
 
 

 
 

 
Water 2021, 13, 2858. https://doi.org/10.3390/w13202858 www.mdpi.com/journal/water 

Article 

Emulation of 2D Hydrodynamic Flood Simulations at  
Catchment Scale Using ANN and SVR 
Saba Mirza Alipour * and Joao Leal 

Department of Engineering and Science, University of Agder, Jon Lilletuns vei 9, 4879 Grimstad, Norway; 
Joao.leal@uia.no 
* Correspondence: Saba.m.Alipour@uia.no; Tel.: +47-9251-4142 

Abstract: Two-dimensional (2D) hydrodynamic models are one of the most widely used tools for 
flood modeling practices and risk estimation. The 2D models provide accurate results; however, 
they are computationally costly and therefore unsuitable for many real time applications and 
uncertainty analysis that requires a large number of model realizations. Therefore, the present study 
aims to (i) develop emulators based on SVR and ANN as an alternative for predicting the 100-year 
flood water level, (ii) improve the performance of the emulators through dimensionality reduction 
techniques, and (iii) assess the required training sample size to develop an accurate emulator. Our 
results indicate that SVR based emulator is a fast and reliable alternative that can predict the water 
level accurately. Moreover, the performance of the models can improve by identifying the most 
influencing input variables and eliminating redundant inputs from the training process. The 
findings in this study suggest that the training data size equal to 70% (or more) of data results in 
reliable and accurate predictions. 

Keywords: emulators; artificial neural network; support vector regression; training set size; error 
structure 
 

1. Introduction 
Floods are one of the most frequent and costly natural disasters that happen 

throughout the world and are likely to increase in number and severity as a result of 
climate change [1,2]. As a result, flood related topics including flood modeling, risk 
analysis, flood management, etc., have always been the subject of research from the past 
to the present. There are a variety of tools and approaches for flood modeling purposes, 
such as empirical methods (e.g., measurements, surveys, remote sensing, and statistical 
models) and hydrodynamic models (1D, 2D, and 3D models) [3]. 

Two-dimensional (2D) models, as a class of hydrodynamic models, are one of the 
popular tools that are based on the numerical solution of the 2D Shallow Water Equations 
(SWE) and use different types of input parameters with complex domain spaces (e.g., 
hydrological data, floodplain and channel geometry, initial and boundary conditions, 
roughness) and provide outputs such as flow velocity, water level, and inundation extent. 
Two-dimensional hydrodynamic models provide accurate results. However, they are 
usually computationally intensive and require long run time. Therefore, these tools might 
not be a proper choice (i) when a large number of model realizations is needed (such as 
required in uncertainty analysis with GLUE, Monte Carlo, or Bayesian approaches, or in 
optimization studies), or (ii) for applications that require rapid model response [4] (e.g., 
rapid flood risk analysis or real time flood modeling). There are alternative solutions to 
overcome these constraints, such as simplification of the model (e.g., [5,6]) or using data-
driven surrogate models or emulators. 

In literature, emulators, metamodels, response surface modeling, and surrogate 
modeling are often considered as interchangeable concepts and generally are referred to 
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as metamodels [7]. The principal idea of these models is to find relationships between the 
system state variables (input and output) without explicit knowledge of the physical 
behavior of the system [8]. In recent years, the application of emulators in 
hydraulic/hydrological modeling practices has received considerable attention and a 
variety of methods have been developed and used as emulators such as: polynomial 
regression [9,10], radial basis functions [11], kriging methods [12], and smoothing splines 
[13]. A comprehensive review of different emulation methods can be found in [7], in 
which different approaches for optimization purposes were critically reviewed. Amongst 
the proposed methods for development of the surrogates or emulators, artificial 
intelligent (AI) techniques are popular methods that have been widely applied in flood 
related studies. Ghalkhani et al. [14] applied Artificial Neural Network (ANN) and 
Adaptive Neuro-Fuzzy Inference System (ANFIS) to develop a surrogate model to 
emulate HEC-RAS model outputs for flood routing in rivers. Chu et al. [4] developed an 
ANN-based emulation modelling framework to simulate flood inundation based on 
information obtained from a 2D hydrodynamic model. Xie et al. [15] applied ANN-based 
hybrid modeling approach to improve the model performance in data-sparse regions by 
training an emulator using data-rich regions. 

In addition to ANN, successful application of other AI techniques has also been 
reported in literature. The authors of [16] compared ANN and Support Vector Regression 
(SVR) performance for approximating the Soil and Water Assessment Tool (SWAT) model 
in two watersheds and reported the better performance of SVR model. Xu et al. [17] 
implemented SVR to investigate the effect of model structural error on calibration and 
prediction of real-world groundwater flows. Numerous types of emulators have been 
developed for different classes of 2D models such as: HecRAS2D, TELEMAC2D, 
TUFLOW, and MIKE FLOOD (e.g., [4,9,18,19]). According to the literature, most of the 2D 
models simulate flood flow for a given discharge or inflow hydrograph and accordingly 
the simulation scale is constrained to a limited river reach. For these 2D models, the 
emulators are trained based on inputs such as discharge, roughness values along river, 
topographic features of river channel and floodplain, and the outputs such as flood 
discharge or volume and flood level. Only a small number of 2D models use direct rainfall 
at catchment scale (global scale) to model flood, thus, the application of emulators for 
hydrology-hydraulic coupled models is rare. A few studies have used emulators for 
catchment scale flood modeling such as Bass and Bedient [20] that used a supervised 
machine learning approach based on coupled hydrodynamic and hydrologic modeling 
results to provide rapid, probabilistic estimates of joint flooding from Tropical Cyclones 
at the catchment scale. 

