i UiA Uriere

State Estimator using Hybrid Kalman
and Particle Filter for Indoor UAV Nav-

igation

Kristoffer Hansen Kruithof, Marius Egeland

SUPERVISOR
Sondre Sanden Tgrdal, UiA

CO-SUPERVISORS

Kristian Muri Knausgéard, UiA
Nadia Saad Noori, Norce

University of Agder, 2021
Faculty of Engineering and Science
Department of Engineering and Sciences

Page intentionally left blank

Obligatorisk gruppeerkleering

Den enkelte student er selv ansvarlig for & sette seg inn i hva som er lovlige hjelpemidler, retningslinjer for
bruk av disse og regler om kildebruk. Erkleeringen skal bevisstgjore studentene pa deres ansvar og hvilke
konsekvenser fusk kan medfgre. Manglende erkleering fritar ikke studentene fra sitt ansvar.

1. Vi erkleerer herved at var besvarelse er vart eget arbeid, og at vi ikke har | Ja /
brukt andre kilder eller har mottatt annen hjelp enn det som er nevnt i | Nei
besvarelsen.

2. Vi erklerer videre at denne besvarelsen: Ja /

o Ikke har veert brukt til annen eksamen ved annen avdeling/univer- Nei
sitet /hggskole innenlands eller utenlands.

o Ikke refererer til andres arbeid uten at det er oppgitt.

o Ikke refererer til eget tidligere arbeid uten at det er oppgitt.

o Har alle referansene oppgitt i litteraturlisten.

e Ikke er en kopi, duplikat eller avskrift av andres arbeid eller
besvarelse.

3. Vi er kjent med at brudd pa ovennevnte er & betrakte som fusk og kan med- | Ja /

fgre annullering av eksamen og utestengelse fra universiteter og hggskoler | Nei
i Norge, jf. Universitets- og hggskoleloven §§4-7 og 4-8 og Forskrift om
eksamen §§ 31.

4. Vi er kjent med at alle innleverte oppgaver kan bli plagiatkontrollert. Ja /
Nei
5. Vi er kjent med at Universitetet i Agder vil behandle alle saker hvor det | Ja /

forligger mistanke om fusk etter hggskolens retningslinjer for behandling av | Nei
saker om fusk.

6. Vi har satt oss inn i regler og retningslinjer i bruk av kilder og referanser | Ja /
pé biblioteket sine nettsider. Nei
7. Vi har i flertall blitt enige om at innsatsen innad i gruppen er merkbart | Ja /

forskjellig og gnsker dermed & vurderes individuelt. Ordingert vurderes alle | Nei
deltakere i prosjektet samlet.

Publiseringsavtale

Fullmakt til elektronisk publisering av oppgaven Forfatter(ne) har opphavsrett til oppgaven. Det betyr blant
annet enerett til & gjore verket tilgjengelig for allmennheten (Andsverkloven. §2).
Oppgaver som er unntatt offentlighet eller taushetsbelagt /konfidensiell vil ikke bli publisert.

Vi gir herved Universitetet i Agder en vederlagsfri rett til & gjore oppgaven tilgjengelig | Ja /
for elektronisk publisering: Nei
Er oppgaven bandlagt (konfidensiell)? Ja /
Nei
Er oppgaven unntatt offentlighet? Ja /
Nei

Page intentionally left blank

Preface

This thesis is submitted as part of the Mechatronics master’s programme at the University
of Agder (UiA).

The submission of this thesis marks the end of five solar circumnavigations! of hard work,
learning and general fun at UiA; and thus the beginning of a new epoch in our lives.

We would like to thank our supervisor Sondre Sanden Tgrdal(UiA) and co-supervisors Kris-
tian Muri Knausgard(UiA) and Nadia Saad Noori(Norce) for their continued support, advice
and council throughout this project.

A general thank you is also reached out to staff, faculty and co-students at UiA for being
available for discussion, council and general help and advise throughout our five years at the
University.

A video of the Hybrid-filter in operation is available at:
https://youtu.be/pDO0Lkh2-aE.
Further, all code written and used in the project is available on gitlab, at:

https://gitlab.com/master_monkeys

! About 0.0282 of an arc second around the galactic center

iv

https://youtu.be/pDO0Lkh2-aE
https://gitlab.com/master_monkeys

Page intentionally left blank

Abstract

Unmanned aerial vehicles (UAVs) are being used for outdoors inspection and surveying tasks.
When operating in an outdoor environment, the global navigation satellite system (GNSS)
is predominantly used for position aiding, and magnetometers are used for heading aiding.
In combination with an inertial sensor, these sensors form the backbone for state estimation
for drones operating in an outdoor environment.

A desire to utilize UAVs for inspections in indoor environments means that new challenges
are faced. One of these challenges is that the traditional GNSS is unavailable for position
aiding, and magnetometers can be unreliable in the presence of industrial equipment.

This thesis aims at proposing, developing, and implementing a filtering solution capable of
performing indoor autonomous navigation. A Hybrid filter solution is proposed where the
GNSS and magnetometer are replaced by a stereo camera for depth perception. The Hybrid-
filter is composed of a Kalman filter loosely coupled with a Particle filter. The Kalman filter
is the main navigation filter in this framework. The navigation solution is based on integrated
inertial measurements and aided by position and heading estimates from the Particle filter.
In turn, the particle filter utilizes the velocity and attitude estimates from the Kalman filter,
along with the depth data from the stereo camera to estimate the position and heading of
the UAV.

A simulation environment is adopted for the project. Further, the Hybrid filter is imple-
mented in Just-in-Time compiled Python code and executed on an embedded computer in
a hardware-in-the-loop simulation.

The Hybrid-filter developed is capable of navigation in the constructed industrial simula-
tion environments. Several test cases have been performed, and the navigation system is
robust in feature-rich environments but struggles in feature-poor environments. However,
improvements have been suggested to aid navigation in feature-poor environments.

vi

Page intentionally left blank

Contents

Preface

Abstract

1 Introduction

1.1 Background & Motivation oo L
1.2 Problem statement
1.3 Related work
Theory

2.1 Frames and transforms oL
2.2 Statistics L
2.3 State space modelling oL
24 Maps . . .o e
2.5 SENSOTS
2.6 Kalman filter
2.7 Particle Filter
Method

3.1 Concepts L
3.2 Software used
3.3 Choice of frames
3.4 Simulation
3.0 Map ..o
3.6 Hybrid filtero
3.7 Kalman filter
3.8 Kalman filter Implementation
3.9 Particle filter
3.10 Particle filter Implementation
3.11 Software implementationo
3.12 Hardware implementation L

iv

vi

N = =

w

12
16
17
25
27

4 Results 99

4.1 Hybrid filter performance 99
4.2 Hardware platform oo 122
4.3 Simulation environmento 125
5 Discussions 127
5.1 Singularity in filtero 127
5.2 Feedback loop between filterso 127
5.3 Base station sensor packageo 128
5.4 Proposed alternative sensor packageo 129
6 Conclusion 131
List of Figures 133
List of Tables 136
Bibliography 139
Appendix 142
A Drone drawings 143
B Source code 147
B.1 Software structure and overview 147
B.2 idl _botsy _pkg 149
B.3 idl orientation_pkg 156
B.4 idl pf pkg 177

B.5 idl_map pkg 195

Chapter 1

Introduction

1.1 Background & Motivation

Drones are increasingly being used for several outdoor inspection and surveying tasks within
the fields of; transportation infrastructure, agri-food applications, electrical transmission and
power generation facilities.

However, when it comes to indoor UAV navigation and maneuvering inside factories, ware-
houses and other industrial sites setup for inspection tasks there are several problems that
need to be addressed in relation to navigation. In addition for indoor industrial applications
the instrumentation of the UAV becomes a challenge, conventional navigation aids such as
GPS, magnetometers and barometers can be unreliable or inaccessible.

Conventional UAVs regulate their position and attitude by continuously monitoring and
merging data from an inertial measurement unit, global positioning system, magnetometers
and barometer. However in indoor applications GPS, magnetometers and barometers can
be assumed to be unreliable. Therefore it is desirable to develop alternative localization
methods.

1.2 Problem statement

The primary goal of this thesis is to design, implement and test an autonomous navigation
system for UAVs performing indoor inspection tasks for industrial environments.

For autonomous indoor navigation, a UAV will need to be equipped with an onboard com-
puter and sensors capable of replacing the traditional GNSS and magnetometer-based navi-
gation solutions. Advancements made in offline mapping give adequate maps for navigation.
In addition, digital twins of industrial complexes are becoming popular; therefore, it can be
assumed that the operation area is known and mapped. Further, it is desired that the system
is modular, with hardware components available off-the-shelf, sized for indoor applications.

The system should be able to perform all calculations in real time using on-board
sensors and computation

A sensor package is to be selected for the application at hand.

The proposed system design should be modular.

A hardware solution is to be prototyped and tested.

The proposed system is to be simulated in a real world case.

1.3 Related work

Camera based SLAM navigation

There is a large body of research going on in the field of Simultaneous Localization and
Mapping(SLAM).

Some solutions use single camera solutions for performing both localization and mapping
of an environment simultaneously [8] [39]. The approach works well for slow-moving UAVs’
and wheeled or bipedal movers located on the plane. However, for aerial applications, single-
camera localization tends to lose track under dynamic movements.

The use of depth color cameras(RGB-D) has been adopted for SLAM and has given good
results [20] [11]. Both position and the orientation of the camera frame are tracked with
satisfactory accuracy. However, the processing time required for these systems is inhibiting
for real-time embedded applications.

The SLAM methods can be utilized for constructing the map of the environment, but for
final inspection applications, it is desirable to have a pre-constructed map where inspection
paths can be pre-planned.

ROS localization packages

Some Localization packages already exist as open-source code for use in the Robot Operating
system (ROS).

One such package uses the combination of an RGB-D camera and long-baseline sensor for
UAV application [30]. The packages rely on visual odometry, and this tends to drift over
time. To stabilize this drift, the aforementioned package uses long-baseline sensors to aid
the localization solution.

A master thesis written at NTNU compares three different ROS localization packages [29].
Common for the packages is that they all operate on the assumption that the robot operates
on a plane or at surface level. This assumption is common for most ROS localization pack-
ages, as they are predominantly used for humanoid, differential-drive, or other wheel-driven
robots [32].

Ray tracing, likelihood fields, and 3D likelihood fields

Different measurement models can be used for localization based on point cloud data. A mas-
ter’s thesis written at Chalmers University [10] compares how ray tracing and likelihood field
measurement models compare for automotive applications and conclude that both models
produce satisfactory results.

3D likelihood fields have been implemented and used for industrial track-based robots oper-
ating in a complex 0il and gas industrial environment with success [28].

Chapter 2

Theory

2.1 Frames and transforms

2.1.1 Orientation representations

There are different ways of representing the same rotational transformation between two
coordinate systems. Euler angles are prominently used to visualize the system’s orientation
due to its intuitive connection to a physical object. The representation has some drawbacks,
mainly that the representation is singular and has discontinuities that need addressing. Of
the non-singular representations, both DCM representations and quaternion representations
are prominently used for orientation representations. Quaternions main advantage is that
they are more computationally efficient than the DCM representation; this advantage is
becoming less important with the advancements made in computational power available in
single board computers and micro-controllers [37].

Table 2.1: Rotation representations, parameters, constraints and ODEs [34]

‘ Euler angles Rotation matrix Quaternion

Parameters 3 3x3=9 1+3=4
Degrees of freedom 3 3 3
Constraints 3—3=0 9-3=6 4-3=1
ODE © = T(O)w C=CS(w) 4=1q®w

It can be seen in table 2.1 that the Euler angle representation has one advantage over the
two other non-singular representations, mainly that it is not constrained. That is to say;
unlike the DCM and quaternion representation, they can be integrated more freely without
the need for normalization, and also for the DCM representation, orthogonality between
then vector columns in the matrix must be maintained.

2.1.2 Rotation matrices and transformations

The different representations discussed can all be used to create a directional cosine matrix
that is used to change the basis of a vector.

Rotation between coordinate systems

To transform a vector from one coordinate system to another the following matrix vector
operation is used:

r* = Cyr (2.1)

Where, for the vectors (r) the superscript denotes what frame said vector is resolved in, and
for the DCM (C) it should be read as: from frame b to frame a

Translation between coordinate systems

To translate from one coordinate system to another a simple vector sum is used, that is:

a

Foe = I‘Zb + rgc (22>

Care must be taken to make sure that the vectors are resolved in the same frame, it they
are not, then they must first be transformed to the correct frame.

Skew symmetric matrix

A skew symmetric matrix is a matrix with the property:

AT = A (2.3)
Defining that:
0 —as a9
Sa)=]a3 0 —a (2.4)
—Qa9 aq 0

Then the skew symmetric matrix can be used to compute vector cross product as a matrix
vector multiplication:

axb=S(a)b (2.5)

Velocities in different coordinate systems

When using vector and matrix operation representing positions and orientations seen from
different frames, then care must be taken when doing derivatives.

Starting with equation 2.1:

r* = Cyr’ (2.6)

4

Differentiating with respect to time and remembering the ODE for rotation matrices from
table 2.1 gives:

i = Cj (1" + S(wh,)r') (2.7)

Multiplying both sides with the inverse rotation matrix C? gives:

i =i’ + S(wl)r’ (2.8)

This should be read as:

o0 = Ppb 4 S(wl)r? (2.9)
Where the left superscript is read as the coordinate system at which the derivative is taken

[38).

2.1.3 Euler angle rotation sequence

An Euler angle rotation sequence is a method of rotating from one coordinate frame to
another where the rotation is parameterized with three parameters, the so-called Euler angles

[38].
A proper Euler rotation sequence is one where only two compound operations are used. The
proper Euler rotations sequences are, therefore:

7-X-7, X-y-X, V-2-Y, 2-y-Z, X-7-X, V-X-Y

A modified set of operations were introduced by Peter Guthrie Tait and George H. Bryan
that lends themselves more to aeronautics, the so-called Tait-Bryan sequences:

X-Y-Z, Y-2-X, Z-X-Y, X-Z-Y, Z-y-X, V-X-Z
Defining a set of rotation operations based on the airframe’s principle rotation axes is con-

venient, and the so-called "Yaw, pitch, and roll" sequence is detailed below.

Defining the rotation matrices as:

1 0 0 cos# 0 sinf costyy —siny 0
C.(¢) = |0 cos¢ —sing|, C,(0) = 0 1 0 |, C,(v)=|sinyp cosyp 0
0 sing coso —sinf 0 cosf 0 0 1

(2.10)

With the properties:

Ci(agr)™" = Ci(agr)" = Ci(—agr) (2.11)

And the rotation matrix from the Body to Ned frame as:

5

This rotation sequence is combined in the following DCM:

b = C(Oub) (2.13)

Where the vector ©,,; is a vector containing the three compound angles:

Ou=[0 0 v (2.14)

Then it follows that:

C = (C)) ™" = Cu(=9)Cy(—0)C.(~¥) (2.15)

Figure 2.1 visualize the Tait-Bryan rotation sequence x-y-z

Figure 2.1: Tait-Bryan rotation sequence z-y-z, from [17]

Angular velocity transformation

To use the body centred angular rates to integrate the Euler angles, some care must be
taken. The body rates must be transformed to the right reference frames.

é 0 0
wh, = 0| + CL(¢) |0] + CL(¢)CL(6) |0 (2.16)
0 0 (0

Factorising the vectors containing the Euler angles gives:

wzb = T_l(gnb)gnb (217)
Solving for O, gives:
O = T(0,)w?l, (2.18)
Where:
1 0 —sinf 1 singtanf cosptand
T(O,) = |0 cosp coslsing|, T(On)= |0 cose —sing (2.19)
0 —sing cosfcosp 0 % %

In equation 2.19 the Euler angles singularity occurs when the angle 6 approaches +90 de-
grees!, the fractions will then approach infinity.

1Often referred to as gimbal-lock for historical reasons

2.2 Statistics

2.2.1 Probability distributions

Normal Distribution

A Normal distribution, also called Gaussian distribution, is a continuous distribution for
a real-valued random number defined by two parameters, the mean p and the standard
deviation o. The general formulation for a Gaussian probability density function is:

F@) = —— exp (—; (H)Z)) (2.20)

oV 2T

A variable following a Gaussian distribution is described by:

a~ N(b,c) (2.21)

This notation means that the variable a is drawn from a Gaussian with mean b and variance
deviation c.

A Gaussian distribution is symmetric about the mean.
Zero mean white Gaussian
Zero mean white Gaussian noise is random numbers drawn from a normal distribution with

i = 0. A fundamental property of white Gaussian noise is the statistical independence of
values no matter how close they are to each other in time.

Given two vector valued zero mean white Gaussian’s:

a(t) = N'(0,A) (2.22)

b(t) = N'(0, B) (2.23)

Assuming they are uncorrelated, they will then have the following expected values:

Ay k=

E[akajT]:{ N ' %; (2.24)
B, ,k=j

E[bkb]T]:{ o ’k#i, (2.25)

Elazbl] =0 (2.26)

Arbitrary distributions

Probability density functions can take any arbitrary shape depending on the underlying
process. A multimodal distribution, like the one shown in figure 2.2, is a good example
of how measures like the mean and standard deviation can be deceptive. The mean value
calculated from the distribution is shown as the vertical black dashed line, displays that the
mean is not a typical value from the distribution.

0.2 .
0.18
0.16r
0.14r
0.12F

6 4 -2 0 2 4 6 8 10 12 14
Figure 2.2: A bimodal distribution composed of two gaussian distributions

Histogram

A histogram is an approximate representation of the underlying distribution in a data set,
splitting the data into "bins" with the area of each column denoting the weight of that bin.
A histogram is often shown with each sample weighting 1, resulting in the height of the
column being equal to the frequency of observations contained in the bin.

For representing a probability distribution, it is often preferred to have a normalized his-
togram, meaning that the total area of the columns equals one, giving an approximation of
the underlying probability density function. Figure 2.3 illustrates two histograms created
from data drawn from Gaussian distributions.

2.2.2 Variance

Variance is the expected square deviation from the mean value of a dataset. Calculating the
variance from a set of normalized weighted samples is done with the following equation [19]:

n
5 Vi

= > (i — 3,) xw; (2.27)
=0

Where z, is the mean of the data set, V; and V5 is the sum of weights and sum of square
weights, respectively.

When all samples are given the weight 1, this simplifies to the more common

1
n—1

Xn:(xl - xu)z

=0

o =

8

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

b

0
-10 -5 0 S 10 15 20 25

Figure 2.3: Data from two gaussian distributions, collected into normalized histograms with differ-
ent bin sizes

Mean Square Error (MSE) is calculated in the same manner, except that the value x, can
be selected to be any arbitrary value.

2.2.3 Propagation of uncertainty

Propagation of uncertainty is needed when both the result of an equation and the uncertainty
of that result is of concern. Then the underlying uncertainty of the variables making up the
equations has to be propagated trough the same function|21].

Given a multi-variable differentiable function:

¢ = f(a,b) (2.28)
Then the variance of the variable c is calculated using the variance equation:

2

o§+ o7

b

2
op (2.29)

da

O'C:

2 ‘8f

This equation assumes that a@ and b are independent variables?.
For a multi variable vector function the variance equation takes a slightly different form.

Given the vector function:

c=f(a,b) (2.30)

2if this assumption does not hold then an additional term must be added: o2 = ‘ %5 2 ol 4 }%5 ‘2 o+ |%§ %ﬂ 0a0b

9

Under the condition that the uncertainties in the now vector variable a and b are uncorre-
lated, then it follows that:

Y. =W, X, W'+ W, S, W/ (2.31)

Where X; is a matrix with the variances of the vector variable i on its diagonal®:

3, = . (2.32)

The matrix W, is the partial derivative of the vector function with respect to variable i

of

W, =
oi

(2.33)

2.2.4 Importance sampling

Importance sampling is a method to estimate properties of a particular distribution (target)
by drawing samples from another distribution (proposal) [3], and is often used in statistical
analysis when one particular distribution is either unknown or unpractical to sample from.

The procedure is to draw samples from the proposal distribution, and weighting the samples
with an importance weight. Assuming the ability to evaluate the target distribution at x,
the target can be estimated as weighted samples from the proposal distribution following:

pla) ~ PO gty (2.34)

Where the fraction % is the importance weight, as the amount of samples goes towards

infinity this approximation will go towards the true target distribution.

p(x)

a(x)

Figure 2.4: Importance sampling of a distribution p(x) over ¢(x)

31f the variances in the vector variable is correlated then the matrix ¥ becomes the covariance matrix for the
vector variable

10

2.2.5 Combination of "independent observations"
In probability theory the combination of independent observations, meaning observations
where one outcome does not influence the next?, is done multiplicatively. For a set of n

independent observations of probability p, the total probability p;. is calculated using the
following equation:

Dtot = Hpi (2.35)
i=1

2.2.6 Markov property
In statistics and probability theory, processes that are only dependent on the current state,
or so-called "memoryless' processes are said to possess the Markov Property [1]. This means

that the previous states have no effect on future states; or in other words, given the present,
the future does not depend on the past.

Hidden Markov Model
A Hidden Markov Model (HMM), is a statistical model where the system is assumed to be

a Markov Process. The system states z(t) are unobservable, whereas another process y(t),
dependant on x(t) is observable. The goal is to get an estimate of x(¢) by observing y(t).

Figure 2.5: A Hidden Markov Model x, with observations ¥y

4An example of independent observations can be consecutive rolls of a dice

11

2.3 State space modelling

State-space modeling is a modeling methodology used to represent a time-varying system
by a set of states that vary in time. The next system state is dependent on the previous
states and the current input to the system. The output of the system is a combination of
the state’s current states.

The modeling approach under certain conditions ® lends itself nicely to algebraic manipula-
tion, analysis, and matrix-vector representation.

State-space modeling can be done either in continuous time or transformed to a discrete
difference equation.

2.3.1 Linearization

For many systems a linear set of equation can not be directly obtained, if this is the case
the system of differential equations must be linearized to fit into the state space regime.

Given an nonlinear set of differential equations:

x = £(x(t), u(t)) (2.36)

Then a linear set of equations can be obtained by taking the partial derivatives of f(-) with
respect to both the state vector x and control input u:

x = Ax(t) + Bu(t) (2.37)
Where:
of of
A=— = — 2.
ox’ ou (2.38)

2.3.2 Continuous time model

A continuous state-space system is represented in the following form.

X(t) = Ax(t) + Bu(t) + w(t) (2.39)

y = Cx(t) + Du(t) + v(t) (2.40)

Here the matrix A describes the evolution of the states based on the previous states, the
matrix B describes how the states evolve based on the external input u. The variable
y represents the system output and is composed of the system states through the output
matrix C and the feed-through matrix D which describes the effect of the input on the
output of the system.

The process noise w(t) and measurement noise v(¢) are both uncorrelated zero mean white
Gaussian noise as described in section 2.2.1

Where the algebraic variables used are defined in table 2.2.

®The system must be time-invariant and finite-dimensional

12

Table 2.2: State space variables

Symbol Description Dim of element
X state vector nxl
u input vector pzl
y output vector qrl
A state transition matrix nrn
B input matrix nTp
C output matrix qgrn
D feed-through matrix qTp
Q process noise covariance nITn
R observation noise covariance qzrq

2.3.3 Discrete time model
For many purposes, a continuous time state space representation is not optimal. This is
often the case when the system is to be implemented in code. The state space system then

takes a slightly different form using forward Euler integration and zero order hold for the
control variable u;%[5]:

Xk — FXk_l + Bduk + Wi (241)

yi = Hxp + Daug + vy (2.42)

Where again the quantities wy and v, are both zero mean white Gaussian noise.

2.3.4 Exact discretization

To arrive at an exact discretization of the continuous-time system, the following transfor-
mation can be applied:

F = A (2.43)
Ba=AYF-1)B (2.44)
H=C (2.45)
Dy =D (2.46)
T T
Qa :/ eATQer Tdr (2.47)
=0
Ri—R -~ (2.48)
T '

5 Alternative methods will be discussed in later subsections

13

2.3.5 Approximate discretizations
There are several ways to arrive at an approximate discretization of a continuous-time system.

Typical for most of the methods is that they treat all but the state transition matrix A the
same.

There are several reasons for using an approximate solution, the most prominent of which is
to reduce the computational expense of calculating the matrix exponential function and the
involved integral required for an exact discretization.

Forward Euler:

Probably the most used approximation is the forward Euler method, here the two first terms
of the matrix exponential is used:

F =1+ Adt ~ A% (2.49)

Backwards Euler:

Another used approximation is the backwards Euler method:
F=(1-Ad) " ~er (2.50)

Tustin transformation

Tustin transformation is a discretization method that retains the stability properties of the
original state transition matrix.

dt diy !
F:<I+A~2> (I—A.Q) ~ A (2.51)

Remaining variables

The output matrix H, feed-forward matrix Dq and observation noise covariance R remains
the same as for the exact discretization.

By = Bdt (2.52)

Qa = FQF" (2.53)

2.3.6 Alternative integration method

Multi-step method

In a multi step method one uses the information at previous time steps to gain a better
solution of the differential equation. This is opposed to the forward Euler method where

only the previous solution is used to move the solution forwards in time. Other methods
exists for moving a differential equation forwards in time that are more accurate then the

14

forward Euler method but without using information at previous time steps, like the Runge-
Kutta method.

Two-step Adams-Bashforth

Adams-Bashforth methods uses the solution of one previous step to improve the estimate:

- (3-f — f(x,_ _
Xpws = Xp + dt - (3 - f(xx,ug) — f(xp-1, 05-1)) (2.54)

Linearizing the above equation gives:

3 Xp — Xp_ 3wy, — uy
Xep1 = X + (F = T) (XkQXkI) 4B, (ukwcl) (2.55)

15

2.4 Maps

A map M is a representation of an environment, and is composed of a list of objects and
their properties.

M = {m17m27 amN}

Where each index m,, specifies a property in the map, and N is the total number of objects
in the environment.

The two most common representations for robotics are feature-based and location-based maps
[36], where the indexes have different meanings. In feature-based maps, each feature gets its
respective index, with each m,, containing the properties and Cartesian location of a feature
in the map. In location-based maps, each index corresponds to one specific location in the
map. For 2D planar maps, it is common to index each map element m, , to emphasize that
the property is specific to a given coordinate (z,y).

Where feature-based maps contain only information about each feature, location-based maps
contain information about all locations in the environment.

Grid maps

Grid maps are location-based of the environment discretized into cells of equal size and can
be both 2D or 3D. An inherent weakness of grid-based maps is their tendency to use large
amounts of memory when mapping larger environments. An example of a grid map is the
binary occupancy grid map.

A binary occupancy grid map is a 2D location-based map where each location in the map
is given a binary value to denote whether a cell (z,y) is occupied or not. A good source on
the Occupancy Grid mapping algorithm is [36].

o Free
m Occupied

m Unknown
e Robot

Figure 2.6: A depiction of a binary occupancy map being mapped by a robot

16

2.5 Sensors

2.5.1 Inertial measurement unit

An Inertial Measurement Unit (IMU) is a device that measures and reports specific force
measured by an accelerometer, angular rate measured by a gyroscope, and sometimes earth’s
magnetic field measured by a magnetometer’.

Accelerometer

An accelerometer measures the proper acceleration of a body, that is, the acceleration of the
body relative to its own instantaneous rest frame. Proper acceleration differs from coordinate
acceleration in that the coordinate acceleration is relative to a fixed frame [33][34].

In addition, the accelerometer measurement is typically laded with measurement bias and
zero-mean white Gaussian noise.

a,, = CZ(aﬁb +g")+az+a, (2.56)

Here a,, is the measured acceleration reported by the accelerometer, aJ, is the accelerometers
coordinate acceleration, g" is earths gravitational acceleration®. The variable ag is the
accelerometer’s bias and has its own dynamical properties. a, is the accelerometer’s noise,

often characterized as zero-mean white Gaussian noise.

By inspection of equation 2.56 it can be seen that an accelerometer in free-fall in earths grav-
itational field will only measure sensor bias and sensor noise. This is because the coordinate

acceleration a’, will then be exactly equal in magnitude to earth’s gravitational acceleration
n

g .

a,=Cl(a" —g")+ag+a, a%—g"=0 = a, =az+a, (2.57)
Following the same reasoning it can also be seen that an accelerometer at rest, ie. ay;, = 0

will measure the same sensor bias and sensor noise, but also measure and report a measure
of earth gravitational acceleration.

a,, = Cfl(azb —g")t+ag+a,, a,=0 — a,= —CZg” +ag+a, (2.58)

The accelerometer sensor bias dynamic can be described by a random walk process defined
by a zero-mean white Gaussian noise process[41]:

35 = ang (259)

anﬂ == N(O, ang) (260)

Gyroscope

A gyroscope is a device to measure and report a body’s angular velocities. The measurement
of the angular rates is measured in the body frame. The measure is laded with a bias and

"A magnetometer is not an inertial sensor but is included due to the commonness of such a sensor in IMU IC
packages.
8Earths gravitational acceleration is defined to be pointing straight up from a level surface

17

zero mean white Gaussian noise”.

Wi = W2y + wp + wy, (2.61)

Where w,, is the rate reported by the gyroscope, w?; is the true angular rate of the body, wpg
is the sensor’s bias, and w, is a zero mean white Gaussian noise used to model the sensor
noise.

The sensor bias dynamic can be modeled by a white Gaussian random walk process:

@5 = Wn (2.62)

Wn,g = ./\/(0, Uwyg) (2.63)

2.5.2 Range finders

A range finder is a device that measures the distance from the range finder to an object.
There is a multitude of different range-finding sensors basing themselves on different mea-
surement principles.

In sensors like single measurement LiDARs and ultrasonic range sensors, the time of flight
principle is used. This is where a known signal is sent out and the time of its return to the
sensor is used to determine the distance from the sensor to the object measured.

Ray tracing sensor model

The ray tracing sensor model is an approximate model of the physical workings of a range
finder. p(zF|x;, M) models a ray moving from the range finder to a position in the map, and
is composed of four different densities, each corresponding to a certain kind of error [36].

a) The gaussian distribution py; modelling the actual hit, here denoted z** with measure-
t
ment noise.

(b) The exponential distribution pgse giving the probability of close-measurements, often
given by unmodelled disturbances in the environment like people walking in front of
the sensor.

(¢) The uniform distribution p,,., giving a distinct likelihood of max-range measurements.
(d) The uniform distribution p,.,¢ adding some probability to all possible readings up to

Zmam .

The probability from each distribution is then mixed using four mixing parameters in the
following manner:

T
Zhit Phit

p(ZﬂXt, M) — Zzshort . Pshort (264)
max Pmaz
Zrand Prand

9Earths rotation is not modeled, but could be added in the following way wy, = w,blb + wg + wn + w?;, where w?;
is earths rotation relative to the fized stars resolved in the body frame

18

(a) Gaussian Distribution pp;; (b) Exponential distribution pejose

p(2F|x¢, M) p(2F|x¢, M)

\

x ' o
2y Zmaz Z Zmax

(¢) Uniform distribution ppaq (d) Uniform distribution p,gng

p(2F|x¢, M) p(2F|x¢, M)

| .

kx kx
Zy Zmax 2 Zmax

Figure 2.7: The ray tracing sensor model is a combination of four distributions

p(Zf:|Xt, M)

kx
2t Zmax

Figure 2.8: The full probability distribution for a single ray in the ray tracing sensor model

Yielding the probability of one ray from the scan, where the sum of the mixing parameters
z, equal 1.

The full scan z; will have a probability equal to the product of the probability of each
ray, assuming they are considered independent measurements, and can be combined using
equation 2.35.

Depending on the environment, the ray cast sensor model might produce probabilities that
are not smooth over the state x;, as small changes in x; might yield considerable differences
in p(zF|x;, M). Meaning that a hypothesis close to the actual state could be given a low
weight due to tiny errors in the state.

Consider a robot in 2D-space, with position (z,y) and orientation (#). If the robot is looking
through an open door, a small variation of the orientation # might make the ray hit the door-
frame instead of going through the door, creating a large shift in pp;.

19

Robot

Figure 2.9: A small difference in the robot state can produce very different readings in the ray-cast
sensor model.

Likelihood field sensor model

The likelihood field sensor model is an end-point model of the sensor. Each reading is
projected into the map and the distance from each end-point to the closest object in the
map is used to calculate the probability of hit [36].

The end-point model deviates from the physical aspects of the range-finder as projected end-
points do not take into account that there might be a wall between the robot and the point.
This means that the sensor model can effectively see through walls, rendering close-readings
unobservable for the model. Max range readings also need to be removed from the algorithm,
as they do not have any meaning in the model. In the physical world, there is no object in
the current sensing direction between the robot and the maximum range of the sensor. But
placed in the map, max range readings can be regarded as a hit or miss depending on the
current robot position and thus produce inaccurate data.

For a 2D-case (x,y,#), the points can be projected into the map in the following manner:

a® x cosf —sinf\ [z k[€0S (0 + O sens)
map | _ ,5ens ,5ens
(yfnap> (y * sin 6 cos Yk, sens + “t sin (9 + ek,sens) (265)
With (z,y, #) being the position and orientation of the robot, 0y s.ns being the angle of the ray

from the robot sensor axis and zF being the range of the reading. A graphic representation
of this projection can be seen in figure 2.10

20

k
ymap

ek,sens

map

Figure 2.10: A point from a scan projected into map frame

The most time-consuming part of the likelihood field sensor model is finding the distance
(dmin) to the closest object in the map. When this is done the probability of hit can be
calculated as a zero-mean Gaussian, with a chosen standard deviation for the map ,,4p:

Phit = '/\/(O,Umap) (dfnzn) (266)

Where 0,4, is a combination of the uncertainty in the map and the sensor. Using the
previously mentioned mixing-parameters 2, Zrand and Zpae, OMitting 2.5, the probability
for one endpoint can be found:

Z’r‘an
P27 %0, M) = 2t * Prat + c (2.67)

Zma:c

Figure 2.11: A Simple map (left) and it’s corresponding likelihood-field (right), with darker colour
being more likely locations for hits

21

The likelihood field is smooth over x; compared to the ray-tracing method. Small changes
in the state will only move the end-point a tiny bit in the map, yielding small changes in

Phit-

Figure 2.12: A small difference in the robot state produce very similar readings in the likelihood
field.

2.5.3 Depth Cameras

Depth perception from cameras falls under the field of photogrammetry. At present, depth
perception from imagery can be divided into two main categories; active methods and passive
methods|[27].

Active methods

Common for active methods is that they all rely on the emission of some light; herein lies
the method’s main disadvantage. The light can become insignificant compared to bright
sunlight or other bright light sources. Sometimes the environment the camera operates in
can be a factor in deciding against the use of active sensors.

Structured light methods

In the structured light method, a known pattern is projected onto the camera’s field of view.
The light can either be visible or in the infrared light spectrum. Depth data is retrieved based
on the principle of triangulation, and the computations to retrieve the depth information
are relatively trivial and easy to compute, at the cost of a comparatively expensive sensor.

Light stry
l"/smpes Object pixel
Shaped objects
stripe Matrix camera
Imagmng
7 pixel
Projectar
S = [¥
|- et

Based on triangulation

Figure 2.13: Depth Camera structured light method [27]

22

Figure 2.13 illustrates the principle of the structured light method.

Time of flight

In the time of flight method, a light source is pulsed or modulated. Thus, the light is the
reflection of the scene. The received light waveform is then measured, and the phase lag in
the waveform can be used to infer depth in the scene since the original modulation frequency
and the wavelength of the used light is known.

A Emitter
g
o
=
6
J

Object

cAp ||
[}vaf,f,rzfi _"]@?_D
2 'Pm

Figure 2.14: Depth Camera time of flight method[27]

Figure 2.14 illustrates how a Time of flight depth camera operates.

Passive methods

Passive methods differ from the active methods in that they do not relay an active light
emission from the camera system. Therefore they can generally be operated in any environ-
ment where light is present. However, one disadvantage of passive systems is that they will
struggle in featureless environments. This can, in some cases, pose a challenge in retrieving
depth information and, in the worst cases, mean that the method will fail outright.

23

Stereo vision

Stereo vision is a method, whereas the name entails two cameras separated by a known dis-
tance. Correlated features in the two images can then be used to compute the distance from
the camera system to the point in the image. This operation is reasonably computationally
cheap. However, the problem of feature extraction and correlation is more problematic and
remains computationally expensive.

}'ﬂ'

Oy r v -
PXw,Yw,Zw)

P

y

-

.

O

0,

Figure 2.15: Depth camera stereo vision method[27]

Figure 2.15 illustrates how a correlated point in each of the camera frames is used to retrieve
the depth information.

24

2.6 Kalman filter

The Kalman filter, sometimes called a linear quadratic estimator, is an algorithm for esti-
mating the state of a system given a series of measurements and observations over time.
Unfortunately, the measurements and observations are typically laden with statistical noise
and other inaccuracies (like biases). The filter aims to produce an estimate that is better than
what a single measurement could provide and make hidden system-states observable. This
is advantageous for later implementation for control purposes and to determine underlying
errors in sensor measurements that are a combination of several system states.

The algorithm can be separated into two main steps, prediction and update/measurement.

The prediction step advances the state of the system based on the previous state and the
system input. In this step, the uncertainty in the states is propagated through the state
transition matrix, along with the additional uncertainty added by the actuation of the sys-
tem.

The measurement step incorporates observations made by the sensors and calculates a new
optimal estimation based on this new information; the state uncertainty covariance is up-
dated to reflect this new information.

2.6.1 Standard filter

Given a linear discrete state-space system, as described in section 2.3.3:

X = FXk,1 + Bduk + Wi (268)

The estimated values of the system-state and state-covariance are computed using the fol-
lowing two equations:

Xplk—1 = FXp_15-1 + Bauy, (2.70)

Pui-1 = FePr_1p FL + Qy (2.71)

Given a new measurement z;, the newfound information is used to update the filter state
estimates. The measurement innovation is calculated as the difference between the observed
and predicted measurement:

Y = zx — HyXgjp1 (2.72)

With measurement innovation covariance given by:

Sy = HyPyp 1 Hi + Ry, (2.73)
The new optimal Klaman gain K is computed based on the measurement covariance Sy:
K. = Py H S, (2.74)

25

The Kalman gain K, and the measurement innovation y; are then used to update the state-
and state-covariance estimates.

Xk = Xpj—1 + Ki Y (2.75)

P = (I — KyHy) Py s (2.76)

The last step in the algorithm after updating the state- and state-covariance is to change
indexes on the variables so that:

X—1)k—1 = Xk|k (2.77)

Pi1jk—1 = Py (2.78)

2.6.2 Nonlinear variety

Given a nonlinear discreet state transition function and measurement equation on the form:

X = f(Xk_l,llk,Wk) (279)

Yk = h(Xg-1, Vi) (2.80)

The nonlinear function now also contains the noise vectors; some slight modifications are
needed in the state-covariance update and measurement innovation covariance equations .

Pui-1 = FiPi1pi Fr + W, QWL (2.81)

Sy = Hy Py HY + W, RyW/ (2.82)

The equations needs to be linearized to fit into the Kalman filter framework:

(9f(Xk—1, Uz, Wk)

F = .
P) (2 83)
X=Xk
8h(xk_1, Vk)
H= ——"2 0 .
ox B (2 84)
X=Xk
af(Xk—l, Uy, Wk)
W, = 2.
q 8W N (85)
8h(Xk71; Vk)
W, = —— 2.86
ov N ()

DOfor a system with dynamics x = f(xk—1,ur) + wi and measurement yr = h(xrp—1) + vi this step would be
unnecessary

26

2.7 Particle Filter

2.7.1 General introduction

A Particle Filter is a Bayesian filter and a Monte Carlo algorithm used for estimating the
probability density function of the internal dynamic states of a system. The filter sets up a
number of discrete guesses as to what the state of the system is at time k {x%,7 = 0...n} ,
and uses measurements to update a likelihood weight {w'} for each particle {x%,w’}. This
makes the particle filter able to represent an arbitrary probability distribution of the state
but will quickly increase in complexity with larger state spaces.

2.7.2 Use case for a particle filter

The particle filter can, in theory, be used for any state estimation task. The algorithm has
strengths compared to more classical state estimation methods such as the Kalman filter,
most notable for its innate ability to represent any arbitrary probability distribution. The
particle filter can also use strongly nonlinear measurement models; however, these strengths
do not come without a cost. The particle filter is a very computationally expensive algo-
rithm. Thus, the particle filter has not seen widespread use in real-time state estimation
applications.

The number of samples (particles) required to give a good representation of the underlying
probability density increases with the number of states included in the filter. Therefore, to
be used for a real-time system, the number of states in the filter should be kept low.

Nonlinear measurement models

Because the particle filter estimates the state based on many discrete guesses, it is well
suited to use sensors that do not directly measure the state. Sensors like LiDARs and range
finders give measurements where it is difficult to provide an immediate estimate of a state
given the sensor data, but it is easy to estimate the likelihood of the sensor data given a
state. This holds if the environment is known; if the robot is maneuvering in an unknown
environment, then some form of SLAM (Simultaneous Localization and Mapping) algorithm
must be employed. SLAM will not be covered in this report.

For example, for a robot moving in the zy plane a scan from a directional LiDAR might
look like this:

Figure 2.16: Example of what a scan from a LiDAR could look like in the XY-plane

With the arrows representing the robot axes, and the pink dots are points in the pointcloud

Given only this scan, it is hard to determine much about where the robot is located in the
room. One could determine that it is a certain distance from a wall, but it provides no direct
measure of location. However, if the robots position is known to some degree, one could try
to match the scan to a map of the environment. With the particles in the particle filter

27

centered around the estimated position, one would loop through the particles and update
their weights based on how well their pose fits the scan in the environment. The particle
with the highest weight will then contain the most likely pose.

Placing the scan into the frame of each particle could look something like figure 2.17

Scan

Particle ®

Figure 2.17: The example LiDAR scan placed in the frame of three different particles in a map

Where the size of the particle is proportional to the updated weight after the sensor update,
bigger particles have larger weight.

Multi modal probability distributions

Since the particle filter builds the state estimate based on weighted samples in the state
space, the resulting probability distribution can take on any arbitrary shape. This can be
particularly helpful in localization tasks where measurements often don’t give an absolute
measure of position, but rather something that can support multiple different hypotheses.

Looking at the same example with the robot moving in the plane, the scan could support a
plethora of different positions in a rectangular room.

Figure 2.18: LiDAR scan placed in a rectangular room. Left: Multiple poses fit well with scan.
Right: The resulting probability distribution

The resulting probability distribution is multi modal, making the filter able to track multiple
hypotheses for the true state simultaneously.

28

2.7.3 Sequential Importance Sampling

Sequential Importance Sampling (SIS) is one implementation of the particle filter, where
the particle weights are updated based on importance sampling. When implementing a SIS
particle filter, choosing the correct proposal distribution g(x) is essential to achieve good
performance. This section will outline the workings of the SIS filter following [3].

Let {x{,,wi}Y:, be a set of particles, with samples {x},,i = 1,..., N,} and associated
weights {w},i =1, ..., Ny}. The set of particles describe the posterior probability distribution
p(Xo:x|21.4) of all states from time 0 to k {x;,j = 0,...,k} given measurements {z;,j =
.k} from time 1 to k. The weights of each particle is normalized so that ¥; wi = 1,
giving an approximation of the true posterior probability distribution at time k given by:

P(X0:k|2Z1:k) Zwké X0k — Xbu1)- (2.87)

Where §(-) is the dirac delta function, and the weights w}, are calculated using importance
sampling (sec 2.2.4). Given a set of samples drawn from an importance density ¢(-), we get
a weighted approximation of the target density p(-) given by:

(x') ~ 210’5()(—x). (2.88)

Where w® are the normalized weights associated with each sample z*, and follow:

(2.89)

Finding the weight w

With a desire to approximate the posterior density p(xo.x|z1.x), samples are drawn from a
proposal distribution q(x¢.x|z1.x), giving the weights at time k (following equation 2.89):

i p(XO:k\ZLk)

w;, X 2.90
F Q(XO:k’ZLk) ()

As the SIS filter is a sequential algorithm, one could at each iteration have a set of particles
giving the approximation of p(xo.x—1|Zz1.k—1), and want to estimate p(xo.|z1.x) using a new
set of particles.

If the importance density is chosen to factorize in the following way

q(Xo:k]21:6) = ¢(Xk|X0:6-1, Z1:) ¢(X0:k—1]Z1:5-1) (2.91)

Meaning that new set of samples X{, ~ ¢(Xo|21.) can be found by augmenting the current
set xb, 1 ~ q(Xo:—1|Z1.—1) With the new state prediction xi ~ q(x}|Xo.k—1,Z1:5—1)-

And by assuming that p(xo.x|z1.x) can be broken down into [3]:

P(Xo:k|2Z1:6) X P(Zk|Xk)p(Xk|Xp—1)D(X0:k—1|Z1:6-1) (2.92)

29

We can derive the weight-update equation for the SIS filter by inserting equations 2.91 and
2.92 into 2.90, which gives:

i p(ze]x)p(xplxi 1) p(XGg1|Z1k-1)
q(Xp Xt 1,210) q(Xbp_1]Z1k-1)

(2.93)

Where the fraction at the end can be identified as the set of particle weights from last filter
iteration,

resulting in the expression:

wh o i PEPDPOGIXE)
T (XX, Z1)

(2.94)

Furthermore, assuming the process has the Markov Property, meaning that the posterior
state xi is only dependant on the last state x;_; and current measurement zy, the expression
is simplified further. Resulting in the weight-update equation:

wz ~ wz_lp(Zk|X.Z)p<(X2|Xé_l)
q(X}Clxz’—l’ Zk’)

(2.95)

In the common case, where only an estimate of the posterior for the current state x;, and
not its trajectory xo., is desired, the approximation of the posterior probabilty density of
the state becomes:

NS . .
p(Xk|z1) & Y wid(xik — X},). (2.96)

i=1

Weight disparity

The SIS particle filter is often plagued by the phenomenon of weight disparity, where after
a few filter iterations only a few particles retain a significant weight. This makes most of
the computation done at each iteration give a negligible contribution to the approximation
of p(xx|21.£), as most of the particles have close to no weight.

