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Abstract

GNSS is one of the most widely used positioning techniques in modern technology. However,
the signals from the GNSS satellites are weak on earth due to the propagation attenuation,
making GNSS-based systems vulnerable to interference or jamming of signals. This the-
sis proposes a machine learning approach to detect the presence of jammers in the GNSS
spectrum bands in recorded data. We have employed the state-of-the-art and baseline ma-
chine learning techniques for Image- and multivariate time series classification and evaluated
their ability to classify the presence of illegal jammer activity. In addition, we propose a
novel complexity reduced version of a recently proposed multivariate time series transformer
model. Experiment results show that the tested machine learning techniques, after proper
configurations, achieve a classification accuracy of up to 99.5%. Moreover, the simplified
transformer-based approach achieves the same level of performance while reducing the num-
ber of parameters by nearly half compared to comparable artificial neural network models.
The high accuracy confirms the applicability of the machine learning approach in jammer
classification.
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Chapter 1

Introduction

The use of Navigation Satellite Systems (GNSS) in applications is growing [56]. With the
increased use of GNSS positioning for public services, such as road toll for heavy transport,
GNSS signal jammers in vehicles are expected to increase proportionally. The use of radio
frequency signal jammers is illegal, and monitoring and tracking such activity in Norway is
under the jurisdiction of Nkom.

Currently, Nkom uses a process of manually annotating potential jammer events from recorded
radio frequency data. They have labeled historical data and are interested in automating
some of the annotation process. For this purpose, we will investigate the use of state-of-the-
art machine learning methods for the classification of time series and image data.

1.1 Introduction to the Domain of GNSS Interference

In the field of signal processing, a signal is a carrier of information through a medium, from
a transmitter to a receiver [53]. The connecting medium is commonly either a wired con-
nection (such as an Ethernet cable) or a wireless connection. Communication over wireless
connections utilizes electromagnetic (EM) radiation to encode information. The frequencies
of these EM waves are within the radio spectrum (30Hz to 300GHz) [22]. Ranges of frequen-
cies may be referred to as frequency bands and are continuous ranges defined by a lower and
an upper frequency bound.

Global Navigation Satellite System (GNSS) is any system that uses position and timing
data from satellites. The satellites send EM signals to GNSS receivers on earth, providing
Position, Navigation, and Timing (PNT) services to these receivers [1]. GNSS receivers are,
for example, present in most modern computers, phones, and cars. There are several GNSS
systems, including GPS, Galileo, GLONASS, and BeiDou [56|. Each system uses its own
allocated frequency bands within the L Band from 1 GHz to 2 GHz [31].

Radio frequency interference (RFI) is when two signals of equal frequency coexist at the
same space and at the same time. If this happens in the proximity of a receiver, it will
create disruptions and cause reception problems. RFI can occur naturally or be created by
human activity [56]. GNSS jammers are an example of the latter. They are devices that
cause disruptions to PNT services in their vicinity by broadcasting strong EM waves of the
same frequencies used by the GNSS applications. Due to the jammers’ relative proximity to
GNSS receivers, they overpower the EM waves from GNSS satellites |9].



1.2 Motivation

The use of GNSS jammers is increasing [45] globally, and there has been an exponential
growth in reported GPS outages in recent years [23].

At the same time, the use of GNSS signals has increased in a variety of modern applica-
tions [56]. An example is medical aid helicopters which depended on reliable GPS access. A
jammer-caused GNSS disruption could have severe consequences for such critical services.

GNSS jammers are also being used in Norway. A national decrease in jammers was observed
in 2019 [56], likely due to media attention on the topic Appendix A. However, we expect
the use of jammers to increase again with the seemingly imminent advent of satellite-based
road toll for heavy transportation [61]. Many European countries have already implemented
GPS-based tolling systems, and The Ministry of Transport and Communications, together
with the Ministry of Finance and the Ministry of Climate and Environment, has issued a
161-page report concluding such a system would have substantial benefits [60]. There is also
some positive political sentiment for implementing GPS-based systems for civilian traffic
toll [47]. Naturally, this would further incentivize the use of GNSS jammers, as drivers could
use them to circumvent the tolling mechanism. Therefore, GPS-based toll would further
increase the demand for monitoring and regulating the radio frequency spectrum.

The Norwegian Communications Authority (Nkom) states on their website that, “Nkom is an
executive, supervisory and administrative authority for postal and electronic communication
services in Norway” [418]. They are responsible for surveying interference in the GNSS bands
and identifying illegal RFI events such as jammers. Currently, experts from Nkom have
to manually process and label RFT events captured by monitoring stations across Norway,
which is tedious work.

In alignment with the Norwegian governments’ strategy to search for opportunities to use
machine learning in the public sector [2], this thesis aims to investigate the potential of
machine learning methods for jammer detection, and to provide recommendations on the
implementation of a system based on these methods.

Automatic detection of illegal jammer activity would increase the chances of apprehending
the perpetrators due to faster response times. Another benefit would be freeing up valuable
human resources currently tied down by this manual processing.

For further reading we have included a number of news articles in Appendix A, Newsarticles
on Jamming.

1.3 Problem Statement

The over-arching goal of this thesis is to detect the presence of GNSS jammers in recorded
RFT events using machine learning. Nkom will provide the raw data files and corresponding
labels. We will analyze the data and establish appropriate pre-processing techniques to
prepare the events for the relevant machine learning classifiers.

We aim to treat the jammer detection problem respectively as a multivariate time series
classification task, and an image classification task. By evaluating the state-of-the-art and
commonly used approaches in the machine learning literature, we will advise Nkom in their
implementation of Al-based solutions to handle RFI events. Our emphasis will be on find-
ing a sufficiently effective solution while minimizing the requirements for computational



resources.

1.3.1 Thesis Goals
We summarize our aspirations by the following goals:

1. Evaluate the state-of-the-art in multivariate time series classification, image classifica-
tion, and machine learning applied to signal interference management.

2. Achieve a 99% detection accuracy in jammer detection.
3. Achieve a 100% recall on jammer detection while maintaining a 95% accuracy.

4. Improve upon existing algorithms by reducing complexity.

1.3.2 Hypothesis
With this thesis, we will investigate the following hypothesis.

1. There exists patterns in jammer-caused RFT events that are distinguishable from other
RFT interference.

2. Machine learning algorithms can learn these patterns to detect the presence of jammers
in recorded RFT events.

1.4 Contributions

Based on the literature review of this thesis, we observe a discrepancy between the state-
of-the-art in multivariate time series classification and machine learning methods applied
to jammer detection. This thesis connects these domains by testing several of the best-
performing models from the field of multivariate time series classification. We also tested
numerous image classification models of varying complexity, whereas previous research in
this field has commonly only used simple CNN and SVM-based models [15][72][25]. Finally,
we implemented a complexity-reduced version of a recently developed Transfomer designed
for time series classification.

1.5 Paper Outline

In Chapter 2, Theoretical background and State-of-the-art, we will introduce the theoretical
framework for machine learning, and introduce the problem domain in more detail. We
also present related work from jammer classification, and the state-of-the-art machine learn-
ing methods that we use. Chapter 3, Machine Learning Approach for Jammer Detection,
describes in detail the data analysis, preprocessing techniques, machine learning methods,
and training methodology we have used. The results are presented in Chapter 4, Results
and evaluation, along with a deeper dive into four of the best performing models. Finally,
Chapter 5, Conclusion, sums up the approach and results we have outlined in this thesis.
We also give recommendations for how the models presented in this paper can be put into
practical use, and some future work to increase the robustness of the models.



Chapter 2

Theoretical background and
State-of-the-art

This chapter aims to provide the reader with background knowledge relevant to this thesis
and elaborate on related works.Section 2.1, Theoretical Background, contains definitions and
explanations from the domains of machine learning and GNSS services. Section 2.2, The
state of the art, presents the respective literature from multivariate time series classification
and image classification as well as articles applying machine learning to signal interference.

2.1 Theoretical Background

For the readers unfamiliar with the domain of GNSS or the current practices of jammer
detection in Nkom, we have included Section 2.1.1, GNSS Background Knowledge. Fur-
thermore, a target audience for this thesis is from the domain of GNSS management, and
they may not be familiar with the concepts of machine learning. We therefore provide some
introductory explanations in Section 2.1.2, Machine Learning Background Knowledge.

2.1.1 GNSS Background Knowledge

Concerning the management of RFI, we will provide a brief overview of the file format Nkom
uses for recorded events, a paragraph on GNSS jammers, and a description of how expert
personnel currently monitor and annotate interference in the frequency bands.

Standard Data Exchange Format for Frequency Band Registrations, CEF Files

The raw data we have used in this project are recordings of RFI events stored in the file
format defined by RECOMMENDATION ITU-R SM.1809, Standard data exchange format
for frequency band registrations [65]. We refer to this format as the common exchange format
(CEF). The format standardizes how frequency band registrations are stored so agencies
could more easily share data between monitoring campaigns.

[65]

The CEF file format starts with header fields containing metadata of the events and con-



figurations of the monitoring equipment used to record the event. The format allows many
possible header fields and a list of which is shown in 2.1. We have marked the fields most
relevant to this thesis in bold type. The files store data points after the header fields and
a separating blank line. The data points represent monitored signal levels across a band-
width, and we refer to a row of these points as a “trace”. The rows begin with a timestamp
indicating when the trace scan was started, followed by comma-separated data point values.
An example file and further explanations is given in Section 3.1.1, The Raw Data Format.

GNSS Jammers

Figure 2.1 depicts GNSS jammers similar to those typically confiscated from apprehended
perpetrators. The jammers are small devices powered by a battery or the car’s electrical
system. They can, among other uses, be used to hinder the tracking of a vehicle and
circumvent GPS toll systems. [56] found that jammers used in Norway are most frequently
found in trucks with company logos. Most likely, this is due to people using company cars
for private use or illicit work.

s
=

Figure 2.1: Picture of typical small GNSS jammers |[6].