Catchment or so-called global scale flood modeling is particularly important in 
catchments with complex topography and rivers with multiple tributaries originating 
from different parts of the catchment where the land cover and topography features effect 
can play important roles. Thus, their effect should be considered in the emulation process. 
In recent years, due to the advances in computational power and accessibility of graphics 
processing units (GPU), flood simulation at global scale has become feasible but is still 
time consuming. Therefore, it is important to develop accurate emulators and to do it in 
an efficient way. 

Typically, the performance and accuracy of the trained emulators are assessed 
through aggregated error metrics such as root mean squared error (RMSE) and correlation 
coefficient (R). Al Kajbaf and Bensi [21] showed that aggregated error metrics give 
incomplete measures of the performance, and the accuracy of the models must be assessed 
beyond these metrics. 

Thus, this study aims to: (i) develop an emulator by using ANN and SVR, considering 
inputs such as rainfall intensity, land features and outputs simulated by a coupled 
hydrology-hydraulic 2D model, (ii) simplify the models’ structures and improve the 
performance of the emulators by applying correlation tests and ANOVA analyses, (iii) 
investigate the predictive error structure of the emulators and select the most accurate 
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emulator, and (iv) assess the required training sample size to develop an accurate 
emulator. 

2. Materials and Methods 
2.1. Case Study 

Birkeland, located in Agder province (Norway), was selected as the case study, as 
floods have become a major concern there in recent years. Birkeland is located beside a 
river named Tovdal, where the river debouches into a small natural lake called 
Flakksvann (Figure 1). The length of the main river is approximately 130 km, and the 
catchment has an area of about 1767 km2 dominated by forests (about 74%). The elevation 
ranges from 10.00 to 872.34 m.a.s.l., and the average slope of the catchment along the river 
is about 0.65%. The mean annual precipitation is approximately 1261 mm, with most of 
the rainfall occurring between October and March (about 60%). On 02 October 2017, an 
extreme flood event occurred in the downstream parts of the river and inundated 
Birkeland. This event was the highest ever recorded flooding of this river. The recorded 
data of the event can be found in the study by [22]. 

  
Figure 1. (a) Map of Tovdal river’s catchment area. (b) The case study area with specified cross 
sections. 

2.2. Hydrodynamic Simulations and Input Ranges 
In the current study, a GPU based 2DH (two dimensional horizontal) hydrodynamic 

model named HiSTAV was used to simulate floods. The model was originally proposed 
by in [23] and optimized in [24]. The core of the model is a hyperbolic system of partial 
differential equations expressing mass and momentum conservation principles for 
shallow-water flows. The equations are solved using a finite volume scheme, which is 
applied on a spatial discretization using unstructured meshes. The initial conditions for 
the equations are zero water depth and zero discharge everywhere (dry surface 
conditions). Water enters the domain only through rainfall; hence there are no inlet 
boundaries. The only open boundary is at the outlet (downstream), where free outflow is 
assumed. For detailed information about HiSTAV and the model structure we refer the 
readers to the study presented by [23]. 

The model employs adaptable triangular meshes over the study domain to discretize 
the catchment and terrain parameters (i.e., elevation, bathymetry, land use, etc.). The 
computational domain for the simulations is the part of the catchment upstream of the 
small lake named Flakksvann, just beside Birkeland (Figure 1a). In order to avoid outlet 
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boundary interference, the domain was extended 11 km further to the downstream of the 
lake. In this study, by employing Godunov’s finite-volume approach ([25]) a total of 
401,769 mixed mesh of triangular cells are constructed in three sizes over the 
computational domain (Figure 1a) by Gmsh ([26]), which is a free finite element grid 
generator with a build-in CAD engine and post-processor. The small cells or so-called 
finer resolutions are assigned to the cells where the flow gradients are expected to be large, 
such as the river channel; medium sized cells, or average resolution over the flood plain; 
and coarser resolution over other parts of the catchment, where flow gradients are 
expected to be mild. 

Prior to undertaking the simulations, warm-up simulations were performed until 
reaching the normal water level in the river network. A 9-day precipitation with an 
intensity of 2 mm/h was found to be long enough to fill the river basin and the lakes with 
the steady flow. Using the filled catchment (in water courses parts) as the base time step, 
the model was calibrated and validated using the recorded data of the 2017 flood event 
(including water level, discharge, hydrograph at Flakksvann cross section, and flood 
maps). Further details of the calibration process are presented in [22]. 

Once the calibration and validation were done, reasonable ranges were established 
for the inputs, taking into consideration the calibrated values and based on the land type, 
vegetation, and average antecedent soil moisture. In the present study, each simulation 
started from the warm-up simulation results and ran for a computational time of 34 h. The 
calibration simulation’s result in terms of flow depth is displayed in Figure 2. 

 
Figure 2. Water depth ranges in the calibrated model: (a) computational domain, (b) case study 
region. 