To give a measure of the disparity of the algorithm, the effective sample size N.ss is in-
troduced [4], [26]. N.ss gives a measure of the number of particles in the filter which are
effectively contributing to the approximation of p(xg|z1.), and is defined as

Ny

=—— 297
1 + Var(wy") (2.97)

Neys
Where wj' is referred to as the "true weight" and computed as p(x}|z1.x)/q(X5|x5_ 1, Z1.1)-

This is impossible to compute exactly, so an approximation N, ¢t of Negy can be found by
computing

- 1
Negp = 5—— (2.98)
;(wz>2

over the set of normalized particle weights w’. The effective sample size will always be
smaller or equal to the number of particles, and a small value signify severe weight disparity
in the filter.

The variance of the filter will increase over time as the particles are propagated around in
the state space, so disparity is a problem that will increase with each iteration of the filter.
This is obviously an issue as a lot of computation time will be devoted to samples with next
to no weight associated with them. To combat the effects of disparity one could:

« Choose an importance density ¢(-) to minimize Var(wj')
o Incorporate a resampling step in the filter algorigthm when the effective sample size

becomes too low

Choosing the importance density ¢(-)

When designing a SIS filter, choosing the correct importance density ¢(-) is a crucial step
to ensure correct probability propagation in the state space. The importance density could
be any arbitrary probability density function, but in order to draw samples in the relevant
parts of the distribution the chosen proposal density should resemble the target density to
some degree.

Bad Okay Better

/AN

Target ——

Proposal

- -
> >

\/

Figure 2.19: Examples of importance densities

Optimal importance density

The optimal importance density, which will result in zero Var(wj;') conditional on x}_; has
been shown to be [9]

q(Xk|%p_1, 2k)opt = P(Xk|XG_1, 21 (2.99)

Which when inserted into equation 2.95 yields the weight update equation

Wy, X Wiy P(2k]X,_1)
The optimal importance density may be difficult to use as sampling from p(xz|x,_;,zz)

is often times not straightforward. A common approximation is sampling from the prior
p(Xk|x}._,) instead, which when inserted into equation 2.95 yield

w) o wh_yplzeld) (2.100)

Which is an expression that is quick to evaluate, intuitive and straightforward to imple-
ment.

31

2.7.4 The SIR particle filter

The Sequential Importance Resampling (SIR) particle filter is an implementation of the SIS
filter with a resampling step, where the method for resampling is to be determined by the
filter designer. Some of the most common approaches are outlined in [24]. The algorithm
assumes that it is possible to sample from p(x|x;_1) and that p(zy|xy) is possible to evaluate
(up to proportionality).

The algorithm consists of three main steps:

o Propagation
o Measurement / Re-weight

o Resampling

Sequential Importance Resampling (SIR)

Measurement
Lo Propagation —» /—r Resample —)

Re-weight
é >
@ Particles l >
© Likelihood /\'/\ ®
@ Observation

Yy

Xt-fft-: Xr,rr-; tft-1 err

Figure 2.20: Graphic representation of the SIR algorithm, figure from [2]

Algorithm 1: The SIR particle filter in pseudocode

. n n N
Input: {x}_;, wi_}n

begin
for n = 1...N, do
| xp o~ (X)) // Draw new samples (Propagate)
end
for n = 1...N, do
| wi o wp_p(ze X)) ; // Update weights (equation 2.100)
end
Normalize_ Weights() ; // Normalize sum of weights to 1
if N.;; < Ny, then
| Resample() ; // Resample if N.s; below threshold
end

end

return {x?, wp}ls,

32

Particle propagation

The propagation step is what "moves" the particles around in the state space, where the next
sample of the particles state is drawn from the distribution p(xi|x: ;). This distribution
could in theory be any arbitrary distribution, but for robotic applications it is often based
on robot motion or odometry with some added noise.

Velocity-based motion model

A velocity-based motion model proposes a distribution p(x|x% ;,ux), where the next state
in the filter is drawn from a distribution based on the current state xi , and an input u
containing the velocities.

Figure 2.21: The distribution p(x|x%_,,uy) for different noise parameters [36]

Sampling from the motion model for can be done using the forward Euler method described
in subsection 2.3.5 which gives the following expression for the next particle state.

x, = Fix}_; + By(uj, + w}) (2.101)

With F, B and w as outlined in section 2.3, and uf, is drawn from a Gaussian distribution

w, = N(0,0,) (2.102)

Measurement and re-weight

The measurement step uses sensor data to give a likelihood for each particle to be the true
state of the system. This step is often the most time-consuming in the algorithm, as data
from the sensor must be evaluated for all particles in the filter. Depending on the sensor and
measurement strategy, this can quickly become several hundred or thousands of calculations
per particle.

This step evaluates p(zy|xj) for each particle, evaluating the likelihood of the scan given the
current particle state and updating the weight of the particle according to equation 2.100.

Depending on the measurement model, this will often times not yield a normalized proba-
bility distribution over the particles A common approach is to add a normalizing step at the
end of the measurement step, where the particle weights are normalized according to:

W
wh = . 2.103
= 2.108)

33

Resampling of particles

The resampling step is vital to combat the effects of disparity in the particle filter. There are
many different resampling methods, where some draw new samples around the most likely
particles, and some replicate the highest and remove the lowest weighted particles. This
step is executed when the effective sample size Nef s from equation 2.98 falls below a set
threshold.

A resampling method commonly called "low variance resampling" will be shown in this
section. A study of different resampling methods outlining multiple different strategies can
be seen in [24].

Low variance resampling is a sequential algorithm and assumes normalized particle weights,
meaning that the sum of all particle weights adds up to 1. It loops through all particles
and compares the cumulative sum of particle weights W to a number u; which consists of
a random number r drawn from the uniform distribution #(0, N; ') and an additional term
increasing with each loop iteration, following the equation:

(2.104)

With n being the current loop iteration n = 1... Ny, and N; is the number of particles in the
filter.

w® | w@ | we w V)

T S SR 3) E S S

r r+ N1 r+2N; /

Figure 2.22: Particles picked by the low variance resampler

The algorithm replaces all particles in the filter, breaking up the most likely particles into
multiple particles and removing the least likely particles. After resampling, all particles will
have the same weight (1/Ny), while the sum of weights still equal one and approximately
the same weight density is kept throughout the state-space (ref figure 2.20). Pseudocode for

34

the algorithm can be seen in Algorithm 2.

Algorithm 2: Low Variance Resampling, named "systematic resampling" in [24]

Input: {x,({np),w,(gn”)}%d; // Set of particles
begin

r= U(O, Ns_l))

W =wW ;

1= 1;

for n = 1...N,; do

u=r+(n—1)/Ng;
while v > W do
1=1+1;
W =W+ w,(f);
end
X =%
w" = N
end
end
return {an")*, w,i"p)* 7]:;3:1 ; // Resampled set of particles

2.7.5 Monte Carlo Localization

Monte Carlo Localization (MCL), or "particle filter localization" is a localization algorithm
for robots using a particle filter. The algorithm models the process as a Hidden Markov
Model (2.2.6), with measurements giving some information about the hidden state.

Given sensor inputs and a map of the environment, the algorithm estimates the position
and orientation in the map based on recursive Bayesian estimation. The algorithm can be
initialized with an initial guess of the robot’s location, or "globally" - meaning that there
is no information of the robot’s start position. Global initialization spreads the particles
evenly throughout the map initially, leaving each robot pose equally likely. After the robot
moves around and senses the environment, the unlikely poses will be resampled, and the
filter should ultimately converge to the true pose of the robot.

35

One dimensional MCL Example
A classic example of Monte Carlo Localization is a "door-sensing" robot moving in one

dimension. The sensors on the robot include wheel odometry and a sensor giving readings
when the robot is in front of a door.

MMWWWWWWWM,
2-!&&!& x!
O | [[|| I

3. |5 x!g‘—&&k
I

! N [W ——

belT /_ﬂ TN\ o\

>

Figure 2.23: Monte Carlo Localization example: A door-sensing robot moving in 1D

1. The algorithm is first globally initialized, leaving all particles with an equal weight,
and the robot starts to move to the right.

2. The robot moves to the right, shifting the particles to the right in the state space. At
some point, the robot senses a door, giving all particles that are located in front of a
door a higher likelihood to be the true pose.

3. The movement continues, and another door is sensed, the algorithm is now fairly certain
of which door it is located in front of.

36

Chapter 3

Method

3.1 Concepts

In this section the different choices of hardware components will be outlined and motivated.
The choice of filtering architecture will also be detailed and motivated.

Further it has been desired to keep the cost of the completed system low, making the system
more approachable for further development and possible future deployment of the system.

The system design is also made with modularity in mind, the Hybrid filter consists of a
Kalman filter and a Particle filter operating co-dependently. This concept allows for great
modularity in design and development. This will be further discussed in this section.

3.1.1 Sensor selection
Depth perception sensor

The sensor selection for localization is a choice between camera solutions or lidar based depth
perception. Due to the expense of 3D lidars they where quickly ruled out as an option for
the project.

The selection was then focused on camera based solutions. On the more affordable and
compact end of the spectrum is the Intel Realsense series of camera solutions and the Zed
Mini stereo camera. The Intel realsense family are primarily active cameras using structured
light for depth perception, the emission of light from the camera is undesired as this removes
some of the flexibility of the system. Say if a plant operator objects to the emanation
of structured light, or the site uses monitoring sensors that are light sensitive. Another
drawback of the Intel series is that they are not natively compatible with ARM processor
architectures, greatly limiting the choice of small form factor computers for use in the drone.
The Zed Mini stereo camera on the other hand is a passive camera relying on stereo vision
for depth perception. The Zed Mini software development kit [42] comes with ARM support
and a already pre-made ROS implementation. Making is a suitable camera solution for the
project.

Inertial sensor

The inertial measurement unit used in the project a part of the Pixhawk 4 flight controller
used for controlling the drone. The IMU sensor data is available from the flight controller
with the use of an alternate flight controller firmware and a ROS software development kit
provided by the PX4 development team [31].

37

3.1.2 Computation on UAV

As the inspection drone is intended for indoor industrial environments, communication to a
ground station can be assumed to be unreliable. An environment with concrete and metal
clad walls can prove difficult for communication signals, further it can be expensive to equip,
or undesirable to outfit an industrial complex with communication infrastructure like WiFi
for the sole purpose of facilitating an inspection drone. Therefore it is desirable to design a
solution where all the necessary navigational computations are preformed on and on-board
computer.

To that end a small and compact computer is needed. Two different computers were available
for use in the project from the beginning, the Nvidia Jetson TX2i module with associated
carrier board and the Nvidia Jetson AGX Xavier. Both computers are equipped with the
CUDA capabilities needed for the Zed Mini stereo camera.

The choice ended on the Nvidia Jetson TX2i based on size and weight constraints.

3.1.3 Proposed hybrid filter architecture

The proposed hybrid filter is a filter architecture that uses a loosely coupled Kalman- and
particle-filter to utilize the strength of both filtering approaches while simultaneously trying
to avoid their weaknesses.

The Kalman filter will be used as the primary filter; the Kalman filter shines when the
underlying probability distribution is Gaussian, and the system model and measurement
equations are linear or linearizable. This is the case for the IMU sensor models used to
navigate, both the accelerometer and gyroscope sensor models can be linearized, and the
Gaussian assumptions firmly hold. The Kalman filter is also capable of being computation-
ally efficient with a large state vector. It is not a problem for the Kalman filter to contain the
complete state vector describing the drone’s position, orientation, and sensor biases. Since
the Kalman filter needs a linearizable measurement equation, it is problematic to use a point
cloud observation directly in the Kalman filter. Therefore this is left to the particle filter,
and a most likely position and heading will be used in the Kalman filter, making for a now
linear position and heading measurement model.

The particle filter will be used as a position and heading aiding filter for the Kalman filter.
The particle filter relaxes the assumptions of an underlying Gaussian distribution and can
handle nonlinear measurement models; that is, the measurement model does not need to
produce an exact answer that relates directly to the states of the system but rather a proba-
bility of a proposed state being a true state. This is perfect for use with a point cloud-based
measurement model. However, the particle filter needs to keep track of a large number of
proposed solutions, the so-called particles in the filter. Therefore the state vector used to
represent a particle needs to be kept to a minimum. This will allow each particle to repre-
sent a more considerable part of the state space. Therefore the particle filter’s internal state
will be reduced to the position, ie. X, Y, and Z coordinates and the heading (yaw) of the
drone. Leaving the state vector to only contain the position and heading will require that
the particle filter receives velocity information from an external source; that is, it will need
to know how to propagate (move) the particles in space. The particle filter will also require
the rest of the attitude (roll/pitch) for leveling the point-cloud during measurement. This
information is received from the Kalman filter.

The proposed coupling of the filter can be seen in figure 3.1

38

Depth Camera IMU

V Pose V

Particle Filter Kalman Filter

Velocity,
Roll / Pitch

Figure 3.1: Proposed Hybrid filter coupling

3.1.4 Measurement model, Ray-cast vs. Likelihood-field

Because the system is going to be deployed to a single-board computer placed on the drone
and executed real-time, the range finder sensor model ought to be pre-computed to reduce
computational load. Pre-calculating the sensor model will turn the calculation of py;; into a
simple indexing operation, drastically reducing computational load.

Ray-casting

The ray-casting algorithm described in section 2.5.2 can be pre-computed, but one needs to
pre-calculate ray-casts for all possible orientations for each position. Thus, a pre-computed
ray-cast sensor model will quickly increase in size, with each point (z, y, z) in the map
containing several pre-computed rays. The pre-cumputed ray-cast sensor model will quickly
become several Gigabytes in size depending on the map size and resolution for both position
and orientation.

Likelihood field

The likelihood field sensor model described in section 2.5.2 can also be pre-computed for
the entire map, where for each position in the map contains only the probability of a sensor
hit, yielding substantially smaller datasets compared to ray-cast. This will introduce some
numerical errors as the map must be discretized to encode the likelihood of hits, but these
errors are tiny for even relatively course maps.

Choice of model

The likelihood field sensor model was chosen due to its smoothness over x and its smaller
data size when pre-computed compared to the ray cast method.

39

3.2 Software used

Python

Python is one of the worlds most popular programming languages and is a high-level, in-
terpreted code language with a focus on object oriented programming and code-readability.
The language is easy to pick up for new software developers as it is dynamically typed and
code is grouped visually by indentations in the script.

Because of it’s widespread use, python has great community support and a wide array of
packages and libraries available. Notable packages used extensively in this project are:

o NumPy [15]: One of the most used libraries in Python, contains functionality for
matrix- and array operations and is fully open source.

« Numba [23]: A package enabling Just in Time (JiT) compilation® for a subset of Python
and NumPy code, enhancing performance during runtime.

Open3D

Open3D [43] is a modern, open source library for C++ and Python for working with 3D
data. The library contains tools for point cloud manipulation and working with 3D models,
and has been a vital part of creating the likelihood maps used for localization. The library
can load common 3D model filetypes (.stl, .obj), which means that the environment can
be modeled in for instance SolidWorks or Blender before being imported and converted in
Python. Autodesk also have a tool which enables the export of Revit Building Information
Model, or "BIM", models to the .stl file format, which would make them importable into
Open3D.

ROS 2

“Robot Operating System” or “ROS” for short is a framework for writing robot software,
where ROS 2 is the newest release. ROS is a set of tools that aims to make creating modular
robot software easier by allowing programs (nodes) to communicate across multiple machines
or internally using pre-defined topics. ROS 2 targets newer versions of C++ and Python,
and is set up for object-oriented programming using timers and callbacks for execution of
subroutines. The ROS ecosystem includes a lot of pre-compiled packages and tools to boost
development of high complexity robot software.

ROS 2 "Eloquent Elusor" (codename ’eloquent’) is the newest ROS 2 distribution targeting
ubuntu 18.04 LTS and is the chosen distribution for this project. Although eloquent is not
listed as a long term support package, both PX4 and StereoLabs had pre-made packages
for this distribution, making sensor data from the hardware easily accessible on the ROS
network. ROS also provides packages to interface with the Gazebo simulator. Thus enabling
the creation of a simulated drone armed with the same sort of sensors which will be available
on the physical system, forming a good platform for development and testing.

3.2.1 PX4 Development environment

The PX4 development environment consists of tools and software to control and get sensor
data from the simulated drone. The simulator used is Gazebo, as this is the most popular

1 JiT-compilation is detailed further in section 3.11.1

40

simulation-environment used with ROS and the PX4 Software In The Loop (SITL) simu-
lation also integrates directly with Gazebo. This gives a simulation-platform with a highly

customizable drone which is controlled and responds just like a physical system running the
PX4 flight stack.

Gazebo

Gazebo is an open-source simulation environment focused on robotics simulation, and sees
widespread use with ROS. Many pre-made plugins exist, enabling the placement of sensors
such as IMUs and depth cameras in the simulation. Though packages and plugins exist for
ROS2, it is under continuous development by the maintainers, and during work with the
project, the documentation was a bit lackluster.

The simulated drone, sensor models, and environment will be detailed further in section 3.4

PX4 SITL

The PX4 SITL simulation simulates the full PX4 flight stack on a host computer, enabling
testing and interface with the flight controller software in the same manner as with a physical
system. The SITL simulation is also available for a custom Real Time Publish Subscribe
(RTPS) firmware implementation, which enables publishing internal sensor data from the
flight controller onto the ROS network. Running the PX4 flight stack on the simulated drone
also enables controlling its autopilot through third-party software.

QGroundControl

QGroundControl (QGC) is an open-source software package enabling control and path plan-
ning for MAVLINK-enabled systems and has been the primary control interface against the
simulated drone. The software enables manual control of the simulated drone running the
SITL simulation using either on-screen virtual joysticks or by connecting a physical gamepad.
For general testing of the system, an Xbox 360 controller has been used - which is plug-and-
play with QGroundControl and fully customizable. For the recording of test results, the
"mission" feature of QGroundControl is used, where the drone follows a user-defined path at
a set velocity, making the flight more repeatable for consecutive tests.

Git

Git is a free, open-source distributed version control system and has been used extensively
in the project. The entire code-base for the project is located on the GitLab group for the
project, and crucial third-party software has been forked to avoid version inconsistencies in
the case of new updates.

There have been set up repositories for all of the developed software packages. In addi-
tion, some main ROS2 workspaces have their repository setup with multiple of the other
developed packages included as submodules. Submodules are repositories within reposito-
ries, where each submodule points to a specific commit in the version history of the target
repository. Setting the main ROS workspaces up with submodules enables easy deployment
to new locations and hardware for testing without having to clone down multiple repositories
independently.

41

3.3 Choice of frames

Multiple different frames of reference is used for the system. Keeping track of the different
frames and the transforms between them is critical for the correct operation of the system.
In this section the different frames in the system will be shown and their choices motivated.

Table 3.1: The different frames used in the system

Frame Description
m Map frame
n NED frame
b Body frame
S Sensor frame (IMU)
1 Level body frame
p Particle frame

3.3.1 NED navigation frame

The main navigation frame is chosen to be a NED (north east down) frame, placed on a
tangential plane on earths surface. That is; the x-axis pointing towards earth geographi-
cal north axis, the y-axis is pointing eastwards, leaving the z-axis to point straight down,
perpendicular to the tangential plane formed by the x- and y-axis.

This choice for a main navigation frame makes it convenient for possible future integration
as coordinates in a NED frame can be converted to latitude, longitude and altitude without
much hassle, making integration into a GPS driven navigation system tangible.

NED frame coordinates can also be converted into navigation frames centred at the center
of the earth. That is the earth centred earth inertial (ECEI) and earth centred earth fixed
(ECEF) frames. Also allowing for future integration into navigation systems utilizing those
frames.

3.3.2 Map frame

The main navigation frame in the system is the NED-frame. The reasoning for the intro-
duction of the separate map-frame is two-fold. The main reason is flexibility; it is not given
that the building the map represents is oriented in such a way that the NED-frame is a
natural frame to use for the map. Having the possibility to generate the map separate from
the NED-frame, increases the flexibility of the system. The secondary reason is practicality;
Gazebo uses a coordinate system with Z-up, defining the map-frame similarly will make
importing the maps into Gazebo easier.

42

n

Figure 3.2: The map, NED and body-frame

3.3.3 Body frames

There are multiple frames on the drone. The camera and IMU sensor frames are rigidly
connected to the body frame, while the level body frame shares origin with body while
keeping level in NED (z; || 2z,). Figures 3.3 and 3.4 show the different frames and their
relation to each other.

Sensor

Sensor

Camera

G, . b s
Camera ...
Body
Figure 3.3: The body, sensor and camera frame
Sensor
0
A
b
z’ Tys
Camera o ;
Level body
Body

Figure 3.4: The body and level body frame
The level body frame is used to give velocity estimates from the Kalman filter to the particle

43

filter. These velocities are used in the propagation-step, and must be in the level frame as
the particle filter contain no estimate of the roll and pitch of the drone.

3.3.4 Particle frame

Each particle in the particle filter has its own frame, with the Z-axis parallel to the Z-axis of
the map frame and x-axis oriented based on the particle heading. Fach particle represents
a hypothesis for the position and heading of the drone in the map.

.
.
.
.

Particle

.

Figure 3.5: The particle frame and map frame

The transformation from the map to the particle frame is described by the particles coordi-
nate and heading.

rmp = xmwygip? zaiznp Cfn = Cz(djmp) (31)

44

3.4 Simulation

3.4.1 Gazebo simulation environment models

Drone model

The drone model is based on the IRIS 3DR drone model modeled by the PX4/gazebo
development community[6]. Some slight modifications have been made to the drone model,
this includes:

e An IMU in the position where the PX4 flight controller is located

¢ Added a zed mini camera model

Figure 3.6: Simulation drone model based on IRIS 3DR

IMU sensor model

An IMU sensor model has been added to the simulated drone. This IMU is located in the
same location as the pixhawk 4 IMU and serves as an IMU that is accessible natively in the
Gazebo simulation and publishes data to the ROS network. This is in contrast to the IMU
that is a part of the PX4 SITL flight controller in the simulation; data from the SITL IMU
is only accessible when the PX/ SITL "micrortps agent' is running?.

The IMU model added is a standard model in the gazebo environment and has some key
parameters that need to be filled in for the sensor model to accurately model and IMU, that
is, the sensor bias and the sensor noise characteristics[12][13].

2This will be covered in more detail later in the report

45

Camera sensor model

The Zed mini camera chosen for depth perception of the environment is not models in the
Gazebo environment. A close kin to the Zed mini is, the Intel real sens depth cameras.
Therefore a model was created based on this model. An additional IMU was placed in the
camera to model the IMU percent on the Zed mini.

The noise characteristics that can be added to the camera’s depth model are barrel distortion,
Gaussian noise, and a constant offset[13].

There is a maximum and minimum range of depth perception that can be set as well. In the
simulation model, the max value is set higher than the approximately 15-meter max range
of the Zed mini[35]3. This is done to make visualization in the program Ruviz easier. Any
values that are further away than 15 meters are handled by the camera input function in
the particle filter.

(a) Point cloud as seen in Rviz (b) Environment surrounding the drone

Figure 3.7: Depth camera point cloud visualized in Rviz

Figure 3.7 displays how the depth camera perceives the environment model in Gazebo.

3The zed Mini can be set to perform in an Ultra mode mode and reach a max range of 24 meters

46

Environment model

To simulate the operating environment of the drone, three different environment models were
made. One small, simple map with many distinct features for early-stage development and
testing. For late-stage testing, development, and validation, two more realistic environments
were modeled. One based on a free industrial game asset found online, and one based on
the basement at the University of Agder Campus Grimstad

Small, simple environment

One simple and small model with many different features making it an idealized test envi-
ronment for early-stage testing and development. The map has a 5 x 10 meter footprint and
walls that are 5 meters tall.

Figure 3.8: Simple environment as seen in the Gazebo simulation tool

Figure 3.8 displays the small environment; here the many 'clean" features can be seen. The
front two walls have been made transparent for the visualization of the features within the
walls.

The environment was modeled using Solidworks and imported into Gazebo in an STL file
format. The test environment has no collision model, and only appears in the Gazebo
simulation as a visual entity. This is great for testing as it means that collisions with walls
can not occur and makes it a comfortable environment to fly in manually during testing.

Industrial environment

The industrial environment is a large outdoor area resembling a multi-building industrial
complex. The footprint of the environment is roughly 150 x 150 meters and building with
features up to roughly 10 in height. Even though the primary use case for the proposed
Hybrid-filter is indoor applications where GPS and magnetometer sensors are denied, this is
still a real test case because it is an industrial area. The model is realistically clouted and
has many long sight-lines that are longer than the max range of the sensor. This makes for
a challenging environment and a good test for the proposed system.

47

Figure 3.9: Industrial environment seen in the Gazebo simulation tool

Figure 3.9 displays the industrial environment, the model is made by Dmitrii Kutsenko and
made available free for download under a royalty free licence[22].

University of Agder Campus Grimstad Basement

The model of the UiA campus basement is based on the footprint drawings of the building
and is therefore suitably dimensional accurate to represent the actual environment; some
features like doors and door frames have not been fully modeled. The ceiling in the Gazebo
model is made visually transparent with a blue tint but is still an object the depth camera
detects. This makes it easy to see where the drone is in the simulation and makes manual
flying of the drone in the simulation feasible.

The environment consists of long hallways that have similar features in the length direction
of the hallway. Therefore it will be a challenging test environment for the proposed system
to determine its position along the length of a given hallway.

Figure 3.10: Univeristy of Agder basement environment seen in Gazebo simulation tool

48

3.4.2 Gazebo ground truth publisher

The gazebo environment does not natively provide data about the simulated drones true
position, velocity or orientation, i.e. the true state of the drone. This data is important in
validating the Hybrid-filter system’s performance. This information is obtained trough the
use of plugins in the model. These plugins have been placed in the drone’s center of mass
and provides information about the drone’s position, orientation and linear- and angular-
velocity. The data from these plugins are read into the ground truth publisher node, which
was written to refactor this data to the desired format and publish it to the ROS network.

3.4.3 Modes of simulation

The Gazebo simulation environment has been used to develop, test, and validate the Hybrid-
filter system software components and the complete Hybrid-filter. In addition, the sensor
data from the drone is made available on the ROS network. This gives great flexibility for
simulation and allows for both SITL and HIL simulation.

SITL simulation

The primary mode of simulation has been done with the developed software in the loop.
In this simulation regime, the developed software runs as part of the simulation on the
simulation host machine. This means that the same computer is running both the simulation
and the production software. This mode of simulation is easy to set up and makes rapid
prototyping and development of software possible. Another great advantage of using the
production code in a simulation environment is that many of the bugs that otherwise would
be present during the integration stage of the development process can be resolved during
code development.

SITL simulation can be a tricky endeavor as the simulation host machine is also that machine
running the production software. This results in the production software being executed on a
different platform than what it will be deployed on. Further, it is dependent on the simulation
host machine having the resources to process both the simulation and the deployed software.
Therefore care must be taken when evaluating results regarding computation resources used
to form a SITL simulation.

HIL simulation

Hardware in the loop simulations is a regime of simulations where the simulation is executed
on a simulation host machine, and the production software is executed on the intended plat-
form. This means that the production software is running on the Nvidia Jetson TX2. This
simulation method allows for testing and evaluation of the execution rate of the developed
software and making sure that it is feasible to run on the intended hardware.

49

3.5 Map

The likelihood map, introduced as a 2D-grid map of pre-computed values for the likelihood-
field sensor model in [36] and extended to 3D in [28] is a discrete 3D grid-map. In the
likelihood-map each cell contains the probability density for the distance d taken from a
gaussian distribution centered at the closest object.

N(0, Ormap)

~_

\

Figure 3.11: The main idea behind the likelihood map, demonstrated in 2D

The likelihood map is generated using functions defined in the Open3D library [43]. The
map is a discrete pre-computation of the laser likelihood field sensor model described in
section 2.5.2. A set of GUI-based tools have been created in order to simplify the generation
and validation of the likelihood-map.

The map is stored as a three-dimensional NumPy array as this is known to be directly
compatible with JI'T-compiled Python programs using Numba.

3.5.1 Generating a likelihood map

The map generation script generates the full 3D likelihood map and metadata from a chosen
model, where the map resolution and o,,,, is decided by the user at execution. The metadata
include the map resolution and origin offset in meters, the size of the map in cells for the x- y-
and z-direction, the maximum value for the gaussian used to compute the map probabilities
and a bool signifying if the probabilities are encoded in unsigned 8-bit integers. The origin
offset is the cartesian distance from the map origin (from the 3D-model) and cell [0, 0, 0]
in the map, and is used when indexing from the map when origin is not cell [0, 0, 0].

The possibility to encode the probabilities stored in the map as Ulnt8’s is motivated by
memory usage. A 3D grid representation is not space-efficient, and it was discovered that
the large industrial map used more than 1 GB of memory when created with probabilities
using the float32 datatype. Changing the datatype to Ulnt8 results in roughly a quarter
of the memory-usage. There exist more space efficient, tree-based mapping solutions, like
Octomap [16]. At the time of writing this report these were not supported with JiT Compiled
python programs, so a 3D NumPy array was used as this was known to work.

The map-generator script creates the map in two steps, the first step assigns the 3D grid over
a chosen model and finds the distance from the center of each voxel to the closest point in
the model, described in block-diagram form in figure 3.12. The size of the map is extended
by 60,4, in all directions to avoid sudden sharp changes in the likelihood-field around the
edge of the model.

50

Setup KD-tree
using the sampled
points

Sample points on
3D model surface

Loop through grid,
placing distance d
\»| from each voxel center
to closest point in

KD-tree into each voxel
Create 3D grid _)
over the model
(£60map) J

Figure 3.12: The main workflow of the map-generation script

Load 3D model,
.stl, .obj etc.

The second step converts these distances into probabilities and encodes them into Ulnt8
data type if desired. The distance d for each cell (x,y, z) in the map is transformed to a
probability of hit using a zero-mean Gaussian with the standard deviation o,,,, defined at
program execution

p(z,y, 2lM) =

—d(x,y,z|M)2> (32>

1
——¢€X
Omap * V 2 P (2072nap

Encoding this probability into Ulnt8 is done by converting the probability from the range
[0, (Fpmap - V27)7Y] € R to [0,255] € N. This introduces some discretization-error, but as
the map is already divided into a discrete grid this error will have negligible effect. The
theoretical maximum error introduced by this conversion will be half the resolution of the
UlInt8, which becomes:

1 1
Emaz = ~
2 . 255 LV 27'(' . Umap 12784 : Umap

(3.3)

Environment models as likelihood maps

The three aforementioned environments (section 3.4.1) were all converted to likelihood-maps
using a resolution of 10 [em] and a standard deviation 0,4, of 10 [em]. To verify that the
maps were created correctly, slices of each map was converted to images for visualization
using the map slicer script. Figures 3.13 and 3.14 shows a slice of the likelihood map
generated for the basement at UiA and industrial map, where the probabilities are scaled to
be € [0,255] and the colours inverted, showing more probable regions as darker colour.

o1

I

H
. .

Figure 3.13: A slice at z = 1 [m] from the generated likelihood-map for the UiA basement, darker
regions are more probable hit locations

O
O

O

O
O

oo m?

S

‘ - OO
Figure 3.14: A slice at z = 3 [m] from the generated likelihood-map for the industrial map, darker
regions are more probable hit locations

52

3.6 Hybrid filter

The hybrid filter is split into a Kalman filter and a particle filter, where the architecture of
the hybrid filter draws from the strengths of the different filter types. The Kalman filter is
excellent at fusing IMU data, which contain Gaussian distributed noise, with position and
heading measurements. Whilst the particle filter is better at dealing with non-Gaussian
sensor models and multi-modal probability distributions.

As the system is designed to operate in an indoor, industrial environment, the classical UAV
position and heading sensors (GPS and Magnetometer, and to some degree Barometer?) will
not work reliably. This means that the Kalman filter will need position and heading aiding
from another source - this is where the particle filter will fill in. Utilizing a likelihood map
sensor model and a range-finder, the particle filter will localize the drone using the map
and give position- and heading measurements to the Kalman filter. Since the drone is to be
used in autonomous inspection tasks, it is believed that an initial position is known to some
degree as the system is assumed to have a designated landing zone or charging station to
rest between missions.

The hybrid filter architecture can be seen in figure 3.15. The position and yaw estimates
([Ply, Ymp)) from the particle filter is passed to the Kalman filter, and the linear- and angular
velocities in the level frame and the estimated euler-angles ([v!,, w!, ©,;]) are passed to

the particle filter.

Zed Camera PX4 IMU
Zy, [am, wm]T
[pn) ¢ b]
¥ nor ¥
Particle Filter Kalman Filter

[Vﬁzb7 wfmb? ©,p]

Figure 3.15: The hybrid filter architecture including sensors

3.6.1 Co-dependence of filters

The Hybrid filter is, as mentioned, split into a Kalman filter and a particle filter. The
Kalman filter will be the "main estimator" in the system, fusing the sensor data from the
IMU with the position and yaw estimates from the particle filter.

The two parts of the hybrid filter are dependant on each other. The Kalman filter receives the
position and yaw estimate from the particle filter as measurements, correcting its estimates
based on integrated IMU data. The particle filter uses the velocity estimate from the Kalman
filter to move the particles in the state space.

“Due to indoor ventilation systems, the indoor barometric pressure might fluctuate

53

3.6.2 Filter separation

The filters are setup in a way that makes them separable, and the ground truth data publisher
described in section 3.4.2 is used to test the filters separately before integration. The ground
truth data publisher gives true data from the simulated environment in the same form that
the filters output, so it will use the same interface for passing data into the filters. The
interface between the system and ground truth publisher can be seen in figure 3.16.

Zed Camera PX4 IMU
Z;, [anm, Wm]T
Y Y
Particle Filter Kalman Filter

Ground Truth
[ngbv wfzb’ O [Phb: Ynb]

Figure 3.16: The hybrid filter architecture including sensors, with ground truth breaking depen-
dence

Feeding the filters with ground truth data removes the problem of co-dependence during test-

ing, and enables completely isolated development of the two filters before system integration,
as long as the communication-interface is established.

54

3.7 Kalman filter

The Kalman filter is derived in such a way that it operates on the position and orientations
and the linear- and angular velocity of the sensor. The state of the sensor is then later
related to the state roughly at the center of mass of the drone.

The reason for choosing to use sensor-centered states is that this is the location where the
actual IMU measurements are taking place; integrating the measurements in the sensor
frame will avoid numerical errors introduced by translating them to the center of gravity of
the drone before integration.

For later control purposes, the states at the center of gravity are the most useful. Therefore
the sensor states are translated to this frame in the output equations of the filter.

As mentioned in the concepts section 3.1 the Kalman filter is based on the sensor models.
That is the accelerometer and gyroscope dynamics.

The states in the filter are related to the senors states:

n

T
X = sz Vns aﬁ 6"5 wﬁ}

All but the states regarding the Euler angles are non constrained, that is to say they have a
free domain over the real numbers.

The Euler angles are defined to be wrapped on the unit circle with:
{¢7 9} S (_ﬂ-v ﬂ-L ¢ € (07 27T] (34>

3.7.1 State transition model

The state transition model for the filter is a kinematic model with the following linear
dynamics:

Phs = Vi (3.5)
Vis = Apg (3.6)

The angular dynamics is based on Euler angles and a derivation of the rate transform matrix
T(©,,s) can be found in section 2.1.3.

O = T(O,5) (3.7)

The accelerometer and gyroscope bias dynamic are also included as states, and the state
dynamics are based on the sensor model discussed in section 2.5.1

ag=0 (3.8)

b5 =0 (3.9)

95

Accelerometer model
Starting with equation 2.56 and remembering that the accelerometer measures the proper

acceleration. Where it is the coordinate acceleration that is of interest for the navigation
solution.

ay = Cla;, + 8" +ag +a, (3.10)

Solving the measurement equation 3.10 for the coordinate acceleration a”, gives®:

a,, =Clla,, —ag+a, —g" (3.11)

A new variable a,. is introduced and defined as:

a.=a,—C g" (3.12)
The value of a, is calculated every time a new acceleration measurement is received from the

accelerometer. Substituting equation 3.12 into 3.11 gives the final coordinate acceleration
equation:

a,, = Clla, —ag + a,] (3.13)

Gyroscope model

Beginning with the gyroscopes measurement equation 2.61 and solving for the body’s angular
velocity:

Wi = W2y + wp + wy, (3.14)

Wy = W — wg + wy (3.15)

Complete state transition model

Summarizing the state transition equations and inserting the coordinate acceleration solved
in equation 3.11 into 3.6, as well as inserting the body rates from equation 3.15 into 3.7 gives
the complete state transition equations:

VootV
d Cg(éns)[ac —ag+ aN]
5X= f(x,u) = X a3 (3.16)
T(O)s) [wm — wp + w]
Wn,B

3.7.2 Measurement equations

The measurement equations to the Kalman filter are detailed below

5Note that the zero mean Gaussian noise vector a, has not switched sign, that is because a zero mean Gaussian
distribution is symmetric around the y-axis

56

Position measurement equation

The position measurement is the best available estimated position from the particle filter
and is estimated in the body frame of the UAV; the covariance of the estimate is also related
to the body frame of the UAV. Therefore, they both need to be transformed into the sensor
frame.

The position is transformed in the following way:

Zp = Py (3.18)

Here there is uncertainty in both the position estimate given by particle filter p;}, and in the
Euler parameterization of the DCM Cj.

The covariance matrix R, accompanying the position estimate pJ', can then be calculated
in accordance with the covariance equation detailed in section 2.2.3.

R,=R,,; + WpP@W]:f (3.19)

Where the matrix W, is the partial derivative of the position measurement equation 3.18
with respect to the Euler vector constituting the DCM C:

0z,
86713

W, = (3.20)

The covariance matrix Pg is extracted from the state uncertainty matrix at the time when the
measurement takes place, and the covariance matrix R, s is the accompanying covariance
to the position estimate from the particle filter.

Yaw measurement equation

The yaw measurement is also the best available estimate from the particle filter. The yaw
estimate is estimated in the body centred frame. The Kalman filter operates in the sensor
frame. Since both frames are attached to a rigid body and has the same orientation, the
estimate from the particle filter can be used directly as a measurement in the Kalman filter.

2y = Ynp (3.21)

The accompanying measurement covariance matrix Ry ¢ is the estimated covariance from
the particle filter.

Ry =Ry, (3.22)

Leveling

Since the gravity vector is present in the proper acceleration measured by the accelerometer,
it can be used to infer the attitude of the UAV. This is the process of leveling.

Leveling is necessary in the step of identifying the gyroscope bias and also making sure that
the attitude estimate of the UAV dose not drift over time.

o7

The process of leveling is dependant on assuming that the coordinate acceleration is close
to zero and that the accelerometer biases are either identified or assumed equal to zero.

Starting with the proper acceleration equation for the accelerometer 2.56

a, = Cla;, —g"l +as +a, (3.23)

The above assumptions leads to:

a,=-C)g" (3.24)

This equation is valid under the assumption that the coordinate acceleration a], is small,
this can be applied in the Kalman filter by only doing leveling when:

|am| € [g(1 —¢€),9(1 +€)] (3.25)
Where ¢ is the absolute value of the earths gravitational acceleration and e is value that
determines the narrowness of the leveling window.

To infer the roll and pitch angles equation 3.24 must be solved for them, multiplying the
gravity vector g" with the DCM C? gives:

sinf
a,, = g | —costsing (3.26)
—cosfcosp

By manipulating the elements in equation 3.26 the roll and pitch angles ¢ and 6 can be
solved for.

¢ = atan <amy> (3.27)

0 = atan | ——oms (3.28)
VAR

Both angles will involve a tangent function. This is undesirable as the tangent function is
limited to half a circle in domain by definition, typically £7. This problem can be solved
by using the atan2 function typically included in most math programming libraries. This
function uses the signs of the arguments passed to determine what quadrant the argument
is in, and thus the function has a domain that covers the full unit circle[7].

&1 = atan2 (—amy, —Qm,z) (3.29)

0, = atan2 (am@, Vam, + a%m) (3.30)

The signs in equation 3.29 is lost in the derivation of equation 3.27, therefore care must be
taken when deriving the phi leveling function®.

Sthe phi leveling equation when not simplifying the signs looks like: ¢ = atan (—am,y/ — @m,=), it is the numerator
and denominator from this equation that is used as the arguments for the atan2 function

o8

Equation 3.29 and 3.30 will be used as measurements for the roll and pitch angles in the
Kalman Filter, the subscript [is used to denote leveling. Giving the measurement equation:

7 = m (3.31)

The covariance matrix for the roll and pitch leveling is designed in such a way that the
filter trust the measurement less the further away the measurement is from being only a
measurement of the gravity vector[25].

This is accomplished by first calculating how much the measurement deviates from from the
gravity vector. Then using this deviation to determine the measurement covariance.

69 = llam| — gl (3.32)
= 0y (1 + k)l (59 + 592)) (333>
Ri = rilaxe (3.34)

It can here be seen that the further the measurement is from the gravity vector, the less the
measurement is trusted. This method of dynamic tuning nicely accompanies the method
of only doing leveling when the measured accelerations is within a certain threshold of the
gravitational acceleration. It can be seen that when there is no deviation the value is the
variance o; set to the covariance matrix R;. Further o; and k; are parameters to be tuned.

3.7.3 Output equations

The outputs of the Kalman filter are detailed below.

Position output equation

The position of interest for control purposes is the body centred position. Therefore the
sensor position and sensor position state uncertainty covariance must be transformed. This
is done much the same way as for the position measurement input equation.

Dry = Prns — C5(Ons)rp, (3.35)
The estimated associated state covariance is calculated as:

P,, =P, + W,PoW/ (3.36)

Where the matrix W, is the partial derivative of the position output equation with respect
to the Euler parameter vector ©,,

_ b
ae)ns

W, (3.37)

99

Angular rate output equation

The angular rate output is a bias corrected senor measurement:

Wl = wn, — Qg (3.38)

ns

Where w,, is the measured angular rate.

Velocity output equation
The velocities in the Kalman filter velocity states in the Kalman filter is estimated in the sen-

sor frame and resolved in the NED frame. These velocity components must be transformed
to the body frame and resolved in the Level frame.

Uy = CL(Ony) [97, — S(@5s)r3] (3-39)

The covariance is calculated as:

P,, =P, + W, P,W’ (3.40)
Where:
oVl
W, = —n 3.41
70, (3.41)

Remaining output equations
The remaining outputs form the filter is simply just the estimated states accompanied with

their estimated state uncertainty covariance.

3.8 Kalman filter Implementation

3.8.1 Linearization of state transition equation

For implementation in the Kalman filter, the state transition equation 3.16 must be lin-
earized:

Vns
d C*(0,,)[a, — ag + a,]
%X = f(X7 u) = an,B
T(Ons)[win — wp + wn)
Wn,g

Remembering that the states in the filter are:

n
ns

" T
X =Py V a[g Gns wﬂ}

And defining the control inputs to the filter as the accelerometer and gyroscope sensor
measurements:

60

linearizing equation 3.16 first with respect to the state vector gives the state transition matrix
A then linearizing the state transition equation with respect to the control inputs gives the
input matrix B

03><3 I3><3 03><§ 03><3 03><3
of 0353 0353 —C7(O,,) 0343 03x3
Alx) = = 033 O3x3 033 033 033 (3.42)
033 O3x3 033 0313 —T(Op,)
03><3 O3><3 03><3 03><3 03><3
033 033
af C?(Gns) 03><3
B(X) = 8711 = 03><3 03A><3 (343)
03><3 T(®ns)
033 03x3

The state-transition- and input-matrix must be discretized, this is done using the forward
Euler method discussed in section 2.3.5:

F(xp 1) = (I+ Adt) (3.44)

Bd(Xk—l) = Bdt (345)

For propagation of the state uncertainty matrix the state transition equations must be lin-
earized around the noise vectors, as well as discretized, here this is done by multiplying the
result by dt, this gives:

I3y sdt 0§x3 0353 033 0353
of 0313 CU(©,,)dt 033 03x3 033
W, = 87wdt = | O3x3 0343 I3, 3dt Q3x3 0343 (3.46)
033 033 0353 T(Ons)dt O3y
0353 0353 0353 033 I3, 3dt

The vector w is the vector os noise elements from the state transition equation:

T
W = [Vn a, A,z Wp Wng (3.47)

Euler angle constraints
Since the attitude and heading of the UAV is described by Euler angles and the domain is
limited to lie on the unit circle there is a need to wrap the angles around the unit circle.

This is, if the yaw angle is 27 + 0.1, then the angle should be 0.1, the same is also the case if
the angle is —0.1, then it should be 27 — 0.1. The same applies for the roll and pitch angles,
although they are both wrapped at +.