Monitoring stations

Monitoring stations are sites with RF monitoring equipment continuously observing certain
frequency bands. The respective monitoring agency uses the stations to detect and record
RFT events.

The equipment at the monitoring stations scans through the configured bandwidth one
segment at a time, recording values for several data points simultaneously. Once the scan has
gathered data segments for the entire bandwidth, one trace is complete, and the equipment
begins again at the start frequency (of the BW). The size of the segments, filters, sampling
techniques, and scan speeds vary between instrument manufacturers.

Recording of an RFT event is triggered when monitored EM radiation levels exceed a thresh-
old limit for longer than a set number of traces (commonly 5).

Current Approach to Jammer Detection without ML

After a monitoring station has recorded an RFI event, the event must be inspected and
labeled according to what caused the interference. Currently, experts at Nkom are respon-



sible for this processing, and we will briefly elaborate on how they undertake this manual
inspection.

Figure 2.2 illustrates some of the views the experts can use to analyze the data and are all
produced from the data points in the CEF file. The top image shows the average data point
value per trace over the time duration of an event. The image below shows max- mean-
and min-hold graphs. In this view, the x axis represents data point columns (which in turn
represents frequencies) and calculates the respective operation (min, mean or max) based on
each column of values. As there is essentially no way to check if a label is correct other than
tracking down the source, i.e., apprehending a person using a jammer, it is difficult to be
100% certain. Furthermore, spectrograms of certain types of jammer-caused and non-jammer
caused events can be quite similar. As a result, some noise in the labels is expected.
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Figure 2.2: Manual inspection views for analyzing an RFI-event.

2.1.2 Machine Learning Background Knowledge

This subsection aims to briefly introduce some general aspects of machine learning method-
ology, with a particular focus on the training and design of Artificial Neural Networks
(ANN). Some important ANN operations, such as Convolution and Attention, are described
in greater detail.

Machine Learning Versus Optimization

Machine learning differs from optimization more generally in some key aspects. For one, the
model’s performance is measured with a loss function. This loss function produces a training
signal for the model, where the negative gradient of the loss is often used to iteratively update
the model towards a lower loss.



Because the loss function must be differentiable to produce gradients, some common per-
formance metrics do not qualify as loss functions. In the case of classification, the common
metrics of accuracy and Fl-score can be replaced with the differentiable cross-entropy loss
function.

Unlike optimization, machine learning optimizes the loss function on a training dataset, with
the aim of generalizing to a distinct test dataset. Achieving a low loss from the loss function
shows that the model is able to fit the data, but its ultimate performance is measured on
the test dataset.

In addition to the training and test datasets, we may employ a validation dataset as a proxy
for the test set during training. This dataset can for example be used to stop training upon
convergence or to change parameters of the network that are not affected by the gradient
of the loss function. These parameters are usually parameters of the model or the training
procedure and are referred to as hyperparameters.

Learning rate

The learning rate is the most important hyperparameter in training ANNs [64]. It determines
the step size of the optimizer in the direction of the gradient. Setting the learning rate too
high may cause the training to diverge, and setting it too low may cause the model not to
converge or to reach a sub-optimal state.

A learning rate schedule successively decreases the learning rate over training iterations,
allowing the model to converge to some local minima.

Optimizers

In training ANNs, we rely on backpropagation to find an update rule to the network weights.
Backpropagation computes the gradient of all network weights with regard to the negative
gradient of the loss function. On updating the weights in this manner, the loss goes down.

An optimizer decides the update rule for the network weights. Trivially updating along
the gradient is called gradient descent, while Stochastic Gradient Descent (SGD) uses mini-
batches sampled from the training dataset to compute the loss and gradient. The popular
Adam optimizer keeps a memory of previous gradients and their second moments to speed
up the learning rate along each individual parameter|33].

Metric

The proper evaluation metric for model performance is not the loss function. A performance
metric is primarily evaluated on the test dataset, and not during training.

In this thesis, we use metrics for binary (two-class) classification, where the classes are
Jam and NoJam. In binary classficiation tasks, we group the classification results in four
categories: True Positive samples are correctly classified as Jam (the “positive” class); True
Negative sample are correctly classified as NoJam (the “negative” class); False Positive are
wrongly classified as Jam (i.e. the label was NoJam); and False Negative are wrongly
classified as NoJam (i.e. the label was Jam).



We rely on the following evaluation metrics, bound between 0 and 100, where a higher score
is always better:

e Accuracy: Percentage of correct predictions for all classes.

True Positive + True Negative

Accuracy = 100 x (2.1)

Total number of predictions

e Precision: Percentage accuracy when the model predicts Jam.

True Positives
Precision — 100 2.2
recision 8 True Positives + False Positives (22)

e Recall: Percentage of correctly classified Jam samples.

True Positives
Recall = 100 . 2.3
eea % True Positives + False Negatives (2:3)

e F1-Score: Weighted average between Precision and Recall.

Precision * Recall
F1- =2 ) 2.4
Score % Precision+Recall (2:4)

Data Augmentation

Large ANN models typically require large amounts of data to train successfully. Collecting
more data is often resource demanding, and various techniques exist to produce training
data from the existing training dataset.

Data augmentation [63] is a particularly popular approach to producing data in the field
of computer vision. Examples of data augmentation techniques for image data includes
rotation, cropping, and mirroring of images.

To the best of our knowledge, data augmentation has never been used in the field of jammer
detection. Many researchers use simulated data and thus produce ample training data that
way.

Artificial Neural Networks

An Artificial Neural Network (ANN) is a machine learning model with sequences of lin-
ear transformations followed by some non-linear activation. The linear transformations are
typically called layers of the network.

It has been shown in the universal approximation theorem [39], that ANNs with an arbitrarily
large layer, or alternatively with arbitrarily many layers, can model any function between
two Euclidean spaces.

Convolutional Neural Networks

The advent of large Convolutional Neural Networks (CNNs) [36] has sparked a revolution
in the field of computer vision. CNNs are a category of ANN which uses an operation of



sliding "kernels” across the input data or some layer of the network. Using kernels allows the
models to extract features of the data that are spatially independent. Importantly, using
kernels greatly reduces the number of weights as compared with fully connected layers.

Current state-of-the-art ANNs in computer vision use various operations in addition to
CNNs. These operations either improve the performance, facilitate training, or reduce the
size of the networks. For example, residual connections allow some information to skip past
some layers in the network, which allows the gradient to pass quicker to deep layers of the
network during the backward pass.

Attention mechanisms

Attention Mechanisms are used in ANNs to facilitate influence between all tokens of an in-
put and output sequence [29], independently of the positioning of each token [68]. It can be
thought of as a learned token-to-token relevancy. 2.3 shows the attention scores produced
while translating a sequence of English words to French and illustrates how each word token
is allowed to attend to the entire input and focus on the most relevant parts. There exists
a multitude of attention mechanisms, such as Additive attention [3|, Dot-Product Atten-
tion [42]|, and the more recent Sliding Window Attention [3]. Positional embeddings, an
embedding of information regarding token positioning in the sequence, are often added to
the tokens prior to the attention module because the attention computation in itself is not
aware of token positions. [68] [73]
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Figure 2.3: Attention scores when translating a English sentence to French [3].

Tranformers and Self-attention

Transformers were introduced in 2017, [68], and used a novel architecture where attention
modules were the core units. Previously, attention mechanisms had only been used in con-



junction with other architectures [68] such as RNNs [4] or CNNs [14]. A key concept in the
Transformer is the use of self-attention, where the attention mechanism attends to the input
sequence, determining a new representation of each token based on the context of the whole
sequence [68]. Another key concept is to use multi-headed attention, which replaces each
attention operation with multiple parallel attentions over the same input. The attention
computation is not aware of the token position [68].

Transformers now dominate the SOTA in NLP [73] [18], and have also been successfully
applied to other ML domains [73].

The original Transformer is a sequence-to-sequence Encoder-Decoder architecture. The de-
coder is used to generate output, and the encoder is used to generate representations. With
a self-supervised reconstruction task, the encoders can be used without decoders. The rep-
resentation generated by (pre)trained encoders can be used as the basis of many tasks, such
as classification [73] [18].

2.2 The state of the art

We will now elaborate upon state-of-the-art in fields of interest. Section 2.2.1, Multivari-
ate Time Series Classification Algorithms, describes recent developments and the contest
between ANN-based and other models. Section 2.2.2, Image Classification Algorithms, pro-
vides an overview over recent CNNs. Lastly, Section 2.2.3, Machine Learning Applied to
Signal Interference, gives some examples over articles applying machine learning to signal
interference.

2.2.1 Multivariate Time Series Classification Algorithms

A recent review of the state-of-the-art in multivariate time series classification from October
2020 [19] found that in contrast to other machine learning tasks, the dominance of deep learn-
ing is not established in this particular task. It found that the ROCKET [17] approach was
overall most accurate, followed by two other non-deep learning classifiers, namely WEASEL-
MUSE [62] and MrSEQL [37]. However, the introduction of the TS-Transformer [73] could
have changed this as it outperforms on all benchmarked datasets, except on two by ROCKET
and one by XGBoost [15].