HiSTAV requires different data sets as input to simulate the flow, namely: the topo-
bathymetric dataset, Strickler roughness coefficient values, runoff coefficient values (in 
form of raster files), and precipitation intensity. 

A 10 × 10 m2  Digital Terrain Model (DTM) including the river bathymetry 
information is used to represent topographic features and derive hydrologic 
characteristics (i.e., slope, flow direction, flow accumulation, stream network, 
computational cascade for flow routing, etc.). 

Hydraulic roughness is inserted in the model in the form of a grid structure raster 
file (100 × 100 m2 resolution), in which each cell represents Strickler roughness values. 
The spatial distribution of roughness values is determined based on 100 × 100 m2 land 
cover maps (obtained from https://land.copernicus.eu/-“Corine Land Cover (CLC) 2018, 
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Version 20”(Accessed 10 April 2021)). Subsequently, using typical Strickler roughness 
coefficient tables, the roughness values were assigned for each cell [27,28]. 

The runoff coefficient 𝐶𝐶 is a dimensionless factor that is used by HiSTAV to convert 
the rainfall amounts to runoff (i.e., effective precipitation ℎ𝑝𝑝 = 𝐶𝐶 ∙ 𝑖𝑖𝑃𝑃 , being 𝑖𝑖𝑃𝑃  the 
precipitation intensity). Similar to the hydraulic roughness values, the runoff coefficient 
is used in the form of raster data and represents the integrated effect of catchment losses 
(like infiltration and surface retention). Therefore, the coefficient depends on different 
parameters such as land cover and use, slope, soil moisture, and rainfall intensity [29]. 

In this study, a combination of two different approaches to calculate the runoff 
coefficient was used. First, by using land cover maps and recommended values of runoff 
coefficients for different types of areas [30], a range was determined for each cell. Second, 
since the HiSTAV model assumes a uniform spatial distribution of precipitation as input, 
the runoff coefficient was used as an artifact to introduce spatial variability of the 
precipitation. For this purpose, daily precipitation data were obtained from 37 stations 
(Figure 3) for one of the recorded extreme floods (flood of 2 October 2017). The rainfall 
observations at the stations were interpolated to delineate the spatial distribution of 
precipitation using the inverse distance weighting interpolation method (IDW), which 
gave similar precipitation patterns like the ones presented by the Norwegian 
Meteorological Institute (http://www.senorge.no/ (Accessed 20 March 2021)). Thereafter, 
precipitation zones were delineated as in Figure 3. The combination of the two described 
approaches was used to calculate the final runoff coefficient in each cell, 𝐶𝐶𝑡𝑡, as follows: 

𝐶𝐶𝑡𝑡   = 𝐶𝐶 × �
𝑖𝑖𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

� (1) 

where 𝑖𝑖𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum amount of precipitation intensity among the recorded 
values, 𝑖𝑖𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the recorded precipitation intensity in each cell, and 𝐶𝐶  is the runoff 
coefficient. 

 
Figure 3. Spatial distribution of the precipitation stations and the interpolated precipitation over the 
catchment. 

The input parameters, namely hydraulic roughness parameter (𝐾𝐾𝑆𝑆), runoff coefficient 
(𝐶𝐶), and precipitation intensity (𝑖𝑖𝑃𝑃), were selected as the uncertain input variables that 
HiSTAV uses to simulate the flow. The hydraulic roughness and runoff coefficient 
parameter spaces are constructed for each of them based on a range that reflects the 
possible variation range. 
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The choice of ranges was based on the land type, vegetation, and average antecedent 
soil moisture. 

Estimation of precipitation intensity is a crucial step in rainfall-runoff modelling 
practices, but it is incorporated with uncertainty due to the limited historical data, climate 
variability/change, and the complex and chaotic nature of climate. In this study, we used 
a Bayesian MCMC approach to define a range for precipitation intensity. For this purpose, 
annual maximum precipitation data were collected from different stations in the 
catchment and the generalized extreme value distribution (GEV) was fitted to each data 
series using a Bayesian MCMC approach. This approach uses a Markov chain Monte 
Carlo (MCMC) algorithm to estimate the GEV distribution for each data set. We used the 
algorithm implemented in the R-package nsRFA [31], where a Metropolis Hastings 
algorithm is implemented, and carried out 50,000 iterations to fit the GEV distribution. 

In this study we aimed to emulate the 100-year return period flood water level. 
Therefore, using the fitted GEV distribution for the 100-year return period, the design 
rainfall and the corresponding 5% and 95% confidence intervals are selected as the 
precipitation range for each station. The estimated ranges for different stations were 
compared and finally a sufficiently wide range was selected as the catchment precipitation 
range. In order to consider future climate change effects, the defined precipitation interval 
was multiplied by a climate factor equal to 1.2. The factor was selected based on the values 
reported by Hanssen-Bauer et al. [32] for the case study region (Agder) under high 
emissions scenario (RCP8.5). For details of the Bayesian MCMC method, we refer the 
reader to the studies by Reis Jr and Stedinger [33], Gaume et al. [34], and Lutz et al.[35]. 

Table 1 presents the considered input variables with their descriptions and specified 
ranges used in this study. Runoff coefficient values and Strickler roughness values were 
assigned to each cell based on the land type. 

Table 1. Selected input descriptions and assigned ranges. 