To respect this constraint the angles are wrapped each time the state is predicted:

61

The yaw is wrapped using the modulo operator:

v=1v %2 (3.48)

The roll and pitch angles are wrapped using a slight modification to the modulo operator

o= (p+m) %2n)—m (3.49)

0=(0+m) %2m)—m7 (3.50)

Predict algorithm

The prediction step has been implemented using two different methods—one using a regular
forward Euler integration scheme and one using a two-step Adams-Bashforth integration
scheme. The reason for implementing two different strategies is that the rate at which the
predict step is called determines the dt of the predict step and, in turn, how far the states
are propagated forwards in time. Too large of a step will deteriorate the accuracy of the
propagation step, hence the need for an alternative method for propagating if the dt becomes
large. Computing the propagation step at a high rate is desired from an accuracy standpoint,
but it is computationally expensive. It is here that the two-step integration scheme finds its
place. It is slightly more computationally expensive compared to the forward Euler method
but more accurate with larger steps in time, at the trade off that the two previous steps
must be stored in memory.

The forwards Euler prediction is described in algorithm 3

Algorithm 3: Kalman filter predict step

get dt ;

get uy, ;

write current state to last state ;
X1 — Xpp 3

Py < Py ;

linearize F, By, Wy ;

predict ;

Xr = FX;_1 + Bguy ;

P, =FP,_F" + WqQWqT :
Xy, < wrap_ angles(Xy) ;
Result: (x4, Py)

62

The two-step prediction is described in algorithm 4:

Algorithm 4: Kalman filter predict step
get dt ;
get current and last control input ;
get uy ;
get ug_1 ;
get last two states ;
Xp—o ¢ Xp—1 ;
Pp o< Pr1;
Xp—1 < Xk
Py < Py ;
linearize F, By, Wy ;
calculate ;
X = %(33%—1 —Xp-2);
u = 5(3u; —uyg) ;
predict ;
)A(k = }A(k_l + (F — I)}A(+ Bdu)
P, =FP, FT + WqQWqT ;
Xy, < wrap_ angles(Xy) ;
Result: (x4, Py)

3.8.2 Measurement equations

For use in the Kalman filter, the measurement equations need to be linearized. This is done
following the theory outlined in section 2.3.1

The measurements regarding the attitude and heading of the UAV need some special atten-
tion regarding the calculation of the innovation signal.

Position measurement

The position measurement equation 3.18 is already a linear equation and takes the form of
the following matrix:

0z
szaijf: I3sx3 0353 0O3x3 0O3x3 Os3x3 (3.51)

63

Algorithm 5: Kalman filter position measurement

get data from pf ;

Py < Ppf;

Ryppr < Ryy;

transform measurement ;
P), = Py + C(O,)rs, ;
Zk < Pps

calculate covariance ;

R, =Rypr + WpP@Wg)
get last states ;

Xp < X1 ;

P+ Py ;

calculate innovation and innovation covariance ;
Y =z — HyXy ;

S = HpPng +R,;
compute Kalman gain ;
Kk = PkaS_l)

correct ;

Xp = X + Kiyr ;

Pk = (I — Kka) Pk 3
Result: (x4, Py)

64

Yaw measurement

The yaw measurement equation 3.21 takes the following matrix form:

szé;j:[olx:a O1x3 O1x3 {0 0 1} 01><3} (3.52)

When calculating the innovation for the yaw measurement, the standard linear approach
will not work. This is observed when the estimate is close to but slightly larger than 0, and
the measurement is close to but slightly smaller than 27, then the innovation signal will be
close to 2w, when in reality, the estimate and the measurement closely agree on the state of
the system.

Another method for calculating the innovation is needed to remedy the wrapping issue that
takes this constraint into account. The following mini algorithm remedies this wrapping
issue:

The measurement must first be checked that it is within the domain of the yaw angle, that
is, within [0, 2m)

First calculate the innovation in the normal way:

gw,l = 21/, — Hd,}/\(k (353)

Then a second innovation candidate is calculated depending on the sign of the first innovation
candidate:

~ _ gj¢71—|—27r ,gj¢71<0 3.54
Yz {?ij—QW s Yy =0 (3:54)

Finally the innovation candidate is selected based in which has the smallest absolute value
of the two possible candidates:

~ gw,l ,|§w,1\<|@w,2| 3.55
o {yw Gl > [l (3.55)

Figure 3.17: Finding the smallest angle when calculating innovation for the yaw
The now calculated innovation signal can be used to correct the state estimate and respects

65

the domain of the yaw angle.

Algorithm 6: Kalman filter yaw measurement

get data from particle filter ;
Zp < 2ﬁns % 2 ;
Ry < Rypr;
get last states ;
Xp ¢ X1 ;
Pp < Pp1;
calculate innovation ;
Yia = zp — HyXy ;
if y11 <0 then
‘ Y2 = Yr1 + 27 ;

else

‘ Yi2 =Yk1 — 27 ;
end

if [11] < [Y&2| then
| Yk Ykt
else

| Yk Ykes

end

compute innovation covariance ;

S = HkaHi + Rw 3
compute Kalman gain ;
Kk = PkHwS_l 3
correct ;

Xp =X + Ky ;

Pk = (I - KkH¢> Pk 3
Result: (x4, Py)

66

Roll and pitch measurements

The roll and pitch measurement equation 3.31 takes the following form:

0Zl

1 00
leaixz 02><3 02><3 02><3 |p 1 01 02><3‘| (356>

The calculation of the innovation signal for both roll and pitch takes much the same form as
the calculation for the yaw innovation, the only exception is that the attitude measurements
must be preconditioned to lie within the interval [—7, 7). For most implementations of the
atan2() function this is the de facto range of the function.

Algorithm 7: Kalman filter roll pitch measurement

get data from accelerometer ;
calculate leveling window ;

if |a,,] € [g(1 —€),g9(1 + €)] then
calculate covariance ;

59 = ||am| _g| ;

R, <« o(14 k(09 +69*))Iaxs ;
calculate angles ;

&= atan2 (—ap,y, —amz) ;

0, = atan?2 (amw7 \/m> ,
G
Zp < [el)

get last states ;
X ¢ Xp—1

Py < Pr1;
calculate innovation ;
Yia1 =z — HiXy, ;

if y;1 <0 then

| Vk2 = Yr1+27;

else

‘ Yi2 = Yk1 — 27 ;
end

if |ka71‘ < |S’k,2| then
| Yk Ve

else

| Ve Ve

end

compute innovation covariance ;
compute Kalman gain ;
K, = PkHlS_l ;
correct ;
Xp = X + Kiys ;
Pk = (I — KkHl) Pk ;
Result: ()A(k, Pk)
else
‘ do nothing ;
end

67

3.8.3 Predict step

In this section the Kalman filter implementation will be discussed. The Kalman filter uses
the propagation model discussed in section 3.8.1 and the measurement functions described
in section 3.8.2.

Prediction strategies

Two different predict strategies were implemented.

The first implementation predicts the next state of the filter every time a new IMU mea-
surement is received. This is a natural choice as the filter is based on the sensor’s kinematic
model. Furthermore, this approach will ensure that all the measurements received are in-
corporated into the current estimated state. Here the dt between the IMU measurements is
used as the dt in the predict step. The drawback of this method is that it becomes compu-
tationally expensive as the rate of IMU measurements increase. This approach gives rise to
the following processing of the IMU data:

Algorithm 8: IMU data processing for forward Euler predict

get data from accelerometer ;

subtract g vector ;

A = Ay — ngn

calculate dt ;

dt = tnow — tiast ;

tlast — tnow ;

uy < lacl ;

W,

The second implemented prediction method tries to remedy the problem arising from high
data rate. Here the prediction is calculated at a fixed rate, regardless of the rate of IMU mea-
surements. A two-step prediction algorithm is used to maintain numerical accuracy when
the predictions are computed at a lower rate. First, the received IMU measurements are
accumulated, and then the accumulated value is used as the control input to the prediction
algorithm. This is done to not miss out on valuable IMU measurements. Here the accu-
mulated values are denoted with a A, both the IMU measurements and the time between
the measurements are accumulated, then when the time comes to run the prediction, the

accumulated IMU data is divided by the accumulated time. This can be seen as a weighted
average of the accumulated IMU measurements.

Algorithm 9: IMU data processing for two-step predict

get data from imu ;
subtract g vector ;
a.=a, —Cg"
calculate dt ;

dt = tnow — tiast ;

tlast <~ tnow)
accumulate imu data ;
Av +=a,-dt;

AO + =w, -dt;

At + =dt ;

when prediction is called, calculate ;

L |Av |
uk<—E§A®,

68

3.8.4 Holistic filtering strategy

Using the forward Euler prediction strategy the complete filtering algorithm is described in
algorithm 10.

Algorithm 10: Kalman filter algorithm using forward Euler

Initialize filter;

if IMU measurement then

process IMU data using algorithm 8§ ;
predict using algorithm 3 ;

level using algorithm 7

end

if Particle filter measurement then
correct position using algorithm 5 ;
correct yaw using algorithm 6

end

When using the two-step prediction strategy the prediction needs to be called by a timer.
The position and measurement functions responsible for incorporating the particle filter
estimate are still called as soon as a measurement is available. The two-step implementation
is described in algorithm 11.

Algorithm 11: Kalman filter algorithm using two-step predict

Initialize filter;
if Predict timer elapsed then
| predict using algorithm 4 level using algorithm 7
end
if IMU measurement then
‘ process IMU data using algorithm 9 ;
end
if Particle filter measurement then
correct position using algorithm 5 ;
correct yaw using algorithm 6
end

Output equations

The retrieval of the filter outputs are only executed once called upon. For some of the states
this is as simple as directly outputting a selection of the elements in the filters state vector.
For the position, linear velocity and angular rate some calculations are included. These
functions are outlined in section 3.7.3

3.8.5 Implementation specific functions
Offline timer

A watchdog timer is implemented, and watch the time between consecutive position measure-
ments. If the time between measurements is greater than a certain threshold, the position
estimation part of the filter is set offline. The length of the timer depends on the quality of
the accelerometer used, but a realistic value is in the range of t € [5,30] seconds, whereas
the position measurements should be updated several times per second under nominal con-
ditions.

69

Upon setting the position part of the filter in the offline state, the filter is also reset but
leaving the roll and pitch at their current estimated values and continuing to estimate them.

Filter reset

Two filter reset functions were implemented. On that resets all the filter states and the state
uncertainty covariance matrix, and one that resets all the states except for the roll and pitch
states.

The function to reset all states is intended to be used when a complete filter reset is called
for; this can be during testing when it is faster to reset the filter than to reset the filtering
software.

The second reset function that resets all but the roll and pitch states is intended to be
used when the filter no longer receives information about its position through the position
measurement functions. In this scenario, accelerometer drift will within a short time win-
dow render the position estimate useless. However, the roll and pitch angles are primarily
estimated using the gyroscope and corrected using the leveling procedure. The attitude es-
timation is still doable without accelerometer bias estimation. Therefore the roll and pitch
angles are left untouched.

70

3.9 Particle filter

The implemented particle filter is a SIR filter, with a simple kinematic motion model for the
particles and a likelihood-field sensor model for the stereo camera. The filter does not run
global initialization but is rather initialized with a position and a standard deviation in each
state.

There are four states included in the filter; the positions in the map frame pJ, and the
heading (yaw) ¢, of the drone. The positions are unbounded whereas the heading is
wrapped

T
x=[pl Um| . PlmER Yu €0, 27) (3.57)

These states were chosen as they are the most problematic for the Kalman filter to estimate,
given the choice of using a depth camera for localization purposes. Further they are the
fewest numbers of states required to represent a hypothesise of where the drone is located
in 3D space and at what heading the drone is oriented in. Also, for a particle filter in a
real-time application, it is desirable to keep the number of states as low as possible.

The particle filter takes in the estimates of angular (w!) and linear (v!) velocities in the

level frame as well as the orientation (®yp) of the drone relative to the NED frame, in
addition to their covariance estimated in the Kalman filter. The filter outputs are position
and yaw of the drone in the NED frame and their associated estimated variances. In addition
random set of particles with a fixed size are drawn form the complete set of particles for
visualization in RViz.

l
Vip —]

[p” %S]T
ns
Onp ———

l Particle filter
Whp, —— Particle point cloud

Z, — (For visualization)

g J

Figure 3.18: Block representation of the Particle filter with inputs and outputs.

The recursive nature of the particle filter is depicted in figure 3.19, where the inputs are used
in specific steps in the algorithm.

Propagate Update weights if Nes < Ninr
Resample

w1 S
l Zs

Won,

Figure 3.19: Block representation of the particle filter loop

71

3.9.1 Kinematic motion model

The kinematic motion model is used to propagate the samples in the particle filter. The
motion model relies on knowledge about the velocity of the drone, as these are not included
as states in the filter they must be given as input.

The particles are propagated from the prior set of particles, in practice this means that each
particle is moved in the state space based on a propagation model. For each particle ¢ this
is done as outlined in equation 2.101:

x; = Fxj_; + B(u, + w},) (3.58)

Where ul, is the linear and angular velocities [vy, Lbk]T for particle 7, where the velocities are
drawn from a Gaussian distribution centered around the velocity inputs from the Kalman
filter; using the variance from the Kalman filter with some extra noise to ensure a good
spread in the particle cloud.

. . , T
w, = [Vt w;, ~ N(0,0), Oy = [Uz' 0y 0 04,} (3.59)

As the velocities are given as inputs and not included as states in the particle filter, F
becomes a 4x4 identity matrix. The B matrix is responsible for rotating the given velocities
into the frame of each particle and is defined as

V=P + Yudt (3.60)

B — [CZ(¢l)dt 03x1‘| ’ :

le3 dt

Where ¢, is the yaw of particle 7 before propagation.

The propagation-model was tested for different noise parameters o, shown in figure 3.20,
where the orange dot is 100 particles initialized to [z, y] = [0, 0], and the blue is the spread
after 10 seconds. The particles were propagated with a "true" velocity of v, = 0.1 [m/s] with
added noise o, showing the final shapes similar to what is seen in figure 2.21.

2.0

L] os=01 oy =0.1 0, =05
1.0 A

0.5 -

L]
-0.5 1 R

0.0 4

|
:
N

—-1.0 4

-1.5 41

-2.0

0.0 0.5 1.0 1.54-0.5 0.0 0.5 1.0 1.540.5 0.0 0.5 1.0 15

Figure 3.20: The particle propagation-model tested with different noise parameters, moving 100
particles

72

3.9.2 'Weight update

The weight update equation is shown in equation 2.100, and finds the new weight of each
particle based on the scan inserted into the likelihood field for each particle in the filter.

wy, = wj_y - p(Zg|zy, M) (3.61)

The particle weights w} are updated based on the point cloud Zj from the stereo camera.
First, the point cloud is downsampled, picking random points from the cloud and checking
that all points are within the set max range for the sensor. The points that fail this check
are removed from the cloud. It is not given that the drone is level with the map frame at
the time of capturing a point cloud, to compensate for this roll and pitch estimates from the
Kalman filter is used to level the downsampled point cloud.

The downsampled and leveled point cloud is projected into the likelihood filed at the location
and heading of each particle in the filter. For each particle the likelihood of each end point
in the point cloud is multiplied together. This product of likelihoods is used to update the
weight of the particle by multiplying it with the previous particle weight.

; ; M ; Zran
wf = wicy - T (soi- pwala o, M) + 2 (3.62)

m=1 Zmaz

Where ppi(z7|xL, M) is the likelihood of a point z}* being at a detectable object in the
map M, given the particle state x}. This likelihood is "read out" from the pre-computed
likelihood filed at the voxel located at the points location z}

After the weights are updated for all particles, the new weights are normalized according
to equation 2.103. This step must be included each time the weight-update algorithm is
run as it is guaranteed” to produce a weight distribution that is not normalized. After
normalization, an estimate of the effective number of samples Nef 7 is calculated following
equation 2.98.

A procedure for finding the mixing-constants zpi, Zrana and zy,q. is described in [36], it is
also mentioned that these values can be "eyeballed".

"Although the likelihood-field is created assuming normalized Gaussian distributions when calculating pps; for
each cell, inserting points into the field and taking the product can easily produce weights greater than one for each
particle; depending on the used omaqp and amount of points sampled from the point cloud

73

3.9.3 Resampling

The resampling step is run whenever the effective number of samples N, #f becomes too low,
and implements low variance resampling as shown in algorithm 2.

The threshold for resampling is set to a parameter, to allow tuning for how often the
resampling-step is executed. Running the resampling step too seldom will waste a lot of
compute-time on updating particles with almost zero probability, whilst running it too often
might make the filter too focused on specific areas. Therefore a balance must be struck.

3.9.4 Getting a solution from the filter

Getting the best estimate of the state given the particles is not a straightforward task.
Sometimes it is good enough to just choose the highest weighted particle, and accept that
as the best estimate. This could potentially be slightly misleading if the resampling step is
run often, as the highest weighted particle might bounce around with some lucky particles
getting a great hit from noisy sensor data.

It was chosen to implement a histogram smoothing algorithm to get an estimate from the
particle filter. The algorithm represents the weighted particle distribution as a histogram
for each of the states. A Gaussian kernel is then used to smooth the histogram. The Kernel
smoothing achieves two things; flatten peaks, acting as a outlier-rejection algorithm, and
smoothing the histogram, making the most likely state more prominent.

A

...~ Ll ...

A

>

Figure 3.21: The main idea of the histogram smoothing algorithm, the red peak gets flattened.

After smoothing, the center of the highest peaking histogram bin is chosen as the best state
estimates.

The get an accompanying estimate of the uncertainty of the estimated states the mean square
error (MSE) of the particle set is calculated. The MSE is calculated based on the estimated
state as its origin, this MSE is used as a quasi-variance for the state estimate. This is done
as opposed to using the mean weighted particle position to calculate the true variance of the
particle set, as the MSE centred at a position different from the mean will always be larger
then the variance calculated about the mean.

This estimate and it’s variance is then output to the Kalman filter.

3.9.5 Pseudocode

The full implemented SIR particle filter algorithm in pseudocode, the histogram smoothing
algorithm is omitted as this is not strictly a part of the loop, but runs as a side-process at

74

0.2 T T

0.18

T

T

0.16

0.14

T

0.12

T

0.1

T

0.08

T

T

0.06

0.04

T

T

0.02

0 1 |
-25 -20 -15

Figure 3.22: Two gaussian distributions about the peak value of a bimodal dataset, red: Var = Var
of dataset, Blue: Var = MSE from peak

a fixed rate using the newest set of particles {x},w}.=, from the filter.

Algorithm 12: The implemented SIR particle filter in pseudocode

Input: {XZ—lvwl::L—l}r]yilv Vizb’ Wizba O, Ly
begin

for n = 1...N, do

wi ~ N(0,0y);

xp =x}_, +B(u} +w}) ; // Propagate according to (3.58)
end
{z;"} 2=y = PC_Downsample(Zy) ; // Downsample pointcloud

{ziM_ = PC_Level({z;"}M_, ©.,); // Level and rotate to map frame
for n = 1...N, do

‘ wy =wp_, - [1M, (Zhit * phit (2| x5, M) + Zﬁi) ? // Update weights
end

Normalize_ Weights() ; // Normalize weights
if Neff < Ny, then

‘ Resample() ; // Resample if N,.;; below threshold
end

end
n ,,m Ve
return {x}, w} },2;

75

3.10 Particle filter Implementation

This section will describe in more detail how each step of the particle filter is implemented,
some different configurations for each step as well as show some measures of execution time
on the chosen hardware platform.

3.10.1 Propagation

The propagation step will, for each particle, pick a random propagation velocity drawn from
a Gaussian distribution with a mean v!,; recived from the Kalman filter.

The mean value of the Gaussian distribution that the propagation-velocities will be drawn
from will be denoted v,,.

Three different methods for getting the velocity has been implemented and tested, where the
simplest implementation uses the most resent estimate from the Kalman filter as the mean
for the Gaussian.

10T

Vi = [Viy Yli (3.63)
The second method uses a two-step Adams-Bashforth method for integration®, as shown in
equation 2.55. This method requires that the last velocity estimate from the Kalman filter is
retained in memory, but at the cost of slightly larger memory usages an increase in numerical
accuracy is gained?.

vy =15- Vi Uholk — 0.5+ [Viy whyli s (3.64)
The variance from the Kalman filter is calculated using the variance propagation equation
from section 2.2.3.

The third method continuously integrates velocity estimates over time as new estimates are
available from the Kalman filter, calculating the drones traversed distance based on the
velocity estimates from the Kalman filter. The method numerically integrates the velocities
using the time d7r between each subsequent incoming velocity estimate. The integral is reset
each time the propagation step is executed.

Ax = Z[Vflb oL dr (3.65)

To keep the interface the same, the distance Ax is divided by dt used in the propagation
step before being used in the motion model.

_AX

T

(3.66)
For this method to be an improvement over the traditional forward Euler method, the
velocity estimates from the Kalman filter must arrive at a higher rate compared to the other
implementations.

When testing, it became evident that the two ladder methods obtaining an improved ve-
locity mean v,,, did not impact the estimated states from the particle filter. The lack of
improvement is likely due to the constant variance added to the velocity variance to disperse

8As F in the case for the particle filter is equal to I, the first product is not included. Making the update equation
Xp = Xp—1 + B(1.5uk — 0.5uk,1)
9The velocity is not stored per particle, but only the last mean value estimated from the Kalman filter

76

the particle cloud. Additionally, the third method - requiring a higher rate of Kalman fil-
ter velocity estimate outputs substantially increased the processor-usage when deployed to
hardware. For these reasons, the first method described was used for the mean velocity v,
of propagation when the filter was deployed to hardware.

Propagation standard deviation

The standard deviation o used for drawing propagation-velocity is composed of three com-
ponents.

T
Oy = OKF + Oconst + Ok, oy =|0s 0y 0: 0 (3.67)

The first component o is the standard deviation of the estimates in the Kalman filter.
This standard deviation is calculated based on the state uncertainty matrix in the Kalman
filter. The element (0enst) is @ constant standard deviation added in each direction and is
a tunable parameter in the filter, it is introduced to disperse the particles in space. o will
be zero during typical operation; this value is intended to put the filter into "search mode"
if no new velocity estimates are received for set amount of time, this mode will be described
in the next part.

Search mode

When no new velocity estimate is received, knowledge about the motion of the drone is lost.
This means that the particle filter will no longer have a good guess of how to propagate
the particles. On the other hand, the last received velocity will be reasonably accurate for
some time, as an object in motion tends to stay in motion!. Therefore the last known
estimate of the velocity and standard deviation from the Kalman filter is decayed each time

the propagate-step is executed without a new velocity estimate.

V'u = Vu(l — kwd) OKF = O’KF<1 — kwd) (368)

Where k4 is a tunable parameter in the interval [0, 1]. At each execution of the propagation-
step, a counter i,y is incremented, this counter is reset when a new velocity estimate is
received. The counter-value is used to calculate the added standard deviation oy, which
increase until it reaches an upper bound.

O = (iwd — 1) * kwd o € [0, O-k,maa,’] (369)

This mode is only intended as an emergency approach for localization in case the Kalman
filter shuts down unexpectedly, and will propagate the particles in all directions randomly,
whilst still executing the measurement and re-sampling steps.

10vVir meus!"-Isaac.N

7

3.10.2 Weight update

The weight update step takes uses the pointcloud from the depth camera, the depth infor-
mation is input as a matrix containing N, number of measurement vectors (points) resolved
in the camera frame.

C
e R 2
1 2 3 Ny
Zi=1y v u) ow” (3.70)
PRI SO OO

Downsampling the point cloud

The point cloud is downsampled using one of three methods, chosen by setting the relevant
parameters. The first method samples M points from the point cloud using evenly spaced
samples from the point cloud, creating the vector m of all indexes to sample!!.

m = linspace(1, N,, M) (3.71)

Using linspace to pick the points for the down sampling can be risk-ridden if the point cloud
is an ordered set. That is if the first index is say the top left of the image, then increasing
in when moving to the right, and so on for the next rows. If not careful when selecting a
spacing, the selected points might be on a vertical line in the image'?, or some diagonal.
his would virtually guarantee that the points are not independent, as they could be picked
along a wall or in a line on the floor and would give precious little information about the
environment.

The second method picks M random points from a uniform distribution, drawing M random
integers from U(1, N,) before sampling from the point cloud. The random numbers are then
checked for uniqueness in m, deleting duplicates to avoid sampling the same point twice
times.

m ~U(1,N,) (3.72)

Common for the two methods mentioned is that all the numbers in m are picked before
drawing a single point from the point cloud. After the points are drawn, the downsampling
algorithm checks how far away from the sensor the points are located.

A =R+)+)2 (373)

If the distance d is above a set threshold, the point m is removed from the downsampled
point cloud resulting in a point cloud with fewer than M points.

The third method picks the points at random, just like the second method. However, here
the points are picked and validated one by one before the point is added to the list. First,
a random integer m is drawn from the range [1, N,|, and the distance to the point at that
index is checked using equation 3.73. Then, if the point is within the threshold, and the
index-vector m does not already contain the index m, m is added to m and the process

Represented as "code" - in practice numpy.linspace() was used for this operation, linspace(1, N,, M) creates a
vector of M values evenly spaced between 1 and n,

12Fx: if the image resolution is 20x20, and the spacing between points is 20, then the points will lie on a vertical
line in the depth image

78

repeats. This loop runs until M points are picked or a maximum number of points have
been tested.

The three methods shown is detailed in pseudocode, and can be seen in algorithm 13

Algorithm 13: The three different methods of downsampling the pointcloud
IHPUt: Zk:a Ma dthr7 Mthr
begin
if Method 1 then
m = linspace(1, N,, M) ; // Pick M Evenly spaced integers
for m=1..M do
Check d;’"’ as in eq 3.73;
if d'™ > dy,, then
‘ Delete m from m,;

end
end
7 = Z,(;n) : // Index m from Z;
end
else if Method 2 then
m ~U(L, N,, M); // Draw M random integers
m = unique(m); // Ensure only unique indexes in m

M’ = length(m);
for m =1...M" do
Check d,(cm) as in eq 3.73;
if d\™ > dy, then
‘ Delete m from m;
end

end

Zp = Z;(gm) ; // Index m from Z,
end

else if Method 3 then

while m < M;,, AND length(m) < M do

m~U(L,N,) ; // Draw a random integer
Check dfj”’ as in eq 3.73;

if d,ﬁm) < dypr AND m ¢ m then

‘ Add mtom; // Add m to m if within threshold and unique
end

end

7 = Z,(Cm) : // Index m from Zj
end

Mx = length(m)
end

m Mx*
return {z}

m=1 7‘

// Return downsampled point cloud

79

Leveling the point cloud

The downsampled point cloud is still resolved in the camera-frame, which means it needs
to be transformed into the frame of each particle. This is done in multiple steps to avoid
unnecessary transformations having to be done for each particle.

The first step is transforming the point cloud from the camera frame into the level body
frame, which has it’s Z-axis straight down and X-Y plane parallel with that of the map,
regardless of the drones attitude. The transformation is two-fold, where one is based on the
geometry of the drone, and is static; whereas the other one is based on the estimated pitch
and roll angles from the Kalman filter, and is dynamic. With the camera rigidly mounted to
the airframe, the first set of rotations and translations is given by the design of the airframe
and mounting brackets. This transformation brings the pointcloud into the body-frame of
the drone.

Zj,

\ Camera
b
b T

be

Figure 3.23: The map, body and camera frame

The transformation-process of the pointcloud will be described using the notationZj,, where
Z is the set of points constituting the point cloud at time k, resolved in frame x.

The first step is to rotate and translate the point cloud into the drone body frame (b). This
is a static transforms as the camera is rigidly fastened to the airframe.

Zb =rh + C'Zs (3.74)

The point cloud is then rotated into the level body frame (1) using the roll and pitch estimates
from the Kalman filter

Zj, = Cy(Ow)Z} (3.75)

One final rotation is done, which is rotating 180 degrees about the X-axis. This transforms
the pointcloud into a "body centered map frame", with X forward and Z up.

7 = C,(m)Z:, (3.76)

80

— cg, rp Body Level body

Camera =
=7 - Camera
z \ Camera Body
b
Cm ’ r%b

Figure 3.24: The point cloud must be leveled before insertion into the map

All the transformations above are preformed as a pre-processing step before the point cloud
is handed of to the particle filter, that is to say, only preformed once per point cloud mea-
surement from the stereo camera.

Updating the weight for each particle

To find the weight for each particle, the point cloud Z;"* must be inserted into the map.
This is done by transforming the now leveled and downsampled point cloud into the frame
of each particle in the following manner:

R L (3.77)

Where ry) is the position and ¢? is the yaw of particle p. Z7 contain the x y and z coordinates
of the points from the scan in map frame, projected out from particle p.

The next step is to calculate what voxels the individual measurement points lie within.
This is done by dividing the points z, y and z coordinates with the maps resolution(voxel
size), and then rounding off to find the voxel index. Once this index is found it is impotent
to check that the points index is a valid index in the map, as trying to index an invalid
point is nonsensical. With the method developed for this project indexing an invalid voxel
address will result in a segmentation fault, as the program will then try to read a part of
the computers memory that it dose not have access to.

If a point is calculated to have an index outside the range of valid indexes for the map, it
is given a probability equal to that of a random reading (2rand/Zmaz). This is done as our
test environments contain no unm odelled objects or areas outside of map bounds, whereas
[36] states that a probability of 1/zm,.. could serve as a crude way to incorporate readings
outside modeled space for a real environment containing unmapped regions.

If the likelihoods stored in the map is encoded in UInt8’s laying in the interval € [0, 255],
they will need to be converted back to decimal numbers after being read from the map. The
map metadata (section 3.5.1) contain the maximum value for the Gaussian distribution used
for map generation (0,4,), this value is used to decode the likelihood pj,;, from the map in
the following manner:

Umax

ﬁ * pfnt (3-78>

Phit =
Care must be taken when selecting what data type to use for the particles weight. If

the value of z.4nd/Zmas is small and a large number of points is sampled from the point
cloud, the resulting product of likelihoods can become smaller then what a 32 bit float can

81

represent(1.175494351 ' — 38), causing underflow to zero. Therefor using 64 bit floats is ad-
visable. An alternative solution to this problem, proposed in [14] shows a different approach
to combine the likelihoods of measurement points from the likelihood field, proposing:

(Sals (23], M)
N,

p

p(Zy|xi, M) = (3.79)

And then updating the weight wi according to equation 3.61. This is an approximation.
Intended to limit how small of a weight a particle can be given, compared to multiplying the
likelihoods of each point. This weighting method was implemented as a configuration in the
filter.

Algorithm 14: Update step

: ——N.
Input: {x;,w;_,};=, Z7", M

begin
for i =1...N, do
qg=1; // Initialize update-weight to 1
Get r]n, ¥P from xj;
Zy =, + C.(Y") 2
for All points z} in Z} do
if z, € M then
find idx for zj, ; // Find index [z,y,z| for point
P = Zhit - M(ldX) + Zrand/zma:(:;
else
‘ b= Zrand/zmax;
end
q = combine_ hits() ; // Find p(Zy|x}, M) using 3.61 or 3.79
end
wf =l g
end
wt =Normalize Weights(w?)
end
return {xi, wi}Y ; // Return particles with updated weights

82

3.10.3 Resample

The resampling step is implemented in code more or less exactly like in algorithm 2, with
an added check to avoid the possibility of segmentation faults. In the final implementation
the resampling step was run at every filter iteration.

Algorithm 15: Low Variance Resampling implementation

Input: {x;””),w,(gn”)}f:;f:l; // Set of particles
begin

r=Uu(o, Ns_l) 3

W =wW ;

1= 1;

for n = 1...N, do

u=r+(n—1)/N;;

while v > W do

1=1+1;

if 2 > N, then
W =u; // Avoid indexing outside of particle set
i = N, ;

end

W =W +uw;

end

N, .
np=1 s

return {x\"* w1 // Resampled set of particles

3.10.4 Histogram smoothing

The histogram smoothing algorithm first create a histogram for each state in the filter using
the current state of every particle and its associated weight. The histogram is setup to have
the same width for every bin.

As the histograms are created from the particles, they will have a lower and upper limit equal
to the position of the extremal particles, as opposed to creating a histogram that covers the
possible position state space. This will result in a more memory space effective histogram.
Meaning that when kernel-smoothing the resulting histograms need to be padded at each
end. For the positions this results in padding the histograms at each end with an amount
of zeros equal to half the length of the kernel. The heading, however, is wrapped [0, 27) -
which means that if the current solution is around 0, it must be padded with values from
the opposite end of the histogram.

Because the heading is wrapped, calculating the mean square error has to be done using the
smallest angle just like in the Kalman filter Yaw measurement innovation (section 3.8.2).

The mean square error around the solution is calculated much like variance, where instead
of the mean of the distribution, the peaks of the smoothed histograms () are used.

|/
MSE; = ——— = 1) w; 3.80
vy L) (3.80)

83

0 2T als

1l

Figure 3.25: Histogram of wrapped variable padded with values from the other end

|ENEEEEEENEEEEEEEN] > ‘|_’_’_b'lllllllllllllllllll/d-‘-‘r

Where Vi, V5, are the same as in 2.2.2, w; and z; is the weight and state of particle i.

The particle filter estimates are then output to the Kalman filter as position and yaw mea-
surements, with the mean square errors populating the diagonal of the measurement covari-
ance matrix.

3.10.5 Execution time on hardware

A simple benchmarking script was created in order to log execution-times of the different
parts of the particle filter algorithm. In this script the different steps of the filter is executed
using dummy-data given the same format that the filter is going to receive during operation,
and the execution times are logged.

The propagation step moves the particles in the state space, and the update step first updates
the weights based on the point cloud, before normalizing and resampling. Which means that
the time it takes for each iteration of the filter will be the sum of the run-times from the two
plots.

Running the benchmarking script on the Jetson TX2 with 1000 particles in the filter and
picking 50 points from the dummy-pointcloud resulted in the following execution-times:

Propagation, 1000 particles
T T T

3000 T |

2000 i

1000 i

Number of runs

0 | | | | | | | |
4) 6 7 8 9 10 11

Execution time [ms]

Figure 3.26: Histogram plot of exectuion times for 10000 runs of the propagation-steps

Assuming worst case from plot 3.26 and 3.27, which are ~ 11|ms]| from the propagation step
and ~ 24 from the update and resample step; one filter iteration takes approximately:

At =11 [ms| + 24 [ms] = 35 [ms] (3.81)
Leaving 65 [ms] of "overhead" for ROS2 and histogram smoothing, assuming a execution-rate

84

Pointcloud Update, 1000 particles
2500 T T T T T

Number of runs
o = [\
o o S
S S 3
o o o

ot
o
o

| | | |
14 16 18 20 22 24
Execution time [ms]

o

Figure 3.27: Histogram plot of exectuion times for 10000 runs of pointcloud update, normalize and
resample

of 10 [Hz] for the filter. The following plots show the execution times for the 99 percentile
of runs.

Propagation, 1000 particles
T T T T

Number of runs
DO w =~
S <) =)
S S S

—_
]
)

0
4.3 4.4 4.5 4.6 4.7 4.8 4.9 5) 5.1 5.2

Execution time [ms]

Figure 3.28: Histogram plot of exectuion times for the top 99% of the runs, propagation

Pointcloud Update, 1000 particles
T T T

600 | |

e~
o
o

Number of runs
[\~
S
S

13.5 14 14.5 15 15.5 16
Execution time [ms]

Figure 3.29: Histogram plot of exectuion times for the top 99% of the runs, pointcloud update,
normalize and resample

85

3.11 Software implementation

3.11.1 JiT compilation

Just-in-Time (JiT) compilation is a way of executing a computer program where the written
code is compiled during program execution. This differs from Ahead of Time (AoT) com-
pilation, where the program is compiled into an executable file which can then be run; or
Interpreted code, where the written code is parsed and run directly during run-time. In a
sense, JiT compilation can be seen as a mix of AoT compilation and interpretation.

When it comes to performance, interpreted code (such as Python) does not do as well as
compiled code (for example C/C++), as the compilers often optimize the code in ways
regular interpreters cannot do'®. With no compilation necessary, interpreted code is very
easy to port between platforms. JiT compiled programs are also quite easily ported, as
compilation happens at execution - this also enables platform-dependant optimizations, but
impact the "start up" time of the program quite substantially.

Numba [23] is an open source JiT compiler for python, translating a subset of Python and
NumPy code into fast machine code. Not all NumPy functions are supported 100% in
Numba, which means that some reformatting might be necessary when wrapping a class or
function with the JiT-decorators. That being said, the documentation is good so integration
is fairly straightforward.

It was hypothesized that the desired filter architecture would not be feasible to run in a pure
Python implementation. Testing the particle filter on a virtual machine running on a laptop
with an Intel i7 6820HQ this hypothesis was confirmed, as the particle filter propagation step
alone took in excess of 60 [ms] to complete. The exact same code JiT-compiled using the
Numba jitclass wrapper cut the execution-times by a factor greater than 10 to approximately
5 [ms] as seen in figure 3.30. This result gave confidence that an update-rate of 10 [Hz] for
the particle filter should be attainable.

Propogation Propogation [JIT]
woo [' 800 ' ' ' '
n 600 r o)
g 5 400 t
—~ —~
400 1
200 1
200 1
0 0*— e
3.5 4 4.5 5 5.5
Execution time [ms] Execution time [ms]

Figure 3.30: The execution-times for the 99th percentile of 10000 runs of the particle filter propa-
gation step, on a development computer running an Intel i7 6820HQ

3.11.2 ROS2 implementation

The software is tightly integrated with ROS 2 (robot operating system), and ROS tools are
used to handle communication between the Kalman- and Particle-filter. ROS tools are also

13This is dependant on the interpreter, there exist interpreters that preform some degree of optimizations on the
code (for example Template- and ByteCode- Interpreters)

86

used to call functions in the Hybrid filter objects. The different nodes subscribe and publishes
data to different topics depending on if the system is being simulated or deployed on actual
hardware; the main difference in configuration is due to some of the software components
outside of the designed systems having predesignated message topics.

Kalman filter

The Kalman filter ROS node implements the Kalman filter object. Time based callback
functions are used to routinely retrieve data from the Kalman filter object and publish the
data to the ROS network. Subscriber callback functions are used to parse the received data,
and feed it to the filter object.

The Kalman filter subscribes to the following topics and recives the following messages for:

Position aiding:
» gazeboGT /pose_ned, PoseWithCovarianceStamped
» pf/pose_ned, PoseWithCovarianceStamped, if in hybrid-mode

IMU data:

e sensor/imu_main, Imu , if in simulation-mode

o SensorCombined PubSubTopic, SensorCombined

The filter node publishes data to the following topics:

position estimate:
« ekf/pose_ned, PoseWithCovarianceStamped
Velocity estimate(in level and body frame):

o ekf/vel level, TwistWithCovarianceStamped
o ekf/vel body, TwistWithCovarianceStamped

Sensor bias estimates:

o ekf/sensor_bias, Twist WithCovarianceStamped

Particle filter

Like with the Kalman filter the Particle filter utilizes the same implementation methodology
of creating a ROS node object that creates a filter object. The particle filter uses subscriber
callback functions to parse data and timer based callback functions to publish data at a fixed
rate.

The particle filter subscribes to the following topics with the following message types:
Point cloud data:

e zed_mini_depth/points, PointCloud2, if in simulation-mode

e zedm/zed_node/point_ cloud/cloud_ registered, PointCloud2

87

Velocity data:

o gazeboGT /vel level, TwistWithCovarianceStamped

o ekf/vel level, TwistWithCovarianceStamped if in hybrid-mode
Attitude data:

o gazeboGT /pose ned, TwistWithCovarianceStamped

 ekf/pose_ned, TwistWithCovarianceStamped if in hybrid-mode

The node publishes data to the following topics:

Position estimate:
» pf/pose_ned, PoseWithCovarianceStamped
Particle point cloud for visualization:

o pf/pose_ned/pointcloud, PointCloud

Logger node

A logger node has been created, the node subscribes to desired topics and logges the data it
receives on the topics to a CSV file.

Transform node

A transform node has been written and interfaced with ROS. The packages subscribes to
the position estimate from the Kalman filter and sends the position estimate to the ROS
transform server. This allows for the drones estimated position to be visualized in Rviz.

3.11.3 Packages

The Hybrid-filter software, supporting software, and simulation files are decomposed into
smaller packages, making the software system manageable and flexible. The packages are
centered around one main piece of the project each. An explanation of what the different
packages contain is detailed below. Separating the project into packages makes it easy to
centralize properties like initial conditions for the filters and filter configurations.

Filter configuration package

The "idl_botsy_pkg" named after the project name for the drone is where the primary con-
figuration of the Hybrid-filter is located. This package contains the geometric data relating
to the different frames, the filter initial conditions and configuration classes for the Hybrid-
filter. The package also contains the ROS2 launch files for launching the ground station
related nodes and the Hybrid-filter nodes.

88

Kalman filter package

The Kalman filter package is named "idl_orientation_pkg" in the git group'* and contains
the different implementations of the Kalman filter and the Kalman filter ROS node. The
filter is primarily configured from the "idl_botsy pkg"

Particle filter package

The particle filter package has the name "idl_pf pkg" in the git group. The package contains
the particle filter and the particle filter ROS node. The package also contain the relevant tools
for the particle-filter implementation. The same "idl_botsy pkg" is also used to configure
the particle filter.

Transform package

The transform package contains tools related to the ROS2 environment. The packages
is named "idl_transform__pkg" in the git group. The package contains the ground truth
publisher node written to be used with the gazebo simulation to publish the drone’s true
state. The package also contains the node responsible for publishing data to the ROS2
transform server that enables visualization in Rviz. There is also a node responsible for
configuring the point cloud data from the depth camera to a compatible format with Rviz.

Gazebo simulation configuration package

The gazebo simulation work-space and configuration files are located in the "gazebo_ botsy"
git repository in the git group. All the gazebo-related files are located here, including the
modified sensor models and the simulation drone model. The different environment models
are also located under this package.

Logger package

A logger node has been created and is located in the "idl logger pkg" this node is used for
logging data from the ROS network during testing and exports the data to an excel friendly
format.

14The name "orientation" poorly describes what the packages contains as the Kalman filter also does localization
in 3d space, but the name stuck during development

89

3.12 Hardware implementation

3.12.1 Drone platform desired properties

The drone is designed using rapid-prototyping techniques, and as such, should not be seen
as a final product but rather a platform for software- and system testing. Some desired
properties were thought out before the design started:

Easy access to the hardware components

Since the platform intends to serve as a vessel for development and testing, it is highly
desirable to have easy access to the hardware components like the flight controller and the
Jetson TX2 compute module. These are components that should be located inside the drone
for their protection, yet be accessible and easy to detach from the drone for desktop testing.

Protection of the hardware components

The hardware components are relatively fragile and need protection from the wear and
tear that will be put on a drone used for inspection purposes. This is not just in the
unfortunate case of a crash but also to protect the components during transportation and
general handling.

Flexible for testing other hardware components
It is also desired that the drone design is flexible for allowing the exchange of components

like the camera, flight controller, and onboard computer. This will allow further testing and
evaluation of different components without the need for a different drone design.

90

3.12.2 Drone platform selection

The selected base platform is the Holybro S500 drone kit, as it contained all the essential
parts for flying a drone. It is also relatively inexpensive, making it great for prototyping.
Conveniently, the supplier has provided motor characteristic data. This data is used to make
a rough estimate of the drone’s flight time and hover throttle setting.

ftem No. Propeller Throttle ~ Voltage Torque Thrust Current RPM Input power Efficiency Operating Temperature

Vv (N'm) @) w) @wW)
50% 16 007 435 a5 6015 56 777
55% 16 008 527 46 6620 736 7.16

AT 60% 16 0.09 608 56 7113 896 679 -
Kv880 T1045 65% 16 o1 702 68 7563 1088 645 -

75% 16 013 888 95 8545 152 584
85% 16 015 1076 123 9442 1968 547
100% 16 018 1293 162 10464 259.2 499

Notes:Motor temperature is motor surface tenperature @100% throttle running 10 mins.

(Data above based on benchtest of 2018 are for reference only. Comparison with that of other motor types is not recommended.)

Figure 3.31: Motor characteristics for S500 drone kit

Figure 3.31 shows the motor data from the supplier of the kit.

The data from figure 3.31 was used to curve fit polynomials for the relationships Thrust to
Current, Thrust to Input power and Thrust to Throttle. Then a candidate lithium polymer
battery was selected, and a rough power density was calculated based on this battery.

o Mpattery _ 0375[1{}9]
pcapamty Coattery 4000 [m A h]

k
~=94-107° [m—jh} (3.82)

The selected candidate battery was a candidate battery from a local hobby store and had a
capacity of 4000 [mAh] and weight of 0.375 [kg]. This is chosen to be roughly representative
of the batteries available for the project.

The listed weight for the S500 kit is 1 kg, the total weigh of the drone is then said to be:

Miotal = Peapacity * Chattery + My + Mpayload (383)

Here, my;; is the listed weight of the S500 kit, myayi0eq is the weight for all the parts to
be designed as well as computer and camera system, Cpaery is the capacity for the battery
selection.

The nominal power draw is found by evaluating the fitted polynomial from the figure 3.31
using the total mass of the drone for the calculation:

Pnom = f(mtOt) (384)

The flight time of the drone is then calculated as:

Vbattery * Chatter
b b (3.85)

tflight =)\safety

nom

The factor Asqfery is set as a safety factor; for the calculations, 0.75 is used, which means
that 75% of the battery capacity is available to use before needing to land, leaving some
overhead.