Time Series Transformer

Time series transformers (T'S-Transformers) 73] have shown promising results on multiple
benchmark datasets of multivariate time-series data. The model architecture is inspired by
the transformer architecture of [68] and [18]. TS-Transformers are significantly different
from previous SOTA models working with multivariate time-series, as they are the first
model to work on a wide variety of tasks. Characteristic of ANN-based models, it does
not rely on heavy data manipulation or arcane domain knowledge to achieve good results.
On introducing the TS-Transformer, |73] states that it is the first SOTA ANN model for
multivariate time-series data. More details on this model and elaboration on how we reduced
its complexity by a novel configuration are found in Section 3.3.3.
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ROCKET

ROCKET|[17] (RandOm Convolutional KErnel Transform) is a transformation technique
used to transform time series data in preparation for a linear classifier. It transforms data
by using a large number of randomly generated and kernels similar to those found in CNNs.
Though in contrast to CNNs, ROCKET employs a massive variation in kernel types, espe-
cially varied in their dilation.

For each kernel, two values are computed, the global max and proportion of positive values
(PPV). The authors state that the PPV values are the single most critical element for the
approach’s effectiveness because it identifies the relevance of a pattern in the transformed
data. Transforms can be run in parallel, allowing scalability to large datasets.

The main strength of ROCKET is its extremely fast training speed. As stated in [17] 'Using
this method, it is possible to train and test a classifier on all 85 ‘bake off’ datasets in the
UCR archive in <2h, and it is possible to train a classifier on a large dataset of more than
one million time series in approximately 1 h.’

The method was first developed for univariate time series, but the authors have since devel-
oped a version for multivariate data as well. A recent comparison of multivariate time series
classifiers [58| found that it is effective across a range of datasets and even proposed it as a
baseline for future papers.

2.2.2 Image Classification Algorithms

Since the introduction of AlexNet in 2012 [36], CNNs have been the go-to machine learning
approach to image tasks [21]. Resnets were introduced in 2016 [26], wich facilitate training
of deeper networks by introducing residual connectios (also know as skip connections), and
the state-of-the-art from that point on have been permeated with similar CNNs [43] [71] [34].
One exmaple is the EfficientNet family of CNNs, which increased efficiency by a new scaling
coefficient in width, depth and resolution. Resolution here referes to the final part of the
network consisting of densly connected feed forward layers [67].

A recent introduction, and possible contender, is the Vision Transformer [21]. It offers
comparable accuracy with other SOTA CNNs, with a significant reduction in computation
time and parameters.

2.2.3 Machine Learning Applied to Signal Interference

We reviewed around 35 papers pertaining to the combination of machine learning and signal
interference but we found no articles with exactly the same frequency and resolution data.
The most similar paper we found is elaborated upon in some detail Section 2.2.3 Jammer
Classification in GNSS Bands With Machine Learning Algorithms. Other than this we
have included a variety of interesting papers using machine learning in relation to siglal
interference.
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Jammer Classification in GNSS Bands With Machine Learning Algorithms

The paper most similar to out work in terms of application domain and data is [45], though
the temporal duration of their signals are significantly lower, and the sampling rate signifi-
cantly higher.

The authors argue that the classification of jammers is an important part of effective GNSS
interference management solutions and that the literature is lacking in that regard. To
remedy this, they created a dataset by sampling GNSS data from frequency band GPS L1
(at an I/Q rate of 20 MS/s [55]), and made mathematical models to simulate jammer signals.
The simulated signal where added to the sampled GPS data to create the dataset samples.
Five classes pertaining to common types of jammers [10] as well as a class for interference
free samples was included. A sixth main type of jammer, namely Wide Band jammers, was
not included as they are particularly hard to distinguish.

The dataset and code [16] was made publically available and contains 61,800 gray-scale 512
x 512 pixel images. The images are distributed into a 6000 image training set, 1800 image
validation set, and a 54,000 image test set. All sets contained an even distribution among
classes.

They trained a relatively simple CNN architecture, and trained for 25 epochs using the Adam
optimizer. The layers of the ANN were: an input layer; a convolutional layer with 16 filters
of 12 x 12 x 1; ReLU activation function; Max pooling 2 x 2, stride 1; a fully connected
layer; Softmax activation function; Classification based on softmax output.

For their SVM model, features were extracted using the Bag of Features [49] method, which
extracts local features from the images that disregard image location and orientation, and
builds a vocabulary by clustering the features. The authors used K-means clustering and
a 500 word visual vocabulary. The SVM model utilized a RBF kernel and was optimized
using the Sequential Minimal Optimization method [51].

They achieved a mean accuracy of 94.90% with the SVM and 91.36% with the CNN, and
almost a 99% accuracy in binary classification of presence or absence of jammers. The CNN
achieved a 0.4% higher accuracy in the binary classification, and the authors speculate that
the lower mean accuracy of the CNN compared to the SVM was due to the number of
parameters of the CNN resulting in a more difficult to train model. Raw GPS data without
simulated jammers is available here [55].

An Efficient Way for Satellite Interference Signal Recognition Via Incremental Learning

In [72] an incremental learning SVM, originally developed in 2003 by [20] is applied to
recognition of satellite interference signals. The authors extend the binary SVM into a
multiclass classifier in three ways and compare it to the LIB-SVM multiclass SVM [13]. Their
methods achieve comparable results with reduced memory and processing requirements.

Recognition Method of Dense False Targets Jamming Based on Time-frequency Atomic
Decomposition

instead of using traditional time-frequency analysis methods such as short-time Fourier trans-
form or Wigner distribution, the authors of [25] use Gabor time-frequency atomic decompo-
sition to extract feature vectors for a SVM classifier. The paper’s interest lies in recognizing
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the presence of dense false target jamming in the domain of radar detection.

The authors build a discrete dictionary of Gabor atoms (which are modulated Gauss func-
tions), decompose the signal by sparse decomposition, and iteratively match and subtract
Gabor atoms from the signal until the signal power is under a certain threshold or another
stopping criterion is met. The extracted Gabor atomic time-frequency parameters are used
as the feature vector for the SVM classifier. The specifications on the SVM classifier, such
as which kernel function was used, were not disclosed.

Compound Jamming Signal Recognition Based on Neural Networks

This article [59] extracts 10 features from the time and frequency domain as well as from
fractal dimensions and uses a simple ANN of 10 input neurons, 15 hidden neurons, and 12
output neurons, all with sigmoid activation functions, to classify various forms of compound
jamming. Compound jamming is the presence of more than two jammer signals simultane-
ously. The papers interests lies in military radar applications and electronic warfare.

Support Vector Machines for Classification of Automotive Radar Interference

The authors of [74] apply machine learning in the context of radar-to-radar interference in
automotive radars in advanced driver assistance systems. The studied frequencies are around
77 GHz, which are commonly used in automotive radars such as the mmWave automotive
radar [74]. The 77 GHz signals are received and run through on board processing by use of
a mixer, reference chirp, amplification and a low-pass filter. Lastly, the signals are digitally
converted to by an analog-to-digital converter (ADC).

The time-frequency data is then transformed by Stretch-processing and Pulse-Doppler Pro-
cessing. A section of the Range-Doppler response becomes the high-dimensional frequency
domain waveform data which is classified into one of seven categories by a large-scale linear
SVM based on [28]. The authors choose SVMs because they require relatively little compu-
tation, while still providing a high accuracy, and is therefore a candidate solution for real
time interference mitigation in autonomous vehicles. They show a 90.6% cross-validation
generalization accuracy, with confusion matrix values from 76.0% to 98.9% and argue that
misclassification happens in less common interference types, and is of less importance to the
task.

Radio Ground-to-air Interference Signals Recognition Based on Support Vector Ma-
chine

In [35] the authors use an SVM, optimized by the gravitational search algorithm (GSA) [54],
to classify normal and abnormal signals in radio to ground communication in the interest of
detecting interference. GSA is a type of heuristic optimization method inspired by Newtown’s
laws. The search algorithm agents act like objects attracted to each other by gravitational
forces, and the fitness function assigns heavier masses to better solutions so that they change
more slowly and attract others more heavily. The algorithm finds the solution when agents
converge to the heaviest mass, which represents the best solution.

The data was sampled from the aviation frequency bands, with a sampling rate of acous-
tic frequency 44.1Kb [35]. A set of six features were used; Short-term average energy [41];
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Short-term magnitude mean [30]; Short-term magnitude variance [44]; Short term zero cross-
rate [32]; Short-term normalized kurtosis sum [5]; and Amplitude spectrum kurtosis index [5].
The data samples were all 15s in duration, and the six feature were extracted from 300 ms
sections of the time-frequency data
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CEF file header fields

Fieldname Data format Description Example
File Type Text Type and version of the datafile Common exchange
format V2.0
Location Text Name of location where the NERA
Name measurement was made
Latitude Text Coordinates in format 52.10.04N
DD.MM.SSx with x € {N, S}
Longitude Text Coordinates in format 005.10.09W
DD.MM.SSx with = € {E, W}
Frequency Numeric (real) Start frequency in kHz 1000.000
Start
Frequency Numeric (real) End frequency in kHz 2000.000
Stop
Antenna Type Text, Numeric Info, gain in dBi, Kfactor in dB/m LPD, 7, 10
(real), (the last two can be omitted)
Numeric (real)
Filter Numeric In kHz 0.2
Bandwidth (read)
Level Units Text One of dBuV, dBuV/m or dBm dBuV
Date Text Start date of measurement 2006-06-25
Data Points Numeric Number of data points in each 80000
(integer) trace (row of data)
Scan Time Numeric (real) Scan duration in seconds for the 24.1
equipment to scan through the
frequency range
Detector Text RMS
Note Text General comments
Antenna Text DDD.DD (0 = North) 181.12
Azimuth
Antenna Text DD.DD (0 = No elevation) 45.32
Elevation
Attenuation Numeric Equipment attenuation setting in 3
(integer) dB
Filter Type Text Filtertype bandwidth and Gaussian 3 dB
shapefactor shapefactor 3.2
Displayed Text Short note
Note
Multiscan Text Y or N, defaults to N Y
Measurement ~ Numeric Total accuracy of the system
Accuracy
Video Filter Text Video filtertype bandwidth and

Type

shapefactor

Table 2.1: Common Exchange Format header fields.