Parameters  Acronym Range 
Precipitation intensity 
(mm/h) 

 ip 5–8.1 

Strickler roughness 
(m1/3/s) 

Urban lands Ks_U 40–70 

 Forests (broad-leaved, coniferous) Ks_F 15–40 
 Moors and heathland Ks_Mo 18–30 
 Arable lands Ks_A 18–37 
 Agriculture and vegetated areas Ks_Ag 18–37 
 River and water courses  Ks_R 20–50 
 Mineral sites Ks_Mi 30–60 
Runoff coefficient (%) Urban lands C_U 80–90 
 Forests (broad-leaved, coniferous) C_F 50–70 
 Moors and heathland C_Mo 60–80 
 Arable lands C_A 40–60 
 Agriculture and vegetated areas C_Ag 40–60 
 Mineral sites C_Mi 70–90 

In total, there were 14 potential input variables (seven different 𝐾𝐾𝑠𝑠 values assigned 
for each land type, six types of runoff coefficient values assigned for each land type, and 
precipitation intensity) used to simulate the flow. The values for each of the inputs were 
randomly sampled assuming uniform probability distribution within the specified range 
(Table 1). Uniform distribution was selected ensuring equal probability for each value and 
avoiding any prior assumptions about the parameter distribution. The reasoning behind 
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the use of a uniform distribution for roughness and runoff coefficients was that there was 
insufficient information to assume that any value in the range was more likely than any 
other value [36]. As displayed in Table 1, the selected range for precipitation was wide 
compared to the other ranges. Thus, the precipitation intensity probability distribution 
was divided into three equal uniformly distributed intervals with equal probabilities (1/3) 
and the values were sampled from these intervals. The choice of the uniform distribution 
for precipitation intensity was made to ensure that all possible precipitation intensities 
from low to extreme rainfalls were presented for training the emulator. 

A total of 1100 input data sets were randomly generated, and simulations were 
performed using HiSTAV. Because it is crucial to predict associated extreme rainfall 
events (i.e., real time flood prediction purposes as in early warning systems), in addition 
to the 1100 samples, another 100 samples that resulted in extreme events (higher C and ip 
values and lower Ks values in river section) were simulated and were added to the total 
data set. In this study we intended to emulate the numerical flood inundation modeling. 
Therefore, water level was considered as the output of interest in the simulations and the 
values were observed in three cross sections (CS), specified along the study area (Figure 
1b). 

2.3. Emulation Methods 
2.3.1. Support Vector Regression (SVR) 

Support Vector Regression (SVR)is a supervised learning algorithm that estimates 
the connection between the input and output of a system from the existing samples [37]. 
This method attempts to identify correlations by transferring data to a higher dimension 
according to Equation (2) and solving the equation with the help of structural risk 
minimization based on Equation (3) [38]. If the relationship between the dependent and 
predictor variables is captured correctly, it can be used to predict the system outputs from 
the inputs [39]. 

𝑓𝑓(𝑥𝑥) = 𝜔𝜔𝜔𝜔(𝑥𝑥) + 𝑏𝑏 (2) 

𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀: �
1
2
‖𝜔𝜔‖2 + 𝐶𝐶�𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖∗�     𝑆𝑆𝑆𝑆𝑏𝑏𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡:�

𝑦𝑦𝑖𝑖 − (𝜔𝜔𝜔𝜔(𝑥𝑥𝑖𝑖) + 𝑏𝑏𝑖𝑖) ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖
(𝜔𝜔𝜔𝜔(𝑥𝑥𝑖𝑖) + 𝑏𝑏𝑖𝑖) − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖∗

𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖∗ ≥ 0
 (3) 

Given a training data set (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), i=1, 2,3,…,n 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛 ,𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛, 𝑥𝑥𝑖𝑖 is the input vector, 
𝑦𝑦𝑖𝑖  shows the corresponding output, and 𝑖𝑖 denotes the ith training sample. The variable 
𝜔𝜔 ∈ 𝑅𝑅𝑛𝑛denotes the weight factor, 𝑏𝑏 ∈ 𝑅𝑅 indicates the deviation and is constant, n is the 
size of data, and 𝑓𝑓(𝑥𝑥) is the estimated target that is applied to calculate the output based 
on the actual input data, which has tolerance error and negligible complexity (Agustina 
et al., 2018). The expression 𝜔𝜔(𝑥𝑥𝑖𝑖) is a nonlinear transfer function that maps input data to 
the higher dimensional feature space; 𝜉𝜉𝑖𝑖 and 𝜉𝜉𝑖𝑖∗ are slack variables that specify the upper 
and the lower training errors subject to an error tolerance ε, and C is a positive constant 
that determines the degree of penalized loss when a training error occurs. Using the 
Lagrange relations, the nonlinear regression function will be as follows: 

𝑓𝑓(𝑥𝑥) = �(𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖∗)𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑖𝑖) + 𝑏𝑏
𝑛𝑛