The nominal throttle setting of the drone is then calculated based on the fitted polynomial.
The nominal throttle setting must not be too high, as this can lead to actuator saturation,

91

that is if the controller commands a set-point above the maximum available actuation effort.
This is obviously undesirable. To lessen the chances of a saturation event from happening,
a component selection and design that keeps the nominal throttle setting as low as possible

is desired.

The above functions have been evaluated for a range of battery capacities and payload
masses, giving the following curves in figure 3.32:

—_
a

Battery selection

Flight Time [min]
=

5 - 1 1 1 1 1 .
3000 3500 4000 4500 5000 5500 6000
2 100
Qo
S
£ 501 -
©
£
g 0 | | | | |
Z 3000 3500 4000 4500 5000 5500 6000
— 4 T T T T T
o)
=,
43 —
g — 0.5 kg payload |
—2r — 1.0 kg payload | -
©
5 1.5 kg payload
l_ 1 | | | | |
3000 3500 4000 4500 5000 5500 6000

Battery capacity [mAh]

Figure 3.32: Drone design, battery and payload design graph

In figure 3.32 shows how different battery capacities will affect the flight time and the nominal

throttle setting of the drone.

92

3.12.3 Drone design

The drone assembly was split into two major assemblies; the bottom part, named the FElec-
tronics bay as it contains the majority of the hardware used for localization, and the top
part of the drone, named the Dome. The Dome houses the flight controller, telemetry radio,
and the drone’s GPS module.

Electronics bay

The electronics bay primarily consists of one large tub-like main hull that most electronics
mounts inside of. This is designed as an outer shell which will protect the electronics from
impacts during transport and give some resilience against crashes.

The Nvidia Jetson TX2 is mounted on a mounting plate that slides down into the main
hull, making it easily accessible and a flexible mounting solution for alternative computer
candidates. The slide-in bracket is also held in place by a cover plate mounted to the bottom
of the electronics bay.

RN

(a) Inside electronics bay (b) Jetson TX2 on mounting bracket

Figure 3.33: Drone design Jetson TX2 mounting

Mounting of the Zed Mini stereo camera is done with a screw-in-place bracket. This makes
it simple to make a similar mounting solution for an alternative depth camera or LiDAR.
The mounting backing plate that the camera screws into is also designed as a separate part
from the main hull, making it possible to change the camera’s angle. Figure 3.34 displays
the mounting bracket.

The batteries are also mounted to either side of the drone’s main hull. The drone uses a
four-cell lithium battery pack, so a pair of two-cell battery packs are used, one on either side
wired in series to create a four-cell battery pack. Mounting the batteries on either side keeps
the drone from growing too tall in the vertical direction. There is also ample space here to
use battery packs in a wide range of capacities. Figure 3.35 shows the intended mounting
location for the batteries. It is also possible to adjust the location of the battery packs to the
left and right direction in the figure, making it simple to place the center of gravity under
the center of lift of the drone.

93

Figure 3.34: Drone design Zed Mini stereo camera mount

A A A A A AL A A AL AL F AL AR E LTS LA A F LA AT TR A TS F AT L LS AT SIS A AT S lﬂﬁ"

Figure 3.35: Drone design battery mounting

94

Dome

The Dome assembly consists of a dome-like part covering the flight controller and cabling
between the different hardware components.

The Dome serves as a protective cover but also a mounting location for the GPS module
and telemetry radio. A recessed mounting location is designed for the GPS module. Figure
3.36 shows the dome assembly and a section view of the assembly.

(a) Dome assembly (b) Done assembly section view

Figure 3.36: Drone design Dome assembly

The Pixhawk 4 flight controller is mounted on a tray that slides into a mounting bracket.
This is done so that the flight controller can be taped in place using vibration-isolating foam
pads but still be easily removed from the drone without the risk of destroying the vibration
isolating pads. This can be seen in figure 3.37.

Figure 3.37: Drone design Pixhawk 4 flight controller mounting tray

95

The complete drone assembly is shown in figure 3.38

Figure 3.38: Drone design complete assembly

Dummy parts

To emulate the TX2 and Zed Mini camera during test flight where the computation and
stereo camera is not needed, some dummy parts have been made that replicates them in
mass and shape.

(a) Real components, mass = 410.0 g (b) Dummy components, mass = 421.1 g

Figure 3.39: Drone design real vs. dummy components

96

3.12.4 Completed drone

The assembled drone consists mainly of 3D printed parts and the parts from the S500 drone
kit. The total mass of the drone is roughly 2 [kg|, as the kit weighed 1 [kg] the payload
weight is then 1 [kg]. Looking back at figure 3.32 a battery can be selected based on the
desired flight time.

The battery pack selected was a set of two, two cell 4000 [mAh| lithium polymer batteries.
Resulting in an estimated flight time of approximately 7,5 [min]. The reason for selecting
this battery configuration came down to the accessibility of batteries and a desire to be
conservative with the drone’s weight.

(a) S500 kit assembled (b) Assembled drone with designed parts

Figure 3.40: Drone design assembled

Figure 3.40 displays the built drone next to the assembled S500 kit as delivered by Holybro.

The drone was test flown and had a flight time of approximately 7min; this is close to
the estimated flight time based on the drone’s motor data, battery capacity density, and
mass. The flight time and distance flown can be seen in the logged track from the program
QGroundControl in figure 3.41

It should be noted that the battery status indicator in figure 3.41 was not correctly calibrated
at the time of the flight. Instead, a simple battery alarm was used to indicate when the
batteries were exhausted.

Not Ready W Stabilized A xg) 3"; % & all E 7% '@' lggg:”’-
e AN > (P .f;{?‘“ S— I N N
Q 2 L Y 2o >
@ ¥ -‘;'

© Plan

@

i Checklist

\g +0.0m 10.0m/s 500:07:15
S, v02m 500m/s #477.9m sa,,

-9 &

Figure 3.41: Test flight of the drone, flight time: 7 min 15 sec, distance: 478 meters

97

Page intentionally left blank

98

Chapter 4

Results

4.1 Hybrid filter performance

To test the hybrid filter several test scenarios have been preformed. All in the Gazebo
simulation environment, using the drone model devised for the project in the Industrial- and
the UiA Basement test environments.

Three main scenarios have been tested.

o Case 1: A simple hop test in the Industrial test environment. The aim of this test is
to compare the Hybrid filter to a pure Kalman- and a pure particle-filter solution. The
drone has preformed a simple hop up to an altitude of 5 meters, preformed a complete
360 degree revolution and then landed where it took off from. The test is intended to
be a simple test case that will show case the weaknesses of the individual filters and
demonstrate the improvements made by combining them to a Hybrid-filter.

o Case 2: A longer test scenario where the drone flies a closed circuit in the Industrial
test environment. The test is intended to demonstrate that the system is capable of
navigation in a representative Industrial setting. The flight path is set up in a closed
circuit to mimic that of an inspection flight.

o Case 3: Simulated test in the UiA campus Grimstad Basement. The test is intended
to demonstrate that the Hybrid filters performance in an environment ridden with long
narrow hallways. The tests in the UiA Basement will also act as a good comparison
for a future full scale deployment of the Hybrid filter.

Analyzing the stability of the filter is difficult due to the inherent random events occurring
in the sampling, propagation and re-sampling steps in the particle filter. Therefore the test
cases have been preformed several times and a statistical analysis of the results have been
preformed.

The system can be seen executing Case 2 and 3 in the YouTube video, available online at
https://youtu.be/pDO0Lkh2-aE.

4.1.1 Simulation setup

All the simulations have been preformed as HIL (hardware in the loop) simulations, that is,
the filters used in the test cases presented have been executed on the Nvidia Jetson TX2i.
The simulation have been executed on a simulation host computer and the two computes
have communicated via Ethernet.

The filter parameters used during the tests can be seen in appendix B.2.1.

99

https://youtu.be/pDO0Lkh2-aE

4.1.2 Case 1: Hop test

The hop test have been performed for both filter individually, and then combined in the
Hybrid filter solution. The hop test have been preformed for the filters separately to highlight
their weaknesses, then combined to demonstrate in a simple test case that the Hybrid filter
is capable of localization.

Particle filter test

The below results are Hop tests performed with a pure particle filter solution.

Figure 4.1 displays the true and estimated trajectory of one of the test hops. In the error
plots in the same figure it can be seen that the deviation in v is quite large while turning
(4-12 seconds).

3D trajectory, norm- and 1 error

Trajectory R E std

11 : . iy
P T Ll L ! E .
’ I._| ey .\"l o L“(‘“‘ I Y e !'\-'\-" :

i i I I I I I

Error [m]
' o
o

10
1 error

0.3F ! v a=sd o~ e =l o] I I I R

e
o = M
1 T 1

Error [rad]

=]
s
T

10 12 14 16 18
Time [s]

o
M
NIt E
[#)]
oo

Figure 4.1: 3D Trajectory of true position and estimate from particle filter, with norm error over
time

100

From the trajectories in the X, Y and Z directions as well as the estimated yaw angle seen
in figure 4.2 it can be seen that the filter solution is quite "jagged'. This is due to the

random dispersion of the particles. This "Jaggedness" makes for a navigation solution that
is problematic to navigate the drone by.

Single test trajectory

—
Pos: X Pos: Y T
15 : - 1.2 :
— — 1r
E ' E
[0} (2]
o o
%05 %08
0 ' 0.6 -
0 5 10 15 0 5 10 15
Pos: Z Ang: ¢
0 : of :
E'z g 4 L
” =,
g 2
-4 <C o
-6 : : : 0 : - :
0 5 10 15 0 5 10 15
Time [s] Time [s]

Figure 4.2: True position and estimate from particle filter in X, Y, Z and Psi states

101

Figure 4.3 displays the mean error and the error standard deviations (red dashed lines) in
the X, Y and Z directions and the mean error in the heading estimate of 10 test hops.

Mean estimate errors, 10 test Mean
fffff Std dev
Pos error: X
0.4 0.2
E 02 E 01
S S o
m ol L]
-0.1
0.2 02 |
) 5 10 15
Angle error: ¥
0.2 0.6 : : :
LAW
. 04r // ‘”\
E o E A
S — - “’/J’ 4
5 . = 02 .
— A t - /, ~
Wop2] -
‘ 0 ! A
e VLN
0.4 ' ' ' 0.2 S -
0 5 10 15 0 5 10 15
Time [s] Time [s]

Figure 4.3: Mean estimate errors with standard deviation from particle filter in X, Y, Z and Psi

The errors and the covariance in the particle filter is also larger than desired, this is due
to the filter having to disperse the cloud of particles over a large area in its state space,
this is needed as the particle filter has no information about the velocities of the drone, and
therefor no information about what direction it is best to propagate the particles.

It should also be remembered that the particle filter does not estimate the roll and pitch
angles of the drone and can therefor not be used as a stand alone estimator for the drone.
This means that the point cloud is not properly leveled when the Kalman filter is not in the
loop, this will cause a problem if the drone is commanded to roll or pitch any significant
amount. This is a significant problem, as the drone needs to roll and pitch to maneuver it
the horizontal plane.

102

Kalman filter

The same series of hops where performed with a pure Kalman filter solution, the filter quickly
looses its position estimate due to the accelerometer biases. Figure 4.4 displays the true and
estimated trajectory of one of the test hops. In the normal error plot it can be seen that the
filter quickly drifts away from the true position. This can also be seen in figure 4.5 where
the estimated X, Y and Z tracks along with the estimated Yaw angle can be seen compared
to the true track during simulation.

3D trajectory, norm- and > error

Trajectory E st
T =1

8 10 12 14 16 18
1 error
T

= Q—=—=y———o s L ____
@

i

:._002— AR R A AR A A o PPt - -
5 . b AR EARFARREAS I L Ly ‘

= I

R A A R A R N e
w -0.04E 1 1 Al 1 1 I ' 1 L L 7
0 2 4 6 8 10 12 14 16 18

Time [s]

Figure 4.4: 3D Trajectory of true position and estimate from Kalman filter, with norm error over
time

103

Single test trajectory

—
Pos: X Pos: Y T

2 - 2 -

L e -
—_ __of]
Eo0 E
3 3
a -1 o -2f

-2

4t
0 5 10 15 0 5 10 15
Pos: Z Ang: ¢

0 - - 6F - -

-1 J
E-2 g4
" I

(@]
£ -3 5|
-4
1 1 1 0 1 1 1
0 5 10 15 0 5 10 15
Time [s] Time [s]

Figure 4.5: True position and estimate from Kalman filter in X, Y, Z and Psi

As mentioned the estimation error quickly grows due to the accelerometer biases not being
estimated properly, as well as small errors in the attitude estimates. These errors are left
unchecked since the Kalman filter is not receiving position or heading aiding.

104

Figure 4.6 displays the mean error and the error standard deviation in the X, Y and Z
directions along with the mean error in the heading estimate of 10 test hops.

Mean estimate errors, 10 test |~ 'g"ea”
td dev
Pos error: X 4 Pos error: Y
R
7
.-
E E? e
L L (p— -
) . —
0 5 10 15
Angle error: Z
0 p= ¥ ' 4—
E 8 -0.02
S 5 004l
0 LE -0.04
-0.06 "
b
-4
0 5 10 15 0 5 10 15
Time [s] Time [s]

Figure 4.6: Mean estimate errors with standard deviation from Kalman filter in X, Y, Z and Psi

Here it can be seen that the error grows quickly, and the position estimate quickly becomes

unusable even during a short test hop. This clearly illustrates that the Kalman filter needs
position and heading aiding!.

!The mean value stays close to 0, this is because the filter drifts away in random directions each test, resulting in

a zero mean, however it can be seen that the standard deviation grows with time, indicating that the individual test
hops have a large error at the end of each test

105

Hybrid filter

Finally the filters are tested in conjunction as a Hybrid filter. The filter performance for
a single hop test can be seen in figure 4.7 where the trajectory of the true and estimated
position can be seen. The accompanying error in the estimates are smaller than that of the
stand alone Kalman- and Particle filter solution. The estimated trajectories can be seen in
figure 4.8 with the true position shown in red, here again an improvement over the separate
filters can be seen.

3D trajectory, norm- and ¢ error [——%
— E std

Trajectory

= .) . s . . P T,) N ~
© 0.05r BRNS IR N W BN R T
- VA . I~ —
- L . N - ".‘b' '\."\"x'-_'-______-' - "_-.__-__,_l/-.\._"'\ '\.- o _ n
w -0.05¢ R B ! ! ! 1 B T T
0 2 4 6 8 10 12 14 16 18
Time [s]

Figure 4.7: 3D Trajectory of true position and estimate from Hybrid filter, with norm error over
time

106

Single test trajectory

_E
Pos: X Pos: Y T
1.5 T T "
— 1
E
(7]
(@]
& o5
0 " 1
0 5 10 15

Ang: ¥
N 5 .
E Rl
" =
:
2.
0 5 10 15 0 5 10 15
Time [s]

Time [s]

Figure 4.8: True position and estimate from Hybrid filter in X, Y, Z and Psi

107

The Hybrid filter also estimates the roll and pitch angles of the drone, the estimated angles

during the hop test can be seen in figure 4.9, these angle estimates are from the same test
as displayed in figure 4.7.

Single test angle error

Angle: ¢

Angle [rad]

Angle [rad]

Angle: 3
T T T T T T T T
8°F
(0]
[S)
C
<
0 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18
Time [s]

Figure 4.9: Roll pitch and yaw estimate from Hybrid filter and true value

108

The errors in the angle estimates over the 10 hop tests can be seen in figure 4.10. It can
be seen that the errors in the angle estimates are fairly small and consistent over the test
runs. This is due to the angle primarily being estimated based on the gyroscope and aided
by presence of the G vector in the accelerometer.

Angle error: ¢
T T T

002 T T T T T T
T
o
= Ok _
9 2
w

_002 1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18

0.02 T T
= Mean
8 Std Dev | |
— 0 p—————) ettt N - — . _ T R\ ™ - —-—"- -
=
L

Error [rad]

Time [s]

Figure 4.10: Roll pitch and yaw error from Hybrid filter and standard deviation

Figure 4.8 displays the errors in the estimate in the X, Y and Z directions as well as the
error in the heading estimate. The Figure displays the mean value over 10 test hops and the
red dashed line is the standard deviation of the test series.

From these plots it can be seen that the Hybrid filter clearly out-preforms the separate filters.
This is as expected and the intent of the Hybrid filter design.

109

. Mean
Mean estimate errors, 10 test | Std dev
Pos error: X Pos error: Y
0.4 - - 0.15 - -
0.17
E E |
S 5 005K
L L0
O L
-0.05 .
0 5 10 15
Angle error: 1
0.05Ff i ‘ i n i
E E
S 5 0
i 5
-0.2 -0.05
0 5 10 15 0 5 10 15
Time [s] Time [s]

Figure 4.11: Mean estimate errors with standard deviation from Hybrid filter in X, Y, Z and Psi

110

4.1.3 Case 2: industrial environment

The test path in the industrial map has been flown several times and the results logged.

(—_

—T1. O
.J@*’% — Ol° O

I (E)
—1 O

Start/ e—=5—1 s
Q s 11—

Figure 4.12: The path flown in the industrial map

Figure 4.13 displays the true and estimated trajectory for one run in the industrial map, as
well as the normal error in the estimate and the error in the heading estimate.

3D trajectory, norm- and) error |=——E

Trajectory

Error [m]

Error [rad]

Figure 4.13: Industrial map 3D Trajectory of true position and estimate from Hybrid filter, with
norm and) error over time

The estimated angles is displayed in figure 4.14, and the estimation errors in the angles with
the variance from the filter displayed in figure 4.15, the filter tracks the angles well.

111

Single test angles

Angle: ¢

Angle [rad]
o

Angle [rad]
o
L

0.2
1 1 1 1 1
0 20 40 60 80 100
Angle: ¥
T T T T T
g5+ :
@
k=)
C
<
0 1 1 i 1 1
0 20 40 60 80 100
Time [s]

Figure 4.14: Single test estimates of roll, pitch, yaw and from filter with true values

Single test angle error

Angerror:¢p |—-—-— ekf var
T

Error [rad]

Error [rad]

Ang error:
01 T T g T ¢ T T
i)
o
§ 0
L0
_01 1 1 1 1 1
0 20 40 60 80 100
Time [s]

Figure 4.15: Single test estimates of roll, pitch, yaw error and uncertainty from filter

112

The estimated velocities in the level frame can be seen in figure 4.16. The estimated velocity
in the level frame X-direction is close on 2 [m/s|, which is the commanded velocity set in
the path planer.

Single test velocity

ve: X === E std
T

Vel [m/s]

Vel [m/s]

Vel [m/s]
o

=
- o1 O u;

Time [s]

Figure 4.16: Single test velocity estimates in X, Y and Z

113

As mentioned the tests have been preformed several times and the estimation errors in the

X, Y and Z direction along with the error in the heading over 10 tests can be seen in figure
4.17

Mean

Mean estimate errors, 10 test
fffff Std dev

Pos error: X
0.5 — - 0.4 ’
I ")

Error [m]
Error [m]

0 50 100 0 50 100

Pos error: Z
0.4
i)
_o2r g -
E ‘ivw/v'” f" | M\\' y i g
5 O : 5
Ll ll ‘fu\ b /,~.’)I. il A LIL]
0.2 ARNRR
' [
I
-0.4 : -0.1
0 50 100 0 50 100
Time [s] Time [s]

Figure 4.17: X, Y, Z and yaw error from Hybrid filter and standard deviations in the industrial
map

It can be seen that the standard deviations in the errors over the multitude of tests are fairly
low, indicating that the filter is preforming stably.

114

The mean angle errors can be seen in figure 4.18, again the filter is preforming consistently.

Mean angle errors, 10 tests

Angleerror:¢ = |—-—-— Std Dev
T

o

o

o
T

Error [rad]

Error [rad]

_005 ‘ 1 1 1 1 1
0

Error [rad]

Figure 4.18: Mean values of roll, pitch and yaw error from Hybrid filter and standard deviations
in the industrial map

Figure 4.19 shows the linear velocity estimate of the drone in the level frame, that is, the

x-axis is oriented in the forwards direction of the drone and level with the horizontal plane.
Figure 4.20 displays the bias corrected angular rate measurements

115

Mean velocity estimates, 10 tests

Mean
Vel: X | ——— Std Dev
T

aF T T T T -

Vel [m/s]

Vel [m/s]

Vel [m/s]

Time [s]

Figure 4.19: Mean values of linear velocity estimates and their standard deviations over time for
industrial map

Mean angular velocity estimates, 10 tests

Mean
Vel:9 | ——= Std Dev
05 T "A T \ T T T
Q
ke
o
©
> -

Vel [rad/s]

Vel [rad/s]

Time [s]

Figure 4.20: Mean values of angular velocity estimates and their standard deviations over time for
industrial map

116

The filter is also estimating the sensor biases, the mean accelerometer biases estimated by
the filter over the 10 tests can be seen in figure 4.21. The value for the biases set in the
gazebo IMU model fot eh test was 0.0[m/s?| for the accelerometer and 0.1[rad/s| for the

gyroscope.

Mean accelerometer bias estimates, 10 tests

Mean
Bias: X = |——-— Std Dev
N'_‘O.OS T T T T T
K% . .
E .
(2]
©
3
Q
(&)
<
<% 0.02
£
@
5 -0.0
§ -0.0
o
R
£,
(7]
©
3
Q
(@]
< .5 1 1 1 1 1
0 20 40 60 80 100

Time [s]

Figure 4.21: Mean values of accelerometer bias estimates from Hybrid filter with standard devia-

tions

The accelerometer biases in the X and Y directions becomes observable as the drone rolls and
pitches, the biases are not optimally estimated, and leaves some performance to be desired.

117

The estimated gyroscope biases can be seen in figure 4.22. The gyroscope biases are estimated
to a higher degree of accuracy then the accelerometer biases.

Mean gyro bias estimates, 10 tests

Mean

Bias:¢ = |——= Std Dev

0.0994
00093
©0.0992F
- o

[rad/s]

G

0.1

Gyr bias [rad/s]

0.0995 ' : :
0

0.1
0.0995 =
0.099

Gyr bias [rad/s]

Figure 4.22: Mean values of gyro bias estimates from Hybrid filter with standard deviations

The gyro biases are nicely estimated, this can be seen by the tightness of the standard
deviations in the plots.

118

4.1.4 Case 3: Real environment

The path flown in the basement map can be seen in figure 4.23, where the long straight
corridors will be referred to as "A" and "B" as seen in the figure.

—

A —

L[

L—=

Figure 4.23: The path flown in the basement map

The basement environment test was preformed multiple times, and underlines the filters

problem of navigating in long, featureless hallways.

3 out of 10 tests were successful at

keeping track of the drone during the whole flight, while the rest lost track. The 3D trajectory
of one flight can be seen in figure 4.24.

Error [rad]

3D trajectory, norm- and i error

—E

——— E std. dev

Trajectory

T T T T T T T T
EYf 1
— 2 [T
e
i _
D = —— e —— - s | - - s
0 10 20 30 40 50 60 70 80 a0
1 error
02 T T T T T T T T T
Mg e < P s il R i
Oty e
_02 1 1 I.‘l i I 1 T 1 1 1 1
0 10 20 30 40 50 60 70 80 a0
Time [s]

Figure 4.24: 3D Trajectory of true position and estimate from Hybrid filter in the basement envi-
ronment, with norm- and 1 error over time

119

It can be seen in the normal error plot in figure 4.24 that the error is much greater in certain
parts of the test (t = 25s, t = 60s), which correspond to movement in the X-direction seen
in figure 4.25. This is when the drone flies through corridor B.

Single test trajectory

E
Pos: X Pos: Y T
30 60
— 20 —
T E 40
2] 2]
o o
o107 & 20}
0 0
0 20 40 60 80 0 20 40 60 80
Pos: Z Ang: ¢
0 y:
E '1 g 4 b
” =
o (@]
& ot -E ot
-3 0 dl
0 20 40 60 80 0 20 40 60 80

Time [s] Time [s]
Figure 4.25: Single test position, yaw estimate and true value over time in basement map

Figure 4.26 shows the errors in the angle-estimates for the basement test, displaying low
errors in the estimated angles.

Single test angle error

E
Angerror:¢p ~ |——— ekf var
01 J—f N T T ,\‘ T T T ﬂ T T 1=
— . L = [— hl SN PVl 4
g LY — e~ /‘JW ‘,,_,,.'\’w_rf - PO
T 0 g =
g ,-A_N.\,s\.d'\- _..A | —~— ,‘m [VS H
w LT LT e T T h
0.1 e 1 1 'ﬂf’ L 1 1 / 1 1 1
0 10 20 30 40 50 60 70 80 90
Ang error: 0
01F I.H'['\—'L\ T T .‘ T T T T T]
— . (L) - [.
3 N e e e
5 o —Ms = 4, W
Li \ - - I Rt Rt
i<}
g
S
w
0 10 20 30 40 50 60 70 80 90
Time [s]

Figure 4.26: Single test angle estimate errors and filter variance for the basement test

120

Having a closer look at the movement in X, taking the mean and standard deviations for the

errors of all successful runs, shows that hallway B is very problematic for the filter, resulting
in large errors in estimate shown in figure 4.27.

Pos: X
30 T T T T T T T T T
—
T
— 20 .
£
3
%10l .
0 | — L 1 1 1)
0 10 20 30 40 50 60 70 80 90
5 Pos error: X
Mean
T B Std Dev
_ . VA
= 0 R v\
o \ S
w A Y/
v
\
5t 1 1 1 \J’ 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90
Time [s]

Figure 4.27: The system has difficulties estimating X-position in the long, featureless hallway "B"
in the basement map

121

4.2 Hardware platform

A drone platform has been designed and a prototype created, this platform is based on an
established PX4 flight controller and a off the shelf drone kit. The Zed mini depth camera
was selected as it is a passive "depth sensor' and an off the self component.

4.2.1 Drone platform

A drone platform has been designed and built, the platform is based on the S500 drone
kit supplied by Holybro. A flight time analysis was preformed based on the manufacturers
motor data and the drones design weight. The resulting flight time matched within a good
margin, giving confidence in the figure presented for selecting a battery for a desired flight
time for the platform.

The designed drone platform is modular in the sense that the both the companion computer
and the Zed Mini stereo camera are mounted by use of exchangeable brackets. That is, if
a new computer module is to be tested only a redesign of a single bracket is needed, given
that the new module has a comparative size to the TX2i. The same idea is implemented for
the stereo camera mount, and again, only a single mounting bracket needs to be redesigned
to allow for the attachment of a new depth perception sensor.

The drone design also offers the companion computer and flight controller good protection
from general handling of the drone, and some crash protection should a crash occur.

(a) Holybro S500 kit (b) Drone render

(c) Drone assembled

Figure 4.28: Drone kit, design and implementation

The drone was also test flown with dummy payload and an image from the flight can be

122

seen in figure 4.29.

4.2.2 Roll and pitch estimation

Even though the complete Hybrid filter has not been tested with data from the real sensors,
the filter has been deployed to the TX2 and tested in the simulation. As the filter was
already deployed and communication with the flight controller established, testing the roll
and pitch estimation in the filter using real IMU data was fairly straight forwards, and the
results can be seen in figure 4.30

Figure 4.30: Hybrid filter angle estimates using data from Pixhawk flight controller

The tests were performed by rolling and pitching the drone by hand. Therefore true value
was not available for the tests, and no conclusions can be drawn about the accuracy of the
estimates. However the estimated roll and pitch angles are in the correct directions and have
approximately the correct magnitudes, and return to zero when placed on the table.

Angle [rad]

Angle [rad]

o
3

o

o
3

I
&

o

I
3

'
—_

Kalman filter, Pixhawk Data

Angle: ¢

Figure 4.29: Image from test flight

T

T

1

1

o

10

Time [s]

123

15

20 25

4.2.3 Zed Mini camera point cloud

The Zed mini stereo camera has been connected to the drones computer and a point cloud has
been visualized in RViz. The point cloud is correctly leveled using the static transformations.
As the kalman filter was not online for the testing of the Zed Mini camera, the dynamic
leveling of the point cloud has not yet been tested. But the roll and pitch estimates showed
promising results giving confidence that the point cloud would have been correctly leveled
on the deployed hardware platform, had all systems been online for the test.

(a) Drone as it captured the point cloud (b) Point cloud seen in RViz with rgb Values

Figure 4.31: Point cloud captured with Zed Mini stereo camera

Figure 4.32: Intensity map of point cloud captured with Zed Mini

Figure 4.31 and 4.32 displays the point cloud captured form the Zed Mini visualized in RViz,
here it can be seen that even though the camera is mounted at an angle, the vertical wall
in front of the drone appears level in RViz, demonstrating that the static part of the point
cloud leveling functions as intended.

124

4.3 Simulation environment

Two realistic test environments have been created and are available for further use.

The Industrial environment is a good emulation of an industrial multi building complex
where drone testing and development can be preformed in a simulated environment. The
map is large enough to allow for longer drone flights emulating real inspection flights.

A model of the hallways of the UiA campus Grimstad basement is also created and available
for further use in other projects. The Model can also serve as a platform for development of
navigation systems not only limited for drone applications.

(a) Industrial environment (b) UiA Basement environment

Figure 4.33: Gazebo simulation environments

A drone model has been adapted to serve as a simulation drone that is outfitted with the
same senors as the designed drone platform. This drone model is also available for further
use in other projects and serves a true to life digital twin of the drone platform created.

Figure 4.34: Gazebo model of the simulation drone

125

Page intentionally left blank

126

Chapter 5

Discussions

5.1 Singularity in filter

As mentioned in the theory section (2.1) about rotations, the Euler angle orientation repre-
sentation contains a singularity. This singularity is for the chosen rotation sequence located
at 0 £ 90[deg]. This means that an angle estimate based on the IMU leveling can not be
acquired around this angle. Further, the transformation matrix used to transform the drones
angular rates reported by the gyroscope can not be integrated and give sensible results about
the drones Euler angles. For an inspection drone this is acceptable as it is unlikely to ever
have to execute a controlled maneuver involving pitching the drone at such an extreme angle.
There are ways around this singularity, one approach is proposed in [18], here an Euler angle
approach is still used, although an alternative method of integration is proposed when the
filter is close to its singularity. A more elegant and perhaps more up-to-date method is to
use an Indirect Kalman filter, often also referred to as a Multiplicative Kalman filter. A
singularity free filter is developed and demonstrated in the thesis Singularity-Free Naviga-
tion System for an Autonomous Unmanned Aerial Vehicle [40]. Adopting a similar filtering
approach and implementing it with ROS would solve the singularity issue; and as long as
the ROS interface is kept the same, swapping the current filter for a singularity-free filter is
a simple task!.

5.2 Feedback loop between filters

The chosen strategy of hybrid filtering does not come without problems, as the filters are
co-dependent; they can, in some cases, take each other "on a trip". For instance, if the
particle filter makes a faulty estimate, causing the solution to jump, the Kalman filter might
blame the jump in position on an error in its estimated velocity. This will, in turn, propagate
the particles in the wrong direction, forming the basis of a nasty feedback loop; sending the
solution off in a completely wrong direction. The system is particularly susceptible to this
in featureless environments such as long, straight hallways or open spaces where the particle
filter can find multiple positions to fit the sensor’s point cloud. This problem is the root
cause of the big errors in the X-direction occurring in hallway B illustrated in figure 4.27

The authors propose two methods for fixing the issue.

'Developing one on the other hand; is not

127

5.2.1 "Leash method"

The first proposed method is to introduce a modification to the mean propagation velocity
use in the particle filter.

The implemented method solely relies on the velocity estimate from the Kalman filter:

V= Vekrs (51)

Where v, is the average velocity the particle are propagated with, and v.¢ is the velocity
estimate from the Kalman filter.

The suggested modification is adding on extra term that will pull the particles towards the
estimate in the Kalman filter, in a sense keeping the particle filter propagation step in a
leash.

Vi = Vekf + kleash . (pkf - pr) (52>

Where pjy is the position estimate from the Kalman filter and likewise p,s is the last
outputted position from the Particle filter. The factor kj..s, will determine how much the
particles are pulled towards the solution from the Kalman filter.

5.2.2 "Particle based measurement model"

Another option proposed is to eliminate the process of particle propagation completely. That
is, every step in the Particle filter, the particles are dispersed around the current position
and heading estimate of the Kalman filter. The measurement step and histogram smoothing
steps in the particle filter are kept the same. A solution is found in the Particle filter, and
this solution is given as a measurement to the Kalman filter, just like in the implemented

Hybrid filter.

This will, in a sense, turn the particle filter into a particle-based measurement model for
the Kalman filter as the particle filter no longer keeps track of the last states in the form
of the previous particles. This method would also eliminate the need for re-sampling the
particles, as they are now dispersed around the Kalman position estimate for every camera
measurement.

5.3 Base station sensor package

A focus has been to keep all sensors used for navigation on the drone. This has been done
for practical reasons like reducing the needed infrastructure needed to deploy the system
and eliminating the need for communication with a ground station in environments where
this can sometimes be a challenge. Another reason for this decision was to keep the scope
of the project limited.

For future work creating and implementing a base station could help to stabilize the problem
of the filters "going on a trip".

The proposed base station would include a transponder capable of inferring how far away
the drone is from the base station; this distance could then be implemented as a proba-
bilistic measurement in the particle filters measurement model. The introduction of such a
measurement would reduce the possible positions of the drone to a sphere centered at the
base station. Alternatively, if a WiFi system is already installed in the industrial area, these
transmitters can be utilized in much the same manner. Such a system would also improve

128

the positioning accuracy of the system in long hallways or areas where there are relatively
few features within the range of the stereo camera.

It has been discussed in the report that using a barometer for height determination can
be risk-ridden in indoor environments where the air pressure can fluctuate due to air-
conditioning or the use of a ventilation system. A way around this problem can be to
use differential barometry; then, a barometer would be mounted on the base station at a
known height. The difference between the two barometer readings can then be used to infer
the elevation difference between the drone and the base station, in turn determining the alti-
tude of the drone. This system would be more robust against the use of ventilation systems
and fluctuations in the air pressure due to industrial operations as the pressure disturbance
would affect both sensors equally.

5.4 Proposed alternative sensor package

The current sensor for depth perception only used a single stereo camera pointing forwards
and tilted slightly down to get a better estimate of the drone’s height. This sensor con-
figuration might be adequate for navigation in highly featured environments. But it has
been demonstrated that it lacks performance in long hallways or featureless environments.
Furthermore, only having one forwards facing sensor also makes the drone incapable of per-
ceiving its immediate surroundings on its side and rear; this results in a fairly blind drone
and can pose a safety hazard if the drone operates around humans.

Switching to another senor configuration can help alleviate these issues. Switching to a
LiDAR-based sensor suite would be beneficial if the operating environment allows for it.
The proposed combination of sensors is:

o One front-facing solid-state LiDAR, advancements in mems mirrors have made solid-
state LIDARs more available and affordable. A sensor like the Velodyne Velabit would
serve this purpose nicely and have a reported cost of approximately 100 USD?2. The
sensor has a narrow field of view of 60 by 10 degrees but a detection range up to 100
meters; this will serve nicely as a front scanning LiDAR.

e One top-mounted 360-degree scanning LiDAR. A scanning LiDAR is a device that only
contains one LiDAR sensor but continuously rotates and scans the distances to objects
lying on the scanning disc. This LiDAR will give a good perception of the drones
surrounding environment. Crucially it will make collision avoidance possible from the
side and rear of the drone, and not only the direction the current stereo camera is
observing. Scanning LiDARs range in price but are relatively affordable.

e One down facing single point measurement device, this can be either a LiDAR or an
Ultrasonic sensor. Since the new proposed sensor package only senses in a narrow front-
facing direction and scans a disc in the horizontal plane, observations of the drone’s
height will be challenging. This is solved by having a LiDAR (or Ultrasonic sensor)
facing down. This will continuously observe the drone’s height.

All the observations from the three LiDARs can be combined into one point cloud and
handled in much the same way as the point cloud from the stereo camera. It would, however,
be wise to rethink what points are sampled and not blindly combine the different sensors
into one point cloud and then random draw from it using the methods proposed in this
report. A method that guarantees that the down-facing LiDAR is used in every iteration

2 At the time of writing, reported by blogs and tech news sites, the figure gives a ballpark estimate

129

would be vise, and the reminding points sampled evenly from the 360 and the front-facing
mems LiDAR could be one strategy.

This sensor packages would be comparable in cost to the Zed Mini used in this project and
could have some nice benefits as outlined above.

130

Chapter 6

Conclusion

Through the work done in this thesis, an Indoor navigation system has been proposed,
deployed to software, and simulated in a HIL simulation. The Hybrid filter utilizes the
strengths of both the Kalman filter and the Particle filter and combines their properties to
produce a filtering solution that out-preforms the individual filters constituting the system.
In addition, all sensors used for navigation and the computer executing the filtering are
located on the drone, making it a self-contained autonomous navigation system.

The Hybrid filtering solution proposed is not, however, without its flaws. Namely, the
feedback loop between the filters; can lead them both astray. Therefore, two methods
have been proposed to solve this issue using the current sensor selection. Alternatively,
the proposed solutions in combination with a base station or other rough position estimation
like a WiFi-based system could also aid in resolving the feedback loop.

The navigation system struggles in feature-poor environments. This problem was demon-
strated in the simulations in the UiA basement environment. Here again the proposed base
station or a system for rough position estimation could resolve this issue. Alternatively, the
proposed Lidar-based sensor package could help alleviate these issued by having a longer
sensing range.

A hardware platform has also been designed, and a prototype made. The platform was test
flown and preforms as expected. The hardware platform will serve as a vessel for further
hardware development and a testbed for the Hybrid filter.

131

Page intentionally left blank

132

List of Figures

2.1
2.2
2.3

2.4
2.5
2.6
2.7
2.8
29

2.10
2.11

2.12

2.13
2.14
2.15
2.16
2.17

2.18

2.19
2.20
2.21
2.22
2.23

3.1
3.2

Tait-Bryan rotation sequence z-y-z, from [17] 6
A bimodal distribution composed of two gaussian distributions 8

Data from two gaussian distributions, collected into normalized histograms

with different bin sizes Lo 9
Importance sampling of a distribution p(x) over ¢(z) 10
A Hidden Markov Model x, with observationsy 11
A depiction of a binary occupancy map being mapped by a robot 16
The ray tracing sensor model is a combination of four distributions 19

The full probability distribution for a single ray in the ray tracing sensor model 19

A small difference in the robot state can produce very different readings in
the ray-cast sensor model. oo 20

A point from a scan projected into map frame L. 21

A Simple map (left) and it’s corresponding likelihood-field (right), with darker
colour being more likely locations for hits 21

A small difference in the robot state produce very similar readings in the

likelihood field. 22
Depth Camera structured light method [27] 22
Depth Camera time of flight method[27] 23
Depth camera stereo vision method[27] 24
Example of what a scan from a LiDAR could look like in the XY-plane . . . 27
The example LiDAR scan placed in the frame of three different particles in a

1002 1 0 28
LiDAR scan placed in a rectangular room. Left: Multiple poses fit well with

scan. Right: The resulting probability distribution. 28
Examples of importance densities 0oL 31
Graphic representation of the SIR algorithm, figure from [2] 32
The distribution p(x}|x}_;, uy) for different noise parameters [36] 33
Particles picked by the low variance resampler 34
Monte Carlo Localization example: A door-sensing robot moving in 1D . . . 36
Proposed Hybrid filter coupling L. 39
The map, NED and body-frame 43

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14

3.15
3.16

3.17
3.18
3.19
3.20

3.21
3.22

3.23
3.24
3.25
3.26
3.27

3.28
3.29

3.30

3.31
3.32
3.33

The body, sensor and camera frame 43

The body and level body frame 43
The particle frame and map frame 44
Simulation drone model based on IRIS3DR 45
Depth camera point cloud visualized in Rviz 46
Simple environment as seen in the Gazebo simulation tool 47
Industrial environment seen in the Gazebo simulation tool 48
Univeristy of Agder basement environment seen in Gazebo simulation tool . 48
The main idea behind the likelihood map, demonstrated in 2D 50
The main workflow of the map-generation script 51

A slice at z = 1 [m] from the generated likelihood-map for the UiA basement,
darker regions are more probable hit locationso 52

A slice at z = 3 [m] from the generated likelihood-map for the industrial map,

darker regions are more probable hit locations 52
The hybrid filter architecture including sensors 53
The hybrid filter architecture including sensors, with ground truth breaking

dependence 54
Finding the smallest angle when calculating innovation for the yaw 65
Block representation of the Particle filter with inputs and outputs. 71
Block representation of the particle filter loop 71

The particle propagation-model tested with different noise parameters, mov-
ing 100 particleso 72

The main idea of the histogram smoothing algorithm, the red peak gets flattened. 74

Two gaussian distributions about the peak value of a bimodal dataset, red:

Var = Var of dataset, Blue: Var = MSE from peak 75
The map, body and camera frame 80
The point cloud must be leveled before insertion into the map 81
Histogram of wrapped variable padded with values from the other end 84
Histogram plot of exectuion times for 10000 runs of the propagation-steps . . 84

Histogram plot of exectuion times for 10000 runs of pointcloud update, nor-
malize and resample 85

Histogram plot of exectuion times for the top 99% of the runs, propagation . 85

Histogram plot of exectuion times for the top 99% of the runs, pointcloud
update, normalize and resample 85

The execution-times for the 99th percentile of 10000 runs of the particle filter

propagation step, on a development computer running an Intel i7 6820HQ . 86
Motor characteristics for S500 drone kit 91
Drone design, battery and payload design graph 92
Drone design Jetson TX2 mounting 93

134

3.34
3.3
3.36
3.37
3.38
3.39
3.40
3.41

4.1

4.2
4.3

4.4

4.5
4.6

4.7

4.8
4.9
4.10
4.11

4.12
4.13

4.14
4.15
4.16
4.17

4.18

4.19

4.20

Drone design Zed Mini stereo camera mount 94

Drone design battery mounting 94
Drone design Dome assembly 0oL 95
Drone design Pixhawk 4 flight controller mounting tray 95
Drone design complete assemblyo oL 96
Drone design real vs. dummy components 96
Drone design assembled oL 97
Test flight of the drone, flight time: 7 min 15 sec, distance: 478 meters . . . 97

3D Trajectory of true position and estimate from particle filter, with norm
error over time L L e e 100

True position and estimate from particle filter in X, Y, Z and Psi states . . . 101

Mean estimate errors with standard deviation from particle filter in X, Y, Z

and Psi 102
3D Trajectory of true position and estimate from Kalman filter, with norm

EITOT OVET timMe 103
True position and estimate from Kalman filter in X, Y, Z and Psi 104
Mean estimate errors with standard deviation from Kalman filter in X, Y, Z

and Psi . . . 105
3D Trajectory of true position and estimate from Hybrid filter, with norm

ErTOr OVET tie e 106
True position and estimate from Hybrid filter in X, Y, Zand Psi 107
Roll pitch and yaw estimate from Hybrid filter and true value 108
Roll pitch and yaw error from Hybrid filter and standard deviation 109
Mean estimate errors with standard deviation from Hybrid filter in X, Y, Z

and Psi 110
The path flown in the industrial map 111
Industrial map 3D Trajectory of true position and estimate from Hybrid filter,

with norm and v error over time 111
Single test estimates of roll, pitch, yaw and from filter with true values . . . 112
Single test estimates of roll, pitch, yaw error and uncertainty from filter . . . 112
Single test velocity estimates in X, Yand Z 113

X, Y, Z and yaw error from Hybrid filter and standard deviations in the
industrial map 114

Mean values of roll, pitch and yaw error from Hybrid filter and standard
deviations in the industrial mapo 115

Mean values of linear velocity estimates and their standard deviations over
time for industrial map 116

Mean values of angular velocity estimates and their standard deviations over
time for industrial map oL 116

4.21

4.22
4.23
4.24

4.25
4.26
4.27

4.28
4.29
4.30
4.31
4.32
4.33
4.34

Mean values of accelerometer bias estimates from Hybrid filter with standard

deviations 117
Mean values of gyro bias estimates from Hybrid filter with standard deviations118
The path flown in the basement map 119
3D Trajectory of true position and estimate from Hybrid filter in the basement

environment, with norm- and v error over time 119
Single test position, yaw estimate and true value over time in basement map 120
Single test angle estimate errors and filter variance for the basement test . . 120
The system has difficulties estimating X-position in the long, featureless hall-

way "B" in the basement map L. 121
Drone kit, design and implementation 122
Image from test flight 123
Hybrid filter angle estimates using data from Pixhawk flight controller 123
Point cloud captured with Zed Mini stereo camera 124
Intensity map of point cloud captured with Zed Mini 124
Gazebo simulation environments L0000 125
Gazebo model of the simulation drone 125

136

List of Tables

2.1 Rotation representations, parameters, constraints and ODEs [34]

2.2 State space variables

3.1 The different frames used in the system

137

Page intentionally left blank

138

Bibliography

Markov Andrej Andreevic and Nagorny Nikolai Makarovic. The theory of algorithms. Kluwer
academic, 1988.

Hazuki Arakida et al. “Non-Gaussian data assimilation of satellite-based Leaf Area Index
observations with an individual-based dynamic global vegetation model”. In: Nonlinear Pro-
cesses in Geophysics Discussions (May 2016), pp. 1-19. DOI: 10.5194/npg-2016-30.