15



Chapter 3

Machine Learning Approach for Jammer
Detection

This chapter will elaborate the details of the approach we used to achieve results described
in Chapter 4. First, Section 3.1 Data Analysis describes how we analyzed the raw data and
provides the basis of how we choose to preprocess the data samples as explained in Section 3.2
Data Preprocessing. Lastly, Section 3.3 Al Based Algorithms for Jammer Detection explains
the technical details of the machine learning classifiers used in this thesis.

Over the duration of this thesis, we made two main iterations of the training and validation
datasets. We made the first iteration from data available in February, 2021 and the second
iteration from data available in April in the same year. Though both iterations were used
to train and validate classifiers, we will explain the process as it pertains to the second
iteration. In addition, we made some adjustments to the approach based on preliminary
results obtained with the first iteration.

3.1 Data Analysis

In this section, we will analyse the raw data in order to obtain a good comprehension of the
data itself. In more details, Section 3.1.1 The Raw Data Format provides a brief explanation
of the raw data files used to generate the data samples. Next, Section 3.1.2 Spectrogram
Visualization illustrates how we visually inspected the data points. Finally, in Section 3.1.4
Sample Distributions we elaborate on the analysis we used to decide how the samples should
be standardized.

3.1.1 The Raw Data Format

The raw data used in this thesis represents RFI-events stored in CEF files. Section 2.1.1 gives
a lengthier description of the format. In this subsection, we will describe the features most
relevant to this chapter. The header field LocationName tells us which monitoring station
captured the RFI event. More specifically, FreqStart and FreqStop define the frequency
band captured in the measurement. We refer to this range as the bandwidth (BW) of
the event. DataPoints denotes how many discrete points are recorded to represent the
continuous frequency band defined by the BW. We refer to a row of data points as a trace.
The Resolution Bandwidth (RBW) is the segment size of the total BW of each data point.
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LevelUnits indicates the unit used with the data points to record amplitudes. Listing 3.1
illustrates a CEF file example, with added comments inside brackets.

Listing 3.1: CEF file example with comments inside brackets.

FileType Standard Data exchange Format 2.0 [Name of file type]
LocationName xxxX [Location of measurement]

Latitude 11.22.33N
Longitude 44.55.66E
FregStart 1560000
FregStop 1610000
AntennaType someAntenna
FilterBandwidth 5000
LevelUnits dBuVv

Date 2020-29-9
DataPoints 10

ScanTime 0.018

Detector FFM

Note Example

[Start frequency in kHz]

[Stop frequency in kHz]

[Type of antenna connected to instrument]
[Distance between measurements in kHz]
[Measurement unit]

[Date of when data was collected]
[Data points in each trace]

[Time to measure one detector window]
[Detector type for measurements]
[Custom notes can be added]

[Time] [data point 1 e data point n]
17:08:10,-11,-11,-7,-9,-13,-11,-9,-11,-8,-8 [Trace 1]
17:08:11,-11,-10,-7,-9,-13,-14,-9,-14,-8,-9 [Trace n-3]
17:08:12,-11,-12,-7,-4,-14,-12,-8,-11,-8,-6 [Trace n-2]
17:08:13,-15,-12,-7,-9,-13,-11,-6,-11,-8,-4 [Trace n-1]
17.:08:14,-11,-12,-7,-2,-13,-11,-7,-11,-8,-8 [Trace n]

3.1.2 Spectrogram Visualization

We visually inspected the RFI events by generating spectrogram images from the CEF files.
The spectrograms are heatmaps of the amplitude values across frequencies and time. Data
point numbers (frequencies) are along the z-axis and traces (time) on the y axis.

Figure 3.1 shows three typical spectrograms generated from JAM labeled CEF files, and the
spectrograms in Figure 3.2 are from CEF files labeled with NoJAM. The top spectrogram in
Figure 3.1 only shows the first 160 traces of the sample and illustrates that a clear jammer
pattern can be observed already within trace 50.

From the spectrograms, we can also observe the 30-second buffer preceding the triggering
amplitudes in the first few dozen traces. This buffer might contain a certain ramp-up of the
amplitudes but did not reach the threshold to start the recording of an event.

3.1.3 Data Cleaning

We found that a portion of the CEF files contained traces without data points and removed
these empty traces.

Next, we applied the 1s MaxHold transformation described in Section 3.2.1 which reduced
all files to 1 trace per second. Prior to this reduction, they ranged from 1 to 10 traces per
second depending on the speed and settings of monitoring equipment.

Lastly, for some we set the maximum number of traces per CEF file to 250, keeping the
earlist ones. We allowed these early modifications based on the assumption that the CEF files
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would still contain ample information to classify the RFI event and provided the practicality
of significantly reducing the total storage requirements of the data.
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Figure 3.1: Spectogram images of typical JAM-events.

All measurements use dBuV as the measurement unit, eliminating the requirement to trans-
late the data points to a common amplitude scale.

3.1.4 Sample Distributions
Label distribution

CEF files believed to correspond to RFI events caused by jammers are labeled JAM. Oth-
erwise, they are labeled NoJAM. The distribution of the two labels is unbalanced with a
ratio of around 1:7, with JAM in the minority as shown in Figure 3.3. The prevalence of
NoJAM data is due to the monitoring stations being extra sensitive to ensure all potential
JAM events are detected. This configuration results in many different interference events
triggering the detection mechanisms, and theese events are labeled NoJAM. For example old
cars or faulty radio transmitters can trigger the mechanism. NoJAM events are generally
not disruptive to GNSS services, unlike jammers.

Event Duration

Figure 3.4 shows a histogram of the number of samples with a given duration. Duration is
given by the number of traces in each sample after the data cleansing mentioned above.

The high concentration of samples, around 150 traces, is due to configuration settings most
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Figure 3.2: Spectogram images of typical NoJAM-events.

common to the monitoring stations capturing the events used. This setting keeps a buffer of
30 seconds so that when amplitudes exceeding the set threshold limit are found, this buffer
is prepended to the CEF file as well as the 120 seconds after the amplitudes show below
the threshold. The samples in Figure 3.4 to the left of the peak are samples from which we
removed corrupted traces, and were left with fewer than 150 traces.

Bandwidth and Resolution Bandwidth Distribution

Figure 3.5 shows an overview of the BW ranges captured in the CEF files. The ranges are
configured to monitor interference that affects GNSS systems, particularly interference in
the GPS L1 band. Therefore, a strong concentration of CEF files with BW 1560-1610 MHz
and only small deviations from this range is seen. This is beneficial because this means the
raw data holds comparable frequency information. Furthermore, that allows us to transform
the data from this narrow set of frequencies into common features for the classifiers.

The number of data points in each sample varies according to the number of traces and the
number of data points in each trace. In our dataset, the number of data points in each trace
ranges from 8001 to 24,000 per trace, with RBW from 2.5 kHz to 6.25 kHz.

Source Distribution

The RFI events we have used in this thesis originate from six different RFI interference
monitoring stations at different locations. These are referred to as PAT, ACM, BGO, GEN,
KHA, and ROS. Figure 3.6 shows the distribution of samples according to their source. The
events that originate from ACM are from controlled field tests of actual jammers.
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Figure 3.3: Distribution of JAM and NoJAM labels in the dataset.

Informed by the analysis stated in this section, we implemented the preprocessing described
in the following section. In early discussions, we speculated in padding schemes that could
compensate for differences in bandwidth by adding columns according to missing frequency
ranges. However, we learned that the raw data holds relatively similar frequency informa-
tion, allowing us to attempt a simpler preprocessing for the standardization of data points.
Furthermore, we discovered key information regarding event duration and what the data
rows were most likely to hold critical information, which dictated how we should standardize
the number of traces.

3.2 Data Preprocessing

This section will describe how we prepared the collection of CEF files for our machine-
learning based classifiers. Section 3.2.1 CEF File Transformations describes the transforma-
tions we applied to turn each CEF file into data samples. Next, we see how early model
results uncovered mislabeled data in Section 3.2.2 Correcting Labels. Section 3.2.3 Dataset
creation details the distribution of these datasamples into training, validation and testings
sets, and finally Section 3.2.4 Datasets lists some statistics of the resulting dataset.

3.2.1 CEF File Transformations

In order to transform the CEF files into data samples that the classifiers can digest, we
needed to find a common standardization procedure for all data.

The transformations we describe here are based on the analysis in the previous section.
The most important procedure was the standardization of data points and traces. Several
schemes of utilizing the header fields of the CEF files were considered, such as incorporating
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Figure 3.4: Historgram of the number of signals with a given duration.

location information to mitigate a potential problem caused by variation in background noise
based on source. However, we decided to first focus on the data points, and disregard the
header fields as input to the classifiers, and observed that this was sufficient to obtain the
results reported in this thesis.

The data is not normalized in any way during preprocessing. This is firstly because all data
points are already recorded on on the same scale. Secondly, minimizing the computational
requirements during preprocessing is beneficial in the scenario of deploying the model to the
monitoring stations with their limited resources.

1s MaxHold

We applied a 1-second MaxHold transformation to CEF files containing more than one
trace per second. The MaxHold operation selects the highest valued amplitude from each
frequency across all traces with the same time stamp. This way, traces with the same
second-precise time stamp are reduced to one trace. Listing 3.2 shows an example of how
this transformation converts two traces with the same timestamp into one new trace.

Cropping and Padding of Event Duration

From our knowledge of the monitoring configurations, we concluded that cropping the files
to 140 traces would be a practical and viable way to standardize the vast majority of the
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Figure 3.5: Event Bandwidth Distribution.

samples. This approach is also motivated by inspecting the RFI event spectograms, and the
number of traces per sample in the raw dataset.