𝑖𝑖=1

 (4) 

where, 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑖𝑖∗ are Lagrange coefficients and 𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑖𝑖) = 〈𝜔𝜔(𝑥𝑥),𝜔𝜔(𝑥𝑥𝑖𝑖)〉 is called the kernel 
function [38]. There are different kernel functions such as: polynomial, Gaussian radial 
basis, exponential radial basis, and wavelet kernel. To have an accurate model, the 
models’ parameters including C, ε, and the parameters of the kernel function should be 
determined appropriately. As a result, in the current study a grid search algorithm 
combined with the cross-validation method was used to optimize (tune) the different 
hyperparameters and models’ architecture. 
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2.3.2. Artificial Neural Networks (ANN) 
Artificial neural networks (ANN) are nonlinear, multi-dimensional interpolating 

functions capable of capturing complex nonlinear relationships in the underlying data 
that can be missed by conventional regression methods. The topology structure of ANN 
is displayed in Figure 4. The network displayed in Figure 4 consists of a number of 
interconnected nodes (called neurons) arranged into three layers: input layer (receives 
input), hidden layer (represents the relationship between the input layer and the output 
layer), and output layer (releases the output). The implementation of the ANN model is 
based on three phases: a training phase to determine the model parameters from a set of 
training data, a validation phase to estimate the generalization ability of the model, and a 
test phase to calculate the output using the optimized model [40]. 

 
Figure 4. ANN topology. 

2.3.3. Performance Criteria 
The performance of the proposed emulators is assessed by computing several 

metrics: root mean square error (RMSE), mean relative absolute error (MRAE), and 
coefficient of determination (𝑅𝑅2). In addition to these metrics, maximum absolute error 
(MaxAE) is also selected to assess the performance of the emulator in prediction of 
individual extreme values (Equations (5)–(9)). The RMSE, MRAE, and MaxAE metrics 
have ideal values equal to zero, and the ideal value for 𝑅𝑅2 is one. 

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖 (5) 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �
1
𝑀𝑀
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (6) 

𝑀𝑀𝑅𝑅𝑀𝑀𝐸𝐸 =
1
𝑀𝑀
�

|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|
𝑦𝑦�𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑛𝑛

 (7) 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=𝑛𝑛

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦)2𝑛𝑛
𝑖𝑖=𝑛𝑛

 (8) 

𝑀𝑀𝑎𝑎𝑥𝑥𝑀𝑀𝐸𝐸 = 𝑀𝑀𝑎𝑎𝑥𝑥|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖| (9) 

where 𝑀𝑀  represents the number of observations, 𝑦𝑦𝑖𝑖 , 𝑦𝑦  and 𝑦𝑦�𝑖𝑖  are observed, mean of 
observed, and predicted values, respectively. 

2.4. Development of the Emulator 
As was noted previously, 2D hydrodynamic models are usually computationally 

intensive and require long run time. In the current catchment considering the resolution 
of DTM and the number of mesh elements, each simulation takes about 1.5 h using 8× 
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NVIDIA Tesla P100 (16GB) GPU (Model: 2 ×  Intel(R) Xeon(R) CPU E5-2698 v4 @ 
2.20GHz). Therefore, the main objective of this study is to produce an emulator to predict 
water level as close as possible to the 2D model outputs. In this section, we develop an 
emulator focusing on two questions: (i) how to increase the accuracy of the emulator and 
(ii) how much training data are required for developing an accurate emulator. We follow 
three steps: (1) develop the initial emulator using all the inputs, (2) improve the accuracy 
of the emulator by reducing the dimensionality, and (3) address the minimum data set 
size required for training an accurate emulator. A general overview of the workflow in 
this study is presented in Figure 5. 

To develop the emulator, the data set is split into test and training sets. Eighty percent 
of the data are randomly selected as the training set and 20% as the test set for model 
validation. Two emulators were developed, one using SVR and another using ANN. 

To configure the artificial neural networks, a trial-and-error procedure was used to 
identify the number of hidden layers and nodes and fix the final architecture of the neural 
network model. Several different model structures were tested using 1 to 4 hidden layers 
and 4 to 30 hidden nodes, and the number of epochs was set as four epochs’ of 1000 
iterations each. Finally, a model with two hidden layers with 10 and 12 hidden neurons 
in each was selected as the optimal structure. To determine the optimal structure for SVR 
a grid search algorithm was used, combined with the cross-validation method to optimize 
(tune) the different hyperparameters and models’ architecture, and a model with 
parameters C = 10, γ = 0.1, ε = 0.01 and Radial basis function (RBF) kernel was selected as 
the optimal model. 

The performance and accuracy of data driven approaches highly depend on the input 
selection and their functional relationship with outputs. Identifying suitable input 
variables reduces the model complexity and prevents redundant information being added 
into the model (i.e., input dependence), which avoids the negative impact of these inputs 
on model performance [41]. There are several approaches for dimensionality reduction 
purposes such as screening methods, correlation-based methods, variance-based 
techniques, principal component analysis, etc. 

In this study three correlation tests—Pearson, Kendall, and Spearman—were used to 
identify the most correlated inputs and reduce the dimensionality. Pearson’s correlation 
test is the most widely used correlation statistic to measure the degree of linear association 
between two variables, whereas Kendall’s and Spearman’s correlation coefficients are 
based on ranks and measure the ranked order correlation. Further details of different 
correlation tests can be found in the study conducted by [42]. 