M.S. Arulampalam et al. “A tutorial on particle filters for online nonlinear/non-Gaussian
Bayesian tracking”. In: IEEE Transactions on Signal Processing 50.2 (2002), pp. 174-188.
DOI: 10.1109/78.978374.

N. Bergman. “Recursive Bayesian Estimation : Navigation and Tracking Applications”. In:
1999.

Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering: Machine
Learning, Dynamical Systems, and Control. 1st. USA: Cambridge University Press, 2019.
ISBN: 1108422098.

PX4 community. PX4 User Guide - Gazebo Vehicles. URL: https://docs.px4.io/master/
en/simulation/gazebo_vehicles.html.

The SciPy community. numpy.arctan2. URL: https://numpy.org/doc/stable/reference/
generated/numpy.arctan2.html.

Andrew J. Davison et al. “MonoSLAM: Real-Time Single Camera SLAM”. In: IEEFE Trans-
actions on Pattern Analysis and Machine Intelligence 29.6 (2007), pp. 1052-1067. poI: 10.
1109/TPAMI . 2007 .1049.

Arnaud Doucet, S.J. Godsill, and Christophe Andrieu. “On Sequential Monte Carlo Sampling
Methods for Bayesian Filtering”. In: Statistics and Computing 10 (Apr. 2003). DOI: 10.1023/
A:1008935410038.

YINGZHI NING EILIV HAGG. “Map Representation and LIDAR-Based Vehicle Localiza-
tion”. Master’s thesis in the Signal and Systems department, Chalmers. CHALMERS UNI-
VERSITY OF TECHNOLOGY, Department of Signal and System, 2016.

Felix Endres et al. “An evaluation of the RGB-D SLAM system”. In: Proceedings - IEFEE
International Conference on Robotics and Automation (May 2012), pp. 1691-1696. DOI: 10.
1109/ICRA.2012.6225199.

Open Source Robotics Foundation. Gazebo plugins in ROS. URL: http://gazebosim.org/
tutorials?tut=ros_gzplugins.

Open Source Robotics Foundation. Sensor Noise Model. URL: http://gazebosim. org/
tutorials?tut=sensor_noise.

Oussama El Hamzaoui. “Localisation et cartographie simultanées pour un robot mobile équipé
d’un laser & balayage : CoreSLAM. (Simultaneous Localization and Mapping for a mobile
robot with a laser scanner : CoreSLAM)”. In: 2012.

Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept. 2020),
pp. 357-362. DOI: 10.1038/s41586-020-2649-2. URL: https://doi.org/10.1038/s41586-
020-2649-2.

139

https://doi.org/10.5194/npg-2016-30
https://doi.org/10.1109/78.978374
https://docs.px4.io/master/en/simulation/gazebo_vehicles.html
https://docs.px4.io/master/en/simulation/gazebo_vehicles.html
https://numpy.org/doc/stable/reference/generated/numpy.arctan2.html
https://numpy.org/doc/stable/reference/generated/numpy.arctan2.html
https://doi.org/10.1109/TPAMI.2007.1049
https://doi.org/10.1109/TPAMI.2007.1049
https://doi.org/10.1023/A:1008935410038
https://doi.org/10.1023/A:1008935410038
https://doi.org/10.1109/ICRA.2012.6225199
https://doi.org/10.1109/ICRA.2012.6225199
http://gazebosim.org/tutorials?tut=ros_gzplugins
http://gazebosim.org/tutorials?tut=ros_gzplugins
http://gazebosim.org/tutorials?tut=sensor_noise
http://gazebosim.org/tutorials?tut=sensor_noise
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

[18]
[19]

[20]

Armin Hornung et al. “OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on
Octrees”. In: Autonomous Robots (2013). Software available at http://octomap.github.com.
DOI: 10.1007/s10514-012-9321-0. URL: http://octomap.github. com.

Ales Janota et al. “Improving the Precision and Speed of Euler Angles Computation from
Low-Cost Rotation Sensor Data”. In: Sensors 15.3 (2015), pp. 7016-7039. 1SSN: 1424-8220.
DOI: 10.3390/s150307016. URL: https://www.mdpi.com/1424-8220/15/3/7016.

Chul Kang. “Euler Angle Based Attitude Estimation Avoiding the Singularity Problem”. In:
Aug. 2011, pp. 2096-2102. 1SBN: 9783902661937. DOI: 10.3182/20110828-6-IT-1002.01993.

M. G. Kendall, A. Stuart, and J. K. Ord. Kendall’s Advanced Theory of Statistics. USA:
Oxford University Press, Inc., 1987. 1SBN: 0195205618.

Christian Kerl, Jiirgen Sturm, and Daniel Cremers. “Robust odometry estimation for RGB-
D cameras”. In: 2018 IEEFE International Conference on Robotics and Automation. 2013,
pp- 3748-3754. DOI: 10.1109/ICRA.2013.6631104.

H.H. Ku. “Notes on the use of propagation of error formulas”. In: National Bureau of Stan-
dards 7T0C (1966).

Dmitrii Kutsenko. RPG FPS Game Assets for PC Mobile Industrial Set v2 Free low-poly 3D
model. URL: https://www.cgtrader.com/free-3d-models/exterior/industrial/rpg-
fps-game-assets-for-pc-mobile-set-vl-rpg-fps-game-assets-for.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A LLVM-Based Python
JIT Compiler”. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastruc-
ture in HPC. LLVM ’15. Austin, Texas: Association for Computing Machinery, 2015. 1SBN:
9781450340052. por: 10 . 1145 /2833157 . 2833162. URL: https://doi.org/10. 1145/
2833157.2833162.

Tiancheng Li, Miodrag Bolic, and Petar M. Djuric. “Resampling Methods for Particle Fil-
tering: Classification, implementation, and strategies”. In: IEEFE Signal Processing Magazine
32.3 (2015), pp. 70-86. DOI: 10.1109/MSP.2014.2330626.

Cheng Liu, Zhaoying Zhou, and Xu Fu. “Attitude determination for MAVs using a Kalman
filter”. In: Tsinghua Science and Technology 13.5 (2008), pp. 593-597. DOI: 10.1016/51007~
0214(08)70097-X.

Jun Liu and Rong Chen. “Sequential Monte Carlo Methods for Dynamic Systems”. In: Journal
of the American Statistical Association 93 (Apr. 1998). pOI: 10.1080/01621459 . 1998 .
10473765.

Yang Liu et al. “A Survey of Depth Estimation Based on Computer Vision”. In: 2020 IEEE
Fifth International Conference on Data Science in Cyberspace (DSC). 2020, pp. 135-141.
DOI: 10.1109/DSC50466.2020.00028.

Pierre Merriaux et al. “Robust Robot Localization in a Complex Oil and Gas Industrial
Environment”. In: Journal of Field Robotics 35 (June 2017). DOI: 10.1002/rob.21735.

Marius Strand @dven. “SLidar-Based SLAM for AUtonomous Ferry”. Master of Science in
Cybernetics and Robotics. Norwegian University of Science and Technology, Department of
Engineering Cybernetics, 2019.

Francisco Perez-Grau et al. “Multi-sensor three-dimensional Monte Carlo localization for
long-term aerial robot navigation”. In: International Journal of Advanced Robotic Systems
14 (Sept. 2017), p. 172988141773275. DOL: 10.1177/1729881417732757.

PX4 ROS2 User Guide. https://docs.px4.io/master/en/ros/ros2_comm.html. Accessed:
2021-05-26.

Open Robotics. navigation. URL: http://wiki.ros.org/action/fullsearch/navigation?
action=fullsearch&context=180&value=linkto}3A%22navigation’22.

P. Savage. “REDEFINING GRAVITY AND NEWTONIAN NATURAL MOTION”. In: 2015.

Joan Sola. “Quaternion kinematics for the error-state KF”. In: (Mar. 2015).

140

http://octomap.github.com
https://doi.org/10.1007/s10514-012-9321-0
http://octomap.github.com
https://doi.org/10.3390/s150307016
https://www.mdpi.com/1424-8220/15/3/7016
https://doi.org/10.3182/20110828-6-IT-1002.01993
https://doi.org/10.1109/ICRA.2013.6631104
https://www.cgtrader.com/free-3d-models/exterior/industrial/rpg-fps-game-assets-for-pc-mobile-set-v1-rpg-fps-game-assets-for
https://www.cgtrader.com/free-3d-models/exterior/industrial/rpg-fps-game-assets-for-pc-mobile-set-v1-rpg-fps-game-assets-for
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1109/MSP.2014.2330626
https://doi.org/10.1016/S1007-0214(08)70097-X
https://doi.org/10.1016/S1007-0214(08)70097-X
https://doi.org/10.1080/01621459.1998.10473765
https://doi.org/10.1080/01621459.1998.10473765
https://doi.org/10.1109/DSC50466.2020.00028
https://doi.org/10.1002/rob.21735
https://doi.org/10.1177/1729881417732757
https://docs.px4.io/master/en/ros/ros2_comm.html
http://wiki.ros.org/action/fullsearch/navigation?action=fullsearch&context=180&value=linkto%3A%22navigation%22
http://wiki.ros.org/action/fullsearch/navigation?action=fullsearch&context=180&value=linkto%3A%22navigation%22

[39]

[40]

[41]

[42]
[43]

Stereolabs3d. Sensor Noise Model. URL: https://support . stereolabs.com/hc/en-us/
articles/206953229-What-is-the-range-of-the-ZED-and-ZED-Mini-.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. Cambridge, Mass.:
MIT Press, 2005. 1sSBN: 0262201623. URL: http://www.amazon.de/gp/product/0262201623/
102-8479661-98313247v=glance&n=283155&n=507846&s=books&v=glance.

D. Titterton and J. Weston. “Strapdown inertial navigation technology - 2nd edition”. In:
Aerospace and Electronic Systems Magazine, IEEE 20 (Aug. 2005). DOI: 10.1109/MAES .
2005.1499250.

Perez Tristan and Thor Fossen. “Kinematic Models for Manoeuvring and Seakeeping of Ma-
rine Vessels”. In: Modeling, Identification and Control 28 (Jan. 2007). DOI: 10.4173/mic.
2007.1.3.

Stephan Weiss, Davide Scaramuzza, and Roland Siegwart. “Monocular-SLAM-Based Naviga-
tion for Autonomous Micro Helicopters in GPS-Denied Environments”. In: J. Field Robotics
28 (Nov. 2011), pp. 854-874. DOI: 10.1002/rob.20412.

Erik Falméar Wilthil. “Singularity-Free Navigation System for an Autonomous Unmanned
Aerial Vehicle”. Master of Science in Cybernetics and Robotics. Norwegian University of
Science and Technology, Department of Engineering Cybernetics, 2015.

Zheng-shi Yu and John Crassidis. “Accelerometer Bias Calibration Using Attitude and An-
gular Velocity Information”. In: Journal of Guidance, Control, and Dynamics 39 (Jan. 2016),
pp. 1-13. DOI: 10.2514/1.G001437.

Zed SDK. https://www.stereolabs.com/developers/release/. Accessed: 2021-05-26.

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “Open3D: A Modern Library for 3D Data
Processing”. In: arXiv:1801.09847 (2018).

141

https://support.stereolabs.com/hc/en-us/articles/206953229-What-is-the-range-of-the-ZED-and-ZED-Mini-
https://support.stereolabs.com/hc/en-us/articles/206953229-What-is-the-range-of-the-ZED-and-ZED-Mini-
http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=glance&n=283155&n=507846&s=books&v=glance
http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=glance&n=283155&n=507846&s=books&v=glance
https://doi.org/10.1109/MAES.2005.1499250
https://doi.org/10.1109/MAES.2005.1499250
https://doi.org/10.4173/mic.2007.1.3
https://doi.org/10.4173/mic.2007.1.3
https://doi.org/10.1002/rob.20412
https://doi.org/10.2514/1.G001437
https://www.stereolabs.com/developers/release/

Page intentionally left blank

142

Appendix A

Drone drawings

The drones printed parts consists of:

e Dome assembly:

— dome

— domeMountingBlock
— px4MountingFemale
— px4MountingMale

— px4MountingStar

o Electronics Tub assembly:

— antennaMount

— avionicsBatteryHolder
— carryHandle

— electronicsTub

— electronicsTubBottomPlate
— electronicsTubDivider

— fanCover

— landingSkid

— sensorMountingInterface
— tx2MountingSpacer

— tx2MountingTray

zedMiniMountingBracket

Two drawings are presented, one where the main dimensions of the drone can be seen, and
a second drawing that describes how the parts are placed in relation to each other and how
they are intended to be mounted.

143

.>_:va.:_m:o_ausbm::ou_.uu:vo._n__m:o_umusvmmO>>n=._0m
_ z ¢ v G 9 i o)

240 | 133HS §TIVOS

ev AslOg

‘ON OMd

ww 0ge ~

ww 081 ~

-AjuQ-asn-jeuondNIIsu}.104.19Npo.d jeuonesnpy mvm_0>>n=._0m

_ A € % S 9 /
. Algwiasso Asjog
V-V NOILD3S
DYONON=-RONO @
K 2
N —
Joo|gbulunowawop
L Ol SM3IDS ‘W] swop T °
+ Sd9O ¥Xd 4o} dp} Buyunow asn
z ajo|d Woyog dnj-|o 0} MaIds pisBupuDl| 61
uoJ pjoy O} JOPIAIQ e
L qNJ-|S Ol ‘GN[-|© O} MBIDS 19A0UDS 8l
) 101w
‘ e ormes oigbuyunowewop) ‘! LH| uz!i”“-! D
XX 0 X XXX D -,
z qnJ-|@ 0} MaIds 3o0|ghuluUNOWaLIOP 9l / - w
L gni-|8 Ol MaIDS JOUIW S|PUDHALDD Gl .llllﬂ & °
L gny-|e 0} MaId§ S|PUDHALDD vl - — -
SOUUBIUD °
_ HIM ZXL SPIOY ‘ANL-® O} MaIOS HUNOWBUUSIID) €l
ulajpd 55901
l -M®12s ¥ BUISN IUIWU P87 SPIOY 19300.g : G
“JUNOWIOSUSDS UM S8OD}a4U| Buyunowiuwpez v
) 2004
! AN}-S 0} 8dp} BUGUNOW +8UdiZ | 151 BuyUNopVIosUSS oL
200|d Ul JepIAIg 9N aJo|d
L |-e pup zXL $400] ‘anL-e Ol 8PS| WOHOFANLSOIUOOBIS 6
L JepPIAIg-aNnL-Ie o4ul 8pIIS 1op|oHAIS}DGSOIUOIAD 8
lsp|oy 10g-AD
L PUD UDJ JUNoW ‘gnj-jo ojul sepyg | EPNAANLSIIUOROSIS L
4 1200dgBuUIUNOWZ XY 9
sloo0nds
L |Buisn zx1 yunow ‘gn-e ojul opiis AoiBuRUNOWXY S
_ 113 00GS OF MaDS QNLSDIUOIOS[S y
l S|pWB} OJUI SBPIIS s|pWbBuULUNOWyXd €
L 1 006S O MaL4S spwa4buiunowyxd 4
L JoisBuunowyxd L
"ALO NOILdIDOS3d dIAWNN L[dVd "ON WALl

L 4 € |4 S 9 L 8

Page intentionally left blank

146

Appendix B

Source code

B.1 Software structure and overview

Below is an overview of the file and folder structure of the software packages written for the
project.

1 idl_botsy_ pkg

2 idl_botsy_ pkg

3 droneConfiguration .py
1 droneGeometricData . py
5 filterConfig .py

6 ___init____ . py

7 JITdroneConfiguration . py
8 softwareConfigutarion . py
9 launch
10 groundStation_launch.py
11 localization_launch.py
12 package . xml
13 resource
14 idl__botsy__pkg
15 rviz
16 botsy_ PointCloud__config.rviz
17 setup . cfg
18 setup . py
19 test
20 test__copyright .py
21 test_flake8 .py
2 test_pep257.py

idl__logger_pkg
idl_logger_ pkg
___init____ . py
ros_node_logger.py
package . xml

N

[SECESECECECENEN

8 resource

9 idl__logger_pkg
30 setup . cfg
31 setup . py
3L test

test__copyright .py
test__flake8 .py
test__pep257.py
idl_map__tools

maps
map . npy
metadata . npy

mapSlices
HeightSliceOm3 . png

models
Mapl_Origo_InZero.stl
SimpleMapWithObstacles10x5STL .STL

README. md

tools
likelihoodFieldGenerator .py
mapSlicer . py

idl__orientation__pkg

idl_orientation_pkg
ekfNode . py
extendedKalmanFilterCombined . py
extendedKalmanFilterOrientationControl .py
extendedKalmanFilterOrientation .py
extendedKalmanFilterParameters.py
extendedKalmanFilterPositionControl.py

57 extendedKalmanFilterPosition .py
58 extendedKalmanFilterSplit.py
59 ___init____ . py

60 JITextendedKalmanFilterCombined . py
61 JITextendedKalmanFilterOrientationControl . py

62 JITextendedKalmanFilterOrientation . py

63 JITextendedKalmanFilterParameters.py

64 JITextendedKalmanFilterPositionControl.py
65 JITextendedKalmanFilterPosition .py

66 JITextendedKalmanFilterSplit . py

67 testFile .py

68 package .xml

147

resource
idl__orientation_pkg

70

1 setup.cfg
setup .py
test

7
7
7
7
e
7

7
7

79

test__copyright .py
test_flake8 .py
test_pep257.py
idl_pf_ pkg
benchmark scripts
pfTimerBenchmarks. py
idl_pf_pkg
___init____ . py
JitParticleFilterClass .py
LocalizationFilter .py
map
map_ IndustrialU8__10cm_ 10cm .npy
map_ SimpleU8__10cm__10cm . npy
map_ SimpleU8_ 5cm_ 5cm . npy
map__UiABasementU8__10cm__10cm . npy
metadata_IndustrialU8 10cm__10cm .npy
metadata_ SimpleU8__10cm__10cm . npy
metadata__SimpleU8_5cm_ 5cm . npy
metadata UiABasementU8_10cm_ 10cm.npy
ParticleFilterClass .py
PF_ros_node.py
PFTools. py
package . xml
resource
idl_pf_ pkg
setup . cfg
setup . py
test

> 00 1 O UL A W N

test__copyright.py
test__flake8 .py
test_pep257.py
idl__transform_ pkg

idl__transform_ pkg
droneConfiguration_ legacy .py
earthTransforms.py
gazeboGroundTruthPublisher . py
_ _init__ .py
JITdroneConfiguration_ legacy .py
pointCloudRestamper . py
pointCloudRestamperZedMini.py
transformPublisher . py

package . xml

README. md

resource
idl__transform__pkg

setup . cfg
setup .py
test

test__copyright.py
test__flake8 .py
test__pep257.py

148

B.2 idl_botsy_ pkg

B.2.1 Filter configuration file

This is the filter parameters used for testing the filter.

3

4 0

5 File is only intended to hold drone configration data

8 import numpy as np

10 from idl_botsy_ pkg.droneConfiguration import DroneGeometry

12

13 ### Global variables ###

14 kalmanFilterConfigurationJitCompile = True
15 kalmanFilterConfigurationSplit = False

16

17

18

19 ## Structs to hold data
20 class Vec3(object):

21

22 def __init _ (self, x = 0.0,y = 0.0 ,z = 0.0):
23 self . x = x

24 self.y =y

25 self.z = z

def asNpArray(self, shape = (3,1)):
return np.array ([self.x,self.y,self.z], dtype = np.float32).reshape(shape)
class FilterInitialStates (object):
def ___init__ (self):

Initial states
Position Related

self . pos = Vec3(x=0.0, y=0.0, z=—0.05)
self .tHeta = Vec3(x=0.0, y=0.0, z=1.57)
Velocity Related

self.linVel = Vec3(x=0.0, y=0.0, z=0.0)
self.angVel = Vec3(x=0.0, y=0.0, z=0.0)
Acceleration Related

self.linAcc = Vec3(x=0.0, y=0.0, z=0.0)
Sensor Biases

self .accBias = Vec3(x=0.0, y=0.0, z=0.0)
self .omgBias = Vec3(x=0.0, y=0.0, z=0.0)
Uncertainties

Position Related

self .posCov = Vec3(x=1.0, y=1.0, z=0.1)
self.tHetaCov = Vec3(x=0.01, y=0.01, z=0.25)

Velocity Related
self.linVelCov
self .angVelCov

Vec3(x=1.0, y=1.0, z=1.0)
Vec3(x=0.01, y=0.01, z=0.01)

Acceleration Related
self .linAccCov = Vec3(x=0.01, y=0.01, z=0.01)

Sensor Biases
self .accBiasCov = Vec3(x=0.00001, y=0.00001, z=0.00001)
self .omgBiasCov = Vec3(x=0.00001, y=0.00001, z=0.00001)
class FilterConfiguration (object):
def ___init__ (self):

Configures filter to use gazebo ground truth data, only available in simulation mode
self .gazeboGT = False

74 # Delta imu msg means that the IMU data is integrated between predicts, if False the last received
imu data is used for predict

75 self .deltalImuCum = True

76 # Using second order predict, can be beneficial if predict rate is low

7 self .secondOrderPredict = True

78 # Fixed rate predict, dose predicts at a timer, insted of in IMU callback function

79 self . fixedRatePredict = True

80

81

82 ### EKF imu settings ##H#

83

84 # Gazebo IMU tuning
85 class ImuGazeboMain(object):

86

87 def ___init__ (self):

88 # System state predict uncertainty matrix
89

90

91 self.qPosition = 0.5

92 self.qgAngles = 0.5

93 self.qLinVel = 0.5

149

158
159
160
161
162
163
164
165
166
167
168
169
170

self .qAngVel = 0.5
self.qLinAcc = 0.01
self.qAngAcc = 0.1
self.qgBiasAcc = 0.0001
self.qBiasGyro = 0.00003
self.qGravity = 0.00001

Measurement uncertainties

self .rYaw = 0.1
self .rPos = 0.1
self .rAcc = 0.01
self . rGyro = 0.01

self . rLevel = 250.0

Acc related
self .levelingWindow = 0.05

Sensor localization
droneGeom = DroneGeometry ()

covariance

self .rotMat__bs = droneGeom.rotMat__bu
self .pos_b_bs = droneGeom. pos_b_bu

Position and yaw threshold
self.posThreshold = 5.0
self.yawThreshold = 1.57
Time stuff
self.timeMaxDelayPose = 10.0

Gazebo PX4 imu tuning
class ImuPX4SimMain(object) :

def ___init__ (self):

System state predict uncertainty matrix

self.gqPosition = 0.5
self.qgAngles = 0.5
self.gqLinVel = 0.5
self .qAngVel = 0.5
self.qLinAcc = 0.01
self .gAngAcc = 0.1
self.gBiasAcc = 0.0001
self.gqBiasGyro = 0.00003
self.qGravity = 0.00001

Measurement uncertainties

self .rYaw = 0.1
self .rPos = 0.1
self .rAcc = 0.01
self . rGyro = 0.01

self .rLevel = 250.0

Acc related
self .levelingWindow = 0.05

Sensor localization
droneGeom = DroneGeometry ()

covariance

self .rotMat__bs = droneGeom .rotMat__bu
self .pos_b_bs = droneGeom. pos_b_bu

Position and yaw threshold
self.posThreshold = 5.0
self.yawThreshold = 1.57

Time stuff
self .timeMaxDelayPose = 10.0

Physical PX4 IMU tuning
class ImuPX4RealMain(object) :

def ___init__ (self):

System state predict uncertainty matrix

self.qPosition = 0.5
self.qgAngles = 0.5
self.qLinVel = 0.5
self.qAngVel = 0.5
self.qLinAcc = 0.01
self .qAngAcc = 0.1
self.qgBiasAcc = 0.0005
self.qBiasGyro = 0.0001
self.qGravity = 0.00001

Measurement uncertainties
self .rYaw = 0.1

self .rPos = 0.1

self .rAcc = 0.01
self . rGyro = 0.01
self.rLevel = 50.0

Acc related
self.levelingWindow = 0.10

Sensor localization
droneGeom = DroneGeometry ()

covariance

self .rotMat__bs = droneGeom .rotMat__bu
self .pos_b_bs = droneGeom. pos_b_bu

Position and yaw threshold
self.posThreshold = 5.0
self.yawThreshold = 1.57

Time stuff

150

199 self .timeMaxDelayPose = 10.0
200

201 # Ekf config

202 class EkfRates(object):

203

204 def __init__ (self):

205 self.ekfInsPredictHz = 75.0
206 self.ekfServiceHz = 2.0

207 self.ekfVelBodyPubHz = 2.0
208 self .ekfVelLevelPubHz = 15.0
209 self .ekfPosNedPubHz = 10.0
210 self .ekfOdomNedPubHz = 10.0
211 self .ekfSensorBiasPubHz = 10.0
212

213

214 #### PF setup #H##
215 class ParticleFilterSetup (object):

216

217 def __init__ (self):

218

219 >’’’ PF operation specific params ’'’°
220 # Number of particles to use in PF

self . numParticles = 1500

Threshold for resampling, resampling occurs if effective sample size is lower than threshold
self .resamplingThreshold = self.numParticles

Integration methods, propagation
self.secondOrderIntegration = False
self.deltaPositionIntegration = False

Parameters for PF covariance
Watchdog gain for decay of velocity when no message received
self . wd K = 0.05

Maximum value for added propogation std.deviation when no message is received
self . maxVelStdCtr = 3.0

Const covariance added to propogation
self.constVar Vec3(x=1.0, y=1.0, z=1.0)
self.constVarPsi 0.5

Method for pointcloud update step, use square sum method over product
self .pcUpdateSqSum = False

PR DI

Particle pointcloud publisher
Bools to signify whether or not to publish
self .pubPFParticlePC = True

Number of particles to publish
self . pfPCSize = 50

Rate of publish [Hz]
self . pfPCPublisherRate = 5

29 D)

Sensor parameters
Helpers

z__hit = 0.8

z_rand = 0.2

z_max = 1.0

The sum: z_hit + z_rand/z_max is defined to be equal 1.0
z_sum = z__hit + z_rand/z_ max

Setting sensor parameter values

self.pf_z_hit = z__hit / z_sum
self.pf z_ rand = z_rand / z_sum
self .pf z_ max = z_max / z_sum

Max range of sensor

self.pf sensMaxRange = 15.0
273 # Number of points to use from pointcloud
274 self .nPts_ PC = 90
275
276
277 >’’’ Parameters for configuring pointcloud downsampling ’°°
278 # Use random points when downsampling
279 # Selects nPts randomly, and then checks for duplicates and max_range measurements
280 # deletes dupes and max_range measurements from pointcloud being passed on
281 self.pcdsRandPoints = True
282
283 # Select particles in a loop, checking each point for validity (range, dupe) before adding to an
array
284 # IF BOTH pcdsLoopSelect AND pcdsRandPoints IS SET TRUE, DEFAULTS TO LOOP CHECK MODE
285 self.pcdsLoopSelect = False
286 self .pcdsLoopSelMaxLoops = 2xself.nPts_PC
287
288
289 ’’’ Histogram smoothing 77’
290 # Resolution
291 self . histRes = 0.01
292
293 # std deviation
294 self.histGaussStdDev = 0.1
295
296
297 class MapConfig(object):
298
299 def ___init__ (self):
300 Y
301 Maps that are currently available:
302 UiABasementU8 — Basement hallways at UiA, uint8 prob

151

303
304
305
306
307

66

72

75
76

85

IndustrialU8

SimpleU8

self .mapName =

Industrial map found online,
made

Simple map with shapes

’UiABasementU8’

B.2.2 Drone configuration file

File is only

Drone geometry class is

R

import numpy as np

intended to hold drone

intended for

configration data

static transforms

in

and dynamic transforms

typeof

from idl_botsy_ pkg.softwareConfigutarion import simulation
from numba.experimental import jitclass
from numba import int32, float32 , boolean, jit , types, typed,
s
https://www. fossen . biz/wiley /ed2/Ch2. pdf
RotSpec = []
@jitclass (RotSpec)
class Rot(object):
def __ init__ (self):
pass
def rotX(self, arg):
s
Rotates the frame
input arg is a scalar
output is a np mat with shape (3,3)
pre calculates cos and sine
c = np.cos(arg)
s = np.sin(arg)
return np.array ([1.0, 0, 0],
0 , c,—s],
0 , s, c|]],dtype=np.float32)
def rotY (self, arg):
s
Rotates the frame
input arg is a scalar
output is a np mat with shape (3,3)
s
pre calculates cos and sine
¢ = np.cos(arg)
s = np.sin(arg)
return np.array ([@ 0, s],
0, 1.0, 0],
[—s, 0, c]],dtype=np.float32)
def rotZ(self, arg):
s
Rotates the frame
input arg is a scalar
output is a np mat with shape (3,3)
s
pre calculates cos and sine
¢ = np.cos(arg)
s = np.sin(arg)
return np.array ([[e, —s, O],
[s, c, 0],
[0, 0, 1.0]],dtype=np.float32)
def rotXYZ(self, arg):
Rotates Rx*RyxRz (xyz)
input arg is numpy array with shape (3,1)
output is a np mat with shape (3,3)
s
Parses data
phi = arg[0, O]
theta = arg[l, 0]
psi = arg[2, 0]
return self.rotX(phi) @ self.rotY(theta) @ self.rotZ(psi)

def rotZYX(self, arg)

P

152

uint8 prob
solidworks ,

uint8 prob

between frames

import the types

93 Rotates Rzx*Ry*Rx (zyx)

94

95 input arg is numpy array with shape (3,1)
96 output is a np mat with shape (3,3)

97 T

98

99 # Parses data

100 phi = arg[0, 0]

101 theta = arg[l, 0]

102 psi = arg[2, 0]

103

104 return self.rotZ(psi) @Q self.rotY (theta) @ self.rotX (phi)
105

106
107 # Numba specs for droneGeom class
108 RotNumbaType = Rot.class_type.instance_type

109 droneGeomSpec = |
110 (& rotation ’, RotNumbaType) ,
111 (- tHeta_nm’, float32 e o28]) 5
112 (’tHeta_mn’, float32[:,:]
113 (’pos_n_nm’, float32[:,:]),
114 (’camera_tilt ', float32),
115 (’pos_b_bu’, float32[:,:]),
116 (’pos_b_bv’, float32[:,:]),
117 (’pos_b_bw’, float32[:,:]),
118 (’pos_b_bc’, float32[:,:]),
119 (’tHeta_bu’, float32[:,:]),
120 (’tHeta_bv’, float32[:,:]),
121 (’tHeta_bc’, float32[:,:]),
122 (’tHeta_bw’, float32[:,:]),
123 (’rotMat_bu’, float32 [: ,]) 9
(’rotMat_bv’, float32[:,:]),
(’rotMat_bc’, float32[:,:]),
(’rotMat_bw’, float32[:,:]),
(’rotMat_nm’, float32[:,:]),

]

@jitclass (droneGeomSpec)
class DroneGeometry (object):

def __init__ (self):
)
convention :
trans_a_bc is a vector resolved in a describing some measure from b to c

tHeta_ _bc is a vector of euler angle describing the relation from frame b to frame c

rotMat__bc is a DCM matrix describing the relation ship from frame b to frame c... i.e c(tHeta_bc)
gives a dcm from frame b to c

141

142 rotFun_xy returns a rot mat

143

144

145 Imu__main frame is denoted u

146 Imu__aux frame is denoted w

147 Imu__aux_ virtual frame is denoted v

148

149 Camera frame is denoted c

150

151 Level frame is denoted 1 (this frame is a frame with it origin in body, and z in global ned z
direction)

152

153 Body (base_link) frame is denoted b

154 s

155

156 # Creates instance of rotation class

157 self._ _rotation = Rot ()

158

159

160 4 World stuff A

161

162 # from global to map

163 self .tHeta_nm = np.array ([[0.0] ,[np.pi],[—np.pi/2]], dtype = np.float32)

164 self . tHeta mn = np.array ([[0.0] ,[np.pi],[—np.pi/2]], dtype = np.float32)

165 self .pos_ n_nm = np.array ([[0.0] ,[0.0] ,[0.0]], dtype = np.float32)

166

167 if simulation:

168 HHHHHHHH HH Drone stuff

169 ### offsets and misc

170

171 # Camera tilt is the angle the camera is tilted downwards, i.e. if pointing towards the sky
the tilt angle is negative

172 # Also remember to change in .sdf file ... not automated... :—(yet

173 self .camera_tilt = 15%np.pi/180

174

175

176 ### Geometric vectors

17 # body to imu main

178 self .pos_b_bu = np.array ([[0.0],[0.0] ,[—0.1]], dtype = np.float32)

79

180 # body to imu aux

181 self .pos_b_bv = np.array ([[0.1],[0.0] ,[0.0]], dtype = np.float32)

182 self .pos_b_bw = self.pos_b_bv

183

184 # body to camera

185 self .pos_b_bc = np.array ([[0.1] ,[0.0] ,[0.0]], dtype = np.float32)

186

187 ### Rotation "vector" in sequence zyx with elements [phi theta psi]

188 # body to imu main

189 self .tHeta_bu = np.array ([[0.0] ,[0.0] ,[0.0]], dtype = np.float32)

190

191 # body to imu aux (virtual frame)

192 self .tHeta_bv = np.array ([[0.0] ,[0.0] ,[0.0]], dtype = np.float32)

193

194

153

195 # Body to camera (assumes zed mini imu is in same orientation as camera frame)

196 self .tHeta _bc = np.array ([[np.pi/2.0—self.camera_tilt] ,[0.0],[np.pi/2]], dtype = np.float32)

197 self.tHeta_bw = self.tHeta_bc

198

199 else:

200 HHHHHHE A Drone stuff

201 #### offsets and misc

202

203 # Camera tilt is the angle the camera is tilted downwards, i.e. if pointing towards the sky
the tilt angle is negative

204 # Also remember to change in .sdf file ... not automated... :—(yet

205 self .camera_tilt = 20%np.pi/180

206

207

208 ### Geometric vectors

209 # body to imu main

210 self .pos_b_bu = np.array ([[—0.01],[0.0],[—0.08]], dtype = np.float32)

211

212 # body to imu aux

213 self .pos_b_bv = np.array ([[0.1] ,[0.0] ,[0.0]], dtype = np.float32)

214 self .pos_b_bw = self.pos_b_bv

215

216 # body to camera

217 self .pos_b_bc = np.array ([[0.135],[—0.03],[0.0]], dtype = np.float32)

218

219 ### Rotation "vector" in sequence zyx with elements [phi theta psi]

220 # body to imu main

221 self .tHeta_bu = np.array ([[0.0] ,[0.0] ,[0.0]], dtype = np.float32)

222

223 # body to imu aux (virtual frame)

224 self .tHeta_bv = np.array ([[0.0] ,[0.0] ,[0.0]], dtype = np.float32)

225

226

227 # Body to camera (assumes zed mini imu is in same orientation as camera frame)

228 self .tHeta_bc = np.array ([[0+np.pi],[0—self.camera_tilt] ,[0.0]], dtype = np.float32) # Added O
+ and 0 — to the first two rows because numba was acting up and this apparently fixed it.

self .tHeta_bw = self.tHeta_bc

Associated dcm

self .rotMat_bu = self.__rotation.rotZYX(self.tHeta_bu)
self .rotMat_bv = self.__rotation.rotZYX(self.tHeta_bv)
self .rotMat_bc = self.___rotation.rotZYX(self.tHeta_bc)

self .rotMat_bw = self.rotMat__bc

self .rotMat_nm = self.__rotation.rotZYX(self.tHeta_nm)

def rotFun_nb(self, tHeta nb):

Function to return dem from ned to body given euler angle vector

Input with np shape (3,1)

Parsing data

phi = tHeta_nb[0, 0]
theta = tHeta_nb[1, 0]
psi = tHeta_nb[2, 0]
return self.__ rotation.rotX(—phi) @ self.__ rotation.rotY(—theta) @ self.__ rotation.rotZ(—psi)

def rotFun_nl(self, tHeta_nb):
s
Function to return decm from ned to level given euler angle vector

Input with np shape (3,1)

P

Parsing data
psi = tHeta_nb[2, 0]
return self.__rotation.rotZ(—psi)
def rotFun_lb(self, tHeta_nb):
s
Function to return dcm from level to body given euler angle vector

Input with np shape (3,1)

P

Parsing data

phi = tHeta_nb[0, 0]
theta = tHeta_nb[1l, 0]
281 return self._ _ rotation.rotX(—phi) @ self.__ rotation.rotY(—theta)
282
283 def rotFun_bn(self, tHeta_nb):
284 T
285 Function to return decm from body to ned given euler angle vector
286
287 Input with np shape (3,1)
288 s
289
290 # Parsing data
291 phi = tHeta_nb[0, 0]
292 theta = tHeta_nb[1, 0]
293 psi = tHeta_nb[2, 0]
294
295
296 return self. _ rotation.rotZ(psi) @ self. _ rotation.rotY (theta) @ self. _ rotation.rotX (phi)
297

154

def rotFun_bl(self, tHeta_ nb):
Function to return dcm from body to level given euler angle vector

Input with np shape (3,1)

Parsing data

phi = tHeta_nb [0, 0]

theta = tHeta_nb[1, 0]

return self._ _ rotation.rotY (theta) @ self.__ rotation.rotX (phi)
def rateTransform nb(self, arg):

P

Input is a np mat of shape (3,1)
Output is a np mat of shape (3,3)

Transforms body rates to global rates

Parses data

phi = arg[0][0]
theta = arg[1][0]
Pre calculating cos, sin and tan

cx = np.cos(phi)
cy = np.cos(theta)
sx = np.sin (phi)
ty np.tan(theta)

Defines transform
t = np.array ([[1, sxxty, cxxty],
[0, ox, —sx],
[0, sx/cy, «c¢x/cy]], dtype = np.float32)

return t

def main () :

pass
346 if name = ’ main) g
347 main ()

B.2.3 Software configuration

4 #H# Simulation #H#H#

1
2
3
5 simulation = False

6

7 4 Use PX4 #4#
8 pX4Sensor = True

155

SO0~ U

RN NN NN NN S = e
[N RSN gy

29
30

B.3 idl_orientation_ pkg

B.3.1 Kalman filter node

from llvmlite import binding
binding .set__option("tmp", "—non—global—value—max—name—size=8192")

Ros imports

import rclpy

from rclpy.node import Node

from rclpy.qos import qos_profile sensor_data
from rclpy.time import Time

from std_msgs.msg import Bool
from nav__msgs.msg import Odometry

from geometry_ msgs.msg import Vector3, TwistWithCovarianceStamped, PoseWithCovarianceStamped

Configuration
from idl_botsy_pkg.softwareConfigutarion import x

Filter Specifications

from idl__botsy_pkg.filterConfig import FilterInitialStates
from idl_botsy_ pkg. filterConfig import FilterConfiguration
from idl_botsy_pkg. filterConfig import EkfRates

Selecting what Imu msg definition to use
if pX4Sensor:

from px4_msgs.msg import SensorCombined as Imu
else:

from sensor_msgs.msg import Imu as Imu

Selecting what filter tuning to load

if simulation == True:
if pX4Sensor == False:
from idl_botsy_ pkg.filterConfig import ImuGazeboMain as InsImuSensorConfig
else :

from idl_botsy_pkg.filterConfig import ImuPX4SimMain as InsImuSensorConfig
else :
from idl_botsy_pkg.filterConfig import ImuPX4RealMain as InsImuSensorConfig

Selecting wether to use JIT or not (DO NOT! try to run real time without JIT)
from idl_botsy pkg.filterConfig import kalmanFilterConfigurationJitCompile
from idl_botsy_pkg.filterConfig import kalmanFilterConfigurationSplit

if kalmanFilterConfigurationJitCompile = True:
if kalmanFilterConfigurationSplit == True:
from idl_orientation_ pkg.JITextendedKalmanFilterSplit import InsEkf
else:

from idl_orientation_pkg.JITextendedKalmanFilterCombined import InsEkf
from idl_orientation_pkg.JITextendedKalmanFilterParameters import InsParameters
from idl_botsy_ pkg.JITdroneConfiguration import DroneGeometry

ellEE 8

if kalmanFilterConfigurationSplit == True:

from idl__orientation_ pkg.extendedKalmanFilterSplit import InsEkf
else :

from idl__orientation_ pkg.extendedKalmanFilterCombined import InsEkf
from idl__orientation_pkg.extendedKalmanFilterParameters import InsParameters
from idl_botsy_ pkg.droneConfiguration import DroneGeometry

Math stuff
from scipy.spatial.transform import Rotation as R
import numpy as np

class EkfOrientationNode (Node) :

def ___init__ (self):

super () .___init__ (’ekfOrientationNode)
Setting up INS params

droneGeom = DroneGeometry ()
insMainParam = InsParameters ()
initStates = FilterInitialStates ()
insConfig = FilterConfiguration ()
imuSensor = InsImuSensorConfig ()

insRates = EkfRates ()

System state predict uncertainty matrix

insMainParam . qPosition = imuSensor.qPosition
insMainParam.qAngles = imuSensor.gAngles
insMainParam.qLinVel = imuSensor.qLinVel

insMainParam .qgAngVel imuSensor.qAngVel
insMainParam . qLinAcc imuSensor.qLinAcc
insMainParam .qAngAcc imuSensor.qAngAcc
insMainParam . qBiasAcc = imuSensor.gBiasAcc
insMainParam . qBiasGyro = imuSensor.qBiasGyro

insMainParam.qGravity imuSensor.qGravity

Measurement uncertainties covariance

insMainParam .rYaw = imuSensor.rYaw
insMainParam . rPos = imuSensor.rPos
insMainParam .rAcc = imuSensor.rAcc

156

insMainParam .rGyro
insMainParam.rLevel

imuSensor .rGyro
imuSensor.rLevel

Time delay for pose msg for filter to go offline
insMainParam .timeMaxDelayPose = imuSensor.timeMaxDelayPose

FilterConfig

insMainParam . deltalmuCum = insConfig.deltalmuCum
insMainParam.secondOrderPredict = insConfig.secondOrderPredict
insMainParam . fixedRatePredict = insConfig.fixedRatePredict

Acc related
insMainParam . levelingWindow = imuSensor.levelingWindow

Pos related
insMainParam . posThreshold = imuSensor.posThreshold
insMainParam .yawThreshold = imuSensor.yawThreshold

Geometry
insMainParam .rotMat_bs = imuSensor.rotMat_bs.astype(np.float32)

insMainParam.pos_b_bs = imuSensor.pos_b_bs.astype(np. float32)

Initial state

Geting states from global definition and populating kalman filter specific definition class
Pos related
insMainParam . initState [0:3] = initStates.pos.asNpArray ()
insMainParam . initState [3:6] = initStates.linVel.asNpArray ()
insMainParam . initState [6:9] = initStates.linAcc.asNpArray ()
insMainParam . initState [9:12] = initStates.accBias.asNpArray ()
Angle related
insMainParam . initState [12:15] = initStates.tHeta.asNpArray ()
insMainParam . initState [15:18] = initStates.angVel.asNpArray ()
insMainParam . initState [18:21] = initStates.omgBias.asNpArray ()
Initial cov
Pos related
insMainParam .initCovVec [0:3] = initStates.posCov.asNpArray ()
insMainParam . initCovVec [3:6] = initStates.linVelCov.asNpArray ()
insMainParam . initCovVec [6:9] = initStates.linAccCov.asNpArray ()
insMainParam .initCovVec[9:12] = initStates.accBiasCov.asNpArray ()
Angle related
insMainParam .initCovVec[12:15] = initStates.tHetaCov.asNpArray ()
insMainParam .initCovVec[15:18] = initStates.angVelCov.asNpArray ()
insMainParam.initCovVec[18:21] = initStates.omgBiasCov.asNpArray ()
Selecting position msg source for the kalman filter
if insConfig.gazeboGT:

posMsgSource = ’gazeboGT/’
else :

posMsgSource = ’'pf/’
Selecting imu topic to subscribe to
if pX4Sensor:

imuMsgSource = ’/SensorCombined PubSubTopic’

imuMsgQosProfile = qos_profile_ sensor__data
else:

imuMsgSource = ’sensor/imu_main’

imuMsgQosProfile = qos_profile sensor_data
Publish body rates
self. pubBodyVel = False
INS Main object
Predict rate
ekfInsPredictHz = insRates.ekfInsPredictHz
ekfInsPredictDt = 1/ekfIlnsPredictHz
Creating object
self. _insMain = InsEkf(ekfInsPredictDt)
self.get_logger().info(’Ins Object Created’)
Calls member function to run all member functions in classes to ge them jit compiled
self .get_logger () .info(’Ins Object Jit Compilation Started’)
self.__insMain. jitInit ()
self .get_logger () .info(’Ins Object Jit Compilation Complete’)
Sets filter parameters
self . insMain.setFilterParameters (insMainParam)
self .get_logger () .info(’Ins Parameters set’)
self .get__logger () .info(’Starting Node work!’)
Timers
EKF predict timer
self. _ ekfPredictTimer = self.create_ timer(ekfInsPredictDt ,

self. _ insMainPredictCallback)
Service routine timer for ins main
ekfServiceHz = insRates.ekfServiceHz
ekfServiceDt = 1.0/ ekfServiceHz
self.__ ekfServiceRoutineTimer = self.create_timer (ekfServiceDt ,
self.___insMainCheckTimers)