Listing 3.2: Two traces for time 17:08:10, become one trace by 1s MaxHold.

17:08:10,-11,-11,-7,-9,-13,-11,-9,-11,-8, -8 [Trace A, timestamp 17:08:10]
17:08:10,-11,-10,-7,-9,-13,-14,-9,-14,-8,-9 [Trace B, timestamp 17:08:10]
17:08:10,-11,-10,-7,-9,-13,-11,-9,-11,-8,-8 [New trace, after

applying 1ls MaxHold]

Only ten CEF files contained fewer than 140 traces. These samples were padded by a
method we call “reflection padding”, where we append the last traces of the file in reverse
order, excluding the last trace. Using this padding regime, the same background noise that
is found in the last parts of the signal is reused to simulate a realistic ending to the sample.
We allowed a maximum of 30% of the traces to be padded, and removed one file based on
this criteria. Listing 3.3 shows an example of how this padding scheme would pad a file with
4 missing lines.

Listing 3.3: Illustration of reflection padding of four traces.

17:08:10,-11,-11,-7,-9,-13,-11,-9,-11,-8,-8 [ ]
17:08:11,-11,-10,-7,-9,-13,-14,-9,-14,-8,-9 [ ]
17:08:12,-11,-12,-7,-4,-14,-12,-8,-11,-8,-6 [Trace 134]
17:08:13,-15,-12,-7,-9,-13,-11,-6,-11,-8,-4 [ ]
17:08:14,-11,-12,-7,-2,-13,-11,-7,-11,-8,-8 [ ]
[ File ends, padding starts ]
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Figure 3.6: Distribution of samples according to source location.

17:08:13,-15,-12,-7,-9,-13,-11,-6,-11,-8, -4
17:08:12,-11,-12,-7,-4,-14,-12,-8,-11,-8, -6
17:08:11,-11,-10,-7,-9,-13,-14,-9,-14,-8, -9
17:08:10,-11,-11,-7,-9,-13,-11,-9,-11,-8,-8

Trace 137, copy of trace 135
Trace 138, copy of trace 134
Trace 139, copy of trace 133
Trace 140, copy of trace 132

— — —

Standarize Data Points

To accommodate for a wide variety of potential classficiation models, we aimed to standardize
the number of data points in each sample. Using the size of the smallest sample in the dataset,
we downsampled all traces in all data samples to 8001 data points.

If we observe that 8001 data points is sufficient for a strong classification performance,
the monitoring devices could be configured to only capture a range of 8001 data points.
Then, the measurements can be fed directly to the classifier without any preprocessing. The
monitoring devices can also be configured to capture only one trace per second, making the
1s MaxHold transformation obsolete.

3.2.2 Correcting Labels

In the preliminary results, we obtained an accuracy of around 98%. We then inspected
the samples that were wrongly classified during validation and discovered that some of the
samples were mislabeled.

We created a set of samples that are candidates for being mislabeled, and thus should be
reinspected. First, we created five versions of the dataset with an 80/20 split, using non-
overlapping samples in each of the five validation splits (also called cross-validation). We
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then trained our AlexNet, Squuezenetl 1, and Resnet18 models on each of the five versions
for 20 epochs, achieving 96% to 99% accuracy. Any sample that was wrongly classified by
one of the models was added to candidates for reinspection. Following this approach, 72
samples were marked for reinspection, and ten samples were relabeled by a human expert
after an inspection.

3.2.3 Dataset creation
Datasample Views

The samples were presented to the classifiers either as PNG images with a resolution of
500x 140 pixels, or as matrices of shape 8001x140. The image width of 500 was selected
to approximate the size used in [45]. The height of 140 is equal to the number of traces.
Note that we trained models on both three-channel color images and one-channel grayscale
images for the image view and found that the color version worked best with our models.

Training, Validation splits

Our final training and validation sets were based on the samples made available in April. We
grouped the samples by source monitoring station and label. We group by source to present
the model with more varied data. From each group distinguished by source and label, we
put 80% in the training set and 20% in the validation set. This is shown in Figure 3.7.
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Figure 3.7: Divition of samples based on source and label.
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Augmentation and Oversampling on the Training set

The distribution of classes in the data was very unbalanced, with 11% of samples labeled
JAM and 89% of samples labeled NoJAM. For that reason, we experimented with data
augmentation and oversampling to observe the effects of balancing the dataset.

We investigated augmentation techniques that would produce realistic samples. By this
criteria, augmentation by horizontally flipping (or mirroring) the samples was the strongest
candidate. As shown in Figure 3.8, this still produces a realistic jammer spectrogram, with
the only difference being that the interference is observed at different frequencies.

Other relevant augmentation techniques include vertical flipping, zooming, and shifting,
but these would have be more administered carefully if we wanted to maintain the typical
characteristics of the samples. As the motivation for augmentation was to balance the ratio
between JAM and NoJAM samples, we sought augmentations to apply only to JAM signals.
Because the augmentations are only applied to one class, we cannot create artefacts in the
data that the classifier can use as shortcuts. For example, by vertically flipping the JAM
samples, the classifiers could easily learn to classify samples with the 30 trace buffer at the
end as JAM samples. To reduce the risk of introducing such artefacts, we concluded that
horizontal flipping was sufficient augmentation for our needs.

0 0
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Figure 3.8: JAM samples augmented by horizontal flip. Left: Original, Right: Augmented version.

With oversampling and vertical augmentation as our tools, we created four versions of the
training set. The “Basic” dataset has no augmentation or oversampling, the “Flipped” uses
horizontal flipping as augmentation on the JAM data. Additionally, “Basic-1tol1” is an
oversampled version of the unaugmented dataset, and “Flipped-1tol” is an oversampled
version of the augmented dataset. The oversampling of JAM samples give a JAM-to-NoJAM
ratio of 1:1. Table 3.1 gives an overview of the settings for the four models.

With the PNG image view of these four datasets, we train a Resnet34 based model on each
of the datasets. Surprisingly, we saw no benefit from either augmentation or oversampling.
However, the “Basic” dataset marginally outperformed the others in terms of accuracy, while
also converging faster. Following these results, we used the “Basic” version of the training set
in this thesis, with no augmentation or oversampling. We also compared using three-channel
color images to one-channel greyscale images for the image view, and found that color images
performed best with our models.

Vertical flipping Oversampling

Basic No No
Flipped Yes No
Basic-1tol No Yes
Flipped-1tol Yes Yes

Table 3.1: Summary of dataset configurations by augmentation and oversampling.
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3.2.4 Datasets

The final number of samples in the respective training, validation, and test sets is shown in
Table 3.2. The test dataset consists of all data made available to the project after April 2021,
when the final training and validation sets were created. The number of JAM to NoJAM
samples is even less balanced in the testset as compared to the training and validation sets.

Training Validation Testing

JAM 209 o4 43
NoJAM 1571 396 909
Total 1779 450 952

Table 3.2: Training, validation, and testing split summary.

3.3 Al Based Algorithms for Jammer Detection

Here, we will elaborate on the classifiers and configurations we employed in this thesis.
Section 3.3.1 Algorithm Overview summarizes the algorithms we implemented. Section 3.3.2
ANN Commonalities and Training Parameters describes the training procedure for all ANN
based classifiers. Finally, in Section 3.3.3 T'S-Transformer32, we describe the state-of-the-art
multivariate time series Transformer classifier (TS-Transformer) found in [73], and how we
modified this architecture to reduce the number of parameters by half while maintaining
comparable results.

3.3.1 Algorithm Overview

We found in our literature review (see Section 2.2.3) that most machine learning approaches
to the jammer detection problem had used relatively simple models, almost exclusively fo-
cusing on SVMs and simple CNNs. This motivated us to try classifiers of varying complexity;,
and we have included CNN models ranging from 1.3 million to 60 million weights in our tri-
als. We also observed no use of the state-of-the-art multivariate time series classifiers, and we
test several of these algorithms for jammer detection. After preliminary results, we observed
that we could train very accurate models in less than 1 hour (over 99% accuracy with F1
Scores over 0.98) and therefore set 1 hour as the upper limit for allowed training time. This
excluded the use of MUSE and MrSEQL models, as they did not complete training within
this limitation. We also excluded other multivariate time series classifiers reported to take
longer to train than MUSE and MrSEQL, such as HIVE-COTE |[38].

We include two approaches that are not based on ANNs. The first, an SVM based classifier,
is the best performing model used in [45], which is the paper in the literature with the most
similar data samples to ours, to the best of our knowledge. The second is ROCKET [17],
a fast-to-train time series classification model that has obtained good results on a wide
range of benchmark datasets. ROCKET is suggested as a new benchmark model in [58] and
outperforms the commonly used dynamic time warping benchmark in all results we have
come across.

Most notable among the ANN models we trained are the three versions of the TS-Transformer.
One of these models, with the smallest architecture, uses a novel architecture configuration.
This is also the model we recommend in this thesis.
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In Table 3.3 and Table 3.4 we give an overview of all the models we have used in this thesis.
In Table 3.3, we include which Python machine learning libraries we used to implement the
models. The respective libraries are: Fastai [69], Tsai [50], EfficientNet-PyTorch [40], and
Sktime [70]. Exceptionally, the SVM based model was implemented in MatLab, based on
code provided by the authors of [45]. We also list the number of trainable weights for the ANN
based models. The column “Year” denotes when the model type was first introduced. We
note that, though SVMs were first introduced in 1992 [11], the approach we use incorporates
more recent technology such as SURF image feature extraction, which was introduced in
2006 [7]. Finally, the “Sample view” column indicates which of the two data views we used
for the model, as further described in Section 3.2.3.