In addition to the correlation tests, analysis of variance (ANOVA) was performed to 
identify the most significant factors. This method focuses on the analysis of the variance 
explained by each input and is accomplished by estimating the Fischer’s test value (F-
value). The impact of any factor is explained by its F-value and the corresponding sum of 
squares that represent variance. A higher F-value and sum of squares of any factor 
indicates its relative importance in the process of the response [43]. To represent the 
impacts of each individual parameter, the percentage contribution (PC) of each input is 
calculated using the following equation [44,45]: 

𝑃𝑃𝐶𝐶 =
𝑆𝑆𝑆𝑆𝑗𝑗
𝑆𝑆𝑆𝑆𝑇𝑇

× 100 (10) 

where SST is the total sum of squares, and SSj is the sum of squared deviations for each 
parameter j. Both can be calculated using Equations (11) and (12), respectively: 

𝑆𝑆𝑆𝑆𝑇𝑇 = �(𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2
𝑛𝑛

𝑖𝑖=1

 (11) 
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𝑆𝑆𝑆𝑆𝑗𝑗 = 𝑀𝑀𝑗𝑗𝑐𝑐�(𝑌𝑌𝚥𝚥𝚥𝚥��� − 𝑌𝑌�)2
𝑐𝑐

𝑖𝑖=1

 (12) 

where n is the number of observations, 𝑌𝑌𝑖𝑖 represents the ith observed result in the result 
set, 𝑌𝑌� is the average of the results, 𝑌𝑌𝚥𝚥𝚥𝚥��� is the mean of results for the factor j at level i, and 
𝑀𝑀𝑗𝑗𝑐𝑐 is the number of experiments that have factor j at level l [46]. 

To successfully train an emulator, the dataset on which the emulator is trained needs 
to be sufficiently large (i.e., consist of a sufficient number of observations) [47]. This can 
be challenging when the generation or collection of training data is subject to certain 
limitations. A number of studies have highlighted the importance of sampling and the 
effect of sample size on the accuracy of the models. 

Hjort and Marmion [48] investigated the sample size effect on the accuracy of a 
geomorphological model using an ANN approach. Heckmann et al. [49] analyzed the 
sample size effects on logistic regression (LR) model accuracy for predicting debris flow 
spatial distribution and showed the negative effect of both inadequate sample size and 
too large sample size on results. Kalantar et al. [50] investigated the effect of different 
training samples on parameter estimation in SVR, LR, and ANN models and reported that 
the ANN model was performing better in terms of sensitivity to training samples. In this 
study training datasets with different sizes were created using random sampling. The 
procedure was repeated for +5000 times for each size and the variability in performance 
of the trained emulator was assessed through its predictive ability on the test set (unseen 
data). 

 
Figure 5. General overview of the methods. 
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3. Results and Discussion 
Following the 1200 simulations obtained from random input data sets, two emulators 

were developed using ANN and SVR to predict water level at three different cross 
sections. The required time to predict 1200 water levels using ANN and SVR was about 1 
min, which is 100,000 times faster compared to the simulation time using HiSTAV. 

Figure 6 displays the water level predicted by ANN and SVR against the 
corresponding results of the 2D simulator. Moreover, to evaluate the performance of the 
initial emulators using a full set of inputs (14 input parameters), four statistical metrics, 
𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸, 𝑅𝑅2, 𝑀𝑀𝑅𝑅𝑀𝑀𝐸𝐸, and 𝑀𝑀𝑎𝑎𝑥𝑥𝑀𝑀𝐸𝐸 (Equations (6)–(9)) were calculated at each of three cross 
sections and the results are presented in Table 2. 

Table 2. Initial emulator performance (developed using 14 inputs) on test set. 

Location SVR    ANN    
 RMSE R2 MRAE MaxAE RMSE R2 MRAE MaxAE 
CS1 0.043 0.998 0.001 0.163 0.093 0.989 0.003 0.381 
CS2 0.043 0.999 0.001 0.163 0.106 0.985 0.003 0.493 
CS3 0.042 0.997 0.001 0.153 0.094 0.986 0.003 0.299 

According to the performance statistics presented in Table 2 and the plots displayed 
in Figure 6, it can be seen that the SVR with optimized model parameters 𝐶𝐶 = 10, 𝛾𝛾 = 0.1, 
𝜀𝜀 = 0.01, and Radial basis function (RBF) kernel, outperformed the ANN emulator and 
led to more accurate results. Looking at the MaxAE values in Table 2 and also the peak 
and minimum points in Figure 6, it can be observed that the performance of the emulators 
was not accurate enough and, in some cases, they made errors as large as 16 cm (by SVR) 
and 50 cm (by ANN). Therefore, in next section we try to enhance the accuracy of the 
models. 
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Figure 6. Comparison of observed and predicted water level for test set by ANN and SVR at cross Section 1 (a), cross 
Section 2 (b), and cross Section 3 (c). 

3.1. Dimensionality Reduction 
In this section three correlation tests—namely Kendall, Pearson, and Spearman—and 

ANOVA were used to identify the most important inputs and reduce the dimensionality. 
Using 1200 simulations obtained with 14 parameters with different spaces as inputs, the 
correlation tests and ANOVA analysis were applied in the specified cross sections, and 
the results are displayed in Figure 7. 

 
Figure 7. Absolute correlation values resulting from Kendall, Pearson, and Spearman tests and 
percentage of contribution (PC) values resulting from ANOVA test (Equation (10)). 

