conventional	control	are	runed	until	waypoint	60
1

{error	=	vecnorm(targetPose(1:3,	:)	-	currentEEPose(1:3,	:),	2,	1);	}	
%	Eror	value	for	the	conventional	control.		

[all(error	<	tol)]
1

%Select	next	Waypoint
{index	=	index	+	1;}

2

%{SwitchData	=	SwitchTorque;}

{Torqueout	=	Applied_Torque;}

{Torqueout	=	NormalTorque;}

2

[SwitchTorque	==	1]
1

{Torqueout	=	NormalTorque;}

%	switch	Torque

[SwitchTorque	==	0]
1

2

Bibliography

[1] Bonsai. Writing Great Reward Functions. url: https : / / www . youtube . com / watch ? v =
0R3PnJEisqkhttps : / / www . youtube . com / watch ? v = 0R3PnJEisqk. (accessed: 04.06.2021
09:47/19:25).

[2] Frank C. Park Kevin M. Lynch.Modern Robotics. Cambridge University Press, 2017. Chap. 2.2.

[3] Frank C. Park Kevin M. Lynch. Modern Robotics. Cambridge University Press, 2017. Chap. 4.

[4] Frank C. Park Kevin M. Lynch.Modern Robotics. Cambridge University Press, 2017. Chap. 3.3.1.

[5] Mathworks. Boundary Tracing in Images. url: https://se.mathworks.com/help/images/
boundary-tracing-in-images.html. (accessed: 02.05.2021).

[6] Mathworks. Create Simulink Environment and Train Agent. url: https://se.mathworks.
com/help/reinforcement- learning/ug/create- simulink- environment- and- train-
agent.html. (accessed: 01.03.2021).

[7] Mathworks. Identifying Round Objects. url: https://se.mathworks.com/help/images/
identifying-round-objects.html. (accessed: 29.04.2021).

[8] Mathworks. Machine learning with MATLAB. url: https://se.mathworks.com/content/
dam/mathworks/ebook/gated/machine-learning-ebook-all-chapters.pdf. (accessed:
03.04.2021).

[9] Mathworks. Trajectory Control Modeling with Inverse Kinematics. url: https://se.mathworks.
com/help/robotics/ug/trajectory-control-modeling-with-inverse-kinematics.html.
(accessed: 02.02.2021).

[10] Timothy Lillicrap. Jonathan Hunt. Alexander Pritzel. Nicolas Heess. Tom Erez. Yuval Tassa. David
Silver and DaanWierstra. Continuous Control with Deep Reinforcement Learning. url: https:
//arxiv.org/abs/1509.02971. (accessed: 01.03.2021).

[11] Pablo Quílez Velilla. URDF file for ur5 robot. url: https://github.com/ros-industrial/
robot_movement_interface/blob/master/dependencies/ur_description/urdf/ur5_
robot.urdf. (accessed: 17.02.2021).

66

https://www.youtube.com/watch?v=0R3PnJEisqkhttps://www.youtube.com/watch?v=0R3PnJEisqk
https://www.youtube.com/watch?v=0R3PnJEisqkhttps://www.youtube.com/watch?v=0R3PnJEisqk
https://se.mathworks.com/help/images/boundary-tracing-in-images.html
https://se.mathworks.com/help/images/boundary-tracing-in-images.html
https://se.mathworks.com/help/reinforcement-learning/ug/create-simulink-environment-and-train-agent.html
https://se.mathworks.com/help/reinforcement-learning/ug/create-simulink-environment-and-train-agent.html
https://se.mathworks.com/help/reinforcement-learning/ug/create-simulink-environment-and-train-agent.html
https://se.mathworks.com/help/images/identifying-round-objects.html
https://se.mathworks.com/help/images/identifying-round-objects.html
https://se.mathworks.com/content/dam/mathworks/ebook/gated/machine-learning-ebook-all-chapters.pdf
https://se.mathworks.com/content/dam/mathworks/ebook/gated/machine-learning-ebook-all-chapters.pdf
https://se.mathworks.com/help/robotics/ug/trajectory-control-modeling-with-inverse-kinematics.html
https://se.mathworks.com/help/robotics/ug/trajectory-control-modeling-with-inverse-kinematics.html
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://github.com/ros-industrial/robot_movement_interface/blob/master/dependencies/ur_description/urdf/ur5_robot.urdf
https://github.com/ros-industrial/robot_movement_interface/blob/master/dependencies/ur_description/urdf/ur5_robot.urdf
https://github.com/ros-industrial/robot_movement_interface/blob/master/dependencies/ur_description/urdf/ur5_robot.urdf

	Glossaries
	Acknowledgements
	Abstract
	List of Figures
	Introduction
	Theory
	Degrees of freedom
	Kinematics
	Dynamics
	URDF, Universal Robot Description Format
	Homogeneous Transformation Matrices
	Reinforcement Learning Concept
	Policy

	Simscape/Simulink Model
	Waypoint Selection
	Calculation Of Error Matrix
	Convential Control Of Robot Workflow
	Implementing Reinforcement-learning
	Switch Torques To Enable RL-Agent Control
	Implementing RL-Agent Control

	Decreas of freedom/model of UR5 Robot
	Including Live Camera Stream And Feed-Back To RL- Agent
	Bolt Detection And Location of Bolt Head
	Matlab Script Workflowe:
	Calculate The Center Of Each Bolt

	Training Agent
	Waypoint Selection For Training Agent
	Agent Tuning part 1
	Agent Tuning Part 2
	Agent Tuning Part3
	Agent Tuning Part 4
	Agent Tuning Part 5
	Agent Tuning Part 6
	Agent Tuning Part 7

	 Combination off Conventional Control And Reinforcement Control

	Results
	Runing Script For Location Off Bolt Head, Conventional Control
	Results From Conventional Control
	Results From Combination off Conventional Control And Reinforcement Control

	Discussions
	Combination of Conventional Control And Reinforcement Control

	Conclusions
	Location Of Bolt, Waypoints Generation And Robot Visualizations
	Generating DDPG Agent and Train Agent Matlab Script
	Simscape model off UR-5 Robot
	Simulink Model For Training Agent
	Simulink Model Conventional Control
	Simulink Model Combination of Conventional Control And Reinforcement Control
	Bibliography