Model Implemented with *Weights Year Sample view
AlexNet Fastai 1.7 2012 Image
EfficientNet Fastai & EfficientNet-PyTorch 1.3 2019 Image
InceptionTime Fastai & Tsai 1.9 2020 2D matrix
Resnet18 Fastai 11.7 2016 Image
Resnet34 Fastai 21.8 2016 Image
Resnet50 Fastai 25.6 2016 Image
Resnet152 Fastai 60.2 2016 Image
ROCKET Sktime - 2020 2D matrix
SVM Matlab - 1992 Image
SqueezeNet v1.1 Fastai 1.2 2016 Image
TS-Transformer32  Fastai & Tsai 0.3 2020 2D matrix
TS-Transformer64  Fastai & Tsai 0.7 2020 2D matrix
TS-Transformer128 Fastai & Tsai 14 2020 2D matrix
xResnet18 Fastai 11.7 2019 Image

Table 3.3: A summary of models discussed in this thesis.
* The number of trainable weights in the ANN based models in millions.

3.3.2 ANN Commonalities and Training Parameters

All ANN based models have been trained with similar training parameters, which will be
outlined in this section.

We used two settings of training parameters, denoted primary and secondary settings. The
differences between the settings are shown in Table 3.5.

An early stopping mechanism was implemented, ending training if no decrease in validation
loss was observed over a number of epochs as indicated by the patience parameter. Otherwise,
the model trains for the maximum number of epochs, as indicated in Table 3.5.

We did not operate with any parameter freezing during training. This means all weights
of the network was allowed to change during training. This is opposed to some fine-tuning
schemas of pre-trained networks, where some layers of the network are left untrained.

We first trained all models with the primary settings. If a model made more than five wrong
classifications on the evaluation set, they were reinitialized and trained with the secondary
settings. These settings were empirically set from results in the preliminary trials, where
some models showed improvements when given a lower learning rate and longer training time.
Further hyper-parameter tuning was not necessary, as all models reached a performance
of four or fewer wrong classifications from the 450 validation samples. As explained in
Section 3.2.3, this performance is as good as we can expect, given the quality of the labeling.
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Model Model Notes

AlexNet A classic CNN commonly used as a benchmark in image
classification.
EfficientNet Part of a recent family of CNNs, with novel variations in

width, depth, and resolution scaling optimized with neural
architecture search.

InceptionTime Time series classifer built with an ensamble of CNNs based
on Inception-v4 [66].

Resnet18 CNN with residual connections, which facilitates training
deeper networks. 18 layers.

Resnet34 34 layers.

Resnetb0 50 layers.

Resnet152 152 layers.

*ROCKET Extracts features based on randomized kernels, global max

pooling, and proportion of positive values. We used 10,000
kernels and a RidgeLine Classifier.

SVM Uses SURF feature extraction [7], a RBF kernel and Se-
quential Minimal Optimization (SMO) [52].
SqueezeNet v1.1 Uses “fire modules” and other techniques to minimize net-

work size, all while maintaining comparable accuracy to pre-
vious models.

*T'S-Transformer32 Transformer based network for multivariate time series clas-
sification, see section Section 3.3.3 for details. Model dimen-
sion 32.

*TS-Transformer64 Model dimension 64.

*TS-Transformer128 Model dimension 128.

xResnet Resnet based model with a collection of tweaks as presented
in [27]

Table 3.4: Descriptions of the models trained in this thesis.
* Models described in more detail in Section 2.2.

The learning rates were configured based on the learning rate finder scheme proposed in [64].
We launched a mock training session with exponentially growing learning rates from 10~7
to 10 over a hundred iterations with a minibatch size of 10, and tracked the loss in relation
to the learning rate, with early stopping upon divergence. The learning rate schedule can
be seen in Figure 3.9.

Figure 3.10 shows the graph produced when setting the learning rate for the AlexNet based
model used in this thesis. The two default learning rate recommendations proposed in [64]
are marked by red dots, where the slope is steepest (left) and one-tenth of the minimum
(right) [64]. Based on preliminary trials and literature suggestions lowering the learning
rates for unbalanced datasets [12|, learning rates were set as shown in Table 3.5.

We used a cross-entropy loss function for all models, as implemented in PyTorch with default
parameters [16]. Cross-entropy loss is commonly used in classification tasks, where the last
layer of the neural network outputs numerical scores for each class. When combined with the
softmax function, as is the case in Equation (3.1), this produces a probability distribution
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Primary setting Secondary setting

Learning rate ]\gé” %61
Epochs 100 200
Patience 20 40

Table 3.5: Primary and secondary training settings used for ANN models.
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Figure 3.9: Learning rate and momentum schedule for ANN training. Maximum learning rate, and
minimum momentum after 20% of epochs noted in Table 3.5.

over the classes.

ex[class]

loss(x, class) = log, (n—
Zj:l exm

) , n = the number of classes. (3.1)

The softmax-cross-entropy function takes two parameters. Firstly, a vector x of the network’s
predictions for a sample, with numerical scores for each class (i.e., the non-normalized predic-
tion scores for JAM and NoJAM). Secondly, class is the ground truth labels of the sample.
Logits are used as x because the Pytorch CrossEntropyloss implementations normalize the
input itself by use of the log-sum trick [24].

We used the Adam optimizer [33], which is a popular and effective optimizer [57]. It has
been found to be effective in computer vision tasks [33], and is suitable for all the models
we trained.

The parameters used for the Adam optimizer are summarized in Table 3.6. 3, and [, are
exponential decay rates for the first and second-moment estimates, on which the adaptive
learning rates for each individual weight are based. ¢ is a small number used to prevent
zero division. The optional weight decay parameter is used to apply weight decay to the
weights directly. This assists in counteracting exploding gradients and incentivizes a model
with smaller weight values.

3.3.3 TS-Transformer32

The TS-Transformer [73] was initially introduced with very good results on 11 benchmark
datasets, arguably establishing itself as the state-of-the-art in multivariate time series clas-
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Figure 3.10: Learning rate finder.

b1 0.9
B 0.99
£ 10=°

Weight Decay 0.1

Table 3.6: Parameters of the Adam optimizer.

sification methods. We have focused on understanding this architeture in particular, and
investigated how to reduce the model size with negligable loss of performance. In this sub-
section we will explain the model in more detail, and contrast our implementation to the
original model found in [73].

The TS-transformer

Essentially, the TS-transformer is an adaption of the BERT architecture [18] for multivariate
time series data. The emphasis is on a model architecture that is generally applicable to
a wide range of tasks and datasets. This is in contrast with previous related work, where
either models or data preparation are highly specialized to a specific dataset or task. The TS-
transformer uses a stack of transformer encoders with the same architecture as the encoders
in [68] and [18]|. Unlike these papers, which use natural language text as input to the network,
the TS-transformer uses multivariate time series data as input.

Where, in the NLP domain, an input text document needs to be converted to tokens, which
are again turned into learned initial vectors, the TS-transformer simply projects the raw
time series data to input vectors. In our dataset, the traces of a sample represent one second
of data. We trivially treat the traces as “tokens” on passing them to the TS-transformer.

In [73], they investigate the use of a self-supervised pre-training task for the model, without
the need for extra data. This task is inspired by the Masked Language Model task in [18],
with auto-encoding of masked input data. In the case of [73], the masking is applied to
consequtive sequences of data points across tokens. In our case, this is equivalent to masking
data points of the same frequency, across consecutive traces.

In our trials, the performance without using the pre-training task was sufficiently good. For
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this reason, we did not use the pre-training task. As reported in [73], using the pre-training
does not always improve the performance. Motivated by our results without pre-training
and the studies in [73], we suggest pre-training only when labeled data is scarce compared
to unlabeled data.

Tuning the Architecture

As one of the stated goals of our research was to find a minimally sufficient model to perform
jammer detection, we looked at how we could reduce the model parameters of the TS-
transformer.

The model has mutiple architectural hyperparameters, some of which influence the size of
the resulting neural network:

e The model dimension d decides the length of the internal representation of each trace
in all layers of the network.

e The number of encoders in the network N,,. decides how many encoders are placed in
a sequential stack. Fach new encoder allows for a new layer complexity building on the
output of the previous encoder.

e The width of the feed-forward neural network after each attention operation.

e Maximum sequence length [ decides the longest sequence that the encoders can handle.
This does not significantly influence model size.

e The number of attention heads Nj..qs decides the number of parallel attention computa-
tions in each encoder. This does not increase the size of the model, or its computational
complexity.

Input data to the model is projected from the initial dimensionionality to the model dimen-
sion d in the input layer. Note that the time-dimension represented by the 140 traces, stays
intact throughout the network. The 8001 data points in each trace is linearly projected to the
model dimension d. Next, a learned position embedding is added to the data. Equation (3.2)
shows this operation.

Uy = Wy + €pos (3.2)

The projection matrix W has d x m trainable parameters, where m = 8001 is the number
of data points in each trace. A trace x; is a feature vector of length m at time t. The
learned positional embedding e, lets the model know the relative distance between traces.
Positional information would otherwise be lost in the attention computation, as it treats all
tokens the same.

The model dimension d and the number of encoders N.,. influences the model size more
significantly than the other architectural parameters. Decreasing any of these parameters
will also limit the complexity of the model, and thus limiting their ability to approximate
functions. If we compare the Transformer network to a classic feed-forward neural network,
the model dimension d decides the width of the hidden layers. The number of encoders N,
decides the depth (i.e., number of hidden layers).

We choose to focus on the model dimension d, as reducing the depth of a neural network
causes a rapid loss in complexity (“deeper is better than wider”). Changing the model
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dimension d causes a linearly proportial change in the number of weights of the network.
Consequently, successively decreased the size of the architecture by varying the model dimen-
sion. The model results can be found in Chapter 4. As a requirement for further shrinking
the network, we set the maximum number of allowed misclassifications to 5.