The results of the different implemented techniques presented in Figure 7 indicate a 
significant correlation between rainfall (ip) and water level followed by river friction (Ks_R) 
and forest runoff coefficient (C_F). The findings of the correlation tests and ANOVA test 
are consistent; however, the ANOVA results are more stable at different locations 



Water 2021, 13, 2858 13 of 20 
 

 

compared to the correlation tests. According to the correlation values displayed in Figure 
7, forest friction (Ks_F) shows a weak correlation with water level at cross sections CS1 
and CS2 and a negligible correlation at cross section CS3. Unlike correlation values, the 
calculated contribution value resulted from the ANOVA test shows an almost constant 
contribution of forest friction (Ks_F with about 4%) at different cross sections. Accordingly, 
two alternative approaches were adopted to train the emulators: first, the four highest 
correlated parameters (rainfall (ip), forest runoff coefficient (C_F), river friction (Ks_R), and 
forest friction (Ks_F)) were used to develop the emulators. In the second approach forest 
friction (Ks_F) was removed from the input set and emulators were trained using only 
three inputs. The results of the first approach (four inputs) are presented in Table 3. 
Comparing Tables 2 and 3 (i.e., fourteen inputs and four inputs, respectively), shows that 
the performance of both emulators considerably improves (about 50% reduction in error 
values) when the number of the inputs decreases to four inputs. The results of the second 
approach (three inputs) showed that the predictive ability of the models considerably 
deteriorates when the number of inputs is decreased to three parameters. Therefore, the 
results are only presented for the emulators with four inputs (Table 3). 

Table 3. Emulator (with four inputs) performance on test set. 

 SVR    ANN    
Location RMSE R2 MRAE MaxAE RMSE R2 MRAE MaxAE 
CS1 0.024 0.999 0.001 0.084 0.099 0.987 0.003 0.291 
CS2 0.024 0.999 0.001 0.084 0.121 0.983 0.004 0.426 
CS3 0.022 0.999 0.001 0.078 0.085 0.988 0.003 0.363 

The results presented in Table 3 indicate the efficiency of the methods used for 
detecting the main influencing parameters. However, caution must be taken in selection 
of inputs. As an example, the correlation tests detected the forest friction as a weakly 
correlated parameter, but the performance of the models improved considerably when 
this parameter was added into input set. 

3.2. Error Structure Analysis 
In order to gain insight into the predictive ability of the selected emulators (ANN and 

SVR with four inputs), the error values (Equation (5)) were plotted versus observed water 
level for the test set in the specified locations (CS1 to CS3). Moreover, to assess the error 
trend and change point, linear regression and polynomial regression were used. The slope 
of the linear regression line indicates if there is a trend in the plotted error values. Positive 
values of the slope show increasing error trends, whereas negative values indicate 
decreasing trends. A polynomial (quadratic) line that deviates strongly from the linear 
regression line provides further insights regarding how ‘‘severe’’ the potential over- or 
under-prediction may be for large target response values [21]. As it is displayed in Figure 
8, the linear and polynomial regression lines for SVR model are close to each other and 
are approximately horizontal in all three cross sections. This result indicates that the 
performance of the SVR model for different magnitudes of floods were similar and 
relatively constant. In contrast, the ANN model showed an increasing trend of error. The 
error values were negative for the smaller water levels and positive for the higher water 
levels. This result indicates that the ANN model tends to overpredict the smaller floods 
and underpredict the extreme floods. The steep slope of the polynomial regression line 
for ANN indicates that the potential of underprediction of extreme events is even higher 
than overprediction of small floods by ANN. As can be seen in the plots, the best 
performance of ANN was achieved for the medium size floods. Moreover, from the plots 
it is apparent that the error ranges for SVR were much smaller than those for ANN. 
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Figure 8. Error trend and linear and polynomial regression of error values resulted from SVR and ANN predicted water 
level at the specified cross sections (CS1 to CS3). 

In flood modeling/prediction processes the normality assumption for error values is 
quite common, whereas potentially error values can follow any distribution. Therefore, in 
this section the distribution of error is investigated using the histograms displayed in 
Figure 9. The histograms show that the ANN error distributions were non-symmetric and 
were skewed to the left (positively skewed). This result indicates that ANN generally 
overpredicts the water level. Unlike the ANN, the SVR error distributions were 
approximately symmetric, and the error ranges were much smaller compared to the ANN 
ones. The fitted SVR distributions in CS2 and CS3 were close to normal distribution. 
However, in CS1, the distribution was more peaked than the normal distribution. Thus, 
blindly assuming normality for errors, whereas data come from non-normal data (which 
is even more common), can eventuate to critical statistical inference problems. 
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Figure 9. Empirical distribution of error values versus the normal distribution for the SVR and ANN based emulators. 
(a) SVR error distribution-CS1, (b) ANN error distribution-CS1, (c) SVR error distribution-CS2, (d) ANN error 
distribution-CS2, (e) SVR error distribution-CS3, (f) ANN error distribution-CS3 

3.3. Sample Size 
In the previous section the SVR emulator with four inputs was selected as a reliable 

emulator. Therefore, in this section, we aim to extend our analysis by addressing the effect 
of sample size on the model accuracy. For this purpose, different training sample sizes 
equal to 80%, 70%, 60%, 50%, and 40% of the entire data set (1200 simulations) were 
generated by randomly selecting the required number of observations, and the 
performance of the emulator is assessed through RMSE and MaxAE. As an example, the 
training sample size equal to 70% was obtained with 840 observations randomly selected 
as the training set and the remaining (30%) used as the test set. The process was repeated 
for +5000 times for each training sample size to ensure that different possible events were 
sampled for training the emulator. The effect of selecting different training samples is 
displayed in Figure 10. 
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Figure 10. The calculated (a) RMSE and (b) MaxAE box plots for test sets resulting from the models trained by different 
sample sizes for 5000 times.  