Publish timers
Velocity body publish timer
ekfVelBodyPubHz = insRates.ekfVelBodyPubHz
ekfVelBodyPubDt = 1.0/ekfVelBodyPubHz
if self.__ pubBodyVel == True:

self. _ ekfVelBodyPubTimer = self.create_timer(ekfVelBodyPubDt,

self. _ insPublishVelBodyTimerCallback)

157

NN NN NNNNN
GOt an Ot Ot Ot ot Ot At
NSO W

U W N

2
2
2
2
2

7
7
7
7

7
77
7
7
8

NNNNNNNNN
0 00 00 00 00
AW~ O©® o

b

Velocity level publish timer

ekfVelLevelPubHz = insRates.ekfVelLevelPubHz

ekfVelLevelPubDt = 1.0/ekfVelLevelPubHz

self. ekfVelLevelPubTimer = self.create timer(ekfVelLevelPubDt ,
self.__insPublishVelLevelTimerCallback)

Pose publish timer

ekfPosNedPubHz = insRates.ekfPosNedPubHz

ekfPosNedPubDt = 1.0/ekfPosNedPubHz

self . ekfPosNedPubTimer = self.create_timer (ekfPosNedPubDt ,
self.___insPublishPosNedTimerCallback)

Odom publish timer
ekfOdomNedPubHz = insRates.ekfOdomNedPubHz
ekfOdomNedPubDt = 1.0/ekfOdomNedPubHz
self . _ ekfPosNedPubTimer = self.create_timer (ekfOdomNedPubDt,
self. _ insPublishOdomNedTimerCallback)

SensorBias publish timer
ekfSensorBiasPubHz = insRates.ekfSensorBiasPubHz
ekfSensorBiasPubDt = 1.0/ekfSensorBiasPubHz
self. ekfAccBiasPubTimer = self.create_ timer(ekfSensorBiasPubDt ,
self. _insPublishSensorBiasTimerCallback)

Subscribers
Main imu subscriber

self. _ ekfIlmuSubscriber = self.create_subscription(Imu,
imuMsgSource ,
self.___insMainlmuMeasurementCallback ,

imuMsgQosProfile)

Pose subscription

self. ekfPoseSubscriber = self.create_ subscription (PoseWithCovarianceStamped ,
posMsgSource + ’'pose_ned’,
self.___insMainPoseMeasurementCallback ,
10)
Pose subscription
self.___insResetSubscriber = self.create_subscription (Bool,
‘ins /system /reset ’,
self.____insResetStatesCallback ,
10)

Publisher
Velocity body publisher

self. _ ekfVelBodyPublisher = self.create_publisher(TwistWithCovarianceStamped ,
’ekf/vel body’,
10)

Velocity level publisher

self. _ ekfVelLevelPublisher = self.create publisher(TwistWithCovarianceStamped ,
ekf/vel _level’,
10)

Position publisher

self. _ ekfPosNedPublisher = self.create_ publisher (PoseWithCovarianceStamped ,
ekf/pose_ned’,
10)

Position publisher

self.__ ekfOdomNedPublisher = self.create_publisher (Odometry,
’botsy /odom/body ’,

qos__profile_sensor__data)

Position publisher

self. __insStatePublisher = self.create_publisher (Bool ,
’ins /system /ekf online’,
10)
Accelerometer bias publisher
self. _insSensorBiasPublisher = self.create_publisher (TwistWithCovarianceStamped ,
ekf/sensor_bias’,
10)
Timer callback functions
Predict
def ____insMainPredictCallback(self):

Function to run predict on timer callback
s

Predicting state
self . __insMain. predict ()

Service routine for ins filter

def

__insMainCheckTimers(self):

Function to check elapse of timers in ins filter object
50

Checking timings in filter
timeOfCall = self.get_clock () .now().to_msg()

timeNsec = Time.from_ msg(timeOfCall).nanoseconds
timeSec = timeNsec*10%%(—9)
self . insMain.checkTiming (timeSec)

subscriber callbacks

Pose

def

_ _insMainPoseMeasurementCallback (self , msg):

Function to set insMain position from pf
50

158

308
309 # Gets position
pos_n_nb = msg.pose.pose.position

Gets Theta angle
theta = msg.pose.pose.orientation.z

Stitching together to a pose vector
pose = np.array ([[pos_n_nb.x] ,[pos_n_nb.y],[pos_n_nb.z] ,[theta]], dtype = np.float32)

Gets covariance
varFromMsg = msg. pose.covariance.reshape (6,6)

Formats to "filter from"

rPose = np.zeros((4,4), dtype = np.float32)
Position related

rPose [0:3, 0:3] = varFromMsg[0:3, 0:3]

Theta

rPose [3, 3] = varFromMsg[5, 5]

gets time

timeNsec = Time.from_msg(msg.header.stamp).nanoseconds

timeSec = timeNsec*10%%(—9)

self.__insMain.setPoseMeasurementWithCovariance (pose, rPose, timeSec)
main imu
if pX4Sensor:

def __insMainImuMeasurementCallback(self , msg):

s

Function to set insMain imu data form sensor imu

imuData, timeSec = self._ _ sensorCombinedMsg2VecAndTime (msg)
Sending to ins system
self._ _ insMain.setImuMeasurement (imuData, timeSec)

def 7ﬁinsMainImuMeasurementCallback(self , msg) :

Function to set insMain imu data form sensor imu

imuData, timeSec = self. imuMsg2vecAndTime (msg)
Sending to ins system
self. _ insMain.setImuMeasurement (imuData, timeSec)

main imu IMU mag unpacker function
def __imuMsg2vecAndTime(self , msg):

Function to unpack gazbo/ros Imu msg data to vector and time format
IR
Parsing data

Gets sensor data

acc = msg.linear acceleration

omg = msg.angular_velocity

gets time

timeOfCall = self.get_clock () .now().to_msg()
timeNsec = Time.from_msg(timeOfCall).nanoseconds
timeSec = timeNsec*10%x(—9)

Populating np array
imuData = np.array ([[acc.x] ,[acc.y],[acc.z] ,[omg.x],[omg.y],[omg.z]], dtype = np.float32)
return imuData, timeSec

def __ sensorCombinedMsg2VecAndTime(self , msg):

Function to unpack PX4 sensorCombined msg data to vector and time format
50

Parsing data

Gets sensor data

acc = msg.accelerometer_m_ s2
omg = msg.gyro_rad

Gets time

timeMsec = msg.timestamp
timeSec = timeMsec*10x%(—6)
imuData = np.array ([[acc[0]] ,[acc[1]] ,[acc[2]] ,[omg[0]] ,[omg[1]] ,[omg[2]]], dtype = np.float32)

return imuData, timeSec

397 # Ins state reset

398 def ___insResetStatesCallback(self , msg):

399 T

400 Function to reset states in kalman filter
401 T

402

403 if msg.data:

404 self.__insMain.resetFilter ()

405 self . get_logger () .info(Filter reset’)
406

407

408 ## Publish timer callbacks

409 # Vel body

410 def ___insPublishVelBodyTimerCallback(self):

411 T

412 Function to publish velocity msg on timer callback

159

413 T

Gets linear velocity and associated covariance
if self.__ insMain.getPosFilterOnlineState () :
vel_b_bn, rVel _b_bn self. _ insMain. getLinearVelocityBodyWithCovariance ()
else:
vel _b__bn np.zeros ((3,1),
rVel _b_bn = np.zeros ((3,3),

dtype
dtype

np. float32)
np. float32)

427

429
430

Gets linear velocity and associated covariance
omg b_bn, rOmg b _bn = self.___insMain.getAngularVelocityBodyWithCovariance ()
Creates vel and omg for msg

velForMsg b_bn
omgForMsg b_bn

Creates covariance
cov = np.zeros ((6,6),

cov[0:3, 0:3] = rVel b_bn
cov[3:6, 3:6] = rOmg b_bn
covVec =

Creating empty msg to

vector
dtype = np.float64)

= vel_b_bn.astype(np.float64)
= omg b_bn.astype(np.float64)

for msg format

cov.reshape(36).astype(np.float64)

populate

msg = TwistWithCovarianceStamped ()

Populating msg

msg. header.stamp = self.get_clock () .now() .to_msg()
msg. header . frame_id = ’body’
msg.twist.covariance = covVec
msg. twist.twist.linear.x = velForMsg_b_bn[0,0]
msg. twist.twist.linear.y = velForMsg_b_bn[1,0]
msg. twist.twist.linear.z = velForMsg_b_bn[2,0]
msg. twist.twist.angular.x = omgForMsg b_bn[0,0]
msg. twist.twist.angular.y = omgForMsg_b_bn[1,0]
msg. twist.twist.angular.z = omgForMsg_b_bn[2,0]
Publishes msg
self.__ ekfVelBodyPublisher. publish (msg)

Vel level

def ___insPublishVelLevelTimerCallback(self):

Function to publish velocity msg on timer callback

’

Gets linear velocity and associated covariance
if self.__insMain.getPosFilterOnlineState () :
vel 1 _bn, rVel 1 _bn = self.__ insMain.getLinearVelocityLevelWithCovariance ()
else:
vel 1 bn = np.zeros((3,1), dtype = np.float32)
rVel 1 bn = np.zeros((3,3), dtype = np.float32)
Gets linear velocity and associated covariance
omg_l _bn, rOmg_ 1 bn = self.__ insMain.getAngularVelocityLevelWithCovariance ()
Creates vel and omg for msg

velForMsg 1 bn
omgForMsg_1_bn

vel _1_bn.astype(np.float64)
omg 1 bn.astype(np.float64)

Creates covariance vector for msg format
cov = np.zeros ((6,6), dtype = np.float64)
cov[0:3, 0:3] = rVel 1 bn
cov[3:6, 3:6] = rOmg_1 bn

covVec = cov.reshape(36).astype(np.float64)

Creating empty msg to populate
msg = TwistWithCovarianceStamped ()

Populating msg

msg. header.stamp = self.get_ clock().now().to_msg()
msg. header . frame_id = ’level’

msg.twist.covariance = covVec
msg.twist.twist.linear.x = velForMsg 1 bn[0,0]
msg.twist.twist.linear.y = velForMsg 1 bn[1,0]
msg. twist.twist.linear.z = velForMsg 1 bn[2,0]
msg. twist.twist.angular.x = omgForMsg_ 1 bn[0,0]
msg. twist . twist.angular.y = omgForMsg_ 1 bn[1,0]
msg. twist.twist.angular.z = omgForMsg_ 1 bn[2,0]

498 # Publishes msg

499 self.__ ekfVelLevelPublisher.publish (msg)

500

501 # Pose ned

502 def ___insPublishPosNedTimerCallback (self):

503 T

504 Function to publish velocity msg on timer callback

505 T

506

507 # Gets position and associated covariance

508 if self.__ insMain.getPosFilterOnlineState () :

509 pos_n_bn, rPos_n_bn = self.__ insMain.getPositionWithCovariance ()
510 else s

511 pos_n_bn = np.zeros((3,1), dtype = np.float32)

512 rPos_n_bn = np.zeros ((3,3), dtype = np.float32)

513

514 # Gets orientation and associated covariance

515 tHeta_nb, rTHeta _nb = self.__ insMain.getOrientationWithCovariance ()
516

517 # Creates vel and omg for msg

160

4
1
49
0

ut
ot

ut
at

ut
at

ot ¢
v €

wt
at
Y U W N =

o
o

oo
o
o3

o
-~

o
ar

o
RO~ O

[Sd

ot Ot
2P0 %

@
& o

ut

ut

GOt o Ot ot Ot
o © ™

o

o

TS W N =

9]

ot

ot ot
o

ot
NS BN RS SR SRS IS

> © 00

SRR
© ®
N = O

posForMsg n _bn = pos_n_bn.astype(np.float64)
tHetaForMsg nb = tHeta nb.astype(np.float64)

Creates covariance vector for msg format
cov = np.zeros ((6,6), dtype = np.float64)
cov[0:3, 0:3] = rPos_n_bn

cov[3:6, 3:6] = rTHeta_nb

covVec = cov.reshape(36).astype(np.float64)

Creating empty msg to populate
msg = PoseWithCovarianceStamped ()

Populating msg

msg. header .stamp = self.get_clock () .now() .to_msg()
msg. header . frame__id = ’ned’
msg.pose.covariance = covVec

msg. pose.pose. position.x = posForMsg n_ bn[0,0]
msg. pose . pose.position.y = posForMsg_n_bn[1,0]
msg. pose.pose.position.z = posForMsg _n_bn[2,0]

msg.pose.pose.orientation .x
msg. pose.pose.orientation .y
msg. pose.pose.orientation .z

tHetaForMsg_nb [0 ,0]
tHetaForMsg_nb[1,0]
tHetaForMsg_nb[2,0]

if self.__ insMain.getPosFilterOnlineState () :
msg. pose . pose.orientation.w = —2.0

else s
msg. pose . pose.orientation.w = —3.0

Publishes msg
self. _ ekfPosNedPublisher. publish (msg)

Odom ned

_insPublishOdomNedTimerCallback (self) :

Function to publish location to odom msg to tf listener node
IR

Cerates a msg and populates
msg = Odometry ()

msg. header.stamp = self.get_clock () .now() .to_msg()

Populating Pose part of msg
Gets position and associated covariance

if self.__ insMain.getPosFilterOnlineState () :

pos_n_bn, rPos_n _bn = self._ _ insMain.getPositionWithCovariance ()
else :

pos_n_bn = np.zeros ((3,1 dtype = np.float32)

3,1),
rPos_n_bn = np.zeros ((3,3), dtype = np.float32)

Gets orientation and associated covariance

tHeta_nb, rTHeta nb = self._ _ insMain.getOrientationWithCovariance ()
tHeta_nb = np.array ([tHeta_nb[2,0], tHeta _nb[1,0], tHeta _nb[0,0]])
rotObj = R.from__euler (’ZYX’, tHeta_nb.reshape(3), degrees= False)
quat_nb = rotObj.as_quat ()

Creates vel and omg for msg
posForMsg n_bn = pos_n_bn.astype(np.float64)

Creates covariance vector for msg format
cov = np.zeros ((6,6), dtype = np.float64)
cov[0:3, 0:3] = rPos_n_bn

cov[3:6, 3:6] = rTHeta_nb

covVec = cov.reshape(36).astype(np.float64)

msg.pose.covariance = covVec

msg. pose.pose. position.x = posForMsg n_ bn[0,0]
msg. pose . pose. position.y = posForMsg_n_bn[1,0]
msg. pose . pose.position.z = posForMsg n_bn[2,0]

msg.pose.pose.orientation .

x quat_nb [0]
msg. pose.pose.orientation .y

z

w

quat_nb[1]
quat_nb [2]
= quat_nb[3]

msg. pose.pose.orientation .
msg. pose.pose.orientation .

s
Populating Twist Part of msg

Gets linear velocity and associated covariance

vel _b_bn, rVel b _bn = self._ _ insMain.getLinearVelocityBodyWithCovariance ()

Gets linear velocity and associated covariance
omg_b_bn, rOmg b _bn = self. insMain. getAngularVelocityBodyWithCovariance ()

Creates vel and omg for msg
velForMsg b _bn = vel _b_bn.astype(np.float64)
omgForMsg b _bn = omg b _bn.astype(np.float64)

Creates covariance vector for msg format
cov = np.zeros ((6,6), dtype = np.float64)

cov[0:3, 0:3] = rVel _b_bn
cov[3:6, 3:6] = rOmg _b_bn
covVec = cov.reshape(36).astype(np.float64)

Populating msg

msg.twist.covariance = covVec

msg. twist . twist.linear.x = velForMsg _b_bn[0,0]
msg. twist.twist.linear.y = velForMsg_b_bn[1,0]
msg. twist.twist.linear.z = velForMsg_b_bn[2,0]

msg. twist.twist.angular.x = omgForMsg b_bn[0,0]

161

51
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

677

msg. twist.twist.angular.y = omgForMsg b_bn[1l,0]
msg. twist.twist.angular.z = omgForMsg b _bn[2,0]

Publishes msg
self. _ ekfOdomNedPublisher. publish (msg)

Acc bias
def ___insPublishSensorBiasTimerCallback(self):

Function to publish acc bias
s

Gets linear velocity and associated covariance
if self._ _insMain.getPosFilterOnlineState () :

accBias, rAccBias = self.__ insMain.getAccBiasWithCovariance ()
else:

accBias = np.zeros((3,1), dtype = np.float32)

rAccBias = np.zeros ((3,3), dtype = np.float32)

Gets linear velocity and associated covariance
gyroBias, rGyroBias = self.__ insMain.getGyroBiasWithCovariance ()

Creates vel and omg for msg
accBiasMsg = accBias.astype(np.float64)
gyroBiasMsg = gyroBias.astype(np.float64)

Creates covariance vector for msg format
cov = np.zeros ((6,6), dtype = np.float64)
cov[0:3, 0:3] = rAccBias

cov[3:6, 3:6] = rGyroBias

covVec = cov.reshape(36).astype(np.float64)

Creating empty msg to populate
msg = TwistWithCovarianceStamped ()

Populating msg

msg. header.stamp = self.get_clock().now().to_msg()
msg. header . frame_id = ’bias’

msg.twist.covariance = covVec
msg.twist.twist.linear.x = accBiasMsg[0,0]
msg.twist.twist.linear.y = accBiasMsg[1,0]

msg. twist . twist.linear .z = accBiasMsg[2,0]

msg. twist . twist.angular.x = gyroBiasMsg[0,0]
msg. twist.twist.angular.y = gyroBiasMsg[1,0]
msg. twist.twist.angular.z = gyroBiasMsg[2,0]

Publishing msg
self. __insSensorBiasPublisher.publish (msg)

678 def main(args=None):

679
680
681
682

rclpy .init (args=args)

Creates INS node
insSystem = EkfOrientationNode ()

Spins node to keep it alive
rclpy . spin (insSystem)

Destroys node on shutdown
insSystem . destroy_node ()
rclpy .shutdown ()

name, = main

main ()

).

162

B.3.2 Kalman filter object

NI

import numpy as np

7 # Import Drone config class
from idl_botsy_ pkg.JITdroneConfiguration import DroneGeometry
from idl__orientation_ pkg.JITextendedKalmanFilterParameters import InsParameters

import Numba stuff
from numba.experimental import jitclass
from numba import int32, float32, float64 , boolean, jit, types, typed, typeof # import the types

droneGeomNumbaType = DroneGeometry.class__type.instance__type
InsEkfSpecs = |
(’__nStates’, int32),
(’online’, boolean),
(’__secondOrderPredict’, boolean),
(’__fixedPredictRate’, boolean),
(’__fixedPredictRateDt’, float32),
(’__statelnitialization’, boolean),
(’__posThreshold’, float32),

—~

__accHighThreshold’, float32),
’____gravity’, float32),

' gVec’, float32[:,:]),
___gravityState’, boolean),

> _lowThreshold’, float32),

> __highThreshold’, float32),
__yawThreshold’, float32),

_ x’, float32[:,:]),

’__xInit’, float32[:,:]),
' a’, float32[:,:]),

' w’, float32[:,:]),

'’ aCum’, float32[:,:]),
> wCum’, float32[:,:]),
’____accMeasure_e’, float32[:,:]),
>’ xLast’, float32[:,:]),
> _aLast’, float32[:,:]),
'’ wLast’, float32[:,:]),
' P’, float32[:,: s

> PInit’, float32[:,:]),
. Q’, float32[:,:]),

> R pos’, float32[:,:]),

__R yaw’, float32),
___R_leveling’, float32),
__hPosition’, float32 [:,:]),

A AN A N A AN N N AN S S S S

>
’__hYaw’, float32[:,:]),
> _hLeveling’, float32[:,:]),
! ’_ droneGeom’, droneGeomNumbaType) ,
52 ’__rotMat_bs’, float32[:,:]),
53 ’__pos_b_bs’, float32[:,:]),
54 ’__rotMat_bn’, float32[:,:]),
55 > t_nb’, float32[:,:]),
56 >’ __timeMaxDiffPose’, float64),
57 ’____timeNewPoseUpdate’, float64),
58 >’ timeDiffPose’, float64),
59 ’___timeLastImuMsg’, float64),
60 ’___maxDt’, float64),
61 > _imuPredictDt’, float32),
62 > deltalImuCounter’, int32),
63 > deltalmuDt’, float32),
64 > deltaImuCum’, boolean),
65 > filterIsNotReSet’, boolean),
66]
67
68

70 # Holistic INS ekf class
1 @jitclass (InsEkfSpecs)

7

72 class InsEkf(object):

73

74 def __init__ (self, dt):

75

76 # Kalman filter

77 ## System Number of states

78 self._ _ nStates = 18

79

80 ## Filter settings

81

82 # Filter state

83 self.online = True

84

85 # Second order propagation

86 self.___secondOrderPredict = True

87

88 # Fixed predict rate

89 self.__ fixedPredictRate = True

90 self. _ fixedPredictRateDt = np.float32 (dt)

91

92 # Initialization of filter

93 self._ _ statelnitialization = 0

94

95 # Position and ang threshold

96 self.__ posThreshold = 1.0

97

98 self. _ accHighThreshold = 0.01 # percent of g

99 self. _ gravity = np.float (9.81)

100 self . gVec = np.array ([[np.float32(0.0)],[np.float32(0.0)],[—self.___ gravity]], dtype = np.float32
)

101 self.___ gravityState = False

163

103 self. _lowThreshold = self. _ gravity*(l—self. _ accHighThreshold)
104 self. _ highThreshold = self.__ gravityx(l+self._ _ accHighThreshold)
105
106 self.____yawThreshold = 1.57
107
108 ## System state vector
109 # [0, 1, 2, 3, 4, 5, 6, 7, s, 9, 10, 11, 12, 13, 14, 15, 16, 17]
110 # [x, v, z, u, v, w, abx, aby, abz, phi, theta, psi, wbx, wby, wbz, gx, 8y, 8z]
111 self. x = np.zeros((self.___nStates,1), dtype=np.float32)
112 # Initializes gravity vector
113 self . x[17:0] = —self.___ gravity
114 self._ _ xInit = self.__x
115
116 # Acceleration
117 self. a = np.zeros((3,1), dtype = np.float32)
118 self. w = np.zeros((3,1), dtype = np.float32)
119 self. aCum = np.zeros((3,1), dtype = np.float32)
120 self. wCum = np.zeros((3,1), dtype = np.float32)
121
122 # Acce measurement
123 self.___accMeasure_e = np.array ([[np.float32(0.0)],[np.float32(0.0)],[—self.___ gravity]], dtype = np
.float32)
variables for second order predict
self._ xLast = self._ x
self.__alLast = self.__ a
self. wLast = self. W

Predict and state covariance

System state covariance matrix

self. P = np.eye(self._ _nStates, dtype=np.float32)
self.__ PInit = self.__P

System state predict uncertainty matrix
self. Q = np.eye(self. _nStates, dtype=np.float32)

Measurement uncertainties covariance

Matrixes

self._R_pos np.eye (3, dtype=np.float32)
self. R yaw 1.0

self. R _leveling = 1.0

Measure functions
I = np.eye(3, dtype = np.float32)

self. __hPosition = np.zeros ((3,self.__ nStates), dtype = np.float32)
self.____hPosition[0:3, 0:3] =1
self. hYaw = np.zeros((1,self._ _ nStates), dtype = np.float32)
self. hYaw[0,11] = 1.0
self. _hLeveling = np.zeros((2,self.__ nStates), dtype = np.float32)
154 self.__ hLeveling [0,9] = 1.0
155 self.___hLeveling[1,10] = 1.0
156
157
158 # Geometry data
159 self . droneGeom = DroneGeometry ()
160 self.__rotMat_bs = np.eye (3, dtype = np.float32)
161 self._ pos_b_bs = np.zeros ((3,1), dtype = np.float32)
162
163 # Transform from body to ned, this is computed and written to self each predict step
164 self.__rotMat_bn = np.eye (3, dtype = np.float32)
165 self. _t nb = np.zeros((3,3), dtype = np.float32)
166
167 # Time stuff
168 self._ _ timeMaxDiffPose = 10.0
169 self._ _ timeNewPoseUpdate = 0.0
170 self._ __timeDiffPose = self.___ timeMaxDiffPose +2.0
171
172 self.___ timeLastImuMsg = 0.0
17: self. maxDt = 1.0/50.0
174
175 self . imuPredictDt = np.float32(self.__ maxDt)
176
177 # Delta imu related variables
178 self._ _ deltalmuCounter = 0
179 self.__ deltalmuDt = 0.001
180 self._ deltalmuCum = False
181
182 # Bool
183 self.__ filterIsNotReSet = True
184
185 print (’INS combined alive!’)
186
187 def predict(self):
188 T
189 If fixed rate predict is active then the predict function is called here
190 T
191 if self.__ fixedPredictRate == True:
192 self.__ predictImuDataParsing ()
193
194 def checkTiming(self , currentTime):
195 T
196 Function to routinely call to check if timers has expired
197 T
198
199 # Finds delta time
200 self. _ timeDiffPose = currentTime — self._ _ timeNewPoseUpdate
201
202 # If timer expires, then filter is set offline
203 if self.__ timeDiffPose > self.__ timeMaxDiffPose:
204 self.online = False
205 # Reseting filter once

164

if self.___ filterIsNotReSet == True:
self.__ filterIsNotReSet = False
self . resetFilter (keepAngles=True)

Printing that filter is offline
print ("Warn: orientation node: pos filter offline)
print (’timer expired by:’)
print (self.___ timeDiffPose)
elge s
self.online = True
Reseting filter once
if self.___ filterIsNotReSet =—— False:
self.__ filterIsNotReSet = True
print (’Status: orientation node: pos filter online!’)
Predict functions
def __ predict(self, dt):

Used to predict the next filter state

Input dt is a scalar

Calculates non linear therms and stores them to selfs
tHeta_nb = self._ x[9:12]

self . rotMat_bn = self.__ droneGeom.rotFun_bn (tHeta_nb)
self._t nb = self._ droneGeom.rateTransform_nb (tHeta_nb)
Calculates curret linearization of the state transition equation
F = self.__stateTransitionLin(dt, strangeTherms=False)
B = self.__ controllnput(dt)
W = self.__ covariancePredictWeight (dt)
Predicts state
If second order, can be used in cases where compute power is limited, ie. predict must be run
more seldomly
242 if self.____secondOrderPredict == True:
243 # Calculates propagation step and control input
244 x = np.float32 (1.5)*self. x — np.float32(0.5)*self._ xLast
245 a = np.float32(1.5)xself.__a — np.float32(0.5)*self.__ aLast
246 w = np.float32 (1.5)*self. _w — np.float32(0.5)*self.__ wLast
Calculates correct state propagation matrix for second order step
y f =F — np.eye(self.__nStates, dtype = np.float32)
251 # Control input
252 u = np.zeros ((6,1), dtype = np.float32)
253 ul0:3] = a
254 uf[3:6] = w
255
256 # Propagates
257 self. x = self. x4+ f @x + B @ u
258
259 # Sets last values to current values
260 self._ _xLast = self.__x
261 self.__alLast = self.__ a
262 self . wLast = self.__w
263 elge s
264 # Control input
265 u = np.zeros ((6,1), dtype = np.float32)
266 ul0:3] = self._ _a
267 u[3:6] = self. _w
268
269 # Std filter implementation
270 self. x=F @ self._ _x + B @ u
271
272 # Predicts state covariance matrix
273 self. P =F @ self. PQF.T+Wa@Q self. Q@W.T
74
275 # Wrapping euler angles
276 self. _ wrapEulerAngles ()
77
def __stateTransitionLin (self, dt, strangeTherms = False):
Function to return state transition matrix
Returns
np shape (18, 18)
>
Identity matrix
I = np.eye(3, dtype = np.float32)
State transition
Setsup state transition matrix
F = np.eye(self.__nStates, dtype=np.float32)
Position related
if self.online:
Pos related
Integration of lin wvel
F[0:3, 3:6] = Ixdt
Vel related
Subtraction og bias
F[3:6, 6:9] = —self.__ rotMat_bnx*dt
Strange therm
if strangeTherms:
Gets data for comp of strange therm
tHeta = self._ x[9:12]
am = self.__a
ab = self. x[6:9]
F[3:6,9:12] = self._ _ velThetaStateTransTherm (tHeta , am, ab)xdt
Subtraction of grav acc (specific force from gravity , tho gravity is not a force, but that

165

386
387
388
389
390
391
392

393

construct is okay for this filter)
if self._ _ gravityState == True:
F[3:6, 15:18] = —Ixdt

Angle related
Subtraction of omg bias
F[9:12, 12:15] = —self.__ t nbxdt

When filter is disabled the yaw is kept constant
if self.online == False:
F[11,12:15] = np.zeros((1,3), dtype = np.float32)

if strangeTherms:
Gets data for comp of strange therm
tHeta = self. x[9:12]

wm = self. _w
wb = self. x[12:15]
F[9:12, 9:12] = I + self.__ thetaThetaStateTransTherms(tHeta, wm, wb)x*dt

return F

def __ velThetaStateTransTherm (self , tHeta, am, ab):

Function to compute strange therm to do with velocity update

Parsing data
phi = tHeta [0,0]
theta = tHeta[1,0]
psi = tHeta[2,0]

amx = am [0 ,0]
amy = am/[1,0]
amz = am([2,0]
abx = ab[0,0]
aby = ab[1,0]
abz = ab[2,0]

#Pre computes

sx = np.sin (phi)
cx = np.cos(phi)
sy = np.sin(theta)

cy = np.cos(theta)

sz = np.sin(psi)

cz = np.cos(psi)

mat = np.array ([[—((sxxsz 4 cx*czxsy)=*(aby — amy) + (cx*sz — cz*sxx*sy)x*(abz — amz)), —(cxxcyx*
czx(abz — amz) — cz*syx(abx — amx) 4 cy*czxsx*(aby — amy)), ((cxxcz + sx*syxsz)x*(aby — amy) — (czx*sx
— cxx*syx*sz)*(abz — amz) + cyx*szx*(abx — amx))],

[((czxsx — cxx*syxsz)x*(aby — amy) + (cx*cz + sx*syx*sz)x*(abz — amz)), —(cxxcyx*
sz*x(abz — amz) — syxszx*(abx — amx) + cyxsxxszx*(aby — amy)), —((sx*sz + cx*czx*sy)x*(abz — amz) — (cx*sz
— czx*sxx*sy)*(aby — amy) + cyxczx*x(abx — amx))],

—(cx*cy*(aby — amy) — cy*sx*(abz — amz)),

(cyx(abx — amx) + cxxsyx*(abz — amz) + sxxsy=*(aby — amy)),
np. float32(0.0)]], dtype = np.float32)

return mat

def __thetaThetaStateTransTherms(self , tHeta, wm, wb):
Function to compute strange therm to do with tHeta update
Parsing data
phi = tHeta [0 ,0]

theta = tHeta[1,0]
psi = tHeta[2,0]

wmx = wm[0,0]
wmy = wm[1,0]
wmz = wm[2,0]
pb = wb[0,0]
gqb = wb[1,0]
rb = wb[2,0]

#Pre computes

sx = np.sin (phi)
cx = np.cos(phi)
sy = np.sin(theta)
cy = np.cos(theta)
ty = np.tan(theta)
sz = np.sin(psi)
cz = np.cos(psi)

Guards agains divide by zero
if np.abs(cy) < 0.01:
cy = 0.0l*np.sign(cy)

mat = np.array ([[—(cx*ty*(gb — wmy) — sx*tys*(rb — wmz)), —(cx*(ty**2 4+ 1)x(rb — wmz) + sx
*(ty**2 + 1)*(gb — wmy)), 0],
I (cx*(rb — wmz) + sx*(gb — wmy)) ,
o, o],
—((cx*(gb — wmy))/cy — (sx*(rb — wmz))/cy), —((cx*sy*(rb — wmz))/cy**2 + (
sx*sy*(gb — wmy))/cy**2), 0]], dtype = np.float32)

return mat
def __ controllnput(self , dt):

Function to return control input matrix

Returns
np shape (18, 6)

166

406 # Predefining B matrix

407 B = np.zeros((self._ _nStates,6), dtype = np.float32)
408

409 # Populates B matrix

410 # Acc related

411 B[3:6,0:3] = self. rotMat__bnx*dt

412 # Omg related

413 B[9:12,3:6] = self. t_nbxdt

414

415 if self.online == False:

416 B[11,3:6] = np.zeros((1,3), dtype = np.float32)
417

418 return B

419

420 def ___covariancePredictWeight (self , dt):

421 s

422 Function to return covariance weight update
423

424 return W np shape (18,18)

495 s

Creates eye mat

W = np.eye(self.__nStates, dtype = np.float32)
Sets nonlinear therm

W[3:6 ,3:6] = self.__ rotMat_bn

W[9:12,9:12] = self.__t nb

Weights by dt
W = Wxkdt

return W

def ___wrapEulerAngles(self):
Function to wrap states
phi is wrapped to [—pi, pi)
theta is wrapped to [—pi, pi)
psi is wrapped to [0, 2%pi)

PR

Setting to state vector

Phi

self._ x[0, 0] = self.__ _modPiToPi(self.__x[0,0])
Theta

self. x[1, 0] = self.___modPiToPi(self.__x[1,0])
Psi

self. x[2, 0] = np.mod(self.__x[2,0], 2%np.pi)

Euler angle specifics

def ___wrapEulerAngles(self):
Function to wrap states
phi is wrapped to [—pi, pi)
theta is wrapped to [—pi, pi)
psi is wrapped to [0, 2xpi)

DI

Setting to state vector

Phi

self._ x[9, 0] = self.__ _modPiToPi(self.__x[9,0])
Theta

self._ x[10, 0] = self.__ modPiToPi(self.__x[10,0])
Psi

self. x[11, 0] = np.mod(self._ _x[11,0], 2xnp.pi)

def _ modPiToPi(self , ang):

D)

Function to map a variable to [—pi to pi)
475 TODO: Needs a way to handle cases where the angle is grossly wrong
476 T
477
478 # Predefining wvariable
479 angWrapped = 0.0
480
481 # Wrapping
482 if ang >= np.pi:
483 angWrapped = ang—2*np. pi
484 elif ang < —np.pi:
485 angWrapped = 2%np. pitang
486 else :
487 angWrapped = ang
488
489 return angWrapped
490
491 # Innovation functions
492 def ___innovationLin(self, xMeasure, H):
493 T
494 Finds the error between the measurement and the predicted value, given a linear measurement
function
495
496 Input is X_measure np shape (m,1)
497 H np shape (m,nStates)
498
499 Output is Y np shape (m,1)
500 s
501
502 return xMeasure — H @ self.__x
503
504 def ____innovationYaw (self , yawMeasure, yawPredict):
505 Y
506 Function to return "geodesic" innovation on 0 to 2pi maping
507
508 Takes two scalars as input and returns np shape (1,1)

167

oot Gt

ot

9
N o

©

9

o
GORE R BRARDRDERDD®RO®O®
ST Rt O) C

S
S

[SIEcNe]

wt

Predefines error
e = np.zeros((1,1), dtype = np.float32)

wraps measurement
yawMeasure = np.remainder (yawMeasure, 2*np.pi)

Computes the two possible solutions

el = yawMeasure — yawPredict
if el < 0:

e2 = 2%np.pi + el
else:

e2 = el — 2%np.pi

Finds the shortest path
if np.abs(el) < np.abs(e2):
e[0][0] = el
else:
e[0][0] = e2

return e
_ _innovationPhiTheta (self ,angMeasure, angPredict):
)

Function to return "geodesic" innovation on —pi to pi maping

Takes two scalars as input and returns scalar
s

Wraps measurement

angMeasure = self. modPiToPi(angMeasure)
Predefines error
e = 0.0
el = angMeasure — angPredict
if el < O:
e2 = 2xnp.pi + el
elge s

e2 = el — 2x*np.pi

Finds the shortest path
if np.abs(el) < np.abs(e2):
e = el
else :
e = e2

return e

Vanilla kf functions

def

___computeKalman(self ,H,R):

5y

Function to compute kalman gain

Input H np shape (n,m)
R np shape (n,n)

Output K np shape (m,m)
s

S =H@ self. P@H.T+ R

return self. P @Q@H.T @Q np.linalg.inv(S)
____update(self K,y ,H):

Function to update estimates

Input K np shape (m,n)
y np shape (n,1)
H np shape (m,n)

Updates estimate
self . x = self. x4+ KaQy

self . P = (np.eye(self.__ nStates, dtype=np.float32) — K @ H) @Q self.

Position measuremen functions

____posMeasurement (self , posMeasure, R):

D)

Function to set pose measurement

Input pose np shape (3,1) on form [x, y, z]’

DI

Gets H matrices and populates a bigger matrix
H = self.___ hPosition

Kalman routine

Innovation
y = self.____innovationLin (posMeasure, H)

Kalman gain

K = self. computeKalman (H,R)
Updates
self. _update(K,y,H)

____posSet(self, posMeasure):

168

P

614 Function to set the position directly , this is to be used when there is a "large

solution

jump in the pf

615

616 input posMeasure np shape (3,1)

617 T

618

619 # Sets position to measured position and kills velocity

620 self._ x[0:3] = posMeasure

621 self . x[3:6] = np.zeros((3,1), dtype = np.float32)

622 self. x[6:9] = np.zeros((3,1), dtype = np.float32)

623 # Sets cov to init cov

624 self._ P[0:9] = self.__ PInit[0:9]

625

626 def ___posEvaluation(self, posMeasure, R):

627 T

628 Function to decide if position is to be passed as a measurement or a direct replacement of the
position in the filter

629

630 If position from pf filter jumps the prediction of the pf filter is passed directly to the states
to prevent a false velocity spike

631 This velocity spike will then move the particles in a wrong direction, further worsening the
problem

Input pose np shape (3,1) on form [x y z]’

R np shape (3,3)

29

Gets predicted value
posPredict = self._ x[0:3]

calculates norm predicted to "measurement"

norm = np.linalg .norm(posMeasure—posPredict)
if norm <= self.__ posThreshold:

self . posMeasurement (posMeasure, R)
else:

self. _ posSet(posMeasure)

print (’PoseSet ’)

Yaw measurement stuff
def yawMeasurement (self , yawMeasure, R):
R

Function to do kalman routine on imu data
Input Yaw np shape (1,1)

R scalar
s s

Kalman routine
H matrix
H = self.__ hYaw

Defines yaw as np array with shape (1,1)
computing innovation
yawPredict = self._ x[11,0]

y = self._ _ innovationYaw (yawMeasure, yawPredict)

computes the Kalman gain

K = self.__ computeKalman (H,R)
Updates states
self . update(K,y,H)
def ___yawSet(self , yawMeasure) :
Function to set the yaw directly , this is to be used when there is a "large" jump in the pf
solution
677
678 input yawMeasure np shape (3,1)
679 T
680
681 # Sets yaw to measured yaw
682 self . x[11,0] = yawMeasure
683 self. x[14,0] = np.float32(0.0)
684
685 # Sets cov to init cov
686 self. P[11,11] = self.__ PInit[11,11]
687 self. P[14,14] = self.__ Plnit[14,14]
688
689 def ___yawEvaluation(self , yawMeasure, R):
690 v
691 Function to decide if position is to be passed as a measurement or a direct replacement of the
position in the filter
692
693 If position from pf filter jumps the prediction of the pf filter is passed directly to the states
to prevent a false velocity spike
694 This velocity spike will then move the particles in a wrong direction, further worsening the
problem
695
696 Input pose np shape (3,1) on form [x y z]’
697 R np shape (3,3)
698 T
699
700 # Gets predicted value
701 vawPredict = self._ x[11,0]
702
703 # calculates norm predicted to "measurement"
704 norm = np.abs(self.__ innovationYaw (yawMeasure, yawPredict))
705
706 if norm <= self.__ yawThreshold:
707 self. __yawMeasurement (yawMeasure, R)
708 else :
709 self._ yawSet(yawMeasure)
710 print (’YawSet)

169

Leveling function
def ___angleLeveling(self, acc, subBias = False):

Function to do leveling based on imu acceleration data

Input acc np shape (3,1)
s

Subtracting bias

if subBias == True:

accLeveling = acc — self._ x[6:9]
else :

accLeveling = acc

Calculating phi and theta based on atan2

phi

phiMeasure = np.arctan2(—accLeveling[1,0],—accLeveling[2,0])
theta

den = np.sqrt(accLeveling[1,0]*x%x2 4+ accLeveling[2,0]*x%2)
thetaMeasure = np.arctan2 (accLeveling[0,0], den)

gets predict value
phiPredict = self._ x[9,0]
thetaPredict = self._ x[10,0]

Covariance, dynamic tuning of filter
Finds deviation from G

devFromG = np.abs(np.linalg .norm(accLeveling) — self.___ gravity)
Calculates the absolute covariance
rScalar = self.___R_leveling*(1.0 + 5000.0%(devFromG + devFromGxx2))

R = rScalar*np.eye (2, dtype = np.float32)
R = R.astype(np.float32)

Kalman stuff
Measurement H matrix
H = self.____hLeveling

7"

751 # Innovation

752 y = np.zeros ((2,1), dtype = np.float32)

753 y[0,0] = self.___innovationPhiTheta(phiMeasure, phiPredict)
754 y[1,0] = self.___innovationPhiTheta(thetaMeasure, thetaPredict)
755

756 # Kalman

757 K = self.__ computeKalman (H,R)

758

759 # Update

760 self. _update(K,y,H)

761

762 # Set Imu related function

763 def __predictImuDataParsing(self):

764 T

765 Function to unite acctions that are to be taken based on IMU data
766 T

767

768 # Uses data for predict

769 if self.__ deltalmuCum —— True and self.__ fixedPredictRate =— True:
770 # Guards against decide by zero

771 if self.____deltalmuDt < 0.001:

772 self.__ deltalmuDt = 0.001

773

774 # Devides delta imu msg by accumulated time to bring it back to original imu units
775 self. a = self. aCum / self.__ deltalmuDt

776 self. w = self. wCum / self.__ deltalmuDt

T # Sets delta imu time to dt for predict

778 dt = self.___ deltalmuDt

779

780 # Resets values

781 self. aCum = np.zeros((3,1), dtype = np.float32)

782 self. wCum = np.zeros((3,1), dtype = np.float32)

783 self. deltalmuDt = np.float32 (0.0)

784 self.__ deltalmuCounter = 0

785 elae s

786 dt = self.__ imuPredictDt

787

788 # If fixed predict rate is true, then dt is set to the fixed predict rate delta time
789 if self.__ fixedPredictRate == True:

790 dt = self.___ fixedPredictRateDt

791

792 # Predicts based on new control data

793 self.__ predict(dt)

794

795 ## Leveling , only when there is low accelerations

796 # Abs of sensor acceleration

797 absAcc = np.linalg.norm(self._ _ accMeasure_e)

798

799 # Acceleration thereshold

800 if self.____lowThreshold < absAcc and absAcc < self.____highThreshold:
801 self. angleLeveling(self. accMeasure e, subBias= False)
802

803 # Helper functions

804 def __ skew(self , vec):

805 T

806 Function to return matrix form of cross product

807

808 Output : skew mat np shape (3,1)

809 T

810 x = vec[0,0]

811 y = vec[1,0]

812 z = vec[2,0]

813

814 skew = np.array ([[0,—z, y],

815 [z, 0,—x],

170

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915

[y, x, 0]], dtype = np.float32)

return skew

def __rMatBNCovariancePropagation(self , tHeta, pos):

Function to return the derivative of the propagation function

Input

’

tHeta np shape (3,1)
pos np shape (3,1)

Parsing data

phi = tHeta [0,0]
theta = tHeta [1,0]
psi = tHeta[2,0]
rx = pos[0,0]
ry = pos[1,0]
rz = pos[2,0]
Pre computing
sx = np.sin (phi)
cx = np.cos(phi)
sy = np.sin(theta)
cy = np.cos(theta)
sz = np.sin(psi)
cz = np.cos(psi)
deltaF = np.array ([[ry*(sx*sz + cx*cz*sy) + rzx(cx*sSz — Cz*SX*Sy), IZ*CX*CZ*Cy — IX*CZ*Sy —+ Iyx*
czkCcy*sx, rz*(Cz*SX — CX*Sz*Sy) — Iy*(CX*Cz + SX*Sz*xSy) — IX*Cy*Sz],
[— ry*(czxsx — cxxszxsy) — rz*(cCx*cz + SX*Sz*Sy), TZ*CX*Cy*SzZ — IX*Sz*Sy -+ Iyx*
cy*sx*sSz, rzx*(sx*sz + Ccx*cz*sSy) — Iryx(CX*xSz — Cz*SX*Sy) + IX*Cz*cCy],
TYy*kCX*Cy — TZ*Cy*SX, — IX*kCy — TZ*CX*Sy —
Ty *SX*SYy , np. float32(0.0)]], dtype = np.float32)

return deltaF

Sensor

and aiding functions

def setImuMeasurement (self , imuData, timelmu):

s

Function to set imu data

Input

)

imu data np shape (6,1) on form [ax ay az wx wy wz]’

Parsing data

Splits data to acc and omg part
accMeasure = imuData [0:3]
omgMeasure = imuData [3:6]

Transforming data to estimation frame

accMeasure_e = self.__ rotMat_bs @ accMeasure
self.___accMeasure_e = accMeasure_e
If gravity is a state then it is subtracted in the state transition matrix, othervice it is
subtracted here
if self._ gravityState == True:
acc = accMeasure_e
elge s
acc = accMeasure_e — self. rotMat_bn.T @ self . gVec
omg = self._ _rotMat_bs @ omgMeasure