We trained three models with settings d € {128,64, 32}, aptly named TS-Transformer128,
TS-Transformer64, and TS-Transformer32. The other architectural parameters were kept
fixed between the models, following the settings in Table 3.7.

Parameter Value
Encoders Neye 3
Feed-forward width 256
Attention heads 16
Sequence length 140

Table 3.7: Common architecture settings between the T'S-Transformer architectures.

Refer to Table 3.8 for a detailed list of the architecture of all the networks, where the layer
shape and number of parameters is from the TS-Transformer32 network. Note that there is
no softmax activation function after the output layer, as the loss function already includes
a stable softmax. See Section 3.3.2 for details on this.
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Layer Type Layer Shape *Parameters
Input Layer:

Linear 8001 x 32 256064

Dropout

First encoder, Attention:

Linear 32 x 32 1024

Linear 32 x 32 1024

Linear 32 x 32 1024

Linear 32 x 32 1024

Dropout

BatchNormld 140 280

First encoder, Fully connected layers:

Linear 32 x 256 8448

GELU

Linear 256 x 32 8224

Dropout

BatchNormld 140 280

Second Encoder, Attention:

Linear 32 x 32 1024

Linear 32 x 32 1024

Linear 32 x 32 1024

Linear 32 x 32 1024

Dropout

BatchNorm1d 140 280

Second Encoder, Fully connected layers:

Linear 32 x 256 8448

GELU

Linear 256 x 32 8224

Dropout

BatchNorm1d 140 280

Third Encoder, Attention:

Linear 32 x 32 1024

Linear 32 x 32 1024

Linear 32 x 32 1024

Linear 32 x 32 1024

Dropout

BatchNorm1ld 140 280

Third Encoder, Fully connected layers:

Linear 32 x 256 8448

GELU

Linear 256 x 32 8224

Dropout

BatchNormld 140 280

Output Layer:

Flatten

Linear 64 x 2 8962
Sum = 329,010

Table 3.8: A list of the layers of the T'S-transformer network, with the output shape and number
of paramters in each layer.
* Includes bias parameters, unlike the Layer Shape.
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Chapter 4

Results and evaluation

In this chapter, we present the results, obtained from the approach we have laid out in the
previous chapter. Section 4.1, Evaluation metrics, explains the metrics we used to evaluate
our classifiers. Section 4.2, Validation Scores, will provide an overview of the performances
of all the models on the validation dataset. Based on this performance, we narrow down
our lists to four candidate models, and elaborate more on them in Section 4.3 Four models
chosen for testing. We also present the evaluation results of these models on the test dataset.

4.1 FEvaluation metrics

As common metrics to evaluate all models, we used accuracy, precision, recall, and F1-score.
Note that the calculations for the latter three are based only on predictions on samples
labeled as Jam. For a detailed explanation of the these metrics, see Section 2.1.2. The recall
metric is of particular interest, as it represents the ratio of the actual Jam samples that the
classifiers recognize. In other words, with 100 — recall, we get the percentage of undetected
illegal jammers. The precision metric indicates how reliable a jammer prediction is, based
on the ratio between true positive and false positives. The F1l-score is a weighted average
between precision and recall, and accuracy is the overall classification accuracy of both Jam
and NoJam signals.

4.2 Validation Scores

The validation dataset was only used to determine early stopping during training, and we
consider the results on the validation dataset to be representable of the models’ generalization
performance. As noted in Section 3.3.2, extensive hyperparameter search was not necessary
to obtain good results.

A summary of the evaluation performances on the validation dataset for all models is shown
in Section 4.2. For the ANN-based models, the reported results are taken from the epoch
noted in the “Epoch” column. These are the epochs of the model with the highest F1-score.
In parenthesis, we include the average score of each metric over the ten epochs following the
peak Fl-score.

From the validation scores, we see that all ANN-based models achieve over 99% accuracy,
with Fl-scores from 96.2 to 99.1. The non-ANN SVM and ROCKET models, achieve sig-
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Model Accuracy  Precision Recall F1-score Epoch

SVM 92.0 92.0 85.2 88.5 -
ROCKET 96.9 97.0 99.5 98.6 -
Alexnet* 99.3 (98.5) 98.1 (95.3)  96.3 (92.4) 97.2 (93.8) 132
EfficientNet 99.3 (98.6) 98.1 (96.2) 96.3 (92.2) 97.2 (94.0) 43
InceptionTime 99.8 (98.2) 100.0 (95.1) 98.1 (90.2) 99.1 (91.9) 71
Resnet18 99.8 (99.0) 100.0 (99.0) 98.1 (92.2) 99.1 (95.4) 58
Resnet34 99.6 (99.2) 100.0 (99.2) 96.3 (94.3) 98.1 (96.7) 80
Resnet50 99.8 (99.4) 100.0 (99.8) 98.1 (94.8) 99.1 (97.2) 59
Resnet152 99.1 (97.7) 98.1 (95.8) 94.4 (84.6) 96.2 (89.8) 54
Squeezenet1.1 99.6 (99.1) 98.1 (97.6)  98.1 (94.6) 98.1 (96.0) 107
xResnet18 99.1 (98.7) 98.1 (97.3) 94.4 (91.9) 96.2 (94.5) 45
TS-Transformer32*  99.1 (97.8) 98.1 (90.2)  94.4 (92.4) 96.2 (91.1) 112
TS-Transformer64*  99.3 (98.0) 98.1 (92.5)  96.3 (92.2) 97.2 (92.1) 111
TS-Transformer128  99.1 (95.4) 98.1 (81.5)  94.4 (92.8) 96.2 (85.4) 62

Table 4.1: Peak model results on the validation dataset. The metrics are multiplied by 100, and
100 is the maximum score.
* Models trained with secondary training settings (see Table 3.5).

Table 4.2: Summary of results.

nificantly lower accuracy, though the ROCKET-based classifier maintains a relatively high
F1.

Some models, such as Resnet18 and InceptionTime, correctly classified all NoJam validation
samples and only mislabeled one Jam sample. An interesting observation is that xResnet18,
which is supposed to be an improvement of Resnetl8, was achieved a lower performance.
However, differences between classifier performances are very small for all ANN models.

When considering the complexity of the models, as measured by the number of model
parameters, the TS-Transformer32 performs the best. It maintains comparable perfor-
mance to the other models, by using half as many parameters as the second smallest
model (the TS-Transformer64), and a tenth of the parameters of the third smallest clas-
sifier (SqueezeNetl1.1).

None of the models achieve 100% recall. In an attempt to increase recall, we experimented
with a weighted loss function, increasing the training signal for misclassified Jam samples.
We tried ratios up to 1:10 for Jam-to-NoJam penality, but all configurations resulted in a
worse results.

We also observed that our early stopping mechanism performed well. All models converged
to peak F1l-score in the epochs prior to the early stopping was triggered. We also found that
early stopping with validation loss performs better than early stopping based on the F1-
score. High fluctuations in the Fl-score in each training epochs would lead to early stopping
with sub-optimal F1-scores, as the “patience” for improvements would run out.
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4.3 Four models chosen for testing

From the large number of classifiers we evaluated in the previous section, we chose to focus
further on four classifiers in particular.

Resnet18 was the CNN image classifier with the lowest number of parameters that achieved
only one misclassification. Inception time also achieved only one misclassification, still with
a relatively low number of parameters. The InceptionTime classifier is featured in many
multivariate time series classification papers, and is thus relevant for comparison. Lastly,
we pick two versions of the time series transformer. We chose the TS-Transformer32 model,
because it has the lowest number of parameters of any model. We also choose the TS-
Transformer64 to compare two models from the same family.

4.3.1 Training and validation loss

0.7 1 —— train_loss —— train_loss
—— valid_loss —— valid_loss
0.6 1 0.8 1
0.5
0.6 1
0.4 1
0.3 044
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0.2 1
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Figure 4.1: Training and validation loss of selected models over training epochs.
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Figure 4.1 shows the trend in training and validation loss over epochs for some select models.
The Resnet architectures (Figure 4.1a) all showed a relatively smooth decrease in loss, with
few spikes compared to some other models. The transformer-based models (Figure 4.1b and
Figure 4.1c) show some small spikes in training and validation loss during training, similarly
to other trained models. InceptionTime (Figure 4.1d) produced large spikes in training and
validation loss, similar to those observed with the Squeezenet model.

4.3.2 Classications from Validation and Inspection of Missed Predictions

In this section, we will elaborate some specific classification results for the four selected
models on the validation dataset. Table 4.3 shows the confusion matrices for the four models.

We use the model state at the epoch with peak F1-score, as noted in Section 4.2. We observed
that all the models misclassify at least one Jam sample, while only the TS-Transformer32
misclassified a NoJam sample. On inspecting the spectrograms of the mislabeled samples,
we learned that the mislabeled Jam samples pertain to particularly weak jammer signals,
and the mislabeled NoJam sample pertains to a particularly strong NoJam-event. Figure 4.2
shows some example spectograms of mislabeled samples. The middle sample shows strong
occurence of wideband noise (or possibly a mislabeled jammer) and the right spectogram is
from a weak jamming signal.

Resnet18 TS-Transformer32
JAM, 53 1 JAM, 51 3
NoJAM, 0 396 NoJAM, 1 395
JAM,, NoJAM,, JAM,, NoJAM,,
TS-Transformer64 InceptionTime
JAM, 51 3 JAM, 53 1
NoJAM, 0 369 NoJAM, 0 396
JAM,, NoJAM,, JAM,, NoJAM,,

Table 4.3: Confusion matrices for chosen models on the validation set. Label, denotes the actual
label, while Label,, denotes the predicted label.