According to the RMSE values variation (Figure 10a), the larger training sets (80% 
and 70%) resulted in the smaller error values. Assuming 7 cm as an acceptable 
performance threshold, Figure 10a indicates that the RMSE values less than 7 cm can be 
achieved for training sizes equal to 60% or more. As shown in Figure 10a, decreasing the 
training size to 50%, led to a sudden increase in RMSE values (ranges between 6 cm to 8 
cm). The box plot for the 50% size shows that 75% of the provided RMSE values were less 
than 7 cm. This result indicates that it is possible to train an acceptable emulator using 
50% of data, but this requires a proper selection of the data. 

Since extreme values are the major area of interest in flood studies and play an 
important role in defining confidence intervals or creating flood probability distributions, 
maximum absolute error (MaxAE) was also considered as a performance evaluation 
criterion in this section. Figure 10b displays the maximum error variation for each size 
resulting from 5000 iterations for each sample. Based on the Figure 10b, as it was expected 
the larger training sets (70% and 80%) were performing well. Looking at the median line 
for 80% and 70% sizes in the plots, it can be seen that the maximum difference between 
the observed and predicted water level mostly (75% of the time) varied between 8 cm to 
13 cm. Although the size of 70% may produce error values as big as 16 cm to 19 cm (the 
MaxAE values above third quartile) (Figure 10b), it should be noted that the probability 
of getting such values is low, and in 75% of the time the MaxAE values never exceed 16 
cm. 

As much as the training size decreased, the MaxAE range increased. For training size 
equal to 60%, a comparison between the RMSE values (Figure 10a) and MaxAE values 
(Figure 10b), indicated that the overall performance of the emulator was acceptable (small 
RMSE values), but according to the MaxAE values, it may be prone to low probable values 
such as extremes floods. Furthermore, assuming 15 cm as the error threshold for MaxAE, 
it can be seen that about 50% of the MaxAE values (for training sample size of 60%) were 
above this limit. Accordingly, it was not reliable to train an emulator with less than 50% 
of the data (corresponding to 600 simulations), because the errors were typically beyond 
the acceptable limit. As it is displayed for the size equal to 40%, there is a big difference 
between the minimum and maximum calculated MaxAE values (about 25 cm), which 
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means there is a large uncertainty associated with predicted extreme water levels that can 
bias the performance of the emulator. 

4. Conclusions 
In the present study, two emulators were developed to predict cross sectional water 

level based on information obtained from coupled hydrology-hydraulic 2D simulations 
at the catchment scale. The following conclusions can be drawn from the present study: 
• The statistical metrics for the developed emulators confirm the applicability of 

surrogates for predicting the cross-sectional water level. However, evaluating the 
results from different aspects (performance metrics, error trends, ranges, and 
distributions) showed that SVR has a better performance compared to ANN. 

• Inclusion of too many variables as inputs can deteriorate the performance of the 
emulators; thus, simplification of the model structure through dimension reduction 
techniques can be used to obtain the most accurate model. The implemented 
correlation tests and ANOVA used in this study provided consistent results and 
showed that they can be a good choice to reduce the dimension of input data, 
improving the accuracy of the models. 

• The error trend and regression plots for the SVR model and ANN model indicate that 
the performance of the SVR model for different magnitudes of floods are similar and 
relatively constant, whereas the ANN model tends to overpredict the smaller floods 
and underpredict the extreme floods. The best and worst performance of the ANN-
based emulator is achieved for the medium size and extreme floods, respectively. 
Therefore, the application of the ANN model may not be safe for prediction of 
extreme flood events. 

• The normality assumption for errors, which is typically undertaken in hazard 
assessment and decision making, is not always true and can eventuate to incorrect 
statistical inferences. 

• The findings in this study suggest that the training data set size equal to 70% (or 
more) of data results in reliable and accurate predictions. The results also showed 
that it is not reliable to train an emulator with less than 50% of the data 
(corresponding to 600 simulations). 
The use of data-driven models to emulate 2D hydrodynamic simulations at the 

catchment scale is feasible and will help to overcome the unaffordable computational 
resources of physical-based models. Finally, it is important to bear in mind the limitations 
of the current study. First, the time-consuming simulations prevented us from adopting a 
more complex approach such as synthetic hyetographs, which would increase the number 
of inputs and consequently would increase the total number of simulations. Therefore, we 
have used a time invariant precipitation intensity in this study. Second, the study is 
limited to 100-year design rainfall range; for the values outside of this range, the training 
process should be updated. Finally, this study has only focused on the water level as the 
output of interest. Further analyses should be done to develop an emulator to predict 
other important outputs such as the velocity. Nevertheless, the noted limitations do not 
invalidate the main conclusions presented above. 
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