Calculates dt

time
timelmu = np. float64 (timelmu)

If

time)

timeLastImuMsg is zero then time is set to last time, (lazy method of initializations the

if self.__ timeLastImuMsg <= 0.01:
self. timeLastImuMsg = timelmu

cal
dt =

if
if np

culates dt
timelmu — self._ timeLastImuMsg

dt is to large, then sets dt to max dt
.abs(dt) > self._ maxDt:

dt = self.___maxDt

Casting dt to float32

dt = np.float32(dt)
Sets time now to timeLast
self.__ timeLastImuMsg = timelmu
If delta imu is configured , then IMU data is accumulated
if self.__ deltalmuCum == True and self._ _ fixedPredictRate == True:
Accumulates imu data
self . aCum += accxdt
self. wCum += omgxdt
self.__ deltalmuDt += dt
Increments counter
self._ _ deltalmuCounter += 1
else s
Sets control param to self variable
self._ _a = acc
self. w = omg
self._ __ imuPredictDt = dt
If predict is not called at a fixed rate, then it is called here
if self._ _ fixedPredictRate == False:

171

Calls actions
self._ _ predictImuDataParsing ()

def setPoseMeasurementWithCovariance(self , pose, R, timePose, covCal = False):
5o
Function to set pose in ned frame
Input pose np shape (4,1) in ned frame

R np shape (4,4)
time scalar

Stores time of current msg

self._ _ timeNewPoseUpdate = timePose

Splits pose to pos and yaw

pos_n_nb = pose[0:3]

yaw_nb = pose[3,0]

Transforms position measurement to sensor frame

pos_n_ ns = pos_n_nb 4+ self. rotMat_bn @ self . pos_b_ bs
Splits covariance

rPos = R[0:3, 0:3]

rYaw = R[3,3]

Sets pose to position filter
Calculates covariance

if covCal == True:
Gets theta and cov of theta
tHeta_nb = self. x[9:12]
rtHeta = self. P[9:12,9:12]
Calculates cov prop function
deltaF = self._ _rMatBNCovariancePropagation(tHeta_nb, self.__ pos_b_bs)

rPos = rPos + deltaF @ rtHeta @ deltaF.T
else:
rPos = rPos

Calls update functions

if filter is offline then pos is not calculated
if self.online:
self.__posEvaluation(pos_n_ns, rPos)

self . yawEvaluation (yaw_nb, rYaw)

Set filter params
def setFilterParameters(self , params):

Function to set filter parameters

Passes to member variables
Measurement uncertainty covariance

self. R_pos = params.rPosxnp.eye (3, dtype=np.float32)
Gravity
self. gravity = params.gravity
self. x[17,0] = —self.___ gravity
self. gVec = np.array ([[np.float32(0.0)],[np.float32(0.0)],[—self.___ gravity]], dtype = np.float32
)
Pos threshold
self. _ posThreshold = params.posThreshold
self. _yawThreshold = params.yawThreshold
self. _ accHighThreshold = params.levelingWindow
self. _lowThreshold = self._ _ gravity*(l—self. _ accHighThreshold)
self. _ highThreshold = self.__ gravityx(l1+self._ _ accHighThreshold)
State transition covariance matrix
Q = np.eye(self.__nStates, dtype = np.float32)
Q[0:3,0:3] = params.qPosition*np.eye (3, dtype = np.float32)
Q[3:6,3:6] = params.qLinVel*np.eye (3, dtype = np.float32)
Q[6:9,6:9] = params.qBiasAccxnp.eye (3, dtype = np.float32)
Q[9:12, 9:12] = params.qAngVel*np.eye (3, dtype = np.float32)
Q[12:15, 12:15] = params.gBiasGyroxnp.eye (3, dtype = np.float32)
995 Q[15:18, 15:18] = params.qGravity*np.eye(3, dtype = np.float32)
996
997 # Sets to self variable
998 self. Q=Q
999
1000 # Sensor to estimation frame transform
1001 self.__ rotMat_bs = params.rotMat__bs
1002 self._ _pos_b_bs = params.pos_b_ bs
1003
1004 # Initial condition
1005 # Postion and velocity
1006 self._ x[0:6] = params.initState [0:6]
1007 # Acc Bias
1008 self . x[6:9] = params.initState [9:12]
1009 # tHeta
1010 self . x[9:12] = params.initState[12:15]
1011 # Omg Bias
1012 self . x[12:15] = params.initState [18:21]
1013
1014 self.__ xInit = self.__x
1015
1016 # If second order predict
1017 if self.__ secondOrderPredict == True:
1018 self._ _ xLast = self.__x
1019

172

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

1082
1083
1084

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123

Pu
def

def

def

the

def

Postion and velocity

self. P[0:6,0:6] = params.initCov [0:6,0:6]

Acc Bias

self. P[6:9,6:9] = params.initCov[9:12,9:12]

tHeta

self. P[9:12,9:12] = params.initCov [12:15,12:15]
Omg Bias

self. P[12:15,12:15] = params.initCov [18:21,18:21]
self._ _ PInit = self. P

Sets to self variables
self. _ timeMaxDiffPose = params.timeMaxDelayPose

Filter Config

self. deltalmuCum = params.deltalmuCum
self.___secondOrderPredict = params.secondOrderPredict
self. _ fixedPredictRate = params.fixedRatePredict
1blic get functions

getPositionWithCovariance (self , calCov = False):

Function to get position in ned frame

Output position np shape (3,1)
rPos np shape (3,3)

3

Gets position of sensor
pos_n_ns = self._x[0:3]
rPos = self. P[0:3,0:3]

Gets orientation
tHeta_nb = self._ x[9:12]
rtHeta = self. P[9:12,9:12]

Transforms position measurement
rotMat_bn = self. droneGeom.rotFun_bn(tHeta nb)
pos_n_nb = pos_n_ns — rotMat_bn @ self. pos__b__bs

Calculates covariance

if calCov == True:
deltaF = self.___rMatBNCovariancePropagation (tHeta_nb, self.__ pos_b_bs)
rTot = rPos + deltaF @ rtHeta @ deltaF .T

else:

rTot = rPos
return pos_n_nb, rTot
getOrientationWithCovariance (self):
S
Function to get orientation

Output orientation np shape (3,1)
rOri np shape (3,3)

return self._ x[9:12], self. P[9:12,9:12]
getLinearVelocityBodyWithCovariance(self , covCal = False):

Function to get linear velocity in body frame

This function is a combination of the linear velocity from posFilter, and the angular
oriFilter
Output : vel _b_nb np shape (3,1)

rBody np shape (3,3)

3y

Gets states to use for calculation
Gets linear velocity in ned frame
vel_n_ns = self._ x[3:6]

Transforms to body
rotMat_nb = self. rotMat__bn.T
vel _b_ns = rotMat_nb @ vel _n_ ns

Transforms covariance
rVel _n = self._ P[3:6,3:6]
rVel b = rotMat_nb @ rVel _n @ rotMat_nb.T

Calculating covariance
if covCal:
Gets variables
rOmg = self. P[12:15,12:15]
pos = self. pos b bs.copy()
omg b_ns = self. w — self. x[12:15]
propper vel

vel_b_nb = vel _b_ns — self._ skew(omg_b_ns) @ pos
propper cov
deltaFMat = self. skew(self. pos b bs)

rTot = rVel b + deltaFMat @ rOmg @ deltaFMat.T
elge s

Dirty vel

rTot = rVel b

vel_b_nb = vel_b_ ns

return vel_b_nb, rTot

getAngularVelocityBodyWithCovariance (self):

Function to get angular velocity of body frame

173

velocity of

Output: omg b_nb np shape (3,1)
rBody np shape (3,3)

DI

return self. w — self._ x[12:15], self._ P[12:15,12:15]

def getLinearVelocityLevelWithCovariance(self , covCal = False):

Function to get linear velocity in level frame

1134 This function is a combination of the linear velocity from posFilter, and the angular velocity of
the oriFilter

1135

1136 Output : vel _n_nb np shape (3,1)

1137 rLevel np shape (3,3)

1138 Y

1139

1140 # Gets states to use for calculation

1141 vel b _nb, rBody = self.getLinearVelocityBodyWithCovariance(covCal = covCal)

1142

1143 # Transforms to level frame

1144 theta_nb = self._ x[9:12]

1145 rotMat_bl = self._ droneGeom.rotFun_bl(theta_nb)

1146

1147 vel _1_nb = rotMat_bl @ vel _b_ nb

1148

1149 # Calculating covariance

1150 if covCal == True:

1151 deltaF = rotMat_ bl

1152 rLevel = deltaF @ rBody @ deltaF .T

1153 else :

1154 rLevel = rBody

1155

1156 return vel_1 _nb, rLevel

1157

1158 def getAngularVelocityLevelWithCovariance (self, covCal = False):

1159 T

1160 Function to get angular velocity of level frame

1161

1162 Output : omg b _nb np shape (3,1)

1163 rLevel np shape (3,3)

1164 T

1165

1166 # Gets angular velocity

1167 omg b _nb = self. w — self._ x[12:15]

1168 rOmg b = self. P[12:15,12:15]

1169

1170 # Transforms to level frame

1171 theta_nb = self._ x[9:12]

1172 rotMat__bl = self.__ droneGeom.rotFun_bl(theta_nb)

1173

1174 # Transforms rates and cov

1175 omg_ |l nb = rotMat_bl @ omg_b_nb

1176

1177 if covCal == True:

1178 rOmg_1 = rotMat_bl @ rOmg b @ rotMat__bl.T

1179 else:

1180 rOmg_1 = rOmg_b

1181

1182 return omg 1 nb, rOmg 1

1183

1184 def getPosFilterOnlineState (self):

1185 T

1186 Function to check if kalman filter is online or not

1187 ’

1188

1189 return self.online

1190

1191 def getAccBiasWithCovariance(self):

1192 T

1193 Function to get accelerometer bias

1194 T

1195

1196 return self._ x[6:9], self._ P[6:9, 6:9]

1197

1198 def getGyroBiasWithCovariance(self):

1199 T

1200 Function to get gyro bias

1201 T

1202

1203 return self._ x[12:15], self. P[12:15, 12:15]

1204

1205 # Jit Init function

1206 def resetFilter (self, keepAngles = False):

1207 Y

1208 Function to reset all parameters after runing JitInit function

1209 T

1210

1211 # Reseting state and state covariance

1212 if keepAngles == True:

1213 # In some cases there is only a need to reset the linear states, then angular states is kept

1214 self. x[0:9] = self.__ xInit[0:9]

1215 self. P[0:9, 0:9] = self.__ PInit[0:9, 0:9]

1216 self. x[11] = self.___ xInit[11]

1217 self. P[11,11] = self.__ PInit[11,11]

1218 self. x[15:18] = self.___ xInit[15:18]

1219 self. P[15:18] = self.__ PInit[15:18]

1220 # Resets last variables

1221 if self.__secondOrderPredict:

1222 self.__ xLast = self.__x

1223 self. _aLast = np.zeros ((3,1), np.float32)

1224 self. wLast = np.zeros((3,1), np.float32)

1225 else :

1226 self. x = self.__ xInit

1227 self. P = self.___ Plnit

174

Resets last variables

if self.__ secondOrderPredict:
self._ _ xLast = self.__ x
self. aLast np.zeros ((3,1), np.float32)

self . wLast = np.zeros ((3,1), np.float32)
Resets time stuff

self.___ timeNewPoseUpdate = 0.0

self.__ timeDiffPose = self.___ timeMaxDiffPose +2.0

def ___dryRun(self):

Function to call all functions in the class

Predict function
self . predict ()

dummyTimeF64 = np. float64 (0.0)
self.checkTiming (dummyTimeF64)
dummyDt = np. float32 (0.0)

self. predict (dummyDt)

self.__ stateTransitionLin (dummyDt)

dummyVec3 = np.ones((3,1), dtype = np.float32)

self.___ velThetaStateTransTherm (dummyVec3, dummyVec3, dummyVec3)
self.__thetaThetaStateTransTherms (dummyVec3, dummyVec3, dummyVec3)
self.__ controllnput (dummyDt)

self. _ covariancePredictWeight (dummyDt)

self.__ wrapEulerAngles ()

self . modPiToPi(np. float32 (0.0))
Innovation lin
dummyXMeasure = np.zeros ((1,1), dtype = np.float32)

dummyHmat = np.zeros ((1,self.__ nStates), dtype = np.float32)
dummyHmat [0 ,0] = 1.0

dummyY = self._ _ innovationLin (dummyXMeasure,dummyHmat)
InnovationYaw

self.__ innovationYaw (0.0, 0.0)

InnovationPi

self. _ innovationPhiTheta (0.0, 0.0)

KalmanCompute

dummyR = np.eye(1l, dtype = np.float32)

dummyK = self._ computeKalman (dummyHmat, dummyR)

Update

self . update(dummyK, dummyY, dummyHmat)

AngleLeveling
dummyAcc = np.zeros ((3,1), dtype = np.float32)

self. ___angleLeveling (dummyAcc)

Predict Data Parsing

self . predictImuDataParsing ()
1276 # YawMeasure
1277 rYaw = np. float32 (1.0)
1278 self . yawMeasurement (0.0, rYaw)
1279 self._ yawSet (0.0)
1280 self.__ yawEvaluation (0.0, rYaw)
1281 # PosMeasure
1282 dummyPos = np.zeros ((3,1), dtype = np.float32)
1283 dummyR = np.eye (3, dtype = np.float32)
1284 self. posMeasurement (dummyPos, dummyR)
1285 self.__ posSet(dummyPos)
1286 self.___posEvaluation (dummyPos, dummyR)
1287 # SetImuMeasurement
1288 dummyIMU = np.zeros ((6,1), dtype = np.float32)
1289 dummyTime = np. float32 (0.0)
1290 self .setImuMeasurement (dummyIMU, dummyTime)
1291 # SetPosMeasurement
1292 dummyPose = np.zeros ((4,1), dtype = np.float32)
1293 dummyR = np.zeros ((4,4), dtype = np.float32)
1294 self .setPoseMeasurementWithCovariance (dummyPose ,dummyR, dummyTime)
1295 # Skew function
1296 dummyVec = np.zeros ((3,1), dtype = np.float32)
1297 self . skew(dummyVec)
1298 # Cov function
1299 self. _rMatBNCovariancePropagation (dummyVec, dummyVec)
1300 # Set Filter parameters
1301 dummyFilterParams = InsParameters ()
1302 self.setFilterParameters (dummyFilterParams)
1303 # Get Position

self . getPositionWithCovariance ()

Get orientation
self.getOrientationWithCovariance ()

Get linear velocity

self . getLinearVelocityBodyWithCovariance ()
self.getLinearVelocityLevelWithCovariance ()
Get Angular velocity
self.getAngularVelocityBodyWithCovariance ()
self.getAngularVelocityLevelWithCovariance ()

self.getPosFilterOnlineState
def jitInit (self):
Function to call all functions in the class
This function should be ran right after setting up the class, this is tu ensure that everything is

JIT compiled before run time

INS main class

print (’DryRun: INS Main’)
self . dryRun()

self . resetFilter ()

def main () :
pass

175

176

B.4 idl_pf pkg

B.4.1 Particle filter node

1 # Other imports

2 import numpy as np

3

4 # Own stuff

5 # Pf filter stuff

6 from idl_pf pkg.JitParticleFilterClass import

7

from idl__pf_ pkg.LocalizationFilter
8 # Geometric data

import =*

9 from idl_botsy_ pkg.droneConfiguration

10

11 # Filter Specifications

12 from idl__botsy_pkg.filterConfig

13 from idl_botsy_ pkg.softwareConfigutarion

14

15 # ROS stuff

import rclpy

17 import ros2_numpy as rnp

18 import ros2_ numpy.point_cloud2 as
19 import ament_index_ python

pc2

import DroneGeometry ,

import FilterInitialStates ,
import *

*

Rot

FilterConfiguration ,

ParticleFilterSetup

20 from std__msgs.msg import Bool
21 from sensor_msgs.msg import PointCloud2, PointCloud, ChannelFloat32
22 from geometry_ msgs.msg import PoseWithCovarianceStamped, TwistWithCovarianceStamped, Point32
23 from rclpy.node import Node
24 from rclpy.qos import qos_profile sensor__data
25 from rclpy.time import Time
26
27 class PF_ros_node(Node) :
28 T
29 ROS2 Particle filter node
30 Subscribers and publishers are defined at the bottom of ____init_ _ so as to not queue a lot of
messages as the JIT class compiles
s
def ___init__ (self):
super () .__init__ ('PF_ros_node’)
Filter configuration class
filterConfig = FilterConfiguration ()
Filter initial wvalues
initStatesNED = FilterInitialStates ()
Particle filter setup params
pfSetup = ParticleFilterSetup ()
Dronegeom for rotation matrices etc
droneGeom = DroneGeometry ()
filterConfig.gazeboGT, for defining if you’re going to be using velocity and roll/pitch data
from groundTruth publisher or from Kalman Filter , set in config file to "synchronize" filters
51 # Set message source
52 if filterConfig.gazeboGT:
53 messageSource = ’gazeboGT/’
54
55 else :
56 messageSource = ’ekf/’
57
58 ##HH#+ Filter params #HHH#
59 filter _params = LocalizationFilterParams ()
60
61 ### Sensor model Params #H##
62 # Sensor model data [in lack of a better name], NOTE: z_hit 4+ z_rand/z_max = 1
63 filter _params.pf_ 2z hit = pfSetup.pf_z_ hit
64 filter _params.pf_z_rand = pfSetup.pf_z_rand
65 filter _params.pf_ z_max = pfSetup.pf_z_max
66 filter _params.max_range = pfSetup.pf_ sensMaxRange
67
68 ### Particle Filter #H##
69 # PF Params
70 filter _params.number__of_ particles = pfSetup.numParticles
71
72 # Init position for particle generation
73 initPos = droneGeom .rotMat_nm @ initStatesNED .pos.asNpArray ()
74 initPsi = np.pi/2 — initStatesNED . tHeta.z
75 filter _params.init__pose = np.array ([[initPos [0,0]],
76 [initPos [1,0]],
77 [initPos [2,0]],
78 [initPsi]],dtype=np.float32)
79
80 # Covariance for initial particle spread
81 initPosCovNED = initStatesNED .posCov # In NED frame, switch X and Y to get
into map frame
inittHetaCovNED = initStatesNED .tHetaCov
filter _params.sigma_ pose = np.array ([[initPosCovNED .y],
[initPosCovNED .x] ,
[initPosCovNED .z] ,
[inittHetaCovNED .z]] , dtype=np. float32)
Number of points to use from pointcloud in update step
filter _params .nPts_PC = pfSetup .nPts_PC # Number of points to sample from
pointcloud
90
91 # Wether or not to use the square sum method to update the weight in the pointcloud—update step
92 filter _params.pcUpdateSqSum = pfSetup.pcUpdateSqSum
93
94 # PC downsampling configuration

177

179
180
181
182

188
189

filter _params.pcdsRandPoints = p
filter params.pcdsLoopSelect = p
filter _params.pcdsLoopSelMaxLoop

Threshold for resampling
(resample if effective sample

fSetup .pcdsRandPoints
fSetup.pcdsLoopSelect
s = pfSetup.pcdsLoopSelMaxLoops

size is less than threshold)

filter _params.resamplingThreshold = pfSetup.resamplingThreshold

Propogation velocity
Const cov to be added to propo
filter _params.constVelVariance

gation velocity
= np.array ([[pfSetup.constVar.x],
[pfSetup.constVar.y],
[pfSetup.constVar.z],
[pfSetup.constVarPsi]], dtype = np.float32)

Max value of added velocity std.dev when no new velocity message received

maxVelStdCtr
filter _params.maxVelStdCtr

Watchdog counter gain K for ve
filter _params.wd_K

Init propagation noise
filter _params.velStd__1

Histogram Smoothing
histRes
smoothingGaussianStdDev

filter _params. histogramResolution

histKernel
smoothingGaussianStdDev)
filter _params.histSmoothingKerne

#EHE Init filter #5HH

self .get_logger () .info("Filter init start...

self.___localizationFilter

secondOrderIntegration ,

= pfSetup.maxVelStdCtr

= np.array ([[maxVelStdCtr]
[maxVelStdCtr]
[maxVelStdCtr]
[maxVelStdCtr]] , dtype = np.float32)

locity std.dev
= pfSetup .wd_K

= np.array ([[initStatesNED .linVelCov.y],
initStatesNED .linVelCov .x],
initStatesNED .linVelCov .z],
initStatesNED .angVelCov.z]], dtype = np.float32)

pfSetup . histRes # 0.01 [m], 0.01 [rad] (~ 0.57 degrees)
= pfSetup.histGaussStdDev

np.array ([[histRes],

histRes],

histRes],

histRes]], dtype=np.float32)

= filter params.computeGaussianKernel (histRes ,

1 = histKernel

"

= LocalizationFilter (params = filter_params,
secondOrder = pfSetup.

deltaPosition = pfSetup.

deltaPositionIntegration)

self.get_logger().info("Filter init Completed!")

Indicator to be set when kf is ready, initiates propagation

self. systemReadylIndicator = True

#HHH#H## Particle pointcloud #HH-HH

Bool to disable publishing if desired

self.___ publishPFParticlePointcloud = pfSetup.pubPFParticlePC

Rate of which to publish pointcloud

pfPointcloudPublisherRate
pfPointcloudPublisherDt

Publish poitcloud containing

self. _ pfPointcloudSize
Timers
Rates

propogation__rate
localization__rate

dt
self .prop_ dt
localization__dt

Timers

self. PF_propogation_ timer
self.___localization__timer
localization__callback)

if self._ _ publishPFParticlePoint
Only create timer if bool
self._ _ PFPCPublishTimer

____publish_particlePointCloud)

Init subscribers
if simulation is True:

= pfSetup.pfPCPublisherRate
= 1.0 / pfPointcloudPublisherRate

___pfPointcloudSize number of particles

= pfSetup.pfPCSize

10
10

1.0/ propogation_rate
1.0/ localization_rate

= self.create_timer(self.prop_dt, self.__ propogation_callback)
= self.create_timer (localization_dt , self.

cloud :

is set
= self.create_timer (pfPointcloudPublisherDt, self.

self.____pointcloud__subscriber = self.create_subscription (PointCloud2, ’/zed mini depth/
points’, self._ _ pointcloud_callback, 10)
else:
self.__ pointcloud__subscriber = self.create_subscription (PointCloud2, ’/zedm/zed_ node/
point_cloud/cloud_registered’, self.___ pointcloud_callback, 10)
self. _ velocity_ subcriber = self.create_subscription (TwistWithCovarianceStamped ,
messageSource + ’vel level’, self.__ velocity_ callback, 10)
self.__rollPitch_subcriber = self.create_subscription (PoseWithCovarianceStamped ,
messageSource + ’'pose_ned’, self.__ roll pitch_callback, 10)
self. _ systemReset_subscriber = self.create_subscription(Bool, ’'ins/system/reset’, self.

systemReset__callback, 10)

178

190

191 self. _ systemStart_ subscriber = self.create_ subscription(Bool, ’'ins/system/start’, self.
____systemStart__callback, 10)
192
193 ## Publisher to publish position and yaw ##
194 self.___ pose__publisher = self.create_publisher (PoseWithCovarianceStamped, ’'pf/
pose_ned’, 10)
195
196 ## Publisher to publish pointcloud of particle positions ##
197 self. pose_pointcloud_publisher = self.create_publisher (PointCloud, ’pf/pose_ned/pointcloud’,
10)
def __publish_ particlePointCloud (self):
Function to publish particle point cloud for visualization in rviz
Get vector of particle poses
pf_poseVec = self. _ localizationFilter.getPFParticlePoseVector ()
Define message
pf__particlePCMsg = PointCloud ()
channel = ChannelFloat32()
point = Point32()
Fill header
pf_particlePCMsg . header.stamp = self.get_clock () .now().to_msg()
pf_particlePCMsg. header.frame_id = ’'map_idl’
Fill channel name of message
channel .name = ’intensity’
intensity = 128
Initialize empty lists
ptList =
chList = []
Fill point data
for ii in range(self.__ pfPointcloudSize):
Fill channel data
chList .append (float (intensity))
Append new point to list of points
ptList.append(Point32())
Fill Point data
ParticlePose = pf_ poseVec[:, ii].copy()
ptList[ii].x = float (ParticlePose [0])
ptList[ii].y = float (ParticlePose[1])
ptList[ii].z = float (ParticlePose [2])
Set channel values to chList
channel.values = chList
Populate pf message channels
pf_particlePCMsg.channels = [channel]
Set points to list of Point32
pf_ particlePCMsg. points = ptList
Publish message
self. _ pose_pointcloud_publisher. publish (pf_particlePCMsg)
def ___publish_pose(self):
252 Gets filter pose and variance from localizationFilter then publishes them as a
PoseWithCovarianceStamped message
253 T
254
255 # Only publish if systemReady bool is set
256 if self. _ systemReadyIndicator == True:
257 # Get pose and variance
258 pose_n_nb = self. localizationFilter.getFilterPoseNED ()
var = self.___localizationFilter .getFilterVarianceNED ()
Extract positions and angle from pose
pos_n_nb = pose_n_nb[:3,0].reshape(3,1)
psi_n_nb = pose_n_nb[3,0]
Setup diagonal matrix with variances of X—, Y—, Z—, and rotZ
2 var_n_nb = np.zeros ((6,6), dtype = np.float32)
26 var_n_nb[0,0] = var[0,0]
268 var_n_nb[1l,1] = var[1,0]
269 var_n_nb[2,2] = var[2,0]
270 var_n_nb[5,5] = var[3,0]
271
272 # Create empty message
273 bodyPoseMessage = PoseWithCovarianceStamped ()
274
275 # Assign timestamp
276 timeNow = self.get clock().now().to_msg()
7 bodyPoseMessage . header .stamp = timeNow
7
79 ####+ Populate Pose ##H#
#HE Positions ##HE
posToMsg_n_nb = pos_n_nb.astype(np.float64)
bodyPoseMessage . pose . pose. position.x = posToMsg n_nb[0, 0]
bodyPoseMessage . pose . pose. position.y = posToMsg n_nb[1l, 0]
bodyPoseMessage . pose . pose. position.z = posToMsg n_nb[2, 0]
bodyPoseMessage . pose.covariance = var_n_nb.reshape(36).astype(np.float64)

Quaternions HHH

Not actually a quaternion, but roll/pitch/yaw
psiToMsg _n_nb = psi_n_nb.astype(np.float64)
bodyPoseMessage . pose.pose.orientation.x = 0.0

179

291 bodyPoseMessage . pose.pose.orientation.y = 0.0

292 bodyPoseMessage . pose.pose.orientation.z = psiToMsg n_nb

293 bodyPoseMessage . pose.pose.orientation.w = —2.0

294

295 self.__ pose_publisher.publish (bodyPoseMessage)

296

297 # Callbacks

298

299 def ___localization__callback (self):

300 T

301 Runs localize method of localizationFilter , creates pose histograms from particle poses and
weights

and smooths them with a gaussian kernel (histSmoothingKernel —> param of localizationFilter),
saves most likely pose and the particle variance around this pose to filter variables

if self._ _ systemReadyIndicator == True:
Run localize
self. localizationFilter.localize ()

Publish pose
self. _ publish_pose()

def ____propogation__callback(self):

Function to call pf.propagate with set rate

Only propagate if kf has sent ready signal

if self._ _ systemReadylIndicator:
Propogate particles
self. _localizationFilter.propagate(self.prop_dt)
def __ pointcloud_callback(self , pc_msg):

Jallback function to run each timne a new pointcloud is received from the camera

if self.___systemReadyIndicator == True:
Parse pointcloud
pointcloud from_ msg = pc2.pointcloud2 to_ xyz array(pc_msg)

Call update with new pointcloud
self.___localizationFilter.pointcloud_update (pointcloud_from__msg)

def ___velocity_callback(self , vel msg):

Callback function to run when a new velocity from the KF is received

Get velocities from message

lin_vel from_msg = vel msg.twist.twist.linear
ang_vel_ from_ msg = vel msg.twist.twist.angular
cov__from__msg = vel msg.twist.covariance

Set up velocity —vector from message
velVec_1 = np.array ([[lin_vel from_ msg.x],
[lin_vel from_ msg.y],
[lin_vel_ from_msg.z],
[ang_ vel from_ msg.z]], dtype=np.float32)

Calculate vector of std.deviations from covariance—matrix
velCov_1 = np.array ([[cov_from_msg[0]],
[cov_from_msg[T7]],
[cov_from_ msg[14]],
[cov_from_msg[35]]], dtype=np.float32)

Gets time from msg
timeNsec = Time.from msg(vel msg.header.stamp).nanoseconds
timeSec = timeNsec*10x%(—9)

Set velocities and std dev to filter

self. localizationFilter.setPropagationVelocityWithCovariance(velVec_ 1,
velCov_1,
timeSec)

def __roll_pitch_callback(self , rp_msg):
)
Callback function to update roll and pitch values from KF
5

Get and set orientation from GT message.

orient__from_msg = rp_msg.pose.pose.orientation
roll = orient_from_msg.x

pitch = orient_from_msg.y

statusMsg = orient_from_ msg.w

Construct vector
tHeta_bl = np.array ([[roll],[pitch] ,[0.0]], dtype=np.float32)
If w from quat is —3, set bool ekfOnline false
if statusMsg < —2.5:
ekfOnline = False

elge s
ekfOnline = True

Pass to filter

self. _localizationFilter .setEKFLinearOnlineState (ekfOnline)
self. _localizationFilter.setCurrentRollPitchAngles (tHeta_bl)
def ____systemReset__callback(self , reset_msg):

Callback to reset LocalizationFilter to initial state

180

If msg.data is true, reset filter

if reset_msg.data == True:
Call function to reset filter to initial pose
self. localizationFilter.resetParticleFilterTolnitPose ()

self .get_logger () .info ("Particle filter reset')

401 def ___systemStart_callback(self , systemStart_msg):
402 v

403 Callback to set kf indicator

404 T

405

406 # Sets the indicator at first true message
407 if systemStart_ msg.data == True:

408 self. _ systemReadyIndicator = True

409

410

411 def main(args=None):
rclpy . init (args=args)

pointCloudSubscriber = PF_ros_node()
rclpy .spin(pointCloudSubscriber)

Destroy the node explicitly

(optional — otherwise it will be done automatically
when the garbage collector destroys the node object)
pointCloudSubscriber .destroy_node ()

rclpy . shutdown ()

if name = ’ main o

main ()

B.4.2 Particle filter class

1 import numpy as np

2

3 from numba import int32, float32 , float64 , jit, types, typed, typeof # import the types
4 from numba.experimental import jitclass

5

6 @jit

7 def coordinateTransform (theta):

return np.array ([[np.cos(theta), —mp.sin(theta), 0.0, 0.0],
[np.sin(theta), np.cos(theta), 0.0, 0.0],
[0.0O, 0.0, 1.0, 0.0],
[0.O, 0.0, 0.0, 1.0]],dtype=np.float32)

particleSpec =
(’weight 7, float6[4),] # a simple scalar field
(’pose’, float32[:,:]), # an array field

] # Numba spec for particle class

@jitclass (particleSpec)
class Particle(object):

def __init__ (self , pose, initWeight):
Particle pose
self.pose = pose

self.weight = initWeight
def move(self, V, dt):
Rotation about z
R = coordinateTransform (self.pose[3][0]+ V[3][0]*dt/2.0)

Update pose
self.pose += R @ (Vxdt).astype(np.float32)

Wrap yaw 0 — 2xpi
self.pose[3] = np.mod(self.pose[3], 2.0%np.pi)

Getting the type of one instance of the class Particle

particleNumbaType = Particle.class type.instance_ type
particleFilterSpec = |
(’__nParticles’, int32),
(’__particles’, types.ListType(particleNumbaType)), # Particle Class

(> __effectiveParticles’, float32),
(’__z hit’, float64),
(’__z rand’, float64),
(' z max’, float64),
(’__poseVec’, float32([:,:]),
(’___weightVec’, float64[:,:]), # an array field
] # Numba spec for particle filter class

Qjitclass (particleFilterSpec)
class ParticleFilter (object):

def ___init__ (self, z_hit, z_rand, z_max, nParticles, initPose, sig_pose):
R

Creates a Particle Filter object

input:
z__hit, z_rand, z_max, 3 Sensor parameters (floats)
nParticles 8 Number of particles in filter (int)
initPose 8 Initial Pose of Particles ((4x1) vector ,
[x, v, z, yaw])
61 sig pose g Std deviation of particles around initial pose ((4xl) vector,
P
62
63 T
64 # Parameters for scan matching
65 self.___z_ hit = z__hit

181

66 self .z rand = z_rand

67 self. =z max = z_max

68

69 # Create list of particles

70 self. nParticles = nParticles # Number of particles in
filter

71 self.___ particles = typed.List.empty_list(particleNumbaType) # List of particle objects

72 self. effectiveParticles = nParticles # Effective sample size of
the particle filter (measure of degeneracy)

73 self . poseVec = np.zeros ((4,self.___nParticles), dtype = np.float32) # Vector containing
particle poses

74 self . weightVec = np.zeros ((1, self.__nParticles), dtype = np.float64) # Vector containing

particle weights

Uniform initial weight for all particles
initWeight = np.float32(1.0/ nParticles)

for ii in range(nParticles):
Add random noise to initial pose with std.dev sig__pose

initPose_with noise = self.normalDistVector(initPose, sig_pose)
self. particles.append(Particle (initPose with noise, initWeight))
self.__poseVec[:,ii] = self.___ particles[ii].pose.copy().reshape(4)
self.__ weightVec[0,ii] = initWeight

print ("Particle filter object created!")

Function to reset all particles to have pose around [pose] with std.dev

[sig__pose]
def reset__filter (self, pose, sig_pose):
5

Method to reset filter to a chosen pose with a set std deviation

Calculate normalized uniform weight

particleWeight = np.float32 (1.0/self.___ nParticles)

Reset all particles

for ii in range(self.__ nParticles):
Add random noise to pose with std.dev sig__pose
initPose with noise = self.normalDistVector (pose, sig_ pose)
self.__ particles[ii].pose = initPose_with_noise.copy ()
self. _ particles[ii].weight = particleWeight*1.0
self.__poseVec[:,ii] = self.___ particles[ii].pose.copy().reshape(4)
self.__ weightVec[0,ii] = particleWeight

Function to dry—run all filter methods, to not have to JIT—compile during operation
def dry_run(self, initPose, sig_pose, likelihoodMap):
B

Does a dry run of all functions in the filter , only really used
have all functions in the

class compile at init to avoid long delays during runtime.

in the JIT—compiled version to

For propogation dry—run

dry run_vector4d = np.ones((4,1), dtype=np.float32) # 3x1 vector of zeros to pass into
filter functions

dry_run_dt = 0.0001

For update

dry_run_map = likelihoodMap

dry_run_map_origin_offset = np.zeros((3,1), dtype = np.float32)
dry_run_map_resolution = np.float32 (0.1)
dry_run_map_size_in_cells = np.ones((3,1), dtype = np.int32)
dry_run_ pointcloud = np.ones((3,100), dtype = np.float32)

Call functions in filter
self . propagate (dry_run_vector4, dry_run_vector4d, dry_run_dt)

self .normalDistVector (dry_run_vector4, dry_ run_vector4d)

Pointcloud Update

self .pointcloud update(dry_ run_ map,
dry__run__map__origin_ offset ,
dry_run__map_resolution,
dry__run__map_ size__in_ cells,
1.0,
False ,
dry_run_ pointcloud ,
False)

Resampling functs
self . getEffectiveSampleSize ()
self .systematicResample ()

Normalize
self .normalize_ particle_ _weight (1.0)

Reset
self . reset_filter (initPose, sig_ pose)

Function to create a [4x1] vector drawn from a gaussian distribution around vec mu,

with ve__sig std.
dev

def normalDistVector(self , vec_Mu, vec_Sig):

Since numba does not support np.random.normal with vector inputs, we make our own

s

return np.array ([[np.random.normal(vec_Mu[0][0] , vec_Sig[0][0])]
[np.random .normal(vec_Mu[1][0], vec_Sig[1][0])]
[np.random.normal(vec_Mu[2][0], vec_Sig[2][0])]
[np.random . normal(vec_Mu[3][0] , vec_Sig[3][0])]],dtype=np.float32)

Function to propagate the particles

def propagate(self, V, sig_v, dt):

Function that propogates the particles in space

182

164 according to the motion model in particle class

165

166 TODO: Move on from function—based propogation

167 T

168

169 # Make sure data is in correct format

170 V = V.astype(np. float32)

171 sig_ v = sig_v.astype(np.float32)

172 dt = np.float32(dt)

173

174 # Propagate particles

175 for particle in self.___ particles:

176 # Add some random noise to propogation velocity

177 V__with_noise = self.normalDistVector(V, sig_v)

178

179 # Propogate particles

180 particle .move(V__with_ noise, dt)

181

182 # Function to resample low—weight particles

183 def systematicResample(self):

184 T

185 Systematic resampling (Page 5, Table 2, Code block 3: https://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=7079001& tag=1)

186 T

187 # Draw random number between 0 and 1/nParticles as initial upper limit for cumulative sum of
weight

188 r = np.random.uniform (0, 1/self.___ nParticles)

189

190 # Initiate cumulative sum of weights as weight of first particle

191 W = self._ _ particles [0]. weight

192 highestWeightIndex = 0

193 highestWeight = Wx1.0

194

195 # Initiate indexing variable

196 # Used to index particles to replicate in the loop

197 i =0

198

199 for n in range(self.__ nParticles):

200 # Add 1/N to upper limit of cumulative sum of weights

201 u=r + (n)/self.__nParticles

202

203 # While cumulative sum of weights is lower than u

204 while W < u:

205 # Increment indexing variable

206 i +=1

207

208 # If i exceeds range of list, set i = last index to not index outside of bounds, and set W
to u to break loop

209 if i >= self.___ nParticles:

210 i = self.____nParticles — 1

211 W= u

212

213 # Update cumulative sum of weights with weight of particle at index i

214 W += self.__ particles[i]. weight

215

216

217 # Replace particle pose at index n with particle pose at index i

218 # multiply with 1.0 to break reference with self.___ particles[i]. pose

219 # omitting x1.0 makes the pose referenced, and any change to particle[i]’s pose

220 # will be the same in all particles referenced.

221 self. __ particles[n].pose = np.copy(self.___ particles[i]. pose)

222

223 # Give all particle weight 1/N

224 self. _ particles[n]. weight = np.float32(1.0/self.___ nParticles)

225

226 # Function to compute the variance of the pose

227 def computePoseVariance(self , pose):

228 Y

Compute variance of all particles from a given particle pose
s

sqError = np.zeros((4,1), dtype=np.float32)
V2 = 0
V1l =0

For loop through and add square error
for ii in range(self.__nParticles):

Cumulative sum of square errors

Positions

sqError [:3 ,0] 4= self.___ particles[ii]. weight*(self.___ particles[ii].pose[:3,0] — pose[:3,0]) *x2
Yaw, make sure to pick shortest dist e

yawError = self.__ innovationYaw (self._ _ particles[ii].pose[3,0], pose[3,0])

sqError [3,0] += self.__ particles[ii].weight*(yawError=%2)

Sum up V1 and V2

V1 += self.__ particles[ii]. weight

V2 += self.__ particles[ii].weight=*%2

Find vaiance #H#H#

var = V1/(V1™2 — V2) x sqError
Helper variables

num = V1

denom = V1x%x2 — V2

Minimum value for denominator in variance calculation
minDenom = 0.00001

Make sure denom does not get too small
if denom < minDenom:
denom = minDenom
print ("Denominator in variace calc too small, setting minimum value")

183

267 # Calculate weighted variance

268 varPose = (num/denom)*sqError

269

270 return varPose.astype(np.float32)

271

272 # Function to find shortest "geodesic" distance around circle (for yaw)

273 def ___innovationYaw (self , yawMeasure, yawPredict):

274 I

275 Function to return "geodesic" innovation on 0 to 2pi mapping

276

277 Takes two scalars as input and returns np shape (1,1)

278 s

279

280 # wraps measurement

281 yawMeasure = np.remainder (yawMeasure, 2*np.pi)

282

283 # Computes the two possible solutions

284 el = yawMeasure — yawPredict

285

286 if el < O:

287 e2 = 2xnp.pi + el

288 elae s

289 e2 = el — 2xnp.pi

290

291 # Finds the shortest path

292 if np.abs(el) < np.abs(e2):

293 e = el

294 else s

295 e = e2

296

297 return e

298

299 # Function to update weights of particles using measured pointcloud

300 def pointcloud_update(self, likelihood map, map_origin_ offset, map_resolution, map_size in_cells,
mapMaxGaussVal, mapUsingUint8Prob, pointcloud map_ frame body_ centered, sqSum=False):

301 T

302 Function to transform pointcloud into particle frames and check against map

303 Updates weight as product of all map hit probabilities

304

305 TODO: Implement different weight update if i find the source

306 T

307 # for all particles:

308 # rotate and translate san into particle frame

309 # convert scan coordinates to indexes to get prob. from map

310 i check that all indices are valid

311 # update weight of all particles

312 # normalize weights

313

Initialize sum of weights to zero, used in normalizing step
sum_ weights = np.float64 (0.0)

Calculate z_rand/z_max before loop
z_misc = self. z_rand/self . Z_max

initialize factor to multiply map prob with, gives possibility to use more data—types
mapProbabilityFactor = np.float64 (1.0)

if map uses uint8 as probabilities
if mapUsingUint8Prob:
Update factor
mapProbabilityFactor = np.float64 (mapMaxGaussVal) / (np.float64(255.0))

for ii in range(self.___nParticles):
Get rotation—matrix from particle to map:
rotmat_pm = coordinateTransform(self.___ particles[ii].pose[3,0]) [:3,:3]

Rotate pointcloud into particle frame
pointcloud__particle frame = rotmat_pm @ pointcloud_ map_frame_ body_ centered

Translate pointcloud to particle position
pointcloud_map_ frame = self.___ particles[ii].pose[:3].copy() + pointcloud__particle_frame

Offset the pointcloud and round to find map indices, then cast to int32

indices = np.empty_like(pointcloud_map_frame)
np.round_ ((pointcloud_map_ frame — map_origin_offset)/map_resolution, 0, indices)
indices = indices.astype(np.int32)

HHAHAE Check validity of points #HHHHHH

Find all points where there are no negative indices

positive_indices_logical_raw = (indices >= 0) # Check if indices (x—, y— and z—) are positive

[True / False]

347 # Messy because JIT does not allow .all() with defined axis, the following ANDs along the
column of the vector

348 positive indices_logical = (positive indices_logical raw [0 ,:]* positive indices_ logical raw
[1,:]*positive__indices__logical_raw [2,:]) # And through each column to check validity of point

349

350 # Check if in map

351 indices_in_map_logical_raw = (indices < map_size_in_cells.copy().reshape((3,1))) # Check if
coordinates (x—, y— and z—) are inside map [True / False]

352 #Messy because JIT does not allow .all() with defined axis

353 indices_in_map_logical = (indices_in_map_logical _raw [0 ,:]*indices_in_map_logical raw [l ,:]=x
indices_in__map_logical _raw [2,:]) # And through each column to check validity of point

354 #indices__in_map = indices_in_map_logical.nonzero () [0] # Find index of point

355

AND the vectors element—wise to find valid points, then get indices of all non—zero (True)

values

357 valid__point_indexes = (indices_in_map_logical*positive indices_logical).nonzero () [0] # Get
index of points that are both positive AND inside map

358

359

360 #H### Get probabilities from map #HHHH

361 # initialize list of probabilities to z_misc

362 probabilities_from_points = np.ones(indices.shape[l], dtype=np.float64)*z_ misc

184

363
364
365
366
367
368
369
370

371

Loop only through wvalid points
for jj, point_index in enumerate(valid_ point_ indexes):
Get probability from map

probFromMap = likelihood_map [indices [0,point_index], indices[l,point_index], indices[2,

point__index]]

Multiply with probability factor and z_hit

probabilities_ from_points[point_index] = mapProbabilityFactor % self.__

probFromMap)
Add z_ misc

probabilities_from_points[point_index] 4= z_misc

If sqSum, set prob from map as: sum(prob_i~2)/nPts_PC
if sqSum:

z_hit * np.float64 (

probability from_ map = (probabilities_ from_ points#*x2).sum()/indices.shape[1]

else:

Find probability by taking product of all probabilities

probability from map = probabilities from points.prod()

Take product of probabilities from map and assign weight to

self.__ particles[ii].weight x= probability_from_map
Add to sum of weight for normalization

sum_ weights += self.___ particles[ii]. weight

Normalize weights, also sets effective particles
self .normalize_particle__weight (sum__weights)

Function to normalize particle weights

def normalize particle weight(self , sum_weights):
Normalize particle weights and update effective particle set
initialize sum of squared weights
sumSquaredWeights = 0

in array

particle

for ii in range(self.__ nParticles):
Normalize particle weights
self.__ particles[ii].weight = self.__ particles[ii]. weight/sum_weights
#print (self.___ particles[ii]. weight)
Keep track of sum of squared weights (Neff = 1/(sum(weights™2)))
sumSquaredWeights 4= self.__ particles[ii]. weight*x2
Update vector with particle poses & weights
self. _poseVec[:,ii] = self.___ particles[ii].pose.copy().reshape(4)
self. _ weightVec[0, ii] = self.__ particles[ii]. weight