To increase our recall score we considered implementing a threshold adjustment to the pseudo
probabilities outputted by our final softmax function, i.e., labeling all samplins with a soft-
max score for JAM above 0.3 as a jammer event (instead of a fair spilt at 0.5). When we
observed the probabilities pertaining to the misclassified samples we learned that this would
not be a good soltuion, as the as the classifiers were “too confident” in the prediction when
misclassifying samples.

Prediction/Actual/Loss/Probability
jam/nojam / 6.15/ 1.00 nojam/jam /5.11/0.99
mmmr PRETE
Figure 4.2: Inspection of mislabeled samples in the validation set
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4.3.3 Evaluation on the Test Dataset

Metric scores

Accuracy Precision Recall F1

Resnet18 98.8 84.7 90.6 87.5
TS-Transformers32 98.7 96.9 74.4 84.2
TS-Transformers64 98.9 92.3 83.7 87.7
InceptionTime 80.1 16.5 86.0 27.7

Table 4.4: Performance metrics of the four models on test data.

Towards the end of the project we received a new batch of 952 datasamples that we used
for testing of our four chosen models. The confusion matrices in Table 4.5 show that the
number of misclassifications was higher compared to the validation dataset. Restnet18, T'S-
Transformer32 and TSTransfomer64 maintain a good performance with 10 to 12 misclassifi-
cations, but the performance of the InceptionTime model fell drastically due to misclassifying
NoJam samples. The performance of the various models can be found in Table 4.4.

Resnet18 TS-Transformer32
JAM, 39 4 JAM, 32 11
NoJAM, 7 902 NoJAM, 1 908
JAM,, NoJAM,, JAM,, NoJAM,,
TS-Transformer64 InceptionTime
JAM, 36 7 JAM, 37 6
NoJAM, 3 906 NoJAM, 183 762
JAM,, NoJAM,, JAM,, NoJAM,,

Table 4.5: Confusion matrices for chosen models on the test set. Label, denotes the actual label,
while Label, denotes the predicted label.

Excluding the InceptionTime model, our classifiers maintain relatively high accuracy, but
suffer from a lower recall. Among our top three classifiers, the F1 score remains similar, but
we observe significant differences in recall and precision scores. This is due to the fact that
the models perform differently on the two classes. The Resnet18 model obtains a 90.6 recall
score as it only misclassified four jam samples. On the other hand, the TS-transformer32
has the same accuracy, but only obtains a 96.9 Precision on the Jam class due to more false
positive classifications.

To better understand the increase in misclassifications, we inspected the samples misclassified
by the top three models. Spectograms of some of these samples can be found in Figure 4.3.
About half of these samples show a predominant noise level, identified by the green tone to
the plotted spectograms. This is caused by background noise in the vicinity of the measuring
station, and these noise values are under-represented in the training and validation sets.
Many of them hail from a new data source which does not appear in the training and
validation datasets (the station is titled “ODD”). We also observe that low power jammers
(possibly from the stations with monitoring antenna further from the RFI sources, such as at
the ODD station) were hard to classify. The classifiers also tended to mix very high-powered
wideband jammers with wideband noise.

After discussions with Nkom, we further speculate that fast-approaching vehicles can cause
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a low amount of traces with visible jam signal. Seeing as we operate with only one trace
per second, this might provide too little data for the classifiers that are trained on longer
jamming signals. Furthermore, we expect there is more noise in the labels of the test dataset
than in the training and validation dataset, given the analysis and relabeling described in
Section 3.2.2.

Prediction/Actual/Loss/Probability

NoJAM/JAM /15.99 / 1.00 NoJAM/JAM /7.85/1.00 JAM/NoJAM /7.14/1.00 JAM/NoJAM /4.71/0.99
NoJAM/JAM / 3.54 / 0.97 JAM/NoJAM /2.97 /0.95 JAM/NoJAM /2.35/0.90 JAM/NoJAM /1.66/0.81

NoJAM/JAM / 1.38/0.75 JAM/NoJAM / 0.78 /0.54 JAM/NoJAM /0.76/0.53 NoJAM/NoJAM /0.60/0.55

Figure 4.3: Inspection of mislabeled and hard to classify samples from the testset.
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Chapter 5

Conclusion

Based on the goals of this thesis and our obtained results, we will now provide a final
discussion on machine learning applied to jammer detection. First, we state that the jammer
detection problem is solvable to a high accuracy standard by machine learning algorithms.
However, noise in the labeling and differences between monitoring stations make it difficult
to achieve perfect scores. This is to be expected in real-world datasets. Most jammer-caused
RFT events contain distinguishable patterns, and the classifiers we have evaluated detect
these patterns.

There is a notable discrepancy between state-of-the-art machine learning classifiers applicable
to this task, and the methods applied to jammer detection in the literature. We have found
clear benefits of using state-of-the-art multivariate time series and image classification models
compared to the simple approaches commonly observed in the literature. We obtained
significantly improved performance on our dataset over commonly applied methods, such as
the top-performing model of a related paper [15].

Furthermore, we achieve comparably strong performance to the other evaluated methods
with a reduced computational cost in our TS-Transformer32 model. This shows the poten-
tial of ANN-based approaches even for resource-limited applications. Based on the CNN-
based approaches we evaluated, an increase in model size could have some benefits to the
performance. However, none of our findings indicate that models above 10 to 15 million
parameters would achieve any increase in performance.

We also find that a 99% accuracy is achievable. We observed up to 99.5% accuracy on
our validation dataset, which was only used to stop training upon convergence. When we
evaluated our test dataset of 952 previously unseen samples, including samples from entirely
new sources with new factors affecting the samples, we still achieved a 98.9% accuracy.

Furthermore, we found that a 100% jammer recall score proved to be challenging to obtain.
From the oputput probabilities of the models, we observed that lowering the threshold for
prediction would not be sufficient. We also saw that weighted backpropagation in favor of
the underrepresented jammer samples harmed the overall classification performance. We
will present a potential solution to mitigate this in Section 5.1 Advice to Nkom.

We have found that lower temporal resolution in the data can be adequate when detecting
the presence of jammers, as we obtained our results on samples with only one trace per
second. However, we add that one trace per second may be too low for reliably classifying
samples of particular short duration (i. e fast driving cars). Commonly in the literature,
much higher temporal data resolution is used.
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5.1 Future work

Finally, we will concretely state our advice to Nkom regarding implementing machine learning
approaches to detect jammer interference in the GNSS bands. We also include suggestions
and potential ideas for future works.

Advice to Nkom

For a minimally resource expensive solution, our recommendation is an approach based on
our TS-Transformer32. However, if resources are sufficient, more computationally intensive
classifiers such as Resnet18 may yield a slight increase in performance. The main obstacle
to high jammer recall and precision scores (meaning percentage of detected jammers and
reliably predicted jammer presence) seem to be certain subgroups of hard-to-classify jammer
and non-jammer events. To elaborate, jammers events with particularly weak signal strength
or non-jammer-interference of wideband nature with high signal levels are examples of this.
We suggest that a third label “Unsure”, be introduced so that the classifiers could potentially
separate these samples under a different label. An automatic detection system could inform
human personnel on predicting either “jammer” or “Unsure”. This approach could still filter
out a significant portion of non-jammer interference and provide jammer recall scores much
closer to 100. However, this suggestion would require human personnel to re-label the
samples and introduce the “Unsure” class.

Another improvement, independent of the first suggestion, is fine-tuning individual models
for each station. This approach could allow the classifiers to learn the unique character-
istics of the samples generated from a particular station and adjust for variations such as
background noise, which is often location-specific.

Finally, the configuration of monitoring stations in terms of the bandwidth, number of
data points, and traces per second should be standardized. A uniform configuration could
eliminate the need for any preprocessing, and classifiers could run directly on the generated
data point values. We suggest standardizing data points to around 8000 frequencies per
trace, and setting the number of sampled traces per second to a common configuration that
all stations can reliably maintain.

Improvement for Algorithms

Beyond the suggestions stated above, we also wish to include some of the ideas we did not
put into practice.

Preprocessing techniques designed to remove the influence of background noise could be
attempted. A simple scheme could be implementing a global minimum value m such that
each data point d is replaced by max(m,d).

If labeled data from a particular monitoring station is sparse, we suggest experimenting
with the pre-training task proposed in [73], in combination with fine-tuning on the available
labeled data.
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Appendix A

Newsarticles on Jamming

12 ‘ Nyheter

HAftenpoften
Torsdag 5. desember 2019

Na flyr de i «blinde»

Norsk Luftambulanse er forste operater i Europa som har utviklet et system for instrumentinnflyvning til andre steder enn flyplassene. Foto: Fredrik Naumann/Felix Features

Froydis Braathen

Tidligere matte legehelikoptrene sté pa bakken
nar sikten var darlig. Takket vaere GPS-teknologi
kan de na gjare betydelig flere oppdrag enn fer.

ave skyer, darlig sikt og fare for is-

ing har ofte fort til at mange lege-

helikopter-oppdrag ma kanselle-
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Luftambulanse pa Lgrenskog.
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FAKTA

Luftambulansen
pa Larenskog

Har degnkontinuerlig
beredskap av to Airbus
legehelikoptre med
mannskap.

Basen dekker store deler

av @stlandet og har i overkant
av 2000 iverksatte oppdrag
pr. ar.

P4 landsbasis blir hvert 10.
legehelikopteroppdrag avvist
eller avbrutt pa grunn av
darlig veer.

Det betyr at 700 syke eller
skadede pasienter hvert ar
ikke far potensielt livreddende
legehjelp pa raskeste mate.
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kunne hjelpe enda flere pasienter pa ras-
keste mate, sier Normann.
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