Print for debugging.
#print (self. _ particles[ii]. weight)

Get effective number of particles
self. _ effectiveParticles = 1.0/(sumSquaredWeights)

Func to print particle position
def printParticlePos(self):
)

Function to Print particle positions in terminal
Only used fo simplicity .

for i in range(len(self.___ particles)):
print ("Particle has pose: '
print (self.___ particles[i]. pose)
print (" ")
Getters
def getParticlePoseVector(self):
return self. _ poseVec.copy()

def getParticleWeightVector(self):
return self.__ weightVec.copy ()

def getEffectiveSampleSize (self):
S
Returns number of effective particles

PRI

return self.__ effectiveParticles

185

27

29

oot oot ot
SNSRI

ot

72
73
74
75
76

90

92
93

94
95
96
97

B.4.3 Localization filter

Other
import numpy as np

imports

Importing pathlib
from pathlib import Path

Own stuff

from
from
from
from

class

class

id
id
id
id

def

mapName +

1_pf pkg.JitParticleFilterClass import x*
1_pf_ pkg.PFTools import HistogramTools, PointCloudTools
1_botsy pkg.droneConfiguration import DroneGeometry, Rot
1_botsy_pkg.filterConfig import MapConfig

LikelihoodMap () :

___init__ (self):
#H##H##H Load map & Metadata #HHHHH

Make map config class, get name of map
mapConfig = MapConfig ()
mapName = mapConfig.mapName

Get path to folder with this file
home = str (Path.home())

Read map metadata
map__metadata = np.load (home + "/colcon_ botsy_ idl/src/idl_pf pkg/idl_pf_ pkg/map/metadata_" +
" _10cm_10cm.npy", allow__pickle=True) # Metadata is array of objects, allow_pickle must be

true

DI

Bool to signify if map uses uint8’s for probability.
self . mapUsingUint8Prob = np.bool (map_metadata[4,1])

Read map
if self.mapUsingUint8Prob:
self .map = np.load(home + "/colcon_botsy_idl/src/idl_pf_pkg/idl_pf_pkg/map/map__
10cm__10cm.npy") . astype (np.uint8)
elge s
self .map = np.load(home + "/colcon__botsy_ idl/src/idl_pf_ pkg/idl_pf_ pkg/map/map_" + mapName +
10cm_10cm.npy") .astype (np. float32)

+ mapName -+

Parse metadata and save to variables
Cartesian offset of cell [0,0,0] from origin
self.origin_offset = np.array ([map_metadata[0 ,1]]) .reshape(3,1)

Resolution of cells (side length) [m]
self.resolution = np.float32 (map_metadata[l,1])

Size of map in cells [x,y,z]
self.size_in_cells = np.int32(map_metadata[2,1])

Maximum value possible in map (from gaussian)
self .mapMaxGaussVal = np. float32 (map_metadata[3,1])

LocalizationFilterParams () :

Class to hold parameters of Localization Filter

___init___ (self):

Init drone params and rotator—class

self. _ drone params = DroneGeometry ()
self. _rot = Rot()
A Const rotations AR
self .rotMat_1f = self.__rot.rotX(np.pi) # Rotmat from level body to filter frame
self .rotMat_nm = self. drone__params.rotMat__nm # Rotmat from ned to map

,) L l

Camera

self .max_range = 15.0 # Max range reading of the depth sensor [m]
self .pos_b_bc = self. _ drone_ params.pos_b_bc # Translation from body frame to cam—frame
self .rotMat_bc = self.__ drone_params.rotMat_bc # Rotmat from camera to body (camera pitch)

Sensor model data [in lack of a better name], NOTE: z_hit + z_rand/z max = 1
self.pf_z_ hit = 0.8
self .pf z rand = 0.2
self .pf _z max = 1.0

Tt T 7 7 7T T T 7

A Parcticle Filter #HHAAAHHHHHHHEE

PF Params

self .number__of_ particles = 1000

self .init_pose = np.array ([[0.0] ,[0.0] ,[0.0] ,[0.0]],dtype=np.float32)

self .sigma_pose = np.array ([[1.00],[1.00],[1.00],[6.00]] ,dtype=np.float32)

self . .nPts_ PC = 30 # Number of points to sample from pointcloud

self .pcUpdateSqSum = False # Use Square sum method to update weights from pointcloud data

Use random points when downsampling

Selects nPts randomly, and then checks for duplicates and max_ range measurements
deletes dupes and max_range measurements from pointcloud before passing on
self.pcdsRandPoints = True

Select particles in a loop, checking each point for validity (range, dupe) before adding to an

array

IF BOTH pcdsLoopSelect AND pcdsRandPoints IS SET TRUE, DEFAULTS TO LOOP CHECK MODE
self.pcdsLoopSelect = False
self.pcdsLoopSelMaxLoops = 2xself.nPts_PC

186

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

Threshold for resampling (resample if effective sample size is less than threshold)
self .resamplingThreshold = self.number__of_particles

Watchdog variables for when no new velocity message arrives , and the filter keeps predicting
self.wd__counter = 0

self.wd_counter_ decayVelocityTresh = 3

self .wd_ K = 0.01

#H## Maximum values ##
Max value for velocity std dev
self . maxVelStdCtr = np.float32 (np.ones((4,1), dtype=np.float32)=*2.0)

Const variance to add to propogation
self.constVelVariance = np.array ([[0.1],[0.1] ,[0.1] ,[0.1]], dtype = np.float32)

7 7

HHHHH A Histogram smoothing R HE

For histogram smoothing

self.histogramResolution = np.array ([[0.01] ,[0.01],[0.01],[0.01]], dtype=np.float32)

kerLen = 5

self . histSmoothingKernel = np.ones ((1,kerLen), dtype = np.float32) / np.float32 (kerLen) 224

Simple averaging kernel with length 5

"outside" of filter

initiate Vectors of Velocities, std.deviations and angles from
self .velVec_1 = np.zeros((4,1), dtype=np.float32)
self.velStd_1 = np.zeros((4,1), dtype=np.float32)

self .tHeta_bl = np.zeros((3,1), dtype=np.float32)

def computeGaussianKernel(self, res, sigma):
Function so compute a gaussian kernel to the filter , kernel will be 12x(sigma/resolution) + 1
long , (Center value + 6 sigma in each direction)
Input:
res — Resolution , length between different indices on kernel, float — unit: [m]
sigma = Std deviation of kernel, float — unit: [m]
Output:
kernel — Normalized gaussian kernel, np.array — size: 1x(12x%(sigma/resolution) + 1)

init kernel

kernelLength = np.int32(12xsigma/res) + 1
kernelCenter = np.int32 ((kernelLength —1)/2)
kernel = np.zeros ((1l,kernelLength), np.float32)

Compute un—normalized kernel values
for ii in range(np.int32((kernelLength+1)/2)):
Making use of symmety in kernel around center

exponent = 1.0/2.0 * (resx*ii)=*x2/(sigmaxx*2)
kernelValue = np.exp(—exponent)

kernel [0,kernelCenter + ii] = kernelValue
kernel [0,kernelCenter — ii] = kernelValue

Normalize kernel
kernelSum = kernel.sum/()
kernel = kernel / kernelSum

Set gaussian kernel
return kernel

class LocalizationFilter ():

def

___init__ (self , params = LocalizationFilterParams (), secondOrder = False, deltaPosition = False):
K

Creates an instance of the localizationFilter

input :

Params — Class with filter parameters, should be of type LocalizationFilterParams ()

Init drone params and rotator—class
self.__ drone_params = DroneGeometry ()
self. __rot = Rot()

i Tools / manipulator classes #HHHHHHH

self. _ histTools = HistogramTools ()
self.__ pcTools = PointCloudTools ()

7 7 7 7

A Likelihood map #HHHHHHF
self.__ likelihood_map = LikelihoodMap ()

ITTRTRTRIRIRTen ITTRTRTRIRITen

HHHHHHHERAAH## Const rotations HHHHHHHHHAHAA

self.___rotMat_1f = params.rotMat__1f # Rotmat from level body to filter frame
self . rotMat_nm = params.rotMat_nm # Rotmat from ned to map

Camera
self. max_range = params.max_range # Max range reading of the depth sensor [m
self . pos_b__bc = params.pos_b_ bc # Translation from body frame to cam—frame
self._ _ rotMat_bc = params.rotMat__bc # Rotmat from camera to body (camera pitch

187

200 # Sensor model data [in lack of a better name], NOTE: z_hit 4+ z_ rand/z max = 1
201 self.____pf z hit = params.pf_z_ hit

202 self . pf_z_rand = params.pf_ z_rand
203 self . pf_z_max = params.pf z_max
204 Iy , " o 4y I 4y
205
206 A Pointcloud Operations #HHHAAAHHHHEE
207 # Use random points when downsampling
208 # Selects nPts randomly, and then checks for duplicates and max_ range measurements
209 # deletes dupes and max_range measurements from pointcloud before passing on
210 self. pcdsRandPoints = params.pcdsRandPoints
211
212 # Select particles in a loop, checking each point for validity (range, dupe) before adding to an
array
IF BOTH pcdsLoopSelect AND pcdsRandPoints IS SET TRUE, DEFAULTS TO LOOP CHECK MODE
self. pcdsLoopSelect = params.pcdsLoopSelect
self._ _ pcdsLoopSelMaxLoops = params.pcdsLoopSelMaxLoops

(s T 7 7 T T T T

A Parcticle Filter #HHRAAHHHHHHHRE
PF Params

self.___number__of particles = params.number__of_particles

self.____init__pose = params.init__pose

self. sigma pose = params.sigma_ pose

self.__ nPts_ PC = params.nPts_PC # Number of points to sample from pointcloud
self. pcUpdateSqSum = params.pcUpdateSqSum # Use Square sum method to update weights from

pointcloud data

Threshold for resampling (resample if effective sample size is less than threshold)

self. _resamplingThreshold = params.resamplingThreshold

Watchdog variables for when no new velocity message arrives , and the filter keeps predicting
self. _wd_counter = params.wd__counter

self.___ wd_counter__decayVelocityTresh = params.wd__counter__decayVelocityTresh

self. wd K = params.wd K

self._ _ekfLinearOnline = True

Const variance to add to the pose variance
self.___ constVelVariance = params.constVelVariance

#H# Maximum values ##
Max value for velocity std dev

self.____maxVelStdCtr = params.maxVelStdCtr
Create instance of particle filter
self. _ particle filter = ParticleFilter (self. _ pf z hit,
self. _pf z rand,
self._ pf z max,
self. __number_of_ particles,
self.__ init_pose,
self. _ sigma_pose)
self. _ particle filter.dry run(self.__ init pose, self._ _ sigma pose, self._ _ likelihood map.map)
252
253 # For histogram smoothing
254 self. histogramResolution = params. histogramResolution
255 self. histSmoothingKernel = params. histSmoothingKernel
256
257 # initiate Vectors of Velocities, std.deviations and angles from "outside" of filter
258 self. velVec_1 nb = params.velVec_ 1
259 self._ _ velStd 1 = params.velStd_1
260
261 #H###+ Second order propagation HHHH
262 self.__ secondOrder = secondOrder
263 if secondOrder == True:
264 self.__ velVecLast_1 nb = params.velVec_1
265 self._ _ velStdLast_1 = params.velStd__1
266
267 self.__ tHeta_bl = params.tHeta_ bl
268
269 #HHAHAHE Filter Pose and Variance #H#HHAHHE
270 self.___pose = self.____ init__pose
271 self. poseVariance = self. sigma pose*x2
272
273 ####H+ Delta position configuration
274 self.__ deltaPostition = deltaPosition
275 if deltaPosition == True:
276 self. lastVelMsgTime = 0.0
277
278
279 # Callers for PF
280 def propagate(self, dt):
281 o
282 Function to run propogation step of PF
283 Rotates velocities from NED to PF propogation frame (Z—Up, X—Forward)
284
285 input :
286 dt — dt of propogation [float , — unit: s]
287 T
288
289 #H## Watch dog stuff #H##
290 # Increment watch dog counter
291 self.__ wd_ counter += 1
292
293 # If predicts since last velocity update > thresh, decay velocity
294 if self._ _wd_counter > self. _ wd_counter_decayVelocityTresh:
295 self. _velVec_l nb x= (1 — self. wd K)
296 self.__velStd_1 = (1 — self. _wd K)
297
298 # Delta position specific configuration
299 if self.___ deltaPostition == True:
300 # If delta position, this converts back to velocity and resets the integrated wvalue
301 velVec_1 _nb = self.__ velVec_1l nb/dt

188

399
400
401
402

self. _velVec_l nb = np.zeros ((4,1))

else:
velVec_1_nb = self.___ velVec_1_nb

Second order specific configuration

if self.___ secondOrder == True:
Velocity calculation for second order accuracy
velVec_1_nb = 1.5xvelVec_1_nb — 0.5xself.___ velVecLast_1_nb
self.__ velVecLast_1 nb = velVec_1l_nb
Covariance calculation to reflect second order integration
velCov_1 = 1.5xself.___ velStd_1%xx2 4+ 0.5xself.___ velStdLast_ l1*xx2
velStd_1 = np.sqrt(velCov_1)
self._ _ velStdLast_1 = velStd_1

else :
velVec_1_nb = velVec_1_nb
velStd_1 = self.__ velStd_1

Add value to std.dev from number of predicts since last velocity update, up to a maximum

Std dev from message + const + (counter —1)*K

stdDevFromCtr = np.minimum((self. _ wd_ counter—1)xself. wd K, (self. _maxVelStdCtr), dtype=np.
float32)

propStdDev = velStd_1 + np.sqrt(self.__ constVelVariance) + stdDevFromCtr

Rotate velocities into PF propogation frame (Z—Up, X—Forward)
vel _PF_nb = np.zeros ((4,1))

vel PF_nb[0:3,0] = self.__rotMat_1f @ velVec_1l nb[0:3,0]
vel _PF_nb[3,0] = —velVec_1l nb[3,0]
Call propagate method of PF
self. _ particle filter.propagate(vel PF_nb, propStdDev, dt)
if self.__ deltaPostition =— True:

self.__velVec_l nb = np.zeros ((4,1))

def pointcloud_ update(self, pointcloud):

Function to run pointcloud update step of PF.
Downsamples and adjusts pointcloud into level body frame using roll/pitch angles from Kalman
Filter .

input :
pointcloud — Pointcloud from ROS message, converted to np.array(3,N) with [X, Y, Z]
along the columns
55

Downsample pointcloud

pc_downsampled = self.__ pcTools.downsample_pc_arr (pointcloud ,
max__range = self._ _max_range,
nPts = self.__nPts PC,
randPts = self _pcdsRandPoints,
loopSelect = self. _ pcdsLoopSelect,
maxLoopCount = self._ _ pcdsLoopSelMaxLoops)
If pointcloud has size 1, no valid points were chosen
if pc_downsampled.size != 1:
Transform pc to level body
rotMat_bl = self.__ drone_params.rotFun_bl(self.___ tHeta_bl)
pc_level = self.__ pcTools.transform__pointcloud_to_level body (pc_downsampled ,
self. pos b bc,
self.___ rotMat__bc,
rotMat__bl,

left _hand = False)

Transform pc to PF frame

pc_PF = (self.__rotMat_1f @ pc_level).astype(np.float32)

Call update

self. particle filter.pointcloud update(self._ _ likelihood__map .map,
self._ _ likelihood map.origin_offset ,
self.___ likelihood__map.resolution ,
self.___ likelihood__map.size__in_ cells ,
self.___ likelihood__map.mapMaxGaussVal,
self. likelihood_map.mapUsingUint8Prob ,
pc_PF,
self . pcUpdateSqSum)

Resample

if self.getPFEffectiveSampleSize() < self.___resamplingThreshold:

self. _ particle_ filter.systematicResample ()

Histogram smoothing and localization
def localize (self):

Function to find most likely localization from PF and its variance

Uses kernel smoothing of pose histograms using a gaussian kernel
Saves pose and pose variance to filter variables

Get histograms
histogramX , histogramY , histogramZ , histogramPsi = self.___ createPoseHistograms ()

Smooth histograms

histX , binsX = self.__ histTools.smoothPoseHistogram (histogramX , self.__ histSmoothingKernel, False)

histY , binsY = self.___ histTools.smoothPoseHistogram (histogramY , self.___ histSmoothingKernel, False)

histZ , binsZ = self.__ histTools.smoothPoseHistogram (histogramZ , self.__ histSmoothingKernel, False)

histPsi, binsPsi = self.___ histTools.smoothPoseHistogram (histogramPsi, self.__ histSmoothingKernel,
True)

Get indexes of max values from histograms
histXMaxIdx = np.argmax(histX)
histYMaxIdx = np.argmax(histY)

189

histZMaxIdx np.argmax (histZ)
histPsiMaxIdx = np.argmax(histPsi)

nBins [ii ,0] = np.int32 (np.round_ (((poseVec]|
_ __histogramResolution[ii ,0]) , decimals=0))

if nBins[ii ,0] < 1:
If number of bins
should only happen

less than add

if data

one ,
has
amount

1

nBins [ii ,0] =
Create histograms

histogramX np. histogram (poseVec [0 ,:],
histogramY np. histogram (poseVec[1,:], bins
histogramZ np. histogram (poseVec[2,:], bins
histogramPsi = np. histogram (poseVec[3 ,:], bins

bins

Return histograms

return histogramX , histogramY , histogramZ,

Reset func
def resetParticleFilterTolnitPose(self):

)

Function to reset Particle filter to initia

P

Call PF resetter func with
self.____particle_ filter.

initial pose

Public
def

setters
setEKFLinearOnlineState (self ,
Sets status of ekf

self.__ ekfLinearOnline

status):

status

def setPFParams(self
Method to

test = 0

params) :
set params to PF from params

def setHistogramSmoothingKernel(self ,
Set kernel for histogram

self.____histSmoothingKernel

kernel):
smoothing
kernel

Set velocity to be used in
, Psi] column vector
Set velocity standard deviation

body frame, [x, y, , Psi]

particle
z
to be
vector

used

z column

input:

vel vec [4x1] Vector of floats,

frame
cov__vec [4x1]

Vector of floats ,

if self.___ deltaPostition =—
Calculates msg dt

gets time

dt = time — self.___ lastVelMsgTime

self. _ lastVelMsgTime = time

True:

essentially

reset filter (self.__ init

propogation ,

in

if dt
dt
pri

n

1.@¢
0

wrn :

PF__Ros_ noe:

ii |

one to not
no

nBins [0,0],
nBins [1,0],
nBins [2,0],

histogramPsi

1 pose

pose ,

"struct "

particle

containing

containing

:].max() — poseVec|[ii ,:]

spread ,

nBins [3,0],

velocity

Take average of associated bin edges

xPose = (binsX [histXMaxIdx] + binsX [histXMaxIdx + 1]) /2.0

yPose = (binsY [histYMaxIdx] + binsY [histYMaxIdx + 1]) /2.0

zPose = (binsZ [histZMaxIdx] + binsZ [histZMaxIdx + 1]) /2.0

psiPose = (binsPsi[histPsiMaxIdx] 4+ binsPsi[histPsiMaxIdx + 1]) /2.0

Collect most likely pose into an array

pose = np.array ([[xPose] ,[yPose] ,[zPose] ,[psiPose]], dtype = np.float32)

Find variance from pose

poseVariance = self.__ particle_ filter.computePoseVariance (pose)

Set to filter variables, add some const variance to the poseVariance

self. _ pose = pose

self.__ poseVariance = poseVariance

Histogram func
def __ createPoseHistograms(self):
Function to get histograms of the poses in the different directions,
*% Not in separate JIT—class as numba (0.50) does not allow for weighted
»

Get pose and weight vector from particle filter

poseVec = self._ _ particle_filter.getParticlePoseVector ()

weightVec = self.___ particle_filter.getParticleWeightVector ()

Find number of bins needed to get the wanted resolution

nBins = np.ones((4,1), dtype = np.int32)

for ii in range(nBins.shape[0]) :
Calculate number of bins for current axis from max and min value of poseVec

break histogram

where one bin

weights
weights
weights
weights

weightVec [0 ,
weightVec [0 ,
weightVec [0 ,

self.___ sigma_ pose)

def setPropagationVelocityWithCovariance(self , vel vec, cov_vec, time):

should be in level

propogation, cov

velocities in [x, y,

cov in [x, y, z, Psi]

0.
t(’ deltaPose dt not valid’)

self.__ velVec_l_nb 4+= vel_vecxdt
else s
self.__ velVec_1__

nb vel__vec

Sets std
self.__ velStd_1

np.sqrt (cov__vec)

if linear of EKF is
self. _ ekfLinearOnline:

self.__ wd_counter = 0

Resets wd counter
if

part

190

online

would

histograms

.min())/self.

be the

1)
1)
1)

body frame,

should

z,

in

= weightVec [0 ,:])

be in 1

Psi] in

level

correct

[x, ¥

evel

level

frame

503
504
505

506

507
508
509

510
511

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

532

S

def setPropagationStdDev (self, std_ vec):

Set velocity standard deviation to be used in particle propogation,

body frame, [x, y, z, Psi] column vector
input :
std__vec — [4x1] Vector of floats, containing std.dev in [x,
frame
s
self.__ velStd_1 = std__vec

def setCurrentRollPitchAngles(self , tHeta_bl):

Sets angles tHeta_ bl (from body to level) shape [3,1], (Roll, Pitch,

P

self.__ tHeta_bl = tHeta_ bl

Public getters
def getPFEffectiveSampleSize (self):
Return PF effective sample size
return self.__ particle_ filter.getEffectiveSampleSize ()

def getPFParticlePoseVector(self):
return self.___ particle_filter.getParticlePoseVector ()

def getPFParticleWeightVector(self):
return self.__ particle_filter.getParticleWeightVector ()

def getFilterPoseNED (self):
Convert to NED frame
pose_n_nb = np.zeros ((4,1))
pose_n_nb[:3,0] = self._ rotMat nm.T @ self.__ pose[:3,0]
pose_n_nb[3,0] = (np.pi/2 — self.__pose[3,0]) % (2.0%np.pi)

return pose_n_nb.astype(np.float32)
def getFilterVarianceNED (self):

Convert to NED frame, X— and Y— changes place
nedVar = np.zeros ((4,1), dtype=np.float32)

nedVar [0 ,0] = self.___ poseVariance[1l,0]
nedVar[1,0] = self.___ poseVariance[0,0]
nedVar [2: ,0] = self.___ poseVariance[2:,0]

return nedVar

191

std .dev
Y, Z,
Yaw) to

Psi]

should

in

filter

B.4.4 Particle filter tools

1 # Other imports

2 import numpy as np

3

4 # Numba

5 from numba import int32, float32, jit, types, typed, typeof # import the types
6 from numba.experimental import jitclass

7

8

9 @jitclass ([])
10 class HistogramTools () :

11 s
12 Class containing methods to manipulate histograms
13

14 def __init__ (self):

15 # Dry run to test functions

16 self .dry_run ()

17

18 def dry_run(self):

Test params

testPose = np.ones((1,10), dtype = np.float32)
testPose [0,5] = np.float32(2.0)

testKernel = np.ones((1,3),dtype = np.float32)

Run funcs
hX = np. histogram (testPose)
testl, test2 = self.smoothPoseHistogram (hX, testKernel, False)

def smoothPoseHistogram (self , hist, kernel, wrapped = False):

DI

Function to smooth histogram

inputs:
hist — Histogram , [hist, bins] as given from hist = np.histogram ()
kernel — Kernel to smooth with, should be a np.array of size [1xN] where N is odd
wrapped — True/False if the histogram is wrapped (i.e 0 — 2pi)
37 output :
38 smoothedHist— smoothed histogram
39 binEdges — Edges of the bins in the histogram
40 s
41
42 # Get histogram and bin edges
43 histogram = hist [0].reshape ((1, hist [0].shape[0]))
44 binEdges = hist [1]
45
46 # Get length of histogram & kernel
47 histLen = np.int32(histogram .shape[1])
48 kernelLen = np.int32(kernel.shape[1l])
49
50 kernelPad = kernelLen — 1 # Odd kernel length —> (kernelLen — 1)/2 extra on each side
51
52 # Init smoothed and padded hist as zeros
53 smoothedHist = np.zeros ((1, histLen), dtype=np.float32)
54 paddedHist = np.zeros ((1, histLen + kernelPad), dtype = np.float32)
55
56 # Find offset from kernel size
57 kernelOffset = np.int32 ((kernelPad) /2)
58
59 # insert histogram into padded histogram
60 paddedHist [0, kernelOffset:histLen 4+ kernelOffset] = histogram [0 ,:]
61
62 # 1f wrapped 0...2pi and histogram endpoints are within some % of edge values,
63 # pad histogram with values on opposite ends of original histogram
64 if wrapped:
65
66 # Calculate thresholds for wrapping
67 yawWrapWindow = 0.05 # 5 % of 2xpi
68 upperThresh = np.pi*2.0%(1—yawWrapWindow)
69 lowerThresh = np.pi*2.0xyawWrapWindow
70
71 if binEdges.max() > upperThresh and binEdges.min() < lowerThresh:
72 # If extreme—values of histogram are within a certain threshold of % 2pi, pad with values
from opposite side of histogram
73 paddedHist [0, O:kernelOffset] = histogram [0, —kernelOffset :]
74 paddedHist [0, —kernelOffset:] = histogram [0, O:kernelOffset]
75
76
77 # For loop to dot kernel with part of histogram
78 for ii in range(histLen):
79 # Get slice of histogram data
80 histData = (paddedHist[0,ii:ii+kernelLen]) .reshape(1l,kernelLen)
81
82 kernel = kernel
83
84 # Dot product between kernal and histogram slice
85 smoothedHist [0,ii] = (kernelxhistData).sum()
86
87 return smoothedHist, binEdges
88
89 class PointCloudTools () :
90 s
91 Class containing methods to manipulate pointclouds
92 T
93 def ___init__ (self):
94 # Default contructor
95
96 # Run dry_run func
97 self .dry_run ()
98
99 def dry_run(self):
100 # Dry running funcs
101 pc_test = np.ones ((1,3))

192

102
103
104
105
106
107
108

109
110
111
112

113
114
115
116
117

119
120

122
123
124
125
126
127

128
129

140

143
144
145

146

148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169

185

190
191
192
193
194
195
196
197
198
199
200
201
202

Run funcs
dry_ run_downsample = self.downsample pc_arr(pc_test)
test = self.transform_pointcloud to_level body(dry_ run_ downsample)

def downsample_pc_arr(self, pc_arr, max_range=15.0, nPts=0, randPts=False, loopSelect=False,
maxLoopCount=None) :

PR

Input:

pc_arr — np.array with pointcloud data

nPts — Number of points from the cloud to "keep" (linspaced through all

points which are not NaN) 0 keeps all points

randPts — Picks points randomly using a uniform distribution

loopSelect — Bool to signify that we want to use a loop to check for valid points

maxLoopCount — Maximum number of times to loop when finding points using loopSelect
Output :

pointcloud_ filtered — Np array with coordinated of all points in PC, size: (3 x n)

where n is amount of points in PC

Initialize data to O
pointcloud_ filtered = 0

Init bool to signify if the values are verified before reaching the end, if the
values are verified , then you won’t need to loop and check for uniqueness and that dist <

max_ range

isChecked = False

If loopSelect is true and maxLoopCount not set, set maxLoopCount equal to nPts
if loopSelect and (maxLoopCount is None):
maxLoopCount = nPts

Only run if there are valid points in xyz data

if pc_arr.size != 0:
if nPts == 0:
If input nPts to use is zero, use entire pointcloud
pointcloud_ filtered = pc__arr

elif not randPts and not loopSelect:
Else if randPts is not set to true, use linspace to pick points
indexes = np.linspace (0, pc_arr.shape[0], nPts, endpoint=False, retstep=False, dtype=np.

int32)

pointcloud_filtered = pc_arr[indexes ,:]
elif loopSelect:

Init vector of indexes
idxVec = np.empty (0, dtype=np.int32)
loopCounter = 0

Loop untill while is broken by either:
Enough points are found [idxVec.shape[0] < nPts], or
The number of tested points exceed maxLoopCount [loopCounter < maxLoopCount]
while (loopCounter < maxLoopCount) and (idxVec.shape[0] < nPts):
Increment counter
loopCounter 4= 1

Get a random index from the cloud
idx = np.random.randint (0, pc_arr.shape[0], dtype=np.int32)

Get point from cloud
point = pc_arr[idx ,:]

Check if closer than max—range
dist = np.sqrt(np.sum(point*x*2))

if dist < max_range:
Check if idx is in idxVec
isIn = np.isin (idx, idxVec)

If it’s not in, add to idxVec
if not isIn:
idxVec = np.append(idxVec, idx)

Set isChecked True, as all indexes are unique and closer than max_range
isChecked = True

Extract values
pointcloud_filtered = pc_arr[idxVec ,:]

else :
Get nPts randomly selected points from PC array
randldx = np.random.randint (0, pc_arr.shape[0], nPts)

Ensure only unique points selected
randIdx = np.unique(randIdx)

Slice array to get points
pointcloud_filtered = pc_arr[randldx ,:]

if isChecked is False:
Initialize list to keep indexes of points at max range
points__at_max_range = []

for ii in range(pointcloud_filtered .shape[0]) :
Check if reading is at max dist
point__dist = np.sqrt(np.sum(pointcloud_ filtered [ii ,:]*x%x2))

If distance is greater than max range
if point__dist > max_range:

193

203
204
205
206
207
208
209
210
211
212
213
214
215
216

217

240

points__at_max_range.append (ii)

Delete max range readings

this simply removes the max range points,
pointcloud_filtered = np.delete(pointcloud_ filtered ,

Return transposed data, to get a [3xN] list
return np.transpose(pointcloud_filtered).astype(np.float32)

def transform_ pointcloud_to_level body (self ,

eye(3), rotMat_bl=np.eye(3), left_hand=False):

pointcloud__array ,

pos_b_bc=np.zeros ((3,1)),

meaning the pointcloud is no longer
points__at_max_range,

nPts big

axis=0)

rotMat__bc=np.

Input:
pointcloud__array — pointcloud in np.array form [x, y, z]... camera frame (Z—
Forward , X—Down)
pos_b__bc — translation from body to camera [x_t, y t, z_ t]
rotMat__bc = Rotation matrix from body to camera
rotMat_ bl = Rotation matrix from body to level
left__hand — if the coordinate frame is lefthanded
Output:
pointcloud_ transformed — pointcloud transformed into level body frame [X—Forward, Z—

Down]

Function to transform pointcloud into

angle from the
kalman filter is used to straighten up the pointcloud for

P

if left__hand:
If lefthanded coordinate system, flip X—Coordinates
#print (pointcloud array [0][:])
pointcloud__array [0][:] = —pointcloud__array [0][:]

artificially

Rotate pointcloud into body frame [X—Forward, Z—Down]
pointcloud__rotated = rotMat__bc @ pointcloud__array

Translate pointcloud from camera frame to level
pointcloud__transformed = rotMat_bl @ (pos_b_bc + pointcloud_rotated)

return

pointcloud__transformed.astype(np.float32)

194

frame

level

body frame" where the

use with the map.

roll

and pitch

B.5 idl_map_pkg

B.5.1 Likelihood field generation tool

I import numpy as np
2 import os

3 #import octomap

4 import open3d as o03d
5 import easygui
6
7

Get path to current file directory
8 cwd = os.path.dirname(os.path.abspath(__ file))

10
11 def getMeshFromModel GUI() :
12 S s
13 Input :
14
15 Output:
16 mesh = instance of mesh read from model
17
18 Opens a GUI instance, takes in a mesh in the form of .stl, .ply or other supported mesh files
19 (http://www.open3d.org/docs/release/tutorial /geometry/file io.html)
20 s
21
22 # Use easygui to get file
23 meshFile = easygui.fileopenbox (msg=None, title=None, default=cwd + " /../models/")
24
25 # Import ply model as triangular mesh
26 mesh = 03d.io.read_triangle mesh (meshFile)
27
28 return mesh
29
30 def createPCDFromModel GUI(nPoints) :
31 s

Input:

nPoints — Number of points to uniformally sample the mesh with

35 Output:
36 pcloud — Pint cloud with nPoints sampled uniformly over chosen model
7
38 Opens a GUI instance, takes in a mesh in the form of .stl, .ply or other supported mesh files
39 (http://www.open3d.org/docs/release/tutorial /geometry/file io.html)
40 T
41 # Open gui instance to get mesh
42 mesh = getMeshFromModel GUI ()
43
44 # Sample point off the mesh uniformally
45 pcloud = 03d.geometry. TriangleMesh.sample points_ uniformly (mesh, nPoints)
46
47 return pcloud
48
49 def createKDTreeFromMesh_ GUI(nPoints) :
50 s
51 Input:
52 nPoints — Number of points to uniformally sample the mesh with
53
54 Output :
55 kdtree — Instance of kd—tree
56
57 Opens a GUI instance, takes in a mesh in the form of .stl, .ply or other supported mesh files
58 (http://www.open3d.org/docs/release /tutorial /geometry/file_io.html)
59 s
60
61 # Get Point cloud
62 pcloud = createPCDFromModel GUI(nPoints)
63
64 # Create KD-Tree
65 kdtree = 03d.geometry.KDTreeFlann(pcloud)
66
67 return kdtree
68

69 def createKDTreeFromMesh (mesh, nPoints):
D)

71 Input:

72 mesh — Mesh to create KD—tree from

73 nPoints — Number of points to uniformally sample the mesh with
74

75 Output :

76 kdtree — Instance of kd—tree

77

78 Opens a GUI instance, takes in a mesh in the form of .stl, .ply or other supported mesh files
79 (http://www.open3d.org/docs/release/tutorial /geometry/file_io.html)
80 s

81

82 # Sample points off the mesh uniformally

83 pcloud = 03d.geometry.TriangleMesh.sample_points_uniformly (mesh, nPoints)
84

85 # Create KD-Tree

86 kdtree = 03d.geometry.KDTreeFlann(pcloud)

87

88 return kdtree

89

90 def createOctomapFromMesh GUI(res, nPoints):

91

92 T

93 Input:

94 res — desired map resolution

95 nPoints — Number of points to uniformally sample the mesh with
96

97 Returns

195

98

99
100
101
102
103
104
105
106
107
108
109
110

112

124
125
126
127

128

145
146
147
148
149
150
151
152
153
154
155
156
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171

184

185
186
187

189

190
191
192
193
194
195
196
197

omap

Opens a

— Instance of octomap

GUI instance, takes in a mesh in the form of

.stl

, .ply or

other supported mesh files

(http://www.open3d.org/docs/release/tutorial /geometry/file_ io.html)

Setup the
omap = octom

Sample poi

tree with desired resolution
ap.OcTree(res)

nts off the mesh uniformally

pcloud = createPCDFromModel GUI(nPoints)

Convert pointcloud to array

pcloud_np =

Insert poi

return omap

np.asarray (pcloud. points)

nt cloud into the octree (array is "sensor origin")
omap. insertPointCloud (pcloud_np ,np.array ([0.0, 0.0, 0.0]))

def createOctomapFromMesh (mesh, res, nPoints):

3y

Input:
res
nPoi

Returns
omap

Opens a

(http://www.

Setup the
omap = octom

Sample poi

pcloud = 03d.geometry. TriangleMesh.sample_ points_uniformly (mesh,

— desired map resolution

nts — Number of points to uniformally sample the mesh with

— Instance of octomap

GUI instance, takes in a mesh in the form of

tree with desired resolution
ap.OcTree(res)

nts off the mesh uniformally

Convert pointcloud to array

pcloud_np =

Insert poi

return omap

np.asarray (pcloud. points)

.stl, .ply or
open3d.org/docs/release/tutorial /geometry/file io.html)

nt cloud into the octree (array is "sensor origin")
omap. insertPointCloud (pcloud_np ,np.array ([0.0, 0.0, 0.0]))

def createGridMap (mesh, resolution, nPoints, sig_sens):

PR

other supported mesh files

nPoints)

closest points in model

Input:
mesh — mesh to base map on (Open3D triangle mesh)
resulotion — Map resolution (float)
nPoints — number of points to sample the map with
Returns:
mapArray = 3D array containing distances to
minBound = array with the offset from model

Function

(Prelude

origin to cell [0, 0, O]

to create a gridmap (3D—Array) where each voxel contains
point in the map

to Likelihood —map)

TODO: Automatically calculate nPoints from resolution

DI

Get bounda

ry box of model

the distance to the closest

and size of mesh.

maxBound = np.array (mesh.get_max_ bound(), dtype=np.float32) + 6xsig_sens
minBound = np.array (mesh.get_min_bound(), dtype=np.float32) — 6xsig_sens
[x_size, y_ size, z_size] = np.round_(maxBound — minBound,

boundaryBox = np.array ([x_size, y_size, z_size])

print ("Maxbo
print ("Minbo
print (bounda

Find size
[x_idxSize,
gridSize = n
print ("Size

Get KD—tre

und: " + str (maxBound))
und: " 4 str (minBound))
ryBox)

3)

of array to cover the boundary—box with voxels at given resolution
y_idxSize, z_idxSize] = np.int32(np.ceil (boundaryBox/resolution))
p.array ([x_idxSize, y_idxSize, z_idxSize], dtype=np.int32)

of map in [cells]|" + str(gridSize))

e from mesh

kdTree = createKDTreeFromMesh (mesh, nPoints)

Setup 3D a
mapArray = n

Create vec
s

Linspace
coordinate

rray for map with given resolution
p.ones(gridSize)

tors of all voxel center coordinates

(I, u, n) splits [l, u] into n equally sized

np.round_ (num, dec) rounds num to dec decimal places

P

linspaceXVoxelCenter = np.round_ (np.linspace (minBound[0],
resolution /2, 3)
linspaceYVoxelCenter = np.round_ (np.linspace (minBound[1],

resolution /2, 3)

linspaceZVox

elCenter = np.round_ (np.linspace (minBound[2],

resolution /2, 3)

print ("Begin

Get distan
for idx_z, z
print ("S

ning loop, this might take a while...")

pieces , add

maxBound [0]
maxBound [1]

maxBound [2]

ces from center of each voxel to nearest point in space

in enumerate(linspaceZVoxelCenter):

tatus: " + str(np.round_ ((idx_z / z_idxSize =

for idx_y, y in enumerate(linspaceYVoxelCenter):

for

idx_x, x in enumerate(linspaceXVoxelCenter):

196

100) ,2)) +

resolution /2 to get voxel center

)

)

)

x__idxSize, endpoint=False) +
y_idxSize, endpoint=False) +

z__idxSize , endpoint=False) +

Percent finished")

198
199
200
201
202
203

204

if

Search KD-tree for closest neighbour in all voxels
[k, idx, sqdist] = kdTree.search_hybrid_vector_3d ([[x], [y], [z]], 6xsig_sens, 1)

If nothing is found withing 6x%sig_sens, sqdist will be an empty vector

Appending a value of ((6%sig sens)#*%2) to the end of the list will fix the problem
arising

when no points are found within max search range, 6 sigma is chosen because then the
probability

of hit will be essentially O

sqdist .append ((6xsig__sens) *%2)

Appending is done because then no check has to be made, if something is found within 6%
sigma ,

The appended value will have index [1], and not be used, if nothing is found, it will

have index [0], and be used.

Find distance to closest point by taking the square root of sqdist [0]

dist = np.sqrt(sqdist [0])

mapArray [idx_x][idx_y][idx_z] = dist

#print ("X: " + str(x) + " Y: " + str(y) + " Z: " + str(z) + " Dist: " 4+ str(dist))
print ("Loop finished!")
#print (gridSize)
mapMetaData = np.array ([[" Coordinate of cell [0, 0, 0] relative to origin [in m]", minBound],

["Resolution of map [in m]", resolution],

["Size of Gridmap [in cells]", gridSize]],dtype=object)

return mapArray, mapMetaData

generateLikelihoodMap (distmap , sigma_sens, uint8Map = False):
Input:
distmap — Map with distances to closest point in mesh (3D np.array)
sigma__sens = Standard deviation of sensor used (float)
uint8Map = Bool to say if probabilities are to be saved as uint8’s (0—255, to be
parsed)
Output:
likelihoodMap = Gridmap with likelihoods [3D np.array]
maxVal — Max value of gaussian

Function to generate a likelihood —map from a distance—map
s s

Find maximal possible value of gaussian
maxVal = 1.0/(sigma_sens*np.sqrt (2.0xnp.pi))

Create likelihood map
likelihoodMap = maxVal % np.exp(—1.0/2.0%(distmap/sigma_ sens) xx*2)

if uint8Map :
1If the data type specified is uint8, scale map to the interval [0, 255]
likelihoodMapScaled = likelihoodMap = 255/maxVal

Round off to 0O decimals
likelihoodMapScaled = np.round_ (likelihoodMapScaled , decimals=0)

Cast to uint8
likelihoodMap = likelihoodMapScaled.astype(np.uint8)

return likelihoodMap , maxVal

saveOctoMap (tree , name):

Input:

tree = Octomap to save
name — Filename to save the map as

if tree.write(name.encode(’utf—8’)): # Write binary OctoMap file (Only encode "occupied"', "free" and "
unknown ")

print ("Octomap Created from file at chosen path")
elae s

print ("Cannot create octree file.")
name. = " main, 0 g
Get mesh from model
mesh = getMeshFromModel GUI ()
Setting resolution and number of points to sample mesh with
resolution = np.float32 (easygui.enterbox (msg="Resolution of map (voxel side—length), [m]", default
=0.1))
nPoints = 10000000
sig_sens = np.float32 (easygui.enterbox (msg="Std deviation of map gaussian, [m]", default=0.1))
mapDataType = np.float32 (easygui.enterbox (msg="Datatype to use (float32 / uint8): [0: float32, 1:
uint8]", default=0))
mapDataType = (mapDataType > 0.5) # As easygui only returns strings, a check is done to get the
desired bool
Name files
mapName = str (easygui.enterbox (msg="Desired map name", default="map"))
metaDataName = str (easygui.enterbox (msg="Desired metadata name", default="metadata"))
Create grid map
arrayMap, mapMetaData = createGridMap (mesh, resolution , nPoints, sig_sens)
Convert to likelihood map
likmap, maxVal = generateLikelihoodMap (arrayMap, sig_sens, uint8Map=mapDataType)
Append items to mapMetaData
maxValEntry = np.array (["Maximum value of map gaussian', maxVal], dtype=object)
dataTypeEntry = np.array (["Uint8 used in map (True / False :: uint8 / float32)", mapDataType], dtype=

197

object)
appendArr = np.array ([[maxValEntry] ,

[dataTypeEntry]], dtype=object).reshape((2,2))
mapMetaData = np.append (mapMetaData, appendArr, axis=0)

print (mapMetaData)

#octomap = createOctomapFromMesh (mesh, resolution , nPoints)
#saveOctoMap (octomap, "likelihoodMap.ot")
#arrayMap = np.load ("test.npy")

Save 3D numpy array
np.save(cwd + " /../maps/" + mapName ,likmap)
np.save(cwd + " /../maps/" + metaDataName, mapMetaData)

B.5.2 Map slicer tool

1 import numpy as np

2 import easygui
import png

4 import os

Path to current folder
7 cwd = os.path.dirname(os.path.abspath(__ file__))

9 # Load map
10 mapFile = easygui.fileopenbox (msg="Choose map", title=None, default=cwd + " /../maps/")
11 likMap = np.load (mapFile)

13 # Load metadata
14 metaDataFile = easygui.fileopenbox (msg="Choose metaData", title=None, default=cwd 4+ " /../maps/")
15 metaData = np.load (metaDataFile, allow_ pickle=True)

7 # Parse needed stuff from metadata
18 mapOffset = metaData[0,1]
19 mapRes = metaData[1,1]

21 # Set height of desired slice
22 sliceHeight = np.float32 (easygui.enterbox (msg="Height at which to slice map, [m]"))

24 # Get slice

25 sliceldx = np.int32 (np.round_ ((sliceHeight —mapOffset [2]) /mapRes, decimals = 0))
26 mapSlice = np.sqrt (likMap[:,:,sliceldx])

27 maxVal = np.amax(mapSlice)

mapSlice = mapSlice/maxVal x 255

Convert to uint8
mapSlicelmgArray = mapSlice.astype(np.uint8)

imageName = str (easygui.enterbox (msg="Name of .png image [do not add .png at the end]"))

Save image
png.from array (mapSlicelmgArray , mode="L").save(cwd + " /../mapSlices/" + imageName +

"

.png")

198

Page intentionally left blank

199

	Preface
	Abstract
	Introduction
	Background & Motivation
	Problem statement
	Related work

	Theory
	Frames and transforms
	Statistics
	State space modelling
	Maps
	Sensors
	Kalman filter
	Particle Filter

	Method
	Concepts
	Software used
	Choice of frames
	Simulation
	Map
	Hybrid filter
	Kalman filter
	Kalman filter Implementation
	Particle filter
	Particle filter Implementation
	Software implementation
	Hardware implementation

	Results
	Hybrid filter performance
	Hardware platform
	Simulation environment

	Discussions
	Singularity in filter
	Feedback loop between filters
	Base station sensor package
	Proposed alternative sensor package

	Conclusion
	List of Figures
	List of Tables
	Bibliography
	Appendix
	Drone drawings
	Source code
	Software structure and overview
	idl_botsy_pkg
	idl_orientation_pkg
	idl_pf_pkg
	idl_map_pkg

